1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of virtual tables.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/Format.h"
24 #include "llvm/Transforms/Utils/Cloning.h"
25 #include <algorithm>
26 #include <cstdio>
27 
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
32   : CGM(CGM), VTContext(CGM.getContext()) { }
33 
34 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD,
35                                               const ThunkInfo &Thunk) {
36   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
37 
38   // Compute the mangled name.
39   SmallString<256> Name;
40   llvm::raw_svector_ostream Out(Name);
41   if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
42     getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(),
43                                                       Thunk.This, Out);
44   else
45     getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out);
46   Out.flush();
47 
48   llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD);
49   return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true);
50 }
51 
52 static llvm::Value *PerformTypeAdjustment(CodeGenFunction &CGF,
53                                           llvm::Value *Ptr,
54                                           int64_t NonVirtualAdjustment,
55                                           int64_t VirtualAdjustment,
56                                           bool IsReturnAdjustment) {
57   if (!NonVirtualAdjustment && !VirtualAdjustment)
58     return Ptr;
59 
60   llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
61   llvm::Value *V = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy);
62 
63   if (NonVirtualAdjustment && !IsReturnAdjustment) {
64     // Perform the non-virtual adjustment for a base-to-derived cast.
65     V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment);
66   }
67 
68   if (VirtualAdjustment) {
69     llvm::Type *PtrDiffTy =
70       CGF.ConvertType(CGF.getContext().getPointerDiffType());
71 
72     // Perform the virtual adjustment.
73     llvm::Value *VTablePtrPtr =
74       CGF.Builder.CreateBitCast(V, Int8PtrTy->getPointerTo());
75 
76     llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr);
77 
78     llvm::Value *OffsetPtr =
79       CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment);
80 
81     OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo());
82 
83     // Load the adjustment offset from the vtable.
84     llvm::Value *Offset = CGF.Builder.CreateLoad(OffsetPtr);
85 
86     // Adjust our pointer.
87     V = CGF.Builder.CreateInBoundsGEP(V, Offset);
88   }
89 
90   if (NonVirtualAdjustment && IsReturnAdjustment) {
91     // Perform the non-virtual adjustment for a derived-to-base cast.
92     V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment);
93   }
94 
95   // Cast back to the original type.
96   return CGF.Builder.CreateBitCast(V, Ptr->getType());
97 }
98 
99 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD,
100                                const ThunkInfo &Thunk, llvm::Function *Fn) {
101   CGM.setGlobalVisibility(Fn, MD);
102 
103   if (!CGM.getCodeGenOpts().HiddenWeakVTables)
104     return;
105 
106   // If the thunk has weak/linkonce linkage, but the function must be
107   // emitted in every translation unit that references it, then we can
108   // emit its thunks with hidden visibility, since its thunks must be
109   // emitted when the function is.
110 
111   // This follows CodeGenModule::setTypeVisibility; see the comments
112   // there for explanation.
113 
114   if ((Fn->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage &&
115        Fn->getLinkage() != llvm::GlobalVariable::WeakODRLinkage) ||
116       Fn->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
117     return;
118 
119   if (MD->getExplicitVisibility())
120     return;
121 
122   switch (MD->getTemplateSpecializationKind()) {
123   case TSK_ExplicitInstantiationDefinition:
124   case TSK_ExplicitInstantiationDeclaration:
125     return;
126 
127   case TSK_Undeclared:
128     break;
129 
130   case TSK_ExplicitSpecialization:
131   case TSK_ImplicitInstantiation:
132     return;
133     break;
134   }
135 
136   // If there's an explicit definition, and that definition is
137   // out-of-line, then we can't assume that all users will have a
138   // definition to emit.
139   const FunctionDecl *Def = 0;
140   if (MD->hasBody(Def) && Def->isOutOfLine())
141     return;
142 
143   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
144 }
145 
146 #ifndef NDEBUG
147 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
148                     const ABIArgInfo &infoR, CanQualType typeR) {
149   return (infoL.getKind() == infoR.getKind() &&
150           (typeL == typeR ||
151            (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
152            (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
153 }
154 #endif
155 
156 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
157                                       QualType ResultType, RValue RV,
158                                       const ThunkInfo &Thunk) {
159   // Emit the return adjustment.
160   bool NullCheckValue = !ResultType->isReferenceType();
161 
162   llvm::BasicBlock *AdjustNull = 0;
163   llvm::BasicBlock *AdjustNotNull = 0;
164   llvm::BasicBlock *AdjustEnd = 0;
165 
166   llvm::Value *ReturnValue = RV.getScalarVal();
167 
168   if (NullCheckValue) {
169     AdjustNull = CGF.createBasicBlock("adjust.null");
170     AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
171     AdjustEnd = CGF.createBasicBlock("adjust.end");
172 
173     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
174     CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
175     CGF.EmitBlock(AdjustNotNull);
176   }
177 
178   ReturnValue = PerformTypeAdjustment(CGF, ReturnValue,
179                                       Thunk.Return.NonVirtual,
180                                       Thunk.Return.VBaseOffsetOffset,
181                                       /*IsReturnAdjustment*/true);
182 
183   if (NullCheckValue) {
184     CGF.Builder.CreateBr(AdjustEnd);
185     CGF.EmitBlock(AdjustNull);
186     CGF.Builder.CreateBr(AdjustEnd);
187     CGF.EmitBlock(AdjustEnd);
188 
189     llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
190     PHI->addIncoming(ReturnValue, AdjustNotNull);
191     PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
192                      AdjustNull);
193     ReturnValue = PHI;
194   }
195 
196   return RValue::get(ReturnValue);
197 }
198 
199 // This function does roughly the same thing as GenerateThunk, but in a
200 // very different way, so that va_start and va_end work correctly.
201 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
202 //        a function, and that there is an alloca built in the entry block
203 //        for all accesses to "this".
204 // FIXME: This function assumes there is only one "ret" statement per function.
205 // FIXME: Cloning isn't correct in the presence of indirect goto!
206 // FIXME: This implementation of thunks bloats codesize by duplicating the
207 //        function definition.  There are alternatives:
208 //        1. Add some sort of stub support to LLVM for cases where we can
209 //           do a this adjustment, then a sibcall.
210 //        2. We could transform the definition to take a va_list instead of an
211 //           actual variable argument list, then have the thunks (including a
212 //           no-op thunk for the regular definition) call va_start/va_end.
213 //           There's a bit of per-call overhead for this solution, but it's
214 //           better for codesize if the definition is long.
215 void CodeGenFunction::GenerateVarArgsThunk(
216                                       llvm::Function *Fn,
217                                       const CGFunctionInfo &FnInfo,
218                                       GlobalDecl GD, const ThunkInfo &Thunk) {
219   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
220   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
221   QualType ResultType = FPT->getResultType();
222 
223   // Get the original function
224   assert(FnInfo.isVariadic());
225   llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
226   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
227   llvm::Function *BaseFn = cast<llvm::Function>(Callee);
228 
229   // Clone to thunk.
230   llvm::ValueToValueMapTy VMap;
231   llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap,
232                                               /*ModuleLevelChanges=*/false);
233   CGM.getModule().getFunctionList().push_back(NewFn);
234   Fn->replaceAllUsesWith(NewFn);
235   NewFn->takeName(Fn);
236   Fn->eraseFromParent();
237   Fn = NewFn;
238 
239   // "Initialize" CGF (minimally).
240   CurFn = Fn;
241 
242   // Get the "this" value
243   llvm::Function::arg_iterator AI = Fn->arg_begin();
244   if (CGM.ReturnTypeUsesSRet(FnInfo))
245     ++AI;
246 
247   // Find the first store of "this", which will be to the alloca associated
248   // with "this".
249   llvm::Value *ThisPtr = &*AI;
250   llvm::BasicBlock *EntryBB = Fn->begin();
251   llvm::Instruction *ThisStore = 0;
252   for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end();
253        I != E; I++) {
254     if (isa<llvm::StoreInst>(I) && I->getOperand(0) == ThisPtr) {
255       ThisStore = cast<llvm::StoreInst>(I);
256       break;
257     }
258   }
259   assert(ThisStore && "Store of this should be in entry block?");
260   // Adjust "this", if necessary.
261   Builder.SetInsertPoint(ThisStore);
262   llvm::Value *AdjustedThisPtr =
263     PerformTypeAdjustment(*this, ThisPtr,
264                           Thunk.This.NonVirtual,
265                           Thunk.This.VCallOffsetOffset,
266                           /*IsReturnAdjustment*/false);
267   ThisStore->setOperand(0, AdjustedThisPtr);
268 
269   if (!Thunk.Return.isEmpty()) {
270     // Fix up the returned value, if necessary.
271     for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) {
272       llvm::Instruction *T = I->getTerminator();
273       if (isa<llvm::ReturnInst>(T)) {
274         RValue RV = RValue::get(T->getOperand(0));
275         T->eraseFromParent();
276         Builder.SetInsertPoint(&*I);
277         RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
278         Builder.CreateRet(RV.getScalarVal());
279         break;
280       }
281     }
282   }
283 }
284 
285 void CodeGenFunction::GenerateThunk(llvm::Function *Fn,
286                                     const CGFunctionInfo &FnInfo,
287                                     GlobalDecl GD, const ThunkInfo &Thunk) {
288   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
289   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
290   QualType ResultType = FPT->getResultType();
291   QualType ThisType = MD->getThisType(getContext());
292 
293   FunctionArgList FunctionArgs;
294 
295   // FIXME: It would be nice if more of this code could be shared with
296   // CodeGenFunction::GenerateCode.
297 
298   // Create the implicit 'this' parameter declaration.
299   CurGD = GD;
300   CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResultType, FunctionArgs);
301 
302   // Add the rest of the parameters.
303   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
304        E = MD->param_end(); I != E; ++I) {
305     ParmVarDecl *Param = *I;
306 
307     FunctionArgs.push_back(Param);
308   }
309 
310   // Initialize debug info if needed.
311   maybeInitializeDebugInfo();
312 
313   StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
314                 SourceLocation());
315 
316   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
317   CXXThisValue = CXXABIThisValue;
318 
319   // Adjust the 'this' pointer if necessary.
320   llvm::Value *AdjustedThisPtr =
321     PerformTypeAdjustment(*this, LoadCXXThis(),
322                           Thunk.This.NonVirtual,
323                           Thunk.This.VCallOffsetOffset,
324                           /*IsReturnAdjustment*/false);
325 
326   CallArgList CallArgs;
327 
328   // Add our adjusted 'this' pointer.
329   CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
330 
331   // Add the rest of the parameters.
332   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
333        E = MD->param_end(); I != E; ++I) {
334     ParmVarDecl *param = *I;
335     EmitDelegateCallArg(CallArgs, param);
336   }
337 
338   // Get our callee.
339   llvm::Type *Ty =
340     CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD));
341   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
342 
343 #ifndef NDEBUG
344   const CGFunctionInfo &CallFnInfo =
345     CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT,
346                                        RequiredArgs::forPrototypePlus(FPT, 1));
347   assert(CallFnInfo.getRegParm() == FnInfo.getRegParm() &&
348          CallFnInfo.isNoReturn() == FnInfo.isNoReturn() &&
349          CallFnInfo.getCallingConvention() == FnInfo.getCallingConvention());
350   assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
351          similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
352                  FnInfo.getReturnInfo(), FnInfo.getReturnType()));
353   assert(CallFnInfo.arg_size() == FnInfo.arg_size());
354   for (unsigned i = 0, e = FnInfo.arg_size(); i != e; ++i)
355     assert(similar(CallFnInfo.arg_begin()[i].info,
356                    CallFnInfo.arg_begin()[i].type,
357                    FnInfo.arg_begin()[i].info, FnInfo.arg_begin()[i].type));
358 #endif
359 
360   // Determine whether we have a return value slot to use.
361   ReturnValueSlot Slot;
362   if (!ResultType->isVoidType() &&
363       FnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
364       hasAggregateLLVMType(CurFnInfo->getReturnType()))
365     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
366 
367   // Now emit our call.
368   RValue RV = EmitCall(FnInfo, Callee, Slot, CallArgs, MD);
369 
370   if (!Thunk.Return.isEmpty())
371     RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
372 
373   if (!ResultType->isVoidType() && Slot.isNull())
374     CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
375 
376   // Disable the final ARC autorelease.
377   AutoreleaseResult = false;
378 
379   FinishFunction();
380 
381   // Set the right linkage.
382   CGM.setFunctionLinkage(MD, Fn);
383 
384   // Set the right visibility.
385   setThunkVisibility(CGM, MD, Thunk, Fn);
386 }
387 
388 void CodeGenVTables::EmitThunk(GlobalDecl GD, const ThunkInfo &Thunk,
389                                bool UseAvailableExternallyLinkage)
390 {
391   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD);
392 
393   // FIXME: re-use FnInfo in this computation.
394   llvm::Constant *Entry = CGM.GetAddrOfThunk(GD, Thunk);
395 
396   // Strip off a bitcast if we got one back.
397   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
398     assert(CE->getOpcode() == llvm::Instruction::BitCast);
399     Entry = CE->getOperand(0);
400   }
401 
402   // There's already a declaration with the same name, check if it has the same
403   // type or if we need to replace it.
404   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() !=
405       CGM.getTypes().GetFunctionTypeForVTable(GD)) {
406     llvm::GlobalValue *OldThunkFn = cast<llvm::GlobalValue>(Entry);
407 
408     // If the types mismatch then we have to rewrite the definition.
409     assert(OldThunkFn->isDeclaration() &&
410            "Shouldn't replace non-declaration");
411 
412     // Remove the name from the old thunk function and get a new thunk.
413     OldThunkFn->setName(StringRef());
414     Entry = CGM.GetAddrOfThunk(GD, Thunk);
415 
416     // If needed, replace the old thunk with a bitcast.
417     if (!OldThunkFn->use_empty()) {
418       llvm::Constant *NewPtrForOldDecl =
419         llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType());
420       OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
421     }
422 
423     // Remove the old thunk.
424     OldThunkFn->eraseFromParent();
425   }
426 
427   llvm::Function *ThunkFn = cast<llvm::Function>(Entry);
428 
429   if (!ThunkFn->isDeclaration()) {
430     if (UseAvailableExternallyLinkage) {
431       // There is already a thunk emitted for this function, do nothing.
432       return;
433     }
434 
435     // If a function has a body, it should have available_externally linkage.
436     assert(ThunkFn->hasAvailableExternallyLinkage() &&
437            "Function should have available_externally linkage!");
438 
439     // Change the linkage.
440     CGM.setFunctionLinkage(cast<CXXMethodDecl>(GD.getDecl()), ThunkFn);
441     return;
442   }
443 
444   CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
445 
446   if (ThunkFn->isVarArg()) {
447     // Varargs thunks are special; we can't just generate a call because
448     // we can't copy the varargs.  Our implementation is rather
449     // expensive/sucky at the moment, so don't generate the thunk unless
450     // we have to.
451     // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
452     if (!UseAvailableExternallyLinkage)
453       CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk);
454   } else {
455     // Normal thunk body generation.
456     CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk);
457   }
458 
459   if (UseAvailableExternallyLinkage)
460     ThunkFn->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
461 }
462 
463 void CodeGenVTables::MaybeEmitThunkAvailableExternally(GlobalDecl GD,
464                                                        const ThunkInfo &Thunk) {
465   // We only want to do this when building with optimizations.
466   if (!CGM.getCodeGenOpts().OptimizationLevel)
467     return;
468 
469   // We can't emit thunks for member functions with incomplete types.
470   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
471   if (!CGM.getTypes().isFuncTypeConvertible(
472                                 cast<FunctionType>(MD->getType().getTypePtr())))
473     return;
474 
475   EmitThunk(GD, Thunk, /*UseAvailableExternallyLinkage=*/true);
476 }
477 
478 void CodeGenVTables::EmitThunks(GlobalDecl GD)
479 {
480   const CXXMethodDecl *MD =
481     cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
482 
483   // We don't need to generate thunks for the base destructor.
484   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
485     return;
486 
487   const VTableContext::ThunkInfoVectorTy *ThunkInfoVector =
488     VTContext.getThunkInfo(MD);
489   if (!ThunkInfoVector)
490     return;
491 
492   for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I)
493     EmitThunk(GD, (*ThunkInfoVector)[I],
494               /*UseAvailableExternallyLinkage=*/false);
495 }
496 
497 llvm::Constant *
498 CodeGenVTables::CreateVTableInitializer(const CXXRecordDecl *RD,
499                                         const VTableComponent *Components,
500                                         unsigned NumComponents,
501                                 const VTableLayout::VTableThunkTy *VTableThunks,
502                                         unsigned NumVTableThunks) {
503   SmallVector<llvm::Constant *, 64> Inits;
504 
505   llvm::Type *Int8PtrTy = CGM.Int8PtrTy;
506 
507   llvm::Type *PtrDiffTy =
508     CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
509 
510   QualType ClassType = CGM.getContext().getTagDeclType(RD);
511   llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(ClassType);
512 
513   unsigned NextVTableThunkIndex = 0;
514 
515   llvm::Constant *PureVirtualFn = 0, *DeletedVirtualFn = 0;
516 
517   for (unsigned I = 0; I != NumComponents; ++I) {
518     VTableComponent Component = Components[I];
519 
520     llvm::Constant *Init = 0;
521 
522     switch (Component.getKind()) {
523     case VTableComponent::CK_VCallOffset:
524       Init = llvm::ConstantInt::get(PtrDiffTy,
525                                     Component.getVCallOffset().getQuantity());
526       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
527       break;
528     case VTableComponent::CK_VBaseOffset:
529       Init = llvm::ConstantInt::get(PtrDiffTy,
530                                     Component.getVBaseOffset().getQuantity());
531       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
532       break;
533     case VTableComponent::CK_OffsetToTop:
534       Init = llvm::ConstantInt::get(PtrDiffTy,
535                                     Component.getOffsetToTop().getQuantity());
536       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
537       break;
538     case VTableComponent::CK_RTTI:
539       Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy);
540       break;
541     case VTableComponent::CK_FunctionPointer:
542     case VTableComponent::CK_CompleteDtorPointer:
543     case VTableComponent::CK_DeletingDtorPointer: {
544       GlobalDecl GD;
545 
546       // Get the right global decl.
547       switch (Component.getKind()) {
548       default:
549         llvm_unreachable("Unexpected vtable component kind");
550       case VTableComponent::CK_FunctionPointer:
551         GD = Component.getFunctionDecl();
552         break;
553       case VTableComponent::CK_CompleteDtorPointer:
554         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete);
555         break;
556       case VTableComponent::CK_DeletingDtorPointer:
557         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting);
558         break;
559       }
560 
561       if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
562         // We have a pure virtual member function.
563         if (!PureVirtualFn) {
564           llvm::FunctionType *Ty =
565             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
566           StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName();
567           PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName);
568           PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn,
569                                                          CGM.Int8PtrTy);
570         }
571         Init = PureVirtualFn;
572       } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
573         if (!DeletedVirtualFn) {
574           llvm::FunctionType *Ty =
575             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
576           StringRef DeletedCallName =
577             CGM.getCXXABI().GetDeletedVirtualCallName();
578           DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName);
579           DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn,
580                                                          CGM.Int8PtrTy);
581         }
582         Init = DeletedVirtualFn;
583       } else {
584         // Check if we should use a thunk.
585         if (NextVTableThunkIndex < NumVTableThunks &&
586             VTableThunks[NextVTableThunkIndex].first == I) {
587           const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second;
588 
589           MaybeEmitThunkAvailableExternally(GD, Thunk);
590           Init = CGM.GetAddrOfThunk(GD, Thunk);
591 
592           NextVTableThunkIndex++;
593         } else {
594           llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD);
595 
596           Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
597         }
598 
599         Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
600       }
601       break;
602     }
603 
604     case VTableComponent::CK_UnusedFunctionPointer:
605       Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
606       break;
607     };
608 
609     Inits.push_back(Init);
610   }
611 
612   llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents);
613   return llvm::ConstantArray::get(ArrayType, Inits);
614 }
615 
616 llvm::GlobalVariable *CodeGenVTables::GetAddrOfVTable(const CXXRecordDecl *RD) {
617   llvm::GlobalVariable *&VTable = VTables[RD];
618   if (VTable)
619     return VTable;
620 
621   // Queue up this v-table for possible deferred emission.
622   CGM.addDeferredVTable(RD);
623 
624   SmallString<256> OutName;
625   llvm::raw_svector_ostream Out(OutName);
626   CGM.getCXXABI().getMangleContext().mangleCXXVTable(RD, Out);
627   Out.flush();
628   StringRef Name = OutName.str();
629 
630   llvm::ArrayType *ArrayType =
631     llvm::ArrayType::get(CGM.Int8PtrTy,
632                         VTContext.getVTableLayout(RD).getNumVTableComponents());
633 
634   VTable =
635     CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType,
636                                           llvm::GlobalValue::ExternalLinkage);
637   VTable->setUnnamedAddr(true);
638   return VTable;
639 }
640 
641 void
642 CodeGenVTables::EmitVTableDefinition(llvm::GlobalVariable *VTable,
643                                      llvm::GlobalVariable::LinkageTypes Linkage,
644                                      const CXXRecordDecl *RD) {
645   const VTableLayout &VTLayout = VTContext.getVTableLayout(RD);
646 
647   // Create and set the initializer.
648   llvm::Constant *Init =
649     CreateVTableInitializer(RD,
650                             VTLayout.vtable_component_begin(),
651                             VTLayout.getNumVTableComponents(),
652                             VTLayout.vtable_thunk_begin(),
653                             VTLayout.getNumVTableThunks());
654   VTable->setInitializer(Init);
655 
656   // Set the correct linkage.
657   VTable->setLinkage(Linkage);
658 
659   // Set the right visibility.
660   CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForVTable);
661 }
662 
663 llvm::GlobalVariable *
664 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
665                                       const BaseSubobject &Base,
666                                       bool BaseIsVirtual,
667                                    llvm::GlobalVariable::LinkageTypes Linkage,
668                                       VTableAddressPointsMapTy& AddressPoints) {
669   OwningPtr<VTableLayout> VTLayout(
670     VTContext.createConstructionVTableLayout(Base.getBase(),
671                                              Base.getBaseOffset(),
672                                              BaseIsVirtual, RD));
673 
674   // Add the address points.
675   AddressPoints = VTLayout->getAddressPoints();
676 
677   // Get the mangled construction vtable name.
678   SmallString<256> OutName;
679   llvm::raw_svector_ostream Out(OutName);
680   CGM.getCXXABI().getMangleContext().
681     mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), Base.getBase(),
682                         Out);
683   Out.flush();
684   StringRef Name = OutName.str();
685 
686   llvm::ArrayType *ArrayType =
687     llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents());
688 
689   // Create the variable that will hold the construction vtable.
690   llvm::GlobalVariable *VTable =
691     CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage);
692   CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForConstructionVTable);
693 
694   // V-tables are always unnamed_addr.
695   VTable->setUnnamedAddr(true);
696 
697   // Create and set the initializer.
698   llvm::Constant *Init =
699     CreateVTableInitializer(Base.getBase(),
700                             VTLayout->vtable_component_begin(),
701                             VTLayout->getNumVTableComponents(),
702                             VTLayout->vtable_thunk_begin(),
703                             VTLayout->getNumVTableThunks());
704   VTable->setInitializer(Init);
705 
706   return VTable;
707 }
708 
709 /// Compute the required linkage of the v-table for the given class.
710 ///
711 /// Note that we only call this at the end of the translation unit.
712 llvm::GlobalVariable::LinkageTypes
713 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
714   if (RD->getLinkage() != ExternalLinkage)
715     return llvm::GlobalVariable::InternalLinkage;
716 
717   // We're at the end of the translation unit, so the current key
718   // function is fully correct.
719   if (const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD)) {
720     // If this class has a key function, use that to determine the
721     // linkage of the vtable.
722     const FunctionDecl *def = 0;
723     if (keyFunction->hasBody(def))
724       keyFunction = cast<CXXMethodDecl>(def);
725 
726     switch (keyFunction->getTemplateSpecializationKind()) {
727       case TSK_Undeclared:
728       case TSK_ExplicitSpecialization:
729         // When compiling with optimizations turned on, we emit all vtables,
730         // even if the key function is not defined in the current translation
731         // unit. If this is the case, use available_externally linkage.
732         if (!def && CodeGenOpts.OptimizationLevel)
733           return llvm::GlobalVariable::AvailableExternallyLinkage;
734 
735         if (keyFunction->isInlined())
736           return !Context.getLangOpts().AppleKext ?
737                    llvm::GlobalVariable::LinkOnceODRLinkage :
738                    llvm::Function::InternalLinkage;
739 
740         return llvm::GlobalVariable::ExternalLinkage;
741 
742       case TSK_ImplicitInstantiation:
743         return !Context.getLangOpts().AppleKext ?
744                  llvm::GlobalVariable::LinkOnceODRLinkage :
745                  llvm::Function::InternalLinkage;
746 
747       case TSK_ExplicitInstantiationDefinition:
748         return !Context.getLangOpts().AppleKext ?
749                  llvm::GlobalVariable::WeakODRLinkage :
750                  llvm::Function::InternalLinkage;
751 
752       case TSK_ExplicitInstantiationDeclaration:
753         // FIXME: Use available_externally linkage. However, this currently
754         // breaks LLVM's build due to undefined symbols.
755         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
756         return !Context.getLangOpts().AppleKext ?
757                  llvm::GlobalVariable::LinkOnceODRLinkage :
758                  llvm::Function::InternalLinkage;
759     }
760   }
761 
762   // -fapple-kext mode does not support weak linkage, so we must use
763   // internal linkage.
764   if (Context.getLangOpts().AppleKext)
765     return llvm::Function::InternalLinkage;
766 
767   switch (RD->getTemplateSpecializationKind()) {
768   case TSK_Undeclared:
769   case TSK_ExplicitSpecialization:
770   case TSK_ImplicitInstantiation:
771     return llvm::GlobalVariable::LinkOnceODRLinkage;
772 
773   case TSK_ExplicitInstantiationDeclaration:
774     // FIXME: Use available_externally linkage. However, this currently
775     // breaks LLVM's build due to undefined symbols.
776     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
777     return llvm::GlobalVariable::LinkOnceODRLinkage;
778 
779   case TSK_ExplicitInstantiationDefinition:
780       return llvm::GlobalVariable::WeakODRLinkage;
781   }
782 
783   llvm_unreachable("Invalid TemplateSpecializationKind!");
784 }
785 
786 /// This is a callback from Sema to tell us that it believes that a
787 /// particular v-table is required to be emitted in this translation
788 /// unit.
789 ///
790 /// The reason we don't simply trust this callback is because Sema
791 /// will happily report that something is used even when it's used
792 /// only in code that we don't actually have to emit.
793 ///
794 /// \param isRequired - if true, the v-table is mandatory, e.g.
795 ///   because the translation unit defines the key function
796 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass, bool isRequired) {
797   if (!isRequired) return;
798 
799   VTables.GenerateClassData(theClass);
800 }
801 
802 void
803 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
804   // First off, check whether we've already emitted the v-table and
805   // associated stuff.
806   llvm::GlobalVariable *VTable = GetAddrOfVTable(RD);
807   if (VTable->hasInitializer())
808     return;
809 
810   llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
811   EmitVTableDefinition(VTable, Linkage, RD);
812 
813   if (RD->getNumVBases()) {
814     llvm::GlobalVariable *VTT = GetAddrOfVTT(RD);
815     EmitVTTDefinition(VTT, Linkage, RD);
816   }
817 
818   // If this is the magic class __cxxabiv1::__fundamental_type_info,
819   // we will emit the typeinfo for the fundamental types. This is the
820   // same behaviour as GCC.
821   const DeclContext *DC = RD->getDeclContext();
822   if (RD->getIdentifier() &&
823       RD->getIdentifier()->isStr("__fundamental_type_info") &&
824       isa<NamespaceDecl>(DC) &&
825       cast<NamespaceDecl>(DC)->getIdentifier() &&
826       cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") &&
827       DC->getParent()->isTranslationUnit())
828     CGM.EmitFundamentalRTTIDescriptors();
829 }
830 
831 /// At this point in the translation unit, does it appear that can we
832 /// rely on the vtable being defined elsewhere in the program?
833 ///
834 /// The response is really only definitive when called at the end of
835 /// the translation unit.
836 ///
837 /// The only semantic restriction here is that the object file should
838 /// not contain a v-table definition when that v-table is defined
839 /// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
840 /// v-tables when unnecessary.
841 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
842   assert(RD->isDynamicClass() && "Non dynamic classes have no VTable.");
843 
844   // If we have an explicit instantiation declaration (and not a
845   // definition), the v-table is defined elsewhere.
846   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
847   if (TSK == TSK_ExplicitInstantiationDeclaration)
848     return true;
849 
850   // Otherwise, if the class is an instantiated template, the
851   // v-table must be defined here.
852   if (TSK == TSK_ImplicitInstantiation ||
853       TSK == TSK_ExplicitInstantiationDefinition)
854     return false;
855 
856   // Otherwise, if the class doesn't have a key function (possibly
857   // anymore), the v-table must be defined here.
858   const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
859   if (!keyFunction)
860     return false;
861 
862   // Otherwise, if we don't have a definition of the key function, the
863   // v-table must be defined somewhere else.
864   return !keyFunction->hasBody();
865 }
866 
867 /// Given that we're currently at the end of the translation unit, and
868 /// we've emitted a reference to the v-table for this class, should
869 /// we define that v-table?
870 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
871                                                    const CXXRecordDecl *RD) {
872   // If we're building with optimization, we always emit v-tables
873   // since that allows for virtual function calls to be devirtualized.
874   // If the v-table is defined strongly elsewhere, this definition
875   // will be emitted available_externally.
876   //
877   // However, we don't want to do this in -fapple-kext mode, because
878   // kext mode does not permit devirtualization.
879   if (CGM.getCodeGenOpts().OptimizationLevel && !CGM.getLangOpts().AppleKext)
880     return true;
881 
882   return !CGM.getVTables().isVTableExternal(RD);
883 }
884 
885 /// Given that at some point we emitted a reference to one or more
886 /// v-tables, and that we are now at the end of the translation unit,
887 /// decide whether we should emit them.
888 void CodeGenModule::EmitDeferredVTables() {
889 #ifndef NDEBUG
890   // Remember the size of DeferredVTables, because we're going to assume
891   // that this entire operation doesn't modify it.
892   size_t savedSize = DeferredVTables.size();
893 #endif
894 
895   typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator;
896   for (const_iterator i = DeferredVTables.begin(),
897                       e = DeferredVTables.end(); i != e; ++i) {
898     const CXXRecordDecl *RD = *i;
899     if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
900       VTables.GenerateClassData(RD);
901   }
902 
903   assert(savedSize == DeferredVTables.size() &&
904          "deferred extra v-tables during v-table emission?");
905   DeferredVTables.clear();
906 }
907