1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Transforms/Utils/Cloning.h" 26 #include <algorithm> 27 #include <cstdio> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 34 35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 36 const ThunkInfo &Thunk) { 37 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 38 39 // Compute the mangled name. 40 SmallString<256> Name; 41 llvm::raw_svector_ostream Out(Name); 42 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 43 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 44 Thunk.This, Out); 45 else 46 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 47 48 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 49 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, 50 /*DontDefer=*/true, /*IsThunk=*/true); 51 } 52 53 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 54 const ThunkInfo &Thunk, llvm::Function *Fn) { 55 CGM.setGlobalVisibility(Fn, MD); 56 } 57 58 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 59 llvm::Function *ThunkFn, bool ForVTable, 60 GlobalDecl GD) { 61 CGM.setFunctionLinkage(GD, ThunkFn); 62 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 63 !Thunk.Return.isEmpty()); 64 65 // Set the right visibility. 66 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 67 setThunkVisibility(CGM, MD, Thunk, ThunkFn); 68 69 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 70 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 71 } 72 73 #ifndef NDEBUG 74 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 75 const ABIArgInfo &infoR, CanQualType typeR) { 76 return (infoL.getKind() == infoR.getKind() && 77 (typeL == typeR || 78 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 79 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 80 } 81 #endif 82 83 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 84 QualType ResultType, RValue RV, 85 const ThunkInfo &Thunk) { 86 // Emit the return adjustment. 87 bool NullCheckValue = !ResultType->isReferenceType(); 88 89 llvm::BasicBlock *AdjustNull = nullptr; 90 llvm::BasicBlock *AdjustNotNull = nullptr; 91 llvm::BasicBlock *AdjustEnd = nullptr; 92 93 llvm::Value *ReturnValue = RV.getScalarVal(); 94 95 if (NullCheckValue) { 96 AdjustNull = CGF.createBasicBlock("adjust.null"); 97 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 98 AdjustEnd = CGF.createBasicBlock("adjust.end"); 99 100 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 101 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 102 CGF.EmitBlock(AdjustNotNull); 103 } 104 105 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue, 106 Thunk.Return); 107 108 if (NullCheckValue) { 109 CGF.Builder.CreateBr(AdjustEnd); 110 CGF.EmitBlock(AdjustNull); 111 CGF.Builder.CreateBr(AdjustEnd); 112 CGF.EmitBlock(AdjustEnd); 113 114 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 115 PHI->addIncoming(ReturnValue, AdjustNotNull); 116 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 117 AdjustNull); 118 ReturnValue = PHI; 119 } 120 121 return RValue::get(ReturnValue); 122 } 123 124 // This function does roughly the same thing as GenerateThunk, but in a 125 // very different way, so that va_start and va_end work correctly. 126 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 127 // a function, and that there is an alloca built in the entry block 128 // for all accesses to "this". 129 // FIXME: This function assumes there is only one "ret" statement per function. 130 // FIXME: Cloning isn't correct in the presence of indirect goto! 131 // FIXME: This implementation of thunks bloats codesize by duplicating the 132 // function definition. There are alternatives: 133 // 1. Add some sort of stub support to LLVM for cases where we can 134 // do a this adjustment, then a sibcall. 135 // 2. We could transform the definition to take a va_list instead of an 136 // actual variable argument list, then have the thunks (including a 137 // no-op thunk for the regular definition) call va_start/va_end. 138 // There's a bit of per-call overhead for this solution, but it's 139 // better for codesize if the definition is long. 140 llvm::Function * 141 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 142 const CGFunctionInfo &FnInfo, 143 GlobalDecl GD, const ThunkInfo &Thunk) { 144 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 145 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 146 QualType ResultType = FPT->getReturnType(); 147 148 // Get the original function 149 assert(FnInfo.isVariadic()); 150 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 151 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 152 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 153 154 // Clone to thunk. 155 llvm::ValueToValueMapTy VMap; 156 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, 157 /*ModuleLevelChanges=*/false); 158 CGM.getModule().getFunctionList().push_back(NewFn); 159 Fn->replaceAllUsesWith(NewFn); 160 NewFn->takeName(Fn); 161 Fn->eraseFromParent(); 162 Fn = NewFn; 163 164 // "Initialize" CGF (minimally). 165 CurFn = Fn; 166 167 // Get the "this" value 168 llvm::Function::arg_iterator AI = Fn->arg_begin(); 169 if (CGM.ReturnTypeUsesSRet(FnInfo)) 170 ++AI; 171 172 // Find the first store of "this", which will be to the alloca associated 173 // with "this". 174 llvm::Value *ThisPtr = &*AI; 175 llvm::BasicBlock *EntryBB = Fn->begin(); 176 llvm::Instruction *ThisStore = 177 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 178 return isa<llvm::StoreInst>(I) && I.getOperand(0) == ThisPtr; 179 }); 180 assert(ThisStore && "Store of this should be in entry block?"); 181 // Adjust "this", if necessary. 182 Builder.SetInsertPoint(ThisStore); 183 llvm::Value *AdjustedThisPtr = 184 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 185 ThisStore->setOperand(0, AdjustedThisPtr); 186 187 if (!Thunk.Return.isEmpty()) { 188 // Fix up the returned value, if necessary. 189 for (llvm::BasicBlock &BB : *Fn) { 190 llvm::Instruction *T = BB.getTerminator(); 191 if (isa<llvm::ReturnInst>(T)) { 192 RValue RV = RValue::get(T->getOperand(0)); 193 T->eraseFromParent(); 194 Builder.SetInsertPoint(&BB); 195 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 196 Builder.CreateRet(RV.getScalarVal()); 197 break; 198 } 199 } 200 } 201 202 return Fn; 203 } 204 205 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 206 const CGFunctionInfo &FnInfo) { 207 assert(!CurGD.getDecl() && "CurGD was already set!"); 208 CurGD = GD; 209 CurFuncIsThunk = true; 210 211 // Build FunctionArgs. 212 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 213 QualType ThisType = MD->getThisType(getContext()); 214 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 215 QualType ResultType = CGM.getCXXABI().HasThisReturn(GD) 216 ? ThisType 217 : CGM.getCXXABI().hasMostDerivedReturn(GD) 218 ? CGM.getContext().VoidPtrTy 219 : FPT->getReturnType(); 220 FunctionArgList FunctionArgs; 221 222 // Create the implicit 'this' parameter declaration. 223 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 224 225 // Add the rest of the parameters. 226 FunctionArgs.append(MD->param_begin(), MD->param_end()); 227 228 if (isa<CXXDestructorDecl>(MD)) 229 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); 230 231 // Start defining the function. 232 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 233 MD->getLocation(), MD->getLocation()); 234 235 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 236 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 237 CXXThisValue = CXXABIThisValue; 238 } 239 240 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee, 241 const ThunkInfo *Thunk) { 242 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 243 "Please use a new CGF for this thunk"); 244 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 245 246 // Adjust the 'this' pointer if necessary 247 llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment( 248 *this, LoadCXXThis(), Thunk->This) 249 : LoadCXXThis(); 250 251 if (CurFnInfo->usesInAlloca()) { 252 // We don't handle return adjusting thunks, because they require us to call 253 // the copy constructor. For now, fall through and pretend the return 254 // adjustment was empty so we don't crash. 255 if (Thunk && !Thunk->Return.isEmpty()) { 256 CGM.ErrorUnsupported( 257 MD, "non-trivial argument copy for return-adjusting thunk"); 258 } 259 EmitMustTailThunk(MD, AdjustedThisPtr, Callee); 260 return; 261 } 262 263 // Start building CallArgs. 264 CallArgList CallArgs; 265 QualType ThisType = MD->getThisType(getContext()); 266 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 267 268 if (isa<CXXDestructorDecl>(MD)) 269 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 270 271 // Add the rest of the arguments. 272 for (const ParmVarDecl *PD : MD->params()) 273 EmitDelegateCallArg(CallArgs, PD, PD->getLocStart()); 274 275 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 276 277 #ifndef NDEBUG 278 const CGFunctionInfo &CallFnInfo = 279 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 280 RequiredArgs::forPrototypePlus(FPT, 1)); 281 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 282 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 283 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 284 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 285 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 286 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 287 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 288 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 289 assert(similar(CallFnInfo.arg_begin()[i].info, 290 CallFnInfo.arg_begin()[i].type, 291 CurFnInfo->arg_begin()[i].info, 292 CurFnInfo->arg_begin()[i].type)); 293 #endif 294 295 // Determine whether we have a return value slot to use. 296 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 297 ? ThisType 298 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 299 ? CGM.getContext().VoidPtrTy 300 : FPT->getReturnType(); 301 ReturnValueSlot Slot; 302 if (!ResultType->isVoidType() && 303 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 304 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 305 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 306 307 // Now emit our call. 308 llvm::Instruction *CallOrInvoke; 309 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke); 310 311 // Consider return adjustment if we have ThunkInfo. 312 if (Thunk && !Thunk->Return.isEmpty()) 313 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 314 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 315 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 316 317 // Emit return. 318 if (!ResultType->isVoidType() && Slot.isNull()) 319 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 320 321 // Disable the final ARC autorelease. 322 AutoreleaseResult = false; 323 324 FinishFunction(); 325 } 326 327 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 328 llvm::Value *AdjustedThisPtr, 329 llvm::Value *Callee) { 330 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 331 // to translate AST arguments into LLVM IR arguments. For thunks, we know 332 // that the caller prototype more or less matches the callee prototype with 333 // the exception of 'this'. 334 SmallVector<llvm::Value *, 8> Args; 335 for (llvm::Argument &A : CurFn->args()) 336 Args.push_back(&A); 337 338 // Set the adjusted 'this' pointer. 339 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 340 if (ThisAI.isDirect()) { 341 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 342 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 343 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 344 if (ThisType != AdjustedThisPtr->getType()) 345 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 346 Args[ThisArgNo] = AdjustedThisPtr; 347 } else { 348 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 349 llvm::Value *ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 350 llvm::Type *ThisType = 351 cast<llvm::PointerType>(ThisAddr->getType())->getElementType(); 352 if (ThisType != AdjustedThisPtr->getType()) 353 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 354 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 355 } 356 357 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 358 // don't actually want to run them. 359 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 360 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 361 362 // Apply the standard set of call attributes. 363 unsigned CallingConv; 364 CodeGen::AttributeListType AttributeList; 365 CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv, 366 /*AttrOnCallSite=*/true); 367 llvm::AttributeSet Attrs = 368 llvm::AttributeSet::get(getLLVMContext(), AttributeList); 369 Call->setAttributes(Attrs); 370 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 371 372 if (Call->getType()->isVoidTy()) 373 Builder.CreateRetVoid(); 374 else 375 Builder.CreateRet(Call); 376 377 // Finish the function to maintain CodeGenFunction invariants. 378 // FIXME: Don't emit unreachable code. 379 EmitBlock(createBasicBlock()); 380 FinishFunction(); 381 } 382 383 void CodeGenFunction::generateThunk(llvm::Function *Fn, 384 const CGFunctionInfo &FnInfo, 385 GlobalDecl GD, const ThunkInfo &Thunk) { 386 StartThunk(Fn, GD, FnInfo); 387 388 // Get our callee. 389 llvm::Type *Ty = 390 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 391 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 392 393 // Make the call and return the result. 394 EmitCallAndReturnForThunk(Callee, &Thunk); 395 } 396 397 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 398 bool ForVTable) { 399 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 400 401 // FIXME: re-use FnInfo in this computation. 402 llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk); 403 llvm::GlobalValue *Entry; 404 405 // Strip off a bitcast if we got one back. 406 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) { 407 assert(CE->getOpcode() == llvm::Instruction::BitCast); 408 Entry = cast<llvm::GlobalValue>(CE->getOperand(0)); 409 } else { 410 Entry = cast<llvm::GlobalValue>(C); 411 } 412 413 // There's already a declaration with the same name, check if it has the same 414 // type or if we need to replace it. 415 if (Entry->getType()->getElementType() != 416 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 417 llvm::GlobalValue *OldThunkFn = Entry; 418 419 // If the types mismatch then we have to rewrite the definition. 420 assert(OldThunkFn->isDeclaration() && 421 "Shouldn't replace non-declaration"); 422 423 // Remove the name from the old thunk function and get a new thunk. 424 OldThunkFn->setName(StringRef()); 425 Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk)); 426 427 // If needed, replace the old thunk with a bitcast. 428 if (!OldThunkFn->use_empty()) { 429 llvm::Constant *NewPtrForOldDecl = 430 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 431 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 432 } 433 434 // Remove the old thunk. 435 OldThunkFn->eraseFromParent(); 436 } 437 438 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 439 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 440 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 441 442 if (!ThunkFn->isDeclaration()) { 443 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 444 // There is already a thunk emitted for this function, do nothing. 445 return; 446 } 447 448 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 449 return; 450 } 451 452 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 453 454 if (ThunkFn->isVarArg()) { 455 // Varargs thunks are special; we can't just generate a call because 456 // we can't copy the varargs. Our implementation is rather 457 // expensive/sucky at the moment, so don't generate the thunk unless 458 // we have to. 459 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 460 if (UseAvailableExternallyLinkage) 461 return; 462 ThunkFn = 463 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 464 } else { 465 // Normal thunk body generation. 466 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk); 467 } 468 469 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 470 } 471 472 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 473 const ThunkInfo &Thunk) { 474 // If the ABI has key functions, only the TU with the key function should emit 475 // the thunk. However, we can allow inlining of thunks if we emit them with 476 // available_externally linkage together with vtables when optimizations are 477 // enabled. 478 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 479 !CGM.getCodeGenOpts().OptimizationLevel) 480 return; 481 482 // We can't emit thunks for member functions with incomplete types. 483 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 484 if (!CGM.getTypes().isFuncTypeConvertible( 485 MD->getType()->castAs<FunctionType>())) 486 return; 487 488 emitThunk(GD, Thunk, /*ForVTable=*/true); 489 } 490 491 void CodeGenVTables::EmitThunks(GlobalDecl GD) 492 { 493 const CXXMethodDecl *MD = 494 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 495 496 // We don't need to generate thunks for the base destructor. 497 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 498 return; 499 500 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 501 VTContext->getThunkInfo(GD); 502 503 if (!ThunkInfoVector) 504 return; 505 506 for (const ThunkInfo& Thunk : *ThunkInfoVector) 507 emitThunk(GD, Thunk, /*ForVTable=*/false); 508 } 509 510 llvm::Constant *CodeGenVTables::CreateVTableInitializer( 511 const CXXRecordDecl *RD, const VTableComponent *Components, 512 unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks, 513 unsigned NumVTableThunks, llvm::Constant *RTTI) { 514 SmallVector<llvm::Constant *, 64> Inits; 515 516 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 517 518 llvm::Type *PtrDiffTy = 519 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 520 521 unsigned NextVTableThunkIndex = 0; 522 523 llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr; 524 525 for (unsigned I = 0; I != NumComponents; ++I) { 526 VTableComponent Component = Components[I]; 527 528 llvm::Constant *Init = nullptr; 529 530 switch (Component.getKind()) { 531 case VTableComponent::CK_VCallOffset: 532 Init = llvm::ConstantInt::get(PtrDiffTy, 533 Component.getVCallOffset().getQuantity()); 534 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 535 break; 536 case VTableComponent::CK_VBaseOffset: 537 Init = llvm::ConstantInt::get(PtrDiffTy, 538 Component.getVBaseOffset().getQuantity()); 539 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 540 break; 541 case VTableComponent::CK_OffsetToTop: 542 Init = llvm::ConstantInt::get(PtrDiffTy, 543 Component.getOffsetToTop().getQuantity()); 544 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 545 break; 546 case VTableComponent::CK_RTTI: 547 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 548 break; 549 case VTableComponent::CK_FunctionPointer: 550 case VTableComponent::CK_CompleteDtorPointer: 551 case VTableComponent::CK_DeletingDtorPointer: { 552 GlobalDecl GD; 553 554 // Get the right global decl. 555 switch (Component.getKind()) { 556 default: 557 llvm_unreachable("Unexpected vtable component kind"); 558 case VTableComponent::CK_FunctionPointer: 559 GD = Component.getFunctionDecl(); 560 break; 561 case VTableComponent::CK_CompleteDtorPointer: 562 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 563 break; 564 case VTableComponent::CK_DeletingDtorPointer: 565 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 566 break; 567 } 568 569 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 570 // We have a pure virtual member function. 571 if (!PureVirtualFn) { 572 llvm::FunctionType *Ty = 573 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 574 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); 575 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); 576 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 577 CGM.Int8PtrTy); 578 } 579 Init = PureVirtualFn; 580 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 581 if (!DeletedVirtualFn) { 582 llvm::FunctionType *Ty = 583 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 584 StringRef DeletedCallName = 585 CGM.getCXXABI().GetDeletedVirtualCallName(); 586 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); 587 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, 588 CGM.Int8PtrTy); 589 } 590 Init = DeletedVirtualFn; 591 } else { 592 // Check if we should use a thunk. 593 if (NextVTableThunkIndex < NumVTableThunks && 594 VTableThunks[NextVTableThunkIndex].first == I) { 595 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 596 597 maybeEmitThunkForVTable(GD, Thunk); 598 Init = CGM.GetAddrOfThunk(GD, Thunk); 599 600 NextVTableThunkIndex++; 601 } else { 602 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 603 604 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 605 } 606 607 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 608 } 609 break; 610 } 611 612 case VTableComponent::CK_UnusedFunctionPointer: 613 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 614 break; 615 }; 616 617 Inits.push_back(Init); 618 } 619 620 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 621 return llvm::ConstantArray::get(ArrayType, Inits); 622 } 623 624 llvm::GlobalVariable * 625 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 626 const BaseSubobject &Base, 627 bool BaseIsVirtual, 628 llvm::GlobalVariable::LinkageTypes Linkage, 629 VTableAddressPointsMapTy& AddressPoints) { 630 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 631 DI->completeClassData(Base.getBase()); 632 633 std::unique_ptr<VTableLayout> VTLayout( 634 getItaniumVTableContext().createConstructionVTableLayout( 635 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 636 637 // Add the address points. 638 AddressPoints = VTLayout->getAddressPoints(); 639 640 // Get the mangled construction vtable name. 641 SmallString<256> OutName; 642 llvm::raw_svector_ostream Out(OutName); 643 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 644 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 645 Base.getBase(), Out); 646 StringRef Name = OutName.str(); 647 648 llvm::ArrayType *ArrayType = 649 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 650 651 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 652 // guarantee that they actually will be available externally. Instead, when 653 // emitting an available_externally VTT, we provide references to an internal 654 // linkage construction vtable. The ABI only requires complete-object vtables 655 // to be the same for all instances of a type, not construction vtables. 656 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 657 Linkage = llvm::GlobalVariable::InternalLinkage; 658 659 // Create the variable that will hold the construction vtable. 660 llvm::GlobalVariable *VTable = 661 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 662 CGM.setGlobalVisibility(VTable, RD); 663 664 // V-tables are always unnamed_addr. 665 VTable->setUnnamedAddr(true); 666 667 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 668 CGM.getContext().getTagDeclType(Base.getBase())); 669 670 // Create and set the initializer. 671 llvm::Constant *Init = CreateVTableInitializer( 672 Base.getBase(), VTLayout->vtable_component_begin(), 673 VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(), 674 VTLayout->getNumVTableThunks(), RTTI); 675 VTable->setInitializer(Init); 676 677 CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get()); 678 679 return VTable; 680 } 681 682 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 683 const CXXRecordDecl *RD) { 684 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 685 CGM.getCXXABI().canEmitAvailableExternallyVTable(RD); 686 } 687 688 /// Compute the required linkage of the v-table for the given class. 689 /// 690 /// Note that we only call this at the end of the translation unit. 691 llvm::GlobalVariable::LinkageTypes 692 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 693 if (!RD->isExternallyVisible()) 694 return llvm::GlobalVariable::InternalLinkage; 695 696 // We're at the end of the translation unit, so the current key 697 // function is fully correct. 698 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 699 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 700 // If this class has a key function, use that to determine the 701 // linkage of the vtable. 702 const FunctionDecl *def = nullptr; 703 if (keyFunction->hasBody(def)) 704 keyFunction = cast<CXXMethodDecl>(def); 705 706 switch (keyFunction->getTemplateSpecializationKind()) { 707 case TSK_Undeclared: 708 case TSK_ExplicitSpecialization: 709 assert((def || CodeGenOpts.OptimizationLevel > 0) && 710 "Shouldn't query vtable linkage without key function or " 711 "optimizations"); 712 if (!def && CodeGenOpts.OptimizationLevel > 0) 713 return llvm::GlobalVariable::AvailableExternallyLinkage; 714 715 if (keyFunction->isInlined()) 716 return !Context.getLangOpts().AppleKext ? 717 llvm::GlobalVariable::LinkOnceODRLinkage : 718 llvm::Function::InternalLinkage; 719 720 return llvm::GlobalVariable::ExternalLinkage; 721 722 case TSK_ImplicitInstantiation: 723 return !Context.getLangOpts().AppleKext ? 724 llvm::GlobalVariable::LinkOnceODRLinkage : 725 llvm::Function::InternalLinkage; 726 727 case TSK_ExplicitInstantiationDefinition: 728 return !Context.getLangOpts().AppleKext ? 729 llvm::GlobalVariable::WeakODRLinkage : 730 llvm::Function::InternalLinkage; 731 732 case TSK_ExplicitInstantiationDeclaration: 733 llvm_unreachable("Should not have been asked to emit this"); 734 } 735 } 736 737 // -fapple-kext mode does not support weak linkage, so we must use 738 // internal linkage. 739 if (Context.getLangOpts().AppleKext) 740 return llvm::Function::InternalLinkage; 741 742 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 743 llvm::GlobalValue::LinkOnceODRLinkage; 744 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 745 llvm::GlobalValue::WeakODRLinkage; 746 if (RD->hasAttr<DLLExportAttr>()) { 747 // Cannot discard exported vtables. 748 DiscardableODRLinkage = NonDiscardableODRLinkage; 749 } else if (RD->hasAttr<DLLImportAttr>()) { 750 // Imported vtables are available externally. 751 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 752 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 753 } 754 755 switch (RD->getTemplateSpecializationKind()) { 756 case TSK_Undeclared: 757 case TSK_ExplicitSpecialization: 758 case TSK_ImplicitInstantiation: 759 return DiscardableODRLinkage; 760 761 case TSK_ExplicitInstantiationDeclaration: 762 return shouldEmitAvailableExternallyVTable(*this, RD) 763 ? llvm::GlobalVariable::AvailableExternallyLinkage 764 : llvm::GlobalVariable::ExternalLinkage; 765 766 case TSK_ExplicitInstantiationDefinition: 767 return NonDiscardableODRLinkage; 768 } 769 770 llvm_unreachable("Invalid TemplateSpecializationKind!"); 771 } 772 773 /// This is a callback from Sema to tell us that that a particular v-table is 774 /// required to be emitted in this translation unit. 775 /// 776 /// This is only called for vtables that _must_ be emitted (mainly due to key 777 /// functions). For weak vtables, CodeGen tracks when they are needed and 778 /// emits them as-needed. 779 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 780 VTables.GenerateClassData(theClass); 781 } 782 783 void 784 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 785 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 786 DI->completeClassData(RD); 787 788 if (RD->getNumVBases()) 789 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 790 791 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 792 } 793 794 /// At this point in the translation unit, does it appear that can we 795 /// rely on the vtable being defined elsewhere in the program? 796 /// 797 /// The response is really only definitive when called at the end of 798 /// the translation unit. 799 /// 800 /// The only semantic restriction here is that the object file should 801 /// not contain a v-table definition when that v-table is defined 802 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 803 /// v-tables when unnecessary. 804 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 805 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 806 807 // If we have an explicit instantiation declaration (and not a 808 // definition), the v-table is defined elsewhere. 809 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 810 if (TSK == TSK_ExplicitInstantiationDeclaration) 811 return true; 812 813 // Otherwise, if the class is an instantiated template, the 814 // v-table must be defined here. 815 if (TSK == TSK_ImplicitInstantiation || 816 TSK == TSK_ExplicitInstantiationDefinition) 817 return false; 818 819 // Otherwise, if the class doesn't have a key function (possibly 820 // anymore), the v-table must be defined here. 821 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 822 if (!keyFunction) 823 return false; 824 825 // Otherwise, if we don't have a definition of the key function, the 826 // v-table must be defined somewhere else. 827 return !keyFunction->hasBody(); 828 } 829 830 /// Given that we're currently at the end of the translation unit, and 831 /// we've emitted a reference to the v-table for this class, should 832 /// we define that v-table? 833 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 834 const CXXRecordDecl *RD) { 835 // If vtable is internal then it has to be done 836 if (!CGM.getVTables().isVTableExternal(RD)) 837 return true; 838 839 // If it's external then maybe we will need it as available_externally 840 return shouldEmitAvailableExternallyVTable(CGM, RD); 841 } 842 843 /// Given that at some point we emitted a reference to one or more 844 /// v-tables, and that we are now at the end of the translation unit, 845 /// decide whether we should emit them. 846 void CodeGenModule::EmitDeferredVTables() { 847 #ifndef NDEBUG 848 // Remember the size of DeferredVTables, because we're going to assume 849 // that this entire operation doesn't modify it. 850 size_t savedSize = DeferredVTables.size(); 851 #endif 852 853 for (const CXXRecordDecl *RD : DeferredVTables) 854 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 855 VTables.GenerateClassData(RD); 856 857 assert(savedSize == DeferredVTables.size() && 858 "deferred extra v-tables during v-table emission?"); 859 DeferredVTables.clear(); 860 } 861 862 bool CodeGenModule::IsCFIBlacklistedRecord(const CXXRecordDecl *RD) { 863 if (RD->hasAttr<UuidAttr>() && 864 getContext().getSanitizerBlacklist().isBlacklistedType("attr:uuid")) 865 return true; 866 867 return getContext().getSanitizerBlacklist().isBlacklistedType( 868 RD->getQualifiedNameAsString()); 869 } 870 871 void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable, 872 const VTableLayout &VTLayout) { 873 if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 874 !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 875 !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 876 !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast)) 877 return; 878 879 CharUnits PointerWidth = 880 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 881 882 std::vector<llvm::MDTuple *> BitsetEntries; 883 // Create a bit set entry for each address point. 884 for (auto &&AP : VTLayout.getAddressPoints()) { 885 if (IsCFIBlacklistedRecord(AP.first.getBase())) 886 continue; 887 888 BitsetEntries.push_back(CreateVTableBitSetEntry( 889 VTable, PointerWidth * AP.second, AP.first.getBase())); 890 } 891 892 // Sort the bit set entries for determinism. 893 std::sort(BitsetEntries.begin(), BitsetEntries.end(), [](llvm::MDTuple *T1, 894 llvm::MDTuple *T2) { 895 if (T1 == T2) 896 return false; 897 898 StringRef S1 = cast<llvm::MDString>(T1->getOperand(0))->getString(); 899 StringRef S2 = cast<llvm::MDString>(T2->getOperand(0))->getString(); 900 if (S1 < S2) 901 return true; 902 if (S1 != S2) 903 return false; 904 905 uint64_t Offset1 = cast<llvm::ConstantInt>( 906 cast<llvm::ConstantAsMetadata>(T1->getOperand(2)) 907 ->getValue())->getZExtValue(); 908 uint64_t Offset2 = cast<llvm::ConstantInt>( 909 cast<llvm::ConstantAsMetadata>(T2->getOperand(2)) 910 ->getValue())->getZExtValue(); 911 assert(Offset1 != Offset2); 912 return Offset1 < Offset2; 913 }); 914 915 llvm::NamedMDNode *BitsetsMD = 916 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 917 for (auto BitsetEntry : BitsetEntries) 918 BitsetsMD->addOperand(BitsetEntry); 919 } 920