1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of virtual tables.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Transforms/Utils/Cloning.h"
26 #include <algorithm>
27 #include <cstdio>
28 
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
33   : CGM(CGM), ItaniumVTContext(CGM.getContext()) {
34   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
35     // FIXME: Eventually, we should only have one of V*TContexts available.
36     // Today we use both in the Microsoft ABI as MicrosoftVFTableContext
37     // is not completely supported in CodeGen yet.
38     MicrosoftVTContext.reset(new MicrosoftVTableContext(CGM.getContext()));
39   }
40 }
41 
42 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD,
43                                               const ThunkInfo &Thunk) {
44   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
45 
46   // Compute the mangled name.
47   SmallString<256> Name;
48   llvm::raw_svector_ostream Out(Name);
49   if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
50     getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(),
51                                                       Thunk.This, Out);
52   else
53     getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out);
54   Out.flush();
55 
56   llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD);
57   return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true,
58                                  /*DontDefer*/ true);
59 }
60 
61 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD,
62                                const ThunkInfo &Thunk, llvm::Function *Fn) {
63   CGM.setGlobalVisibility(Fn, MD);
64 
65   if (!CGM.getCodeGenOpts().HiddenWeakVTables)
66     return;
67 
68   // If the thunk has weak/linkonce linkage, but the function must be
69   // emitted in every translation unit that references it, then we can
70   // emit its thunks with hidden visibility, since its thunks must be
71   // emitted when the function is.
72 
73   // This follows CodeGenModule::setTypeVisibility; see the comments
74   // there for explanation.
75 
76   if ((Fn->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage &&
77        Fn->getLinkage() != llvm::GlobalVariable::WeakODRLinkage) ||
78       Fn->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
79     return;
80 
81   if (MD->getExplicitVisibility(ValueDecl::VisibilityForValue))
82     return;
83 
84   switch (MD->getTemplateSpecializationKind()) {
85   case TSK_ExplicitInstantiationDefinition:
86   case TSK_ExplicitInstantiationDeclaration:
87     return;
88 
89   case TSK_Undeclared:
90     break;
91 
92   case TSK_ExplicitSpecialization:
93   case TSK_ImplicitInstantiation:
94     return;
95     break;
96   }
97 
98   // If there's an explicit definition, and that definition is
99   // out-of-line, then we can't assume that all users will have a
100   // definition to emit.
101   const FunctionDecl *Def = 0;
102   if (MD->hasBody(Def) && Def->isOutOfLine())
103     return;
104 
105   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
106 }
107 
108 #ifndef NDEBUG
109 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
110                     const ABIArgInfo &infoR, CanQualType typeR) {
111   return (infoL.getKind() == infoR.getKind() &&
112           (typeL == typeR ||
113            (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
114            (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
115 }
116 #endif
117 
118 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
119                                       QualType ResultType, RValue RV,
120                                       const ThunkInfo &Thunk) {
121   // Emit the return adjustment.
122   bool NullCheckValue = !ResultType->isReferenceType();
123 
124   llvm::BasicBlock *AdjustNull = 0;
125   llvm::BasicBlock *AdjustNotNull = 0;
126   llvm::BasicBlock *AdjustEnd = 0;
127 
128   llvm::Value *ReturnValue = RV.getScalarVal();
129 
130   if (NullCheckValue) {
131     AdjustNull = CGF.createBasicBlock("adjust.null");
132     AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
133     AdjustEnd = CGF.createBasicBlock("adjust.end");
134 
135     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
136     CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
137     CGF.EmitBlock(AdjustNotNull);
138   }
139 
140   ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue,
141                                                             Thunk.Return);
142 
143   if (NullCheckValue) {
144     CGF.Builder.CreateBr(AdjustEnd);
145     CGF.EmitBlock(AdjustNull);
146     CGF.Builder.CreateBr(AdjustEnd);
147     CGF.EmitBlock(AdjustEnd);
148 
149     llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
150     PHI->addIncoming(ReturnValue, AdjustNotNull);
151     PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
152                      AdjustNull);
153     ReturnValue = PHI;
154   }
155 
156   return RValue::get(ReturnValue);
157 }
158 
159 // This function does roughly the same thing as GenerateThunk, but in a
160 // very different way, so that va_start and va_end work correctly.
161 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
162 //        a function, and that there is an alloca built in the entry block
163 //        for all accesses to "this".
164 // FIXME: This function assumes there is only one "ret" statement per function.
165 // FIXME: Cloning isn't correct in the presence of indirect goto!
166 // FIXME: This implementation of thunks bloats codesize by duplicating the
167 //        function definition.  There are alternatives:
168 //        1. Add some sort of stub support to LLVM for cases where we can
169 //           do a this adjustment, then a sibcall.
170 //        2. We could transform the definition to take a va_list instead of an
171 //           actual variable argument list, then have the thunks (including a
172 //           no-op thunk for the regular definition) call va_start/va_end.
173 //           There's a bit of per-call overhead for this solution, but it's
174 //           better for codesize if the definition is long.
175 void CodeGenFunction::GenerateVarArgsThunk(
176                                       llvm::Function *Fn,
177                                       const CGFunctionInfo &FnInfo,
178                                       GlobalDecl GD, const ThunkInfo &Thunk) {
179   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
180   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
181   QualType ResultType = FPT->getResultType();
182 
183   // Get the original function
184   assert(FnInfo.isVariadic());
185   llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
186   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
187   llvm::Function *BaseFn = cast<llvm::Function>(Callee);
188 
189   // Clone to thunk.
190   llvm::ValueToValueMapTy VMap;
191   llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap,
192                                               /*ModuleLevelChanges=*/false);
193   CGM.getModule().getFunctionList().push_back(NewFn);
194   Fn->replaceAllUsesWith(NewFn);
195   NewFn->takeName(Fn);
196   Fn->eraseFromParent();
197   Fn = NewFn;
198 
199   // "Initialize" CGF (minimally).
200   CurFn = Fn;
201 
202   // Get the "this" value
203   llvm::Function::arg_iterator AI = Fn->arg_begin();
204   if (CGM.ReturnTypeUsesSRet(FnInfo))
205     ++AI;
206 
207   // Find the first store of "this", which will be to the alloca associated
208   // with "this".
209   llvm::Value *ThisPtr = &*AI;
210   llvm::BasicBlock *EntryBB = Fn->begin();
211   llvm::Instruction *ThisStore = 0;
212   for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end();
213        I != E; I++) {
214     if (isa<llvm::StoreInst>(I) && I->getOperand(0) == ThisPtr) {
215       ThisStore = cast<llvm::StoreInst>(I);
216       break;
217     }
218   }
219   assert(ThisStore && "Store of this should be in entry block?");
220   // Adjust "this", if necessary.
221   Builder.SetInsertPoint(ThisStore);
222   llvm::Value *AdjustedThisPtr =
223       CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
224   ThisStore->setOperand(0, AdjustedThisPtr);
225 
226   if (!Thunk.Return.isEmpty()) {
227     // Fix up the returned value, if necessary.
228     for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) {
229       llvm::Instruction *T = I->getTerminator();
230       if (isa<llvm::ReturnInst>(T)) {
231         RValue RV = RValue::get(T->getOperand(0));
232         T->eraseFromParent();
233         Builder.SetInsertPoint(&*I);
234         RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
235         Builder.CreateRet(RV.getScalarVal());
236         break;
237       }
238     }
239   }
240 }
241 
242 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
243                                  const CGFunctionInfo &FnInfo) {
244   assert(!CurGD.getDecl() && "CurGD was already set!");
245   CurGD = GD;
246 
247   // Build FunctionArgs.
248   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
249   QualType ThisType = MD->getThisType(getContext());
250   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
251   QualType ResultType =
252     CGM.getCXXABI().HasThisReturn(GD) ? ThisType : FPT->getResultType();
253   FunctionArgList FunctionArgs;
254 
255   // Create the implicit 'this' parameter declaration.
256   CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
257 
258   // Add the rest of the parameters.
259   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
260                                           E = MD->param_end();
261        I != E; ++I)
262     FunctionArgs.push_back(*I);
263 
264   if (isa<CXXDestructorDecl>(MD))
265     CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs);
266 
267   // Start defining the function.
268   StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
269                 SourceLocation());
270 
271   // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
272   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
273   CXXThisValue = CXXABIThisValue;
274 }
275 
276 void CodeGenFunction::EmitCallAndReturnForThunk(GlobalDecl GD,
277                                                 llvm::Value *Callee,
278                                                 const ThunkInfo *Thunk) {
279   assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
280          "Please use a new CGF for this thunk");
281   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
282 
283   // Adjust the 'this' pointer if necessary
284   llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment(
285                                              *this, LoadCXXThis(), Thunk->This)
286                                        : LoadCXXThis();
287 
288   // Start building CallArgs.
289   CallArgList CallArgs;
290   QualType ThisType = MD->getThisType(getContext());
291   CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
292 
293   if (isa<CXXDestructorDecl>(MD))
294     CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, GD, CallArgs);
295 
296   // Add the rest of the arguments.
297   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
298        E = MD->param_end(); I != E; ++I)
299     EmitDelegateCallArg(CallArgs, *I, (*I)->getLocStart());
300 
301   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
302 
303 #ifndef NDEBUG
304   const CGFunctionInfo &CallFnInfo =
305     CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT,
306                                        RequiredArgs::forPrototypePlus(FPT, 1));
307   assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
308          CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
309          CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
310   assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
311          similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
312                  CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
313   assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
314   for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
315     assert(similar(CallFnInfo.arg_begin()[i].info,
316                    CallFnInfo.arg_begin()[i].type,
317                    CurFnInfo->arg_begin()[i].info,
318                    CurFnInfo->arg_begin()[i].type));
319 #endif
320 
321   // Determine whether we have a return value slot to use.
322   QualType ResultType =
323     CGM.getCXXABI().HasThisReturn(GD) ? ThisType : FPT->getResultType();
324   ReturnValueSlot Slot;
325   if (!ResultType->isVoidType() &&
326       CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
327       !hasScalarEvaluationKind(CurFnInfo->getReturnType()))
328     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
329 
330   // Now emit our call.
331   RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD);
332 
333   // Consider return adjustment if we have ThunkInfo.
334   if (Thunk && !Thunk->Return.isEmpty())
335     RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
336 
337   // Emit return.
338   if (!ResultType->isVoidType() && Slot.isNull())
339     CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
340 
341   // Disable the final ARC autorelease.
342   AutoreleaseResult = false;
343 
344   FinishFunction();
345 }
346 
347 void CodeGenFunction::GenerateThunk(llvm::Function *Fn,
348                                     const CGFunctionInfo &FnInfo,
349                                     GlobalDecl GD, const ThunkInfo &Thunk) {
350   StartThunk(Fn, GD, FnInfo);
351 
352   // Get our callee.
353   llvm::Type *Ty =
354     CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD));
355   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
356 
357   // Make the call and return the result.
358   EmitCallAndReturnForThunk(GD, Callee, &Thunk);
359 
360   // Set the right linkage.
361   CGM.setFunctionLinkage(GD, Fn);
362 
363   // Set the right visibility.
364   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
365   setThunkVisibility(CGM, MD, Thunk, Fn);
366 }
367 
368 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk,
369                                bool ForVTable) {
370   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD);
371 
372   // FIXME: re-use FnInfo in this computation.
373   llvm::Constant *Entry = CGM.GetAddrOfThunk(GD, Thunk);
374 
375   // Strip off a bitcast if we got one back.
376   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
377     assert(CE->getOpcode() == llvm::Instruction::BitCast);
378     Entry = CE->getOperand(0);
379   }
380 
381   // There's already a declaration with the same name, check if it has the same
382   // type or if we need to replace it.
383   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() !=
384       CGM.getTypes().GetFunctionTypeForVTable(GD)) {
385     llvm::GlobalValue *OldThunkFn = cast<llvm::GlobalValue>(Entry);
386 
387     // If the types mismatch then we have to rewrite the definition.
388     assert(OldThunkFn->isDeclaration() &&
389            "Shouldn't replace non-declaration");
390 
391     // Remove the name from the old thunk function and get a new thunk.
392     OldThunkFn->setName(StringRef());
393     Entry = CGM.GetAddrOfThunk(GD, Thunk);
394 
395     // If needed, replace the old thunk with a bitcast.
396     if (!OldThunkFn->use_empty()) {
397       llvm::Constant *NewPtrForOldDecl =
398         llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType());
399       OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
400     }
401 
402     // Remove the old thunk.
403     OldThunkFn->eraseFromParent();
404   }
405 
406   llvm::Function *ThunkFn = cast<llvm::Function>(Entry);
407   bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
408   bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
409 
410   if (!ThunkFn->isDeclaration()) {
411     if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
412       // There is already a thunk emitted for this function, do nothing.
413       return;
414     }
415 
416     // Change the linkage.
417     CGM.setFunctionLinkage(GD, ThunkFn);
418     return;
419   }
420 
421   CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
422 
423   if (ThunkFn->isVarArg()) {
424     // Varargs thunks are special; we can't just generate a call because
425     // we can't copy the varargs.  Our implementation is rather
426     // expensive/sucky at the moment, so don't generate the thunk unless
427     // we have to.
428     // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
429     if (!UseAvailableExternallyLinkage) {
430       CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk);
431       CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable);
432     }
433   } else {
434     // Normal thunk body generation.
435     CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk);
436     CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable);
437   }
438 }
439 
440 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD,
441                                              const ThunkInfo &Thunk) {
442   // If the ABI has key functions, only the TU with the key function should emit
443   // the thunk. However, we can allow inlining of thunks if we emit them with
444   // available_externally linkage together with vtables when optimizations are
445   // enabled.
446   if (CGM.getTarget().getCXXABI().hasKeyFunctions() &&
447       !CGM.getCodeGenOpts().OptimizationLevel)
448     return;
449 
450   // We can't emit thunks for member functions with incomplete types.
451   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
452   if (!CGM.getTypes().isFuncTypeConvertible(
453            MD->getType()->castAs<FunctionType>()))
454     return;
455 
456   emitThunk(GD, Thunk, /*ForVTable=*/true);
457 }
458 
459 void CodeGenVTables::EmitThunks(GlobalDecl GD)
460 {
461   const CXXMethodDecl *MD =
462     cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
463 
464   // We don't need to generate thunks for the base destructor.
465   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
466     return;
467 
468   const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector;
469   if (MicrosoftVTContext.isValid()) {
470     ThunkInfoVector = MicrosoftVTContext->getThunkInfo(GD);
471   } else {
472     ThunkInfoVector = ItaniumVTContext.getThunkInfo(GD);
473   }
474 
475   if (!ThunkInfoVector)
476     return;
477 
478   for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I)
479     emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false);
480 }
481 
482 llvm::Constant *
483 CodeGenVTables::CreateVTableInitializer(const CXXRecordDecl *RD,
484                                         const VTableComponent *Components,
485                                         unsigned NumComponents,
486                                 const VTableLayout::VTableThunkTy *VTableThunks,
487                                         unsigned NumVTableThunks) {
488   SmallVector<llvm::Constant *, 64> Inits;
489 
490   llvm::Type *Int8PtrTy = CGM.Int8PtrTy;
491 
492   llvm::Type *PtrDiffTy =
493     CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
494 
495   QualType ClassType = CGM.getContext().getTagDeclType(RD);
496   llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(ClassType);
497 
498   unsigned NextVTableThunkIndex = 0;
499 
500   llvm::Constant *PureVirtualFn = 0, *DeletedVirtualFn = 0;
501 
502   for (unsigned I = 0; I != NumComponents; ++I) {
503     VTableComponent Component = Components[I];
504 
505     llvm::Constant *Init = 0;
506 
507     switch (Component.getKind()) {
508     case VTableComponent::CK_VCallOffset:
509       Init = llvm::ConstantInt::get(PtrDiffTy,
510                                     Component.getVCallOffset().getQuantity());
511       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
512       break;
513     case VTableComponent::CK_VBaseOffset:
514       Init = llvm::ConstantInt::get(PtrDiffTy,
515                                     Component.getVBaseOffset().getQuantity());
516       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
517       break;
518     case VTableComponent::CK_OffsetToTop:
519       Init = llvm::ConstantInt::get(PtrDiffTy,
520                                     Component.getOffsetToTop().getQuantity());
521       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
522       break;
523     case VTableComponent::CK_RTTI:
524       Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy);
525       break;
526     case VTableComponent::CK_FunctionPointer:
527     case VTableComponent::CK_CompleteDtorPointer:
528     case VTableComponent::CK_DeletingDtorPointer: {
529       GlobalDecl GD;
530 
531       // Get the right global decl.
532       switch (Component.getKind()) {
533       default:
534         llvm_unreachable("Unexpected vtable component kind");
535       case VTableComponent::CK_FunctionPointer:
536         GD = Component.getFunctionDecl();
537         break;
538       case VTableComponent::CK_CompleteDtorPointer:
539         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete);
540         break;
541       case VTableComponent::CK_DeletingDtorPointer:
542         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting);
543         break;
544       }
545 
546       if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
547         // We have a pure virtual member function.
548         if (!PureVirtualFn) {
549           llvm::FunctionType *Ty =
550             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
551           StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName();
552           PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName);
553           PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn,
554                                                          CGM.Int8PtrTy);
555         }
556         Init = PureVirtualFn;
557       } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
558         if (!DeletedVirtualFn) {
559           llvm::FunctionType *Ty =
560             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
561           StringRef DeletedCallName =
562             CGM.getCXXABI().GetDeletedVirtualCallName();
563           DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName);
564           DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn,
565                                                          CGM.Int8PtrTy);
566         }
567         Init = DeletedVirtualFn;
568       } else {
569         // Check if we should use a thunk.
570         if (NextVTableThunkIndex < NumVTableThunks &&
571             VTableThunks[NextVTableThunkIndex].first == I) {
572           const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second;
573 
574           maybeEmitThunkForVTable(GD, Thunk);
575           Init = CGM.GetAddrOfThunk(GD, Thunk);
576 
577           NextVTableThunkIndex++;
578         } else {
579           llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD);
580 
581           Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
582         }
583 
584         Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
585       }
586       break;
587     }
588 
589     case VTableComponent::CK_UnusedFunctionPointer:
590       Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
591       break;
592     };
593 
594     Inits.push_back(Init);
595   }
596 
597   llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents);
598   return llvm::ConstantArray::get(ArrayType, Inits);
599 }
600 
601 llvm::GlobalVariable *
602 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
603                                       const BaseSubobject &Base,
604                                       bool BaseIsVirtual,
605                                    llvm::GlobalVariable::LinkageTypes Linkage,
606                                       VTableAddressPointsMapTy& AddressPoints) {
607   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
608     DI->completeClassData(Base.getBase());
609 
610   OwningPtr<VTableLayout> VTLayout(
611       ItaniumVTContext.createConstructionVTableLayout(
612           Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
613 
614   // Add the address points.
615   AddressPoints = VTLayout->getAddressPoints();
616 
617   // Get the mangled construction vtable name.
618   SmallString<256> OutName;
619   llvm::raw_svector_ostream Out(OutName);
620   cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
621       .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
622                            Base.getBase(), Out);
623   Out.flush();
624   StringRef Name = OutName.str();
625 
626   llvm::ArrayType *ArrayType =
627     llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents());
628 
629   // Construction vtable symbols are not part of the Itanium ABI, so we cannot
630   // guarantee that they actually will be available externally. Instead, when
631   // emitting an available_externally VTT, we provide references to an internal
632   // linkage construction vtable. The ABI only requires complete-object vtables
633   // to be the same for all instances of a type, not construction vtables.
634   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
635     Linkage = llvm::GlobalVariable::InternalLinkage;
636 
637   // Create the variable that will hold the construction vtable.
638   llvm::GlobalVariable *VTable =
639     CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage);
640   CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForConstructionVTable);
641 
642   // V-tables are always unnamed_addr.
643   VTable->setUnnamedAddr(true);
644 
645   // Create and set the initializer.
646   llvm::Constant *Init =
647     CreateVTableInitializer(Base.getBase(),
648                             VTLayout->vtable_component_begin(),
649                             VTLayout->getNumVTableComponents(),
650                             VTLayout->vtable_thunk_begin(),
651                             VTLayout->getNumVTableThunks());
652   VTable->setInitializer(Init);
653 
654   return VTable;
655 }
656 
657 /// Compute the required linkage of the v-table for the given class.
658 ///
659 /// Note that we only call this at the end of the translation unit.
660 llvm::GlobalVariable::LinkageTypes
661 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
662   if (!RD->isExternallyVisible())
663     return llvm::GlobalVariable::InternalLinkage;
664 
665   // We're at the end of the translation unit, so the current key
666   // function is fully correct.
667   if (const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD)) {
668     // If this class has a key function, use that to determine the
669     // linkage of the vtable.
670     const FunctionDecl *def = 0;
671     if (keyFunction->hasBody(def))
672       keyFunction = cast<CXXMethodDecl>(def);
673 
674     switch (keyFunction->getTemplateSpecializationKind()) {
675       case TSK_Undeclared:
676       case TSK_ExplicitSpecialization:
677         assert(def && "Should not have been asked to emit this");
678         if (keyFunction->isInlined())
679           return !Context.getLangOpts().AppleKext ?
680                    llvm::GlobalVariable::LinkOnceODRLinkage :
681                    llvm::Function::InternalLinkage;
682 
683         return llvm::GlobalVariable::ExternalLinkage;
684 
685       case TSK_ImplicitInstantiation:
686         return !Context.getLangOpts().AppleKext ?
687                  llvm::GlobalVariable::LinkOnceODRLinkage :
688                  llvm::Function::InternalLinkage;
689 
690       case TSK_ExplicitInstantiationDefinition:
691         return !Context.getLangOpts().AppleKext ?
692                  llvm::GlobalVariable::WeakODRLinkage :
693                  llvm::Function::InternalLinkage;
694 
695       case TSK_ExplicitInstantiationDeclaration:
696         llvm_unreachable("Should not have been asked to emit this");
697     }
698   }
699 
700   // -fapple-kext mode does not support weak linkage, so we must use
701   // internal linkage.
702   if (Context.getLangOpts().AppleKext)
703     return llvm::Function::InternalLinkage;
704 
705   switch (RD->getTemplateSpecializationKind()) {
706   case TSK_Undeclared:
707   case TSK_ExplicitSpecialization:
708   case TSK_ImplicitInstantiation:
709     return llvm::GlobalVariable::LinkOnceODRLinkage;
710 
711   case TSK_ExplicitInstantiationDeclaration:
712     llvm_unreachable("Should not have been asked to emit this");
713 
714   case TSK_ExplicitInstantiationDefinition:
715       return llvm::GlobalVariable::WeakODRLinkage;
716   }
717 
718   llvm_unreachable("Invalid TemplateSpecializationKind!");
719 }
720 
721 /// This is a callback from Sema to tell us that it believes that a
722 /// particular v-table is required to be emitted in this translation
723 /// unit.
724 ///
725 /// The reason we don't simply trust this callback is because Sema
726 /// will happily report that something is used even when it's used
727 /// only in code that we don't actually have to emit.
728 ///
729 /// \param isRequired - if true, the v-table is mandatory, e.g.
730 ///   because the translation unit defines the key function
731 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass, bool isRequired) {
732   if (!isRequired) return;
733 
734   VTables.GenerateClassData(theClass);
735 }
736 
737 void
738 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
739   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
740     DI->completeClassData(RD);
741 
742   if (RD->getNumVBases())
743     CGM.getCXXABI().emitVirtualInheritanceTables(RD);
744 
745   CGM.getCXXABI().emitVTableDefinitions(*this, RD);
746 }
747 
748 /// At this point in the translation unit, does it appear that can we
749 /// rely on the vtable being defined elsewhere in the program?
750 ///
751 /// The response is really only definitive when called at the end of
752 /// the translation unit.
753 ///
754 /// The only semantic restriction here is that the object file should
755 /// not contain a v-table definition when that v-table is defined
756 /// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
757 /// v-tables when unnecessary.
758 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
759   assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
760 
761   // If we have an explicit instantiation declaration (and not a
762   // definition), the v-table is defined elsewhere.
763   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
764   if (TSK == TSK_ExplicitInstantiationDeclaration)
765     return true;
766 
767   // Otherwise, if the class is an instantiated template, the
768   // v-table must be defined here.
769   if (TSK == TSK_ImplicitInstantiation ||
770       TSK == TSK_ExplicitInstantiationDefinition)
771     return false;
772 
773   // Otherwise, if the class doesn't have a key function (possibly
774   // anymore), the v-table must be defined here.
775   const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
776   if (!keyFunction)
777     return false;
778 
779   // Otherwise, if we don't have a definition of the key function, the
780   // v-table must be defined somewhere else.
781   return !keyFunction->hasBody();
782 }
783 
784 /// Given that we're currently at the end of the translation unit, and
785 /// we've emitted a reference to the v-table for this class, should
786 /// we define that v-table?
787 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
788                                                    const CXXRecordDecl *RD) {
789   return !CGM.getVTables().isVTableExternal(RD);
790 }
791 
792 /// Given that at some point we emitted a reference to one or more
793 /// v-tables, and that we are now at the end of the translation unit,
794 /// decide whether we should emit them.
795 void CodeGenModule::EmitDeferredVTables() {
796 #ifndef NDEBUG
797   // Remember the size of DeferredVTables, because we're going to assume
798   // that this entire operation doesn't modify it.
799   size_t savedSize = DeferredVTables.size();
800 #endif
801 
802   typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator;
803   for (const_iterator i = DeferredVTables.begin(),
804                       e = DeferredVTables.end(); i != e; ++i) {
805     const CXXRecordDecl *RD = *i;
806     if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
807       VTables.GenerateClassData(RD);
808   }
809 
810   assert(savedSize == DeferredVTables.size() &&
811          "deferred extra v-tables during v-table emission?");
812   DeferredVTables.clear();
813 }
814