1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Transforms/Utils/Cloning.h" 26 #include <algorithm> 27 #include <cstdio> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 34 35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 36 const ThunkInfo &Thunk) { 37 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 38 39 // Compute the mangled name. 40 SmallString<256> Name; 41 llvm::raw_svector_ostream Out(Name); 42 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 43 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 44 Thunk.This, Out); 45 else 46 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 47 48 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 49 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, 50 /*DontDefer=*/true, /*IsThunk=*/true); 51 } 52 53 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 54 const ThunkInfo &Thunk, llvm::Function *Fn) { 55 CGM.setGlobalVisibility(Fn, MD); 56 } 57 58 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 59 llvm::Function *ThunkFn, bool ForVTable, 60 GlobalDecl GD) { 61 CGM.setFunctionLinkage(GD, ThunkFn); 62 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 63 !Thunk.Return.isEmpty()); 64 65 // Set the right visibility. 66 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 67 setThunkVisibility(CGM, MD, Thunk, ThunkFn); 68 69 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 70 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 71 } 72 73 #ifndef NDEBUG 74 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 75 const ABIArgInfo &infoR, CanQualType typeR) { 76 return (infoL.getKind() == infoR.getKind() && 77 (typeL == typeR || 78 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 79 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 80 } 81 #endif 82 83 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 84 QualType ResultType, RValue RV, 85 const ThunkInfo &Thunk) { 86 // Emit the return adjustment. 87 bool NullCheckValue = !ResultType->isReferenceType(); 88 89 llvm::BasicBlock *AdjustNull = nullptr; 90 llvm::BasicBlock *AdjustNotNull = nullptr; 91 llvm::BasicBlock *AdjustEnd = nullptr; 92 93 llvm::Value *ReturnValue = RV.getScalarVal(); 94 95 if (NullCheckValue) { 96 AdjustNull = CGF.createBasicBlock("adjust.null"); 97 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 98 AdjustEnd = CGF.createBasicBlock("adjust.end"); 99 100 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 101 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 102 CGF.EmitBlock(AdjustNotNull); 103 } 104 105 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 106 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 107 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 108 Address(ReturnValue, ClassAlign), 109 Thunk.Return); 110 111 if (NullCheckValue) { 112 CGF.Builder.CreateBr(AdjustEnd); 113 CGF.EmitBlock(AdjustNull); 114 CGF.Builder.CreateBr(AdjustEnd); 115 CGF.EmitBlock(AdjustEnd); 116 117 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 118 PHI->addIncoming(ReturnValue, AdjustNotNull); 119 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 120 AdjustNull); 121 ReturnValue = PHI; 122 } 123 124 return RValue::get(ReturnValue); 125 } 126 127 // This function does roughly the same thing as GenerateThunk, but in a 128 // very different way, so that va_start and va_end work correctly. 129 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 130 // a function, and that there is an alloca built in the entry block 131 // for all accesses to "this". 132 // FIXME: This function assumes there is only one "ret" statement per function. 133 // FIXME: Cloning isn't correct in the presence of indirect goto! 134 // FIXME: This implementation of thunks bloats codesize by duplicating the 135 // function definition. There are alternatives: 136 // 1. Add some sort of stub support to LLVM for cases where we can 137 // do a this adjustment, then a sibcall. 138 // 2. We could transform the definition to take a va_list instead of an 139 // actual variable argument list, then have the thunks (including a 140 // no-op thunk for the regular definition) call va_start/va_end. 141 // There's a bit of per-call overhead for this solution, but it's 142 // better for codesize if the definition is long. 143 llvm::Function * 144 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 145 const CGFunctionInfo &FnInfo, 146 GlobalDecl GD, const ThunkInfo &Thunk) { 147 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 148 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 149 QualType ResultType = FPT->getReturnType(); 150 151 // Get the original function 152 assert(FnInfo.isVariadic()); 153 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 154 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 155 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 156 157 // Clone to thunk. 158 llvm::ValueToValueMapTy VMap; 159 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, 160 /*ModuleLevelChanges=*/false); 161 CGM.getModule().getFunctionList().push_back(NewFn); 162 Fn->replaceAllUsesWith(NewFn); 163 NewFn->takeName(Fn); 164 Fn->eraseFromParent(); 165 Fn = NewFn; 166 167 // "Initialize" CGF (minimally). 168 CurFn = Fn; 169 170 // Get the "this" value 171 llvm::Function::arg_iterator AI = Fn->arg_begin(); 172 if (CGM.ReturnTypeUsesSRet(FnInfo)) 173 ++AI; 174 175 // Find the first store of "this", which will be to the alloca associated 176 // with "this". 177 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 178 llvm::BasicBlock *EntryBB = Fn->begin(); 179 llvm::Instruction *ThisStore = 180 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 181 return isa<llvm::StoreInst>(I) && I.getOperand(0) == ThisPtr.getPointer(); 182 }); 183 assert(ThisStore && "Store of this should be in entry block?"); 184 // Adjust "this", if necessary. 185 Builder.SetInsertPoint(ThisStore); 186 llvm::Value *AdjustedThisPtr = 187 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 188 ThisStore->setOperand(0, AdjustedThisPtr); 189 190 if (!Thunk.Return.isEmpty()) { 191 // Fix up the returned value, if necessary. 192 for (llvm::BasicBlock &BB : *Fn) { 193 llvm::Instruction *T = BB.getTerminator(); 194 if (isa<llvm::ReturnInst>(T)) { 195 RValue RV = RValue::get(T->getOperand(0)); 196 T->eraseFromParent(); 197 Builder.SetInsertPoint(&BB); 198 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 199 Builder.CreateRet(RV.getScalarVal()); 200 break; 201 } 202 } 203 } 204 205 return Fn; 206 } 207 208 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 209 const CGFunctionInfo &FnInfo) { 210 assert(!CurGD.getDecl() && "CurGD was already set!"); 211 CurGD = GD; 212 CurFuncIsThunk = true; 213 214 // Build FunctionArgs. 215 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 216 QualType ThisType = MD->getThisType(getContext()); 217 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 218 QualType ResultType = CGM.getCXXABI().HasThisReturn(GD) 219 ? ThisType 220 : CGM.getCXXABI().hasMostDerivedReturn(GD) 221 ? CGM.getContext().VoidPtrTy 222 : FPT->getReturnType(); 223 FunctionArgList FunctionArgs; 224 225 // Create the implicit 'this' parameter declaration. 226 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 227 228 // Add the rest of the parameters. 229 FunctionArgs.append(MD->param_begin(), MD->param_end()); 230 231 if (isa<CXXDestructorDecl>(MD)) 232 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); 233 234 // Start defining the function. 235 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 236 MD->getLocation(), MD->getLocation()); 237 238 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 239 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 240 CXXThisValue = CXXABIThisValue; 241 CurCodeDecl = MD; 242 CurFuncDecl = MD; 243 } 244 245 void CodeGenFunction::FinishThunk() { 246 // Clear these to restore the invariants expected by 247 // StartFunction/FinishFunction. 248 CurCodeDecl = nullptr; 249 CurFuncDecl = nullptr; 250 251 FinishFunction(); 252 } 253 254 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee, 255 const ThunkInfo *Thunk) { 256 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 257 "Please use a new CGF for this thunk"); 258 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 259 260 // Adjust the 'this' pointer if necessary 261 llvm::Value *AdjustedThisPtr = 262 Thunk ? CGM.getCXXABI().performThisAdjustment( 263 *this, LoadCXXThisAddress(), Thunk->This) 264 : LoadCXXThis(); 265 266 if (CurFnInfo->usesInAlloca()) { 267 // We don't handle return adjusting thunks, because they require us to call 268 // the copy constructor. For now, fall through and pretend the return 269 // adjustment was empty so we don't crash. 270 if (Thunk && !Thunk->Return.isEmpty()) { 271 CGM.ErrorUnsupported( 272 MD, "non-trivial argument copy for return-adjusting thunk"); 273 } 274 EmitMustTailThunk(MD, AdjustedThisPtr, Callee); 275 return; 276 } 277 278 // Start building CallArgs. 279 CallArgList CallArgs; 280 QualType ThisType = MD->getThisType(getContext()); 281 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 282 283 if (isa<CXXDestructorDecl>(MD)) 284 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 285 286 // Add the rest of the arguments. 287 for (const ParmVarDecl *PD : MD->params()) 288 EmitDelegateCallArg(CallArgs, PD, PD->getLocStart()); 289 290 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 291 292 #ifndef NDEBUG 293 const CGFunctionInfo &CallFnInfo = 294 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 295 RequiredArgs::forPrototypePlus(FPT, 1)); 296 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 297 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 298 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 299 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 300 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 301 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 302 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 303 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 304 assert(similar(CallFnInfo.arg_begin()[i].info, 305 CallFnInfo.arg_begin()[i].type, 306 CurFnInfo->arg_begin()[i].info, 307 CurFnInfo->arg_begin()[i].type)); 308 #endif 309 310 // Determine whether we have a return value slot to use. 311 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 312 ? ThisType 313 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 314 ? CGM.getContext().VoidPtrTy 315 : FPT->getReturnType(); 316 ReturnValueSlot Slot; 317 if (!ResultType->isVoidType() && 318 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 319 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 320 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 321 322 // Now emit our call. 323 llvm::Instruction *CallOrInvoke; 324 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke); 325 326 // Consider return adjustment if we have ThunkInfo. 327 if (Thunk && !Thunk->Return.isEmpty()) 328 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 329 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 330 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 331 332 // Emit return. 333 if (!ResultType->isVoidType() && Slot.isNull()) 334 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 335 336 // Disable the final ARC autorelease. 337 AutoreleaseResult = false; 338 339 FinishThunk(); 340 } 341 342 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 343 llvm::Value *AdjustedThisPtr, 344 llvm::Value *Callee) { 345 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 346 // to translate AST arguments into LLVM IR arguments. For thunks, we know 347 // that the caller prototype more or less matches the callee prototype with 348 // the exception of 'this'. 349 SmallVector<llvm::Value *, 8> Args; 350 for (llvm::Argument &A : CurFn->args()) 351 Args.push_back(&A); 352 353 // Set the adjusted 'this' pointer. 354 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 355 if (ThisAI.isDirect()) { 356 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 357 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 358 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 359 if (ThisType != AdjustedThisPtr->getType()) 360 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 361 Args[ThisArgNo] = AdjustedThisPtr; 362 } else { 363 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 364 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 365 llvm::Type *ThisType = ThisAddr.getElementType(); 366 if (ThisType != AdjustedThisPtr->getType()) 367 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 368 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 369 } 370 371 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 372 // don't actually want to run them. 373 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 374 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 375 376 // Apply the standard set of call attributes. 377 unsigned CallingConv; 378 CodeGen::AttributeListType AttributeList; 379 CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv, 380 /*AttrOnCallSite=*/true); 381 llvm::AttributeSet Attrs = 382 llvm::AttributeSet::get(getLLVMContext(), AttributeList); 383 Call->setAttributes(Attrs); 384 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 385 386 if (Call->getType()->isVoidTy()) 387 Builder.CreateRetVoid(); 388 else 389 Builder.CreateRet(Call); 390 391 // Finish the function to maintain CodeGenFunction invariants. 392 // FIXME: Don't emit unreachable code. 393 EmitBlock(createBasicBlock()); 394 FinishFunction(); 395 } 396 397 void CodeGenFunction::generateThunk(llvm::Function *Fn, 398 const CGFunctionInfo &FnInfo, 399 GlobalDecl GD, const ThunkInfo &Thunk) { 400 StartThunk(Fn, GD, FnInfo); 401 402 // Get our callee. 403 llvm::Type *Ty = 404 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 405 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 406 407 // Make the call and return the result. 408 EmitCallAndReturnForThunk(Callee, &Thunk); 409 } 410 411 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 412 bool ForVTable) { 413 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 414 415 // FIXME: re-use FnInfo in this computation. 416 llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk); 417 llvm::GlobalValue *Entry; 418 419 // Strip off a bitcast if we got one back. 420 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) { 421 assert(CE->getOpcode() == llvm::Instruction::BitCast); 422 Entry = cast<llvm::GlobalValue>(CE->getOperand(0)); 423 } else { 424 Entry = cast<llvm::GlobalValue>(C); 425 } 426 427 // There's already a declaration with the same name, check if it has the same 428 // type or if we need to replace it. 429 if (Entry->getType()->getElementType() != 430 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 431 llvm::GlobalValue *OldThunkFn = Entry; 432 433 // If the types mismatch then we have to rewrite the definition. 434 assert(OldThunkFn->isDeclaration() && 435 "Shouldn't replace non-declaration"); 436 437 // Remove the name from the old thunk function and get a new thunk. 438 OldThunkFn->setName(StringRef()); 439 Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk)); 440 441 // If needed, replace the old thunk with a bitcast. 442 if (!OldThunkFn->use_empty()) { 443 llvm::Constant *NewPtrForOldDecl = 444 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 445 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 446 } 447 448 // Remove the old thunk. 449 OldThunkFn->eraseFromParent(); 450 } 451 452 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 453 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 454 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 455 456 if (!ThunkFn->isDeclaration()) { 457 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 458 // There is already a thunk emitted for this function, do nothing. 459 return; 460 } 461 462 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 463 return; 464 } 465 466 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 467 468 if (ThunkFn->isVarArg()) { 469 // Varargs thunks are special; we can't just generate a call because 470 // we can't copy the varargs. Our implementation is rather 471 // expensive/sucky at the moment, so don't generate the thunk unless 472 // we have to. 473 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 474 if (UseAvailableExternallyLinkage) 475 return; 476 ThunkFn = 477 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 478 } else { 479 // Normal thunk body generation. 480 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk); 481 } 482 483 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 484 } 485 486 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 487 const ThunkInfo &Thunk) { 488 // If the ABI has key functions, only the TU with the key function should emit 489 // the thunk. However, we can allow inlining of thunks if we emit them with 490 // available_externally linkage together with vtables when optimizations are 491 // enabled. 492 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 493 !CGM.getCodeGenOpts().OptimizationLevel) 494 return; 495 496 // We can't emit thunks for member functions with incomplete types. 497 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 498 if (!CGM.getTypes().isFuncTypeConvertible( 499 MD->getType()->castAs<FunctionType>())) 500 return; 501 502 emitThunk(GD, Thunk, /*ForVTable=*/true); 503 } 504 505 void CodeGenVTables::EmitThunks(GlobalDecl GD) 506 { 507 const CXXMethodDecl *MD = 508 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 509 510 // We don't need to generate thunks for the base destructor. 511 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 512 return; 513 514 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 515 VTContext->getThunkInfo(GD); 516 517 if (!ThunkInfoVector) 518 return; 519 520 for (const ThunkInfo& Thunk : *ThunkInfoVector) 521 emitThunk(GD, Thunk, /*ForVTable=*/false); 522 } 523 524 llvm::Constant *CodeGenVTables::CreateVTableInitializer( 525 const CXXRecordDecl *RD, const VTableComponent *Components, 526 unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks, 527 unsigned NumVTableThunks, llvm::Constant *RTTI) { 528 SmallVector<llvm::Constant *, 64> Inits; 529 530 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 531 532 llvm::Type *PtrDiffTy = 533 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 534 535 unsigned NextVTableThunkIndex = 0; 536 537 llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr; 538 539 for (unsigned I = 0; I != NumComponents; ++I) { 540 VTableComponent Component = Components[I]; 541 542 llvm::Constant *Init = nullptr; 543 544 switch (Component.getKind()) { 545 case VTableComponent::CK_VCallOffset: 546 Init = llvm::ConstantInt::get(PtrDiffTy, 547 Component.getVCallOffset().getQuantity()); 548 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 549 break; 550 case VTableComponent::CK_VBaseOffset: 551 Init = llvm::ConstantInt::get(PtrDiffTy, 552 Component.getVBaseOffset().getQuantity()); 553 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 554 break; 555 case VTableComponent::CK_OffsetToTop: 556 Init = llvm::ConstantInt::get(PtrDiffTy, 557 Component.getOffsetToTop().getQuantity()); 558 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 559 break; 560 case VTableComponent::CK_RTTI: 561 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 562 break; 563 case VTableComponent::CK_FunctionPointer: 564 case VTableComponent::CK_CompleteDtorPointer: 565 case VTableComponent::CK_DeletingDtorPointer: { 566 GlobalDecl GD; 567 568 // Get the right global decl. 569 switch (Component.getKind()) { 570 default: 571 llvm_unreachable("Unexpected vtable component kind"); 572 case VTableComponent::CK_FunctionPointer: 573 GD = Component.getFunctionDecl(); 574 break; 575 case VTableComponent::CK_CompleteDtorPointer: 576 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 577 break; 578 case VTableComponent::CK_DeletingDtorPointer: 579 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 580 break; 581 } 582 583 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 584 // We have a pure virtual member function. 585 if (!PureVirtualFn) { 586 llvm::FunctionType *Ty = 587 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 588 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); 589 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); 590 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 591 CGM.Int8PtrTy); 592 } 593 Init = PureVirtualFn; 594 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 595 if (!DeletedVirtualFn) { 596 llvm::FunctionType *Ty = 597 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 598 StringRef DeletedCallName = 599 CGM.getCXXABI().GetDeletedVirtualCallName(); 600 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); 601 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, 602 CGM.Int8PtrTy); 603 } 604 Init = DeletedVirtualFn; 605 } else { 606 // Check if we should use a thunk. 607 if (NextVTableThunkIndex < NumVTableThunks && 608 VTableThunks[NextVTableThunkIndex].first == I) { 609 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 610 611 maybeEmitThunkForVTable(GD, Thunk); 612 Init = CGM.GetAddrOfThunk(GD, Thunk); 613 614 NextVTableThunkIndex++; 615 } else { 616 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 617 618 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 619 } 620 621 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 622 } 623 break; 624 } 625 626 case VTableComponent::CK_UnusedFunctionPointer: 627 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 628 break; 629 }; 630 631 Inits.push_back(Init); 632 } 633 634 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 635 return llvm::ConstantArray::get(ArrayType, Inits); 636 } 637 638 llvm::GlobalVariable * 639 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 640 const BaseSubobject &Base, 641 bool BaseIsVirtual, 642 llvm::GlobalVariable::LinkageTypes Linkage, 643 VTableAddressPointsMapTy& AddressPoints) { 644 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 645 DI->completeClassData(Base.getBase()); 646 647 std::unique_ptr<VTableLayout> VTLayout( 648 getItaniumVTableContext().createConstructionVTableLayout( 649 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 650 651 // Add the address points. 652 AddressPoints = VTLayout->getAddressPoints(); 653 654 // Get the mangled construction vtable name. 655 SmallString<256> OutName; 656 llvm::raw_svector_ostream Out(OutName); 657 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 658 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 659 Base.getBase(), Out); 660 StringRef Name = OutName.str(); 661 662 llvm::ArrayType *ArrayType = 663 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 664 665 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 666 // guarantee that they actually will be available externally. Instead, when 667 // emitting an available_externally VTT, we provide references to an internal 668 // linkage construction vtable. The ABI only requires complete-object vtables 669 // to be the same for all instances of a type, not construction vtables. 670 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 671 Linkage = llvm::GlobalVariable::InternalLinkage; 672 673 // Create the variable that will hold the construction vtable. 674 llvm::GlobalVariable *VTable = 675 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 676 CGM.setGlobalVisibility(VTable, RD); 677 678 // V-tables are always unnamed_addr. 679 VTable->setUnnamedAddr(true); 680 681 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 682 CGM.getContext().getTagDeclType(Base.getBase())); 683 684 // Create and set the initializer. 685 llvm::Constant *Init = CreateVTableInitializer( 686 Base.getBase(), VTLayout->vtable_component_begin(), 687 VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(), 688 VTLayout->getNumVTableThunks(), RTTI); 689 VTable->setInitializer(Init); 690 691 CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get()); 692 693 return VTable; 694 } 695 696 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 697 const CXXRecordDecl *RD) { 698 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 699 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 700 } 701 702 /// Compute the required linkage of the v-table for the given class. 703 /// 704 /// Note that we only call this at the end of the translation unit. 705 llvm::GlobalVariable::LinkageTypes 706 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 707 if (!RD->isExternallyVisible()) 708 return llvm::GlobalVariable::InternalLinkage; 709 710 // We're at the end of the translation unit, so the current key 711 // function is fully correct. 712 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 713 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 714 // If this class has a key function, use that to determine the 715 // linkage of the vtable. 716 const FunctionDecl *def = nullptr; 717 if (keyFunction->hasBody(def)) 718 keyFunction = cast<CXXMethodDecl>(def); 719 720 switch (keyFunction->getTemplateSpecializationKind()) { 721 case TSK_Undeclared: 722 case TSK_ExplicitSpecialization: 723 assert((def || CodeGenOpts.OptimizationLevel > 0) && 724 "Shouldn't query vtable linkage without key function or " 725 "optimizations"); 726 if (!def && CodeGenOpts.OptimizationLevel > 0) 727 return llvm::GlobalVariable::AvailableExternallyLinkage; 728 729 if (keyFunction->isInlined()) 730 return !Context.getLangOpts().AppleKext ? 731 llvm::GlobalVariable::LinkOnceODRLinkage : 732 llvm::Function::InternalLinkage; 733 734 return llvm::GlobalVariable::ExternalLinkage; 735 736 case TSK_ImplicitInstantiation: 737 return !Context.getLangOpts().AppleKext ? 738 llvm::GlobalVariable::LinkOnceODRLinkage : 739 llvm::Function::InternalLinkage; 740 741 case TSK_ExplicitInstantiationDefinition: 742 return !Context.getLangOpts().AppleKext ? 743 llvm::GlobalVariable::WeakODRLinkage : 744 llvm::Function::InternalLinkage; 745 746 case TSK_ExplicitInstantiationDeclaration: 747 llvm_unreachable("Should not have been asked to emit this"); 748 } 749 } 750 751 // -fapple-kext mode does not support weak linkage, so we must use 752 // internal linkage. 753 if (Context.getLangOpts().AppleKext) 754 return llvm::Function::InternalLinkage; 755 756 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 757 llvm::GlobalValue::LinkOnceODRLinkage; 758 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 759 llvm::GlobalValue::WeakODRLinkage; 760 if (RD->hasAttr<DLLExportAttr>()) { 761 // Cannot discard exported vtables. 762 DiscardableODRLinkage = NonDiscardableODRLinkage; 763 } else if (RD->hasAttr<DLLImportAttr>()) { 764 // Imported vtables are available externally. 765 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 766 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 767 } 768 769 switch (RD->getTemplateSpecializationKind()) { 770 case TSK_Undeclared: 771 case TSK_ExplicitSpecialization: 772 case TSK_ImplicitInstantiation: 773 return DiscardableODRLinkage; 774 775 case TSK_ExplicitInstantiationDeclaration: 776 return shouldEmitAvailableExternallyVTable(*this, RD) 777 ? llvm::GlobalVariable::AvailableExternallyLinkage 778 : llvm::GlobalVariable::ExternalLinkage; 779 780 case TSK_ExplicitInstantiationDefinition: 781 return NonDiscardableODRLinkage; 782 } 783 784 llvm_unreachable("Invalid TemplateSpecializationKind!"); 785 } 786 787 /// This is a callback from Sema to tell us that that a particular v-table is 788 /// required to be emitted in this translation unit. 789 /// 790 /// This is only called for vtables that _must_ be emitted (mainly due to key 791 /// functions). For weak vtables, CodeGen tracks when they are needed and 792 /// emits them as-needed. 793 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 794 VTables.GenerateClassData(theClass); 795 } 796 797 void 798 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 799 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 800 DI->completeClassData(RD); 801 802 if (RD->getNumVBases()) 803 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 804 805 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 806 } 807 808 /// At this point in the translation unit, does it appear that can we 809 /// rely on the vtable being defined elsewhere in the program? 810 /// 811 /// The response is really only definitive when called at the end of 812 /// the translation unit. 813 /// 814 /// The only semantic restriction here is that the object file should 815 /// not contain a v-table definition when that v-table is defined 816 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 817 /// v-tables when unnecessary. 818 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 819 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 820 821 // If we have an explicit instantiation declaration (and not a 822 // definition), the v-table is defined elsewhere. 823 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 824 if (TSK == TSK_ExplicitInstantiationDeclaration) 825 return true; 826 827 // Otherwise, if the class is an instantiated template, the 828 // v-table must be defined here. 829 if (TSK == TSK_ImplicitInstantiation || 830 TSK == TSK_ExplicitInstantiationDefinition) 831 return false; 832 833 // Otherwise, if the class doesn't have a key function (possibly 834 // anymore), the v-table must be defined here. 835 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 836 if (!keyFunction) 837 return false; 838 839 // Otherwise, if we don't have a definition of the key function, the 840 // v-table must be defined somewhere else. 841 return !keyFunction->hasBody(); 842 } 843 844 /// Given that we're currently at the end of the translation unit, and 845 /// we've emitted a reference to the v-table for this class, should 846 /// we define that v-table? 847 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 848 const CXXRecordDecl *RD) { 849 // If vtable is internal then it has to be done. 850 if (!CGM.getVTables().isVTableExternal(RD)) 851 return true; 852 853 // If it's external then maybe we will need it as available_externally. 854 return shouldEmitAvailableExternallyVTable(CGM, RD); 855 } 856 857 /// Given that at some point we emitted a reference to one or more 858 /// v-tables, and that we are now at the end of the translation unit, 859 /// decide whether we should emit them. 860 void CodeGenModule::EmitDeferredVTables() { 861 #ifndef NDEBUG 862 // Remember the size of DeferredVTables, because we're going to assume 863 // that this entire operation doesn't modify it. 864 size_t savedSize = DeferredVTables.size(); 865 #endif 866 867 for (const CXXRecordDecl *RD : DeferredVTables) 868 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 869 VTables.GenerateClassData(RD); 870 871 assert(savedSize == DeferredVTables.size() && 872 "deferred extra v-tables during v-table emission?"); 873 DeferredVTables.clear(); 874 } 875 876 bool CodeGenModule::IsCFIBlacklistedRecord(const CXXRecordDecl *RD) { 877 if (RD->hasAttr<UuidAttr>() && 878 getContext().getSanitizerBlacklist().isBlacklistedType("attr:uuid")) 879 return true; 880 881 return getContext().getSanitizerBlacklist().isBlacklistedType( 882 RD->getQualifiedNameAsString()); 883 } 884 885 void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable, 886 const VTableLayout &VTLayout) { 887 if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 888 !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 889 !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 890 !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast)) 891 return; 892 893 CharUnits PointerWidth = 894 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 895 896 typedef std::pair<const CXXRecordDecl *, unsigned> BSEntry; 897 std::vector<BSEntry> BitsetEntries; 898 // Create a bit set entry for each address point. 899 for (auto &&AP : VTLayout.getAddressPoints()) { 900 if (IsCFIBlacklistedRecord(AP.first.getBase())) 901 continue; 902 903 BitsetEntries.push_back(std::make_pair(AP.first.getBase(), AP.second)); 904 } 905 906 // Sort the bit set entries for determinism. 907 std::sort(BitsetEntries.begin(), BitsetEntries.end(), 908 [this](const BSEntry &E1, const BSEntry &E2) { 909 if (&E1 == &E2) 910 return false; 911 912 std::string S1; 913 llvm::raw_string_ostream O1(S1); 914 getCXXABI().getMangleContext().mangleTypeName( 915 QualType(E1.first->getTypeForDecl(), 0), O1); 916 O1.flush(); 917 918 std::string S2; 919 llvm::raw_string_ostream O2(S2); 920 getCXXABI().getMangleContext().mangleTypeName( 921 QualType(E2.first->getTypeForDecl(), 0), O2); 922 O2.flush(); 923 924 if (S1 < S2) 925 return true; 926 if (S1 != S2) 927 return false; 928 929 return E1.second < E2.second; 930 }); 931 932 llvm::NamedMDNode *BitsetsMD = 933 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 934 for (auto BitsetEntry : BitsetEntries) 935 BitsetsMD->addOperand(CreateVTableBitSetEntry( 936 VTable, PointerWidth * BitsetEntry.second, BitsetEntry.first)); 937 } 938