1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of virtual tables.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Transforms/Utils/Cloning.h"
26 #include <algorithm>
27 #include <cstdio>
28 
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
33     : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
34 
35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD,
36                                               const ThunkInfo &Thunk) {
37   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
38 
39   // Compute the mangled name.
40   SmallString<256> Name;
41   llvm::raw_svector_ostream Out(Name);
42   if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
43     getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(),
44                                                       Thunk.This, Out);
45   else
46     getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out);
47 
48   llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD);
49   return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true,
50                                  /*DontDefer=*/true, /*IsThunk=*/true);
51 }
52 
53 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD,
54                                const ThunkInfo &Thunk, llvm::Function *Fn) {
55   CGM.setGlobalVisibility(Fn, MD);
56 }
57 
58 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
59                                llvm::Function *ThunkFn, bool ForVTable,
60                                GlobalDecl GD) {
61   CGM.setFunctionLinkage(GD, ThunkFn);
62   CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
63                                   !Thunk.Return.isEmpty());
64 
65   // Set the right visibility.
66   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
67   setThunkVisibility(CGM, MD, Thunk, ThunkFn);
68 
69   if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
70     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
71 }
72 
73 #ifndef NDEBUG
74 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
75                     const ABIArgInfo &infoR, CanQualType typeR) {
76   return (infoL.getKind() == infoR.getKind() &&
77           (typeL == typeR ||
78            (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
79            (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
80 }
81 #endif
82 
83 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
84                                       QualType ResultType, RValue RV,
85                                       const ThunkInfo &Thunk) {
86   // Emit the return adjustment.
87   bool NullCheckValue = !ResultType->isReferenceType();
88 
89   llvm::BasicBlock *AdjustNull = nullptr;
90   llvm::BasicBlock *AdjustNotNull = nullptr;
91   llvm::BasicBlock *AdjustEnd = nullptr;
92 
93   llvm::Value *ReturnValue = RV.getScalarVal();
94 
95   if (NullCheckValue) {
96     AdjustNull = CGF.createBasicBlock("adjust.null");
97     AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
98     AdjustEnd = CGF.createBasicBlock("adjust.end");
99 
100     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
101     CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
102     CGF.EmitBlock(AdjustNotNull);
103   }
104 
105   auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
106   auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
107   ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
108                                             Address(ReturnValue, ClassAlign),
109                                             Thunk.Return);
110 
111   if (NullCheckValue) {
112     CGF.Builder.CreateBr(AdjustEnd);
113     CGF.EmitBlock(AdjustNull);
114     CGF.Builder.CreateBr(AdjustEnd);
115     CGF.EmitBlock(AdjustEnd);
116 
117     llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
118     PHI->addIncoming(ReturnValue, AdjustNotNull);
119     PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
120                      AdjustNull);
121     ReturnValue = PHI;
122   }
123 
124   return RValue::get(ReturnValue);
125 }
126 
127 // This function does roughly the same thing as GenerateThunk, but in a
128 // very different way, so that va_start and va_end work correctly.
129 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
130 //        a function, and that there is an alloca built in the entry block
131 //        for all accesses to "this".
132 // FIXME: This function assumes there is only one "ret" statement per function.
133 // FIXME: Cloning isn't correct in the presence of indirect goto!
134 // FIXME: This implementation of thunks bloats codesize by duplicating the
135 //        function definition.  There are alternatives:
136 //        1. Add some sort of stub support to LLVM for cases where we can
137 //           do a this adjustment, then a sibcall.
138 //        2. We could transform the definition to take a va_list instead of an
139 //           actual variable argument list, then have the thunks (including a
140 //           no-op thunk for the regular definition) call va_start/va_end.
141 //           There's a bit of per-call overhead for this solution, but it's
142 //           better for codesize if the definition is long.
143 llvm::Function *
144 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
145                                       const CGFunctionInfo &FnInfo,
146                                       GlobalDecl GD, const ThunkInfo &Thunk) {
147   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
148   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
149   QualType ResultType = FPT->getReturnType();
150 
151   // Get the original function
152   assert(FnInfo.isVariadic());
153   llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
154   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
155   llvm::Function *BaseFn = cast<llvm::Function>(Callee);
156 
157   // Clone to thunk.
158   llvm::ValueToValueMapTy VMap;
159   llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap,
160                                               /*ModuleLevelChanges=*/false);
161   CGM.getModule().getFunctionList().push_back(NewFn);
162   Fn->replaceAllUsesWith(NewFn);
163   NewFn->takeName(Fn);
164   Fn->eraseFromParent();
165   Fn = NewFn;
166 
167   // "Initialize" CGF (minimally).
168   CurFn = Fn;
169 
170   // Get the "this" value
171   llvm::Function::arg_iterator AI = Fn->arg_begin();
172   if (CGM.ReturnTypeUsesSRet(FnInfo))
173     ++AI;
174 
175   // Find the first store of "this", which will be to the alloca associated
176   // with "this".
177   Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
178   llvm::BasicBlock *EntryBB = Fn->begin();
179   llvm::Instruction *ThisStore =
180       std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
181     return isa<llvm::StoreInst>(I) && I.getOperand(0) == ThisPtr.getPointer();
182   });
183   assert(ThisStore && "Store of this should be in entry block?");
184   // Adjust "this", if necessary.
185   Builder.SetInsertPoint(ThisStore);
186   llvm::Value *AdjustedThisPtr =
187       CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
188   ThisStore->setOperand(0, AdjustedThisPtr);
189 
190   if (!Thunk.Return.isEmpty()) {
191     // Fix up the returned value, if necessary.
192     for (llvm::BasicBlock &BB : *Fn) {
193       llvm::Instruction *T = BB.getTerminator();
194       if (isa<llvm::ReturnInst>(T)) {
195         RValue RV = RValue::get(T->getOperand(0));
196         T->eraseFromParent();
197         Builder.SetInsertPoint(&BB);
198         RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
199         Builder.CreateRet(RV.getScalarVal());
200         break;
201       }
202     }
203   }
204 
205   return Fn;
206 }
207 
208 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
209                                  const CGFunctionInfo &FnInfo) {
210   assert(!CurGD.getDecl() && "CurGD was already set!");
211   CurGD = GD;
212   CurFuncIsThunk = true;
213 
214   // Build FunctionArgs.
215   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
216   QualType ThisType = MD->getThisType(getContext());
217   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
218   QualType ResultType = CGM.getCXXABI().HasThisReturn(GD)
219                             ? ThisType
220                             : CGM.getCXXABI().hasMostDerivedReturn(GD)
221                                   ? CGM.getContext().VoidPtrTy
222                                   : FPT->getReturnType();
223   FunctionArgList FunctionArgs;
224 
225   // Create the implicit 'this' parameter declaration.
226   CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
227 
228   // Add the rest of the parameters.
229   FunctionArgs.append(MD->param_begin(), MD->param_end());
230 
231   if (isa<CXXDestructorDecl>(MD))
232     CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs);
233 
234   // Start defining the function.
235   StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
236                 MD->getLocation(), MD->getLocation());
237 
238   // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
239   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
240   CXXThisValue = CXXABIThisValue;
241   CurCodeDecl = MD;
242   CurFuncDecl = MD;
243 }
244 
245 void CodeGenFunction::FinishThunk() {
246   // Clear these to restore the invariants expected by
247   // StartFunction/FinishFunction.
248   CurCodeDecl = nullptr;
249   CurFuncDecl = nullptr;
250 
251   FinishFunction();
252 }
253 
254 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee,
255                                                 const ThunkInfo *Thunk) {
256   assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
257          "Please use a new CGF for this thunk");
258   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
259 
260   // Adjust the 'this' pointer if necessary
261   llvm::Value *AdjustedThisPtr =
262     Thunk ? CGM.getCXXABI().performThisAdjustment(
263                           *this, LoadCXXThisAddress(), Thunk->This)
264           : LoadCXXThis();
265 
266   if (CurFnInfo->usesInAlloca()) {
267     // We don't handle return adjusting thunks, because they require us to call
268     // the copy constructor.  For now, fall through and pretend the return
269     // adjustment was empty so we don't crash.
270     if (Thunk && !Thunk->Return.isEmpty()) {
271       CGM.ErrorUnsupported(
272           MD, "non-trivial argument copy for return-adjusting thunk");
273     }
274     EmitMustTailThunk(MD, AdjustedThisPtr, Callee);
275     return;
276   }
277 
278   // Start building CallArgs.
279   CallArgList CallArgs;
280   QualType ThisType = MD->getThisType(getContext());
281   CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
282 
283   if (isa<CXXDestructorDecl>(MD))
284     CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
285 
286   // Add the rest of the arguments.
287   for (const ParmVarDecl *PD : MD->params())
288     EmitDelegateCallArg(CallArgs, PD, PD->getLocStart());
289 
290   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
291 
292 #ifndef NDEBUG
293   const CGFunctionInfo &CallFnInfo =
294     CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT,
295                                        RequiredArgs::forPrototypePlus(FPT, 1));
296   assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
297          CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
298          CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
299   assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
300          similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
301                  CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
302   assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
303   for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
304     assert(similar(CallFnInfo.arg_begin()[i].info,
305                    CallFnInfo.arg_begin()[i].type,
306                    CurFnInfo->arg_begin()[i].info,
307                    CurFnInfo->arg_begin()[i].type));
308 #endif
309 
310   // Determine whether we have a return value slot to use.
311   QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
312                             ? ThisType
313                             : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
314                                   ? CGM.getContext().VoidPtrTy
315                                   : FPT->getReturnType();
316   ReturnValueSlot Slot;
317   if (!ResultType->isVoidType() &&
318       CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
319       !hasScalarEvaluationKind(CurFnInfo->getReturnType()))
320     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
321 
322   // Now emit our call.
323   llvm::Instruction *CallOrInvoke;
324   RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke);
325 
326   // Consider return adjustment if we have ThunkInfo.
327   if (Thunk && !Thunk->Return.isEmpty())
328     RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
329   else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
330     Call->setTailCallKind(llvm::CallInst::TCK_Tail);
331 
332   // Emit return.
333   if (!ResultType->isVoidType() && Slot.isNull())
334     CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
335 
336   // Disable the final ARC autorelease.
337   AutoreleaseResult = false;
338 
339   FinishThunk();
340 }
341 
342 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD,
343                                         llvm::Value *AdjustedThisPtr,
344                                         llvm::Value *Callee) {
345   // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
346   // to translate AST arguments into LLVM IR arguments.  For thunks, we know
347   // that the caller prototype more or less matches the callee prototype with
348   // the exception of 'this'.
349   SmallVector<llvm::Value *, 8> Args;
350   for (llvm::Argument &A : CurFn->args())
351     Args.push_back(&A);
352 
353   // Set the adjusted 'this' pointer.
354   const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
355   if (ThisAI.isDirect()) {
356     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
357     int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
358     llvm::Type *ThisType = Args[ThisArgNo]->getType();
359     if (ThisType != AdjustedThisPtr->getType())
360       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
361     Args[ThisArgNo] = AdjustedThisPtr;
362   } else {
363     assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
364     Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
365     llvm::Type *ThisType = ThisAddr.getElementType();
366     if (ThisType != AdjustedThisPtr->getType())
367       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
368     Builder.CreateStore(AdjustedThisPtr, ThisAddr);
369   }
370 
371   // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
372   // don't actually want to run them.
373   llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
374   Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
375 
376   // Apply the standard set of call attributes.
377   unsigned CallingConv;
378   CodeGen::AttributeListType AttributeList;
379   CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv,
380                              /*AttrOnCallSite=*/true);
381   llvm::AttributeSet Attrs =
382       llvm::AttributeSet::get(getLLVMContext(), AttributeList);
383   Call->setAttributes(Attrs);
384   Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
385 
386   if (Call->getType()->isVoidTy())
387     Builder.CreateRetVoid();
388   else
389     Builder.CreateRet(Call);
390 
391   // Finish the function to maintain CodeGenFunction invariants.
392   // FIXME: Don't emit unreachable code.
393   EmitBlock(createBasicBlock());
394   FinishFunction();
395 }
396 
397 void CodeGenFunction::generateThunk(llvm::Function *Fn,
398                                     const CGFunctionInfo &FnInfo,
399                                     GlobalDecl GD, const ThunkInfo &Thunk) {
400   StartThunk(Fn, GD, FnInfo);
401 
402   // Get our callee.
403   llvm::Type *Ty =
404     CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD));
405   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
406 
407   // Make the call and return the result.
408   EmitCallAndReturnForThunk(Callee, &Thunk);
409 }
410 
411 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk,
412                                bool ForVTable) {
413   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD);
414 
415   // FIXME: re-use FnInfo in this computation.
416   llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk);
417   llvm::GlobalValue *Entry;
418 
419   // Strip off a bitcast if we got one back.
420   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) {
421     assert(CE->getOpcode() == llvm::Instruction::BitCast);
422     Entry = cast<llvm::GlobalValue>(CE->getOperand(0));
423   } else {
424     Entry = cast<llvm::GlobalValue>(C);
425   }
426 
427   // There's already a declaration with the same name, check if it has the same
428   // type or if we need to replace it.
429   if (Entry->getType()->getElementType() !=
430       CGM.getTypes().GetFunctionTypeForVTable(GD)) {
431     llvm::GlobalValue *OldThunkFn = Entry;
432 
433     // If the types mismatch then we have to rewrite the definition.
434     assert(OldThunkFn->isDeclaration() &&
435            "Shouldn't replace non-declaration");
436 
437     // Remove the name from the old thunk function and get a new thunk.
438     OldThunkFn->setName(StringRef());
439     Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk));
440 
441     // If needed, replace the old thunk with a bitcast.
442     if (!OldThunkFn->use_empty()) {
443       llvm::Constant *NewPtrForOldDecl =
444         llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType());
445       OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
446     }
447 
448     // Remove the old thunk.
449     OldThunkFn->eraseFromParent();
450   }
451 
452   llvm::Function *ThunkFn = cast<llvm::Function>(Entry);
453   bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
454   bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
455 
456   if (!ThunkFn->isDeclaration()) {
457     if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
458       // There is already a thunk emitted for this function, do nothing.
459       return;
460     }
461 
462     setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD);
463     return;
464   }
465 
466   CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
467 
468   if (ThunkFn->isVarArg()) {
469     // Varargs thunks are special; we can't just generate a call because
470     // we can't copy the varargs.  Our implementation is rather
471     // expensive/sucky at the moment, so don't generate the thunk unless
472     // we have to.
473     // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
474     if (UseAvailableExternallyLinkage)
475       return;
476     ThunkFn =
477         CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk);
478   } else {
479     // Normal thunk body generation.
480     CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk);
481   }
482 
483   setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD);
484 }
485 
486 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD,
487                                              const ThunkInfo &Thunk) {
488   // If the ABI has key functions, only the TU with the key function should emit
489   // the thunk. However, we can allow inlining of thunks if we emit them with
490   // available_externally linkage together with vtables when optimizations are
491   // enabled.
492   if (CGM.getTarget().getCXXABI().hasKeyFunctions() &&
493       !CGM.getCodeGenOpts().OptimizationLevel)
494     return;
495 
496   // We can't emit thunks for member functions with incomplete types.
497   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
498   if (!CGM.getTypes().isFuncTypeConvertible(
499            MD->getType()->castAs<FunctionType>()))
500     return;
501 
502   emitThunk(GD, Thunk, /*ForVTable=*/true);
503 }
504 
505 void CodeGenVTables::EmitThunks(GlobalDecl GD)
506 {
507   const CXXMethodDecl *MD =
508     cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
509 
510   // We don't need to generate thunks for the base destructor.
511   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
512     return;
513 
514   const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
515       VTContext->getThunkInfo(GD);
516 
517   if (!ThunkInfoVector)
518     return;
519 
520   for (const ThunkInfo& Thunk : *ThunkInfoVector)
521     emitThunk(GD, Thunk, /*ForVTable=*/false);
522 }
523 
524 llvm::Constant *CodeGenVTables::CreateVTableInitializer(
525     const CXXRecordDecl *RD, const VTableComponent *Components,
526     unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks,
527     unsigned NumVTableThunks, llvm::Constant *RTTI) {
528   SmallVector<llvm::Constant *, 64> Inits;
529 
530   llvm::Type *Int8PtrTy = CGM.Int8PtrTy;
531 
532   llvm::Type *PtrDiffTy =
533     CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
534 
535   unsigned NextVTableThunkIndex = 0;
536 
537   llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr;
538 
539   for (unsigned I = 0; I != NumComponents; ++I) {
540     VTableComponent Component = Components[I];
541 
542     llvm::Constant *Init = nullptr;
543 
544     switch (Component.getKind()) {
545     case VTableComponent::CK_VCallOffset:
546       Init = llvm::ConstantInt::get(PtrDiffTy,
547                                     Component.getVCallOffset().getQuantity());
548       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
549       break;
550     case VTableComponent::CK_VBaseOffset:
551       Init = llvm::ConstantInt::get(PtrDiffTy,
552                                     Component.getVBaseOffset().getQuantity());
553       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
554       break;
555     case VTableComponent::CK_OffsetToTop:
556       Init = llvm::ConstantInt::get(PtrDiffTy,
557                                     Component.getOffsetToTop().getQuantity());
558       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
559       break;
560     case VTableComponent::CK_RTTI:
561       Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy);
562       break;
563     case VTableComponent::CK_FunctionPointer:
564     case VTableComponent::CK_CompleteDtorPointer:
565     case VTableComponent::CK_DeletingDtorPointer: {
566       GlobalDecl GD;
567 
568       // Get the right global decl.
569       switch (Component.getKind()) {
570       default:
571         llvm_unreachable("Unexpected vtable component kind");
572       case VTableComponent::CK_FunctionPointer:
573         GD = Component.getFunctionDecl();
574         break;
575       case VTableComponent::CK_CompleteDtorPointer:
576         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete);
577         break;
578       case VTableComponent::CK_DeletingDtorPointer:
579         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting);
580         break;
581       }
582 
583       if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
584         // We have a pure virtual member function.
585         if (!PureVirtualFn) {
586           llvm::FunctionType *Ty =
587             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
588           StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName();
589           PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName);
590           PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn,
591                                                          CGM.Int8PtrTy);
592         }
593         Init = PureVirtualFn;
594       } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
595         if (!DeletedVirtualFn) {
596           llvm::FunctionType *Ty =
597             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
598           StringRef DeletedCallName =
599             CGM.getCXXABI().GetDeletedVirtualCallName();
600           DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName);
601           DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn,
602                                                          CGM.Int8PtrTy);
603         }
604         Init = DeletedVirtualFn;
605       } else {
606         // Check if we should use a thunk.
607         if (NextVTableThunkIndex < NumVTableThunks &&
608             VTableThunks[NextVTableThunkIndex].first == I) {
609           const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second;
610 
611           maybeEmitThunkForVTable(GD, Thunk);
612           Init = CGM.GetAddrOfThunk(GD, Thunk);
613 
614           NextVTableThunkIndex++;
615         } else {
616           llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD);
617 
618           Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
619         }
620 
621         Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
622       }
623       break;
624     }
625 
626     case VTableComponent::CK_UnusedFunctionPointer:
627       Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
628       break;
629     };
630 
631     Inits.push_back(Init);
632   }
633 
634   llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents);
635   return llvm::ConstantArray::get(ArrayType, Inits);
636 }
637 
638 llvm::GlobalVariable *
639 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
640                                       const BaseSubobject &Base,
641                                       bool BaseIsVirtual,
642                                    llvm::GlobalVariable::LinkageTypes Linkage,
643                                       VTableAddressPointsMapTy& AddressPoints) {
644   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
645     DI->completeClassData(Base.getBase());
646 
647   std::unique_ptr<VTableLayout> VTLayout(
648       getItaniumVTableContext().createConstructionVTableLayout(
649           Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
650 
651   // Add the address points.
652   AddressPoints = VTLayout->getAddressPoints();
653 
654   // Get the mangled construction vtable name.
655   SmallString<256> OutName;
656   llvm::raw_svector_ostream Out(OutName);
657   cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
658       .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
659                            Base.getBase(), Out);
660   StringRef Name = OutName.str();
661 
662   llvm::ArrayType *ArrayType =
663     llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents());
664 
665   // Construction vtable symbols are not part of the Itanium ABI, so we cannot
666   // guarantee that they actually will be available externally. Instead, when
667   // emitting an available_externally VTT, we provide references to an internal
668   // linkage construction vtable. The ABI only requires complete-object vtables
669   // to be the same for all instances of a type, not construction vtables.
670   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
671     Linkage = llvm::GlobalVariable::InternalLinkage;
672 
673   // Create the variable that will hold the construction vtable.
674   llvm::GlobalVariable *VTable =
675     CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage);
676   CGM.setGlobalVisibility(VTable, RD);
677 
678   // V-tables are always unnamed_addr.
679   VTable->setUnnamedAddr(true);
680 
681   llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
682       CGM.getContext().getTagDeclType(Base.getBase()));
683 
684   // Create and set the initializer.
685   llvm::Constant *Init = CreateVTableInitializer(
686       Base.getBase(), VTLayout->vtable_component_begin(),
687       VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(),
688       VTLayout->getNumVTableThunks(), RTTI);
689   VTable->setInitializer(Init);
690 
691   CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get());
692 
693   return VTable;
694 }
695 
696 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
697                                                 const CXXRecordDecl *RD) {
698   return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
699          CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
700 }
701 
702 /// Compute the required linkage of the v-table for the given class.
703 ///
704 /// Note that we only call this at the end of the translation unit.
705 llvm::GlobalVariable::LinkageTypes
706 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
707   if (!RD->isExternallyVisible())
708     return llvm::GlobalVariable::InternalLinkage;
709 
710   // We're at the end of the translation unit, so the current key
711   // function is fully correct.
712   const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
713   if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
714     // If this class has a key function, use that to determine the
715     // linkage of the vtable.
716     const FunctionDecl *def = nullptr;
717     if (keyFunction->hasBody(def))
718       keyFunction = cast<CXXMethodDecl>(def);
719 
720     switch (keyFunction->getTemplateSpecializationKind()) {
721       case TSK_Undeclared:
722       case TSK_ExplicitSpecialization:
723         assert((def || CodeGenOpts.OptimizationLevel > 0) &&
724                "Shouldn't query vtable linkage without key function or "
725                "optimizations");
726         if (!def && CodeGenOpts.OptimizationLevel > 0)
727           return llvm::GlobalVariable::AvailableExternallyLinkage;
728 
729         if (keyFunction->isInlined())
730           return !Context.getLangOpts().AppleKext ?
731                    llvm::GlobalVariable::LinkOnceODRLinkage :
732                    llvm::Function::InternalLinkage;
733 
734         return llvm::GlobalVariable::ExternalLinkage;
735 
736       case TSK_ImplicitInstantiation:
737         return !Context.getLangOpts().AppleKext ?
738                  llvm::GlobalVariable::LinkOnceODRLinkage :
739                  llvm::Function::InternalLinkage;
740 
741       case TSK_ExplicitInstantiationDefinition:
742         return !Context.getLangOpts().AppleKext ?
743                  llvm::GlobalVariable::WeakODRLinkage :
744                  llvm::Function::InternalLinkage;
745 
746       case TSK_ExplicitInstantiationDeclaration:
747         llvm_unreachable("Should not have been asked to emit this");
748     }
749   }
750 
751   // -fapple-kext mode does not support weak linkage, so we must use
752   // internal linkage.
753   if (Context.getLangOpts().AppleKext)
754     return llvm::Function::InternalLinkage;
755 
756   llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
757       llvm::GlobalValue::LinkOnceODRLinkage;
758   llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
759       llvm::GlobalValue::WeakODRLinkage;
760   if (RD->hasAttr<DLLExportAttr>()) {
761     // Cannot discard exported vtables.
762     DiscardableODRLinkage = NonDiscardableODRLinkage;
763   } else if (RD->hasAttr<DLLImportAttr>()) {
764     // Imported vtables are available externally.
765     DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
766     NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
767   }
768 
769   switch (RD->getTemplateSpecializationKind()) {
770     case TSK_Undeclared:
771     case TSK_ExplicitSpecialization:
772     case TSK_ImplicitInstantiation:
773       return DiscardableODRLinkage;
774 
775     case TSK_ExplicitInstantiationDeclaration:
776       return shouldEmitAvailableExternallyVTable(*this, RD)
777                  ? llvm::GlobalVariable::AvailableExternallyLinkage
778                  : llvm::GlobalVariable::ExternalLinkage;
779 
780     case TSK_ExplicitInstantiationDefinition:
781       return NonDiscardableODRLinkage;
782   }
783 
784   llvm_unreachable("Invalid TemplateSpecializationKind!");
785 }
786 
787 /// This is a callback from Sema to tell us that that a particular v-table is
788 /// required to be emitted in this translation unit.
789 ///
790 /// This is only called for vtables that _must_ be emitted (mainly due to key
791 /// functions).  For weak vtables, CodeGen tracks when they are needed and
792 /// emits them as-needed.
793 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
794   VTables.GenerateClassData(theClass);
795 }
796 
797 void
798 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
799   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
800     DI->completeClassData(RD);
801 
802   if (RD->getNumVBases())
803     CGM.getCXXABI().emitVirtualInheritanceTables(RD);
804 
805   CGM.getCXXABI().emitVTableDefinitions(*this, RD);
806 }
807 
808 /// At this point in the translation unit, does it appear that can we
809 /// rely on the vtable being defined elsewhere in the program?
810 ///
811 /// The response is really only definitive when called at the end of
812 /// the translation unit.
813 ///
814 /// The only semantic restriction here is that the object file should
815 /// not contain a v-table definition when that v-table is defined
816 /// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
817 /// v-tables when unnecessary.
818 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
819   assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
820 
821   // If we have an explicit instantiation declaration (and not a
822   // definition), the v-table is defined elsewhere.
823   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
824   if (TSK == TSK_ExplicitInstantiationDeclaration)
825     return true;
826 
827   // Otherwise, if the class is an instantiated template, the
828   // v-table must be defined here.
829   if (TSK == TSK_ImplicitInstantiation ||
830       TSK == TSK_ExplicitInstantiationDefinition)
831     return false;
832 
833   // Otherwise, if the class doesn't have a key function (possibly
834   // anymore), the v-table must be defined here.
835   const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
836   if (!keyFunction)
837     return false;
838 
839   // Otherwise, if we don't have a definition of the key function, the
840   // v-table must be defined somewhere else.
841   return !keyFunction->hasBody();
842 }
843 
844 /// Given that we're currently at the end of the translation unit, and
845 /// we've emitted a reference to the v-table for this class, should
846 /// we define that v-table?
847 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
848                                                    const CXXRecordDecl *RD) {
849   // If vtable is internal then it has to be done.
850   if (!CGM.getVTables().isVTableExternal(RD))
851     return true;
852 
853   // If it's external then maybe we will need it as available_externally.
854   return shouldEmitAvailableExternallyVTable(CGM, RD);
855 }
856 
857 /// Given that at some point we emitted a reference to one or more
858 /// v-tables, and that we are now at the end of the translation unit,
859 /// decide whether we should emit them.
860 void CodeGenModule::EmitDeferredVTables() {
861 #ifndef NDEBUG
862   // Remember the size of DeferredVTables, because we're going to assume
863   // that this entire operation doesn't modify it.
864   size_t savedSize = DeferredVTables.size();
865 #endif
866 
867   for (const CXXRecordDecl *RD : DeferredVTables)
868     if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
869       VTables.GenerateClassData(RD);
870 
871   assert(savedSize == DeferredVTables.size() &&
872          "deferred extra v-tables during v-table emission?");
873   DeferredVTables.clear();
874 }
875 
876 bool CodeGenModule::IsCFIBlacklistedRecord(const CXXRecordDecl *RD) {
877   if (RD->hasAttr<UuidAttr>() &&
878       getContext().getSanitizerBlacklist().isBlacklistedType("attr:uuid"))
879     return true;
880 
881   return getContext().getSanitizerBlacklist().isBlacklistedType(
882       RD->getQualifiedNameAsString());
883 }
884 
885 void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable,
886                                             const VTableLayout &VTLayout) {
887   if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
888       !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
889       !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
890       !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast))
891     return;
892 
893   CharUnits PointerWidth =
894       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
895 
896   typedef std::pair<const CXXRecordDecl *, unsigned> BSEntry;
897   std::vector<BSEntry> BitsetEntries;
898   // Create a bit set entry for each address point.
899   for (auto &&AP : VTLayout.getAddressPoints()) {
900     if (IsCFIBlacklistedRecord(AP.first.getBase()))
901       continue;
902 
903     BitsetEntries.push_back(std::make_pair(AP.first.getBase(), AP.second));
904   }
905 
906   // Sort the bit set entries for determinism.
907   std::sort(BitsetEntries.begin(), BitsetEntries.end(),
908             [this](const BSEntry &E1, const BSEntry &E2) {
909     if (&E1 == &E2)
910       return false;
911 
912     std::string S1;
913     llvm::raw_string_ostream O1(S1);
914     getCXXABI().getMangleContext().mangleTypeName(
915         QualType(E1.first->getTypeForDecl(), 0), O1);
916     O1.flush();
917 
918     std::string S2;
919     llvm::raw_string_ostream O2(S2);
920     getCXXABI().getMangleContext().mangleTypeName(
921         QualType(E2.first->getTypeForDecl(), 0), O2);
922     O2.flush();
923 
924     if (S1 < S2)
925       return true;
926     if (S1 != S2)
927       return false;
928 
929     return E1.second < E2.second;
930   });
931 
932   llvm::NamedMDNode *BitsetsMD =
933       getModule().getOrInsertNamedMetadata("llvm.bitsets");
934   for (auto BitsetEntry : BitsetEntries)
935     BitsetsMD->addOperand(CreateVTableBitSetEntry(
936         VTable, PointerWidth * BitsetEntry.second, BitsetEntry.first));
937 }
938