1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CodeGenFunction.h" 16 #include "CGCXXABI.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Frontend/CodeGenOptions.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 32 : CGM(CGM), VTContext(CGM.getContext()) { } 33 34 bool CodeGenVTables::ShouldEmitVTableInThisTU(const CXXRecordDecl *RD) { 35 assert(RD->isDynamicClass() && "Non dynamic classes have no VTable."); 36 37 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 38 if (TSK == TSK_ExplicitInstantiationDeclaration) 39 return false; 40 41 const CXXMethodDecl *KeyFunction = CGM.getContext().getKeyFunction(RD); 42 if (!KeyFunction) 43 return true; 44 45 // Itanium C++ ABI, 5.2.6 Instantiated Templates: 46 // An instantiation of a class template requires: 47 // - In the object where instantiated, the virtual table... 48 if (TSK == TSK_ImplicitInstantiation || 49 TSK == TSK_ExplicitInstantiationDefinition) 50 return true; 51 52 // If we're building with optimization, we always emit VTables since that 53 // allows for virtual function calls to be devirtualized. 54 // (We don't want to do this in -fapple-kext mode however). 55 if (CGM.getCodeGenOpts().OptimizationLevel && !CGM.getLangOpts().AppleKext) 56 return true; 57 58 return KeyFunction->hasBody(); 59 } 60 61 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 62 const ThunkInfo &Thunk) { 63 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 64 65 // Compute the mangled name. 66 SmallString<256> Name; 67 llvm::raw_svector_ostream Out(Name); 68 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 69 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 70 Thunk.This, Out); 71 else 72 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 73 Out.flush(); 74 75 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 76 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true); 77 } 78 79 static llvm::Value *PerformTypeAdjustment(CodeGenFunction &CGF, 80 llvm::Value *Ptr, 81 int64_t NonVirtualAdjustment, 82 int64_t VirtualAdjustment) { 83 if (!NonVirtualAdjustment && !VirtualAdjustment) 84 return Ptr; 85 86 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 87 llvm::Value *V = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy); 88 89 if (NonVirtualAdjustment) { 90 // Do the non-virtual adjustment. 91 V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment); 92 } 93 94 if (VirtualAdjustment) { 95 llvm::Type *PtrDiffTy = 96 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 97 98 // Do the virtual adjustment. 99 llvm::Value *VTablePtrPtr = 100 CGF.Builder.CreateBitCast(V, Int8PtrTy->getPointerTo()); 101 102 llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr); 103 104 llvm::Value *OffsetPtr = 105 CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment); 106 107 OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo()); 108 109 // Load the adjustment offset from the vtable. 110 llvm::Value *Offset = CGF.Builder.CreateLoad(OffsetPtr); 111 112 // Adjust our pointer. 113 V = CGF.Builder.CreateInBoundsGEP(V, Offset); 114 } 115 116 // Cast back to the original type. 117 return CGF.Builder.CreateBitCast(V, Ptr->getType()); 118 } 119 120 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 121 const ThunkInfo &Thunk, llvm::Function *Fn) { 122 CGM.setGlobalVisibility(Fn, MD); 123 124 if (!CGM.getCodeGenOpts().HiddenWeakVTables) 125 return; 126 127 // If the thunk has weak/linkonce linkage, but the function must be 128 // emitted in every translation unit that references it, then we can 129 // emit its thunks with hidden visibility, since its thunks must be 130 // emitted when the function is. 131 132 // This follows CodeGenModule::setTypeVisibility; see the comments 133 // there for explanation. 134 135 if ((Fn->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage && 136 Fn->getLinkage() != llvm::GlobalVariable::WeakODRLinkage) || 137 Fn->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 138 return; 139 140 if (MD->getExplicitVisibility()) 141 return; 142 143 switch (MD->getTemplateSpecializationKind()) { 144 case TSK_ExplicitInstantiationDefinition: 145 case TSK_ExplicitInstantiationDeclaration: 146 return; 147 148 case TSK_Undeclared: 149 break; 150 151 case TSK_ExplicitSpecialization: 152 case TSK_ImplicitInstantiation: 153 if (!CGM.getCodeGenOpts().HiddenWeakTemplateVTables) 154 return; 155 break; 156 } 157 158 // If there's an explicit definition, and that definition is 159 // out-of-line, then we can't assume that all users will have a 160 // definition to emit. 161 const FunctionDecl *Def = 0; 162 if (MD->hasBody(Def) && Def->isOutOfLine()) 163 return; 164 165 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); 166 } 167 168 #ifndef NDEBUG 169 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 170 const ABIArgInfo &infoR, CanQualType typeR) { 171 return (infoL.getKind() == infoR.getKind() && 172 (typeL == typeR || 173 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 174 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 175 } 176 #endif 177 178 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 179 QualType ResultType, RValue RV, 180 const ThunkInfo &Thunk) { 181 // Emit the return adjustment. 182 bool NullCheckValue = !ResultType->isReferenceType(); 183 184 llvm::BasicBlock *AdjustNull = 0; 185 llvm::BasicBlock *AdjustNotNull = 0; 186 llvm::BasicBlock *AdjustEnd = 0; 187 188 llvm::Value *ReturnValue = RV.getScalarVal(); 189 190 if (NullCheckValue) { 191 AdjustNull = CGF.createBasicBlock("adjust.null"); 192 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 193 AdjustEnd = CGF.createBasicBlock("adjust.end"); 194 195 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 196 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 197 CGF.EmitBlock(AdjustNotNull); 198 } 199 200 ReturnValue = PerformTypeAdjustment(CGF, ReturnValue, 201 Thunk.Return.NonVirtual, 202 Thunk.Return.VBaseOffsetOffset); 203 204 if (NullCheckValue) { 205 CGF.Builder.CreateBr(AdjustEnd); 206 CGF.EmitBlock(AdjustNull); 207 CGF.Builder.CreateBr(AdjustEnd); 208 CGF.EmitBlock(AdjustEnd); 209 210 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 211 PHI->addIncoming(ReturnValue, AdjustNotNull); 212 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 213 AdjustNull); 214 ReturnValue = PHI; 215 } 216 217 return RValue::get(ReturnValue); 218 } 219 220 // This function does roughly the same thing as GenerateThunk, but in a 221 // very different way, so that va_start and va_end work correctly. 222 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 223 // a function, and that there is an alloca built in the entry block 224 // for all accesses to "this". 225 // FIXME: This function assumes there is only one "ret" statement per function. 226 // FIXME: Cloning isn't correct in the presence of indirect goto! 227 // FIXME: This implementation of thunks bloats codesize by duplicating the 228 // function definition. There are alternatives: 229 // 1. Add some sort of stub support to LLVM for cases where we can 230 // do a this adjustment, then a sibcall. 231 // 2. We could transform the definition to take a va_list instead of an 232 // actual variable argument list, then have the thunks (including a 233 // no-op thunk for the regular definition) call va_start/va_end. 234 // There's a bit of per-call overhead for this solution, but it's 235 // better for codesize if the definition is long. 236 void CodeGenFunction::GenerateVarArgsThunk( 237 llvm::Function *Fn, 238 const CGFunctionInfo &FnInfo, 239 GlobalDecl GD, const ThunkInfo &Thunk) { 240 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 241 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 242 QualType ResultType = FPT->getResultType(); 243 244 // Get the original function 245 assert(FnInfo.isVariadic()); 246 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 247 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 248 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 249 250 // Clone to thunk. 251 llvm::Function *NewFn = llvm::CloneFunction(BaseFn); 252 CGM.getModule().getFunctionList().push_back(NewFn); 253 Fn->replaceAllUsesWith(NewFn); 254 NewFn->takeName(Fn); 255 Fn->eraseFromParent(); 256 Fn = NewFn; 257 258 // "Initialize" CGF (minimally). 259 CurFn = Fn; 260 261 // Get the "this" value 262 llvm::Function::arg_iterator AI = Fn->arg_begin(); 263 if (CGM.ReturnTypeUsesSRet(FnInfo)) 264 ++AI; 265 266 // Find the first store of "this", which will be to the alloca associated 267 // with "this". 268 llvm::Value *ThisPtr = &*AI; 269 llvm::BasicBlock *EntryBB = Fn->begin(); 270 llvm::Instruction *ThisStore = 0; 271 for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end(); 272 I != E; I++) { 273 if (isa<llvm::StoreInst>(I) && I->getOperand(0) == ThisPtr) { 274 ThisStore = cast<llvm::StoreInst>(I); 275 break; 276 } 277 } 278 assert(ThisStore && "Store of this should be in entry block?"); 279 // Adjust "this", if necessary. 280 Builder.SetInsertPoint(ThisStore); 281 llvm::Value *AdjustedThisPtr = 282 PerformTypeAdjustment(*this, ThisPtr, 283 Thunk.This.NonVirtual, 284 Thunk.This.VCallOffsetOffset); 285 ThisStore->setOperand(0, AdjustedThisPtr); 286 287 if (!Thunk.Return.isEmpty()) { 288 // Fix up the returned value, if necessary. 289 for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) { 290 llvm::Instruction *T = I->getTerminator(); 291 if (isa<llvm::ReturnInst>(T)) { 292 RValue RV = RValue::get(T->getOperand(0)); 293 T->eraseFromParent(); 294 Builder.SetInsertPoint(&*I); 295 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 296 Builder.CreateRet(RV.getScalarVal()); 297 break; 298 } 299 } 300 } 301 } 302 303 void CodeGenFunction::GenerateThunk(llvm::Function *Fn, 304 const CGFunctionInfo &FnInfo, 305 GlobalDecl GD, const ThunkInfo &Thunk) { 306 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 307 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 308 QualType ResultType = FPT->getResultType(); 309 QualType ThisType = MD->getThisType(getContext()); 310 311 FunctionArgList FunctionArgs; 312 313 // FIXME: It would be nice if more of this code could be shared with 314 // CodeGenFunction::GenerateCode. 315 316 // Create the implicit 'this' parameter declaration. 317 CurGD = GD; 318 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResultType, FunctionArgs); 319 320 // Add the rest of the parameters. 321 for (FunctionDecl::param_const_iterator I = MD->param_begin(), 322 E = MD->param_end(); I != E; ++I) { 323 ParmVarDecl *Param = *I; 324 325 FunctionArgs.push_back(Param); 326 } 327 328 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 329 SourceLocation()); 330 331 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 332 CXXThisValue = CXXABIThisValue; 333 334 // Adjust the 'this' pointer if necessary. 335 llvm::Value *AdjustedThisPtr = 336 PerformTypeAdjustment(*this, LoadCXXThis(), 337 Thunk.This.NonVirtual, 338 Thunk.This.VCallOffsetOffset); 339 340 CallArgList CallArgs; 341 342 // Add our adjusted 'this' pointer. 343 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 344 345 // Add the rest of the parameters. 346 for (FunctionDecl::param_const_iterator I = MD->param_begin(), 347 E = MD->param_end(); I != E; ++I) { 348 ParmVarDecl *param = *I; 349 EmitDelegateCallArg(CallArgs, param); 350 } 351 352 // Get our callee. 353 llvm::Type *Ty = 354 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 355 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 356 357 #ifndef NDEBUG 358 const CGFunctionInfo &CallFnInfo = 359 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 360 RequiredArgs::forPrototypePlus(FPT, 1)); 361 assert(CallFnInfo.getRegParm() == FnInfo.getRegParm() && 362 CallFnInfo.isNoReturn() == FnInfo.isNoReturn() && 363 CallFnInfo.getCallingConvention() == FnInfo.getCallingConvention()); 364 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 365 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 366 FnInfo.getReturnInfo(), FnInfo.getReturnType())); 367 assert(CallFnInfo.arg_size() == FnInfo.arg_size()); 368 for (unsigned i = 0, e = FnInfo.arg_size(); i != e; ++i) 369 assert(similar(CallFnInfo.arg_begin()[i].info, 370 CallFnInfo.arg_begin()[i].type, 371 FnInfo.arg_begin()[i].info, FnInfo.arg_begin()[i].type)); 372 #endif 373 374 // Determine whether we have a return value slot to use. 375 ReturnValueSlot Slot; 376 if (!ResultType->isVoidType() && 377 FnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 378 hasAggregateLLVMType(CurFnInfo->getReturnType())) 379 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 380 381 // Now emit our call. 382 RValue RV = EmitCall(FnInfo, Callee, Slot, CallArgs, MD); 383 384 if (!Thunk.Return.isEmpty()) 385 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 386 387 if (!ResultType->isVoidType() && Slot.isNull()) 388 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 389 390 FinishFunction(); 391 392 // Set the right linkage. 393 CGM.setFunctionLinkage(MD, Fn); 394 395 // Set the right visibility. 396 setThunkVisibility(CGM, MD, Thunk, Fn); 397 } 398 399 void CodeGenVTables::EmitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 400 bool UseAvailableExternallyLinkage) 401 { 402 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 403 404 // FIXME: re-use FnInfo in this computation. 405 llvm::Constant *Entry = CGM.GetAddrOfThunk(GD, Thunk); 406 407 // Strip off a bitcast if we got one back. 408 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 409 assert(CE->getOpcode() == llvm::Instruction::BitCast); 410 Entry = CE->getOperand(0); 411 } 412 413 // There's already a declaration with the same name, check if it has the same 414 // type or if we need to replace it. 415 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != 416 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 417 llvm::GlobalValue *OldThunkFn = cast<llvm::GlobalValue>(Entry); 418 419 // If the types mismatch then we have to rewrite the definition. 420 assert(OldThunkFn->isDeclaration() && 421 "Shouldn't replace non-declaration"); 422 423 // Remove the name from the old thunk function and get a new thunk. 424 OldThunkFn->setName(StringRef()); 425 Entry = CGM.GetAddrOfThunk(GD, Thunk); 426 427 // If needed, replace the old thunk with a bitcast. 428 if (!OldThunkFn->use_empty()) { 429 llvm::Constant *NewPtrForOldDecl = 430 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 431 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 432 } 433 434 // Remove the old thunk. 435 OldThunkFn->eraseFromParent(); 436 } 437 438 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 439 440 if (!ThunkFn->isDeclaration()) { 441 if (UseAvailableExternallyLinkage) { 442 // There is already a thunk emitted for this function, do nothing. 443 return; 444 } 445 446 // If a function has a body, it should have available_externally linkage. 447 assert(ThunkFn->hasAvailableExternallyLinkage() && 448 "Function should have available_externally linkage!"); 449 450 // Change the linkage. 451 CGM.setFunctionLinkage(cast<CXXMethodDecl>(GD.getDecl()), ThunkFn); 452 return; 453 } 454 455 if (ThunkFn->isVarArg()) { 456 // Varargs thunks are special; we can't just generate a call because 457 // we can't copy the varargs. Our implementation is rather 458 // expensive/sucky at the moment, so don't generate the thunk unless 459 // we have to. 460 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 461 if (!UseAvailableExternallyLinkage) 462 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 463 } else { 464 // Normal thunk body generation. 465 CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk); 466 } 467 468 if (UseAvailableExternallyLinkage) 469 ThunkFn->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 470 } 471 472 void CodeGenVTables::MaybeEmitThunkAvailableExternally(GlobalDecl GD, 473 const ThunkInfo &Thunk) { 474 // We only want to do this when building with optimizations. 475 if (!CGM.getCodeGenOpts().OptimizationLevel) 476 return; 477 478 // We can't emit thunks for member functions with incomplete types. 479 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 480 if (!CGM.getTypes().isFuncTypeConvertible( 481 cast<FunctionType>(MD->getType().getTypePtr()))) 482 return; 483 484 EmitThunk(GD, Thunk, /*UseAvailableExternallyLinkage=*/true); 485 } 486 487 void CodeGenVTables::EmitThunks(GlobalDecl GD) 488 { 489 const CXXMethodDecl *MD = 490 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 491 492 // We don't need to generate thunks for the base destructor. 493 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 494 return; 495 496 const VTableContext::ThunkInfoVectorTy *ThunkInfoVector = 497 VTContext.getThunkInfo(MD); 498 if (!ThunkInfoVector) 499 return; 500 501 for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I) 502 EmitThunk(GD, (*ThunkInfoVector)[I], 503 /*UseAvailableExternallyLinkage=*/false); 504 } 505 506 llvm::Constant * 507 CodeGenVTables::CreateVTableInitializer(const CXXRecordDecl *RD, 508 const VTableComponent *Components, 509 unsigned NumComponents, 510 const VTableLayout::VTableThunkTy *VTableThunks, 511 unsigned NumVTableThunks) { 512 SmallVector<llvm::Constant *, 64> Inits; 513 514 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 515 516 llvm::Type *PtrDiffTy = 517 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 518 519 QualType ClassType = CGM.getContext().getTagDeclType(RD); 520 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(ClassType); 521 522 unsigned NextVTableThunkIndex = 0; 523 524 llvm::Constant* PureVirtualFn = 0; 525 526 for (unsigned I = 0; I != NumComponents; ++I) { 527 VTableComponent Component = Components[I]; 528 529 llvm::Constant *Init = 0; 530 531 switch (Component.getKind()) { 532 case VTableComponent::CK_VCallOffset: 533 Init = llvm::ConstantInt::get(PtrDiffTy, 534 Component.getVCallOffset().getQuantity()); 535 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 536 break; 537 case VTableComponent::CK_VBaseOffset: 538 Init = llvm::ConstantInt::get(PtrDiffTy, 539 Component.getVBaseOffset().getQuantity()); 540 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 541 break; 542 case VTableComponent::CK_OffsetToTop: 543 Init = llvm::ConstantInt::get(PtrDiffTy, 544 Component.getOffsetToTop().getQuantity()); 545 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 546 break; 547 case VTableComponent::CK_RTTI: 548 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 549 break; 550 case VTableComponent::CK_FunctionPointer: 551 case VTableComponent::CK_CompleteDtorPointer: 552 case VTableComponent::CK_DeletingDtorPointer: { 553 GlobalDecl GD; 554 555 // Get the right global decl. 556 switch (Component.getKind()) { 557 default: 558 llvm_unreachable("Unexpected vtable component kind"); 559 case VTableComponent::CK_FunctionPointer: 560 GD = Component.getFunctionDecl(); 561 break; 562 case VTableComponent::CK_CompleteDtorPointer: 563 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 564 break; 565 case VTableComponent::CK_DeletingDtorPointer: 566 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 567 break; 568 } 569 570 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 571 // We have a pure virtual member function. 572 if (!PureVirtualFn) { 573 llvm::FunctionType *Ty = 574 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 575 PureVirtualFn = 576 CGM.CreateRuntimeFunction(Ty, "__cxa_pure_virtual"); 577 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 578 Int8PtrTy); 579 } 580 581 Init = PureVirtualFn; 582 } else { 583 // Check if we should use a thunk. 584 if (NextVTableThunkIndex < NumVTableThunks && 585 VTableThunks[NextVTableThunkIndex].first == I) { 586 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 587 588 MaybeEmitThunkAvailableExternally(GD, Thunk); 589 Init = CGM.GetAddrOfThunk(GD, Thunk); 590 591 NextVTableThunkIndex++; 592 } else { 593 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 594 595 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 596 } 597 598 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 599 } 600 break; 601 } 602 603 case VTableComponent::CK_UnusedFunctionPointer: 604 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 605 break; 606 }; 607 608 Inits.push_back(Init); 609 } 610 611 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 612 return llvm::ConstantArray::get(ArrayType, Inits); 613 } 614 615 llvm::GlobalVariable *CodeGenVTables::GetAddrOfVTable(const CXXRecordDecl *RD) { 616 llvm::GlobalVariable *&VTable = VTables[RD]; 617 if (VTable) 618 return VTable; 619 620 // We may need to generate a definition for this vtable. 621 if (ShouldEmitVTableInThisTU(RD)) 622 CGM.DeferredVTables.push_back(RD); 623 624 SmallString<256> OutName; 625 llvm::raw_svector_ostream Out(OutName); 626 CGM.getCXXABI().getMangleContext().mangleCXXVTable(RD, Out); 627 Out.flush(); 628 StringRef Name = OutName.str(); 629 630 llvm::ArrayType *ArrayType = 631 llvm::ArrayType::get(CGM.Int8PtrTy, 632 VTContext.getVTableLayout(RD).getNumVTableComponents()); 633 634 VTable = 635 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, 636 llvm::GlobalValue::ExternalLinkage); 637 VTable->setUnnamedAddr(true); 638 return VTable; 639 } 640 641 void 642 CodeGenVTables::EmitVTableDefinition(llvm::GlobalVariable *VTable, 643 llvm::GlobalVariable::LinkageTypes Linkage, 644 const CXXRecordDecl *RD) { 645 const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); 646 647 // Create and set the initializer. 648 llvm::Constant *Init = 649 CreateVTableInitializer(RD, 650 VTLayout.vtable_component_begin(), 651 VTLayout.getNumVTableComponents(), 652 VTLayout.vtable_thunk_begin(), 653 VTLayout.getNumVTableThunks()); 654 VTable->setInitializer(Init); 655 656 // Set the correct linkage. 657 VTable->setLinkage(Linkage); 658 659 // Set the right visibility. 660 CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForVTable); 661 } 662 663 llvm::GlobalVariable * 664 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 665 const BaseSubobject &Base, 666 bool BaseIsVirtual, 667 llvm::GlobalVariable::LinkageTypes Linkage, 668 VTableAddressPointsMapTy& AddressPoints) { 669 OwningPtr<VTableLayout> VTLayout( 670 VTContext.createConstructionVTableLayout(Base.getBase(), 671 Base.getBaseOffset(), 672 BaseIsVirtual, RD)); 673 674 // Add the address points. 675 AddressPoints = VTLayout->getAddressPoints(); 676 677 // Get the mangled construction vtable name. 678 SmallString<256> OutName; 679 llvm::raw_svector_ostream Out(OutName); 680 CGM.getCXXABI().getMangleContext(). 681 mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), Base.getBase(), 682 Out); 683 Out.flush(); 684 StringRef Name = OutName.str(); 685 686 llvm::ArrayType *ArrayType = 687 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 688 689 // Create the variable that will hold the construction vtable. 690 llvm::GlobalVariable *VTable = 691 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 692 CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForConstructionVTable); 693 694 // V-tables are always unnamed_addr. 695 VTable->setUnnamedAddr(true); 696 697 // Create and set the initializer. 698 llvm::Constant *Init = 699 CreateVTableInitializer(Base.getBase(), 700 VTLayout->vtable_component_begin(), 701 VTLayout->getNumVTableComponents(), 702 VTLayout->vtable_thunk_begin(), 703 VTLayout->getNumVTableThunks()); 704 VTable->setInitializer(Init); 705 706 return VTable; 707 } 708 709 void 710 CodeGenVTables::GenerateClassData(llvm::GlobalVariable::LinkageTypes Linkage, 711 const CXXRecordDecl *RD) { 712 llvm::GlobalVariable *VTable = GetAddrOfVTable(RD); 713 if (VTable->hasInitializer()) 714 return; 715 716 EmitVTableDefinition(VTable, Linkage, RD); 717 718 if (RD->getNumVBases()) { 719 llvm::GlobalVariable *VTT = GetAddrOfVTT(RD); 720 EmitVTTDefinition(VTT, Linkage, RD); 721 } 722 723 // If this is the magic class __cxxabiv1::__fundamental_type_info, 724 // we will emit the typeinfo for the fundamental types. This is the 725 // same behaviour as GCC. 726 const DeclContext *DC = RD->getDeclContext(); 727 if (RD->getIdentifier() && 728 RD->getIdentifier()->isStr("__fundamental_type_info") && 729 isa<NamespaceDecl>(DC) && 730 cast<NamespaceDecl>(DC)->getIdentifier() && 731 cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") && 732 DC->getParent()->isTranslationUnit()) 733 CGM.EmitFundamentalRTTIDescriptors(); 734 } 735