1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/CodeGen/ConstantInitBuilder.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 32 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 33 34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 35 GlobalDecl GD) { 36 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 37 /*DontDefer=*/true, /*IsThunk=*/true); 38 } 39 40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 41 llvm::Function *ThunkFn, bool ForVTable, 42 GlobalDecl GD) { 43 CGM.setFunctionLinkage(GD, ThunkFn); 44 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 45 !Thunk.Return.isEmpty()); 46 47 // Set the right visibility. 48 CGM.setGVProperties(ThunkFn, GD); 49 50 if (!CGM.getCXXABI().exportThunk()) { 51 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 52 ThunkFn->setDSOLocal(true); 53 } 54 55 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 56 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 57 } 58 59 #ifndef NDEBUG 60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 61 const ABIArgInfo &infoR, CanQualType typeR) { 62 return (infoL.getKind() == infoR.getKind() && 63 (typeL == typeR || 64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 66 } 67 #endif 68 69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 70 QualType ResultType, RValue RV, 71 const ThunkInfo &Thunk) { 72 // Emit the return adjustment. 73 bool NullCheckValue = !ResultType->isReferenceType(); 74 75 llvm::BasicBlock *AdjustNull = nullptr; 76 llvm::BasicBlock *AdjustNotNull = nullptr; 77 llvm::BasicBlock *AdjustEnd = nullptr; 78 79 llvm::Value *ReturnValue = RV.getScalarVal(); 80 81 if (NullCheckValue) { 82 AdjustNull = CGF.createBasicBlock("adjust.null"); 83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 84 AdjustEnd = CGF.createBasicBlock("adjust.end"); 85 86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 88 CGF.EmitBlock(AdjustNotNull); 89 } 90 91 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 92 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 93 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 94 Address(ReturnValue, ClassAlign), 95 Thunk.Return); 96 97 if (NullCheckValue) { 98 CGF.Builder.CreateBr(AdjustEnd); 99 CGF.EmitBlock(AdjustNull); 100 CGF.Builder.CreateBr(AdjustEnd); 101 CGF.EmitBlock(AdjustEnd); 102 103 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 104 PHI->addIncoming(ReturnValue, AdjustNotNull); 105 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 106 AdjustNull); 107 ReturnValue = PHI; 108 } 109 110 return RValue::get(ReturnValue); 111 } 112 113 /// This function clones a function's DISubprogram node and enters it into 114 /// a value map with the intent that the map can be utilized by the cloner 115 /// to short-circuit Metadata node mapping. 116 /// Furthermore, the function resolves any DILocalVariable nodes referenced 117 /// by dbg.value intrinsics so they can be properly mapped during cloning. 118 static void resolveTopLevelMetadata(llvm::Function *Fn, 119 llvm::ValueToValueMapTy &VMap) { 120 // Clone the DISubprogram node and put it into the Value map. 121 auto *DIS = Fn->getSubprogram(); 122 if (!DIS) 123 return; 124 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 125 VMap.MD()[DIS].reset(NewDIS); 126 127 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 128 // they are referencing. 129 for (auto &BB : Fn->getBasicBlockList()) { 130 for (auto &I : BB) { 131 if (auto *DII = dyn_cast<llvm::DbgInfoIntrinsic>(&I)) { 132 auto *DILocal = DII->getVariable(); 133 if (!DILocal->isResolved()) 134 DILocal->resolve(); 135 } 136 } 137 } 138 } 139 140 // This function does roughly the same thing as GenerateThunk, but in a 141 // very different way, so that va_start and va_end work correctly. 142 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 143 // a function, and that there is an alloca built in the entry block 144 // for all accesses to "this". 145 // FIXME: This function assumes there is only one "ret" statement per function. 146 // FIXME: Cloning isn't correct in the presence of indirect goto! 147 // FIXME: This implementation of thunks bloats codesize by duplicating the 148 // function definition. There are alternatives: 149 // 1. Add some sort of stub support to LLVM for cases where we can 150 // do a this adjustment, then a sibcall. 151 // 2. We could transform the definition to take a va_list instead of an 152 // actual variable argument list, then have the thunks (including a 153 // no-op thunk for the regular definition) call va_start/va_end. 154 // There's a bit of per-call overhead for this solution, but it's 155 // better for codesize if the definition is long. 156 llvm::Function * 157 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 158 const CGFunctionInfo &FnInfo, 159 GlobalDecl GD, const ThunkInfo &Thunk) { 160 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 161 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 162 QualType ResultType = FPT->getReturnType(); 163 164 // Get the original function 165 assert(FnInfo.isVariadic()); 166 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 167 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 168 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 169 170 // Clone to thunk. 171 llvm::ValueToValueMapTy VMap; 172 173 // We are cloning a function while some Metadata nodes are still unresolved. 174 // Ensure that the value mapper does not encounter any of them. 175 resolveTopLevelMetadata(BaseFn, VMap); 176 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 177 Fn->replaceAllUsesWith(NewFn); 178 NewFn->takeName(Fn); 179 Fn->eraseFromParent(); 180 Fn = NewFn; 181 182 // "Initialize" CGF (minimally). 183 CurFn = Fn; 184 185 // Get the "this" value 186 llvm::Function::arg_iterator AI = Fn->arg_begin(); 187 if (CGM.ReturnTypeUsesSRet(FnInfo)) 188 ++AI; 189 190 // Find the first store of "this", which will be to the alloca associated 191 // with "this". 192 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 193 llvm::BasicBlock *EntryBB = &Fn->front(); 194 llvm::BasicBlock::iterator ThisStore = 195 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 196 return isa<llvm::StoreInst>(I) && 197 I.getOperand(0) == ThisPtr.getPointer(); 198 }); 199 assert(ThisStore != EntryBB->end() && 200 "Store of this should be in entry block?"); 201 // Adjust "this", if necessary. 202 Builder.SetInsertPoint(&*ThisStore); 203 llvm::Value *AdjustedThisPtr = 204 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 205 ThisStore->setOperand(0, AdjustedThisPtr); 206 207 if (!Thunk.Return.isEmpty()) { 208 // Fix up the returned value, if necessary. 209 for (llvm::BasicBlock &BB : *Fn) { 210 llvm::Instruction *T = BB.getTerminator(); 211 if (isa<llvm::ReturnInst>(T)) { 212 RValue RV = RValue::get(T->getOperand(0)); 213 T->eraseFromParent(); 214 Builder.SetInsertPoint(&BB); 215 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 216 Builder.CreateRet(RV.getScalarVal()); 217 break; 218 } 219 } 220 } 221 222 return Fn; 223 } 224 225 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 226 const CGFunctionInfo &FnInfo, 227 bool IsUnprototyped) { 228 assert(!CurGD.getDecl() && "CurGD was already set!"); 229 CurGD = GD; 230 CurFuncIsThunk = true; 231 232 // Build FunctionArgs. 233 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 234 QualType ThisType = MD->getThisType(getContext()); 235 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 236 QualType ResultType = CGM.getCXXABI().HasThisReturn(GD) 237 ? ThisType 238 : CGM.getCXXABI().hasMostDerivedReturn(GD) 239 ? CGM.getContext().VoidPtrTy 240 : FPT->getReturnType(); 241 FunctionArgList FunctionArgs; 242 243 // Create the implicit 'this' parameter declaration. 244 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 245 246 // Add the rest of the parameters, if we have a prototype to work with. 247 if (!IsUnprototyped) { 248 FunctionArgs.append(MD->param_begin(), MD->param_end()); 249 250 if (isa<CXXDestructorDecl>(MD)) 251 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 252 FunctionArgs); 253 } 254 255 // Start defining the function. 256 auto NL = ApplyDebugLocation::CreateEmpty(*this); 257 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 258 MD->getLocation()); 259 // Create a scope with an artificial location for the body of this function. 260 auto AL = ApplyDebugLocation::CreateArtificial(*this); 261 262 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 263 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 264 CXXThisValue = CXXABIThisValue; 265 CurCodeDecl = MD; 266 CurFuncDecl = MD; 267 } 268 269 void CodeGenFunction::FinishThunk() { 270 // Clear these to restore the invariants expected by 271 // StartFunction/FinishFunction. 272 CurCodeDecl = nullptr; 273 CurFuncDecl = nullptr; 274 275 FinishFunction(); 276 } 277 278 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Constant *CalleePtr, 279 const ThunkInfo *Thunk, 280 bool IsUnprototyped) { 281 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 282 "Please use a new CGF for this thunk"); 283 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 284 285 // Adjust the 'this' pointer if necessary 286 llvm::Value *AdjustedThisPtr = 287 Thunk ? CGM.getCXXABI().performThisAdjustment( 288 *this, LoadCXXThisAddress(), Thunk->This) 289 : LoadCXXThis(); 290 291 if (CurFnInfo->usesInAlloca() || IsUnprototyped) { 292 // We don't handle return adjusting thunks, because they require us to call 293 // the copy constructor. For now, fall through and pretend the return 294 // adjustment was empty so we don't crash. 295 if (Thunk && !Thunk->Return.isEmpty()) { 296 if (IsUnprototyped) 297 CGM.ErrorUnsupported( 298 MD, "return-adjusting thunk with incomplete parameter type"); 299 else 300 CGM.ErrorUnsupported( 301 MD, "non-trivial argument copy for return-adjusting thunk"); 302 } 303 EmitMustTailThunk(MD, AdjustedThisPtr, CalleePtr); 304 return; 305 } 306 307 // Start building CallArgs. 308 CallArgList CallArgs; 309 QualType ThisType = MD->getThisType(getContext()); 310 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 311 312 if (isa<CXXDestructorDecl>(MD)) 313 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 314 315 #ifndef NDEBUG 316 unsigned PrefixArgs = CallArgs.size() - 1; 317 #endif 318 // Add the rest of the arguments. 319 for (const ParmVarDecl *PD : MD->parameters()) 320 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 321 322 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 323 324 #ifndef NDEBUG 325 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 326 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1, MD), PrefixArgs); 327 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 328 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 329 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 330 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 331 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 332 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 333 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 334 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 335 assert(similar(CallFnInfo.arg_begin()[i].info, 336 CallFnInfo.arg_begin()[i].type, 337 CurFnInfo->arg_begin()[i].info, 338 CurFnInfo->arg_begin()[i].type)); 339 #endif 340 341 // Determine whether we have a return value slot to use. 342 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 343 ? ThisType 344 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 345 ? CGM.getContext().VoidPtrTy 346 : FPT->getReturnType(); 347 ReturnValueSlot Slot; 348 if (!ResultType->isVoidType() && 349 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 350 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 351 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 352 353 // Now emit our call. 354 llvm::Instruction *CallOrInvoke; 355 CGCallee Callee = CGCallee::forDirect(CalleePtr, MD); 356 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, &CallOrInvoke); 357 358 // Consider return adjustment if we have ThunkInfo. 359 if (Thunk && !Thunk->Return.isEmpty()) 360 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 361 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 362 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 363 364 // Emit return. 365 if (!ResultType->isVoidType() && Slot.isNull()) 366 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 367 368 // Disable the final ARC autorelease. 369 AutoreleaseResult = false; 370 371 FinishThunk(); 372 } 373 374 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 375 llvm::Value *AdjustedThisPtr, 376 llvm::Value *CalleePtr) { 377 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 378 // to translate AST arguments into LLVM IR arguments. For thunks, we know 379 // that the caller prototype more or less matches the callee prototype with 380 // the exception of 'this'. 381 SmallVector<llvm::Value *, 8> Args; 382 for (llvm::Argument &A : CurFn->args()) 383 Args.push_back(&A); 384 385 // Set the adjusted 'this' pointer. 386 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 387 if (ThisAI.isDirect()) { 388 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 389 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 390 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 391 if (ThisType != AdjustedThisPtr->getType()) 392 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 393 Args[ThisArgNo] = AdjustedThisPtr; 394 } else { 395 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 396 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 397 llvm::Type *ThisType = ThisAddr.getElementType(); 398 if (ThisType != AdjustedThisPtr->getType()) 399 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 400 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 401 } 402 403 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 404 // don't actually want to run them. 405 llvm::CallInst *Call = Builder.CreateCall(CalleePtr, Args); 406 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 407 408 // Apply the standard set of call attributes. 409 unsigned CallingConv; 410 llvm::AttributeList Attrs; 411 CGM.ConstructAttributeList(CalleePtr->getName(), *CurFnInfo, MD, Attrs, 412 CallingConv, /*AttrOnCallSite=*/true); 413 Call->setAttributes(Attrs); 414 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 415 416 if (Call->getType()->isVoidTy()) 417 Builder.CreateRetVoid(); 418 else 419 Builder.CreateRet(Call); 420 421 // Finish the function to maintain CodeGenFunction invariants. 422 // FIXME: Don't emit unreachable code. 423 EmitBlock(createBasicBlock()); 424 FinishFunction(); 425 } 426 427 void CodeGenFunction::generateThunk(llvm::Function *Fn, 428 const CGFunctionInfo &FnInfo, GlobalDecl GD, 429 const ThunkInfo &Thunk, 430 bool IsUnprototyped) { 431 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 432 // Create a scope with an artificial location for the body of this function. 433 auto AL = ApplyDebugLocation::CreateArtificial(*this); 434 435 // Get our callee. Use a placeholder type if this method is unprototyped so 436 // that CodeGenModule doesn't try to set attributes. 437 llvm::Type *Ty; 438 if (IsUnprototyped) 439 Ty = llvm::StructType::get(getLLVMContext()); 440 else 441 Ty = CGM.getTypes().GetFunctionType(FnInfo); 442 443 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 444 445 // Fix up the function type for an unprototyped musttail call. 446 if (IsUnprototyped) 447 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); 448 449 // Make the call and return the result. 450 EmitCallAndReturnForThunk(Callee, &Thunk, IsUnprototyped); 451 } 452 453 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 454 bool IsUnprototyped, bool ForVTable) { 455 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 456 // provide thunks for us. 457 if (CGM.getTarget().getCXXABI().isMicrosoft()) 458 return true; 459 460 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 461 // definitions of the main method. Therefore, emitting thunks with the vtable 462 // is purely an optimization. Emit the thunk if optimizations are enabled and 463 // all of the parameter types are complete. 464 if (ForVTable) 465 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 466 467 // Always emit thunks along with the method definition. 468 return true; 469 } 470 471 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 472 const ThunkInfo &TI, 473 bool ForVTable) { 474 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 475 476 // First, get a declaration. Compute the mangled name. Don't worry about 477 // getting the function prototype right, since we may only need this 478 // declaration to fill in a vtable slot. 479 SmallString<256> Name; 480 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 481 llvm::raw_svector_ostream Out(Name); 482 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 483 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 484 else 485 MCtx.mangleThunk(MD, TI, Out); 486 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 487 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 488 489 // If we don't need to emit a definition, return this declaration as is. 490 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 491 MD->getType()->castAs<FunctionType>()); 492 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 493 return Thunk; 494 495 // Arrange a function prototype appropriate for a function definition. In some 496 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 497 const CGFunctionInfo &FnInfo = 498 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 499 : CGM.getTypes().arrangeGlobalDeclaration(GD); 500 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 501 502 // If the type of the underlying GlobalValue is wrong, we'll have to replace 503 // it. It should be a declaration. 504 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 505 if (ThunkFn->getFunctionType() != ThunkFnTy) { 506 llvm::GlobalValue *OldThunkFn = ThunkFn; 507 508 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 509 510 // Remove the name from the old thunk function and get a new thunk. 511 OldThunkFn->setName(StringRef()); 512 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 513 Name.str(), &CGM.getModule()); 514 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 515 516 // If needed, replace the old thunk with a bitcast. 517 if (!OldThunkFn->use_empty()) { 518 llvm::Constant *NewPtrForOldDecl = 519 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); 520 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 521 } 522 523 // Remove the old thunk. 524 OldThunkFn->eraseFromParent(); 525 } 526 527 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 528 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 529 530 if (!ThunkFn->isDeclaration()) { 531 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 532 // There is already a thunk emitted for this function, do nothing. 533 return ThunkFn; 534 } 535 536 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 537 return ThunkFn; 538 } 539 540 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 541 // that the return type is meaningless. These thunks can be used to call 542 // functions with differing return types, and the caller is required to cast 543 // the prototype appropriately to extract the correct value. 544 if (IsUnprototyped) 545 ThunkFn->addFnAttr("thunk"); 546 547 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 548 549 if (!IsUnprototyped && ThunkFn->isVarArg()) { 550 // Varargs thunks are special; we can't just generate a call because 551 // we can't copy the varargs. Our implementation is rather 552 // expensive/sucky at the moment, so don't generate the thunk unless 553 // we have to. 554 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 555 if (UseAvailableExternallyLinkage) 556 return ThunkFn; 557 ThunkFn = CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, 558 TI); 559 } else { 560 // Normal thunk body generation. 561 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 562 } 563 564 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 565 return ThunkFn; 566 } 567 568 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 569 const CXXMethodDecl *MD = 570 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 571 572 // We don't need to generate thunks for the base destructor. 573 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 574 return; 575 576 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 577 VTContext->getThunkInfo(GD); 578 579 if (!ThunkInfoVector) 580 return; 581 582 for (const ThunkInfo& Thunk : *ThunkInfoVector) 583 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 584 } 585 586 void CodeGenVTables::addVTableComponent( 587 ConstantArrayBuilder &builder, const VTableLayout &layout, 588 unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) { 589 auto &component = layout.vtable_components()[idx]; 590 591 auto addOffsetConstant = [&](CharUnits offset) { 592 builder.add(llvm::ConstantExpr::getIntToPtr( 593 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 594 CGM.Int8PtrTy)); 595 }; 596 597 switch (component.getKind()) { 598 case VTableComponent::CK_VCallOffset: 599 return addOffsetConstant(component.getVCallOffset()); 600 601 case VTableComponent::CK_VBaseOffset: 602 return addOffsetConstant(component.getVBaseOffset()); 603 604 case VTableComponent::CK_OffsetToTop: 605 return addOffsetConstant(component.getOffsetToTop()); 606 607 case VTableComponent::CK_RTTI: 608 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); 609 610 case VTableComponent::CK_FunctionPointer: 611 case VTableComponent::CK_CompleteDtorPointer: 612 case VTableComponent::CK_DeletingDtorPointer: { 613 GlobalDecl GD; 614 615 // Get the right global decl. 616 switch (component.getKind()) { 617 default: 618 llvm_unreachable("Unexpected vtable component kind"); 619 case VTableComponent::CK_FunctionPointer: 620 GD = component.getFunctionDecl(); 621 break; 622 case VTableComponent::CK_CompleteDtorPointer: 623 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete); 624 break; 625 case VTableComponent::CK_DeletingDtorPointer: 626 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting); 627 break; 628 } 629 630 if (CGM.getLangOpts().CUDA) { 631 // Emit NULL for methods we can't codegen on this 632 // side. Otherwise we'd end up with vtable with unresolved 633 // references. 634 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 635 // OK on device side: functions w/ __device__ attribute 636 // OK on host side: anything except __device__-only functions. 637 bool CanEmitMethod = 638 CGM.getLangOpts().CUDAIsDevice 639 ? MD->hasAttr<CUDADeviceAttr>() 640 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 641 if (!CanEmitMethod) 642 return builder.addNullPointer(CGM.Int8PtrTy); 643 // Method is acceptable, continue processing as usual. 644 } 645 646 auto getSpecialVirtualFn = [&](StringRef name) { 647 llvm::FunctionType *fnTy = 648 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 649 llvm::Constant *fn = CGM.CreateRuntimeFunction(fnTy, name); 650 if (auto f = dyn_cast<llvm::Function>(fn)) 651 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 652 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); 653 }; 654 655 llvm::Constant *fnPtr; 656 657 // Pure virtual member functions. 658 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 659 if (!PureVirtualFn) 660 PureVirtualFn = 661 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 662 fnPtr = PureVirtualFn; 663 664 // Deleted virtual member functions. 665 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 666 if (!DeletedVirtualFn) 667 DeletedVirtualFn = 668 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 669 fnPtr = DeletedVirtualFn; 670 671 // Thunks. 672 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 673 layout.vtable_thunks()[nextVTableThunkIndex].first == idx) { 674 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 675 676 nextVTableThunkIndex++; 677 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 678 679 // Otherwise we can use the method definition directly. 680 } else { 681 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 682 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 683 } 684 685 fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy); 686 builder.add(fnPtr); 687 return; 688 } 689 690 case VTableComponent::CK_UnusedFunctionPointer: 691 return builder.addNullPointer(CGM.Int8PtrTy); 692 } 693 694 llvm_unreachable("Unexpected vtable component kind"); 695 } 696 697 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 698 SmallVector<llvm::Type *, 4> tys; 699 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 700 tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i))); 701 } 702 703 return llvm::StructType::get(CGM.getLLVMContext(), tys); 704 } 705 706 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 707 const VTableLayout &layout, 708 llvm::Constant *rtti) { 709 unsigned nextVTableThunkIndex = 0; 710 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 711 auto vtableElem = builder.beginArray(CGM.Int8PtrTy); 712 size_t thisIndex = layout.getVTableOffset(i); 713 size_t nextIndex = thisIndex + layout.getVTableSize(i); 714 for (unsigned i = thisIndex; i != nextIndex; ++i) { 715 addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex); 716 } 717 vtableElem.finishAndAddTo(builder); 718 } 719 } 720 721 llvm::GlobalVariable * 722 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 723 const BaseSubobject &Base, 724 bool BaseIsVirtual, 725 llvm::GlobalVariable::LinkageTypes Linkage, 726 VTableAddressPointsMapTy& AddressPoints) { 727 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 728 DI->completeClassData(Base.getBase()); 729 730 std::unique_ptr<VTableLayout> VTLayout( 731 getItaniumVTableContext().createConstructionVTableLayout( 732 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 733 734 // Add the address points. 735 AddressPoints = VTLayout->getAddressPoints(); 736 737 // Get the mangled construction vtable name. 738 SmallString<256> OutName; 739 llvm::raw_svector_ostream Out(OutName); 740 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 741 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 742 Base.getBase(), Out); 743 StringRef Name = OutName.str(); 744 745 llvm::Type *VTType = getVTableType(*VTLayout); 746 747 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 748 // guarantee that they actually will be available externally. Instead, when 749 // emitting an available_externally VTT, we provide references to an internal 750 // linkage construction vtable. The ABI only requires complete-object vtables 751 // to be the same for all instances of a type, not construction vtables. 752 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 753 Linkage = llvm::GlobalVariable::InternalLinkage; 754 755 // Create the variable that will hold the construction vtable. 756 llvm::GlobalVariable *VTable = 757 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage); 758 CGM.setGVProperties(VTable, RD); 759 760 // V-tables are always unnamed_addr. 761 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 762 763 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 764 CGM.getContext().getTagDeclType(Base.getBase())); 765 766 // Create and set the initializer. 767 ConstantInitBuilder builder(CGM); 768 auto components = builder.beginStruct(); 769 createVTableInitializer(components, *VTLayout, RTTI); 770 components.finishAndSetAsInitializer(VTable); 771 772 CGM.EmitVTableTypeMetadata(VTable, *VTLayout.get()); 773 774 return VTable; 775 } 776 777 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 778 const CXXRecordDecl *RD) { 779 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 780 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 781 } 782 783 /// Compute the required linkage of the vtable for the given class. 784 /// 785 /// Note that we only call this at the end of the translation unit. 786 llvm::GlobalVariable::LinkageTypes 787 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 788 if (!RD->isExternallyVisible()) 789 return llvm::GlobalVariable::InternalLinkage; 790 791 // We're at the end of the translation unit, so the current key 792 // function is fully correct. 793 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 794 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 795 // If this class has a key function, use that to determine the 796 // linkage of the vtable. 797 const FunctionDecl *def = nullptr; 798 if (keyFunction->hasBody(def)) 799 keyFunction = cast<CXXMethodDecl>(def); 800 801 switch (keyFunction->getTemplateSpecializationKind()) { 802 case TSK_Undeclared: 803 case TSK_ExplicitSpecialization: 804 assert((def || CodeGenOpts.OptimizationLevel > 0 || 805 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && 806 "Shouldn't query vtable linkage without key function, " 807 "optimizations, or debug info"); 808 if (!def && CodeGenOpts.OptimizationLevel > 0) 809 return llvm::GlobalVariable::AvailableExternallyLinkage; 810 811 if (keyFunction->isInlined()) 812 return !Context.getLangOpts().AppleKext ? 813 llvm::GlobalVariable::LinkOnceODRLinkage : 814 llvm::Function::InternalLinkage; 815 816 return llvm::GlobalVariable::ExternalLinkage; 817 818 case TSK_ImplicitInstantiation: 819 return !Context.getLangOpts().AppleKext ? 820 llvm::GlobalVariable::LinkOnceODRLinkage : 821 llvm::Function::InternalLinkage; 822 823 case TSK_ExplicitInstantiationDefinition: 824 return !Context.getLangOpts().AppleKext ? 825 llvm::GlobalVariable::WeakODRLinkage : 826 llvm::Function::InternalLinkage; 827 828 case TSK_ExplicitInstantiationDeclaration: 829 llvm_unreachable("Should not have been asked to emit this"); 830 } 831 } 832 833 // -fapple-kext mode does not support weak linkage, so we must use 834 // internal linkage. 835 if (Context.getLangOpts().AppleKext) 836 return llvm::Function::InternalLinkage; 837 838 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 839 llvm::GlobalValue::LinkOnceODRLinkage; 840 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 841 llvm::GlobalValue::WeakODRLinkage; 842 if (RD->hasAttr<DLLExportAttr>()) { 843 // Cannot discard exported vtables. 844 DiscardableODRLinkage = NonDiscardableODRLinkage; 845 } else if (RD->hasAttr<DLLImportAttr>()) { 846 // Imported vtables are available externally. 847 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 848 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 849 } 850 851 switch (RD->getTemplateSpecializationKind()) { 852 case TSK_Undeclared: 853 case TSK_ExplicitSpecialization: 854 case TSK_ImplicitInstantiation: 855 return DiscardableODRLinkage; 856 857 case TSK_ExplicitInstantiationDeclaration: 858 // Explicit instantiations in MSVC do not provide vtables, so we must emit 859 // our own. 860 if (getTarget().getCXXABI().isMicrosoft()) 861 return DiscardableODRLinkage; 862 return shouldEmitAvailableExternallyVTable(*this, RD) 863 ? llvm::GlobalVariable::AvailableExternallyLinkage 864 : llvm::GlobalVariable::ExternalLinkage; 865 866 case TSK_ExplicitInstantiationDefinition: 867 return NonDiscardableODRLinkage; 868 } 869 870 llvm_unreachable("Invalid TemplateSpecializationKind!"); 871 } 872 873 /// This is a callback from Sema to tell us that a particular vtable is 874 /// required to be emitted in this translation unit. 875 /// 876 /// This is only called for vtables that _must_ be emitted (mainly due to key 877 /// functions). For weak vtables, CodeGen tracks when they are needed and 878 /// emits them as-needed. 879 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 880 VTables.GenerateClassData(theClass); 881 } 882 883 void 884 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 885 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 886 DI->completeClassData(RD); 887 888 if (RD->getNumVBases()) 889 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 890 891 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 892 } 893 894 /// At this point in the translation unit, does it appear that can we 895 /// rely on the vtable being defined elsewhere in the program? 896 /// 897 /// The response is really only definitive when called at the end of 898 /// the translation unit. 899 /// 900 /// The only semantic restriction here is that the object file should 901 /// not contain a vtable definition when that vtable is defined 902 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 903 /// vtables when unnecessary. 904 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 905 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 906 907 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 908 // emit them even if there is an explicit template instantiation. 909 if (CGM.getTarget().getCXXABI().isMicrosoft()) 910 return false; 911 912 // If we have an explicit instantiation declaration (and not a 913 // definition), the vtable is defined elsewhere. 914 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 915 if (TSK == TSK_ExplicitInstantiationDeclaration) 916 return true; 917 918 // Otherwise, if the class is an instantiated template, the 919 // vtable must be defined here. 920 if (TSK == TSK_ImplicitInstantiation || 921 TSK == TSK_ExplicitInstantiationDefinition) 922 return false; 923 924 // Otherwise, if the class doesn't have a key function (possibly 925 // anymore), the vtable must be defined here. 926 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 927 if (!keyFunction) 928 return false; 929 930 // Otherwise, if we don't have a definition of the key function, the 931 // vtable must be defined somewhere else. 932 return !keyFunction->hasBody(); 933 } 934 935 /// Given that we're currently at the end of the translation unit, and 936 /// we've emitted a reference to the vtable for this class, should 937 /// we define that vtable? 938 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 939 const CXXRecordDecl *RD) { 940 // If vtable is internal then it has to be done. 941 if (!CGM.getVTables().isVTableExternal(RD)) 942 return true; 943 944 // If it's external then maybe we will need it as available_externally. 945 return shouldEmitAvailableExternallyVTable(CGM, RD); 946 } 947 948 /// Given that at some point we emitted a reference to one or more 949 /// vtables, and that we are now at the end of the translation unit, 950 /// decide whether we should emit them. 951 void CodeGenModule::EmitDeferredVTables() { 952 #ifndef NDEBUG 953 // Remember the size of DeferredVTables, because we're going to assume 954 // that this entire operation doesn't modify it. 955 size_t savedSize = DeferredVTables.size(); 956 #endif 957 958 for (const CXXRecordDecl *RD : DeferredVTables) 959 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 960 VTables.GenerateClassData(RD); 961 else if (shouldOpportunisticallyEmitVTables()) 962 OpportunisticVTables.push_back(RD); 963 964 assert(savedSize == DeferredVTables.size() && 965 "deferred extra vtables during vtable emission?"); 966 DeferredVTables.clear(); 967 } 968 969 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 970 LinkageInfo LV = RD->getLinkageAndVisibility(); 971 if (!isExternallyVisible(LV.getLinkage())) 972 return true; 973 974 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 975 return false; 976 977 if (getTriple().isOSBinFormatCOFF()) { 978 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 979 return false; 980 } else { 981 if (LV.getVisibility() != HiddenVisibility) 982 return false; 983 } 984 985 if (getCodeGenOpts().LTOVisibilityPublicStd) { 986 const DeclContext *DC = RD; 987 while (1) { 988 auto *D = cast<Decl>(DC); 989 DC = DC->getParent(); 990 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 991 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 992 if (const IdentifierInfo *II = ND->getIdentifier()) 993 if (II->isStr("std") || II->isStr("stdext")) 994 return false; 995 break; 996 } 997 } 998 } 999 1000 return true; 1001 } 1002 1003 void CodeGenModule::EmitVTableTypeMetadata(llvm::GlobalVariable *VTable, 1004 const VTableLayout &VTLayout) { 1005 if (!getCodeGenOpts().LTOUnit) 1006 return; 1007 1008 CharUnits PointerWidth = 1009 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1010 1011 typedef std::pair<const CXXRecordDecl *, unsigned> BSEntry; 1012 std::vector<BSEntry> BitsetEntries; 1013 // Create a bit set entry for each address point. 1014 for (auto &&AP : VTLayout.getAddressPoints()) 1015 BitsetEntries.push_back( 1016 std::make_pair(AP.first.getBase(), 1017 VTLayout.getVTableOffset(AP.second.VTableIndex) + 1018 AP.second.AddressPointIndex)); 1019 1020 // Sort the bit set entries for determinism. 1021 llvm::sort(BitsetEntries.begin(), BitsetEntries.end(), 1022 [this](const BSEntry &E1, const BSEntry &E2) { 1023 if (&E1 == &E2) 1024 return false; 1025 1026 std::string S1; 1027 llvm::raw_string_ostream O1(S1); 1028 getCXXABI().getMangleContext().mangleTypeName( 1029 QualType(E1.first->getTypeForDecl(), 0), O1); 1030 O1.flush(); 1031 1032 std::string S2; 1033 llvm::raw_string_ostream O2(S2); 1034 getCXXABI().getMangleContext().mangleTypeName( 1035 QualType(E2.first->getTypeForDecl(), 0), O2); 1036 O2.flush(); 1037 1038 if (S1 < S2) 1039 return true; 1040 if (S1 != S2) 1041 return false; 1042 1043 return E1.second < E2.second; 1044 }); 1045 1046 for (auto BitsetEntry : BitsetEntries) 1047 AddVTableTypeMetadata(VTable, PointerWidth * BitsetEntry.second, 1048 BitsetEntry.first); 1049 } 1050