1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Transforms/Utils/Cloning.h" 26 #include <algorithm> 27 #include <cstdio> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), ItaniumVTContext(CGM.getContext()) { 34 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 35 // FIXME: Eventually, we should only have one of V*TContexts available. 36 // Today we use both in the Microsoft ABI as MicrosoftVFTableContext 37 // is not completely supported in CodeGen yet. 38 MicrosoftVTContext.reset(new MicrosoftVTableContext(CGM.getContext())); 39 } 40 } 41 42 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 43 const ThunkInfo &Thunk) { 44 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 45 46 // Compute the mangled name. 47 SmallString<256> Name; 48 llvm::raw_svector_ostream Out(Name); 49 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 50 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 51 Thunk.This, Out); 52 else 53 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 54 Out.flush(); 55 56 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 57 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, 58 /*DontDefer*/ true); 59 } 60 61 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 62 const ThunkInfo &Thunk, llvm::Function *Fn) { 63 CGM.setGlobalVisibility(Fn, MD); 64 65 if (!CGM.getCodeGenOpts().HiddenWeakVTables) 66 return; 67 68 // If the thunk has weak/linkonce linkage, but the function must be 69 // emitted in every translation unit that references it, then we can 70 // emit its thunks with hidden visibility, since its thunks must be 71 // emitted when the function is. 72 73 // This follows CodeGenModule::setTypeVisibility; see the comments 74 // there for explanation. 75 76 if ((Fn->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage && 77 Fn->getLinkage() != llvm::GlobalVariable::WeakODRLinkage) || 78 Fn->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 79 return; 80 81 if (MD->getExplicitVisibility(ValueDecl::VisibilityForValue)) 82 return; 83 84 switch (MD->getTemplateSpecializationKind()) { 85 case TSK_ExplicitInstantiationDefinition: 86 case TSK_ExplicitInstantiationDeclaration: 87 return; 88 89 case TSK_Undeclared: 90 break; 91 92 case TSK_ExplicitSpecialization: 93 case TSK_ImplicitInstantiation: 94 return; 95 break; 96 } 97 98 // If there's an explicit definition, and that definition is 99 // out-of-line, then we can't assume that all users will have a 100 // definition to emit. 101 const FunctionDecl *Def = 0; 102 if (MD->hasBody(Def) && Def->isOutOfLine()) 103 return; 104 105 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); 106 } 107 108 #ifndef NDEBUG 109 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 110 const ABIArgInfo &infoR, CanQualType typeR) { 111 return (infoL.getKind() == infoR.getKind() && 112 (typeL == typeR || 113 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 114 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 115 } 116 #endif 117 118 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 119 QualType ResultType, RValue RV, 120 const ThunkInfo &Thunk) { 121 // Emit the return adjustment. 122 bool NullCheckValue = !ResultType->isReferenceType(); 123 124 llvm::BasicBlock *AdjustNull = 0; 125 llvm::BasicBlock *AdjustNotNull = 0; 126 llvm::BasicBlock *AdjustEnd = 0; 127 128 llvm::Value *ReturnValue = RV.getScalarVal(); 129 130 if (NullCheckValue) { 131 AdjustNull = CGF.createBasicBlock("adjust.null"); 132 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 133 AdjustEnd = CGF.createBasicBlock("adjust.end"); 134 135 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 136 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 137 CGF.EmitBlock(AdjustNotNull); 138 } 139 140 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue, 141 Thunk.Return); 142 143 if (NullCheckValue) { 144 CGF.Builder.CreateBr(AdjustEnd); 145 CGF.EmitBlock(AdjustNull); 146 CGF.Builder.CreateBr(AdjustEnd); 147 CGF.EmitBlock(AdjustEnd); 148 149 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 150 PHI->addIncoming(ReturnValue, AdjustNotNull); 151 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 152 AdjustNull); 153 ReturnValue = PHI; 154 } 155 156 return RValue::get(ReturnValue); 157 } 158 159 // This function does roughly the same thing as GenerateThunk, but in a 160 // very different way, so that va_start and va_end work correctly. 161 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 162 // a function, and that there is an alloca built in the entry block 163 // for all accesses to "this". 164 // FIXME: This function assumes there is only one "ret" statement per function. 165 // FIXME: Cloning isn't correct in the presence of indirect goto! 166 // FIXME: This implementation of thunks bloats codesize by duplicating the 167 // function definition. There are alternatives: 168 // 1. Add some sort of stub support to LLVM for cases where we can 169 // do a this adjustment, then a sibcall. 170 // 2. We could transform the definition to take a va_list instead of an 171 // actual variable argument list, then have the thunks (including a 172 // no-op thunk for the regular definition) call va_start/va_end. 173 // There's a bit of per-call overhead for this solution, but it's 174 // better for codesize if the definition is long. 175 void CodeGenFunction::GenerateVarArgsThunk( 176 llvm::Function *Fn, 177 const CGFunctionInfo &FnInfo, 178 GlobalDecl GD, const ThunkInfo &Thunk) { 179 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 180 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 181 QualType ResultType = FPT->getResultType(); 182 183 // Get the original function 184 assert(FnInfo.isVariadic()); 185 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 186 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 187 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 188 189 // Clone to thunk. 190 llvm::ValueToValueMapTy VMap; 191 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, 192 /*ModuleLevelChanges=*/false); 193 CGM.getModule().getFunctionList().push_back(NewFn); 194 Fn->replaceAllUsesWith(NewFn); 195 NewFn->takeName(Fn); 196 Fn->eraseFromParent(); 197 Fn = NewFn; 198 199 // "Initialize" CGF (minimally). 200 CurFn = Fn; 201 202 // Get the "this" value 203 llvm::Function::arg_iterator AI = Fn->arg_begin(); 204 if (CGM.ReturnTypeUsesSRet(FnInfo)) 205 ++AI; 206 207 // Find the first store of "this", which will be to the alloca associated 208 // with "this". 209 llvm::Value *ThisPtr = &*AI; 210 llvm::BasicBlock *EntryBB = Fn->begin(); 211 llvm::Instruction *ThisStore = 0; 212 for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end(); 213 I != E; I++) { 214 if (isa<llvm::StoreInst>(I) && I->getOperand(0) == ThisPtr) { 215 ThisStore = cast<llvm::StoreInst>(I); 216 break; 217 } 218 } 219 assert(ThisStore && "Store of this should be in entry block?"); 220 // Adjust "this", if necessary. 221 Builder.SetInsertPoint(ThisStore); 222 llvm::Value *AdjustedThisPtr = 223 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 224 ThisStore->setOperand(0, AdjustedThisPtr); 225 226 if (!Thunk.Return.isEmpty()) { 227 // Fix up the returned value, if necessary. 228 for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) { 229 llvm::Instruction *T = I->getTerminator(); 230 if (isa<llvm::ReturnInst>(T)) { 231 RValue RV = RValue::get(T->getOperand(0)); 232 T->eraseFromParent(); 233 Builder.SetInsertPoint(&*I); 234 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 235 Builder.CreateRet(RV.getScalarVal()); 236 break; 237 } 238 } 239 } 240 } 241 242 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 243 const CGFunctionInfo &FnInfo) { 244 assert(!CurGD.getDecl() && "CurGD was already set!"); 245 CurGD = GD; 246 247 // Build FunctionArgs. 248 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 249 QualType ThisType = MD->getThisType(getContext()); 250 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 251 QualType ResultType = 252 CGM.getCXXABI().HasThisReturn(GD) ? ThisType : FPT->getResultType(); 253 FunctionArgList FunctionArgs; 254 255 // Create the implicit 'this' parameter declaration. 256 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResultType, FunctionArgs); 257 258 // Add the rest of the parameters. 259 for (FunctionDecl::param_const_iterator I = MD->param_begin(), 260 E = MD->param_end(); 261 I != E; ++I) 262 FunctionArgs.push_back(*I); 263 264 // Start defining the function. 265 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 266 SourceLocation()); 267 268 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 269 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 270 CXXThisValue = CXXABIThisValue; 271 } 272 273 void CodeGenFunction::EmitCallAndReturnForThunk(GlobalDecl GD, 274 llvm::Value *Callee, 275 const ThunkInfo *Thunk) { 276 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 277 "Please use a new CGF for this thunk"); 278 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 279 280 // Adjust the 'this' pointer if necessary 281 llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment( 282 *this, LoadCXXThis(), Thunk->This) 283 : LoadCXXThis(); 284 285 // Start building CallArgs. 286 CallArgList CallArgs; 287 QualType ThisType = MD->getThisType(getContext()); 288 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 289 290 if (isa<CXXDestructorDecl>(MD)) 291 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, GD, CallArgs); 292 293 // Add the rest of the arguments. 294 for (FunctionDecl::param_const_iterator I = MD->param_begin(), 295 E = MD->param_end(); I != E; ++I) 296 EmitDelegateCallArg(CallArgs, *I, (*I)->getLocStart()); 297 298 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 299 300 #ifndef NDEBUG 301 const CGFunctionInfo &CallFnInfo = 302 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 303 RequiredArgs::forPrototypePlus(FPT, 1)); 304 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 305 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 306 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 307 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 308 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 309 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 310 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 311 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 312 assert(similar(CallFnInfo.arg_begin()[i].info, 313 CallFnInfo.arg_begin()[i].type, 314 CurFnInfo->arg_begin()[i].info, 315 CurFnInfo->arg_begin()[i].type)); 316 #endif 317 318 // Determine whether we have a return value slot to use. 319 QualType ResultType = 320 CGM.getCXXABI().HasThisReturn(GD) ? ThisType : FPT->getResultType(); 321 ReturnValueSlot Slot; 322 if (!ResultType->isVoidType() && 323 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 324 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 325 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 326 327 // Now emit our call. 328 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD); 329 330 // Consider return adjustment if we have ThunkInfo. 331 if (Thunk && !Thunk->Return.isEmpty()) 332 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 333 334 // Emit return. 335 if (!ResultType->isVoidType() && Slot.isNull()) 336 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 337 338 // Disable the final ARC autorelease. 339 AutoreleaseResult = false; 340 341 FinishFunction(); 342 } 343 344 void CodeGenFunction::GenerateThunk(llvm::Function *Fn, 345 const CGFunctionInfo &FnInfo, 346 GlobalDecl GD, const ThunkInfo &Thunk) { 347 StartThunk(Fn, GD, FnInfo); 348 349 // Get our callee. 350 llvm::Type *Ty = 351 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 352 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 353 354 // Make the call and return the result. 355 EmitCallAndReturnForThunk(GD, Callee, &Thunk); 356 357 // Set the right linkage. 358 CGM.setFunctionLinkage(GD, Fn); 359 360 // Set the right visibility. 361 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 362 setThunkVisibility(CGM, MD, Thunk, Fn); 363 } 364 365 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 366 bool ForVTable) { 367 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 368 369 // FIXME: re-use FnInfo in this computation. 370 llvm::Constant *Entry = CGM.GetAddrOfThunk(GD, Thunk); 371 372 // Strip off a bitcast if we got one back. 373 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 374 assert(CE->getOpcode() == llvm::Instruction::BitCast); 375 Entry = CE->getOperand(0); 376 } 377 378 // There's already a declaration with the same name, check if it has the same 379 // type or if we need to replace it. 380 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != 381 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 382 llvm::GlobalValue *OldThunkFn = cast<llvm::GlobalValue>(Entry); 383 384 // If the types mismatch then we have to rewrite the definition. 385 assert(OldThunkFn->isDeclaration() && 386 "Shouldn't replace non-declaration"); 387 388 // Remove the name from the old thunk function and get a new thunk. 389 OldThunkFn->setName(StringRef()); 390 Entry = CGM.GetAddrOfThunk(GD, Thunk); 391 392 // If needed, replace the old thunk with a bitcast. 393 if (!OldThunkFn->use_empty()) { 394 llvm::Constant *NewPtrForOldDecl = 395 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 396 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 397 } 398 399 // Remove the old thunk. 400 OldThunkFn->eraseFromParent(); 401 } 402 403 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 404 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 405 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 406 407 if (!ThunkFn->isDeclaration()) { 408 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 409 // There is already a thunk emitted for this function, do nothing. 410 return; 411 } 412 413 // Change the linkage. 414 CGM.setFunctionLinkage(GD, ThunkFn); 415 return; 416 } 417 418 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 419 420 if (ThunkFn->isVarArg()) { 421 // Varargs thunks are special; we can't just generate a call because 422 // we can't copy the varargs. Our implementation is rather 423 // expensive/sucky at the moment, so don't generate the thunk unless 424 // we have to. 425 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 426 if (!UseAvailableExternallyLinkage) { 427 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 428 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable); 429 } 430 } else { 431 // Normal thunk body generation. 432 CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk); 433 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable); 434 } 435 } 436 437 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 438 const ThunkInfo &Thunk) { 439 // If the ABI has key functions, only the TU with the key function should emit 440 // the thunk. However, we can allow inlining of thunks if we emit them with 441 // available_externally linkage together with vtables when optimizations are 442 // enabled. 443 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 444 !CGM.getCodeGenOpts().OptimizationLevel) 445 return; 446 447 // We can't emit thunks for member functions with incomplete types. 448 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 449 if (!CGM.getTypes().isFuncTypeConvertible( 450 MD->getType()->castAs<FunctionType>())) 451 return; 452 453 emitThunk(GD, Thunk, /*ForVTable=*/true); 454 } 455 456 void CodeGenVTables::EmitThunks(GlobalDecl GD) 457 { 458 const CXXMethodDecl *MD = 459 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 460 461 // We don't need to generate thunks for the base destructor. 462 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 463 return; 464 465 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector; 466 if (MicrosoftVTContext.isValid()) { 467 ThunkInfoVector = MicrosoftVTContext->getThunkInfo(GD); 468 } else { 469 ThunkInfoVector = ItaniumVTContext.getThunkInfo(GD); 470 } 471 472 if (!ThunkInfoVector) 473 return; 474 475 for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I) 476 emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false); 477 } 478 479 llvm::Constant * 480 CodeGenVTables::CreateVTableInitializer(const CXXRecordDecl *RD, 481 const VTableComponent *Components, 482 unsigned NumComponents, 483 const VTableLayout::VTableThunkTy *VTableThunks, 484 unsigned NumVTableThunks) { 485 SmallVector<llvm::Constant *, 64> Inits; 486 487 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 488 489 llvm::Type *PtrDiffTy = 490 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 491 492 QualType ClassType = CGM.getContext().getTagDeclType(RD); 493 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(ClassType); 494 495 unsigned NextVTableThunkIndex = 0; 496 497 llvm::Constant *PureVirtualFn = 0, *DeletedVirtualFn = 0; 498 499 for (unsigned I = 0; I != NumComponents; ++I) { 500 VTableComponent Component = Components[I]; 501 502 llvm::Constant *Init = 0; 503 504 switch (Component.getKind()) { 505 case VTableComponent::CK_VCallOffset: 506 Init = llvm::ConstantInt::get(PtrDiffTy, 507 Component.getVCallOffset().getQuantity()); 508 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 509 break; 510 case VTableComponent::CK_VBaseOffset: 511 Init = llvm::ConstantInt::get(PtrDiffTy, 512 Component.getVBaseOffset().getQuantity()); 513 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 514 break; 515 case VTableComponent::CK_OffsetToTop: 516 Init = llvm::ConstantInt::get(PtrDiffTy, 517 Component.getOffsetToTop().getQuantity()); 518 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 519 break; 520 case VTableComponent::CK_RTTI: 521 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 522 break; 523 case VTableComponent::CK_FunctionPointer: 524 case VTableComponent::CK_CompleteDtorPointer: 525 case VTableComponent::CK_DeletingDtorPointer: { 526 GlobalDecl GD; 527 528 // Get the right global decl. 529 switch (Component.getKind()) { 530 default: 531 llvm_unreachable("Unexpected vtable component kind"); 532 case VTableComponent::CK_FunctionPointer: 533 GD = Component.getFunctionDecl(); 534 break; 535 case VTableComponent::CK_CompleteDtorPointer: 536 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 537 break; 538 case VTableComponent::CK_DeletingDtorPointer: 539 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 540 break; 541 } 542 543 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 544 // We have a pure virtual member function. 545 if (!PureVirtualFn) { 546 llvm::FunctionType *Ty = 547 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 548 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); 549 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); 550 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 551 CGM.Int8PtrTy); 552 } 553 Init = PureVirtualFn; 554 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 555 if (!DeletedVirtualFn) { 556 llvm::FunctionType *Ty = 557 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 558 StringRef DeletedCallName = 559 CGM.getCXXABI().GetDeletedVirtualCallName(); 560 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); 561 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, 562 CGM.Int8PtrTy); 563 } 564 Init = DeletedVirtualFn; 565 } else { 566 // Check if we should use a thunk. 567 if (NextVTableThunkIndex < NumVTableThunks && 568 VTableThunks[NextVTableThunkIndex].first == I) { 569 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 570 571 maybeEmitThunkForVTable(GD, Thunk); 572 Init = CGM.GetAddrOfThunk(GD, Thunk); 573 574 NextVTableThunkIndex++; 575 } else { 576 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 577 578 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 579 } 580 581 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 582 } 583 break; 584 } 585 586 case VTableComponent::CK_UnusedFunctionPointer: 587 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 588 break; 589 }; 590 591 Inits.push_back(Init); 592 } 593 594 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 595 return llvm::ConstantArray::get(ArrayType, Inits); 596 } 597 598 llvm::GlobalVariable * 599 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 600 const BaseSubobject &Base, 601 bool BaseIsVirtual, 602 llvm::GlobalVariable::LinkageTypes Linkage, 603 VTableAddressPointsMapTy& AddressPoints) { 604 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 605 DI->completeClassData(Base.getBase()); 606 607 OwningPtr<VTableLayout> VTLayout( 608 ItaniumVTContext.createConstructionVTableLayout( 609 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 610 611 // Add the address points. 612 AddressPoints = VTLayout->getAddressPoints(); 613 614 // Get the mangled construction vtable name. 615 SmallString<256> OutName; 616 llvm::raw_svector_ostream Out(OutName); 617 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 618 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 619 Base.getBase(), Out); 620 Out.flush(); 621 StringRef Name = OutName.str(); 622 623 llvm::ArrayType *ArrayType = 624 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 625 626 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 627 // guarantee that they actually will be available externally. Instead, when 628 // emitting an available_externally VTT, we provide references to an internal 629 // linkage construction vtable. The ABI only requires complete-object vtables 630 // to be the same for all instances of a type, not construction vtables. 631 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 632 Linkage = llvm::GlobalVariable::InternalLinkage; 633 634 // Create the variable that will hold the construction vtable. 635 llvm::GlobalVariable *VTable = 636 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 637 CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForConstructionVTable); 638 639 // V-tables are always unnamed_addr. 640 VTable->setUnnamedAddr(true); 641 642 // Create and set the initializer. 643 llvm::Constant *Init = 644 CreateVTableInitializer(Base.getBase(), 645 VTLayout->vtable_component_begin(), 646 VTLayout->getNumVTableComponents(), 647 VTLayout->vtable_thunk_begin(), 648 VTLayout->getNumVTableThunks()); 649 VTable->setInitializer(Init); 650 651 return VTable; 652 } 653 654 /// Compute the required linkage of the v-table for the given class. 655 /// 656 /// Note that we only call this at the end of the translation unit. 657 llvm::GlobalVariable::LinkageTypes 658 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 659 if (!RD->isExternallyVisible()) 660 return llvm::GlobalVariable::InternalLinkage; 661 662 // We're at the end of the translation unit, so the current key 663 // function is fully correct. 664 if (const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD)) { 665 // If this class has a key function, use that to determine the 666 // linkage of the vtable. 667 const FunctionDecl *def = 0; 668 if (keyFunction->hasBody(def)) 669 keyFunction = cast<CXXMethodDecl>(def); 670 671 switch (keyFunction->getTemplateSpecializationKind()) { 672 case TSK_Undeclared: 673 case TSK_ExplicitSpecialization: 674 assert(def && "Should not have been asked to emit this"); 675 if (keyFunction->isInlined()) 676 return !Context.getLangOpts().AppleKext ? 677 llvm::GlobalVariable::LinkOnceODRLinkage : 678 llvm::Function::InternalLinkage; 679 680 return llvm::GlobalVariable::ExternalLinkage; 681 682 case TSK_ImplicitInstantiation: 683 return !Context.getLangOpts().AppleKext ? 684 llvm::GlobalVariable::LinkOnceODRLinkage : 685 llvm::Function::InternalLinkage; 686 687 case TSK_ExplicitInstantiationDefinition: 688 return !Context.getLangOpts().AppleKext ? 689 llvm::GlobalVariable::WeakODRLinkage : 690 llvm::Function::InternalLinkage; 691 692 case TSK_ExplicitInstantiationDeclaration: 693 llvm_unreachable("Should not have been asked to emit this"); 694 } 695 } 696 697 // -fapple-kext mode does not support weak linkage, so we must use 698 // internal linkage. 699 if (Context.getLangOpts().AppleKext) 700 return llvm::Function::InternalLinkage; 701 702 switch (RD->getTemplateSpecializationKind()) { 703 case TSK_Undeclared: 704 case TSK_ExplicitSpecialization: 705 case TSK_ImplicitInstantiation: 706 return llvm::GlobalVariable::LinkOnceODRLinkage; 707 708 case TSK_ExplicitInstantiationDeclaration: 709 llvm_unreachable("Should not have been asked to emit this"); 710 711 case TSK_ExplicitInstantiationDefinition: 712 return llvm::GlobalVariable::WeakODRLinkage; 713 } 714 715 llvm_unreachable("Invalid TemplateSpecializationKind!"); 716 } 717 718 /// This is a callback from Sema to tell us that it believes that a 719 /// particular v-table is required to be emitted in this translation 720 /// unit. 721 /// 722 /// The reason we don't simply trust this callback is because Sema 723 /// will happily report that something is used even when it's used 724 /// only in code that we don't actually have to emit. 725 /// 726 /// \param isRequired - if true, the v-table is mandatory, e.g. 727 /// because the translation unit defines the key function 728 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass, bool isRequired) { 729 if (!isRequired) return; 730 731 VTables.GenerateClassData(theClass); 732 } 733 734 void 735 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 736 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 737 DI->completeClassData(RD); 738 739 if (RD->getNumVBases()) 740 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 741 742 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 743 } 744 745 /// At this point in the translation unit, does it appear that can we 746 /// rely on the vtable being defined elsewhere in the program? 747 /// 748 /// The response is really only definitive when called at the end of 749 /// the translation unit. 750 /// 751 /// The only semantic restriction here is that the object file should 752 /// not contain a v-table definition when that v-table is defined 753 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 754 /// v-tables when unnecessary. 755 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 756 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 757 758 // If we have an explicit instantiation declaration (and not a 759 // definition), the v-table is defined elsewhere. 760 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 761 if (TSK == TSK_ExplicitInstantiationDeclaration) 762 return true; 763 764 // Otherwise, if the class is an instantiated template, the 765 // v-table must be defined here. 766 if (TSK == TSK_ImplicitInstantiation || 767 TSK == TSK_ExplicitInstantiationDefinition) 768 return false; 769 770 // Otherwise, if the class doesn't have a key function (possibly 771 // anymore), the v-table must be defined here. 772 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 773 if (!keyFunction) 774 return false; 775 776 // Otherwise, if we don't have a definition of the key function, the 777 // v-table must be defined somewhere else. 778 return !keyFunction->hasBody(); 779 } 780 781 /// Given that we're currently at the end of the translation unit, and 782 /// we've emitted a reference to the v-table for this class, should 783 /// we define that v-table? 784 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 785 const CXXRecordDecl *RD) { 786 return !CGM.getVTables().isVTableExternal(RD); 787 } 788 789 /// Given that at some point we emitted a reference to one or more 790 /// v-tables, and that we are now at the end of the translation unit, 791 /// decide whether we should emit them. 792 void CodeGenModule::EmitDeferredVTables() { 793 #ifndef NDEBUG 794 // Remember the size of DeferredVTables, because we're going to assume 795 // that this entire operation doesn't modify it. 796 size_t savedSize = DeferredVTables.size(); 797 #endif 798 799 typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator; 800 for (const_iterator i = DeferredVTables.begin(), 801 e = DeferredVTables.end(); i != e; ++i) { 802 const CXXRecordDecl *RD = *i; 803 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 804 VTables.GenerateClassData(RD); 805 } 806 807 assert(savedSize == DeferredVTables.size() && 808 "deferred extra v-tables during v-table emission?"); 809 DeferredVTables.clear(); 810 } 811