1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Transforms/Utils/Cloning.h" 26 #include <algorithm> 27 #include <cstdio> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 34 35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 36 const ThunkInfo &Thunk) { 37 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 38 39 // Compute the mangled name. 40 SmallString<256> Name; 41 llvm::raw_svector_ostream Out(Name); 42 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 43 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 44 Thunk.This, Out); 45 else 46 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 47 Out.flush(); 48 49 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 50 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, 51 /*DontDefer=*/true, /*IsThunk=*/true); 52 } 53 54 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 55 const ThunkInfo &Thunk, llvm::Function *Fn) { 56 CGM.setGlobalVisibility(Fn, MD); 57 } 58 59 #ifndef NDEBUG 60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 61 const ABIArgInfo &infoR, CanQualType typeR) { 62 return (infoL.getKind() == infoR.getKind() && 63 (typeL == typeR || 64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 66 } 67 #endif 68 69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 70 QualType ResultType, RValue RV, 71 const ThunkInfo &Thunk) { 72 // Emit the return adjustment. 73 bool NullCheckValue = !ResultType->isReferenceType(); 74 75 llvm::BasicBlock *AdjustNull = nullptr; 76 llvm::BasicBlock *AdjustNotNull = nullptr; 77 llvm::BasicBlock *AdjustEnd = nullptr; 78 79 llvm::Value *ReturnValue = RV.getScalarVal(); 80 81 if (NullCheckValue) { 82 AdjustNull = CGF.createBasicBlock("adjust.null"); 83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 84 AdjustEnd = CGF.createBasicBlock("adjust.end"); 85 86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 88 CGF.EmitBlock(AdjustNotNull); 89 } 90 91 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue, 92 Thunk.Return); 93 94 if (NullCheckValue) { 95 CGF.Builder.CreateBr(AdjustEnd); 96 CGF.EmitBlock(AdjustNull); 97 CGF.Builder.CreateBr(AdjustEnd); 98 CGF.EmitBlock(AdjustEnd); 99 100 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 101 PHI->addIncoming(ReturnValue, AdjustNotNull); 102 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 103 AdjustNull); 104 ReturnValue = PHI; 105 } 106 107 return RValue::get(ReturnValue); 108 } 109 110 // This function does roughly the same thing as GenerateThunk, but in a 111 // very different way, so that va_start and va_end work correctly. 112 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 113 // a function, and that there is an alloca built in the entry block 114 // for all accesses to "this". 115 // FIXME: This function assumes there is only one "ret" statement per function. 116 // FIXME: Cloning isn't correct in the presence of indirect goto! 117 // FIXME: This implementation of thunks bloats codesize by duplicating the 118 // function definition. There are alternatives: 119 // 1. Add some sort of stub support to LLVM for cases where we can 120 // do a this adjustment, then a sibcall. 121 // 2. We could transform the definition to take a va_list instead of an 122 // actual variable argument list, then have the thunks (including a 123 // no-op thunk for the regular definition) call va_start/va_end. 124 // There's a bit of per-call overhead for this solution, but it's 125 // better for codesize if the definition is long. 126 llvm::Function * 127 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 128 const CGFunctionInfo &FnInfo, 129 GlobalDecl GD, const ThunkInfo &Thunk) { 130 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 131 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 132 QualType ResultType = FPT->getReturnType(); 133 134 // Get the original function 135 assert(FnInfo.isVariadic()); 136 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 137 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 138 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 139 140 // Clone to thunk. 141 llvm::ValueToValueMapTy VMap; 142 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, 143 /*ModuleLevelChanges=*/false); 144 CGM.getModule().getFunctionList().push_back(NewFn); 145 Fn->replaceAllUsesWith(NewFn); 146 NewFn->takeName(Fn); 147 Fn->eraseFromParent(); 148 Fn = NewFn; 149 150 // "Initialize" CGF (minimally). 151 CurFn = Fn; 152 153 // Get the "this" value 154 llvm::Function::arg_iterator AI = Fn->arg_begin(); 155 if (CGM.ReturnTypeUsesSRet(FnInfo)) 156 ++AI; 157 158 // Find the first store of "this", which will be to the alloca associated 159 // with "this". 160 llvm::Value *ThisPtr = &*AI; 161 llvm::BasicBlock *EntryBB = Fn->begin(); 162 llvm::Instruction *ThisStore = 163 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 164 return isa<llvm::StoreInst>(I) && I.getOperand(0) == ThisPtr; 165 }); 166 assert(ThisStore && "Store of this should be in entry block?"); 167 // Adjust "this", if necessary. 168 Builder.SetInsertPoint(ThisStore); 169 llvm::Value *AdjustedThisPtr = 170 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 171 ThisStore->setOperand(0, AdjustedThisPtr); 172 173 if (!Thunk.Return.isEmpty()) { 174 // Fix up the returned value, if necessary. 175 for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) { 176 llvm::Instruction *T = I->getTerminator(); 177 if (isa<llvm::ReturnInst>(T)) { 178 RValue RV = RValue::get(T->getOperand(0)); 179 T->eraseFromParent(); 180 Builder.SetInsertPoint(&*I); 181 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 182 Builder.CreateRet(RV.getScalarVal()); 183 break; 184 } 185 } 186 } 187 188 return Fn; 189 } 190 191 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 192 const CGFunctionInfo &FnInfo) { 193 assert(!CurGD.getDecl() && "CurGD was already set!"); 194 CurGD = GD; 195 CurFuncIsThunk = true; 196 197 // Build FunctionArgs. 198 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 199 QualType ThisType = MD->getThisType(getContext()); 200 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 201 QualType ResultType = CGM.getCXXABI().HasThisReturn(GD) 202 ? ThisType 203 : CGM.getCXXABI().hasMostDerivedReturn(GD) 204 ? CGM.getContext().VoidPtrTy 205 : FPT->getReturnType(); 206 FunctionArgList FunctionArgs; 207 208 // Create the implicit 'this' parameter declaration. 209 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 210 211 // Add the rest of the parameters. 212 FunctionArgs.append(MD->param_begin(), MD->param_end()); 213 214 if (isa<CXXDestructorDecl>(MD)) 215 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); 216 217 // Start defining the function. 218 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 219 MD->getLocation(), MD->getLocation()); 220 221 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 222 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 223 CXXThisValue = CXXABIThisValue; 224 } 225 226 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee, 227 const ThunkInfo *Thunk) { 228 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 229 "Please use a new CGF for this thunk"); 230 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 231 232 // Adjust the 'this' pointer if necessary 233 llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment( 234 *this, LoadCXXThis(), Thunk->This) 235 : LoadCXXThis(); 236 237 if (CurFnInfo->usesInAlloca()) { 238 // We don't handle return adjusting thunks, because they require us to call 239 // the copy constructor. For now, fall through and pretend the return 240 // adjustment was empty so we don't crash. 241 if (Thunk && !Thunk->Return.isEmpty()) { 242 CGM.ErrorUnsupported( 243 MD, "non-trivial argument copy for return-adjusting thunk"); 244 } 245 EmitMustTailThunk(MD, AdjustedThisPtr, Callee); 246 return; 247 } 248 249 // Start building CallArgs. 250 CallArgList CallArgs; 251 QualType ThisType = MD->getThisType(getContext()); 252 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 253 254 if (isa<CXXDestructorDecl>(MD)) 255 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 256 257 // Add the rest of the arguments. 258 for (const ParmVarDecl *PD : MD->params()) 259 EmitDelegateCallArg(CallArgs, PD, PD->getLocStart()); 260 261 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 262 263 #ifndef NDEBUG 264 const CGFunctionInfo &CallFnInfo = 265 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 266 RequiredArgs::forPrototypePlus(FPT, 1)); 267 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 268 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 269 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 270 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 271 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 272 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 273 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 274 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 275 assert(similar(CallFnInfo.arg_begin()[i].info, 276 CallFnInfo.arg_begin()[i].type, 277 CurFnInfo->arg_begin()[i].info, 278 CurFnInfo->arg_begin()[i].type)); 279 #endif 280 281 // Determine whether we have a return value slot to use. 282 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 283 ? ThisType 284 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 285 ? CGM.getContext().VoidPtrTy 286 : FPT->getReturnType(); 287 ReturnValueSlot Slot; 288 if (!ResultType->isVoidType() && 289 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 290 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 291 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 292 293 // Now emit our call. 294 llvm::Instruction *CallOrInvoke; 295 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke); 296 297 // Consider return adjustment if we have ThunkInfo. 298 if (Thunk && !Thunk->Return.isEmpty()) 299 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 300 301 // Emit return. 302 if (!ResultType->isVoidType() && Slot.isNull()) 303 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 304 305 // Disable the final ARC autorelease. 306 AutoreleaseResult = false; 307 308 FinishFunction(); 309 } 310 311 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 312 llvm::Value *AdjustedThisPtr, 313 llvm::Value *Callee) { 314 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 315 // to translate AST arguments into LLVM IR arguments. For thunks, we know 316 // that the caller prototype more or less matches the callee prototype with 317 // the exception of 'this'. 318 SmallVector<llvm::Value *, 8> Args; 319 for (llvm::Argument &A : CurFn->args()) 320 Args.push_back(&A); 321 322 // Set the adjusted 'this' pointer. 323 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 324 if (ThisAI.isDirect()) { 325 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 326 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 327 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 328 if (ThisType != AdjustedThisPtr->getType()) 329 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 330 Args[ThisArgNo] = AdjustedThisPtr; 331 } else { 332 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 333 llvm::Value *ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 334 llvm::Type *ThisType = 335 cast<llvm::PointerType>(ThisAddr->getType())->getElementType(); 336 if (ThisType != AdjustedThisPtr->getType()) 337 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 338 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 339 } 340 341 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 342 // don't actually want to run them. 343 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 344 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 345 346 // Apply the standard set of call attributes. 347 unsigned CallingConv; 348 CodeGen::AttributeListType AttributeList; 349 CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv, 350 /*AttrOnCallSite=*/true); 351 llvm::AttributeSet Attrs = 352 llvm::AttributeSet::get(getLLVMContext(), AttributeList); 353 Call->setAttributes(Attrs); 354 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 355 356 if (Call->getType()->isVoidTy()) 357 Builder.CreateRetVoid(); 358 else 359 Builder.CreateRet(Call); 360 361 // Finish the function to maintain CodeGenFunction invariants. 362 // FIXME: Don't emit unreachable code. 363 EmitBlock(createBasicBlock()); 364 FinishFunction(); 365 } 366 367 void CodeGenFunction::generateThunk(llvm::Function *Fn, 368 const CGFunctionInfo &FnInfo, 369 GlobalDecl GD, const ThunkInfo &Thunk) { 370 StartThunk(Fn, GD, FnInfo); 371 372 // Get our callee. 373 llvm::Type *Ty = 374 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 375 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 376 377 // Make the call and return the result. 378 EmitCallAndReturnForThunk(Callee, &Thunk); 379 } 380 381 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 382 bool ForVTable) { 383 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 384 385 // FIXME: re-use FnInfo in this computation. 386 llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk); 387 llvm::GlobalValue *Entry; 388 389 // Strip off a bitcast if we got one back. 390 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) { 391 assert(CE->getOpcode() == llvm::Instruction::BitCast); 392 Entry = cast<llvm::GlobalValue>(CE->getOperand(0)); 393 } else { 394 Entry = cast<llvm::GlobalValue>(C); 395 } 396 397 // There's already a declaration with the same name, check if it has the same 398 // type or if we need to replace it. 399 if (Entry->getType()->getElementType() != 400 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 401 llvm::GlobalValue *OldThunkFn = Entry; 402 403 // If the types mismatch then we have to rewrite the definition. 404 assert(OldThunkFn->isDeclaration() && 405 "Shouldn't replace non-declaration"); 406 407 // Remove the name from the old thunk function and get a new thunk. 408 OldThunkFn->setName(StringRef()); 409 Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk)); 410 411 // If needed, replace the old thunk with a bitcast. 412 if (!OldThunkFn->use_empty()) { 413 llvm::Constant *NewPtrForOldDecl = 414 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 415 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 416 } 417 418 // Remove the old thunk. 419 OldThunkFn->eraseFromParent(); 420 } 421 422 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 423 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 424 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 425 426 if (!ThunkFn->isDeclaration()) { 427 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 428 // There is already a thunk emitted for this function, do nothing. 429 return; 430 } 431 432 // Change the linkage. 433 CGM.setFunctionLinkage(GD, ThunkFn); 434 return; 435 } 436 437 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 438 439 if (ThunkFn->isVarArg()) { 440 // Varargs thunks are special; we can't just generate a call because 441 // we can't copy the varargs. Our implementation is rather 442 // expensive/sucky at the moment, so don't generate the thunk unless 443 // we have to. 444 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 445 if (UseAvailableExternallyLinkage) 446 return; 447 ThunkFn = 448 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 449 } else { 450 // Normal thunk body generation. 451 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk); 452 } 453 454 CGM.setFunctionLinkage(GD, ThunkFn); 455 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 456 !Thunk.Return.isEmpty()); 457 458 // Set the right visibility. 459 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 460 setThunkVisibility(CGM, MD, Thunk, ThunkFn); 461 462 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 463 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 464 } 465 466 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 467 const ThunkInfo &Thunk) { 468 // If the ABI has key functions, only the TU with the key function should emit 469 // the thunk. However, we can allow inlining of thunks if we emit them with 470 // available_externally linkage together with vtables when optimizations are 471 // enabled. 472 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 473 !CGM.getCodeGenOpts().OptimizationLevel) 474 return; 475 476 // We can't emit thunks for member functions with incomplete types. 477 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 478 if (!CGM.getTypes().isFuncTypeConvertible( 479 MD->getType()->castAs<FunctionType>())) 480 return; 481 482 emitThunk(GD, Thunk, /*ForVTable=*/true); 483 } 484 485 void CodeGenVTables::EmitThunks(GlobalDecl GD) 486 { 487 const CXXMethodDecl *MD = 488 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 489 490 // We don't need to generate thunks for the base destructor. 491 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 492 return; 493 494 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 495 VTContext->getThunkInfo(GD); 496 497 if (!ThunkInfoVector) 498 return; 499 500 for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I) 501 emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false); 502 } 503 504 llvm::Constant *CodeGenVTables::CreateVTableInitializer( 505 const CXXRecordDecl *RD, const VTableComponent *Components, 506 unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks, 507 unsigned NumVTableThunks, llvm::Constant *RTTI) { 508 SmallVector<llvm::Constant *, 64> Inits; 509 510 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 511 512 llvm::Type *PtrDiffTy = 513 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 514 515 unsigned NextVTableThunkIndex = 0; 516 517 llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr; 518 519 for (unsigned I = 0; I != NumComponents; ++I) { 520 VTableComponent Component = Components[I]; 521 522 llvm::Constant *Init = nullptr; 523 524 switch (Component.getKind()) { 525 case VTableComponent::CK_VCallOffset: 526 Init = llvm::ConstantInt::get(PtrDiffTy, 527 Component.getVCallOffset().getQuantity()); 528 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 529 break; 530 case VTableComponent::CK_VBaseOffset: 531 Init = llvm::ConstantInt::get(PtrDiffTy, 532 Component.getVBaseOffset().getQuantity()); 533 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 534 break; 535 case VTableComponent::CK_OffsetToTop: 536 Init = llvm::ConstantInt::get(PtrDiffTy, 537 Component.getOffsetToTop().getQuantity()); 538 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 539 break; 540 case VTableComponent::CK_RTTI: 541 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 542 break; 543 case VTableComponent::CK_FunctionPointer: 544 case VTableComponent::CK_CompleteDtorPointer: 545 case VTableComponent::CK_DeletingDtorPointer: { 546 GlobalDecl GD; 547 548 // Get the right global decl. 549 switch (Component.getKind()) { 550 default: 551 llvm_unreachable("Unexpected vtable component kind"); 552 case VTableComponent::CK_FunctionPointer: 553 GD = Component.getFunctionDecl(); 554 break; 555 case VTableComponent::CK_CompleteDtorPointer: 556 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 557 break; 558 case VTableComponent::CK_DeletingDtorPointer: 559 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 560 break; 561 } 562 563 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 564 // We have a pure virtual member function. 565 if (!PureVirtualFn) { 566 llvm::FunctionType *Ty = 567 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 568 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); 569 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); 570 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 571 CGM.Int8PtrTy); 572 } 573 Init = PureVirtualFn; 574 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 575 if (!DeletedVirtualFn) { 576 llvm::FunctionType *Ty = 577 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 578 StringRef DeletedCallName = 579 CGM.getCXXABI().GetDeletedVirtualCallName(); 580 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); 581 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, 582 CGM.Int8PtrTy); 583 } 584 Init = DeletedVirtualFn; 585 } else { 586 // Check if we should use a thunk. 587 if (NextVTableThunkIndex < NumVTableThunks && 588 VTableThunks[NextVTableThunkIndex].first == I) { 589 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 590 591 maybeEmitThunkForVTable(GD, Thunk); 592 Init = CGM.GetAddrOfThunk(GD, Thunk); 593 594 NextVTableThunkIndex++; 595 } else { 596 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 597 598 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 599 } 600 601 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 602 } 603 break; 604 } 605 606 case VTableComponent::CK_UnusedFunctionPointer: 607 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 608 break; 609 }; 610 611 Inits.push_back(Init); 612 } 613 614 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 615 return llvm::ConstantArray::get(ArrayType, Inits); 616 } 617 618 llvm::GlobalVariable * 619 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 620 const BaseSubobject &Base, 621 bool BaseIsVirtual, 622 llvm::GlobalVariable::LinkageTypes Linkage, 623 VTableAddressPointsMapTy& AddressPoints) { 624 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 625 DI->completeClassData(Base.getBase()); 626 627 std::unique_ptr<VTableLayout> VTLayout( 628 getItaniumVTableContext().createConstructionVTableLayout( 629 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 630 631 // Add the address points. 632 AddressPoints = VTLayout->getAddressPoints(); 633 634 // Get the mangled construction vtable name. 635 SmallString<256> OutName; 636 llvm::raw_svector_ostream Out(OutName); 637 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 638 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 639 Base.getBase(), Out); 640 Out.flush(); 641 StringRef Name = OutName.str(); 642 643 llvm::ArrayType *ArrayType = 644 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 645 646 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 647 // guarantee that they actually will be available externally. Instead, when 648 // emitting an available_externally VTT, we provide references to an internal 649 // linkage construction vtable. The ABI only requires complete-object vtables 650 // to be the same for all instances of a type, not construction vtables. 651 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 652 Linkage = llvm::GlobalVariable::InternalLinkage; 653 654 // Create the variable that will hold the construction vtable. 655 llvm::GlobalVariable *VTable = 656 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 657 CGM.setGlobalVisibility(VTable, RD); 658 659 // V-tables are always unnamed_addr. 660 VTable->setUnnamedAddr(true); 661 662 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 663 CGM.getContext().getTagDeclType(Base.getBase())); 664 665 // Create and set the initializer. 666 llvm::Constant *Init = CreateVTableInitializer( 667 Base.getBase(), VTLayout->vtable_component_begin(), 668 VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(), 669 VTLayout->getNumVTableThunks(), RTTI); 670 VTable->setInitializer(Init); 671 672 CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get()); 673 674 return VTable; 675 } 676 677 /// Compute the required linkage of the v-table for the given class. 678 /// 679 /// Note that we only call this at the end of the translation unit. 680 llvm::GlobalVariable::LinkageTypes 681 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 682 if (!RD->isExternallyVisible()) 683 return llvm::GlobalVariable::InternalLinkage; 684 685 // We're at the end of the translation unit, so the current key 686 // function is fully correct. 687 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 688 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 689 // If this class has a key function, use that to determine the 690 // linkage of the vtable. 691 const FunctionDecl *def = nullptr; 692 if (keyFunction->hasBody(def)) 693 keyFunction = cast<CXXMethodDecl>(def); 694 695 switch (keyFunction->getTemplateSpecializationKind()) { 696 case TSK_Undeclared: 697 case TSK_ExplicitSpecialization: 698 assert(def && "Should not have been asked to emit this"); 699 if (keyFunction->isInlined()) 700 return !Context.getLangOpts().AppleKext ? 701 llvm::GlobalVariable::LinkOnceODRLinkage : 702 llvm::Function::InternalLinkage; 703 704 return llvm::GlobalVariable::ExternalLinkage; 705 706 case TSK_ImplicitInstantiation: 707 return !Context.getLangOpts().AppleKext ? 708 llvm::GlobalVariable::LinkOnceODRLinkage : 709 llvm::Function::InternalLinkage; 710 711 case TSK_ExplicitInstantiationDefinition: 712 return !Context.getLangOpts().AppleKext ? 713 llvm::GlobalVariable::WeakODRLinkage : 714 llvm::Function::InternalLinkage; 715 716 case TSK_ExplicitInstantiationDeclaration: 717 llvm_unreachable("Should not have been asked to emit this"); 718 } 719 } 720 721 // -fapple-kext mode does not support weak linkage, so we must use 722 // internal linkage. 723 if (Context.getLangOpts().AppleKext) 724 return llvm::Function::InternalLinkage; 725 726 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 727 llvm::GlobalValue::LinkOnceODRLinkage; 728 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 729 llvm::GlobalValue::WeakODRLinkage; 730 if (RD->hasAttr<DLLExportAttr>()) { 731 // Cannot discard exported vtables. 732 DiscardableODRLinkage = NonDiscardableODRLinkage; 733 } else if (RD->hasAttr<DLLImportAttr>()) { 734 // Imported vtables are available externally. 735 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 736 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 737 } 738 739 switch (RD->getTemplateSpecializationKind()) { 740 case TSK_Undeclared: 741 case TSK_ExplicitSpecialization: 742 case TSK_ImplicitInstantiation: 743 return DiscardableODRLinkage; 744 745 case TSK_ExplicitInstantiationDeclaration: 746 return llvm::GlobalVariable::ExternalLinkage; 747 748 case TSK_ExplicitInstantiationDefinition: 749 return NonDiscardableODRLinkage; 750 } 751 752 llvm_unreachable("Invalid TemplateSpecializationKind!"); 753 } 754 755 /// This is a callback from Sema to tell us that that a particular v-table is 756 /// required to be emitted in this translation unit. 757 /// 758 /// This is only called for vtables that _must_ be emitted (mainly due to key 759 /// functions). For weak vtables, CodeGen tracks when they are needed and 760 /// emits them as-needed. 761 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 762 VTables.GenerateClassData(theClass); 763 } 764 765 void 766 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 767 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 768 DI->completeClassData(RD); 769 770 if (RD->getNumVBases()) 771 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 772 773 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 774 } 775 776 /// At this point in the translation unit, does it appear that can we 777 /// rely on the vtable being defined elsewhere in the program? 778 /// 779 /// The response is really only definitive when called at the end of 780 /// the translation unit. 781 /// 782 /// The only semantic restriction here is that the object file should 783 /// not contain a v-table definition when that v-table is defined 784 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 785 /// v-tables when unnecessary. 786 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 787 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 788 789 // If we have an explicit instantiation declaration (and not a 790 // definition), the v-table is defined elsewhere. 791 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 792 if (TSK == TSK_ExplicitInstantiationDeclaration) 793 return true; 794 795 // Otherwise, if the class is an instantiated template, the 796 // v-table must be defined here. 797 if (TSK == TSK_ImplicitInstantiation || 798 TSK == TSK_ExplicitInstantiationDefinition) 799 return false; 800 801 // Otherwise, if the class doesn't have a key function (possibly 802 // anymore), the v-table must be defined here. 803 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 804 if (!keyFunction) 805 return false; 806 807 // Otherwise, if we don't have a definition of the key function, the 808 // v-table must be defined somewhere else. 809 return !keyFunction->hasBody(); 810 } 811 812 /// Given that we're currently at the end of the translation unit, and 813 /// we've emitted a reference to the v-table for this class, should 814 /// we define that v-table? 815 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 816 const CXXRecordDecl *RD) { 817 return !CGM.getVTables().isVTableExternal(RD); 818 } 819 820 /// Given that at some point we emitted a reference to one or more 821 /// v-tables, and that we are now at the end of the translation unit, 822 /// decide whether we should emit them. 823 void CodeGenModule::EmitDeferredVTables() { 824 #ifndef NDEBUG 825 // Remember the size of DeferredVTables, because we're going to assume 826 // that this entire operation doesn't modify it. 827 size_t savedSize = DeferredVTables.size(); 828 #endif 829 830 typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator; 831 for (const_iterator i = DeferredVTables.begin(), 832 e = DeferredVTables.end(); i != e; ++i) { 833 const CXXRecordDecl *RD = *i; 834 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 835 VTables.GenerateClassData(RD); 836 } 837 838 assert(savedSize == DeferredVTables.size() && 839 "deferred extra v-tables during v-table emission?"); 840 DeferredVTables.clear(); 841 } 842 843 bool CodeGenModule::IsCFIBlacklistedRecord(const CXXRecordDecl *RD) { 844 // FIXME: Make this user configurable. 845 return RD->isInStdNamespace(); 846 } 847 848 void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable, 849 const VTableLayout &VTLayout) { 850 if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 851 !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 852 !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 853 !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast)) 854 return; 855 856 CharUnits PointerWidth = 857 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 858 859 std::vector<llvm::MDTuple *> BitsetEntries; 860 // Create a bit set entry for each address point. 861 for (auto &&AP : VTLayout.getAddressPoints()) { 862 if (IsCFIBlacklistedRecord(AP.first.getBase())) 863 continue; 864 865 BitsetEntries.push_back(CreateVTableBitSetEntry( 866 VTable, PointerWidth * AP.second, AP.first.getBase())); 867 } 868 869 // Sort the bit set entries for determinism. 870 std::sort(BitsetEntries.begin(), BitsetEntries.end(), [](llvm::MDTuple *T1, 871 llvm::MDTuple *T2) { 872 if (T1 == T2) 873 return false; 874 875 StringRef S1 = cast<llvm::MDString>(T1->getOperand(0))->getString(); 876 StringRef S2 = cast<llvm::MDString>(T2->getOperand(0))->getString(); 877 if (S1 < S2) 878 return true; 879 if (S1 != S2) 880 return false; 881 882 uint64_t Offset1 = cast<llvm::ConstantInt>( 883 cast<llvm::ConstantAsMetadata>(T1->getOperand(2)) 884 ->getValue())->getZExtValue(); 885 uint64_t Offset2 = cast<llvm::ConstantInt>( 886 cast<llvm::ConstantAsMetadata>(T2->getOperand(2)) 887 ->getValue())->getZExtValue(); 888 assert(Offset1 != Offset2); 889 return Offset1 < Offset2; 890 }); 891 892 llvm::NamedMDNode *BitsetsMD = 893 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 894 for (auto BitsetEntry : BitsetEntries) 895 BitsetsMD->addOperand(BitsetEntry); 896 } 897