1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Transforms/Utils/Cloning.h" 26 #include <algorithm> 27 #include <cstdio> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 34 35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 36 const ThunkInfo &Thunk) { 37 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 38 39 // Compute the mangled name. 40 SmallString<256> Name; 41 llvm::raw_svector_ostream Out(Name); 42 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 43 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 44 Thunk.This, Out); 45 else 46 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 47 Out.flush(); 48 49 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 50 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, 51 /*DontDefer*/ true); 52 } 53 54 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 55 const ThunkInfo &Thunk, llvm::Function *Fn) { 56 CGM.setGlobalVisibility(Fn, MD); 57 } 58 59 #ifndef NDEBUG 60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 61 const ABIArgInfo &infoR, CanQualType typeR) { 62 return (infoL.getKind() == infoR.getKind() && 63 (typeL == typeR || 64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 66 } 67 #endif 68 69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 70 QualType ResultType, RValue RV, 71 const ThunkInfo &Thunk) { 72 // Emit the return adjustment. 73 bool NullCheckValue = !ResultType->isReferenceType(); 74 75 llvm::BasicBlock *AdjustNull = nullptr; 76 llvm::BasicBlock *AdjustNotNull = nullptr; 77 llvm::BasicBlock *AdjustEnd = nullptr; 78 79 llvm::Value *ReturnValue = RV.getScalarVal(); 80 81 if (NullCheckValue) { 82 AdjustNull = CGF.createBasicBlock("adjust.null"); 83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 84 AdjustEnd = CGF.createBasicBlock("adjust.end"); 85 86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 88 CGF.EmitBlock(AdjustNotNull); 89 } 90 91 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue, 92 Thunk.Return); 93 94 if (NullCheckValue) { 95 CGF.Builder.CreateBr(AdjustEnd); 96 CGF.EmitBlock(AdjustNull); 97 CGF.Builder.CreateBr(AdjustEnd); 98 CGF.EmitBlock(AdjustEnd); 99 100 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 101 PHI->addIncoming(ReturnValue, AdjustNotNull); 102 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 103 AdjustNull); 104 ReturnValue = PHI; 105 } 106 107 return RValue::get(ReturnValue); 108 } 109 110 // This function does roughly the same thing as GenerateThunk, but in a 111 // very different way, so that va_start and va_end work correctly. 112 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 113 // a function, and that there is an alloca built in the entry block 114 // for all accesses to "this". 115 // FIXME: This function assumes there is only one "ret" statement per function. 116 // FIXME: Cloning isn't correct in the presence of indirect goto! 117 // FIXME: This implementation of thunks bloats codesize by duplicating the 118 // function definition. There are alternatives: 119 // 1. Add some sort of stub support to LLVM for cases where we can 120 // do a this adjustment, then a sibcall. 121 // 2. We could transform the definition to take a va_list instead of an 122 // actual variable argument list, then have the thunks (including a 123 // no-op thunk for the regular definition) call va_start/va_end. 124 // There's a bit of per-call overhead for this solution, but it's 125 // better for codesize if the definition is long. 126 void CodeGenFunction::GenerateVarArgsThunk( 127 llvm::Function *Fn, 128 const CGFunctionInfo &FnInfo, 129 GlobalDecl GD, const ThunkInfo &Thunk) { 130 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 131 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 132 QualType ResultType = FPT->getReturnType(); 133 134 // Get the original function 135 assert(FnInfo.isVariadic()); 136 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 137 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 138 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 139 140 // Clone to thunk. 141 llvm::ValueToValueMapTy VMap; 142 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, 143 /*ModuleLevelChanges=*/false); 144 CGM.getModule().getFunctionList().push_back(NewFn); 145 Fn->replaceAllUsesWith(NewFn); 146 NewFn->takeName(Fn); 147 Fn->eraseFromParent(); 148 Fn = NewFn; 149 150 // "Initialize" CGF (minimally). 151 CurFn = Fn; 152 153 // Get the "this" value 154 llvm::Function::arg_iterator AI = Fn->arg_begin(); 155 if (CGM.ReturnTypeUsesSRet(FnInfo)) 156 ++AI; 157 158 // Find the first store of "this", which will be to the alloca associated 159 // with "this". 160 llvm::Value *ThisPtr = &*AI; 161 llvm::BasicBlock *EntryBB = Fn->begin(); 162 llvm::Instruction *ThisStore = nullptr; 163 for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end(); 164 I != E; I++) { 165 if (isa<llvm::StoreInst>(I) && I->getOperand(0) == ThisPtr) { 166 ThisStore = cast<llvm::StoreInst>(I); 167 break; 168 } 169 } 170 assert(ThisStore && "Store of this should be in entry block?"); 171 // Adjust "this", if necessary. 172 Builder.SetInsertPoint(ThisStore); 173 llvm::Value *AdjustedThisPtr = 174 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 175 ThisStore->setOperand(0, AdjustedThisPtr); 176 177 if (!Thunk.Return.isEmpty()) { 178 // Fix up the returned value, if necessary. 179 for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) { 180 llvm::Instruction *T = I->getTerminator(); 181 if (isa<llvm::ReturnInst>(T)) { 182 RValue RV = RValue::get(T->getOperand(0)); 183 T->eraseFromParent(); 184 Builder.SetInsertPoint(&*I); 185 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 186 Builder.CreateRet(RV.getScalarVal()); 187 break; 188 } 189 } 190 } 191 } 192 193 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 194 const CGFunctionInfo &FnInfo) { 195 assert(!CurGD.getDecl() && "CurGD was already set!"); 196 CurGD = GD; 197 CurFuncIsThunk = true; 198 199 // Build FunctionArgs. 200 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 201 QualType ThisType = MD->getThisType(getContext()); 202 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 203 QualType ResultType = 204 CGM.getCXXABI().HasThisReturn(GD) ? ThisType : FPT->getReturnType(); 205 FunctionArgList FunctionArgs; 206 207 // Create the implicit 'this' parameter declaration. 208 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 209 210 // Add the rest of the parameters. 211 for (FunctionDecl::param_const_iterator I = MD->param_begin(), 212 E = MD->param_end(); 213 I != E; ++I) 214 FunctionArgs.push_back(*I); 215 216 if (isa<CXXDestructorDecl>(MD)) 217 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); 218 219 // Start defining the function. 220 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 221 MD->getLocation(), SourceLocation()); 222 223 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 224 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 225 CXXThisValue = CXXABIThisValue; 226 } 227 228 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee, 229 const ThunkInfo *Thunk) { 230 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 231 "Please use a new CGF for this thunk"); 232 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 233 234 // Adjust the 'this' pointer if necessary 235 llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment( 236 *this, LoadCXXThis(), Thunk->This) 237 : LoadCXXThis(); 238 239 if (CurFnInfo->usesInAlloca()) { 240 // We don't handle return adjusting thunks, because they require us to call 241 // the copy constructor. For now, fall through and pretend the return 242 // adjustment was empty so we don't crash. 243 if (Thunk && !Thunk->Return.isEmpty()) { 244 CGM.ErrorUnsupported( 245 MD, "non-trivial argument copy for return-adjusting thunk"); 246 } 247 EmitMustTailThunk(MD, AdjustedThisPtr, Callee); 248 return; 249 } 250 251 // Start building CallArgs. 252 CallArgList CallArgs; 253 QualType ThisType = MD->getThisType(getContext()); 254 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 255 256 if (isa<CXXDestructorDecl>(MD)) 257 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 258 259 // Add the rest of the arguments. 260 for (const ParmVarDecl *PD : MD->params()) 261 EmitDelegateCallArg(CallArgs, PD, PD->getLocStart()); 262 263 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 264 265 #ifndef NDEBUG 266 const CGFunctionInfo &CallFnInfo = 267 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 268 RequiredArgs::forPrototypePlus(FPT, 1)); 269 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 270 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 271 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 272 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 273 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 274 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 275 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 276 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 277 assert(similar(CallFnInfo.arg_begin()[i].info, 278 CallFnInfo.arg_begin()[i].type, 279 CurFnInfo->arg_begin()[i].info, 280 CurFnInfo->arg_begin()[i].type)); 281 #endif 282 283 // Determine whether we have a return value slot to use. 284 QualType ResultType = 285 CGM.getCXXABI().HasThisReturn(CurGD) ? ThisType : FPT->getReturnType(); 286 ReturnValueSlot Slot; 287 if (!ResultType->isVoidType() && 288 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 289 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 290 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 291 292 // Now emit our call. 293 llvm::Instruction *CallOrInvoke; 294 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke); 295 296 // Consider return adjustment if we have ThunkInfo. 297 if (Thunk && !Thunk->Return.isEmpty()) 298 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 299 300 // Emit return. 301 if (!ResultType->isVoidType() && Slot.isNull()) 302 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 303 304 // Disable the final ARC autorelease. 305 AutoreleaseResult = false; 306 307 FinishFunction(); 308 } 309 310 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 311 llvm::Value *AdjustedThisPtr, 312 llvm::Value *Callee) { 313 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 314 // to translate AST arguments into LLVM IR arguments. For thunks, we know 315 // that the caller prototype more or less matches the callee prototype with 316 // the exception of 'this'. 317 SmallVector<llvm::Value *, 8> Args; 318 for (llvm::Argument &A : CurFn->args()) 319 Args.push_back(&A); 320 321 // Set the adjusted 'this' pointer. 322 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 323 if (ThisAI.isDirect()) { 324 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 325 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 326 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 327 if (ThisType != AdjustedThisPtr->getType()) 328 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 329 Args[ThisArgNo] = AdjustedThisPtr; 330 } else { 331 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 332 llvm::Value *ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 333 llvm::Type *ThisType = 334 cast<llvm::PointerType>(ThisAddr->getType())->getElementType(); 335 if (ThisType != AdjustedThisPtr->getType()) 336 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 337 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 338 } 339 340 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 341 // don't actually want to run them. 342 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 343 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 344 345 // Apply the standard set of call attributes. 346 unsigned CallingConv; 347 CodeGen::AttributeListType AttributeList; 348 CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv, 349 /*AttrOnCallSite=*/true); 350 llvm::AttributeSet Attrs = 351 llvm::AttributeSet::get(getLLVMContext(), AttributeList); 352 Call->setAttributes(Attrs); 353 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 354 355 if (Call->getType()->isVoidTy()) 356 Builder.CreateRetVoid(); 357 else 358 Builder.CreateRet(Call); 359 360 // Finish the function to maintain CodeGenFunction invariants. 361 // FIXME: Don't emit unreachable code. 362 EmitBlock(createBasicBlock()); 363 FinishFunction(); 364 } 365 366 void CodeGenFunction::GenerateThunk(llvm::Function *Fn, 367 const CGFunctionInfo &FnInfo, 368 GlobalDecl GD, const ThunkInfo &Thunk) { 369 StartThunk(Fn, GD, FnInfo); 370 371 // Get our callee. 372 llvm::Type *Ty = 373 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 374 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 375 376 // Make the call and return the result. 377 EmitCallAndReturnForThunk(Callee, &Thunk); 378 379 // Set the right linkage. 380 CGM.setFunctionLinkage(GD, Fn); 381 382 // Set the right visibility. 383 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 384 setThunkVisibility(CGM, MD, Thunk, Fn); 385 } 386 387 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 388 bool ForVTable) { 389 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 390 391 // FIXME: re-use FnInfo in this computation. 392 llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk); 393 llvm::GlobalValue *Entry; 394 395 // Strip off a bitcast if we got one back. 396 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) { 397 assert(CE->getOpcode() == llvm::Instruction::BitCast); 398 Entry = cast<llvm::GlobalValue>(CE->getOperand(0)); 399 } else { 400 Entry = cast<llvm::GlobalValue>(C); 401 } 402 403 // There's already a declaration with the same name, check if it has the same 404 // type or if we need to replace it. 405 if (Entry->getType()->getElementType() != 406 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 407 llvm::GlobalValue *OldThunkFn = Entry; 408 409 // If the types mismatch then we have to rewrite the definition. 410 assert(OldThunkFn->isDeclaration() && 411 "Shouldn't replace non-declaration"); 412 413 // Remove the name from the old thunk function and get a new thunk. 414 OldThunkFn->setName(StringRef()); 415 Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk)); 416 417 // If needed, replace the old thunk with a bitcast. 418 if (!OldThunkFn->use_empty()) { 419 llvm::Constant *NewPtrForOldDecl = 420 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 421 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 422 } 423 424 // Remove the old thunk. 425 OldThunkFn->eraseFromParent(); 426 } 427 428 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 429 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 430 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 431 432 if (!ThunkFn->isDeclaration()) { 433 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 434 // There is already a thunk emitted for this function, do nothing. 435 return; 436 } 437 438 // Change the linkage. 439 CGM.setFunctionLinkage(GD, ThunkFn); 440 return; 441 } 442 443 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 444 445 if (ThunkFn->isVarArg()) { 446 // Varargs thunks are special; we can't just generate a call because 447 // we can't copy the varargs. Our implementation is rather 448 // expensive/sucky at the moment, so don't generate the thunk unless 449 // we have to. 450 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 451 if (!UseAvailableExternallyLinkage) { 452 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 453 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 454 !Thunk.Return.isEmpty()); 455 } 456 } else { 457 // Normal thunk body generation. 458 CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk); 459 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 460 !Thunk.Return.isEmpty()); 461 } 462 } 463 464 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 465 const ThunkInfo &Thunk) { 466 // If the ABI has key functions, only the TU with the key function should emit 467 // the thunk. However, we can allow inlining of thunks if we emit them with 468 // available_externally linkage together with vtables when optimizations are 469 // enabled. 470 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 471 !CGM.getCodeGenOpts().OptimizationLevel) 472 return; 473 474 // We can't emit thunks for member functions with incomplete types. 475 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 476 if (!CGM.getTypes().isFuncTypeConvertible( 477 MD->getType()->castAs<FunctionType>())) 478 return; 479 480 emitThunk(GD, Thunk, /*ForVTable=*/true); 481 } 482 483 void CodeGenVTables::EmitThunks(GlobalDecl GD) 484 { 485 const CXXMethodDecl *MD = 486 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 487 488 // We don't need to generate thunks for the base destructor. 489 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 490 return; 491 492 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 493 VTContext->getThunkInfo(GD); 494 495 if (!ThunkInfoVector) 496 return; 497 498 for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I) 499 emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false); 500 } 501 502 llvm::Constant *CodeGenVTables::CreateVTableInitializer( 503 const CXXRecordDecl *RD, const VTableComponent *Components, 504 unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks, 505 unsigned NumVTableThunks, llvm::Constant *RTTI) { 506 SmallVector<llvm::Constant *, 64> Inits; 507 508 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 509 510 llvm::Type *PtrDiffTy = 511 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 512 513 unsigned NextVTableThunkIndex = 0; 514 515 llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr; 516 517 for (unsigned I = 0; I != NumComponents; ++I) { 518 VTableComponent Component = Components[I]; 519 520 llvm::Constant *Init = nullptr; 521 522 switch (Component.getKind()) { 523 case VTableComponent::CK_VCallOffset: 524 Init = llvm::ConstantInt::get(PtrDiffTy, 525 Component.getVCallOffset().getQuantity()); 526 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 527 break; 528 case VTableComponent::CK_VBaseOffset: 529 Init = llvm::ConstantInt::get(PtrDiffTy, 530 Component.getVBaseOffset().getQuantity()); 531 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 532 break; 533 case VTableComponent::CK_OffsetToTop: 534 Init = llvm::ConstantInt::get(PtrDiffTy, 535 Component.getOffsetToTop().getQuantity()); 536 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 537 break; 538 case VTableComponent::CK_RTTI: 539 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 540 break; 541 case VTableComponent::CK_FunctionPointer: 542 case VTableComponent::CK_CompleteDtorPointer: 543 case VTableComponent::CK_DeletingDtorPointer: { 544 GlobalDecl GD; 545 546 // Get the right global decl. 547 switch (Component.getKind()) { 548 default: 549 llvm_unreachable("Unexpected vtable component kind"); 550 case VTableComponent::CK_FunctionPointer: 551 GD = Component.getFunctionDecl(); 552 break; 553 case VTableComponent::CK_CompleteDtorPointer: 554 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 555 break; 556 case VTableComponent::CK_DeletingDtorPointer: 557 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 558 break; 559 } 560 561 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 562 // We have a pure virtual member function. 563 if (!PureVirtualFn) { 564 llvm::FunctionType *Ty = 565 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 566 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); 567 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); 568 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 569 CGM.Int8PtrTy); 570 } 571 Init = PureVirtualFn; 572 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 573 if (!DeletedVirtualFn) { 574 llvm::FunctionType *Ty = 575 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 576 StringRef DeletedCallName = 577 CGM.getCXXABI().GetDeletedVirtualCallName(); 578 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); 579 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, 580 CGM.Int8PtrTy); 581 } 582 Init = DeletedVirtualFn; 583 } else { 584 // Check if we should use a thunk. 585 if (NextVTableThunkIndex < NumVTableThunks && 586 VTableThunks[NextVTableThunkIndex].first == I) { 587 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 588 589 maybeEmitThunkForVTable(GD, Thunk); 590 Init = CGM.GetAddrOfThunk(GD, Thunk); 591 592 NextVTableThunkIndex++; 593 } else { 594 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 595 596 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 597 } 598 599 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 600 } 601 break; 602 } 603 604 case VTableComponent::CK_UnusedFunctionPointer: 605 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 606 break; 607 }; 608 609 Inits.push_back(Init); 610 } 611 612 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 613 return llvm::ConstantArray::get(ArrayType, Inits); 614 } 615 616 llvm::GlobalVariable * 617 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 618 const BaseSubobject &Base, 619 bool BaseIsVirtual, 620 llvm::GlobalVariable::LinkageTypes Linkage, 621 VTableAddressPointsMapTy& AddressPoints) { 622 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 623 DI->completeClassData(Base.getBase()); 624 625 std::unique_ptr<VTableLayout> VTLayout( 626 getItaniumVTableContext().createConstructionVTableLayout( 627 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 628 629 // Add the address points. 630 AddressPoints = VTLayout->getAddressPoints(); 631 632 // Get the mangled construction vtable name. 633 SmallString<256> OutName; 634 llvm::raw_svector_ostream Out(OutName); 635 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 636 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 637 Base.getBase(), Out); 638 Out.flush(); 639 StringRef Name = OutName.str(); 640 641 llvm::ArrayType *ArrayType = 642 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 643 644 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 645 // guarantee that they actually will be available externally. Instead, when 646 // emitting an available_externally VTT, we provide references to an internal 647 // linkage construction vtable. The ABI only requires complete-object vtables 648 // to be the same for all instances of a type, not construction vtables. 649 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 650 Linkage = llvm::GlobalVariable::InternalLinkage; 651 652 // Create the variable that will hold the construction vtable. 653 llvm::GlobalVariable *VTable = 654 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 655 CGM.setGlobalVisibility(VTable, RD); 656 657 // V-tables are always unnamed_addr. 658 VTable->setUnnamedAddr(true); 659 660 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 661 CGM.getContext().getTagDeclType(Base.getBase())); 662 663 // Create and set the initializer. 664 llvm::Constant *Init = CreateVTableInitializer( 665 Base.getBase(), VTLayout->vtable_component_begin(), 666 VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(), 667 VTLayout->getNumVTableThunks(), RTTI); 668 VTable->setInitializer(Init); 669 670 return VTable; 671 } 672 673 /// Compute the required linkage of the v-table for the given class. 674 /// 675 /// Note that we only call this at the end of the translation unit. 676 llvm::GlobalVariable::LinkageTypes 677 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 678 if (!RD->isExternallyVisible()) 679 return llvm::GlobalVariable::InternalLinkage; 680 681 // We're at the end of the translation unit, so the current key 682 // function is fully correct. 683 if (const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD)) { 684 // If this class has a key function, use that to determine the 685 // linkage of the vtable. 686 const FunctionDecl *def = nullptr; 687 if (keyFunction->hasBody(def)) 688 keyFunction = cast<CXXMethodDecl>(def); 689 690 switch (keyFunction->getTemplateSpecializationKind()) { 691 case TSK_Undeclared: 692 case TSK_ExplicitSpecialization: 693 assert(def && "Should not have been asked to emit this"); 694 if (keyFunction->isInlined()) 695 return !Context.getLangOpts().AppleKext ? 696 llvm::GlobalVariable::LinkOnceODRLinkage : 697 llvm::Function::InternalLinkage; 698 699 return llvm::GlobalVariable::ExternalLinkage; 700 701 case TSK_ImplicitInstantiation: 702 return !Context.getLangOpts().AppleKext ? 703 llvm::GlobalVariable::LinkOnceODRLinkage : 704 llvm::Function::InternalLinkage; 705 706 case TSK_ExplicitInstantiationDefinition: 707 return !Context.getLangOpts().AppleKext ? 708 llvm::GlobalVariable::WeakODRLinkage : 709 llvm::Function::InternalLinkage; 710 711 case TSK_ExplicitInstantiationDeclaration: 712 llvm_unreachable("Should not have been asked to emit this"); 713 } 714 } 715 716 // -fapple-kext mode does not support weak linkage, so we must use 717 // internal linkage. 718 if (Context.getLangOpts().AppleKext) 719 return llvm::Function::InternalLinkage; 720 721 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 722 llvm::GlobalValue::LinkOnceODRLinkage; 723 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 724 llvm::GlobalValue::WeakODRLinkage; 725 if (RD->hasAttr<DLLExportAttr>()) { 726 // Cannot discard exported vtables. 727 DiscardableODRLinkage = NonDiscardableODRLinkage; 728 } else if (RD->hasAttr<DLLImportAttr>()) { 729 // Imported vtables are available externally. 730 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 731 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 732 } 733 734 switch (RD->getTemplateSpecializationKind()) { 735 case TSK_Undeclared: 736 case TSK_ExplicitSpecialization: 737 case TSK_ImplicitInstantiation: 738 return DiscardableODRLinkage; 739 740 case TSK_ExplicitInstantiationDeclaration: 741 llvm_unreachable("Should not have been asked to emit this"); 742 743 case TSK_ExplicitInstantiationDefinition: 744 return NonDiscardableODRLinkage; 745 } 746 747 llvm_unreachable("Invalid TemplateSpecializationKind!"); 748 } 749 750 /// This is a callback from Sema to tell us that it believes that a 751 /// particular v-table is required to be emitted in this translation 752 /// unit. 753 /// 754 /// The reason we don't simply trust this callback is because Sema 755 /// will happily report that something is used even when it's used 756 /// only in code that we don't actually have to emit. 757 /// 758 /// \param isRequired - if true, the v-table is mandatory, e.g. 759 /// because the translation unit defines the key function 760 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass, bool isRequired) { 761 if (!isRequired) return; 762 763 VTables.GenerateClassData(theClass); 764 } 765 766 void 767 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 768 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 769 DI->completeClassData(RD); 770 771 if (RD->getNumVBases()) 772 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 773 774 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 775 } 776 777 /// At this point in the translation unit, does it appear that can we 778 /// rely on the vtable being defined elsewhere in the program? 779 /// 780 /// The response is really only definitive when called at the end of 781 /// the translation unit. 782 /// 783 /// The only semantic restriction here is that the object file should 784 /// not contain a v-table definition when that v-table is defined 785 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 786 /// v-tables when unnecessary. 787 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 788 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 789 790 // If we have an explicit instantiation declaration (and not a 791 // definition), the v-table is defined elsewhere. 792 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 793 if (TSK == TSK_ExplicitInstantiationDeclaration) 794 return true; 795 796 // Otherwise, if the class is an instantiated template, the 797 // v-table must be defined here. 798 if (TSK == TSK_ImplicitInstantiation || 799 TSK == TSK_ExplicitInstantiationDefinition) 800 return false; 801 802 // Otherwise, if the class doesn't have a key function (possibly 803 // anymore), the v-table must be defined here. 804 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 805 if (!keyFunction) 806 return false; 807 808 // Otherwise, if we don't have a definition of the key function, the 809 // v-table must be defined somewhere else. 810 return !keyFunction->hasBody(); 811 } 812 813 /// Given that we're currently at the end of the translation unit, and 814 /// we've emitted a reference to the v-table for this class, should 815 /// we define that v-table? 816 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 817 const CXXRecordDecl *RD) { 818 return !CGM.getVTables().isVTableExternal(RD); 819 } 820 821 /// Given that at some point we emitted a reference to one or more 822 /// v-tables, and that we are now at the end of the translation unit, 823 /// decide whether we should emit them. 824 void CodeGenModule::EmitDeferredVTables() { 825 #ifndef NDEBUG 826 // Remember the size of DeferredVTables, because we're going to assume 827 // that this entire operation doesn't modify it. 828 size_t savedSize = DeferredVTables.size(); 829 #endif 830 831 typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator; 832 for (const_iterator i = DeferredVTables.begin(), 833 e = DeferredVTables.end(); i != e; ++i) { 834 const CXXRecordDecl *RD = *i; 835 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 836 VTables.GenerateClassData(RD); 837 } 838 839 assert(savedSize == DeferredVTables.size() && 840 "deferred extra v-tables during v-table emission?"); 841 DeferredVTables.clear(); 842 } 843