1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/Support/Format.h" 22 #include "llvm/Transforms/Utils/Cloning.h" 23 #include <algorithm> 24 #include <cstdio> 25 26 using namespace clang; 27 using namespace CodeGen; 28 29 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 30 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 31 32 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 33 const ThunkInfo &Thunk) { 34 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 35 36 // Compute the mangled name. 37 SmallString<256> Name; 38 llvm::raw_svector_ostream Out(Name); 39 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 40 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 41 Thunk.This, Out); 42 else 43 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 44 45 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 46 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, 47 /*DontDefer=*/true, /*IsThunk=*/true); 48 } 49 50 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 51 const ThunkInfo &Thunk, llvm::Function *Fn) { 52 CGM.setGlobalVisibility(Fn, MD); 53 } 54 55 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 56 llvm::Function *ThunkFn, bool ForVTable, 57 GlobalDecl GD) { 58 CGM.setFunctionLinkage(GD, ThunkFn); 59 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 60 !Thunk.Return.isEmpty()); 61 62 // Set the right visibility. 63 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 64 setThunkVisibility(CGM, MD, Thunk, ThunkFn); 65 66 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 67 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 68 } 69 70 #ifndef NDEBUG 71 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 72 const ABIArgInfo &infoR, CanQualType typeR) { 73 return (infoL.getKind() == infoR.getKind() && 74 (typeL == typeR || 75 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 76 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 77 } 78 #endif 79 80 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 81 QualType ResultType, RValue RV, 82 const ThunkInfo &Thunk) { 83 // Emit the return adjustment. 84 bool NullCheckValue = !ResultType->isReferenceType(); 85 86 llvm::BasicBlock *AdjustNull = nullptr; 87 llvm::BasicBlock *AdjustNotNull = nullptr; 88 llvm::BasicBlock *AdjustEnd = nullptr; 89 90 llvm::Value *ReturnValue = RV.getScalarVal(); 91 92 if (NullCheckValue) { 93 AdjustNull = CGF.createBasicBlock("adjust.null"); 94 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 95 AdjustEnd = CGF.createBasicBlock("adjust.end"); 96 97 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 98 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 99 CGF.EmitBlock(AdjustNotNull); 100 } 101 102 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 103 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 104 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 105 Address(ReturnValue, ClassAlign), 106 Thunk.Return); 107 108 if (NullCheckValue) { 109 CGF.Builder.CreateBr(AdjustEnd); 110 CGF.EmitBlock(AdjustNull); 111 CGF.Builder.CreateBr(AdjustEnd); 112 CGF.EmitBlock(AdjustEnd); 113 114 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 115 PHI->addIncoming(ReturnValue, AdjustNotNull); 116 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 117 AdjustNull); 118 ReturnValue = PHI; 119 } 120 121 return RValue::get(ReturnValue); 122 } 123 124 // This function does roughly the same thing as GenerateThunk, but in a 125 // very different way, so that va_start and va_end work correctly. 126 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 127 // a function, and that there is an alloca built in the entry block 128 // for all accesses to "this". 129 // FIXME: This function assumes there is only one "ret" statement per function. 130 // FIXME: Cloning isn't correct in the presence of indirect goto! 131 // FIXME: This implementation of thunks bloats codesize by duplicating the 132 // function definition. There are alternatives: 133 // 1. Add some sort of stub support to LLVM for cases where we can 134 // do a this adjustment, then a sibcall. 135 // 2. We could transform the definition to take a va_list instead of an 136 // actual variable argument list, then have the thunks (including a 137 // no-op thunk for the regular definition) call va_start/va_end. 138 // There's a bit of per-call overhead for this solution, but it's 139 // better for codesize if the definition is long. 140 llvm::Function * 141 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 142 const CGFunctionInfo &FnInfo, 143 GlobalDecl GD, const ThunkInfo &Thunk) { 144 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 145 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 146 QualType ResultType = FPT->getReturnType(); 147 148 // Get the original function 149 assert(FnInfo.isVariadic()); 150 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 151 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 152 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 153 154 // Clone to thunk. 155 llvm::ValueToValueMapTy VMap; 156 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 157 Fn->replaceAllUsesWith(NewFn); 158 NewFn->takeName(Fn); 159 Fn->eraseFromParent(); 160 Fn = NewFn; 161 162 // "Initialize" CGF (minimally). 163 CurFn = Fn; 164 165 // Get the "this" value 166 llvm::Function::arg_iterator AI = Fn->arg_begin(); 167 if (CGM.ReturnTypeUsesSRet(FnInfo)) 168 ++AI; 169 170 // Find the first store of "this", which will be to the alloca associated 171 // with "this". 172 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 173 llvm::BasicBlock *EntryBB = &Fn->front(); 174 llvm::BasicBlock::iterator ThisStore = 175 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 176 return isa<llvm::StoreInst>(I) && 177 I.getOperand(0) == ThisPtr.getPointer(); 178 }); 179 assert(ThisStore != EntryBB->end() && 180 "Store of this should be in entry block?"); 181 // Adjust "this", if necessary. 182 Builder.SetInsertPoint(&*ThisStore); 183 llvm::Value *AdjustedThisPtr = 184 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 185 ThisStore->setOperand(0, AdjustedThisPtr); 186 187 if (!Thunk.Return.isEmpty()) { 188 // Fix up the returned value, if necessary. 189 for (llvm::BasicBlock &BB : *Fn) { 190 llvm::Instruction *T = BB.getTerminator(); 191 if (isa<llvm::ReturnInst>(T)) { 192 RValue RV = RValue::get(T->getOperand(0)); 193 T->eraseFromParent(); 194 Builder.SetInsertPoint(&BB); 195 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 196 Builder.CreateRet(RV.getScalarVal()); 197 break; 198 } 199 } 200 } 201 202 return Fn; 203 } 204 205 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 206 const CGFunctionInfo &FnInfo) { 207 assert(!CurGD.getDecl() && "CurGD was already set!"); 208 CurGD = GD; 209 CurFuncIsThunk = true; 210 211 // Build FunctionArgs. 212 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 213 QualType ThisType = MD->getThisType(getContext()); 214 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 215 QualType ResultType = CGM.getCXXABI().HasThisReturn(GD) 216 ? ThisType 217 : CGM.getCXXABI().hasMostDerivedReturn(GD) 218 ? CGM.getContext().VoidPtrTy 219 : FPT->getReturnType(); 220 FunctionArgList FunctionArgs; 221 222 // Create the implicit 'this' parameter declaration. 223 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 224 225 // Add the rest of the parameters. 226 FunctionArgs.append(MD->param_begin(), MD->param_end()); 227 228 if (isa<CXXDestructorDecl>(MD)) 229 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); 230 231 // Start defining the function. 232 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 233 MD->getLocation(), MD->getLocation()); 234 235 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 236 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 237 CXXThisValue = CXXABIThisValue; 238 CurCodeDecl = MD; 239 CurFuncDecl = MD; 240 } 241 242 void CodeGenFunction::FinishThunk() { 243 // Clear these to restore the invariants expected by 244 // StartFunction/FinishFunction. 245 CurCodeDecl = nullptr; 246 CurFuncDecl = nullptr; 247 248 FinishFunction(); 249 } 250 251 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee, 252 const ThunkInfo *Thunk) { 253 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 254 "Please use a new CGF for this thunk"); 255 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 256 257 // Adjust the 'this' pointer if necessary 258 llvm::Value *AdjustedThisPtr = 259 Thunk ? CGM.getCXXABI().performThisAdjustment( 260 *this, LoadCXXThisAddress(), Thunk->This) 261 : LoadCXXThis(); 262 263 if (CurFnInfo->usesInAlloca()) { 264 // We don't handle return adjusting thunks, because they require us to call 265 // the copy constructor. For now, fall through and pretend the return 266 // adjustment was empty so we don't crash. 267 if (Thunk && !Thunk->Return.isEmpty()) { 268 CGM.ErrorUnsupported( 269 MD, "non-trivial argument copy for return-adjusting thunk"); 270 } 271 EmitMustTailThunk(MD, AdjustedThisPtr, Callee); 272 return; 273 } 274 275 // Start building CallArgs. 276 CallArgList CallArgs; 277 QualType ThisType = MD->getThisType(getContext()); 278 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 279 280 if (isa<CXXDestructorDecl>(MD)) 281 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 282 283 // Add the rest of the arguments. 284 for (const ParmVarDecl *PD : MD->parameters()) 285 EmitDelegateCallArg(CallArgs, PD, PD->getLocStart()); 286 287 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 288 289 #ifndef NDEBUG 290 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 291 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1, MD)); 292 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 293 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 294 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 295 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 296 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 297 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 298 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 299 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 300 assert(similar(CallFnInfo.arg_begin()[i].info, 301 CallFnInfo.arg_begin()[i].type, 302 CurFnInfo->arg_begin()[i].info, 303 CurFnInfo->arg_begin()[i].type)); 304 #endif 305 306 // Determine whether we have a return value slot to use. 307 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 308 ? ThisType 309 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 310 ? CGM.getContext().VoidPtrTy 311 : FPT->getReturnType(); 312 ReturnValueSlot Slot; 313 if (!ResultType->isVoidType() && 314 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 315 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 316 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 317 318 // Now emit our call. 319 llvm::Instruction *CallOrInvoke; 320 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke); 321 322 // Consider return adjustment if we have ThunkInfo. 323 if (Thunk && !Thunk->Return.isEmpty()) 324 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 325 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 326 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 327 328 // Emit return. 329 if (!ResultType->isVoidType() && Slot.isNull()) 330 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 331 332 // Disable the final ARC autorelease. 333 AutoreleaseResult = false; 334 335 FinishThunk(); 336 } 337 338 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 339 llvm::Value *AdjustedThisPtr, 340 llvm::Value *Callee) { 341 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 342 // to translate AST arguments into LLVM IR arguments. For thunks, we know 343 // that the caller prototype more or less matches the callee prototype with 344 // the exception of 'this'. 345 SmallVector<llvm::Value *, 8> Args; 346 for (llvm::Argument &A : CurFn->args()) 347 Args.push_back(&A); 348 349 // Set the adjusted 'this' pointer. 350 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 351 if (ThisAI.isDirect()) { 352 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 353 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 354 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 355 if (ThisType != AdjustedThisPtr->getType()) 356 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 357 Args[ThisArgNo] = AdjustedThisPtr; 358 } else { 359 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 360 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 361 llvm::Type *ThisType = ThisAddr.getElementType(); 362 if (ThisType != AdjustedThisPtr->getType()) 363 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 364 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 365 } 366 367 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 368 // don't actually want to run them. 369 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 370 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 371 372 // Apply the standard set of call attributes. 373 unsigned CallingConv; 374 CodeGen::AttributeListType AttributeList; 375 CGM.ConstructAttributeList(Callee->getName(), *CurFnInfo, MD, AttributeList, 376 CallingConv, /*AttrOnCallSite=*/true); 377 llvm::AttributeSet Attrs = 378 llvm::AttributeSet::get(getLLVMContext(), AttributeList); 379 Call->setAttributes(Attrs); 380 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 381 382 if (Call->getType()->isVoidTy()) 383 Builder.CreateRetVoid(); 384 else 385 Builder.CreateRet(Call); 386 387 // Finish the function to maintain CodeGenFunction invariants. 388 // FIXME: Don't emit unreachable code. 389 EmitBlock(createBasicBlock()); 390 FinishFunction(); 391 } 392 393 void CodeGenFunction::generateThunk(llvm::Function *Fn, 394 const CGFunctionInfo &FnInfo, 395 GlobalDecl GD, const ThunkInfo &Thunk) { 396 StartThunk(Fn, GD, FnInfo); 397 398 // Get our callee. 399 llvm::Type *Ty = 400 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 401 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 402 403 // Make the call and return the result. 404 EmitCallAndReturnForThunk(Callee, &Thunk); 405 } 406 407 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 408 bool ForVTable) { 409 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 410 411 // FIXME: re-use FnInfo in this computation. 412 llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk); 413 llvm::GlobalValue *Entry; 414 415 // Strip off a bitcast if we got one back. 416 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) { 417 assert(CE->getOpcode() == llvm::Instruction::BitCast); 418 Entry = cast<llvm::GlobalValue>(CE->getOperand(0)); 419 } else { 420 Entry = cast<llvm::GlobalValue>(C); 421 } 422 423 // There's already a declaration with the same name, check if it has the same 424 // type or if we need to replace it. 425 if (Entry->getType()->getElementType() != 426 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 427 llvm::GlobalValue *OldThunkFn = Entry; 428 429 // If the types mismatch then we have to rewrite the definition. 430 assert(OldThunkFn->isDeclaration() && 431 "Shouldn't replace non-declaration"); 432 433 // Remove the name from the old thunk function and get a new thunk. 434 OldThunkFn->setName(StringRef()); 435 Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk)); 436 437 // If needed, replace the old thunk with a bitcast. 438 if (!OldThunkFn->use_empty()) { 439 llvm::Constant *NewPtrForOldDecl = 440 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 441 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 442 } 443 444 // Remove the old thunk. 445 OldThunkFn->eraseFromParent(); 446 } 447 448 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 449 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 450 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 451 452 if (!ThunkFn->isDeclaration()) { 453 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 454 // There is already a thunk emitted for this function, do nothing. 455 return; 456 } 457 458 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 459 return; 460 } 461 462 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 463 464 if (ThunkFn->isVarArg()) { 465 // Varargs thunks are special; we can't just generate a call because 466 // we can't copy the varargs. Our implementation is rather 467 // expensive/sucky at the moment, so don't generate the thunk unless 468 // we have to. 469 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 470 if (UseAvailableExternallyLinkage) 471 return; 472 ThunkFn = 473 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 474 } else { 475 // Normal thunk body generation. 476 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk); 477 } 478 479 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 480 } 481 482 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 483 const ThunkInfo &Thunk) { 484 // If the ABI has key functions, only the TU with the key function should emit 485 // the thunk. However, we can allow inlining of thunks if we emit them with 486 // available_externally linkage together with vtables when optimizations are 487 // enabled. 488 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 489 !CGM.getCodeGenOpts().OptimizationLevel) 490 return; 491 492 // We can't emit thunks for member functions with incomplete types. 493 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 494 if (!CGM.getTypes().isFuncTypeConvertible( 495 MD->getType()->castAs<FunctionType>())) 496 return; 497 498 emitThunk(GD, Thunk, /*ForVTable=*/true); 499 } 500 501 void CodeGenVTables::EmitThunks(GlobalDecl GD) 502 { 503 const CXXMethodDecl *MD = 504 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 505 506 // We don't need to generate thunks for the base destructor. 507 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 508 return; 509 510 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 511 VTContext->getThunkInfo(GD); 512 513 if (!ThunkInfoVector) 514 return; 515 516 for (const ThunkInfo& Thunk : *ThunkInfoVector) 517 emitThunk(GD, Thunk, /*ForVTable=*/false); 518 } 519 520 llvm::Constant *CodeGenVTables::CreateVTableComponent( 521 unsigned Idx, const VTableLayout &VTLayout, llvm::Constant *RTTI, 522 unsigned &NextVTableThunkIndex) { 523 VTableComponent Component = VTLayout.vtable_components()[Idx]; 524 525 auto OffsetConstant = [&](CharUnits Offset) { 526 return llvm::ConstantExpr::getIntToPtr( 527 llvm::ConstantInt::get(CGM.PtrDiffTy, Offset.getQuantity()), 528 CGM.Int8PtrTy); 529 }; 530 531 switch (Component.getKind()) { 532 case VTableComponent::CK_VCallOffset: 533 return OffsetConstant(Component.getVCallOffset()); 534 535 case VTableComponent::CK_VBaseOffset: 536 return OffsetConstant(Component.getVBaseOffset()); 537 538 case VTableComponent::CK_OffsetToTop: 539 return OffsetConstant(Component.getOffsetToTop()); 540 541 case VTableComponent::CK_RTTI: 542 return RTTI; 543 544 case VTableComponent::CK_FunctionPointer: 545 case VTableComponent::CK_CompleteDtorPointer: 546 case VTableComponent::CK_DeletingDtorPointer: { 547 GlobalDecl GD; 548 549 // Get the right global decl. 550 switch (Component.getKind()) { 551 default: 552 llvm_unreachable("Unexpected vtable component kind"); 553 case VTableComponent::CK_FunctionPointer: 554 GD = Component.getFunctionDecl(); 555 break; 556 case VTableComponent::CK_CompleteDtorPointer: 557 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 558 break; 559 case VTableComponent::CK_DeletingDtorPointer: 560 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 561 break; 562 } 563 564 if (CGM.getLangOpts().CUDA) { 565 // Emit NULL for methods we can't codegen on this 566 // side. Otherwise we'd end up with vtable with unresolved 567 // references. 568 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 569 // OK on device side: functions w/ __device__ attribute 570 // OK on host side: anything except __device__-only functions. 571 bool CanEmitMethod = 572 CGM.getLangOpts().CUDAIsDevice 573 ? MD->hasAttr<CUDADeviceAttr>() 574 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 575 if (!CanEmitMethod) 576 return llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy); 577 // Method is acceptable, continue processing as usual. 578 } 579 580 auto SpecialVirtualFn = [&](llvm::Constant *&Cache, StringRef Name) { 581 if (!Cache) { 582 llvm::FunctionType *Ty = 583 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 584 Cache = CGM.CreateRuntimeFunction(Ty, Name); 585 if (auto *F = dyn_cast<llvm::Function>(Cache)) 586 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 587 Cache = llvm::ConstantExpr::getBitCast(Cache, CGM.Int8PtrTy); 588 } 589 return Cache; 590 }; 591 592 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) 593 // We have a pure virtual member function. 594 return SpecialVirtualFn(PureVirtualFn, 595 CGM.getCXXABI().GetPureVirtualCallName()); 596 597 if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) 598 return SpecialVirtualFn(DeletedVirtualFn, 599 CGM.getCXXABI().GetDeletedVirtualCallName()); 600 601 // Check if we should use a thunk. 602 if (NextVTableThunkIndex < VTLayout.vtable_thunks().size() && 603 VTLayout.vtable_thunks()[NextVTableThunkIndex].first == Idx) { 604 const ThunkInfo &Thunk = 605 VTLayout.vtable_thunks()[NextVTableThunkIndex].second; 606 607 maybeEmitThunkForVTable(GD, Thunk); 608 NextVTableThunkIndex++; 609 return CGM.GetAddrOfThunk(GD, Thunk); 610 } 611 612 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 613 return CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 614 } 615 616 case VTableComponent::CK_UnusedFunctionPointer: 617 return llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy); 618 } 619 620 llvm_unreachable("Unexpected vtable component kind"); 621 } 622 623 llvm::Constant * 624 CodeGenVTables::CreateVTableInitializer(const VTableLayout &VTLayout, 625 llvm::Constant *RTTI) { 626 SmallVector<llvm::Constant *, 64> Inits; 627 unsigned NextVTableThunkIndex = 0; 628 629 for (unsigned I = 0, E = VTLayout.vtable_components().size(); I != E; ++I) { 630 llvm::Constant *Init = 631 CreateVTableComponent(I, VTLayout, RTTI, NextVTableThunkIndex); 632 Inits.push_back(llvm::ConstantExpr::getBitCast(Init, CGM.Int8PtrTy)); 633 } 634 635 llvm::ArrayType *ArrayType = 636 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout.vtable_components().size()); 637 return llvm::ConstantArray::get(ArrayType, Inits); 638 } 639 640 llvm::GlobalVariable * 641 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 642 const BaseSubobject &Base, 643 bool BaseIsVirtual, 644 llvm::GlobalVariable::LinkageTypes Linkage, 645 VTableAddressPointsMapTy& AddressPoints) { 646 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 647 DI->completeClassData(Base.getBase()); 648 649 std::unique_ptr<VTableLayout> VTLayout( 650 getItaniumVTableContext().createConstructionVTableLayout( 651 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 652 653 // Add the address points. 654 AddressPoints = VTLayout->getAddressPoints(); 655 656 // Get the mangled construction vtable name. 657 SmallString<256> OutName; 658 llvm::raw_svector_ostream Out(OutName); 659 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 660 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 661 Base.getBase(), Out); 662 StringRef Name = OutName.str(); 663 664 llvm::ArrayType *ArrayType = 665 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->vtable_components().size()); 666 667 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 668 // guarantee that they actually will be available externally. Instead, when 669 // emitting an available_externally VTT, we provide references to an internal 670 // linkage construction vtable. The ABI only requires complete-object vtables 671 // to be the same for all instances of a type, not construction vtables. 672 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 673 Linkage = llvm::GlobalVariable::InternalLinkage; 674 675 // Create the variable that will hold the construction vtable. 676 llvm::GlobalVariable *VTable = 677 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 678 CGM.setGlobalVisibility(VTable, RD); 679 680 // V-tables are always unnamed_addr. 681 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 682 683 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 684 CGM.getContext().getTagDeclType(Base.getBase())); 685 686 // Create and set the initializer. 687 llvm::Constant *Init = CreateVTableInitializer(*VTLayout, RTTI); 688 VTable->setInitializer(Init); 689 690 CGM.EmitVTableTypeMetadata(VTable, *VTLayout.get()); 691 692 return VTable; 693 } 694 695 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 696 const CXXRecordDecl *RD) { 697 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 698 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 699 } 700 701 /// Compute the required linkage of the vtable for the given class. 702 /// 703 /// Note that we only call this at the end of the translation unit. 704 llvm::GlobalVariable::LinkageTypes 705 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 706 if (!RD->isExternallyVisible()) 707 return llvm::GlobalVariable::InternalLinkage; 708 709 // We're at the end of the translation unit, so the current key 710 // function is fully correct. 711 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 712 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 713 // If this class has a key function, use that to determine the 714 // linkage of the vtable. 715 const FunctionDecl *def = nullptr; 716 if (keyFunction->hasBody(def)) 717 keyFunction = cast<CXXMethodDecl>(def); 718 719 switch (keyFunction->getTemplateSpecializationKind()) { 720 case TSK_Undeclared: 721 case TSK_ExplicitSpecialization: 722 assert((def || CodeGenOpts.OptimizationLevel > 0) && 723 "Shouldn't query vtable linkage without key function or " 724 "optimizations"); 725 if (!def && CodeGenOpts.OptimizationLevel > 0) 726 return llvm::GlobalVariable::AvailableExternallyLinkage; 727 728 if (keyFunction->isInlined()) 729 return !Context.getLangOpts().AppleKext ? 730 llvm::GlobalVariable::LinkOnceODRLinkage : 731 llvm::Function::InternalLinkage; 732 733 return llvm::GlobalVariable::ExternalLinkage; 734 735 case TSK_ImplicitInstantiation: 736 return !Context.getLangOpts().AppleKext ? 737 llvm::GlobalVariable::LinkOnceODRLinkage : 738 llvm::Function::InternalLinkage; 739 740 case TSK_ExplicitInstantiationDefinition: 741 return !Context.getLangOpts().AppleKext ? 742 llvm::GlobalVariable::WeakODRLinkage : 743 llvm::Function::InternalLinkage; 744 745 case TSK_ExplicitInstantiationDeclaration: 746 llvm_unreachable("Should not have been asked to emit this"); 747 } 748 } 749 750 // -fapple-kext mode does not support weak linkage, so we must use 751 // internal linkage. 752 if (Context.getLangOpts().AppleKext) 753 return llvm::Function::InternalLinkage; 754 755 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 756 llvm::GlobalValue::LinkOnceODRLinkage; 757 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 758 llvm::GlobalValue::WeakODRLinkage; 759 if (RD->hasAttr<DLLExportAttr>()) { 760 // Cannot discard exported vtables. 761 DiscardableODRLinkage = NonDiscardableODRLinkage; 762 } else if (RD->hasAttr<DLLImportAttr>()) { 763 // Imported vtables are available externally. 764 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 765 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 766 } 767 768 switch (RD->getTemplateSpecializationKind()) { 769 case TSK_Undeclared: 770 case TSK_ExplicitSpecialization: 771 case TSK_ImplicitInstantiation: 772 return DiscardableODRLinkage; 773 774 case TSK_ExplicitInstantiationDeclaration: 775 // Explicit instantiations in MSVC do not provide vtables, so we must emit 776 // our own. 777 if (getTarget().getCXXABI().isMicrosoft()) 778 return DiscardableODRLinkage; 779 return shouldEmitAvailableExternallyVTable(*this, RD) 780 ? llvm::GlobalVariable::AvailableExternallyLinkage 781 : llvm::GlobalVariable::ExternalLinkage; 782 783 case TSK_ExplicitInstantiationDefinition: 784 return NonDiscardableODRLinkage; 785 } 786 787 llvm_unreachable("Invalid TemplateSpecializationKind!"); 788 } 789 790 /// This is a callback from Sema to tell us that that a particular vtable is 791 /// required to be emitted in this translation unit. 792 /// 793 /// This is only called for vtables that _must_ be emitted (mainly due to key 794 /// functions). For weak vtables, CodeGen tracks when they are needed and 795 /// emits them as-needed. 796 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 797 VTables.GenerateClassData(theClass); 798 } 799 800 void 801 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 802 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 803 DI->completeClassData(RD); 804 805 if (RD->getNumVBases()) 806 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 807 808 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 809 } 810 811 /// At this point in the translation unit, does it appear that can we 812 /// rely on the vtable being defined elsewhere in the program? 813 /// 814 /// The response is really only definitive when called at the end of 815 /// the translation unit. 816 /// 817 /// The only semantic restriction here is that the object file should 818 /// not contain a vtable definition when that vtable is defined 819 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 820 /// vtables when unnecessary. 821 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 822 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 823 824 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 825 // emit them even if there is an explicit template instantiation. 826 if (CGM.getTarget().getCXXABI().isMicrosoft()) 827 return false; 828 829 // If we have an explicit instantiation declaration (and not a 830 // definition), the vtable is defined elsewhere. 831 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 832 if (TSK == TSK_ExplicitInstantiationDeclaration) 833 return true; 834 835 // Otherwise, if the class is an instantiated template, the 836 // vtable must be defined here. 837 if (TSK == TSK_ImplicitInstantiation || 838 TSK == TSK_ExplicitInstantiationDefinition) 839 return false; 840 841 // Otherwise, if the class doesn't have a key function (possibly 842 // anymore), the vtable must be defined here. 843 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 844 if (!keyFunction) 845 return false; 846 847 // Otherwise, if we don't have a definition of the key function, the 848 // vtable must be defined somewhere else. 849 return !keyFunction->hasBody(); 850 } 851 852 /// Given that we're currently at the end of the translation unit, and 853 /// we've emitted a reference to the vtable for this class, should 854 /// we define that vtable? 855 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 856 const CXXRecordDecl *RD) { 857 // If vtable is internal then it has to be done. 858 if (!CGM.getVTables().isVTableExternal(RD)) 859 return true; 860 861 // If it's external then maybe we will need it as available_externally. 862 return shouldEmitAvailableExternallyVTable(CGM, RD); 863 } 864 865 /// Given that at some point we emitted a reference to one or more 866 /// vtables, and that we are now at the end of the translation unit, 867 /// decide whether we should emit them. 868 void CodeGenModule::EmitDeferredVTables() { 869 #ifndef NDEBUG 870 // Remember the size of DeferredVTables, because we're going to assume 871 // that this entire operation doesn't modify it. 872 size_t savedSize = DeferredVTables.size(); 873 #endif 874 875 for (const CXXRecordDecl *RD : DeferredVTables) 876 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 877 VTables.GenerateClassData(RD); 878 879 assert(savedSize == DeferredVTables.size() && 880 "deferred extra vtables during vtable emission?"); 881 DeferredVTables.clear(); 882 } 883 884 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 885 LinkageInfo LV = RD->getLinkageAndVisibility(); 886 if (!isExternallyVisible(LV.getLinkage())) 887 return true; 888 889 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 890 return false; 891 892 if (getTriple().isOSBinFormatCOFF()) { 893 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 894 return false; 895 } else { 896 if (LV.getVisibility() != HiddenVisibility) 897 return false; 898 } 899 900 if (getCodeGenOpts().LTOVisibilityPublicStd) { 901 const DeclContext *DC = RD; 902 while (1) { 903 auto *D = cast<Decl>(DC); 904 DC = DC->getParent(); 905 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 906 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 907 if (const IdentifierInfo *II = ND->getIdentifier()) 908 if (II->isStr("std") || II->isStr("stdext")) 909 return false; 910 break; 911 } 912 } 913 } 914 915 return true; 916 } 917 918 void CodeGenModule::EmitVTableTypeMetadata(llvm::GlobalVariable *VTable, 919 const VTableLayout &VTLayout) { 920 if (!getCodeGenOpts().PrepareForLTO) 921 return; 922 923 CharUnits PointerWidth = 924 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 925 926 typedef std::pair<const CXXRecordDecl *, unsigned> BSEntry; 927 std::vector<BSEntry> BitsetEntries; 928 // Create a bit set entry for each address point. 929 for (auto &&AP : VTLayout.getAddressPoints()) 930 BitsetEntries.push_back(std::make_pair(AP.first.getBase(), AP.second)); 931 932 // Sort the bit set entries for determinism. 933 std::sort(BitsetEntries.begin(), BitsetEntries.end(), 934 [this](const BSEntry &E1, const BSEntry &E2) { 935 if (&E1 == &E2) 936 return false; 937 938 std::string S1; 939 llvm::raw_string_ostream O1(S1); 940 getCXXABI().getMangleContext().mangleTypeName( 941 QualType(E1.first->getTypeForDecl(), 0), O1); 942 O1.flush(); 943 944 std::string S2; 945 llvm::raw_string_ostream O2(S2); 946 getCXXABI().getMangleContext().mangleTypeName( 947 QualType(E2.first->getTypeForDecl(), 0), O2); 948 O2.flush(); 949 950 if (S1 < S2) 951 return true; 952 if (S1 != S2) 953 return false; 954 955 return E1.second < E2.second; 956 }); 957 958 for (auto BitsetEntry : BitsetEntries) 959 AddVTableTypeMetadata(VTable, PointerWidth * BitsetEntry.second, 960 BitsetEntry.first); 961 } 962