1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Transforms/Utils/Cloning.h" 26 #include <algorithm> 27 #include <cstdio> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 34 35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 36 const ThunkInfo &Thunk) { 37 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 38 39 // Compute the mangled name. 40 SmallString<256> Name; 41 llvm::raw_svector_ostream Out(Name); 42 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 43 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 44 Thunk.This, Out); 45 else 46 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 47 48 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 49 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, 50 /*DontDefer=*/true, /*IsThunk=*/true); 51 } 52 53 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 54 const ThunkInfo &Thunk, llvm::Function *Fn) { 55 CGM.setGlobalVisibility(Fn, MD); 56 } 57 58 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 59 llvm::Function *ThunkFn, bool ForVTable, 60 GlobalDecl GD) { 61 CGM.setFunctionLinkage(GD, ThunkFn); 62 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 63 !Thunk.Return.isEmpty()); 64 65 // Set the right visibility. 66 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 67 setThunkVisibility(CGM, MD, Thunk, ThunkFn); 68 69 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 70 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 71 } 72 73 #ifndef NDEBUG 74 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 75 const ABIArgInfo &infoR, CanQualType typeR) { 76 return (infoL.getKind() == infoR.getKind() && 77 (typeL == typeR || 78 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 79 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 80 } 81 #endif 82 83 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 84 QualType ResultType, RValue RV, 85 const ThunkInfo &Thunk) { 86 // Emit the return adjustment. 87 bool NullCheckValue = !ResultType->isReferenceType(); 88 89 llvm::BasicBlock *AdjustNull = nullptr; 90 llvm::BasicBlock *AdjustNotNull = nullptr; 91 llvm::BasicBlock *AdjustEnd = nullptr; 92 93 llvm::Value *ReturnValue = RV.getScalarVal(); 94 95 if (NullCheckValue) { 96 AdjustNull = CGF.createBasicBlock("adjust.null"); 97 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 98 AdjustEnd = CGF.createBasicBlock("adjust.end"); 99 100 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 101 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 102 CGF.EmitBlock(AdjustNotNull); 103 } 104 105 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 106 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 107 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 108 Address(ReturnValue, ClassAlign), 109 Thunk.Return); 110 111 if (NullCheckValue) { 112 CGF.Builder.CreateBr(AdjustEnd); 113 CGF.EmitBlock(AdjustNull); 114 CGF.Builder.CreateBr(AdjustEnd); 115 CGF.EmitBlock(AdjustEnd); 116 117 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 118 PHI->addIncoming(ReturnValue, AdjustNotNull); 119 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 120 AdjustNull); 121 ReturnValue = PHI; 122 } 123 124 return RValue::get(ReturnValue); 125 } 126 127 // This function does roughly the same thing as GenerateThunk, but in a 128 // very different way, so that va_start and va_end work correctly. 129 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 130 // a function, and that there is an alloca built in the entry block 131 // for all accesses to "this". 132 // FIXME: This function assumes there is only one "ret" statement per function. 133 // FIXME: Cloning isn't correct in the presence of indirect goto! 134 // FIXME: This implementation of thunks bloats codesize by duplicating the 135 // function definition. There are alternatives: 136 // 1. Add some sort of stub support to LLVM for cases where we can 137 // do a this adjustment, then a sibcall. 138 // 2. We could transform the definition to take a va_list instead of an 139 // actual variable argument list, then have the thunks (including a 140 // no-op thunk for the regular definition) call va_start/va_end. 141 // There's a bit of per-call overhead for this solution, but it's 142 // better for codesize if the definition is long. 143 llvm::Function * 144 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 145 const CGFunctionInfo &FnInfo, 146 GlobalDecl GD, const ThunkInfo &Thunk) { 147 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 148 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 149 QualType ResultType = FPT->getReturnType(); 150 151 // Get the original function 152 assert(FnInfo.isVariadic()); 153 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 154 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 155 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 156 157 // Clone to thunk. 158 llvm::ValueToValueMapTy VMap; 159 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 160 Fn->replaceAllUsesWith(NewFn); 161 NewFn->takeName(Fn); 162 Fn->eraseFromParent(); 163 Fn = NewFn; 164 165 // "Initialize" CGF (minimally). 166 CurFn = Fn; 167 168 // Get the "this" value 169 llvm::Function::arg_iterator AI = Fn->arg_begin(); 170 if (CGM.ReturnTypeUsesSRet(FnInfo)) 171 ++AI; 172 173 // Find the first store of "this", which will be to the alloca associated 174 // with "this". 175 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 176 llvm::BasicBlock *EntryBB = &Fn->front(); 177 llvm::BasicBlock::iterator ThisStore = 178 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 179 return isa<llvm::StoreInst>(I) && 180 I.getOperand(0) == ThisPtr.getPointer(); 181 }); 182 assert(ThisStore != EntryBB->end() && 183 "Store of this should be in entry block?"); 184 // Adjust "this", if necessary. 185 Builder.SetInsertPoint(&*ThisStore); 186 llvm::Value *AdjustedThisPtr = 187 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 188 ThisStore->setOperand(0, AdjustedThisPtr); 189 190 if (!Thunk.Return.isEmpty()) { 191 // Fix up the returned value, if necessary. 192 for (llvm::BasicBlock &BB : *Fn) { 193 llvm::Instruction *T = BB.getTerminator(); 194 if (isa<llvm::ReturnInst>(T)) { 195 RValue RV = RValue::get(T->getOperand(0)); 196 T->eraseFromParent(); 197 Builder.SetInsertPoint(&BB); 198 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 199 Builder.CreateRet(RV.getScalarVal()); 200 break; 201 } 202 } 203 } 204 205 return Fn; 206 } 207 208 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 209 const CGFunctionInfo &FnInfo) { 210 assert(!CurGD.getDecl() && "CurGD was already set!"); 211 CurGD = GD; 212 CurFuncIsThunk = true; 213 214 // Build FunctionArgs. 215 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 216 QualType ThisType = MD->getThisType(getContext()); 217 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 218 QualType ResultType = CGM.getCXXABI().HasThisReturn(GD) 219 ? ThisType 220 : CGM.getCXXABI().hasMostDerivedReturn(GD) 221 ? CGM.getContext().VoidPtrTy 222 : FPT->getReturnType(); 223 FunctionArgList FunctionArgs; 224 225 // Create the implicit 'this' parameter declaration. 226 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 227 228 // Add the rest of the parameters. 229 FunctionArgs.append(MD->param_begin(), MD->param_end()); 230 231 if (isa<CXXDestructorDecl>(MD)) 232 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); 233 234 // Start defining the function. 235 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 236 MD->getLocation(), MD->getLocation()); 237 238 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 239 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 240 CXXThisValue = CXXABIThisValue; 241 CurCodeDecl = MD; 242 CurFuncDecl = MD; 243 } 244 245 void CodeGenFunction::FinishThunk() { 246 // Clear these to restore the invariants expected by 247 // StartFunction/FinishFunction. 248 CurCodeDecl = nullptr; 249 CurFuncDecl = nullptr; 250 251 FinishFunction(); 252 } 253 254 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee, 255 const ThunkInfo *Thunk) { 256 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 257 "Please use a new CGF for this thunk"); 258 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 259 260 // Adjust the 'this' pointer if necessary 261 llvm::Value *AdjustedThisPtr = 262 Thunk ? CGM.getCXXABI().performThisAdjustment( 263 *this, LoadCXXThisAddress(), Thunk->This) 264 : LoadCXXThis(); 265 266 if (CurFnInfo->usesInAlloca()) { 267 // We don't handle return adjusting thunks, because they require us to call 268 // the copy constructor. For now, fall through and pretend the return 269 // adjustment was empty so we don't crash. 270 if (Thunk && !Thunk->Return.isEmpty()) { 271 CGM.ErrorUnsupported( 272 MD, "non-trivial argument copy for return-adjusting thunk"); 273 } 274 EmitMustTailThunk(MD, AdjustedThisPtr, Callee); 275 return; 276 } 277 278 // Start building CallArgs. 279 CallArgList CallArgs; 280 QualType ThisType = MD->getThisType(getContext()); 281 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 282 283 if (isa<CXXDestructorDecl>(MD)) 284 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 285 286 // Add the rest of the arguments. 287 for (const ParmVarDecl *PD : MD->params()) 288 EmitDelegateCallArg(CallArgs, PD, PD->getLocStart()); 289 290 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 291 292 #ifndef NDEBUG 293 const CGFunctionInfo &CallFnInfo = 294 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 295 RequiredArgs::forPrototypePlus(FPT, 1)); 296 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 297 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 298 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 299 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 300 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 301 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 302 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 303 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 304 assert(similar(CallFnInfo.arg_begin()[i].info, 305 CallFnInfo.arg_begin()[i].type, 306 CurFnInfo->arg_begin()[i].info, 307 CurFnInfo->arg_begin()[i].type)); 308 #endif 309 310 // Determine whether we have a return value slot to use. 311 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 312 ? ThisType 313 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 314 ? CGM.getContext().VoidPtrTy 315 : FPT->getReturnType(); 316 ReturnValueSlot Slot; 317 if (!ResultType->isVoidType() && 318 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 319 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 320 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 321 322 // Now emit our call. 323 llvm::Instruction *CallOrInvoke; 324 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke); 325 326 // Consider return adjustment if we have ThunkInfo. 327 if (Thunk && !Thunk->Return.isEmpty()) 328 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 329 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 330 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 331 332 // Emit return. 333 if (!ResultType->isVoidType() && Slot.isNull()) 334 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 335 336 // Disable the final ARC autorelease. 337 AutoreleaseResult = false; 338 339 FinishThunk(); 340 } 341 342 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 343 llvm::Value *AdjustedThisPtr, 344 llvm::Value *Callee) { 345 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 346 // to translate AST arguments into LLVM IR arguments. For thunks, we know 347 // that the caller prototype more or less matches the callee prototype with 348 // the exception of 'this'. 349 SmallVector<llvm::Value *, 8> Args; 350 for (llvm::Argument &A : CurFn->args()) 351 Args.push_back(&A); 352 353 // Set the adjusted 'this' pointer. 354 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 355 if (ThisAI.isDirect()) { 356 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 357 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 358 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 359 if (ThisType != AdjustedThisPtr->getType()) 360 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 361 Args[ThisArgNo] = AdjustedThisPtr; 362 } else { 363 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 364 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 365 llvm::Type *ThisType = ThisAddr.getElementType(); 366 if (ThisType != AdjustedThisPtr->getType()) 367 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 368 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 369 } 370 371 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 372 // don't actually want to run them. 373 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 374 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 375 376 // Apply the standard set of call attributes. 377 unsigned CallingConv; 378 CodeGen::AttributeListType AttributeList; 379 CGM.ConstructAttributeList(Callee->getName(), *CurFnInfo, MD, AttributeList, 380 CallingConv, /*AttrOnCallSite=*/true); 381 llvm::AttributeSet Attrs = 382 llvm::AttributeSet::get(getLLVMContext(), AttributeList); 383 Call->setAttributes(Attrs); 384 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 385 386 if (Call->getType()->isVoidTy()) 387 Builder.CreateRetVoid(); 388 else 389 Builder.CreateRet(Call); 390 391 // Finish the function to maintain CodeGenFunction invariants. 392 // FIXME: Don't emit unreachable code. 393 EmitBlock(createBasicBlock()); 394 FinishFunction(); 395 } 396 397 void CodeGenFunction::generateThunk(llvm::Function *Fn, 398 const CGFunctionInfo &FnInfo, 399 GlobalDecl GD, const ThunkInfo &Thunk) { 400 StartThunk(Fn, GD, FnInfo); 401 402 // Get our callee. 403 llvm::Type *Ty = 404 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 405 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 406 407 // Make the call and return the result. 408 EmitCallAndReturnForThunk(Callee, &Thunk); 409 } 410 411 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 412 bool ForVTable) { 413 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 414 415 // FIXME: re-use FnInfo in this computation. 416 llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk); 417 llvm::GlobalValue *Entry; 418 419 // Strip off a bitcast if we got one back. 420 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) { 421 assert(CE->getOpcode() == llvm::Instruction::BitCast); 422 Entry = cast<llvm::GlobalValue>(CE->getOperand(0)); 423 } else { 424 Entry = cast<llvm::GlobalValue>(C); 425 } 426 427 // There's already a declaration with the same name, check if it has the same 428 // type or if we need to replace it. 429 if (Entry->getType()->getElementType() != 430 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 431 llvm::GlobalValue *OldThunkFn = Entry; 432 433 // If the types mismatch then we have to rewrite the definition. 434 assert(OldThunkFn->isDeclaration() && 435 "Shouldn't replace non-declaration"); 436 437 // Remove the name from the old thunk function and get a new thunk. 438 OldThunkFn->setName(StringRef()); 439 Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk)); 440 441 // If needed, replace the old thunk with a bitcast. 442 if (!OldThunkFn->use_empty()) { 443 llvm::Constant *NewPtrForOldDecl = 444 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 445 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 446 } 447 448 // Remove the old thunk. 449 OldThunkFn->eraseFromParent(); 450 } 451 452 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 453 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 454 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 455 456 if (!ThunkFn->isDeclaration()) { 457 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 458 // There is already a thunk emitted for this function, do nothing. 459 return; 460 } 461 462 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 463 return; 464 } 465 466 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 467 468 if (ThunkFn->isVarArg()) { 469 // Varargs thunks are special; we can't just generate a call because 470 // we can't copy the varargs. Our implementation is rather 471 // expensive/sucky at the moment, so don't generate the thunk unless 472 // we have to. 473 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 474 if (UseAvailableExternallyLinkage) 475 return; 476 ThunkFn = 477 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 478 } else { 479 // Normal thunk body generation. 480 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk); 481 } 482 483 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 484 } 485 486 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 487 const ThunkInfo &Thunk) { 488 // If the ABI has key functions, only the TU with the key function should emit 489 // the thunk. However, we can allow inlining of thunks if we emit them with 490 // available_externally linkage together with vtables when optimizations are 491 // enabled. 492 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 493 !CGM.getCodeGenOpts().OptimizationLevel) 494 return; 495 496 // We can't emit thunks for member functions with incomplete types. 497 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 498 if (!CGM.getTypes().isFuncTypeConvertible( 499 MD->getType()->castAs<FunctionType>())) 500 return; 501 502 emitThunk(GD, Thunk, /*ForVTable=*/true); 503 } 504 505 void CodeGenVTables::EmitThunks(GlobalDecl GD) 506 { 507 const CXXMethodDecl *MD = 508 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 509 510 // We don't need to generate thunks for the base destructor. 511 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 512 return; 513 514 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 515 VTContext->getThunkInfo(GD); 516 517 if (!ThunkInfoVector) 518 return; 519 520 for (const ThunkInfo& Thunk : *ThunkInfoVector) 521 emitThunk(GD, Thunk, /*ForVTable=*/false); 522 } 523 524 llvm::Constant *CodeGenVTables::CreateVTableInitializer( 525 const CXXRecordDecl *RD, const VTableComponent *Components, 526 unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks, 527 unsigned NumVTableThunks, llvm::Constant *RTTI) { 528 SmallVector<llvm::Constant *, 64> Inits; 529 530 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 531 532 llvm::Type *PtrDiffTy = 533 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 534 535 unsigned NextVTableThunkIndex = 0; 536 537 llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr; 538 539 for (unsigned I = 0; I != NumComponents; ++I) { 540 VTableComponent Component = Components[I]; 541 542 llvm::Constant *Init = nullptr; 543 544 switch (Component.getKind()) { 545 case VTableComponent::CK_VCallOffset: 546 Init = llvm::ConstantInt::get(PtrDiffTy, 547 Component.getVCallOffset().getQuantity()); 548 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 549 break; 550 case VTableComponent::CK_VBaseOffset: 551 Init = llvm::ConstantInt::get(PtrDiffTy, 552 Component.getVBaseOffset().getQuantity()); 553 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 554 break; 555 case VTableComponent::CK_OffsetToTop: 556 Init = llvm::ConstantInt::get(PtrDiffTy, 557 Component.getOffsetToTop().getQuantity()); 558 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 559 break; 560 case VTableComponent::CK_RTTI: 561 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 562 break; 563 case VTableComponent::CK_FunctionPointer: 564 case VTableComponent::CK_CompleteDtorPointer: 565 case VTableComponent::CK_DeletingDtorPointer: { 566 GlobalDecl GD; 567 568 // Get the right global decl. 569 switch (Component.getKind()) { 570 default: 571 llvm_unreachable("Unexpected vtable component kind"); 572 case VTableComponent::CK_FunctionPointer: 573 GD = Component.getFunctionDecl(); 574 break; 575 case VTableComponent::CK_CompleteDtorPointer: 576 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 577 break; 578 case VTableComponent::CK_DeletingDtorPointer: 579 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 580 break; 581 } 582 583 if (CGM.getLangOpts().CUDA) { 584 // Emit NULL for methods we can't codegen on this 585 // side. Otherwise we'd end up with vtable with unresolved 586 // references. 587 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 588 // OK on device side: functions w/ __device__ attribute 589 // OK on host side: anything except __device__-only functions. 590 bool CanEmitMethod = CGM.getLangOpts().CUDAIsDevice 591 ? MD->hasAttr<CUDADeviceAttr>() 592 : (MD->hasAttr<CUDAHostAttr>() || 593 !MD->hasAttr<CUDADeviceAttr>()); 594 if (!CanEmitMethod) { 595 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 596 break; 597 } 598 // Method is acceptable, continue processing as usual. 599 } 600 601 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 602 // We have a pure virtual member function. 603 if (!PureVirtualFn) { 604 llvm::FunctionType *Ty = 605 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 606 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); 607 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); 608 if (auto *F = dyn_cast<llvm::Function>(PureVirtualFn)) 609 F->setUnnamedAddr(true); 610 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 611 CGM.Int8PtrTy); 612 } 613 Init = PureVirtualFn; 614 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 615 if (!DeletedVirtualFn) { 616 llvm::FunctionType *Ty = 617 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 618 StringRef DeletedCallName = 619 CGM.getCXXABI().GetDeletedVirtualCallName(); 620 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); 621 if (auto *F = dyn_cast<llvm::Function>(DeletedVirtualFn)) 622 F->setUnnamedAddr(true); 623 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, 624 CGM.Int8PtrTy); 625 } 626 Init = DeletedVirtualFn; 627 } else { 628 // Check if we should use a thunk. 629 if (NextVTableThunkIndex < NumVTableThunks && 630 VTableThunks[NextVTableThunkIndex].first == I) { 631 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 632 633 maybeEmitThunkForVTable(GD, Thunk); 634 Init = CGM.GetAddrOfThunk(GD, Thunk); 635 636 NextVTableThunkIndex++; 637 } else { 638 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 639 640 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 641 } 642 643 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 644 } 645 break; 646 } 647 648 case VTableComponent::CK_UnusedFunctionPointer: 649 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 650 break; 651 }; 652 653 Inits.push_back(Init); 654 } 655 656 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 657 return llvm::ConstantArray::get(ArrayType, Inits); 658 } 659 660 llvm::GlobalVariable * 661 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 662 const BaseSubobject &Base, 663 bool BaseIsVirtual, 664 llvm::GlobalVariable::LinkageTypes Linkage, 665 VTableAddressPointsMapTy& AddressPoints) { 666 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 667 DI->completeClassData(Base.getBase()); 668 669 std::unique_ptr<VTableLayout> VTLayout( 670 getItaniumVTableContext().createConstructionVTableLayout( 671 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 672 673 // Add the address points. 674 AddressPoints = VTLayout->getAddressPoints(); 675 676 // Get the mangled construction vtable name. 677 SmallString<256> OutName; 678 llvm::raw_svector_ostream Out(OutName); 679 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 680 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 681 Base.getBase(), Out); 682 StringRef Name = OutName.str(); 683 684 llvm::ArrayType *ArrayType = 685 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 686 687 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 688 // guarantee that they actually will be available externally. Instead, when 689 // emitting an available_externally VTT, we provide references to an internal 690 // linkage construction vtable. The ABI only requires complete-object vtables 691 // to be the same for all instances of a type, not construction vtables. 692 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 693 Linkage = llvm::GlobalVariable::InternalLinkage; 694 695 // Create the variable that will hold the construction vtable. 696 llvm::GlobalVariable *VTable = 697 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 698 CGM.setGlobalVisibility(VTable, RD); 699 700 // V-tables are always unnamed_addr. 701 VTable->setUnnamedAddr(true); 702 703 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 704 CGM.getContext().getTagDeclType(Base.getBase())); 705 706 // Create and set the initializer. 707 llvm::Constant *Init = CreateVTableInitializer( 708 Base.getBase(), VTLayout->vtable_component_begin(), 709 VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(), 710 VTLayout->getNumVTableThunks(), RTTI); 711 VTable->setInitializer(Init); 712 713 CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get()); 714 715 return VTable; 716 } 717 718 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 719 const CXXRecordDecl *RD) { 720 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 721 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 722 } 723 724 /// Compute the required linkage of the vtable for the given class. 725 /// 726 /// Note that we only call this at the end of the translation unit. 727 llvm::GlobalVariable::LinkageTypes 728 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 729 if (!RD->isExternallyVisible()) 730 return llvm::GlobalVariable::InternalLinkage; 731 732 // We're at the end of the translation unit, so the current key 733 // function is fully correct. 734 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 735 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 736 // If this class has a key function, use that to determine the 737 // linkage of the vtable. 738 const FunctionDecl *def = nullptr; 739 if (keyFunction->hasBody(def)) 740 keyFunction = cast<CXXMethodDecl>(def); 741 742 switch (keyFunction->getTemplateSpecializationKind()) { 743 case TSK_Undeclared: 744 case TSK_ExplicitSpecialization: 745 assert((def || CodeGenOpts.OptimizationLevel > 0) && 746 "Shouldn't query vtable linkage without key function or " 747 "optimizations"); 748 if (!def && CodeGenOpts.OptimizationLevel > 0) 749 return llvm::GlobalVariable::AvailableExternallyLinkage; 750 751 if (keyFunction->isInlined()) 752 return !Context.getLangOpts().AppleKext ? 753 llvm::GlobalVariable::LinkOnceODRLinkage : 754 llvm::Function::InternalLinkage; 755 756 return llvm::GlobalVariable::ExternalLinkage; 757 758 case TSK_ImplicitInstantiation: 759 return !Context.getLangOpts().AppleKext ? 760 llvm::GlobalVariable::LinkOnceODRLinkage : 761 llvm::Function::InternalLinkage; 762 763 case TSK_ExplicitInstantiationDefinition: 764 return !Context.getLangOpts().AppleKext ? 765 llvm::GlobalVariable::WeakODRLinkage : 766 llvm::Function::InternalLinkage; 767 768 case TSK_ExplicitInstantiationDeclaration: 769 llvm_unreachable("Should not have been asked to emit this"); 770 } 771 } 772 773 // -fapple-kext mode does not support weak linkage, so we must use 774 // internal linkage. 775 if (Context.getLangOpts().AppleKext) 776 return llvm::Function::InternalLinkage; 777 778 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 779 llvm::GlobalValue::LinkOnceODRLinkage; 780 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 781 llvm::GlobalValue::WeakODRLinkage; 782 if (RD->hasAttr<DLLExportAttr>()) { 783 // Cannot discard exported vtables. 784 DiscardableODRLinkage = NonDiscardableODRLinkage; 785 } else if (RD->hasAttr<DLLImportAttr>()) { 786 // Imported vtables are available externally. 787 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 788 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 789 } 790 791 switch (RD->getTemplateSpecializationKind()) { 792 case TSK_Undeclared: 793 case TSK_ExplicitSpecialization: 794 case TSK_ImplicitInstantiation: 795 return DiscardableODRLinkage; 796 797 case TSK_ExplicitInstantiationDeclaration: 798 return shouldEmitAvailableExternallyVTable(*this, RD) 799 ? llvm::GlobalVariable::AvailableExternallyLinkage 800 : llvm::GlobalVariable::ExternalLinkage; 801 802 case TSK_ExplicitInstantiationDefinition: 803 return NonDiscardableODRLinkage; 804 } 805 806 llvm_unreachable("Invalid TemplateSpecializationKind!"); 807 } 808 809 /// This is a callback from Sema to tell us that that a particular vtable is 810 /// required to be emitted in this translation unit. 811 /// 812 /// This is only called for vtables that _must_ be emitted (mainly due to key 813 /// functions). For weak vtables, CodeGen tracks when they are needed and 814 /// emits them as-needed. 815 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 816 VTables.GenerateClassData(theClass); 817 } 818 819 void 820 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 821 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 822 DI->completeClassData(RD); 823 824 if (RD->getNumVBases()) 825 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 826 827 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 828 } 829 830 /// At this point in the translation unit, does it appear that can we 831 /// rely on the vtable being defined elsewhere in the program? 832 /// 833 /// The response is really only definitive when called at the end of 834 /// the translation unit. 835 /// 836 /// The only semantic restriction here is that the object file should 837 /// not contain a vtable definition when that vtable is defined 838 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 839 /// vtables when unnecessary. 840 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 841 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 842 843 // We always synthesize vtables on the import side regardless of whether or 844 // not it is an explicit instantiation declaration. 845 if (CGM.getTarget().getCXXABI().isMicrosoft() && RD->hasAttr<DLLImportAttr>()) 846 return false; 847 848 // If we have an explicit instantiation declaration (and not a 849 // definition), the vtable is defined elsewhere. 850 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 851 if (TSK == TSK_ExplicitInstantiationDeclaration) 852 return true; 853 854 // Otherwise, if the class is an instantiated template, the 855 // vtable must be defined here. 856 if (TSK == TSK_ImplicitInstantiation || 857 TSK == TSK_ExplicitInstantiationDefinition) 858 return false; 859 860 // Otherwise, if the class doesn't have a key function (possibly 861 // anymore), the vtable must be defined here. 862 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 863 if (!keyFunction) 864 return false; 865 866 // Otherwise, if we don't have a definition of the key function, the 867 // vtable must be defined somewhere else. 868 return !keyFunction->hasBody(); 869 } 870 871 /// Given that we're currently at the end of the translation unit, and 872 /// we've emitted a reference to the vtable for this class, should 873 /// we define that vtable? 874 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 875 const CXXRecordDecl *RD) { 876 // If vtable is internal then it has to be done. 877 if (!CGM.getVTables().isVTableExternal(RD)) 878 return true; 879 880 // If it's external then maybe we will need it as available_externally. 881 return shouldEmitAvailableExternallyVTable(CGM, RD); 882 } 883 884 /// Given that at some point we emitted a reference to one or more 885 /// vtables, and that we are now at the end of the translation unit, 886 /// decide whether we should emit them. 887 void CodeGenModule::EmitDeferredVTables() { 888 #ifndef NDEBUG 889 // Remember the size of DeferredVTables, because we're going to assume 890 // that this entire operation doesn't modify it. 891 size_t savedSize = DeferredVTables.size(); 892 #endif 893 894 for (const CXXRecordDecl *RD : DeferredVTables) 895 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 896 VTables.GenerateClassData(RD); 897 898 assert(savedSize == DeferredVTables.size() && 899 "deferred extra vtables during vtable emission?"); 900 DeferredVTables.clear(); 901 } 902 903 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 904 LinkageInfo LV = RD->getLinkageAndVisibility(); 905 if (!isExternallyVisible(LV.getLinkage())) 906 return true; 907 908 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 909 return false; 910 911 if (getTriple().isOSBinFormatCOFF()) { 912 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 913 return false; 914 } else { 915 if (LV.getVisibility() != HiddenVisibility) 916 return false; 917 } 918 919 if (getCodeGenOpts().LTOVisibilityPublicStd) { 920 const DeclContext *DC = RD; 921 while (1) { 922 auto *D = cast<Decl>(DC); 923 DC = DC->getParent(); 924 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 925 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 926 if (const IdentifierInfo *II = ND->getIdentifier()) 927 if (II->isStr("std") || II->isStr("stdext")) 928 return false; 929 break; 930 } 931 } 932 } 933 934 return true; 935 } 936 937 void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable, 938 const VTableLayout &VTLayout) { 939 if (!getCodeGenOpts().PrepareForLTO) 940 return; 941 942 CharUnits PointerWidth = 943 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 944 945 typedef std::pair<const CXXRecordDecl *, unsigned> BSEntry; 946 std::vector<BSEntry> BitsetEntries; 947 // Create a bit set entry for each address point. 948 for (auto &&AP : VTLayout.getAddressPoints()) 949 BitsetEntries.push_back(std::make_pair(AP.first.getBase(), AP.second)); 950 951 // Sort the bit set entries for determinism. 952 std::sort(BitsetEntries.begin(), BitsetEntries.end(), 953 [this](const BSEntry &E1, const BSEntry &E2) { 954 if (&E1 == &E2) 955 return false; 956 957 std::string S1; 958 llvm::raw_string_ostream O1(S1); 959 getCXXABI().getMangleContext().mangleTypeName( 960 QualType(E1.first->getTypeForDecl(), 0), O1); 961 O1.flush(); 962 963 std::string S2; 964 llvm::raw_string_ostream O2(S2); 965 getCXXABI().getMangleContext().mangleTypeName( 966 QualType(E2.first->getTypeForDecl(), 0), O2); 967 O2.flush(); 968 969 if (S1 < S2) 970 return true; 971 if (S1 != S2) 972 return false; 973 974 return E1.second < E2.second; 975 }); 976 977 llvm::NamedMDNode *BitsetsMD = 978 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 979 for (auto BitsetEntry : BitsetEntries) 980 CreateVTableBitSetEntry(BitsetsMD, VTable, 981 PointerWidth * BitsetEntry.second, 982 BitsetEntry.first); 983 } 984