1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Transforms/Utils/Cloning.h" 26 #include <algorithm> 27 #include <cstdio> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), VTContext(CGM.getContext()) { 34 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 35 // FIXME: Eventually, we should only have one of V*TContexts available. 36 // Today we use both in the Microsoft ABI as MicrosoftVFTableContext 37 // is not completely supported in CodeGen yet. 38 VFTContext.reset(new MicrosoftVFTableContext(CGM.getContext())); 39 } 40 } 41 42 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 43 const ThunkInfo &Thunk) { 44 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 45 46 // Compute the mangled name. 47 SmallString<256> Name; 48 llvm::raw_svector_ostream Out(Name); 49 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 50 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 51 Thunk.This, Out); 52 else 53 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 54 Out.flush(); 55 56 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 57 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true); 58 } 59 60 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 61 const ThunkInfo &Thunk, llvm::Function *Fn) { 62 CGM.setGlobalVisibility(Fn, MD); 63 64 if (!CGM.getCodeGenOpts().HiddenWeakVTables) 65 return; 66 67 // If the thunk has weak/linkonce linkage, but the function must be 68 // emitted in every translation unit that references it, then we can 69 // emit its thunks with hidden visibility, since its thunks must be 70 // emitted when the function is. 71 72 // This follows CodeGenModule::setTypeVisibility; see the comments 73 // there for explanation. 74 75 if ((Fn->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage && 76 Fn->getLinkage() != llvm::GlobalVariable::WeakODRLinkage) || 77 Fn->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 78 return; 79 80 if (MD->getExplicitVisibility(ValueDecl::VisibilityForValue)) 81 return; 82 83 switch (MD->getTemplateSpecializationKind()) { 84 case TSK_ExplicitInstantiationDefinition: 85 case TSK_ExplicitInstantiationDeclaration: 86 return; 87 88 case TSK_Undeclared: 89 break; 90 91 case TSK_ExplicitSpecialization: 92 case TSK_ImplicitInstantiation: 93 return; 94 break; 95 } 96 97 // If there's an explicit definition, and that definition is 98 // out-of-line, then we can't assume that all users will have a 99 // definition to emit. 100 const FunctionDecl *Def = 0; 101 if (MD->hasBody(Def) && Def->isOutOfLine()) 102 return; 103 104 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); 105 } 106 107 #ifndef NDEBUG 108 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 109 const ABIArgInfo &infoR, CanQualType typeR) { 110 return (infoL.getKind() == infoR.getKind() && 111 (typeL == typeR || 112 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 113 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 114 } 115 #endif 116 117 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 118 QualType ResultType, RValue RV, 119 const ThunkInfo &Thunk) { 120 // Emit the return adjustment. 121 bool NullCheckValue = !ResultType->isReferenceType(); 122 123 llvm::BasicBlock *AdjustNull = 0; 124 llvm::BasicBlock *AdjustNotNull = 0; 125 llvm::BasicBlock *AdjustEnd = 0; 126 127 llvm::Value *ReturnValue = RV.getScalarVal(); 128 129 if (NullCheckValue) { 130 AdjustNull = CGF.createBasicBlock("adjust.null"); 131 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 132 AdjustEnd = CGF.createBasicBlock("adjust.end"); 133 134 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 135 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 136 CGF.EmitBlock(AdjustNotNull); 137 } 138 139 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue, 140 Thunk.Return); 141 142 if (NullCheckValue) { 143 CGF.Builder.CreateBr(AdjustEnd); 144 CGF.EmitBlock(AdjustNull); 145 CGF.Builder.CreateBr(AdjustEnd); 146 CGF.EmitBlock(AdjustEnd); 147 148 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 149 PHI->addIncoming(ReturnValue, AdjustNotNull); 150 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 151 AdjustNull); 152 ReturnValue = PHI; 153 } 154 155 return RValue::get(ReturnValue); 156 } 157 158 // This function does roughly the same thing as GenerateThunk, but in a 159 // very different way, so that va_start and va_end work correctly. 160 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 161 // a function, and that there is an alloca built in the entry block 162 // for all accesses to "this". 163 // FIXME: This function assumes there is only one "ret" statement per function. 164 // FIXME: Cloning isn't correct in the presence of indirect goto! 165 // FIXME: This implementation of thunks bloats codesize by duplicating the 166 // function definition. There are alternatives: 167 // 1. Add some sort of stub support to LLVM for cases where we can 168 // do a this adjustment, then a sibcall. 169 // 2. We could transform the definition to take a va_list instead of an 170 // actual variable argument list, then have the thunks (including a 171 // no-op thunk for the regular definition) call va_start/va_end. 172 // There's a bit of per-call overhead for this solution, but it's 173 // better for codesize if the definition is long. 174 void CodeGenFunction::GenerateVarArgsThunk( 175 llvm::Function *Fn, 176 const CGFunctionInfo &FnInfo, 177 GlobalDecl GD, const ThunkInfo &Thunk) { 178 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 179 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 180 QualType ResultType = FPT->getResultType(); 181 182 // Get the original function 183 assert(FnInfo.isVariadic()); 184 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 185 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 186 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 187 188 // Clone to thunk. 189 llvm::ValueToValueMapTy VMap; 190 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, 191 /*ModuleLevelChanges=*/false); 192 CGM.getModule().getFunctionList().push_back(NewFn); 193 Fn->replaceAllUsesWith(NewFn); 194 NewFn->takeName(Fn); 195 Fn->eraseFromParent(); 196 Fn = NewFn; 197 198 // "Initialize" CGF (minimally). 199 CurFn = Fn; 200 201 // Get the "this" value 202 llvm::Function::arg_iterator AI = Fn->arg_begin(); 203 if (CGM.ReturnTypeUsesSRet(FnInfo)) 204 ++AI; 205 206 // Find the first store of "this", which will be to the alloca associated 207 // with "this". 208 llvm::Value *ThisPtr = &*AI; 209 llvm::BasicBlock *EntryBB = Fn->begin(); 210 llvm::Instruction *ThisStore = 0; 211 for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end(); 212 I != E; I++) { 213 if (isa<llvm::StoreInst>(I) && I->getOperand(0) == ThisPtr) { 214 ThisStore = cast<llvm::StoreInst>(I); 215 break; 216 } 217 } 218 assert(ThisStore && "Store of this should be in entry block?"); 219 // Adjust "this", if necessary. 220 Builder.SetInsertPoint(ThisStore); 221 llvm::Value *AdjustedThisPtr = 222 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 223 ThisStore->setOperand(0, AdjustedThisPtr); 224 225 if (!Thunk.Return.isEmpty()) { 226 // Fix up the returned value, if necessary. 227 for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) { 228 llvm::Instruction *T = I->getTerminator(); 229 if (isa<llvm::ReturnInst>(T)) { 230 RValue RV = RValue::get(T->getOperand(0)); 231 T->eraseFromParent(); 232 Builder.SetInsertPoint(&*I); 233 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 234 Builder.CreateRet(RV.getScalarVal()); 235 break; 236 } 237 } 238 } 239 } 240 241 void CodeGenFunction::GenerateThunk(llvm::Function *Fn, 242 const CGFunctionInfo &FnInfo, 243 GlobalDecl GD, const ThunkInfo &Thunk) { 244 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 245 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 246 QualType ThisType = MD->getThisType(getContext()); 247 QualType ResultType = 248 CGM.getCXXABI().HasThisReturn(GD) ? ThisType : FPT->getResultType(); 249 250 FunctionArgList FunctionArgs; 251 252 // FIXME: It would be nice if more of this code could be shared with 253 // CodeGenFunction::GenerateCode. 254 255 // Create the implicit 'this' parameter declaration. 256 CurGD = GD; 257 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResultType, FunctionArgs); 258 259 // Add the rest of the parameters. 260 for (FunctionDecl::param_const_iterator I = MD->param_begin(), 261 E = MD->param_end(); I != E; ++I) { 262 ParmVarDecl *Param = *I; 263 264 FunctionArgs.push_back(Param); 265 } 266 267 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 268 SourceLocation()); 269 270 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 271 CXXThisValue = CXXABIThisValue; 272 273 // Adjust the 'this' pointer if necessary. 274 llvm::Value *AdjustedThisPtr = 275 CGM.getCXXABI().performThisAdjustment(*this, LoadCXXThis(), Thunk.This); 276 277 CallArgList CallArgs; 278 279 // Add our adjusted 'this' pointer. 280 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 281 282 if (isa<CXXDestructorDecl>(MD)) 283 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, GD, CallArgs); 284 285 // Add the rest of the parameters. 286 for (FunctionDecl::param_const_iterator I = MD->param_begin(), 287 E = MD->param_end(); I != E; ++I) { 288 ParmVarDecl *param = *I; 289 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 290 } 291 292 // Get our callee. 293 llvm::Type *Ty = 294 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 295 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 296 297 #ifndef NDEBUG 298 const CGFunctionInfo &CallFnInfo = 299 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 300 RequiredArgs::forPrototypePlus(FPT, 1)); 301 assert(CallFnInfo.getRegParm() == FnInfo.getRegParm() && 302 CallFnInfo.isNoReturn() == FnInfo.isNoReturn() && 303 CallFnInfo.getCallingConvention() == FnInfo.getCallingConvention()); 304 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 305 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 306 FnInfo.getReturnInfo(), FnInfo.getReturnType())); 307 assert(CallFnInfo.arg_size() == FnInfo.arg_size()); 308 for (unsigned i = 0, e = FnInfo.arg_size(); i != e; ++i) 309 assert(similar(CallFnInfo.arg_begin()[i].info, 310 CallFnInfo.arg_begin()[i].type, 311 FnInfo.arg_begin()[i].info, FnInfo.arg_begin()[i].type)); 312 #endif 313 314 // Determine whether we have a return value slot to use. 315 ReturnValueSlot Slot; 316 if (!ResultType->isVoidType() && 317 FnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 318 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 319 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 320 321 // Now emit our call. 322 RValue RV = EmitCall(FnInfo, Callee, Slot, CallArgs, MD); 323 324 if (!Thunk.Return.isEmpty()) 325 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 326 327 if (!ResultType->isVoidType() && Slot.isNull()) 328 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 329 330 // Disable the final ARC autorelease. 331 AutoreleaseResult = false; 332 333 FinishFunction(); 334 335 // Set the right linkage. 336 CGM.setFunctionLinkage(GD, Fn); 337 338 // Set the right visibility. 339 setThunkVisibility(CGM, MD, Thunk, Fn); 340 } 341 342 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 343 bool ForVTable) { 344 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 345 346 // FIXME: re-use FnInfo in this computation. 347 llvm::Constant *Entry = CGM.GetAddrOfThunk(GD, Thunk); 348 349 // Strip off a bitcast if we got one back. 350 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 351 assert(CE->getOpcode() == llvm::Instruction::BitCast); 352 Entry = CE->getOperand(0); 353 } 354 355 // There's already a declaration with the same name, check if it has the same 356 // type or if we need to replace it. 357 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != 358 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 359 llvm::GlobalValue *OldThunkFn = cast<llvm::GlobalValue>(Entry); 360 361 // If the types mismatch then we have to rewrite the definition. 362 assert(OldThunkFn->isDeclaration() && 363 "Shouldn't replace non-declaration"); 364 365 // Remove the name from the old thunk function and get a new thunk. 366 OldThunkFn->setName(StringRef()); 367 Entry = CGM.GetAddrOfThunk(GD, Thunk); 368 369 // If needed, replace the old thunk with a bitcast. 370 if (!OldThunkFn->use_empty()) { 371 llvm::Constant *NewPtrForOldDecl = 372 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 373 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 374 } 375 376 // Remove the old thunk. 377 OldThunkFn->eraseFromParent(); 378 } 379 380 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 381 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 382 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 383 384 if (!ThunkFn->isDeclaration()) { 385 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 386 // There is already a thunk emitted for this function, do nothing. 387 return; 388 } 389 390 // If a function has a body, it should have available_externally linkage. 391 assert(ThunkFn->hasAvailableExternallyLinkage() && 392 "Function should have available_externally linkage!"); 393 394 // Change the linkage. 395 CGM.setFunctionLinkage(GD, ThunkFn); 396 return; 397 } 398 399 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 400 401 if (ThunkFn->isVarArg()) { 402 // Varargs thunks are special; we can't just generate a call because 403 // we can't copy the varargs. Our implementation is rather 404 // expensive/sucky at the moment, so don't generate the thunk unless 405 // we have to. 406 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 407 if (!UseAvailableExternallyLinkage) 408 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 409 } else { 410 // Normal thunk body generation. 411 CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk); 412 } 413 414 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable); 415 } 416 417 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 418 const ThunkInfo &Thunk) { 419 // If the ABI has key functions, only the TU with the key function should emit 420 // the thunk. However, we can allow inlining of thunks if we emit them with 421 // available_externally linkage together with vtables when optimizations are 422 // enabled. 423 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 424 !CGM.getCodeGenOpts().OptimizationLevel) 425 return; 426 427 // We can't emit thunks for member functions with incomplete types. 428 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 429 if (!CGM.getTypes().isFuncTypeConvertible( 430 MD->getType()->castAs<FunctionType>())) 431 return; 432 433 emitThunk(GD, Thunk, /*ForVTable=*/true); 434 } 435 436 void CodeGenVTables::EmitThunks(GlobalDecl GD) 437 { 438 const CXXMethodDecl *MD = 439 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 440 441 // We don't need to generate thunks for the base destructor. 442 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 443 return; 444 445 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector; 446 if (VFTContext.isValid()) { 447 ThunkInfoVector = VFTContext->getThunkInfo(GD); 448 } else { 449 ThunkInfoVector = VTContext.getThunkInfo(GD); 450 } 451 452 if (!ThunkInfoVector) 453 return; 454 455 for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I) 456 emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false); 457 } 458 459 llvm::Constant * 460 CodeGenVTables::CreateVTableInitializer(const CXXRecordDecl *RD, 461 const VTableComponent *Components, 462 unsigned NumComponents, 463 const VTableLayout::VTableThunkTy *VTableThunks, 464 unsigned NumVTableThunks) { 465 SmallVector<llvm::Constant *, 64> Inits; 466 467 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 468 469 llvm::Type *PtrDiffTy = 470 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 471 472 QualType ClassType = CGM.getContext().getTagDeclType(RD); 473 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(ClassType); 474 475 unsigned NextVTableThunkIndex = 0; 476 477 llvm::Constant *PureVirtualFn = 0, *DeletedVirtualFn = 0; 478 479 for (unsigned I = 0; I != NumComponents; ++I) { 480 VTableComponent Component = Components[I]; 481 482 llvm::Constant *Init = 0; 483 484 switch (Component.getKind()) { 485 case VTableComponent::CK_VCallOffset: 486 Init = llvm::ConstantInt::get(PtrDiffTy, 487 Component.getVCallOffset().getQuantity()); 488 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 489 break; 490 case VTableComponent::CK_VBaseOffset: 491 Init = llvm::ConstantInt::get(PtrDiffTy, 492 Component.getVBaseOffset().getQuantity()); 493 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 494 break; 495 case VTableComponent::CK_OffsetToTop: 496 Init = llvm::ConstantInt::get(PtrDiffTy, 497 Component.getOffsetToTop().getQuantity()); 498 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 499 break; 500 case VTableComponent::CK_RTTI: 501 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 502 break; 503 case VTableComponent::CK_FunctionPointer: 504 case VTableComponent::CK_CompleteDtorPointer: 505 case VTableComponent::CK_DeletingDtorPointer: { 506 GlobalDecl GD; 507 508 // Get the right global decl. 509 switch (Component.getKind()) { 510 default: 511 llvm_unreachable("Unexpected vtable component kind"); 512 case VTableComponent::CK_FunctionPointer: 513 GD = Component.getFunctionDecl(); 514 break; 515 case VTableComponent::CK_CompleteDtorPointer: 516 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 517 break; 518 case VTableComponent::CK_DeletingDtorPointer: 519 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 520 break; 521 } 522 523 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 524 // We have a pure virtual member function. 525 if (!PureVirtualFn) { 526 llvm::FunctionType *Ty = 527 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 528 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); 529 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); 530 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 531 CGM.Int8PtrTy); 532 } 533 Init = PureVirtualFn; 534 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 535 if (!DeletedVirtualFn) { 536 llvm::FunctionType *Ty = 537 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 538 StringRef DeletedCallName = 539 CGM.getCXXABI().GetDeletedVirtualCallName(); 540 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); 541 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, 542 CGM.Int8PtrTy); 543 } 544 Init = DeletedVirtualFn; 545 } else { 546 // Check if we should use a thunk. 547 if (NextVTableThunkIndex < NumVTableThunks && 548 VTableThunks[NextVTableThunkIndex].first == I) { 549 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 550 551 maybeEmitThunkForVTable(GD, Thunk); 552 Init = CGM.GetAddrOfThunk(GD, Thunk); 553 554 NextVTableThunkIndex++; 555 } else { 556 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 557 558 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 559 } 560 561 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 562 } 563 break; 564 } 565 566 case VTableComponent::CK_UnusedFunctionPointer: 567 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 568 break; 569 }; 570 571 Inits.push_back(Init); 572 } 573 574 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 575 return llvm::ConstantArray::get(ArrayType, Inits); 576 } 577 578 llvm::GlobalVariable * 579 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 580 const BaseSubobject &Base, 581 bool BaseIsVirtual, 582 llvm::GlobalVariable::LinkageTypes Linkage, 583 VTableAddressPointsMapTy& AddressPoints) { 584 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 585 DI->completeClassData(Base.getBase()); 586 587 OwningPtr<VTableLayout> VTLayout( 588 VTContext.createConstructionVTableLayout(Base.getBase(), 589 Base.getBaseOffset(), 590 BaseIsVirtual, RD)); 591 592 // Add the address points. 593 AddressPoints = VTLayout->getAddressPoints(); 594 595 // Get the mangled construction vtable name. 596 SmallString<256> OutName; 597 llvm::raw_svector_ostream Out(OutName); 598 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 599 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 600 Base.getBase(), Out); 601 Out.flush(); 602 StringRef Name = OutName.str(); 603 604 llvm::ArrayType *ArrayType = 605 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 606 607 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 608 // guarantee that they actually will be available externally. Instead, when 609 // emitting an available_externally VTT, we provide references to an internal 610 // linkage construction vtable. The ABI only requires complete-object vtables 611 // to be the same for all instances of a type, not construction vtables. 612 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 613 Linkage = llvm::GlobalVariable::InternalLinkage; 614 615 // Create the variable that will hold the construction vtable. 616 llvm::GlobalVariable *VTable = 617 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 618 CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForConstructionVTable); 619 620 // V-tables are always unnamed_addr. 621 VTable->setUnnamedAddr(true); 622 623 // Create and set the initializer. 624 llvm::Constant *Init = 625 CreateVTableInitializer(Base.getBase(), 626 VTLayout->vtable_component_begin(), 627 VTLayout->getNumVTableComponents(), 628 VTLayout->vtable_thunk_begin(), 629 VTLayout->getNumVTableThunks()); 630 VTable->setInitializer(Init); 631 632 return VTable; 633 } 634 635 /// Compute the required linkage of the v-table for the given class. 636 /// 637 /// Note that we only call this at the end of the translation unit. 638 llvm::GlobalVariable::LinkageTypes 639 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 640 if (!RD->isExternallyVisible()) 641 return llvm::GlobalVariable::InternalLinkage; 642 643 // We're at the end of the translation unit, so the current key 644 // function is fully correct. 645 if (const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD)) { 646 // If this class has a key function, use that to determine the 647 // linkage of the vtable. 648 const FunctionDecl *def = 0; 649 if (keyFunction->hasBody(def)) 650 keyFunction = cast<CXXMethodDecl>(def); 651 652 switch (keyFunction->getTemplateSpecializationKind()) { 653 case TSK_Undeclared: 654 case TSK_ExplicitSpecialization: 655 assert(def && "Should not have been asked to emit this"); 656 if (keyFunction->isInlined()) 657 return !Context.getLangOpts().AppleKext ? 658 llvm::GlobalVariable::LinkOnceODRLinkage : 659 llvm::Function::InternalLinkage; 660 661 return llvm::GlobalVariable::ExternalLinkage; 662 663 case TSK_ImplicitInstantiation: 664 return !Context.getLangOpts().AppleKext ? 665 llvm::GlobalVariable::LinkOnceODRLinkage : 666 llvm::Function::InternalLinkage; 667 668 case TSK_ExplicitInstantiationDefinition: 669 return !Context.getLangOpts().AppleKext ? 670 llvm::GlobalVariable::WeakODRLinkage : 671 llvm::Function::InternalLinkage; 672 673 case TSK_ExplicitInstantiationDeclaration: 674 llvm_unreachable("Should not have been asked to emit this"); 675 } 676 } 677 678 // -fapple-kext mode does not support weak linkage, so we must use 679 // internal linkage. 680 if (Context.getLangOpts().AppleKext) 681 return llvm::Function::InternalLinkage; 682 683 switch (RD->getTemplateSpecializationKind()) { 684 case TSK_Undeclared: 685 case TSK_ExplicitSpecialization: 686 case TSK_ImplicitInstantiation: 687 return llvm::GlobalVariable::LinkOnceODRLinkage; 688 689 case TSK_ExplicitInstantiationDeclaration: 690 llvm_unreachable("Should not have been asked to emit this"); 691 692 case TSK_ExplicitInstantiationDefinition: 693 return llvm::GlobalVariable::WeakODRLinkage; 694 } 695 696 llvm_unreachable("Invalid TemplateSpecializationKind!"); 697 } 698 699 /// This is a callback from Sema to tell us that it believes that a 700 /// particular v-table is required to be emitted in this translation 701 /// unit. 702 /// 703 /// The reason we don't simply trust this callback is because Sema 704 /// will happily report that something is used even when it's used 705 /// only in code that we don't actually have to emit. 706 /// 707 /// \param isRequired - if true, the v-table is mandatory, e.g. 708 /// because the translation unit defines the key function 709 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass, bool isRequired) { 710 if (!isRequired) return; 711 712 VTables.GenerateClassData(theClass); 713 } 714 715 void 716 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 717 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 718 DI->completeClassData(RD); 719 720 if (RD->getNumVBases()) 721 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 722 723 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 724 } 725 726 /// At this point in the translation unit, does it appear that can we 727 /// rely on the vtable being defined elsewhere in the program? 728 /// 729 /// The response is really only definitive when called at the end of 730 /// the translation unit. 731 /// 732 /// The only semantic restriction here is that the object file should 733 /// not contain a v-table definition when that v-table is defined 734 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 735 /// v-tables when unnecessary. 736 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 737 assert(RD->isDynamicClass() && "Non dynamic classes have no VTable."); 738 739 // If we have an explicit instantiation declaration (and not a 740 // definition), the v-table is defined elsewhere. 741 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 742 if (TSK == TSK_ExplicitInstantiationDeclaration) 743 return true; 744 745 // Otherwise, if the class is an instantiated template, the 746 // v-table must be defined here. 747 if (TSK == TSK_ImplicitInstantiation || 748 TSK == TSK_ExplicitInstantiationDefinition) 749 return false; 750 751 // Otherwise, if the class doesn't have a key function (possibly 752 // anymore), the v-table must be defined here. 753 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 754 if (!keyFunction) 755 return false; 756 757 // Otherwise, if we don't have a definition of the key function, the 758 // v-table must be defined somewhere else. 759 return !keyFunction->hasBody(); 760 } 761 762 /// Given that we're currently at the end of the translation unit, and 763 /// we've emitted a reference to the v-table for this class, should 764 /// we define that v-table? 765 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 766 const CXXRecordDecl *RD) { 767 return !CGM.getVTables().isVTableExternal(RD); 768 } 769 770 /// Given that at some point we emitted a reference to one or more 771 /// v-tables, and that we are now at the end of the translation unit, 772 /// decide whether we should emit them. 773 void CodeGenModule::EmitDeferredVTables() { 774 #ifndef NDEBUG 775 // Remember the size of DeferredVTables, because we're going to assume 776 // that this entire operation doesn't modify it. 777 size_t savedSize = DeferredVTables.size(); 778 #endif 779 780 typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator; 781 for (const_iterator i = DeferredVTables.begin(), 782 e = DeferredVTables.end(); i != e; ++i) { 783 const CXXRecordDecl *RD = *i; 784 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 785 VTables.GenerateClassData(RD); 786 } 787 788 assert(savedSize == DeferredVTables.size() && 789 "deferred extra v-tables during v-table emission?"); 790 DeferredVTables.clear(); 791 } 792