1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/RecordLayout.h" 18 #include "clang/Basic/CodeGenOptions.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/CodeGen/ConstantInitBuilder.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Format.h" 23 #include "llvm/Transforms/Utils/Cloning.h" 24 #include <algorithm> 25 #include <cstdio> 26 27 using namespace clang; 28 using namespace CodeGen; 29 30 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 31 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 32 33 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 34 GlobalDecl GD) { 35 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 36 /*DontDefer=*/true, /*IsThunk=*/true); 37 } 38 39 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 40 llvm::Function *ThunkFn, bool ForVTable, 41 GlobalDecl GD) { 42 CGM.setFunctionLinkage(GD, ThunkFn); 43 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 44 !Thunk.Return.isEmpty()); 45 46 // Set the right visibility. 47 CGM.setGVProperties(ThunkFn, GD); 48 49 if (!CGM.getCXXABI().exportThunk()) { 50 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 51 ThunkFn->setDSOLocal(true); 52 } 53 54 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 55 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 56 } 57 58 #ifndef NDEBUG 59 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 60 const ABIArgInfo &infoR, CanQualType typeR) { 61 return (infoL.getKind() == infoR.getKind() && 62 (typeL == typeR || 63 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 64 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 65 } 66 #endif 67 68 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 69 QualType ResultType, RValue RV, 70 const ThunkInfo &Thunk) { 71 // Emit the return adjustment. 72 bool NullCheckValue = !ResultType->isReferenceType(); 73 74 llvm::BasicBlock *AdjustNull = nullptr; 75 llvm::BasicBlock *AdjustNotNull = nullptr; 76 llvm::BasicBlock *AdjustEnd = nullptr; 77 78 llvm::Value *ReturnValue = RV.getScalarVal(); 79 80 if (NullCheckValue) { 81 AdjustNull = CGF.createBasicBlock("adjust.null"); 82 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 83 AdjustEnd = CGF.createBasicBlock("adjust.end"); 84 85 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 86 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 87 CGF.EmitBlock(AdjustNotNull); 88 } 89 90 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 91 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 92 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 93 Address(ReturnValue, ClassAlign), 94 Thunk.Return); 95 96 if (NullCheckValue) { 97 CGF.Builder.CreateBr(AdjustEnd); 98 CGF.EmitBlock(AdjustNull); 99 CGF.Builder.CreateBr(AdjustEnd); 100 CGF.EmitBlock(AdjustEnd); 101 102 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 103 PHI->addIncoming(ReturnValue, AdjustNotNull); 104 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 105 AdjustNull); 106 ReturnValue = PHI; 107 } 108 109 return RValue::get(ReturnValue); 110 } 111 112 /// This function clones a function's DISubprogram node and enters it into 113 /// a value map with the intent that the map can be utilized by the cloner 114 /// to short-circuit Metadata node mapping. 115 /// Furthermore, the function resolves any DILocalVariable nodes referenced 116 /// by dbg.value intrinsics so they can be properly mapped during cloning. 117 static void resolveTopLevelMetadata(llvm::Function *Fn, 118 llvm::ValueToValueMapTy &VMap) { 119 // Clone the DISubprogram node and put it into the Value map. 120 auto *DIS = Fn->getSubprogram(); 121 if (!DIS) 122 return; 123 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 124 VMap.MD()[DIS].reset(NewDIS); 125 126 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 127 // they are referencing. 128 for (auto &BB : Fn->getBasicBlockList()) { 129 for (auto &I : BB) { 130 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 131 auto *DILocal = DII->getVariable(); 132 if (!DILocal->isResolved()) 133 DILocal->resolve(); 134 } 135 } 136 } 137 } 138 139 // This function does roughly the same thing as GenerateThunk, but in a 140 // very different way, so that va_start and va_end work correctly. 141 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 142 // a function, and that there is an alloca built in the entry block 143 // for all accesses to "this". 144 // FIXME: This function assumes there is only one "ret" statement per function. 145 // FIXME: Cloning isn't correct in the presence of indirect goto! 146 // FIXME: This implementation of thunks bloats codesize by duplicating the 147 // function definition. There are alternatives: 148 // 1. Add some sort of stub support to LLVM for cases where we can 149 // do a this adjustment, then a sibcall. 150 // 2. We could transform the definition to take a va_list instead of an 151 // actual variable argument list, then have the thunks (including a 152 // no-op thunk for the regular definition) call va_start/va_end. 153 // There's a bit of per-call overhead for this solution, but it's 154 // better for codesize if the definition is long. 155 llvm::Function * 156 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 157 const CGFunctionInfo &FnInfo, 158 GlobalDecl GD, const ThunkInfo &Thunk) { 159 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 160 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 161 QualType ResultType = FPT->getReturnType(); 162 163 // Get the original function 164 assert(FnInfo.isVariadic()); 165 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 166 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 167 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 168 169 // Clone to thunk. 170 llvm::ValueToValueMapTy VMap; 171 172 // We are cloning a function while some Metadata nodes are still unresolved. 173 // Ensure that the value mapper does not encounter any of them. 174 resolveTopLevelMetadata(BaseFn, VMap); 175 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 176 Fn->replaceAllUsesWith(NewFn); 177 NewFn->takeName(Fn); 178 Fn->eraseFromParent(); 179 Fn = NewFn; 180 181 // "Initialize" CGF (minimally). 182 CurFn = Fn; 183 184 // Get the "this" value 185 llvm::Function::arg_iterator AI = Fn->arg_begin(); 186 if (CGM.ReturnTypeUsesSRet(FnInfo)) 187 ++AI; 188 189 // Find the first store of "this", which will be to the alloca associated 190 // with "this". 191 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 192 llvm::BasicBlock *EntryBB = &Fn->front(); 193 llvm::BasicBlock::iterator ThisStore = 194 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 195 return isa<llvm::StoreInst>(I) && 196 I.getOperand(0) == ThisPtr.getPointer(); 197 }); 198 assert(ThisStore != EntryBB->end() && 199 "Store of this should be in entry block?"); 200 // Adjust "this", if necessary. 201 Builder.SetInsertPoint(&*ThisStore); 202 llvm::Value *AdjustedThisPtr = 203 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 204 ThisStore->setOperand(0, AdjustedThisPtr); 205 206 if (!Thunk.Return.isEmpty()) { 207 // Fix up the returned value, if necessary. 208 for (llvm::BasicBlock &BB : *Fn) { 209 llvm::Instruction *T = BB.getTerminator(); 210 if (isa<llvm::ReturnInst>(T)) { 211 RValue RV = RValue::get(T->getOperand(0)); 212 T->eraseFromParent(); 213 Builder.SetInsertPoint(&BB); 214 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 215 Builder.CreateRet(RV.getScalarVal()); 216 break; 217 } 218 } 219 } 220 221 return Fn; 222 } 223 224 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 225 const CGFunctionInfo &FnInfo, 226 bool IsUnprototyped) { 227 assert(!CurGD.getDecl() && "CurGD was already set!"); 228 CurGD = GD; 229 CurFuncIsThunk = true; 230 231 // Build FunctionArgs. 232 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 233 QualType ThisType = MD->getThisType(); 234 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 235 QualType ResultType; 236 if (IsUnprototyped) 237 ResultType = CGM.getContext().VoidTy; 238 else if (CGM.getCXXABI().HasThisReturn(GD)) 239 ResultType = ThisType; 240 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 241 ResultType = CGM.getContext().VoidPtrTy; 242 else 243 ResultType = FPT->getReturnType(); 244 FunctionArgList FunctionArgs; 245 246 // Create the implicit 'this' parameter declaration. 247 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 248 249 // Add the rest of the parameters, if we have a prototype to work with. 250 if (!IsUnprototyped) { 251 FunctionArgs.append(MD->param_begin(), MD->param_end()); 252 253 if (isa<CXXDestructorDecl>(MD)) 254 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 255 FunctionArgs); 256 } 257 258 // Start defining the function. 259 auto NL = ApplyDebugLocation::CreateEmpty(*this); 260 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 261 MD->getLocation()); 262 // Create a scope with an artificial location for the body of this function. 263 auto AL = ApplyDebugLocation::CreateArtificial(*this); 264 265 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 266 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 267 CXXThisValue = CXXABIThisValue; 268 CurCodeDecl = MD; 269 CurFuncDecl = MD; 270 } 271 272 void CodeGenFunction::FinishThunk() { 273 // Clear these to restore the invariants expected by 274 // StartFunction/FinishFunction. 275 CurCodeDecl = nullptr; 276 CurFuncDecl = nullptr; 277 278 FinishFunction(); 279 } 280 281 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Constant *CalleePtr, 282 const ThunkInfo *Thunk, 283 bool IsUnprototyped) { 284 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 285 "Please use a new CGF for this thunk"); 286 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 287 288 // Adjust the 'this' pointer if necessary 289 llvm::Value *AdjustedThisPtr = 290 Thunk ? CGM.getCXXABI().performThisAdjustment( 291 *this, LoadCXXThisAddress(), Thunk->This) 292 : LoadCXXThis(); 293 294 if (CurFnInfo->usesInAlloca() || IsUnprototyped) { 295 // We don't handle return adjusting thunks, because they require us to call 296 // the copy constructor. For now, fall through and pretend the return 297 // adjustment was empty so we don't crash. 298 if (Thunk && !Thunk->Return.isEmpty()) { 299 if (IsUnprototyped) 300 CGM.ErrorUnsupported( 301 MD, "return-adjusting thunk with incomplete parameter type"); 302 else 303 CGM.ErrorUnsupported( 304 MD, "non-trivial argument copy for return-adjusting thunk"); 305 } 306 EmitMustTailThunk(CurGD, AdjustedThisPtr, CalleePtr); 307 return; 308 } 309 310 // Start building CallArgs. 311 CallArgList CallArgs; 312 QualType ThisType = MD->getThisType(); 313 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 314 315 if (isa<CXXDestructorDecl>(MD)) 316 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 317 318 #ifndef NDEBUG 319 unsigned PrefixArgs = CallArgs.size() - 1; 320 #endif 321 // Add the rest of the arguments. 322 for (const ParmVarDecl *PD : MD->parameters()) 323 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 324 325 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 326 327 #ifndef NDEBUG 328 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 329 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1, MD), PrefixArgs); 330 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 331 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 332 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 333 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 334 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 335 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 336 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 337 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 338 assert(similar(CallFnInfo.arg_begin()[i].info, 339 CallFnInfo.arg_begin()[i].type, 340 CurFnInfo->arg_begin()[i].info, 341 CurFnInfo->arg_begin()[i].type)); 342 #endif 343 344 // Determine whether we have a return value slot to use. 345 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 346 ? ThisType 347 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 348 ? CGM.getContext().VoidPtrTy 349 : FPT->getReturnType(); 350 ReturnValueSlot Slot; 351 if (!ResultType->isVoidType() && 352 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) 353 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 354 355 // Now emit our call. 356 llvm::CallBase *CallOrInvoke; 357 CGCallee Callee = CGCallee::forDirect(CalleePtr, CurGD); 358 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, &CallOrInvoke); 359 360 // Consider return adjustment if we have ThunkInfo. 361 if (Thunk && !Thunk->Return.isEmpty()) 362 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 363 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 364 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 365 366 // Emit return. 367 if (!ResultType->isVoidType() && Slot.isNull()) 368 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 369 370 // Disable the final ARC autorelease. 371 AutoreleaseResult = false; 372 373 FinishThunk(); 374 } 375 376 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 377 llvm::Value *AdjustedThisPtr, 378 llvm::Value *CalleePtr) { 379 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 380 // to translate AST arguments into LLVM IR arguments. For thunks, we know 381 // that the caller prototype more or less matches the callee prototype with 382 // the exception of 'this'. 383 SmallVector<llvm::Value *, 8> Args; 384 for (llvm::Argument &A : CurFn->args()) 385 Args.push_back(&A); 386 387 // Set the adjusted 'this' pointer. 388 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 389 if (ThisAI.isDirect()) { 390 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 391 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 392 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 393 if (ThisType != AdjustedThisPtr->getType()) 394 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 395 Args[ThisArgNo] = AdjustedThisPtr; 396 } else { 397 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 398 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 399 llvm::Type *ThisType = ThisAddr.getElementType(); 400 if (ThisType != AdjustedThisPtr->getType()) 401 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 402 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 403 } 404 405 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 406 // don't actually want to run them. 407 llvm::CallInst *Call = Builder.CreateCall(CalleePtr, Args); 408 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 409 410 // Apply the standard set of call attributes. 411 unsigned CallingConv; 412 llvm::AttributeList Attrs; 413 CGM.ConstructAttributeList(CalleePtr->getName(), *CurFnInfo, GD, Attrs, 414 CallingConv, /*AttrOnCallSite=*/true); 415 Call->setAttributes(Attrs); 416 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 417 418 if (Call->getType()->isVoidTy()) 419 Builder.CreateRetVoid(); 420 else 421 Builder.CreateRet(Call); 422 423 // Finish the function to maintain CodeGenFunction invariants. 424 // FIXME: Don't emit unreachable code. 425 EmitBlock(createBasicBlock()); 426 FinishFunction(); 427 } 428 429 void CodeGenFunction::generateThunk(llvm::Function *Fn, 430 const CGFunctionInfo &FnInfo, GlobalDecl GD, 431 const ThunkInfo &Thunk, 432 bool IsUnprototyped) { 433 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 434 // Create a scope with an artificial location for the body of this function. 435 auto AL = ApplyDebugLocation::CreateArtificial(*this); 436 437 // Get our callee. Use a placeholder type if this method is unprototyped so 438 // that CodeGenModule doesn't try to set attributes. 439 llvm::Type *Ty; 440 if (IsUnprototyped) 441 Ty = llvm::StructType::get(getLLVMContext()); 442 else 443 Ty = CGM.getTypes().GetFunctionType(FnInfo); 444 445 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 446 447 // Fix up the function type for an unprototyped musttail call. 448 if (IsUnprototyped) 449 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); 450 451 // Make the call and return the result. 452 EmitCallAndReturnForThunk(Callee, &Thunk, IsUnprototyped); 453 } 454 455 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 456 bool IsUnprototyped, bool ForVTable) { 457 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 458 // provide thunks for us. 459 if (CGM.getTarget().getCXXABI().isMicrosoft()) 460 return true; 461 462 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 463 // definitions of the main method. Therefore, emitting thunks with the vtable 464 // is purely an optimization. Emit the thunk if optimizations are enabled and 465 // all of the parameter types are complete. 466 if (ForVTable) 467 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 468 469 // Always emit thunks along with the method definition. 470 return true; 471 } 472 473 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 474 const ThunkInfo &TI, 475 bool ForVTable) { 476 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 477 478 // First, get a declaration. Compute the mangled name. Don't worry about 479 // getting the function prototype right, since we may only need this 480 // declaration to fill in a vtable slot. 481 SmallString<256> Name; 482 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 483 llvm::raw_svector_ostream Out(Name); 484 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 485 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 486 else 487 MCtx.mangleThunk(MD, TI, Out); 488 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 489 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 490 491 // If we don't need to emit a definition, return this declaration as is. 492 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 493 MD->getType()->castAs<FunctionType>()); 494 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 495 return Thunk; 496 497 // Arrange a function prototype appropriate for a function definition. In some 498 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 499 const CGFunctionInfo &FnInfo = 500 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 501 : CGM.getTypes().arrangeGlobalDeclaration(GD); 502 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 503 504 // If the type of the underlying GlobalValue is wrong, we'll have to replace 505 // it. It should be a declaration. 506 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 507 if (ThunkFn->getFunctionType() != ThunkFnTy) { 508 llvm::GlobalValue *OldThunkFn = ThunkFn; 509 510 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 511 512 // Remove the name from the old thunk function and get a new thunk. 513 OldThunkFn->setName(StringRef()); 514 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 515 Name.str(), &CGM.getModule()); 516 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 517 518 // If needed, replace the old thunk with a bitcast. 519 if (!OldThunkFn->use_empty()) { 520 llvm::Constant *NewPtrForOldDecl = 521 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); 522 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 523 } 524 525 // Remove the old thunk. 526 OldThunkFn->eraseFromParent(); 527 } 528 529 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 530 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 531 532 if (!ThunkFn->isDeclaration()) { 533 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 534 // There is already a thunk emitted for this function, do nothing. 535 return ThunkFn; 536 } 537 538 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 539 return ThunkFn; 540 } 541 542 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 543 // that the return type is meaningless. These thunks can be used to call 544 // functions with differing return types, and the caller is required to cast 545 // the prototype appropriately to extract the correct value. 546 if (IsUnprototyped) 547 ThunkFn->addFnAttr("thunk"); 548 549 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 550 551 if (!IsUnprototyped && ThunkFn->isVarArg()) { 552 // Varargs thunks are special; we can't just generate a call because 553 // we can't copy the varargs. Our implementation is rather 554 // expensive/sucky at the moment, so don't generate the thunk unless 555 // we have to. 556 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 557 if (UseAvailableExternallyLinkage) 558 return ThunkFn; 559 ThunkFn = CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, 560 TI); 561 } else { 562 // Normal thunk body generation. 563 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 564 } 565 566 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 567 return ThunkFn; 568 } 569 570 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 571 const CXXMethodDecl *MD = 572 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 573 574 // We don't need to generate thunks for the base destructor. 575 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 576 return; 577 578 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 579 VTContext->getThunkInfo(GD); 580 581 if (!ThunkInfoVector) 582 return; 583 584 for (const ThunkInfo& Thunk : *ThunkInfoVector) 585 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 586 } 587 588 void CodeGenVTables::addVTableComponent( 589 ConstantArrayBuilder &builder, const VTableLayout &layout, 590 unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) { 591 auto &component = layout.vtable_components()[idx]; 592 593 auto addOffsetConstant = [&](CharUnits offset) { 594 builder.add(llvm::ConstantExpr::getIntToPtr( 595 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 596 CGM.Int8PtrTy)); 597 }; 598 599 switch (component.getKind()) { 600 case VTableComponent::CK_VCallOffset: 601 return addOffsetConstant(component.getVCallOffset()); 602 603 case VTableComponent::CK_VBaseOffset: 604 return addOffsetConstant(component.getVBaseOffset()); 605 606 case VTableComponent::CK_OffsetToTop: 607 return addOffsetConstant(component.getOffsetToTop()); 608 609 case VTableComponent::CK_RTTI: 610 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); 611 612 case VTableComponent::CK_FunctionPointer: 613 case VTableComponent::CK_CompleteDtorPointer: 614 case VTableComponent::CK_DeletingDtorPointer: { 615 GlobalDecl GD; 616 617 // Get the right global decl. 618 switch (component.getKind()) { 619 default: 620 llvm_unreachable("Unexpected vtable component kind"); 621 case VTableComponent::CK_FunctionPointer: 622 GD = component.getFunctionDecl(); 623 break; 624 case VTableComponent::CK_CompleteDtorPointer: 625 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete); 626 break; 627 case VTableComponent::CK_DeletingDtorPointer: 628 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting); 629 break; 630 } 631 632 if (CGM.getLangOpts().CUDA) { 633 // Emit NULL for methods we can't codegen on this 634 // side. Otherwise we'd end up with vtable with unresolved 635 // references. 636 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 637 // OK on device side: functions w/ __device__ attribute 638 // OK on host side: anything except __device__-only functions. 639 bool CanEmitMethod = 640 CGM.getLangOpts().CUDAIsDevice 641 ? MD->hasAttr<CUDADeviceAttr>() 642 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 643 if (!CanEmitMethod) 644 return builder.addNullPointer(CGM.Int8PtrTy); 645 // Method is acceptable, continue processing as usual. 646 } 647 648 auto getSpecialVirtualFn = [&](StringRef name) { 649 llvm::FunctionType *fnTy = 650 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 651 llvm::Constant *fn = CGM.CreateRuntimeFunction(fnTy, name); 652 if (auto f = dyn_cast<llvm::Function>(fn)) 653 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 654 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); 655 }; 656 657 llvm::Constant *fnPtr; 658 659 // Pure virtual member functions. 660 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 661 if (!PureVirtualFn) 662 PureVirtualFn = 663 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 664 fnPtr = PureVirtualFn; 665 666 // Deleted virtual member functions. 667 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 668 if (!DeletedVirtualFn) 669 DeletedVirtualFn = 670 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 671 fnPtr = DeletedVirtualFn; 672 673 // Thunks. 674 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 675 layout.vtable_thunks()[nextVTableThunkIndex].first == idx) { 676 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 677 678 nextVTableThunkIndex++; 679 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 680 681 // Otherwise we can use the method definition directly. 682 } else { 683 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 684 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 685 } 686 687 fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy); 688 builder.add(fnPtr); 689 return; 690 } 691 692 case VTableComponent::CK_UnusedFunctionPointer: 693 return builder.addNullPointer(CGM.Int8PtrTy); 694 } 695 696 llvm_unreachable("Unexpected vtable component kind"); 697 } 698 699 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 700 SmallVector<llvm::Type *, 4> tys; 701 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 702 tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i))); 703 } 704 705 return llvm::StructType::get(CGM.getLLVMContext(), tys); 706 } 707 708 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 709 const VTableLayout &layout, 710 llvm::Constant *rtti) { 711 unsigned nextVTableThunkIndex = 0; 712 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 713 auto vtableElem = builder.beginArray(CGM.Int8PtrTy); 714 size_t thisIndex = layout.getVTableOffset(i); 715 size_t nextIndex = thisIndex + layout.getVTableSize(i); 716 for (unsigned i = thisIndex; i != nextIndex; ++i) { 717 addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex); 718 } 719 vtableElem.finishAndAddTo(builder); 720 } 721 } 722 723 llvm::GlobalVariable * 724 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 725 const BaseSubobject &Base, 726 bool BaseIsVirtual, 727 llvm::GlobalVariable::LinkageTypes Linkage, 728 VTableAddressPointsMapTy& AddressPoints) { 729 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 730 DI->completeClassData(Base.getBase()); 731 732 std::unique_ptr<VTableLayout> VTLayout( 733 getItaniumVTableContext().createConstructionVTableLayout( 734 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 735 736 // Add the address points. 737 AddressPoints = VTLayout->getAddressPoints(); 738 739 // Get the mangled construction vtable name. 740 SmallString<256> OutName; 741 llvm::raw_svector_ostream Out(OutName); 742 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 743 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 744 Base.getBase(), Out); 745 StringRef Name = OutName.str(); 746 747 llvm::Type *VTType = getVTableType(*VTLayout); 748 749 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 750 // guarantee that they actually will be available externally. Instead, when 751 // emitting an available_externally VTT, we provide references to an internal 752 // linkage construction vtable. The ABI only requires complete-object vtables 753 // to be the same for all instances of a type, not construction vtables. 754 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 755 Linkage = llvm::GlobalVariable::InternalLinkage; 756 757 unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); 758 759 // Create the variable that will hold the construction vtable. 760 llvm::GlobalVariable *VTable = 761 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 762 CGM.setGVProperties(VTable, RD); 763 764 // V-tables are always unnamed_addr. 765 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 766 767 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 768 CGM.getContext().getTagDeclType(Base.getBase())); 769 770 // Create and set the initializer. 771 ConstantInitBuilder builder(CGM); 772 auto components = builder.beginStruct(); 773 createVTableInitializer(components, *VTLayout, RTTI); 774 components.finishAndSetAsInitializer(VTable); 775 776 CGM.EmitVTableTypeMetadata(VTable, *VTLayout.get()); 777 778 return VTable; 779 } 780 781 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 782 const CXXRecordDecl *RD) { 783 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 784 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 785 } 786 787 /// Compute the required linkage of the vtable for the given class. 788 /// 789 /// Note that we only call this at the end of the translation unit. 790 llvm::GlobalVariable::LinkageTypes 791 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 792 if (!RD->isExternallyVisible()) 793 return llvm::GlobalVariable::InternalLinkage; 794 795 // We're at the end of the translation unit, so the current key 796 // function is fully correct. 797 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 798 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 799 // If this class has a key function, use that to determine the 800 // linkage of the vtable. 801 const FunctionDecl *def = nullptr; 802 if (keyFunction->hasBody(def)) 803 keyFunction = cast<CXXMethodDecl>(def); 804 805 switch (keyFunction->getTemplateSpecializationKind()) { 806 case TSK_Undeclared: 807 case TSK_ExplicitSpecialization: 808 assert((def || CodeGenOpts.OptimizationLevel > 0 || 809 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && 810 "Shouldn't query vtable linkage without key function, " 811 "optimizations, or debug info"); 812 if (!def && CodeGenOpts.OptimizationLevel > 0) 813 return llvm::GlobalVariable::AvailableExternallyLinkage; 814 815 if (keyFunction->isInlined()) 816 return !Context.getLangOpts().AppleKext ? 817 llvm::GlobalVariable::LinkOnceODRLinkage : 818 llvm::Function::InternalLinkage; 819 820 return llvm::GlobalVariable::ExternalLinkage; 821 822 case TSK_ImplicitInstantiation: 823 return !Context.getLangOpts().AppleKext ? 824 llvm::GlobalVariable::LinkOnceODRLinkage : 825 llvm::Function::InternalLinkage; 826 827 case TSK_ExplicitInstantiationDefinition: 828 return !Context.getLangOpts().AppleKext ? 829 llvm::GlobalVariable::WeakODRLinkage : 830 llvm::Function::InternalLinkage; 831 832 case TSK_ExplicitInstantiationDeclaration: 833 llvm_unreachable("Should not have been asked to emit this"); 834 } 835 } 836 837 // -fapple-kext mode does not support weak linkage, so we must use 838 // internal linkage. 839 if (Context.getLangOpts().AppleKext) 840 return llvm::Function::InternalLinkage; 841 842 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 843 llvm::GlobalValue::LinkOnceODRLinkage; 844 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 845 llvm::GlobalValue::WeakODRLinkage; 846 if (RD->hasAttr<DLLExportAttr>()) { 847 // Cannot discard exported vtables. 848 DiscardableODRLinkage = NonDiscardableODRLinkage; 849 } else if (RD->hasAttr<DLLImportAttr>()) { 850 // Imported vtables are available externally. 851 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 852 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 853 } 854 855 switch (RD->getTemplateSpecializationKind()) { 856 case TSK_Undeclared: 857 case TSK_ExplicitSpecialization: 858 case TSK_ImplicitInstantiation: 859 return DiscardableODRLinkage; 860 861 case TSK_ExplicitInstantiationDeclaration: 862 // Explicit instantiations in MSVC do not provide vtables, so we must emit 863 // our own. 864 if (getTarget().getCXXABI().isMicrosoft()) 865 return DiscardableODRLinkage; 866 return shouldEmitAvailableExternallyVTable(*this, RD) 867 ? llvm::GlobalVariable::AvailableExternallyLinkage 868 : llvm::GlobalVariable::ExternalLinkage; 869 870 case TSK_ExplicitInstantiationDefinition: 871 return NonDiscardableODRLinkage; 872 } 873 874 llvm_unreachable("Invalid TemplateSpecializationKind!"); 875 } 876 877 /// This is a callback from Sema to tell us that a particular vtable is 878 /// required to be emitted in this translation unit. 879 /// 880 /// This is only called for vtables that _must_ be emitted (mainly due to key 881 /// functions). For weak vtables, CodeGen tracks when they are needed and 882 /// emits them as-needed. 883 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 884 VTables.GenerateClassData(theClass); 885 } 886 887 void 888 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 889 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 890 DI->completeClassData(RD); 891 892 if (RD->getNumVBases()) 893 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 894 895 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 896 } 897 898 /// At this point in the translation unit, does it appear that can we 899 /// rely on the vtable being defined elsewhere in the program? 900 /// 901 /// The response is really only definitive when called at the end of 902 /// the translation unit. 903 /// 904 /// The only semantic restriction here is that the object file should 905 /// not contain a vtable definition when that vtable is defined 906 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 907 /// vtables when unnecessary. 908 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 909 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 910 911 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 912 // emit them even if there is an explicit template instantiation. 913 if (CGM.getTarget().getCXXABI().isMicrosoft()) 914 return false; 915 916 // If we have an explicit instantiation declaration (and not a 917 // definition), the vtable is defined elsewhere. 918 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 919 if (TSK == TSK_ExplicitInstantiationDeclaration) 920 return true; 921 922 // Otherwise, if the class is an instantiated template, the 923 // vtable must be defined here. 924 if (TSK == TSK_ImplicitInstantiation || 925 TSK == TSK_ExplicitInstantiationDefinition) 926 return false; 927 928 // Otherwise, if the class doesn't have a key function (possibly 929 // anymore), the vtable must be defined here. 930 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 931 if (!keyFunction) 932 return false; 933 934 // Otherwise, if we don't have a definition of the key function, the 935 // vtable must be defined somewhere else. 936 return !keyFunction->hasBody(); 937 } 938 939 /// Given that we're currently at the end of the translation unit, and 940 /// we've emitted a reference to the vtable for this class, should 941 /// we define that vtable? 942 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 943 const CXXRecordDecl *RD) { 944 // If vtable is internal then it has to be done. 945 if (!CGM.getVTables().isVTableExternal(RD)) 946 return true; 947 948 // If it's external then maybe we will need it as available_externally. 949 return shouldEmitAvailableExternallyVTable(CGM, RD); 950 } 951 952 /// Given that at some point we emitted a reference to one or more 953 /// vtables, and that we are now at the end of the translation unit, 954 /// decide whether we should emit them. 955 void CodeGenModule::EmitDeferredVTables() { 956 #ifndef NDEBUG 957 // Remember the size of DeferredVTables, because we're going to assume 958 // that this entire operation doesn't modify it. 959 size_t savedSize = DeferredVTables.size(); 960 #endif 961 962 for (const CXXRecordDecl *RD : DeferredVTables) 963 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 964 VTables.GenerateClassData(RD); 965 else if (shouldOpportunisticallyEmitVTables()) 966 OpportunisticVTables.push_back(RD); 967 968 assert(savedSize == DeferredVTables.size() && 969 "deferred extra vtables during vtable emission?"); 970 DeferredVTables.clear(); 971 } 972 973 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 974 LinkageInfo LV = RD->getLinkageAndVisibility(); 975 if (!isExternallyVisible(LV.getLinkage())) 976 return true; 977 978 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 979 return false; 980 981 if (getTriple().isOSBinFormatCOFF()) { 982 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 983 return false; 984 } else { 985 if (LV.getVisibility() != HiddenVisibility) 986 return false; 987 } 988 989 if (getCodeGenOpts().LTOVisibilityPublicStd) { 990 const DeclContext *DC = RD; 991 while (1) { 992 auto *D = cast<Decl>(DC); 993 DC = DC->getParent(); 994 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 995 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 996 if (const IdentifierInfo *II = ND->getIdentifier()) 997 if (II->isStr("std") || II->isStr("stdext")) 998 return false; 999 break; 1000 } 1001 } 1002 } 1003 1004 return true; 1005 } 1006 1007 void CodeGenModule::EmitVTableTypeMetadata(llvm::GlobalVariable *VTable, 1008 const VTableLayout &VTLayout) { 1009 if (!getCodeGenOpts().LTOUnit) 1010 return; 1011 1012 CharUnits PointerWidth = 1013 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1014 1015 typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; 1016 std::vector<AddressPoint> AddressPoints; 1017 for (auto &&AP : VTLayout.getAddressPoints()) 1018 AddressPoints.push_back(std::make_pair( 1019 AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + 1020 AP.second.AddressPointIndex)); 1021 1022 // Sort the address points for determinism. 1023 llvm::sort(AddressPoints, [this](const AddressPoint &AP1, 1024 const AddressPoint &AP2) { 1025 if (&AP1 == &AP2) 1026 return false; 1027 1028 std::string S1; 1029 llvm::raw_string_ostream O1(S1); 1030 getCXXABI().getMangleContext().mangleTypeName( 1031 QualType(AP1.first->getTypeForDecl(), 0), O1); 1032 O1.flush(); 1033 1034 std::string S2; 1035 llvm::raw_string_ostream O2(S2); 1036 getCXXABI().getMangleContext().mangleTypeName( 1037 QualType(AP2.first->getTypeForDecl(), 0), O2); 1038 O2.flush(); 1039 1040 if (S1 < S2) 1041 return true; 1042 if (S1 != S2) 1043 return false; 1044 1045 return AP1.second < AP2.second; 1046 }); 1047 1048 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1049 for (auto AP : AddressPoints) { 1050 // Create type metadata for the address point. 1051 AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); 1052 1053 // The class associated with each address point could also potentially be 1054 // used for indirect calls via a member function pointer, so we need to 1055 // annotate the address of each function pointer with the appropriate member 1056 // function pointer type. 1057 for (unsigned I = 0; I != Comps.size(); ++I) { 1058 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1059 continue; 1060 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1061 Context.getMemberPointerType( 1062 Comps[I].getFunctionDecl()->getType(), 1063 Context.getRecordType(AP.first).getTypePtr())); 1064 VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); 1065 } 1066 } 1067 } 1068