1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 32 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 33 34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 35 GlobalDecl GD) { 36 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 37 /*DontDefer=*/true, /*IsThunk=*/true); 38 } 39 40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 41 llvm::Function *ThunkFn, bool ForVTable, 42 GlobalDecl GD) { 43 CGM.setFunctionLinkage(GD, ThunkFn); 44 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 45 !Thunk.Return.isEmpty()); 46 47 // Set the right visibility. 48 CGM.setGVProperties(ThunkFn, GD); 49 50 if (!CGM.getCXXABI().exportThunk()) { 51 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 52 ThunkFn->setDSOLocal(true); 53 } 54 55 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 56 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 57 } 58 59 #ifndef NDEBUG 60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 61 const ABIArgInfo &infoR, CanQualType typeR) { 62 return (infoL.getKind() == infoR.getKind() && 63 (typeL == typeR || 64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 66 } 67 #endif 68 69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 70 QualType ResultType, RValue RV, 71 const ThunkInfo &Thunk) { 72 // Emit the return adjustment. 73 bool NullCheckValue = !ResultType->isReferenceType(); 74 75 llvm::BasicBlock *AdjustNull = nullptr; 76 llvm::BasicBlock *AdjustNotNull = nullptr; 77 llvm::BasicBlock *AdjustEnd = nullptr; 78 79 llvm::Value *ReturnValue = RV.getScalarVal(); 80 81 if (NullCheckValue) { 82 AdjustNull = CGF.createBasicBlock("adjust.null"); 83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 84 AdjustEnd = CGF.createBasicBlock("adjust.end"); 85 86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 88 CGF.EmitBlock(AdjustNotNull); 89 } 90 91 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 92 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 93 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 94 Address(ReturnValue, ClassAlign), 95 Thunk.Return); 96 97 if (NullCheckValue) { 98 CGF.Builder.CreateBr(AdjustEnd); 99 CGF.EmitBlock(AdjustNull); 100 CGF.Builder.CreateBr(AdjustEnd); 101 CGF.EmitBlock(AdjustEnd); 102 103 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 104 PHI->addIncoming(ReturnValue, AdjustNotNull); 105 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 106 AdjustNull); 107 ReturnValue = PHI; 108 } 109 110 return RValue::get(ReturnValue); 111 } 112 113 /// This function clones a function's DISubprogram node and enters it into 114 /// a value map with the intent that the map can be utilized by the cloner 115 /// to short-circuit Metadata node mapping. 116 /// Furthermore, the function resolves any DILocalVariable nodes referenced 117 /// by dbg.value intrinsics so they can be properly mapped during cloning. 118 static void resolveTopLevelMetadata(llvm::Function *Fn, 119 llvm::ValueToValueMapTy &VMap) { 120 // Clone the DISubprogram node and put it into the Value map. 121 auto *DIS = Fn->getSubprogram(); 122 if (!DIS) 123 return; 124 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 125 VMap.MD()[DIS].reset(NewDIS); 126 127 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 128 // they are referencing. 129 for (auto &BB : Fn->getBasicBlockList()) { 130 for (auto &I : BB) { 131 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 132 auto *DILocal = DII->getVariable(); 133 if (!DILocal->isResolved()) 134 DILocal->resolve(); 135 } 136 } 137 } 138 } 139 140 // This function does roughly the same thing as GenerateThunk, but in a 141 // very different way, so that va_start and va_end work correctly. 142 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 143 // a function, and that there is an alloca built in the entry block 144 // for all accesses to "this". 145 // FIXME: This function assumes there is only one "ret" statement per function. 146 // FIXME: Cloning isn't correct in the presence of indirect goto! 147 // FIXME: This implementation of thunks bloats codesize by duplicating the 148 // function definition. There are alternatives: 149 // 1. Add some sort of stub support to LLVM for cases where we can 150 // do a this adjustment, then a sibcall. 151 // 2. We could transform the definition to take a va_list instead of an 152 // actual variable argument list, then have the thunks (including a 153 // no-op thunk for the regular definition) call va_start/va_end. 154 // There's a bit of per-call overhead for this solution, but it's 155 // better for codesize if the definition is long. 156 llvm::Function * 157 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 158 const CGFunctionInfo &FnInfo, 159 GlobalDecl GD, const ThunkInfo &Thunk) { 160 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 161 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 162 QualType ResultType = FPT->getReturnType(); 163 164 // Get the original function 165 assert(FnInfo.isVariadic()); 166 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 167 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 168 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 169 170 // Cloning can't work if we don't have a definition. The Microsoft ABI may 171 // require thunks when a definition is not available. Emit an error in these 172 // cases. 173 if (!MD->isDefined()) { 174 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments"); 175 return Fn; 176 } 177 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method"); 178 179 // Clone to thunk. 180 llvm::ValueToValueMapTy VMap; 181 182 // We are cloning a function while some Metadata nodes are still unresolved. 183 // Ensure that the value mapper does not encounter any of them. 184 resolveTopLevelMetadata(BaseFn, VMap); 185 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 186 Fn->replaceAllUsesWith(NewFn); 187 NewFn->takeName(Fn); 188 Fn->eraseFromParent(); 189 Fn = NewFn; 190 191 // "Initialize" CGF (minimally). 192 CurFn = Fn; 193 194 // Get the "this" value 195 llvm::Function::arg_iterator AI = Fn->arg_begin(); 196 if (CGM.ReturnTypeUsesSRet(FnInfo)) 197 ++AI; 198 199 // Find the first store of "this", which will be to the alloca associated 200 // with "this". 201 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 202 llvm::BasicBlock *EntryBB = &Fn->front(); 203 llvm::BasicBlock::iterator ThisStore = 204 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 205 return isa<llvm::StoreInst>(I) && 206 I.getOperand(0) == ThisPtr.getPointer(); 207 }); 208 assert(ThisStore != EntryBB->end() && 209 "Store of this should be in entry block?"); 210 // Adjust "this", if necessary. 211 Builder.SetInsertPoint(&*ThisStore); 212 llvm::Value *AdjustedThisPtr = 213 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 214 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, 215 ThisStore->getOperand(0)->getType()); 216 ThisStore->setOperand(0, AdjustedThisPtr); 217 218 if (!Thunk.Return.isEmpty()) { 219 // Fix up the returned value, if necessary. 220 for (llvm::BasicBlock &BB : *Fn) { 221 llvm::Instruction *T = BB.getTerminator(); 222 if (isa<llvm::ReturnInst>(T)) { 223 RValue RV = RValue::get(T->getOperand(0)); 224 T->eraseFromParent(); 225 Builder.SetInsertPoint(&BB); 226 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 227 Builder.CreateRet(RV.getScalarVal()); 228 break; 229 } 230 } 231 } 232 233 return Fn; 234 } 235 236 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 237 const CGFunctionInfo &FnInfo, 238 bool IsUnprototyped) { 239 assert(!CurGD.getDecl() && "CurGD was already set!"); 240 CurGD = GD; 241 CurFuncIsThunk = true; 242 243 // Build FunctionArgs. 244 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 245 QualType ThisType = MD->getThisType(); 246 QualType ResultType; 247 if (IsUnprototyped) 248 ResultType = CGM.getContext().VoidTy; 249 else if (CGM.getCXXABI().HasThisReturn(GD)) 250 ResultType = ThisType; 251 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 252 ResultType = CGM.getContext().VoidPtrTy; 253 else 254 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); 255 FunctionArgList FunctionArgs; 256 257 // Create the implicit 'this' parameter declaration. 258 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 259 260 // Add the rest of the parameters, if we have a prototype to work with. 261 if (!IsUnprototyped) { 262 FunctionArgs.append(MD->param_begin(), MD->param_end()); 263 264 if (isa<CXXDestructorDecl>(MD)) 265 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 266 FunctionArgs); 267 } 268 269 // Start defining the function. 270 auto NL = ApplyDebugLocation::CreateEmpty(*this); 271 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 272 MD->getLocation()); 273 // Create a scope with an artificial location for the body of this function. 274 auto AL = ApplyDebugLocation::CreateArtificial(*this); 275 276 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 277 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 278 CXXThisValue = CXXABIThisValue; 279 CurCodeDecl = MD; 280 CurFuncDecl = MD; 281 } 282 283 void CodeGenFunction::FinishThunk() { 284 // Clear these to restore the invariants expected by 285 // StartFunction/FinishFunction. 286 CurCodeDecl = nullptr; 287 CurFuncDecl = nullptr; 288 289 FinishFunction(); 290 } 291 292 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 293 const ThunkInfo *Thunk, 294 bool IsUnprototyped) { 295 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 296 "Please use a new CGF for this thunk"); 297 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 298 299 // Adjust the 'this' pointer if necessary 300 llvm::Value *AdjustedThisPtr = 301 Thunk ? CGM.getCXXABI().performThisAdjustment( 302 *this, LoadCXXThisAddress(), Thunk->This) 303 : LoadCXXThis(); 304 305 // If perfect forwarding is required a variadic method, a method using 306 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this 307 // thunk requires a return adjustment, since that is impossible with musttail. 308 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { 309 if (Thunk && !Thunk->Return.isEmpty()) { 310 if (IsUnprototyped) 311 CGM.ErrorUnsupported( 312 MD, "return-adjusting thunk with incomplete parameter type"); 313 else if (CurFnInfo->isVariadic()) 314 llvm_unreachable("shouldn't try to emit musttail return-adjusting " 315 "thunks for variadic functions"); 316 else 317 CGM.ErrorUnsupported( 318 MD, "non-trivial argument copy for return-adjusting thunk"); 319 } 320 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); 321 return; 322 } 323 324 // Start building CallArgs. 325 CallArgList CallArgs; 326 QualType ThisType = MD->getThisType(); 327 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 328 329 if (isa<CXXDestructorDecl>(MD)) 330 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 331 332 #ifndef NDEBUG 333 unsigned PrefixArgs = CallArgs.size() - 1; 334 #endif 335 // Add the rest of the arguments. 336 for (const ParmVarDecl *PD : MD->parameters()) 337 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 338 339 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 340 341 #ifndef NDEBUG 342 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 343 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); 344 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 345 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 346 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 347 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 348 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 349 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 350 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 351 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 352 assert(similar(CallFnInfo.arg_begin()[i].info, 353 CallFnInfo.arg_begin()[i].type, 354 CurFnInfo->arg_begin()[i].info, 355 CurFnInfo->arg_begin()[i].type)); 356 #endif 357 358 // Determine whether we have a return value slot to use. 359 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 360 ? ThisType 361 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 362 ? CGM.getContext().VoidPtrTy 363 : FPT->getReturnType(); 364 ReturnValueSlot Slot; 365 if (!ResultType->isVoidType() && 366 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) 367 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(), 368 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 369 370 // Now emit our call. 371 llvm::CallBase *CallOrInvoke; 372 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, 373 CallArgs, &CallOrInvoke); 374 375 // Consider return adjustment if we have ThunkInfo. 376 if (Thunk && !Thunk->Return.isEmpty()) 377 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 378 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 379 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 380 381 // Emit return. 382 if (!ResultType->isVoidType() && Slot.isNull()) 383 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 384 385 // Disable the final ARC autorelease. 386 AutoreleaseResult = false; 387 388 FinishThunk(); 389 } 390 391 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 392 llvm::Value *AdjustedThisPtr, 393 llvm::FunctionCallee Callee) { 394 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 395 // to translate AST arguments into LLVM IR arguments. For thunks, we know 396 // that the caller prototype more or less matches the callee prototype with 397 // the exception of 'this'. 398 SmallVector<llvm::Value *, 8> Args; 399 for (llvm::Argument &A : CurFn->args()) 400 Args.push_back(&A); 401 402 // Set the adjusted 'this' pointer. 403 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 404 if (ThisAI.isDirect()) { 405 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 406 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 407 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 408 if (ThisType != AdjustedThisPtr->getType()) 409 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 410 Args[ThisArgNo] = AdjustedThisPtr; 411 } else { 412 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 413 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 414 llvm::Type *ThisType = ThisAddr.getElementType(); 415 if (ThisType != AdjustedThisPtr->getType()) 416 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 417 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 418 } 419 420 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 421 // don't actually want to run them. 422 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 423 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 424 425 // Apply the standard set of call attributes. 426 unsigned CallingConv; 427 llvm::AttributeList Attrs; 428 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, 429 Attrs, CallingConv, /*AttrOnCallSite=*/true); 430 Call->setAttributes(Attrs); 431 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 432 433 if (Call->getType()->isVoidTy()) 434 Builder.CreateRetVoid(); 435 else 436 Builder.CreateRet(Call); 437 438 // Finish the function to maintain CodeGenFunction invariants. 439 // FIXME: Don't emit unreachable code. 440 EmitBlock(createBasicBlock()); 441 442 FinishThunk(); 443 } 444 445 void CodeGenFunction::generateThunk(llvm::Function *Fn, 446 const CGFunctionInfo &FnInfo, GlobalDecl GD, 447 const ThunkInfo &Thunk, 448 bool IsUnprototyped) { 449 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 450 // Create a scope with an artificial location for the body of this function. 451 auto AL = ApplyDebugLocation::CreateArtificial(*this); 452 453 // Get our callee. Use a placeholder type if this method is unprototyped so 454 // that CodeGenModule doesn't try to set attributes. 455 llvm::Type *Ty; 456 if (IsUnprototyped) 457 Ty = llvm::StructType::get(getLLVMContext()); 458 else 459 Ty = CGM.getTypes().GetFunctionType(FnInfo); 460 461 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 462 463 // Fix up the function type for an unprototyped musttail call. 464 if (IsUnprototyped) 465 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); 466 467 // Make the call and return the result. 468 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), 469 &Thunk, IsUnprototyped); 470 } 471 472 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 473 bool IsUnprototyped, bool ForVTable) { 474 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 475 // provide thunks for us. 476 if (CGM.getTarget().getCXXABI().isMicrosoft()) 477 return true; 478 479 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 480 // definitions of the main method. Therefore, emitting thunks with the vtable 481 // is purely an optimization. Emit the thunk if optimizations are enabled and 482 // all of the parameter types are complete. 483 if (ForVTable) 484 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 485 486 // Always emit thunks along with the method definition. 487 return true; 488 } 489 490 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 491 const ThunkInfo &TI, 492 bool ForVTable) { 493 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 494 495 // First, get a declaration. Compute the mangled name. Don't worry about 496 // getting the function prototype right, since we may only need this 497 // declaration to fill in a vtable slot. 498 SmallString<256> Name; 499 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 500 llvm::raw_svector_ostream Out(Name); 501 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 502 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 503 else 504 MCtx.mangleThunk(MD, TI, Out); 505 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 506 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 507 508 // If we don't need to emit a definition, return this declaration as is. 509 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 510 MD->getType()->castAs<FunctionType>()); 511 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 512 return Thunk; 513 514 // Arrange a function prototype appropriate for a function definition. In some 515 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 516 const CGFunctionInfo &FnInfo = 517 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 518 : CGM.getTypes().arrangeGlobalDeclaration(GD); 519 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 520 521 // If the type of the underlying GlobalValue is wrong, we'll have to replace 522 // it. It should be a declaration. 523 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 524 if (ThunkFn->getFunctionType() != ThunkFnTy) { 525 llvm::GlobalValue *OldThunkFn = ThunkFn; 526 527 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 528 529 // Remove the name from the old thunk function and get a new thunk. 530 OldThunkFn->setName(StringRef()); 531 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 532 Name.str(), &CGM.getModule()); 533 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 534 535 // If needed, replace the old thunk with a bitcast. 536 if (!OldThunkFn->use_empty()) { 537 llvm::Constant *NewPtrForOldDecl = 538 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); 539 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 540 } 541 542 // Remove the old thunk. 543 OldThunkFn->eraseFromParent(); 544 } 545 546 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 547 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 548 549 if (!ThunkFn->isDeclaration()) { 550 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 551 // There is already a thunk emitted for this function, do nothing. 552 return ThunkFn; 553 } 554 555 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 556 return ThunkFn; 557 } 558 559 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 560 // that the return type is meaningless. These thunks can be used to call 561 // functions with differing return types, and the caller is required to cast 562 // the prototype appropriately to extract the correct value. 563 if (IsUnprototyped) 564 ThunkFn->addFnAttr("thunk"); 565 566 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 567 568 // Thunks for variadic methods are special because in general variadic 569 // arguments cannot be perfectly forwarded. In the general case, clang 570 // implements such thunks by cloning the original function body. However, for 571 // thunks with no return adjustment on targets that support musttail, we can 572 // use musttail to perfectly forward the variadic arguments. 573 bool ShouldCloneVarArgs = false; 574 if (!IsUnprototyped && ThunkFn->isVarArg()) { 575 ShouldCloneVarArgs = true; 576 if (TI.Return.isEmpty()) { 577 switch (CGM.getTriple().getArch()) { 578 case llvm::Triple::x86_64: 579 case llvm::Triple::x86: 580 case llvm::Triple::aarch64: 581 ShouldCloneVarArgs = false; 582 break; 583 default: 584 break; 585 } 586 } 587 } 588 589 if (ShouldCloneVarArgs) { 590 if (UseAvailableExternallyLinkage) 591 return ThunkFn; 592 ThunkFn = 593 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI); 594 } else { 595 // Normal thunk body generation. 596 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 597 } 598 599 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 600 return ThunkFn; 601 } 602 603 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 604 const CXXMethodDecl *MD = 605 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 606 607 // We don't need to generate thunks for the base destructor. 608 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 609 return; 610 611 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 612 VTContext->getThunkInfo(GD); 613 614 if (!ThunkInfoVector) 615 return; 616 617 for (const ThunkInfo& Thunk : *ThunkInfoVector) 618 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 619 } 620 621 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder, 622 llvm::Constant *component, 623 unsigned vtableAddressPoint, 624 bool vtableHasLocalLinkage, 625 bool isCompleteDtor) const { 626 // No need to get the offset of a nullptr. 627 if (component->isNullValue()) 628 return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0)); 629 630 auto *globalVal = 631 cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases()); 632 llvm::Module &module = CGM.getModule(); 633 634 // We don't want to copy the linkage of the vtable exactly because we still 635 // want the stub/proxy to be emitted for properly calculating the offset. 636 // Examples where there would be no symbol emitted are available_externally 637 // and private linkages. 638 auto stubLinkage = vtableHasLocalLinkage ? llvm::GlobalValue::InternalLinkage 639 : llvm::GlobalValue::ExternalLinkage; 640 641 llvm::Constant *target; 642 if (auto *func = dyn_cast<llvm::Function>(globalVal)) { 643 target = getOrCreateRelativeStub(func, stubLinkage, isCompleteDtor); 644 } else { 645 llvm::SmallString<16> rttiProxyName(globalVal->getName()); 646 rttiProxyName.append(".rtti_proxy"); 647 648 // The RTTI component may not always be emitted in the same linkage unit as 649 // the vtable. As a general case, we can make a dso_local proxy to the RTTI 650 // that points to the actual RTTI struct somewhere. This will result in a 651 // GOTPCREL relocation when taking the relative offset to the proxy. 652 llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName); 653 if (!proxy) { 654 proxy = new llvm::GlobalVariable(module, globalVal->getType(), 655 /*isConstant=*/true, stubLinkage, 656 globalVal, rttiProxyName); 657 proxy->setDSOLocal(true); 658 proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 659 if (!proxy->hasLocalLinkage()) { 660 proxy->setVisibility(llvm::GlobalValue::HiddenVisibility); 661 proxy->setComdat(module.getOrInsertComdat(rttiProxyName)); 662 } 663 } 664 target = proxy; 665 } 666 667 builder.addRelativeOffsetToPosition(CGM.Int32Ty, target, 668 /*position=*/vtableAddressPoint); 669 } 670 671 llvm::Function *CodeGenVTables::getOrCreateRelativeStub( 672 llvm::Function *func, llvm::GlobalValue::LinkageTypes stubLinkage, 673 bool isCompleteDtor) const { 674 // A complete object destructor can later be substituted in the vtable for an 675 // appropriate base object destructor when optimizations are enabled. This can 676 // happen for child classes that don't have their own destructor. In the case 677 // where a parent virtual destructor is not guaranteed to be in the same 678 // linkage unit as the child vtable, it's possible for an external reference 679 // for this destructor to be substituted into the child vtable, preventing it 680 // from being in rodata. If this function is a complete virtual destructor, we 681 // can just force a stub to be emitted for it. 682 if (func->isDSOLocal() && !isCompleteDtor) 683 return func; 684 685 llvm::SmallString<16> stubName(func->getName()); 686 stubName.append(".stub"); 687 688 // Instead of taking the offset between the vtable and virtual function 689 // directly, we emit a dso_local stub that just contains a tail call to the 690 // original virtual function and take the offset between that and the 691 // vtable. We do this because there are some cases where the original 692 // function that would've been inserted into the vtable is not dso_local 693 // which may require some kind of dynamic relocation which prevents the 694 // vtable from being readonly. On x86_64, taking the offset between the 695 // function and the vtable gets lowered to the offset between the PLT entry 696 // for the function and the vtable which gives us a PLT32 reloc. On AArch64, 697 // right now only CALL26 and JUMP26 instructions generate PLT relocations, 698 // so we manifest them with stubs that are just jumps to the original 699 // function. 700 auto &module = CGM.getModule(); 701 llvm::Function *stub = module.getFunction(stubName); 702 if (stub) { 703 assert(stub->isDSOLocal() && 704 "The previous definition of this stub should've been dso_local."); 705 return stub; 706 } 707 708 stub = llvm::Function::Create(func->getFunctionType(), stubLinkage, stubName, 709 module); 710 711 // Propogate function attributes. 712 stub->setAttributes(func->getAttributes()); 713 714 stub->setDSOLocal(true); 715 stub->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 716 if (!stub->hasLocalLinkage()) { 717 stub->setVisibility(llvm::GlobalValue::HiddenVisibility); 718 stub->setComdat(module.getOrInsertComdat(stubName)); 719 } 720 721 // Fill the stub with a tail call that will be optimized. 722 llvm::BasicBlock *block = 723 llvm::BasicBlock::Create(module.getContext(), "entry", stub); 724 llvm::IRBuilder<> block_builder(block); 725 llvm::SmallVector<llvm::Value *, 8> args; 726 for (auto &arg : stub->args()) 727 args.push_back(&arg); 728 llvm::CallInst *call = block_builder.CreateCall(func, args); 729 call->setAttributes(func->getAttributes()); 730 call->setTailCall(); 731 if (call->getType()->isVoidTy()) 732 block_builder.CreateRetVoid(); 733 else 734 block_builder.CreateRet(call); 735 736 return stub; 737 } 738 739 bool CodeGenVTables::useRelativeLayout() const { 740 return CGM.getTarget().getCXXABI().isItaniumFamily() && 741 CGM.getItaniumVTableContext().isRelativeLayout(); 742 } 743 744 llvm::Type *CodeGenVTables::getVTableComponentType() const { 745 if (useRelativeLayout()) 746 return CGM.Int32Ty; 747 return CGM.Int8PtrTy; 748 } 749 750 static void AddPointerLayoutOffset(const CodeGenModule &CGM, 751 ConstantArrayBuilder &builder, 752 CharUnits offset) { 753 builder.add(llvm::ConstantExpr::getIntToPtr( 754 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 755 CGM.Int8PtrTy)); 756 } 757 758 static void AddRelativeLayoutOffset(const CodeGenModule &CGM, 759 ConstantArrayBuilder &builder, 760 CharUnits offset) { 761 builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity())); 762 } 763 764 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder, 765 const VTableLayout &layout, 766 unsigned componentIndex, 767 llvm::Constant *rtti, 768 unsigned &nextVTableThunkIndex, 769 unsigned vtableAddressPoint, 770 bool vtableHasLocalLinkage) { 771 auto &component = layout.vtable_components()[componentIndex]; 772 773 auto addOffsetConstant = 774 useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset; 775 776 switch (component.getKind()) { 777 case VTableComponent::CK_VCallOffset: 778 return addOffsetConstant(CGM, builder, component.getVCallOffset()); 779 780 case VTableComponent::CK_VBaseOffset: 781 return addOffsetConstant(CGM, builder, component.getVBaseOffset()); 782 783 case VTableComponent::CK_OffsetToTop: 784 return addOffsetConstant(CGM, builder, component.getOffsetToTop()); 785 786 case VTableComponent::CK_RTTI: 787 if (useRelativeLayout()) 788 return addRelativeComponent(builder, rtti, vtableAddressPoint, 789 vtableHasLocalLinkage, 790 /*isCompleteDtor=*/false); 791 else 792 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); 793 794 case VTableComponent::CK_FunctionPointer: 795 case VTableComponent::CK_CompleteDtorPointer: 796 case VTableComponent::CK_DeletingDtorPointer: { 797 GlobalDecl GD; 798 799 // Get the right global decl. 800 switch (component.getKind()) { 801 default: 802 llvm_unreachable("Unexpected vtable component kind"); 803 case VTableComponent::CK_FunctionPointer: 804 GD = component.getFunctionDecl(); 805 break; 806 case VTableComponent::CK_CompleteDtorPointer: 807 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete); 808 break; 809 case VTableComponent::CK_DeletingDtorPointer: 810 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting); 811 break; 812 } 813 814 if (CGM.getLangOpts().CUDA) { 815 // Emit NULL for methods we can't codegen on this 816 // side. Otherwise we'd end up with vtable with unresolved 817 // references. 818 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 819 // OK on device side: functions w/ __device__ attribute 820 // OK on host side: anything except __device__-only functions. 821 bool CanEmitMethod = 822 CGM.getLangOpts().CUDAIsDevice 823 ? MD->hasAttr<CUDADeviceAttr>() 824 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 825 if (!CanEmitMethod) 826 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy)); 827 // Method is acceptable, continue processing as usual. 828 } 829 830 auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * { 831 // FIXME(PR43094): When merging comdat groups, lld can select a local 832 // symbol as the signature symbol even though it cannot be accessed 833 // outside that symbol's TU. The relative vtables ABI would make 834 // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and 835 // depending on link order, the comdat groups could resolve to the one 836 // with the local symbol. As a temporary solution, fill these components 837 // with zero. We shouldn't be calling these in the first place anyway. 838 if (useRelativeLayout()) 839 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 840 841 // For NVPTX devices in OpenMP emit special functon as null pointers, 842 // otherwise linking ends up with unresolved references. 843 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice && 844 CGM.getTriple().isNVPTX()) 845 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 846 llvm::FunctionType *fnTy = 847 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 848 llvm::Constant *fn = cast<llvm::Constant>( 849 CGM.CreateRuntimeFunction(fnTy, name).getCallee()); 850 if (auto f = dyn_cast<llvm::Function>(fn)) 851 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 852 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); 853 }; 854 855 llvm::Constant *fnPtr; 856 857 // Pure virtual member functions. 858 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 859 if (!PureVirtualFn) 860 PureVirtualFn = 861 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 862 fnPtr = PureVirtualFn; 863 864 // Deleted virtual member functions. 865 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 866 if (!DeletedVirtualFn) 867 DeletedVirtualFn = 868 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 869 fnPtr = DeletedVirtualFn; 870 871 // Thunks. 872 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 873 layout.vtable_thunks()[nextVTableThunkIndex].first == 874 componentIndex) { 875 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 876 877 nextVTableThunkIndex++; 878 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 879 880 // Otherwise we can use the method definition directly. 881 } else { 882 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 883 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 884 } 885 886 if (useRelativeLayout()) { 887 return addRelativeComponent( 888 builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage, 889 component.getKind() == VTableComponent::CK_CompleteDtorPointer); 890 } else 891 return builder.add(llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy)); 892 } 893 894 case VTableComponent::CK_UnusedFunctionPointer: 895 if (useRelativeLayout()) 896 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty)); 897 else 898 return builder.addNullPointer(CGM.Int8PtrTy); 899 } 900 901 llvm_unreachable("Unexpected vtable component kind"); 902 } 903 904 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 905 SmallVector<llvm::Type *, 4> tys; 906 llvm::Type *componentType = getVTableComponentType(); 907 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) 908 tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i))); 909 910 return llvm::StructType::get(CGM.getLLVMContext(), tys); 911 } 912 913 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 914 const VTableLayout &layout, 915 llvm::Constant *rtti, 916 bool vtableHasLocalLinkage) { 917 llvm::Type *componentType = getVTableComponentType(); 918 919 const auto &addressPoints = layout.getAddressPointIndices(); 920 unsigned nextVTableThunkIndex = 0; 921 for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables(); 922 vtableIndex != endIndex; ++vtableIndex) { 923 auto vtableElem = builder.beginArray(componentType); 924 925 size_t vtableStart = layout.getVTableOffset(vtableIndex); 926 size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex); 927 for (size_t componentIndex = vtableStart; componentIndex < vtableEnd; 928 ++componentIndex) { 929 addVTableComponent(vtableElem, layout, componentIndex, rtti, 930 nextVTableThunkIndex, addressPoints[vtableIndex], 931 vtableHasLocalLinkage); 932 } 933 vtableElem.finishAndAddTo(builder); 934 } 935 } 936 937 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable( 938 const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, 939 llvm::GlobalVariable::LinkageTypes Linkage, 940 VTableAddressPointsMapTy &AddressPoints) { 941 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 942 DI->completeClassData(Base.getBase()); 943 944 std::unique_ptr<VTableLayout> VTLayout( 945 getItaniumVTableContext().createConstructionVTableLayout( 946 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 947 948 // Add the address points. 949 AddressPoints = VTLayout->getAddressPoints(); 950 951 // Get the mangled construction vtable name. 952 SmallString<256> OutName; 953 llvm::raw_svector_ostream Out(OutName); 954 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 955 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 956 Base.getBase(), Out); 957 SmallString<256> Name(OutName); 958 959 bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout(); 960 bool VTableAliasExists = UsingRelativeLayout && CGM.getModule().getNamedAlias(Name); 961 if (VTableAliasExists) { 962 // We previously made the vtable hidden and changed its name. 963 Name.append(".local"); 964 } 965 966 llvm::Type *VTType = getVTableType(*VTLayout); 967 968 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 969 // guarantee that they actually will be available externally. Instead, when 970 // emitting an available_externally VTT, we provide references to an internal 971 // linkage construction vtable. The ABI only requires complete-object vtables 972 // to be the same for all instances of a type, not construction vtables. 973 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 974 Linkage = llvm::GlobalVariable::InternalLinkage; 975 976 unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); 977 978 // Create the variable that will hold the construction vtable. 979 llvm::GlobalVariable *VTable = 980 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 981 982 // V-tables are always unnamed_addr. 983 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 984 985 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 986 CGM.getContext().getTagDeclType(Base.getBase())); 987 988 // Create and set the initializer. 989 ConstantInitBuilder builder(CGM); 990 auto components = builder.beginStruct(); 991 createVTableInitializer(components, *VTLayout, RTTI, 992 VTable->hasLocalLinkage()); 993 components.finishAndSetAsInitializer(VTable); 994 995 // Set properties only after the initializer has been set to ensure that the 996 // GV is treated as definition and not declaration. 997 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); 998 CGM.setGVProperties(VTable, RD); 999 1000 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get()); 1001 1002 if (UsingRelativeLayout && !VTable->isDSOLocal()) 1003 GenerateRelativeVTableAlias(VTable, OutName); 1004 1005 return VTable; 1006 } 1007 1008 // If the VTable is not dso_local, then we will not be able to indicate that 1009 // the VTable does not need a relocation and move into rodata. An frequent 1010 // time this can occur is for classes that should be made public from a DSO 1011 // (like in libc++). For cases like these, we can make the vtable hidden or 1012 // private and create a public alias with the same visibility and linkage as 1013 // the original vtable type. 1014 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable, 1015 llvm::StringRef AliasName) { 1016 assert(getItaniumVTableContext().isRelativeLayout() && 1017 "Can only use this if the relative vtable ABI is used"); 1018 assert(!VTable->isDSOLocal() && "This should be called only if the vtable is " 1019 "not guaranteed to be dso_local"); 1020 1021 // If the vtable is available_externally, we shouldn't (or need to) generate 1022 // an alias for it in the first place since the vtable won't actually by 1023 // emitted in this compilation unit. 1024 if (VTable->hasAvailableExternallyLinkage()) 1025 return; 1026 1027 VTable->setName(AliasName + ".local"); 1028 1029 auto Linkage = VTable->getLinkage(); 1030 assert(llvm::GlobalAlias::isValidLinkage(Linkage) && 1031 "Invalid vtable alias linkage"); 1032 1033 llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName); 1034 if (!VTableAlias) { 1035 VTableAlias = llvm::GlobalAlias::create( 1036 VTable->getValueType(), VTable->getAddressSpace(), Linkage, AliasName, 1037 &CGM.getModule()); 1038 } else { 1039 assert(VTableAlias->getValueType() == VTable->getValueType()); 1040 assert(VTableAlias->getLinkage() == Linkage); 1041 } 1042 VTableAlias->setVisibility(VTable->getVisibility()); 1043 VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr()); 1044 1045 // Both of these imply dso_local for the vtable. 1046 if (!VTable->hasComdat()) { 1047 // If this is in a comdat, then we shouldn't make the linkage private due to 1048 // an issue in lld where private symbols can be used as the key symbol when 1049 // choosing the prevelant group. This leads to "relocation refers to a 1050 // symbol in a discarded section". 1051 VTable->setLinkage(llvm::GlobalValue::PrivateLinkage); 1052 } else { 1053 // We should at least make this hidden since we don't want to expose it. 1054 VTable->setVisibility(llvm::GlobalValue::HiddenVisibility); 1055 } 1056 1057 VTableAlias->setAliasee(VTable); 1058 } 1059 1060 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 1061 const CXXRecordDecl *RD) { 1062 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 1063 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 1064 } 1065 1066 /// Compute the required linkage of the vtable for the given class. 1067 /// 1068 /// Note that we only call this at the end of the translation unit. 1069 llvm::GlobalVariable::LinkageTypes 1070 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1071 if (!RD->isExternallyVisible()) 1072 return llvm::GlobalVariable::InternalLinkage; 1073 1074 // We're at the end of the translation unit, so the current key 1075 // function is fully correct. 1076 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 1077 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 1078 // If this class has a key function, use that to determine the 1079 // linkage of the vtable. 1080 const FunctionDecl *def = nullptr; 1081 if (keyFunction->hasBody(def)) 1082 keyFunction = cast<CXXMethodDecl>(def); 1083 1084 switch (keyFunction->getTemplateSpecializationKind()) { 1085 case TSK_Undeclared: 1086 case TSK_ExplicitSpecialization: 1087 assert((def || CodeGenOpts.OptimizationLevel > 0 || 1088 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && 1089 "Shouldn't query vtable linkage without key function, " 1090 "optimizations, or debug info"); 1091 if (!def && CodeGenOpts.OptimizationLevel > 0) 1092 return llvm::GlobalVariable::AvailableExternallyLinkage; 1093 1094 if (keyFunction->isInlined()) 1095 return !Context.getLangOpts().AppleKext ? 1096 llvm::GlobalVariable::LinkOnceODRLinkage : 1097 llvm::Function::InternalLinkage; 1098 1099 return llvm::GlobalVariable::ExternalLinkage; 1100 1101 case TSK_ImplicitInstantiation: 1102 return !Context.getLangOpts().AppleKext ? 1103 llvm::GlobalVariable::LinkOnceODRLinkage : 1104 llvm::Function::InternalLinkage; 1105 1106 case TSK_ExplicitInstantiationDefinition: 1107 return !Context.getLangOpts().AppleKext ? 1108 llvm::GlobalVariable::WeakODRLinkage : 1109 llvm::Function::InternalLinkage; 1110 1111 case TSK_ExplicitInstantiationDeclaration: 1112 llvm_unreachable("Should not have been asked to emit this"); 1113 } 1114 } 1115 1116 // -fapple-kext mode does not support weak linkage, so we must use 1117 // internal linkage. 1118 if (Context.getLangOpts().AppleKext) 1119 return llvm::Function::InternalLinkage; 1120 1121 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 1122 llvm::GlobalValue::LinkOnceODRLinkage; 1123 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 1124 llvm::GlobalValue::WeakODRLinkage; 1125 if (RD->hasAttr<DLLExportAttr>()) { 1126 // Cannot discard exported vtables. 1127 DiscardableODRLinkage = NonDiscardableODRLinkage; 1128 } else if (RD->hasAttr<DLLImportAttr>()) { 1129 // Imported vtables are available externally. 1130 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1131 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1132 } 1133 1134 switch (RD->getTemplateSpecializationKind()) { 1135 case TSK_Undeclared: 1136 case TSK_ExplicitSpecialization: 1137 case TSK_ImplicitInstantiation: 1138 return DiscardableODRLinkage; 1139 1140 case TSK_ExplicitInstantiationDeclaration: 1141 // Explicit instantiations in MSVC do not provide vtables, so we must emit 1142 // our own. 1143 if (getTarget().getCXXABI().isMicrosoft()) 1144 return DiscardableODRLinkage; 1145 return shouldEmitAvailableExternallyVTable(*this, RD) 1146 ? llvm::GlobalVariable::AvailableExternallyLinkage 1147 : llvm::GlobalVariable::ExternalLinkage; 1148 1149 case TSK_ExplicitInstantiationDefinition: 1150 return NonDiscardableODRLinkage; 1151 } 1152 1153 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1154 } 1155 1156 /// This is a callback from Sema to tell us that a particular vtable is 1157 /// required to be emitted in this translation unit. 1158 /// 1159 /// This is only called for vtables that _must_ be emitted (mainly due to key 1160 /// functions). For weak vtables, CodeGen tracks when they are needed and 1161 /// emits them as-needed. 1162 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 1163 VTables.GenerateClassData(theClass); 1164 } 1165 1166 void 1167 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 1168 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 1169 DI->completeClassData(RD); 1170 1171 if (RD->getNumVBases()) 1172 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 1173 1174 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 1175 } 1176 1177 /// At this point in the translation unit, does it appear that can we 1178 /// rely on the vtable being defined elsewhere in the program? 1179 /// 1180 /// The response is really only definitive when called at the end of 1181 /// the translation unit. 1182 /// 1183 /// The only semantic restriction here is that the object file should 1184 /// not contain a vtable definition when that vtable is defined 1185 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 1186 /// vtables when unnecessary. 1187 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 1188 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 1189 1190 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 1191 // emit them even if there is an explicit template instantiation. 1192 if (CGM.getTarget().getCXXABI().isMicrosoft()) 1193 return false; 1194 1195 // If we have an explicit instantiation declaration (and not a 1196 // definition), the vtable is defined elsewhere. 1197 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 1198 if (TSK == TSK_ExplicitInstantiationDeclaration) 1199 return true; 1200 1201 // Otherwise, if the class is an instantiated template, the 1202 // vtable must be defined here. 1203 if (TSK == TSK_ImplicitInstantiation || 1204 TSK == TSK_ExplicitInstantiationDefinition) 1205 return false; 1206 1207 // Otherwise, if the class doesn't have a key function (possibly 1208 // anymore), the vtable must be defined here. 1209 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 1210 if (!keyFunction) 1211 return false; 1212 1213 // Otherwise, if we don't have a definition of the key function, the 1214 // vtable must be defined somewhere else. 1215 return !keyFunction->hasBody(); 1216 } 1217 1218 /// Given that we're currently at the end of the translation unit, and 1219 /// we've emitted a reference to the vtable for this class, should 1220 /// we define that vtable? 1221 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 1222 const CXXRecordDecl *RD) { 1223 // If vtable is internal then it has to be done. 1224 if (!CGM.getVTables().isVTableExternal(RD)) 1225 return true; 1226 1227 // If it's external then maybe we will need it as available_externally. 1228 return shouldEmitAvailableExternallyVTable(CGM, RD); 1229 } 1230 1231 /// Given that at some point we emitted a reference to one or more 1232 /// vtables, and that we are now at the end of the translation unit, 1233 /// decide whether we should emit them. 1234 void CodeGenModule::EmitDeferredVTables() { 1235 #ifndef NDEBUG 1236 // Remember the size of DeferredVTables, because we're going to assume 1237 // that this entire operation doesn't modify it. 1238 size_t savedSize = DeferredVTables.size(); 1239 #endif 1240 1241 for (const CXXRecordDecl *RD : DeferredVTables) 1242 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 1243 VTables.GenerateClassData(RD); 1244 else if (shouldOpportunisticallyEmitVTables()) 1245 OpportunisticVTables.push_back(RD); 1246 1247 assert(savedSize == DeferredVTables.size() && 1248 "deferred extra vtables during vtable emission?"); 1249 DeferredVTables.clear(); 1250 } 1251 1252 bool CodeGenModule::HasLTOVisibilityPublicStd(const CXXRecordDecl *RD) { 1253 if (!getCodeGenOpts().LTOVisibilityPublicStd) 1254 return false; 1255 1256 const DeclContext *DC = RD; 1257 while (1) { 1258 auto *D = cast<Decl>(DC); 1259 DC = DC->getParent(); 1260 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 1261 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 1262 if (const IdentifierInfo *II = ND->getIdentifier()) 1263 if (II->isStr("std") || II->isStr("stdext")) 1264 return true; 1265 break; 1266 } 1267 } 1268 1269 return false; 1270 } 1271 1272 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 1273 LinkageInfo LV = RD->getLinkageAndVisibility(); 1274 if (!isExternallyVisible(LV.getLinkage())) 1275 return true; 1276 1277 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 1278 return false; 1279 1280 if (getTriple().isOSBinFormatCOFF()) { 1281 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 1282 return false; 1283 } else { 1284 if (LV.getVisibility() != HiddenVisibility) 1285 return false; 1286 } 1287 1288 return !HasLTOVisibilityPublicStd(RD); 1289 } 1290 1291 llvm::GlobalObject::VCallVisibility 1292 CodeGenModule::GetVCallVisibilityLevel(const CXXRecordDecl *RD) { 1293 LinkageInfo LV = RD->getLinkageAndVisibility(); 1294 llvm::GlobalObject::VCallVisibility TypeVis; 1295 if (!isExternallyVisible(LV.getLinkage())) 1296 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; 1297 else if (HasHiddenLTOVisibility(RD)) 1298 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; 1299 else 1300 TypeVis = llvm::GlobalObject::VCallVisibilityPublic; 1301 1302 for (auto B : RD->bases()) 1303 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1304 TypeVis = std::min(TypeVis, 1305 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl())); 1306 1307 for (auto B : RD->vbases()) 1308 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1309 TypeVis = std::min(TypeVis, 1310 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl())); 1311 1312 return TypeVis; 1313 } 1314 1315 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, 1316 llvm::GlobalVariable *VTable, 1317 const VTableLayout &VTLayout) { 1318 if (!getCodeGenOpts().LTOUnit) 1319 return; 1320 1321 CharUnits PointerWidth = 1322 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1323 1324 typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; 1325 std::vector<AddressPoint> AddressPoints; 1326 for (auto &&AP : VTLayout.getAddressPoints()) 1327 AddressPoints.push_back(std::make_pair( 1328 AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + 1329 AP.second.AddressPointIndex)); 1330 1331 // Sort the address points for determinism. 1332 llvm::sort(AddressPoints, [this](const AddressPoint &AP1, 1333 const AddressPoint &AP2) { 1334 if (&AP1 == &AP2) 1335 return false; 1336 1337 std::string S1; 1338 llvm::raw_string_ostream O1(S1); 1339 getCXXABI().getMangleContext().mangleTypeName( 1340 QualType(AP1.first->getTypeForDecl(), 0), O1); 1341 O1.flush(); 1342 1343 std::string S2; 1344 llvm::raw_string_ostream O2(S2); 1345 getCXXABI().getMangleContext().mangleTypeName( 1346 QualType(AP2.first->getTypeForDecl(), 0), O2); 1347 O2.flush(); 1348 1349 if (S1 < S2) 1350 return true; 1351 if (S1 != S2) 1352 return false; 1353 1354 return AP1.second < AP2.second; 1355 }); 1356 1357 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1358 for (auto AP : AddressPoints) { 1359 // Create type metadata for the address point. 1360 AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); 1361 1362 // The class associated with each address point could also potentially be 1363 // used for indirect calls via a member function pointer, so we need to 1364 // annotate the address of each function pointer with the appropriate member 1365 // function pointer type. 1366 for (unsigned I = 0; I != Comps.size(); ++I) { 1367 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1368 continue; 1369 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1370 Context.getMemberPointerType( 1371 Comps[I].getFunctionDecl()->getType(), 1372 Context.getRecordType(AP.first).getTypePtr())); 1373 VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); 1374 } 1375 } 1376 1377 if (getCodeGenOpts().VirtualFunctionElimination || 1378 getCodeGenOpts().WholeProgramVTables) { 1379 llvm::GlobalObject::VCallVisibility TypeVis = GetVCallVisibilityLevel(RD); 1380 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1381 VTable->setVCallVisibilityMetadata(TypeVis); 1382 } 1383 } 1384