1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Transforms/Utils/Cloning.h" 26 #include <algorithm> 27 #include <cstdio> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 34 35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 36 const ThunkInfo &Thunk) { 37 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 38 39 // Compute the mangled name. 40 SmallString<256> Name; 41 llvm::raw_svector_ostream Out(Name); 42 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 43 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 44 Thunk.This, Out); 45 else 46 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 47 Out.flush(); 48 49 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 50 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, 51 /*DontDefer=*/true, /*IsThunk=*/true); 52 } 53 54 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 55 const ThunkInfo &Thunk, llvm::Function *Fn) { 56 CGM.setGlobalVisibility(Fn, MD); 57 } 58 59 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 60 llvm::Function *ThunkFn, bool ForVTable, 61 GlobalDecl GD) { 62 CGM.setFunctionLinkage(GD, ThunkFn); 63 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 64 !Thunk.Return.isEmpty()); 65 66 // Set the right visibility. 67 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 68 setThunkVisibility(CGM, MD, Thunk, ThunkFn); 69 70 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 71 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 72 } 73 74 #ifndef NDEBUG 75 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 76 const ABIArgInfo &infoR, CanQualType typeR) { 77 return (infoL.getKind() == infoR.getKind() && 78 (typeL == typeR || 79 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 80 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 81 } 82 #endif 83 84 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 85 QualType ResultType, RValue RV, 86 const ThunkInfo &Thunk) { 87 // Emit the return adjustment. 88 bool NullCheckValue = !ResultType->isReferenceType(); 89 90 llvm::BasicBlock *AdjustNull = nullptr; 91 llvm::BasicBlock *AdjustNotNull = nullptr; 92 llvm::BasicBlock *AdjustEnd = nullptr; 93 94 llvm::Value *ReturnValue = RV.getScalarVal(); 95 96 if (NullCheckValue) { 97 AdjustNull = CGF.createBasicBlock("adjust.null"); 98 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 99 AdjustEnd = CGF.createBasicBlock("adjust.end"); 100 101 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 102 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 103 CGF.EmitBlock(AdjustNotNull); 104 } 105 106 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue, 107 Thunk.Return); 108 109 if (NullCheckValue) { 110 CGF.Builder.CreateBr(AdjustEnd); 111 CGF.EmitBlock(AdjustNull); 112 CGF.Builder.CreateBr(AdjustEnd); 113 CGF.EmitBlock(AdjustEnd); 114 115 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 116 PHI->addIncoming(ReturnValue, AdjustNotNull); 117 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 118 AdjustNull); 119 ReturnValue = PHI; 120 } 121 122 return RValue::get(ReturnValue); 123 } 124 125 // This function does roughly the same thing as GenerateThunk, but in a 126 // very different way, so that va_start and va_end work correctly. 127 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 128 // a function, and that there is an alloca built in the entry block 129 // for all accesses to "this". 130 // FIXME: This function assumes there is only one "ret" statement per function. 131 // FIXME: Cloning isn't correct in the presence of indirect goto! 132 // FIXME: This implementation of thunks bloats codesize by duplicating the 133 // function definition. There are alternatives: 134 // 1. Add some sort of stub support to LLVM for cases where we can 135 // do a this adjustment, then a sibcall. 136 // 2. We could transform the definition to take a va_list instead of an 137 // actual variable argument list, then have the thunks (including a 138 // no-op thunk for the regular definition) call va_start/va_end. 139 // There's a bit of per-call overhead for this solution, but it's 140 // better for codesize if the definition is long. 141 llvm::Function * 142 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 143 const CGFunctionInfo &FnInfo, 144 GlobalDecl GD, const ThunkInfo &Thunk) { 145 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 146 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 147 QualType ResultType = FPT->getReturnType(); 148 149 // Get the original function 150 assert(FnInfo.isVariadic()); 151 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 152 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 153 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 154 155 // Clone to thunk. 156 llvm::ValueToValueMapTy VMap; 157 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, 158 /*ModuleLevelChanges=*/false); 159 CGM.getModule().getFunctionList().push_back(NewFn); 160 Fn->replaceAllUsesWith(NewFn); 161 NewFn->takeName(Fn); 162 Fn->eraseFromParent(); 163 Fn = NewFn; 164 165 // "Initialize" CGF (minimally). 166 CurFn = Fn; 167 168 // Get the "this" value 169 llvm::Function::arg_iterator AI = Fn->arg_begin(); 170 if (CGM.ReturnTypeUsesSRet(FnInfo)) 171 ++AI; 172 173 // Find the first store of "this", which will be to the alloca associated 174 // with "this". 175 llvm::Value *ThisPtr = &*AI; 176 llvm::BasicBlock *EntryBB = Fn->begin(); 177 llvm::Instruction *ThisStore = 178 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 179 return isa<llvm::StoreInst>(I) && I.getOperand(0) == ThisPtr; 180 }); 181 assert(ThisStore && "Store of this should be in entry block?"); 182 // Adjust "this", if necessary. 183 Builder.SetInsertPoint(ThisStore); 184 llvm::Value *AdjustedThisPtr = 185 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 186 ThisStore->setOperand(0, AdjustedThisPtr); 187 188 if (!Thunk.Return.isEmpty()) { 189 // Fix up the returned value, if necessary. 190 for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) { 191 llvm::Instruction *T = I->getTerminator(); 192 if (isa<llvm::ReturnInst>(T)) { 193 RValue RV = RValue::get(T->getOperand(0)); 194 T->eraseFromParent(); 195 Builder.SetInsertPoint(&*I); 196 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 197 Builder.CreateRet(RV.getScalarVal()); 198 break; 199 } 200 } 201 } 202 203 return Fn; 204 } 205 206 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 207 const CGFunctionInfo &FnInfo) { 208 assert(!CurGD.getDecl() && "CurGD was already set!"); 209 CurGD = GD; 210 CurFuncIsThunk = true; 211 212 // Build FunctionArgs. 213 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 214 QualType ThisType = MD->getThisType(getContext()); 215 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 216 QualType ResultType = CGM.getCXXABI().HasThisReturn(GD) 217 ? ThisType 218 : CGM.getCXXABI().hasMostDerivedReturn(GD) 219 ? CGM.getContext().VoidPtrTy 220 : FPT->getReturnType(); 221 FunctionArgList FunctionArgs; 222 223 // Create the implicit 'this' parameter declaration. 224 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 225 226 // Add the rest of the parameters. 227 FunctionArgs.append(MD->param_begin(), MD->param_end()); 228 229 if (isa<CXXDestructorDecl>(MD)) 230 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); 231 232 // Start defining the function. 233 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 234 MD->getLocation(), MD->getLocation()); 235 236 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 237 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 238 CXXThisValue = CXXABIThisValue; 239 } 240 241 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee, 242 const ThunkInfo *Thunk) { 243 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 244 "Please use a new CGF for this thunk"); 245 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 246 247 // Adjust the 'this' pointer if necessary 248 llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment( 249 *this, LoadCXXThis(), Thunk->This) 250 : LoadCXXThis(); 251 252 if (CurFnInfo->usesInAlloca()) { 253 // We don't handle return adjusting thunks, because they require us to call 254 // the copy constructor. For now, fall through and pretend the return 255 // adjustment was empty so we don't crash. 256 if (Thunk && !Thunk->Return.isEmpty()) { 257 CGM.ErrorUnsupported( 258 MD, "non-trivial argument copy for return-adjusting thunk"); 259 } 260 EmitMustTailThunk(MD, AdjustedThisPtr, Callee); 261 return; 262 } 263 264 // Start building CallArgs. 265 CallArgList CallArgs; 266 QualType ThisType = MD->getThisType(getContext()); 267 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 268 269 if (isa<CXXDestructorDecl>(MD)) 270 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 271 272 // Add the rest of the arguments. 273 for (const ParmVarDecl *PD : MD->params()) 274 EmitDelegateCallArg(CallArgs, PD, PD->getLocStart()); 275 276 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 277 278 #ifndef NDEBUG 279 const CGFunctionInfo &CallFnInfo = 280 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 281 RequiredArgs::forPrototypePlus(FPT, 1)); 282 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 283 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 284 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 285 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 286 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 287 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 288 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 289 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 290 assert(similar(CallFnInfo.arg_begin()[i].info, 291 CallFnInfo.arg_begin()[i].type, 292 CurFnInfo->arg_begin()[i].info, 293 CurFnInfo->arg_begin()[i].type)); 294 #endif 295 296 // Determine whether we have a return value slot to use. 297 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 298 ? ThisType 299 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 300 ? CGM.getContext().VoidPtrTy 301 : FPT->getReturnType(); 302 ReturnValueSlot Slot; 303 if (!ResultType->isVoidType() && 304 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 305 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 306 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 307 308 // Now emit our call. 309 llvm::Instruction *CallOrInvoke; 310 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke); 311 312 // Consider return adjustment if we have ThunkInfo. 313 if (Thunk && !Thunk->Return.isEmpty()) 314 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 315 316 // Emit return. 317 if (!ResultType->isVoidType() && Slot.isNull()) 318 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 319 320 // Disable the final ARC autorelease. 321 AutoreleaseResult = false; 322 323 FinishFunction(); 324 } 325 326 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 327 llvm::Value *AdjustedThisPtr, 328 llvm::Value *Callee) { 329 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 330 // to translate AST arguments into LLVM IR arguments. For thunks, we know 331 // that the caller prototype more or less matches the callee prototype with 332 // the exception of 'this'. 333 SmallVector<llvm::Value *, 8> Args; 334 for (llvm::Argument &A : CurFn->args()) 335 Args.push_back(&A); 336 337 // Set the adjusted 'this' pointer. 338 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 339 if (ThisAI.isDirect()) { 340 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 341 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 342 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 343 if (ThisType != AdjustedThisPtr->getType()) 344 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 345 Args[ThisArgNo] = AdjustedThisPtr; 346 } else { 347 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 348 llvm::Value *ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 349 llvm::Type *ThisType = 350 cast<llvm::PointerType>(ThisAddr->getType())->getElementType(); 351 if (ThisType != AdjustedThisPtr->getType()) 352 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 353 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 354 } 355 356 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 357 // don't actually want to run them. 358 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 359 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 360 361 // Apply the standard set of call attributes. 362 unsigned CallingConv; 363 CodeGen::AttributeListType AttributeList; 364 CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv, 365 /*AttrOnCallSite=*/true); 366 llvm::AttributeSet Attrs = 367 llvm::AttributeSet::get(getLLVMContext(), AttributeList); 368 Call->setAttributes(Attrs); 369 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 370 371 if (Call->getType()->isVoidTy()) 372 Builder.CreateRetVoid(); 373 else 374 Builder.CreateRet(Call); 375 376 // Finish the function to maintain CodeGenFunction invariants. 377 // FIXME: Don't emit unreachable code. 378 EmitBlock(createBasicBlock()); 379 FinishFunction(); 380 } 381 382 void CodeGenFunction::generateThunk(llvm::Function *Fn, 383 const CGFunctionInfo &FnInfo, 384 GlobalDecl GD, const ThunkInfo &Thunk) { 385 StartThunk(Fn, GD, FnInfo); 386 387 // Get our callee. 388 llvm::Type *Ty = 389 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 390 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 391 392 // Make the call and return the result. 393 EmitCallAndReturnForThunk(Callee, &Thunk); 394 } 395 396 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 397 bool ForVTable) { 398 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 399 400 // FIXME: re-use FnInfo in this computation. 401 llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk); 402 llvm::GlobalValue *Entry; 403 404 // Strip off a bitcast if we got one back. 405 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) { 406 assert(CE->getOpcode() == llvm::Instruction::BitCast); 407 Entry = cast<llvm::GlobalValue>(CE->getOperand(0)); 408 } else { 409 Entry = cast<llvm::GlobalValue>(C); 410 } 411 412 // There's already a declaration with the same name, check if it has the same 413 // type or if we need to replace it. 414 if (Entry->getType()->getElementType() != 415 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 416 llvm::GlobalValue *OldThunkFn = Entry; 417 418 // If the types mismatch then we have to rewrite the definition. 419 assert(OldThunkFn->isDeclaration() && 420 "Shouldn't replace non-declaration"); 421 422 // Remove the name from the old thunk function and get a new thunk. 423 OldThunkFn->setName(StringRef()); 424 Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk)); 425 426 // If needed, replace the old thunk with a bitcast. 427 if (!OldThunkFn->use_empty()) { 428 llvm::Constant *NewPtrForOldDecl = 429 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 430 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 431 } 432 433 // Remove the old thunk. 434 OldThunkFn->eraseFromParent(); 435 } 436 437 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 438 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 439 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 440 441 if (!ThunkFn->isDeclaration()) { 442 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 443 // There is already a thunk emitted for this function, do nothing. 444 return; 445 } 446 447 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 448 return; 449 } 450 451 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 452 453 if (ThunkFn->isVarArg()) { 454 // Varargs thunks are special; we can't just generate a call because 455 // we can't copy the varargs. Our implementation is rather 456 // expensive/sucky at the moment, so don't generate the thunk unless 457 // we have to. 458 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 459 if (UseAvailableExternallyLinkage) 460 return; 461 ThunkFn = 462 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 463 } else { 464 // Normal thunk body generation. 465 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk); 466 } 467 468 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 469 } 470 471 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 472 const ThunkInfo &Thunk) { 473 // If the ABI has key functions, only the TU with the key function should emit 474 // the thunk. However, we can allow inlining of thunks if we emit them with 475 // available_externally linkage together with vtables when optimizations are 476 // enabled. 477 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 478 !CGM.getCodeGenOpts().OptimizationLevel) 479 return; 480 481 // We can't emit thunks for member functions with incomplete types. 482 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 483 if (!CGM.getTypes().isFuncTypeConvertible( 484 MD->getType()->castAs<FunctionType>())) 485 return; 486 487 emitThunk(GD, Thunk, /*ForVTable=*/true); 488 } 489 490 void CodeGenVTables::EmitThunks(GlobalDecl GD) 491 { 492 const CXXMethodDecl *MD = 493 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 494 495 // We don't need to generate thunks for the base destructor. 496 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 497 return; 498 499 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 500 VTContext->getThunkInfo(GD); 501 502 if (!ThunkInfoVector) 503 return; 504 505 for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I) 506 emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false); 507 } 508 509 llvm::Constant *CodeGenVTables::CreateVTableInitializer( 510 const CXXRecordDecl *RD, const VTableComponent *Components, 511 unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks, 512 unsigned NumVTableThunks, llvm::Constant *RTTI) { 513 SmallVector<llvm::Constant *, 64> Inits; 514 515 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 516 517 llvm::Type *PtrDiffTy = 518 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 519 520 unsigned NextVTableThunkIndex = 0; 521 522 llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr; 523 524 for (unsigned I = 0; I != NumComponents; ++I) { 525 VTableComponent Component = Components[I]; 526 527 llvm::Constant *Init = nullptr; 528 529 switch (Component.getKind()) { 530 case VTableComponent::CK_VCallOffset: 531 Init = llvm::ConstantInt::get(PtrDiffTy, 532 Component.getVCallOffset().getQuantity()); 533 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 534 break; 535 case VTableComponent::CK_VBaseOffset: 536 Init = llvm::ConstantInt::get(PtrDiffTy, 537 Component.getVBaseOffset().getQuantity()); 538 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 539 break; 540 case VTableComponent::CK_OffsetToTop: 541 Init = llvm::ConstantInt::get(PtrDiffTy, 542 Component.getOffsetToTop().getQuantity()); 543 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 544 break; 545 case VTableComponent::CK_RTTI: 546 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 547 break; 548 case VTableComponent::CK_FunctionPointer: 549 case VTableComponent::CK_CompleteDtorPointer: 550 case VTableComponent::CK_DeletingDtorPointer: { 551 GlobalDecl GD; 552 553 // Get the right global decl. 554 switch (Component.getKind()) { 555 default: 556 llvm_unreachable("Unexpected vtable component kind"); 557 case VTableComponent::CK_FunctionPointer: 558 GD = Component.getFunctionDecl(); 559 break; 560 case VTableComponent::CK_CompleteDtorPointer: 561 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 562 break; 563 case VTableComponent::CK_DeletingDtorPointer: 564 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 565 break; 566 } 567 568 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 569 // We have a pure virtual member function. 570 if (!PureVirtualFn) { 571 llvm::FunctionType *Ty = 572 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 573 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); 574 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); 575 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 576 CGM.Int8PtrTy); 577 } 578 Init = PureVirtualFn; 579 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 580 if (!DeletedVirtualFn) { 581 llvm::FunctionType *Ty = 582 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 583 StringRef DeletedCallName = 584 CGM.getCXXABI().GetDeletedVirtualCallName(); 585 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); 586 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, 587 CGM.Int8PtrTy); 588 } 589 Init = DeletedVirtualFn; 590 } else { 591 // Check if we should use a thunk. 592 if (NextVTableThunkIndex < NumVTableThunks && 593 VTableThunks[NextVTableThunkIndex].first == I) { 594 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 595 596 maybeEmitThunkForVTable(GD, Thunk); 597 Init = CGM.GetAddrOfThunk(GD, Thunk); 598 599 NextVTableThunkIndex++; 600 } else { 601 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 602 603 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 604 } 605 606 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 607 } 608 break; 609 } 610 611 case VTableComponent::CK_UnusedFunctionPointer: 612 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 613 break; 614 }; 615 616 Inits.push_back(Init); 617 } 618 619 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 620 return llvm::ConstantArray::get(ArrayType, Inits); 621 } 622 623 llvm::GlobalVariable * 624 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 625 const BaseSubobject &Base, 626 bool BaseIsVirtual, 627 llvm::GlobalVariable::LinkageTypes Linkage, 628 VTableAddressPointsMapTy& AddressPoints) { 629 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 630 DI->completeClassData(Base.getBase()); 631 632 std::unique_ptr<VTableLayout> VTLayout( 633 getItaniumVTableContext().createConstructionVTableLayout( 634 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 635 636 // Add the address points. 637 AddressPoints = VTLayout->getAddressPoints(); 638 639 // Get the mangled construction vtable name. 640 SmallString<256> OutName; 641 llvm::raw_svector_ostream Out(OutName); 642 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 643 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 644 Base.getBase(), Out); 645 Out.flush(); 646 StringRef Name = OutName.str(); 647 648 llvm::ArrayType *ArrayType = 649 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 650 651 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 652 // guarantee that they actually will be available externally. Instead, when 653 // emitting an available_externally VTT, we provide references to an internal 654 // linkage construction vtable. The ABI only requires complete-object vtables 655 // to be the same for all instances of a type, not construction vtables. 656 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 657 Linkage = llvm::GlobalVariable::InternalLinkage; 658 659 // Create the variable that will hold the construction vtable. 660 llvm::GlobalVariable *VTable = 661 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 662 CGM.setGlobalVisibility(VTable, RD); 663 664 // V-tables are always unnamed_addr. 665 VTable->setUnnamedAddr(true); 666 667 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 668 CGM.getContext().getTagDeclType(Base.getBase())); 669 670 // Create and set the initializer. 671 llvm::Constant *Init = CreateVTableInitializer( 672 Base.getBase(), VTLayout->vtable_component_begin(), 673 VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(), 674 VTLayout->getNumVTableThunks(), RTTI); 675 VTable->setInitializer(Init); 676 677 CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get()); 678 679 return VTable; 680 } 681 682 /// Compute the required linkage of the v-table for the given class. 683 /// 684 /// Note that we only call this at the end of the translation unit. 685 llvm::GlobalVariable::LinkageTypes 686 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 687 if (!RD->isExternallyVisible()) 688 return llvm::GlobalVariable::InternalLinkage; 689 690 // We're at the end of the translation unit, so the current key 691 // function is fully correct. 692 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 693 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 694 // If this class has a key function, use that to determine the 695 // linkage of the vtable. 696 const FunctionDecl *def = nullptr; 697 if (keyFunction->hasBody(def)) 698 keyFunction = cast<CXXMethodDecl>(def); 699 700 switch (keyFunction->getTemplateSpecializationKind()) { 701 case TSK_Undeclared: 702 case TSK_ExplicitSpecialization: 703 assert(def && "Should not have been asked to emit this"); 704 if (keyFunction->isInlined()) 705 return !Context.getLangOpts().AppleKext ? 706 llvm::GlobalVariable::LinkOnceODRLinkage : 707 llvm::Function::InternalLinkage; 708 709 return llvm::GlobalVariable::ExternalLinkage; 710 711 case TSK_ImplicitInstantiation: 712 return !Context.getLangOpts().AppleKext ? 713 llvm::GlobalVariable::LinkOnceODRLinkage : 714 llvm::Function::InternalLinkage; 715 716 case TSK_ExplicitInstantiationDefinition: 717 return !Context.getLangOpts().AppleKext ? 718 llvm::GlobalVariable::WeakODRLinkage : 719 llvm::Function::InternalLinkage; 720 721 case TSK_ExplicitInstantiationDeclaration: 722 llvm_unreachable("Should not have been asked to emit this"); 723 } 724 } 725 726 // -fapple-kext mode does not support weak linkage, so we must use 727 // internal linkage. 728 if (Context.getLangOpts().AppleKext) 729 return llvm::Function::InternalLinkage; 730 731 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 732 llvm::GlobalValue::LinkOnceODRLinkage; 733 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 734 llvm::GlobalValue::WeakODRLinkage; 735 if (RD->hasAttr<DLLExportAttr>()) { 736 // Cannot discard exported vtables. 737 DiscardableODRLinkage = NonDiscardableODRLinkage; 738 } else if (RD->hasAttr<DLLImportAttr>()) { 739 // Imported vtables are available externally. 740 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 741 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 742 } 743 744 switch (RD->getTemplateSpecializationKind()) { 745 case TSK_Undeclared: 746 case TSK_ExplicitSpecialization: 747 case TSK_ImplicitInstantiation: 748 return DiscardableODRLinkage; 749 750 case TSK_ExplicitInstantiationDeclaration: 751 return llvm::GlobalVariable::ExternalLinkage; 752 753 case TSK_ExplicitInstantiationDefinition: 754 return NonDiscardableODRLinkage; 755 } 756 757 llvm_unreachable("Invalid TemplateSpecializationKind!"); 758 } 759 760 /// This is a callback from Sema to tell us that that a particular v-table is 761 /// required to be emitted in this translation unit. 762 /// 763 /// This is only called for vtables that _must_ be emitted (mainly due to key 764 /// functions). For weak vtables, CodeGen tracks when they are needed and 765 /// emits them as-needed. 766 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 767 VTables.GenerateClassData(theClass); 768 } 769 770 void 771 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 772 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 773 DI->completeClassData(RD); 774 775 if (RD->getNumVBases()) 776 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 777 778 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 779 } 780 781 /// At this point in the translation unit, does it appear that can we 782 /// rely on the vtable being defined elsewhere in the program? 783 /// 784 /// The response is really only definitive when called at the end of 785 /// the translation unit. 786 /// 787 /// The only semantic restriction here is that the object file should 788 /// not contain a v-table definition when that v-table is defined 789 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 790 /// v-tables when unnecessary. 791 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 792 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 793 794 // If we have an explicit instantiation declaration (and not a 795 // definition), the v-table is defined elsewhere. 796 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 797 if (TSK == TSK_ExplicitInstantiationDeclaration) 798 return true; 799 800 // Otherwise, if the class is an instantiated template, the 801 // v-table must be defined here. 802 if (TSK == TSK_ImplicitInstantiation || 803 TSK == TSK_ExplicitInstantiationDefinition) 804 return false; 805 806 // Otherwise, if the class doesn't have a key function (possibly 807 // anymore), the v-table must be defined here. 808 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 809 if (!keyFunction) 810 return false; 811 812 // Otherwise, if we don't have a definition of the key function, the 813 // v-table must be defined somewhere else. 814 return !keyFunction->hasBody(); 815 } 816 817 /// Given that we're currently at the end of the translation unit, and 818 /// we've emitted a reference to the v-table for this class, should 819 /// we define that v-table? 820 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 821 const CXXRecordDecl *RD) { 822 return !CGM.getVTables().isVTableExternal(RD); 823 } 824 825 /// Given that at some point we emitted a reference to one or more 826 /// v-tables, and that we are now at the end of the translation unit, 827 /// decide whether we should emit them. 828 void CodeGenModule::EmitDeferredVTables() { 829 #ifndef NDEBUG 830 // Remember the size of DeferredVTables, because we're going to assume 831 // that this entire operation doesn't modify it. 832 size_t savedSize = DeferredVTables.size(); 833 #endif 834 835 typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator; 836 for (const_iterator i = DeferredVTables.begin(), 837 e = DeferredVTables.end(); i != e; ++i) { 838 const CXXRecordDecl *RD = *i; 839 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 840 VTables.GenerateClassData(RD); 841 } 842 843 assert(savedSize == DeferredVTables.size() && 844 "deferred extra v-tables during v-table emission?"); 845 DeferredVTables.clear(); 846 } 847 848 bool CodeGenModule::IsCFIBlacklistedRecord(const CXXRecordDecl *RD) { 849 if (RD->hasAttr<UuidAttr>() && 850 getContext().getSanitizerBlacklist().isBlacklistedType("attr:uuid")) 851 return true; 852 853 return getContext().getSanitizerBlacklist().isBlacklistedType( 854 RD->getQualifiedNameAsString()); 855 } 856 857 void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable, 858 const VTableLayout &VTLayout) { 859 if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 860 !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 861 !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 862 !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast)) 863 return; 864 865 CharUnits PointerWidth = 866 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 867 868 std::vector<llvm::MDTuple *> BitsetEntries; 869 // Create a bit set entry for each address point. 870 for (auto &&AP : VTLayout.getAddressPoints()) { 871 if (IsCFIBlacklistedRecord(AP.first.getBase())) 872 continue; 873 874 BitsetEntries.push_back(CreateVTableBitSetEntry( 875 VTable, PointerWidth * AP.second, AP.first.getBase())); 876 } 877 878 // Sort the bit set entries for determinism. 879 std::sort(BitsetEntries.begin(), BitsetEntries.end(), [](llvm::MDTuple *T1, 880 llvm::MDTuple *T2) { 881 if (T1 == T2) 882 return false; 883 884 StringRef S1 = cast<llvm::MDString>(T1->getOperand(0))->getString(); 885 StringRef S2 = cast<llvm::MDString>(T2->getOperand(0))->getString(); 886 if (S1 < S2) 887 return true; 888 if (S1 != S2) 889 return false; 890 891 uint64_t Offset1 = cast<llvm::ConstantInt>( 892 cast<llvm::ConstantAsMetadata>(T1->getOperand(2)) 893 ->getValue())->getZExtValue(); 894 uint64_t Offset2 = cast<llvm::ConstantInt>( 895 cast<llvm::ConstantAsMetadata>(T2->getOperand(2)) 896 ->getValue())->getZExtValue(); 897 assert(Offset1 != Offset2); 898 return Offset1 < Offset2; 899 }); 900 901 llvm::NamedMDNode *BitsetsMD = 902 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 903 for (auto BitsetEntry : BitsetEntries) 904 BitsetsMD->addOperand(BitsetEntry); 905 } 906