1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/Frontend/OpenMP/OMPConstants.h" 28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/Support/AtomicOrdering.h" 32 using namespace clang; 33 using namespace CodeGen; 34 using namespace llvm::omp; 35 36 static const VarDecl *getBaseDecl(const Expr *Ref); 37 38 namespace { 39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 40 /// for captured expressions. 41 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 42 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 43 for (const auto *C : S.clauses()) { 44 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 45 if (const auto *PreInit = 46 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 47 for (const auto *I : PreInit->decls()) { 48 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 49 CGF.EmitVarDecl(cast<VarDecl>(*I)); 50 } else { 51 CodeGenFunction::AutoVarEmission Emission = 52 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 53 CGF.EmitAutoVarCleanups(Emission); 54 } 55 } 56 } 57 } 58 } 59 } 60 CodeGenFunction::OMPPrivateScope InlinedShareds; 61 62 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 63 return CGF.LambdaCaptureFields.lookup(VD) || 64 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 65 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 66 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 67 } 68 69 public: 70 OMPLexicalScope( 71 CodeGenFunction &CGF, const OMPExecutableDirective &S, 72 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 73 const bool EmitPreInitStmt = true) 74 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 75 InlinedShareds(CGF) { 76 if (EmitPreInitStmt) 77 emitPreInitStmt(CGF, S); 78 if (!CapturedRegion.hasValue()) 79 return; 80 assert(S.hasAssociatedStmt() && 81 "Expected associated statement for inlined directive."); 82 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 83 for (const auto &C : CS->captures()) { 84 if (C.capturesVariable() || C.capturesVariableByCopy()) { 85 auto *VD = C.getCapturedVar(); 86 assert(VD == VD->getCanonicalDecl() && 87 "Canonical decl must be captured."); 88 DeclRefExpr DRE( 89 CGF.getContext(), const_cast<VarDecl *>(VD), 90 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 91 InlinedShareds.isGlobalVarCaptured(VD)), 92 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 93 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 94 return CGF.EmitLValue(&DRE).getAddress(CGF); 95 }); 96 } 97 } 98 (void)InlinedShareds.Privatize(); 99 } 100 }; 101 102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 103 /// for captured expressions. 104 class OMPParallelScope final : public OMPLexicalScope { 105 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 106 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 107 return !(isOpenMPTargetExecutionDirective(Kind) || 108 isOpenMPLoopBoundSharingDirective(Kind)) && 109 isOpenMPParallelDirective(Kind); 110 } 111 112 public: 113 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Lexical scope for OpenMP teams construct, that handles correct codegen 119 /// for captured expressions. 120 class OMPTeamsScope final : public OMPLexicalScope { 121 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 122 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 123 return !isOpenMPTargetExecutionDirective(Kind) && 124 isOpenMPTeamsDirective(Kind); 125 } 126 127 public: 128 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 129 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 130 EmitPreInitStmt(S)) {} 131 }; 132 133 /// Private scope for OpenMP loop-based directives, that supports capturing 134 /// of used expression from loop statement. 135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 136 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 137 const DeclStmt *PreInits; 138 CodeGenFunction::OMPMapVars PreCondVars; 139 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 140 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 141 for (const auto *E : LD->counters()) { 142 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 143 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 144 (void)PreCondVars.setVarAddr( 145 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 146 } 147 // Mark private vars as undefs. 148 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 149 for (const Expr *IRef : C->varlists()) { 150 const auto *OrigVD = 151 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 152 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 153 (void)PreCondVars.setVarAddr( 154 CGF, OrigVD, 155 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 156 CGF.getContext().getPointerType( 157 OrigVD->getType().getNonReferenceType()))), 158 CGF.getContext().getDeclAlign(OrigVD))); 159 } 160 } 161 } 162 (void)PreCondVars.apply(CGF); 163 // Emit init, __range and __end variables for C++ range loops. 164 (void)OMPLoopBasedDirective::doForAllLoops( 165 LD->getInnermostCapturedStmt()->getCapturedStmt(), 166 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 167 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 168 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 169 if (const Stmt *Init = CXXFor->getInit()) 170 CGF.EmitStmt(Init); 171 CGF.EmitStmt(CXXFor->getRangeStmt()); 172 CGF.EmitStmt(CXXFor->getEndStmt()); 173 } 174 return false; 175 }); 176 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 177 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 178 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 179 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 180 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 181 } else { 182 llvm_unreachable("Unknown loop-based directive kind."); 183 } 184 if (PreInits) { 185 for (const auto *I : PreInits->decls()) 186 CGF.EmitVarDecl(cast<VarDecl>(*I)); 187 } 188 PreCondVars.restore(CGF); 189 } 190 191 public: 192 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 193 : CodeGenFunction::RunCleanupsScope(CGF) { 194 emitPreInitStmt(CGF, S); 195 } 196 }; 197 198 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 199 CodeGenFunction::OMPPrivateScope InlinedShareds; 200 201 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 202 return CGF.LambdaCaptureFields.lookup(VD) || 203 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 204 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 205 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 206 } 207 208 public: 209 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 210 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 211 InlinedShareds(CGF) { 212 for (const auto *C : S.clauses()) { 213 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 214 if (const auto *PreInit = 215 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 216 for (const auto *I : PreInit->decls()) { 217 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 218 CGF.EmitVarDecl(cast<VarDecl>(*I)); 219 } else { 220 CodeGenFunction::AutoVarEmission Emission = 221 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 222 CGF.EmitAutoVarCleanups(Emission); 223 } 224 } 225 } 226 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 227 for (const Expr *E : UDP->varlists()) { 228 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 229 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 230 CGF.EmitVarDecl(*OED); 231 } 232 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 233 for (const Expr *E : UDP->varlists()) { 234 const Decl *D = getBaseDecl(E); 235 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 236 CGF.EmitVarDecl(*OED); 237 } 238 } 239 } 240 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 241 CGF.EmitOMPPrivateClause(S, InlinedShareds); 242 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 243 if (const Expr *E = TG->getReductionRef()) 244 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 245 } 246 // Temp copy arrays for inscan reductions should not be emitted as they are 247 // not used in simd only mode. 248 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 249 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 250 if (C->getModifier() != OMPC_REDUCTION_inscan) 251 continue; 252 for (const Expr *E : C->copy_array_temps()) 253 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 254 } 255 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 256 while (CS) { 257 for (auto &C : CS->captures()) { 258 if (C.capturesVariable() || C.capturesVariableByCopy()) { 259 auto *VD = C.getCapturedVar(); 260 if (CopyArrayTemps.contains(VD)) 261 continue; 262 assert(VD == VD->getCanonicalDecl() && 263 "Canonical decl must be captured."); 264 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 265 isCapturedVar(CGF, VD) || 266 (CGF.CapturedStmtInfo && 267 InlinedShareds.isGlobalVarCaptured(VD)), 268 VD->getType().getNonReferenceType(), VK_LValue, 269 C.getLocation()); 270 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 271 return CGF.EmitLValue(&DRE).getAddress(CGF); 272 }); 273 } 274 } 275 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 276 } 277 (void)InlinedShareds.Privatize(); 278 } 279 }; 280 281 } // namespace 282 283 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 284 const OMPExecutableDirective &S, 285 const RegionCodeGenTy &CodeGen); 286 287 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 288 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 289 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 290 OrigVD = OrigVD->getCanonicalDecl(); 291 bool IsCaptured = 292 LambdaCaptureFields.lookup(OrigVD) || 293 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 294 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 295 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 296 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 297 return EmitLValue(&DRE); 298 } 299 } 300 return EmitLValue(E); 301 } 302 303 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 304 ASTContext &C = getContext(); 305 llvm::Value *Size = nullptr; 306 auto SizeInChars = C.getTypeSizeInChars(Ty); 307 if (SizeInChars.isZero()) { 308 // getTypeSizeInChars() returns 0 for a VLA. 309 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 310 VlaSizePair VlaSize = getVLASize(VAT); 311 Ty = VlaSize.Type; 312 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 313 : VlaSize.NumElts; 314 } 315 SizeInChars = C.getTypeSizeInChars(Ty); 316 if (SizeInChars.isZero()) 317 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 318 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 319 } 320 return CGM.getSize(SizeInChars); 321 } 322 323 void CodeGenFunction::GenerateOpenMPCapturedVars( 324 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 325 const RecordDecl *RD = S.getCapturedRecordDecl(); 326 auto CurField = RD->field_begin(); 327 auto CurCap = S.captures().begin(); 328 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 329 E = S.capture_init_end(); 330 I != E; ++I, ++CurField, ++CurCap) { 331 if (CurField->hasCapturedVLAType()) { 332 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 333 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 334 CapturedVars.push_back(Val); 335 } else if (CurCap->capturesThis()) { 336 CapturedVars.push_back(CXXThisValue); 337 } else if (CurCap->capturesVariableByCopy()) { 338 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 339 340 // If the field is not a pointer, we need to save the actual value 341 // and load it as a void pointer. 342 if (!CurField->getType()->isAnyPointerType()) { 343 ASTContext &Ctx = getContext(); 344 Address DstAddr = CreateMemTemp( 345 Ctx.getUIntPtrType(), 346 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 347 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 348 349 llvm::Value *SrcAddrVal = EmitScalarConversion( 350 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 351 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 352 LValue SrcLV = 353 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 354 355 // Store the value using the source type pointer. 356 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 357 358 // Load the value using the destination type pointer. 359 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 360 } 361 CapturedVars.push_back(CV); 362 } else { 363 assert(CurCap->capturesVariable() && "Expected capture by reference."); 364 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 365 } 366 } 367 } 368 369 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 370 QualType DstType, StringRef Name, 371 LValue AddrLV) { 372 ASTContext &Ctx = CGF.getContext(); 373 374 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 375 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 376 Ctx.getPointerType(DstType), Loc); 377 Address TmpAddr = 378 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 379 .getAddress(CGF); 380 return TmpAddr; 381 } 382 383 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 384 if (T->isLValueReferenceType()) 385 return C.getLValueReferenceType( 386 getCanonicalParamType(C, T.getNonReferenceType()), 387 /*SpelledAsLValue=*/false); 388 if (T->isPointerType()) 389 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 390 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 391 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 392 return getCanonicalParamType(C, VLA->getElementType()); 393 if (!A->isVariablyModifiedType()) 394 return C.getCanonicalType(T); 395 } 396 return C.getCanonicalParamType(T); 397 } 398 399 namespace { 400 /// Contains required data for proper outlined function codegen. 401 struct FunctionOptions { 402 /// Captured statement for which the function is generated. 403 const CapturedStmt *S = nullptr; 404 /// true if cast to/from UIntPtr is required for variables captured by 405 /// value. 406 const bool UIntPtrCastRequired = true; 407 /// true if only casted arguments must be registered as local args or VLA 408 /// sizes. 409 const bool RegisterCastedArgsOnly = false; 410 /// Name of the generated function. 411 const StringRef FunctionName; 412 /// Location of the non-debug version of the outlined function. 413 SourceLocation Loc; 414 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 415 bool RegisterCastedArgsOnly, StringRef FunctionName, 416 SourceLocation Loc) 417 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 418 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 419 FunctionName(FunctionName), Loc(Loc) {} 420 }; 421 } // namespace 422 423 static llvm::Function *emitOutlinedFunctionPrologue( 424 CodeGenFunction &CGF, FunctionArgList &Args, 425 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 426 &LocalAddrs, 427 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 428 &VLASizes, 429 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 430 const CapturedDecl *CD = FO.S->getCapturedDecl(); 431 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 432 assert(CD->hasBody() && "missing CapturedDecl body"); 433 434 CXXThisValue = nullptr; 435 // Build the argument list. 436 CodeGenModule &CGM = CGF.CGM; 437 ASTContext &Ctx = CGM.getContext(); 438 FunctionArgList TargetArgs; 439 Args.append(CD->param_begin(), 440 std::next(CD->param_begin(), CD->getContextParamPosition())); 441 TargetArgs.append( 442 CD->param_begin(), 443 std::next(CD->param_begin(), CD->getContextParamPosition())); 444 auto I = FO.S->captures().begin(); 445 FunctionDecl *DebugFunctionDecl = nullptr; 446 if (!FO.UIntPtrCastRequired) { 447 FunctionProtoType::ExtProtoInfo EPI; 448 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 449 DebugFunctionDecl = FunctionDecl::Create( 450 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 451 SourceLocation(), DeclarationName(), FunctionTy, 452 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 453 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 454 /*hasWrittenPrototype=*/false); 455 } 456 for (const FieldDecl *FD : RD->fields()) { 457 QualType ArgType = FD->getType(); 458 IdentifierInfo *II = nullptr; 459 VarDecl *CapVar = nullptr; 460 461 // If this is a capture by copy and the type is not a pointer, the outlined 462 // function argument type should be uintptr and the value properly casted to 463 // uintptr. This is necessary given that the runtime library is only able to 464 // deal with pointers. We can pass in the same way the VLA type sizes to the 465 // outlined function. 466 if (FO.UIntPtrCastRequired && 467 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 468 I->capturesVariableArrayType())) 469 ArgType = Ctx.getUIntPtrType(); 470 471 if (I->capturesVariable() || I->capturesVariableByCopy()) { 472 CapVar = I->getCapturedVar(); 473 II = CapVar->getIdentifier(); 474 } else if (I->capturesThis()) { 475 II = &Ctx.Idents.get("this"); 476 } else { 477 assert(I->capturesVariableArrayType()); 478 II = &Ctx.Idents.get("vla"); 479 } 480 if (ArgType->isVariablyModifiedType()) 481 ArgType = getCanonicalParamType(Ctx, ArgType); 482 VarDecl *Arg; 483 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 484 Arg = ParmVarDecl::Create( 485 Ctx, DebugFunctionDecl, 486 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 487 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 488 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 489 } else { 490 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 491 II, ArgType, ImplicitParamDecl::Other); 492 } 493 Args.emplace_back(Arg); 494 // Do not cast arguments if we emit function with non-original types. 495 TargetArgs.emplace_back( 496 FO.UIntPtrCastRequired 497 ? Arg 498 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 499 ++I; 500 } 501 Args.append( 502 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 503 CD->param_end()); 504 TargetArgs.append( 505 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 506 CD->param_end()); 507 508 // Create the function declaration. 509 const CGFunctionInfo &FuncInfo = 510 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 511 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 512 513 auto *F = 514 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 515 FO.FunctionName, &CGM.getModule()); 516 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 517 if (CD->isNothrow()) 518 F->setDoesNotThrow(); 519 F->setDoesNotRecurse(); 520 521 // Always inline the outlined function if optimizations are enabled. 522 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 523 F->addFnAttr(llvm::Attribute::AlwaysInline); 524 525 // Generate the function. 526 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 527 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 528 FO.UIntPtrCastRequired ? FO.Loc 529 : CD->getBody()->getBeginLoc()); 530 unsigned Cnt = CD->getContextParamPosition(); 531 I = FO.S->captures().begin(); 532 for (const FieldDecl *FD : RD->fields()) { 533 // Do not map arguments if we emit function with non-original types. 534 Address LocalAddr(Address::invalid()); 535 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 536 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 537 TargetArgs[Cnt]); 538 } else { 539 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 540 } 541 // If we are capturing a pointer by copy we don't need to do anything, just 542 // use the value that we get from the arguments. 543 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 544 const VarDecl *CurVD = I->getCapturedVar(); 545 if (!FO.RegisterCastedArgsOnly) 546 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 547 ++Cnt; 548 ++I; 549 continue; 550 } 551 552 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 553 AlignmentSource::Decl); 554 if (FD->hasCapturedVLAType()) { 555 if (FO.UIntPtrCastRequired) { 556 ArgLVal = CGF.MakeAddrLValue( 557 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 558 Args[Cnt]->getName(), ArgLVal), 559 FD->getType(), AlignmentSource::Decl); 560 } 561 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 562 const VariableArrayType *VAT = FD->getCapturedVLAType(); 563 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 564 } else if (I->capturesVariable()) { 565 const VarDecl *Var = I->getCapturedVar(); 566 QualType VarTy = Var->getType(); 567 Address ArgAddr = ArgLVal.getAddress(CGF); 568 if (ArgLVal.getType()->isLValueReferenceType()) { 569 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 570 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 571 assert(ArgLVal.getType()->isPointerType()); 572 ArgAddr = CGF.EmitLoadOfPointer( 573 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 574 } 575 if (!FO.RegisterCastedArgsOnly) { 576 LocalAddrs.insert( 577 {Args[Cnt], 578 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 579 } 580 } else if (I->capturesVariableByCopy()) { 581 assert(!FD->getType()->isAnyPointerType() && 582 "Not expecting a captured pointer."); 583 const VarDecl *Var = I->getCapturedVar(); 584 LocalAddrs.insert({Args[Cnt], 585 {Var, FO.UIntPtrCastRequired 586 ? castValueFromUintptr( 587 CGF, I->getLocation(), FD->getType(), 588 Args[Cnt]->getName(), ArgLVal) 589 : ArgLVal.getAddress(CGF)}}); 590 } else { 591 // If 'this' is captured, load it into CXXThisValue. 592 assert(I->capturesThis()); 593 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 594 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 595 } 596 ++Cnt; 597 ++I; 598 } 599 600 return F; 601 } 602 603 llvm::Function * 604 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 605 SourceLocation Loc) { 606 assert( 607 CapturedStmtInfo && 608 "CapturedStmtInfo should be set when generating the captured function"); 609 const CapturedDecl *CD = S.getCapturedDecl(); 610 // Build the argument list. 611 bool NeedWrapperFunction = 612 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 613 FunctionArgList Args; 614 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 615 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 616 SmallString<256> Buffer; 617 llvm::raw_svector_ostream Out(Buffer); 618 Out << CapturedStmtInfo->getHelperName(); 619 if (NeedWrapperFunction) 620 Out << "_debug__"; 621 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 622 Out.str(), Loc); 623 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 624 VLASizes, CXXThisValue, FO); 625 CodeGenFunction::OMPPrivateScope LocalScope(*this); 626 for (const auto &LocalAddrPair : LocalAddrs) { 627 if (LocalAddrPair.second.first) { 628 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 629 return LocalAddrPair.second.second; 630 }); 631 } 632 } 633 (void)LocalScope.Privatize(); 634 for (const auto &VLASizePair : VLASizes) 635 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 636 PGO.assignRegionCounters(GlobalDecl(CD), F); 637 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 638 (void)LocalScope.ForceCleanup(); 639 FinishFunction(CD->getBodyRBrace()); 640 if (!NeedWrapperFunction) 641 return F; 642 643 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 644 /*RegisterCastedArgsOnly=*/true, 645 CapturedStmtInfo->getHelperName(), Loc); 646 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 647 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 648 Args.clear(); 649 LocalAddrs.clear(); 650 VLASizes.clear(); 651 llvm::Function *WrapperF = 652 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 653 WrapperCGF.CXXThisValue, WrapperFO); 654 llvm::SmallVector<llvm::Value *, 4> CallArgs; 655 auto *PI = F->arg_begin(); 656 for (const auto *Arg : Args) { 657 llvm::Value *CallArg; 658 auto I = LocalAddrs.find(Arg); 659 if (I != LocalAddrs.end()) { 660 LValue LV = WrapperCGF.MakeAddrLValue( 661 I->second.second, 662 I->second.first ? I->second.first->getType() : Arg->getType(), 663 AlignmentSource::Decl); 664 if (LV.getType()->isAnyComplexType()) 665 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 666 LV.getAddress(WrapperCGF), 667 PI->getType()->getPointerTo( 668 LV.getAddress(WrapperCGF).getAddressSpace()))); 669 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 670 } else { 671 auto EI = VLASizes.find(Arg); 672 if (EI != VLASizes.end()) { 673 CallArg = EI->second.second; 674 } else { 675 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 676 Arg->getType(), 677 AlignmentSource::Decl); 678 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 679 } 680 } 681 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 682 ++PI; 683 } 684 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 685 WrapperCGF.FinishFunction(); 686 return WrapperF; 687 } 688 689 //===----------------------------------------------------------------------===// 690 // OpenMP Directive Emission 691 //===----------------------------------------------------------------------===// 692 void CodeGenFunction::EmitOMPAggregateAssign( 693 Address DestAddr, Address SrcAddr, QualType OriginalType, 694 const llvm::function_ref<void(Address, Address)> CopyGen) { 695 // Perform element-by-element initialization. 696 QualType ElementTy; 697 698 // Drill down to the base element type on both arrays. 699 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 700 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 701 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 702 703 llvm::Value *SrcBegin = SrcAddr.getPointer(); 704 llvm::Value *DestBegin = DestAddr.getPointer(); 705 // Cast from pointer to array type to pointer to single element. 706 llvm::Value *DestEnd = 707 Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); 708 // The basic structure here is a while-do loop. 709 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 710 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 711 llvm::Value *IsEmpty = 712 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 713 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 714 715 // Enter the loop body, making that address the current address. 716 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 717 EmitBlock(BodyBB); 718 719 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 720 721 llvm::PHINode *SrcElementPHI = 722 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 723 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 724 Address SrcElementCurrent = 725 Address(SrcElementPHI, 726 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 727 728 llvm::PHINode *DestElementPHI = 729 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 730 DestElementPHI->addIncoming(DestBegin, EntryBB); 731 Address DestElementCurrent = 732 Address(DestElementPHI, 733 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 734 735 // Emit copy. 736 CopyGen(DestElementCurrent, SrcElementCurrent); 737 738 // Shift the address forward by one element. 739 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 740 DestAddr.getElementType(), DestElementPHI, /*Idx0=*/1, 741 "omp.arraycpy.dest.element"); 742 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 743 SrcAddr.getElementType(), SrcElementPHI, /*Idx0=*/1, 744 "omp.arraycpy.src.element"); 745 // Check whether we've reached the end. 746 llvm::Value *Done = 747 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 748 Builder.CreateCondBr(Done, DoneBB, BodyBB); 749 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 750 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 751 752 // Done. 753 EmitBlock(DoneBB, /*IsFinished=*/true); 754 } 755 756 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 757 Address SrcAddr, const VarDecl *DestVD, 758 const VarDecl *SrcVD, const Expr *Copy) { 759 if (OriginalType->isArrayType()) { 760 const auto *BO = dyn_cast<BinaryOperator>(Copy); 761 if (BO && BO->getOpcode() == BO_Assign) { 762 // Perform simple memcpy for simple copying. 763 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 764 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 765 EmitAggregateAssign(Dest, Src, OriginalType); 766 } else { 767 // For arrays with complex element types perform element by element 768 // copying. 769 EmitOMPAggregateAssign( 770 DestAddr, SrcAddr, OriginalType, 771 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 772 // Working with the single array element, so have to remap 773 // destination and source variables to corresponding array 774 // elements. 775 CodeGenFunction::OMPPrivateScope Remap(*this); 776 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 777 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 778 (void)Remap.Privatize(); 779 EmitIgnoredExpr(Copy); 780 }); 781 } 782 } else { 783 // Remap pseudo source variable to private copy. 784 CodeGenFunction::OMPPrivateScope Remap(*this); 785 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 786 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 787 (void)Remap.Privatize(); 788 // Emit copying of the whole variable. 789 EmitIgnoredExpr(Copy); 790 } 791 } 792 793 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 794 OMPPrivateScope &PrivateScope) { 795 if (!HaveInsertPoint()) 796 return false; 797 bool DeviceConstTarget = 798 getLangOpts().OpenMPIsDevice && 799 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 800 bool FirstprivateIsLastprivate = false; 801 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 802 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 803 for (const auto *D : C->varlists()) 804 Lastprivates.try_emplace( 805 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 806 C->getKind()); 807 } 808 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 809 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 810 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 811 // Force emission of the firstprivate copy if the directive does not emit 812 // outlined function, like omp for, omp simd, omp distribute etc. 813 bool MustEmitFirstprivateCopy = 814 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 815 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 816 const auto *IRef = C->varlist_begin(); 817 const auto *InitsRef = C->inits().begin(); 818 for (const Expr *IInit : C->private_copies()) { 819 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 820 bool ThisFirstprivateIsLastprivate = 821 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 822 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 823 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 824 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 825 !FD->getType()->isReferenceType() && 826 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 827 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 828 ++IRef; 829 ++InitsRef; 830 continue; 831 } 832 // Do not emit copy for firstprivate constant variables in target regions, 833 // captured by reference. 834 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 835 FD && FD->getType()->isReferenceType() && 836 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 837 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 838 ++IRef; 839 ++InitsRef; 840 continue; 841 } 842 FirstprivateIsLastprivate = 843 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 844 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 845 const auto *VDInit = 846 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 847 bool IsRegistered; 848 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 849 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 850 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 851 LValue OriginalLVal; 852 if (!FD) { 853 // Check if the firstprivate variable is just a constant value. 854 ConstantEmission CE = tryEmitAsConstant(&DRE); 855 if (CE && !CE.isReference()) { 856 // Constant value, no need to create a copy. 857 ++IRef; 858 ++InitsRef; 859 continue; 860 } 861 if (CE && CE.isReference()) { 862 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 863 } else { 864 assert(!CE && "Expected non-constant firstprivate."); 865 OriginalLVal = EmitLValue(&DRE); 866 } 867 } else { 868 OriginalLVal = EmitLValue(&DRE); 869 } 870 QualType Type = VD->getType(); 871 if (Type->isArrayType()) { 872 // Emit VarDecl with copy init for arrays. 873 // Get the address of the original variable captured in current 874 // captured region. 875 IsRegistered = PrivateScope.addPrivate( 876 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 877 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 878 const Expr *Init = VD->getInit(); 879 if (!isa<CXXConstructExpr>(Init) || 880 isTrivialInitializer(Init)) { 881 // Perform simple memcpy. 882 LValue Dest = 883 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 884 EmitAggregateAssign(Dest, OriginalLVal, Type); 885 } else { 886 EmitOMPAggregateAssign( 887 Emission.getAllocatedAddress(), 888 OriginalLVal.getAddress(*this), Type, 889 [this, VDInit, Init](Address DestElement, 890 Address SrcElement) { 891 // Clean up any temporaries needed by the 892 // initialization. 893 RunCleanupsScope InitScope(*this); 894 // Emit initialization for single element. 895 setAddrOfLocalVar(VDInit, SrcElement); 896 EmitAnyExprToMem(Init, DestElement, 897 Init->getType().getQualifiers(), 898 /*IsInitializer*/ false); 899 LocalDeclMap.erase(VDInit); 900 }); 901 } 902 EmitAutoVarCleanups(Emission); 903 return Emission.getAllocatedAddress(); 904 }); 905 } else { 906 Address OriginalAddr = OriginalLVal.getAddress(*this); 907 IsRegistered = 908 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 909 ThisFirstprivateIsLastprivate, 910 OrigVD, &Lastprivates, IRef]() { 911 // Emit private VarDecl with copy init. 912 // Remap temp VDInit variable to the address of the original 913 // variable (for proper handling of captured global variables). 914 setAddrOfLocalVar(VDInit, OriginalAddr); 915 EmitDecl(*VD); 916 LocalDeclMap.erase(VDInit); 917 if (ThisFirstprivateIsLastprivate && 918 Lastprivates[OrigVD->getCanonicalDecl()] == 919 OMPC_LASTPRIVATE_conditional) { 920 // Create/init special variable for lastprivate conditionals. 921 Address VDAddr = 922 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 923 *this, OrigVD); 924 llvm::Value *V = EmitLoadOfScalar( 925 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 926 AlignmentSource::Decl), 927 (*IRef)->getExprLoc()); 928 EmitStoreOfScalar(V, 929 MakeAddrLValue(VDAddr, (*IRef)->getType(), 930 AlignmentSource::Decl)); 931 LocalDeclMap.erase(VD); 932 setAddrOfLocalVar(VD, VDAddr); 933 return VDAddr; 934 } 935 return GetAddrOfLocalVar(VD); 936 }); 937 } 938 assert(IsRegistered && 939 "firstprivate var already registered as private"); 940 // Silence the warning about unused variable. 941 (void)IsRegistered; 942 } 943 ++IRef; 944 ++InitsRef; 945 } 946 } 947 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 948 } 949 950 void CodeGenFunction::EmitOMPPrivateClause( 951 const OMPExecutableDirective &D, 952 CodeGenFunction::OMPPrivateScope &PrivateScope) { 953 if (!HaveInsertPoint()) 954 return; 955 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 956 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 957 auto IRef = C->varlist_begin(); 958 for (const Expr *IInit : C->private_copies()) { 959 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 960 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 961 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 962 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 963 // Emit private VarDecl with copy init. 964 EmitDecl(*VD); 965 return GetAddrOfLocalVar(VD); 966 }); 967 assert(IsRegistered && "private var already registered as private"); 968 // Silence the warning about unused variable. 969 (void)IsRegistered; 970 } 971 ++IRef; 972 } 973 } 974 } 975 976 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 977 if (!HaveInsertPoint()) 978 return false; 979 // threadprivate_var1 = master_threadprivate_var1; 980 // operator=(threadprivate_var2, master_threadprivate_var2); 981 // ... 982 // __kmpc_barrier(&loc, global_tid); 983 llvm::DenseSet<const VarDecl *> CopiedVars; 984 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 985 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 986 auto IRef = C->varlist_begin(); 987 auto ISrcRef = C->source_exprs().begin(); 988 auto IDestRef = C->destination_exprs().begin(); 989 for (const Expr *AssignOp : C->assignment_ops()) { 990 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 991 QualType Type = VD->getType(); 992 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 993 // Get the address of the master variable. If we are emitting code with 994 // TLS support, the address is passed from the master as field in the 995 // captured declaration. 996 Address MasterAddr = Address::invalid(); 997 if (getLangOpts().OpenMPUseTLS && 998 getContext().getTargetInfo().isTLSSupported()) { 999 assert(CapturedStmtInfo->lookup(VD) && 1000 "Copyin threadprivates should have been captured!"); 1001 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 1002 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1003 MasterAddr = EmitLValue(&DRE).getAddress(*this); 1004 LocalDeclMap.erase(VD); 1005 } else { 1006 MasterAddr = 1007 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1008 : CGM.GetAddrOfGlobal(VD), 1009 getContext().getDeclAlign(VD)); 1010 } 1011 // Get the address of the threadprivate variable. 1012 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1013 if (CopiedVars.size() == 1) { 1014 // At first check if current thread is a master thread. If it is, no 1015 // need to copy data. 1016 CopyBegin = createBasicBlock("copyin.not.master"); 1017 CopyEnd = createBasicBlock("copyin.not.master.end"); 1018 // TODO: Avoid ptrtoint conversion. 1019 auto *MasterAddrInt = 1020 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1021 auto *PrivateAddrInt = 1022 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1023 Builder.CreateCondBr( 1024 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1025 CopyEnd); 1026 EmitBlock(CopyBegin); 1027 } 1028 const auto *SrcVD = 1029 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1030 const auto *DestVD = 1031 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1032 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1033 } 1034 ++IRef; 1035 ++ISrcRef; 1036 ++IDestRef; 1037 } 1038 } 1039 if (CopyEnd) { 1040 // Exit out of copying procedure for non-master thread. 1041 EmitBlock(CopyEnd, /*IsFinished=*/true); 1042 return true; 1043 } 1044 return false; 1045 } 1046 1047 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1048 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1049 if (!HaveInsertPoint()) 1050 return false; 1051 bool HasAtLeastOneLastprivate = false; 1052 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1053 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1054 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1055 for (const Expr *C : LoopDirective->counters()) { 1056 SIMDLCVs.insert( 1057 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1058 } 1059 } 1060 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1061 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1062 HasAtLeastOneLastprivate = true; 1063 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1064 !getLangOpts().OpenMPSimd) 1065 break; 1066 const auto *IRef = C->varlist_begin(); 1067 const auto *IDestRef = C->destination_exprs().begin(); 1068 for (const Expr *IInit : C->private_copies()) { 1069 // Keep the address of the original variable for future update at the end 1070 // of the loop. 1071 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1072 // Taskloops do not require additional initialization, it is done in 1073 // runtime support library. 1074 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1075 const auto *DestVD = 1076 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1077 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1078 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1079 /*RefersToEnclosingVariableOrCapture=*/ 1080 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1081 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1082 return EmitLValue(&DRE).getAddress(*this); 1083 }); 1084 // Check if the variable is also a firstprivate: in this case IInit is 1085 // not generated. Initialization of this variable will happen in codegen 1086 // for 'firstprivate' clause. 1087 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1088 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1089 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1090 OrigVD]() { 1091 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1092 Address VDAddr = 1093 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1094 OrigVD); 1095 setAddrOfLocalVar(VD, VDAddr); 1096 return VDAddr; 1097 } 1098 // Emit private VarDecl with copy init. 1099 EmitDecl(*VD); 1100 return GetAddrOfLocalVar(VD); 1101 }); 1102 assert(IsRegistered && 1103 "lastprivate var already registered as private"); 1104 (void)IsRegistered; 1105 } 1106 } 1107 ++IRef; 1108 ++IDestRef; 1109 } 1110 } 1111 return HasAtLeastOneLastprivate; 1112 } 1113 1114 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1115 const OMPExecutableDirective &D, bool NoFinals, 1116 llvm::Value *IsLastIterCond) { 1117 if (!HaveInsertPoint()) 1118 return; 1119 // Emit following code: 1120 // if (<IsLastIterCond>) { 1121 // orig_var1 = private_orig_var1; 1122 // ... 1123 // orig_varn = private_orig_varn; 1124 // } 1125 llvm::BasicBlock *ThenBB = nullptr; 1126 llvm::BasicBlock *DoneBB = nullptr; 1127 if (IsLastIterCond) { 1128 // Emit implicit barrier if at least one lastprivate conditional is found 1129 // and this is not a simd mode. 1130 if (!getLangOpts().OpenMPSimd && 1131 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1132 [](const OMPLastprivateClause *C) { 1133 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1134 })) { 1135 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1136 OMPD_unknown, 1137 /*EmitChecks=*/false, 1138 /*ForceSimpleCall=*/true); 1139 } 1140 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1141 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1142 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1143 EmitBlock(ThenBB); 1144 } 1145 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1146 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1147 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1148 auto IC = LoopDirective->counters().begin(); 1149 for (const Expr *F : LoopDirective->finals()) { 1150 const auto *D = 1151 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1152 if (NoFinals) 1153 AlreadyEmittedVars.insert(D); 1154 else 1155 LoopCountersAndUpdates[D] = F; 1156 ++IC; 1157 } 1158 } 1159 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1160 auto IRef = C->varlist_begin(); 1161 auto ISrcRef = C->source_exprs().begin(); 1162 auto IDestRef = C->destination_exprs().begin(); 1163 for (const Expr *AssignOp : C->assignment_ops()) { 1164 const auto *PrivateVD = 1165 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1166 QualType Type = PrivateVD->getType(); 1167 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1168 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1169 // If lastprivate variable is a loop control variable for loop-based 1170 // directive, update its value before copyin back to original 1171 // variable. 1172 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1173 EmitIgnoredExpr(FinalExpr); 1174 const auto *SrcVD = 1175 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1176 const auto *DestVD = 1177 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1178 // Get the address of the private variable. 1179 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1180 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1181 PrivateAddr = 1182 Address(Builder.CreateLoad(PrivateAddr), 1183 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1184 // Store the last value to the private copy in the last iteration. 1185 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1186 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1187 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1188 (*IRef)->getExprLoc()); 1189 // Get the address of the original variable. 1190 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1191 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1192 } 1193 ++IRef; 1194 ++ISrcRef; 1195 ++IDestRef; 1196 } 1197 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1198 EmitIgnoredExpr(PostUpdate); 1199 } 1200 if (IsLastIterCond) 1201 EmitBlock(DoneBB, /*IsFinished=*/true); 1202 } 1203 1204 void CodeGenFunction::EmitOMPReductionClauseInit( 1205 const OMPExecutableDirective &D, 1206 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1207 if (!HaveInsertPoint()) 1208 return; 1209 SmallVector<const Expr *, 4> Shareds; 1210 SmallVector<const Expr *, 4> Privates; 1211 SmallVector<const Expr *, 4> ReductionOps; 1212 SmallVector<const Expr *, 4> LHSs; 1213 SmallVector<const Expr *, 4> RHSs; 1214 OMPTaskDataTy Data; 1215 SmallVector<const Expr *, 4> TaskLHSs; 1216 SmallVector<const Expr *, 4> TaskRHSs; 1217 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1218 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1219 continue; 1220 Shareds.append(C->varlist_begin(), C->varlist_end()); 1221 Privates.append(C->privates().begin(), C->privates().end()); 1222 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1223 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1224 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1225 if (C->getModifier() == OMPC_REDUCTION_task) { 1226 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1227 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1228 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1229 Data.ReductionOps.append(C->reduction_ops().begin(), 1230 C->reduction_ops().end()); 1231 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1232 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1233 } 1234 } 1235 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1236 unsigned Count = 0; 1237 auto *ILHS = LHSs.begin(); 1238 auto *IRHS = RHSs.begin(); 1239 auto *IPriv = Privates.begin(); 1240 for (const Expr *IRef : Shareds) { 1241 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1242 // Emit private VarDecl with reduction init. 1243 RedCG.emitSharedOrigLValue(*this, Count); 1244 RedCG.emitAggregateType(*this, Count); 1245 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1246 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1247 RedCG.getSharedLValue(Count), 1248 [&Emission](CodeGenFunction &CGF) { 1249 CGF.EmitAutoVarInit(Emission); 1250 return true; 1251 }); 1252 EmitAutoVarCleanups(Emission); 1253 Address BaseAddr = RedCG.adjustPrivateAddress( 1254 *this, Count, Emission.getAllocatedAddress()); 1255 bool IsRegistered = PrivateScope.addPrivate( 1256 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1257 assert(IsRegistered && "private var already registered as private"); 1258 // Silence the warning about unused variable. 1259 (void)IsRegistered; 1260 1261 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1262 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1263 QualType Type = PrivateVD->getType(); 1264 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1265 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1266 // Store the address of the original variable associated with the LHS 1267 // implicit variable. 1268 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1269 return RedCG.getSharedLValue(Count).getAddress(*this); 1270 }); 1271 PrivateScope.addPrivate( 1272 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1273 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1274 isa<ArraySubscriptExpr>(IRef)) { 1275 // Store the address of the original variable associated with the LHS 1276 // implicit variable. 1277 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1278 return RedCG.getSharedLValue(Count).getAddress(*this); 1279 }); 1280 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1281 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1282 ConvertTypeForMem(RHSVD->getType()), 1283 "rhs.begin"); 1284 }); 1285 } else { 1286 QualType Type = PrivateVD->getType(); 1287 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1288 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1289 // Store the address of the original variable associated with the LHS 1290 // implicit variable. 1291 if (IsArray) { 1292 OriginalAddr = Builder.CreateElementBitCast( 1293 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1294 } 1295 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1296 PrivateScope.addPrivate( 1297 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1298 return IsArray 1299 ? Builder.CreateElementBitCast( 1300 GetAddrOfLocalVar(PrivateVD), 1301 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1302 : GetAddrOfLocalVar(PrivateVD); 1303 }); 1304 } 1305 ++ILHS; 1306 ++IRHS; 1307 ++IPriv; 1308 ++Count; 1309 } 1310 if (!Data.ReductionVars.empty()) { 1311 Data.IsReductionWithTaskMod = true; 1312 Data.IsWorksharingReduction = 1313 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1314 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1315 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1316 const Expr *TaskRedRef = nullptr; 1317 switch (D.getDirectiveKind()) { 1318 case OMPD_parallel: 1319 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1320 break; 1321 case OMPD_for: 1322 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1323 break; 1324 case OMPD_sections: 1325 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1326 break; 1327 case OMPD_parallel_for: 1328 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1329 break; 1330 case OMPD_parallel_master: 1331 TaskRedRef = 1332 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1333 break; 1334 case OMPD_parallel_sections: 1335 TaskRedRef = 1336 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1337 break; 1338 case OMPD_target_parallel: 1339 TaskRedRef = 1340 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1341 break; 1342 case OMPD_target_parallel_for: 1343 TaskRedRef = 1344 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1345 break; 1346 case OMPD_distribute_parallel_for: 1347 TaskRedRef = 1348 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1349 break; 1350 case OMPD_teams_distribute_parallel_for: 1351 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1352 .getTaskReductionRefExpr(); 1353 break; 1354 case OMPD_target_teams_distribute_parallel_for: 1355 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1356 .getTaskReductionRefExpr(); 1357 break; 1358 case OMPD_simd: 1359 case OMPD_for_simd: 1360 case OMPD_section: 1361 case OMPD_single: 1362 case OMPD_master: 1363 case OMPD_critical: 1364 case OMPD_parallel_for_simd: 1365 case OMPD_task: 1366 case OMPD_taskyield: 1367 case OMPD_barrier: 1368 case OMPD_taskwait: 1369 case OMPD_taskgroup: 1370 case OMPD_flush: 1371 case OMPD_depobj: 1372 case OMPD_scan: 1373 case OMPD_ordered: 1374 case OMPD_atomic: 1375 case OMPD_teams: 1376 case OMPD_target: 1377 case OMPD_cancellation_point: 1378 case OMPD_cancel: 1379 case OMPD_target_data: 1380 case OMPD_target_enter_data: 1381 case OMPD_target_exit_data: 1382 case OMPD_taskloop: 1383 case OMPD_taskloop_simd: 1384 case OMPD_master_taskloop: 1385 case OMPD_master_taskloop_simd: 1386 case OMPD_parallel_master_taskloop: 1387 case OMPD_parallel_master_taskloop_simd: 1388 case OMPD_distribute: 1389 case OMPD_target_update: 1390 case OMPD_distribute_parallel_for_simd: 1391 case OMPD_distribute_simd: 1392 case OMPD_target_parallel_for_simd: 1393 case OMPD_target_simd: 1394 case OMPD_teams_distribute: 1395 case OMPD_teams_distribute_simd: 1396 case OMPD_teams_distribute_parallel_for_simd: 1397 case OMPD_target_teams: 1398 case OMPD_target_teams_distribute: 1399 case OMPD_target_teams_distribute_parallel_for_simd: 1400 case OMPD_target_teams_distribute_simd: 1401 case OMPD_declare_target: 1402 case OMPD_end_declare_target: 1403 case OMPD_threadprivate: 1404 case OMPD_allocate: 1405 case OMPD_declare_reduction: 1406 case OMPD_declare_mapper: 1407 case OMPD_declare_simd: 1408 case OMPD_requires: 1409 case OMPD_declare_variant: 1410 case OMPD_begin_declare_variant: 1411 case OMPD_end_declare_variant: 1412 case OMPD_unknown: 1413 default: 1414 llvm_unreachable("Enexpected directive with task reductions."); 1415 } 1416 1417 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1418 EmitVarDecl(*VD); 1419 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1420 /*Volatile=*/false, TaskRedRef->getType()); 1421 } 1422 } 1423 1424 void CodeGenFunction::EmitOMPReductionClauseFinal( 1425 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1426 if (!HaveInsertPoint()) 1427 return; 1428 llvm::SmallVector<const Expr *, 8> Privates; 1429 llvm::SmallVector<const Expr *, 8> LHSExprs; 1430 llvm::SmallVector<const Expr *, 8> RHSExprs; 1431 llvm::SmallVector<const Expr *, 8> ReductionOps; 1432 bool HasAtLeastOneReduction = false; 1433 bool IsReductionWithTaskMod = false; 1434 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1435 // Do not emit for inscan reductions. 1436 if (C->getModifier() == OMPC_REDUCTION_inscan) 1437 continue; 1438 HasAtLeastOneReduction = true; 1439 Privates.append(C->privates().begin(), C->privates().end()); 1440 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1441 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1442 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1443 IsReductionWithTaskMod = 1444 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1445 } 1446 if (HasAtLeastOneReduction) { 1447 if (IsReductionWithTaskMod) { 1448 CGM.getOpenMPRuntime().emitTaskReductionFini( 1449 *this, D.getBeginLoc(), 1450 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1451 } 1452 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1453 isOpenMPParallelDirective(D.getDirectiveKind()) || 1454 ReductionKind == OMPD_simd; 1455 bool SimpleReduction = ReductionKind == OMPD_simd; 1456 // Emit nowait reduction if nowait clause is present or directive is a 1457 // parallel directive (it always has implicit barrier). 1458 CGM.getOpenMPRuntime().emitReduction( 1459 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1460 {WithNowait, SimpleReduction, ReductionKind}); 1461 } 1462 } 1463 1464 static void emitPostUpdateForReductionClause( 1465 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1466 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1467 if (!CGF.HaveInsertPoint()) 1468 return; 1469 llvm::BasicBlock *DoneBB = nullptr; 1470 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1471 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1472 if (!DoneBB) { 1473 if (llvm::Value *Cond = CondGen(CGF)) { 1474 // If the first post-update expression is found, emit conditional 1475 // block if it was requested. 1476 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1477 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1478 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1479 CGF.EmitBlock(ThenBB); 1480 } 1481 } 1482 CGF.EmitIgnoredExpr(PostUpdate); 1483 } 1484 } 1485 if (DoneBB) 1486 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1487 } 1488 1489 namespace { 1490 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1491 /// parallel function. This is necessary for combined constructs such as 1492 /// 'distribute parallel for' 1493 typedef llvm::function_ref<void(CodeGenFunction &, 1494 const OMPExecutableDirective &, 1495 llvm::SmallVectorImpl<llvm::Value *> &)> 1496 CodeGenBoundParametersTy; 1497 } // anonymous namespace 1498 1499 static void 1500 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1501 const OMPExecutableDirective &S) { 1502 if (CGF.getLangOpts().OpenMP < 50) 1503 return; 1504 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1505 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1506 for (const Expr *Ref : C->varlists()) { 1507 if (!Ref->getType()->isScalarType()) 1508 continue; 1509 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1510 if (!DRE) 1511 continue; 1512 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1513 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1514 } 1515 } 1516 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1517 for (const Expr *Ref : C->varlists()) { 1518 if (!Ref->getType()->isScalarType()) 1519 continue; 1520 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1521 if (!DRE) 1522 continue; 1523 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1524 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1525 } 1526 } 1527 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1528 for (const Expr *Ref : C->varlists()) { 1529 if (!Ref->getType()->isScalarType()) 1530 continue; 1531 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1532 if (!DRE) 1533 continue; 1534 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1535 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1536 } 1537 } 1538 // Privates should ne analyzed since they are not captured at all. 1539 // Task reductions may be skipped - tasks are ignored. 1540 // Firstprivates do not return value but may be passed by reference - no need 1541 // to check for updated lastprivate conditional. 1542 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1543 for (const Expr *Ref : C->varlists()) { 1544 if (!Ref->getType()->isScalarType()) 1545 continue; 1546 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1547 if (!DRE) 1548 continue; 1549 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1550 } 1551 } 1552 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1553 CGF, S, PrivateDecls); 1554 } 1555 1556 static void emitCommonOMPParallelDirective( 1557 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1558 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1559 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1560 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1561 llvm::Function *OutlinedFn = 1562 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1563 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1564 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1565 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1566 llvm::Value *NumThreads = 1567 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1568 /*IgnoreResultAssign=*/true); 1569 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1570 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1571 } 1572 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1573 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1574 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1575 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1576 } 1577 const Expr *IfCond = nullptr; 1578 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1579 if (C->getNameModifier() == OMPD_unknown || 1580 C->getNameModifier() == OMPD_parallel) { 1581 IfCond = C->getCondition(); 1582 break; 1583 } 1584 } 1585 1586 OMPParallelScope Scope(CGF, S); 1587 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1588 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1589 // lower and upper bounds with the pragma 'for' chunking mechanism. 1590 // The following lambda takes care of appending the lower and upper bound 1591 // parameters when necessary 1592 CodeGenBoundParameters(CGF, S, CapturedVars); 1593 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1594 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1595 CapturedVars, IfCond); 1596 } 1597 1598 static bool isAllocatableDecl(const VarDecl *VD) { 1599 const VarDecl *CVD = VD->getCanonicalDecl(); 1600 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1601 return false; 1602 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1603 // Use the default allocation. 1604 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1605 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1606 !AA->getAllocator()); 1607 } 1608 1609 static void emitEmptyBoundParameters(CodeGenFunction &, 1610 const OMPExecutableDirective &, 1611 llvm::SmallVectorImpl<llvm::Value *> &) {} 1612 1613 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1614 CodeGenFunction &CGF, const VarDecl *VD) { 1615 CodeGenModule &CGM = CGF.CGM; 1616 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1617 1618 if (!VD) 1619 return Address::invalid(); 1620 const VarDecl *CVD = VD->getCanonicalDecl(); 1621 if (!isAllocatableDecl(CVD)) 1622 return Address::invalid(); 1623 llvm::Value *Size; 1624 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1625 if (CVD->getType()->isVariablyModifiedType()) { 1626 Size = CGF.getTypeSize(CVD->getType()); 1627 // Align the size: ((size + align - 1) / align) * align 1628 Size = CGF.Builder.CreateNUWAdd( 1629 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1630 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1631 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1632 } else { 1633 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1634 Size = CGM.getSize(Sz.alignTo(Align)); 1635 } 1636 1637 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1638 assert(AA->getAllocator() && 1639 "Expected allocator expression for non-default allocator."); 1640 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1641 // According to the standard, the original allocator type is a enum (integer). 1642 // Convert to pointer type, if required. 1643 if (Allocator->getType()->isIntegerTy()) 1644 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1645 else if (Allocator->getType()->isPointerTy()) 1646 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1647 CGM.VoidPtrTy); 1648 1649 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1650 CGF.Builder, Size, Allocator, 1651 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1652 llvm::CallInst *FreeCI = 1653 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1654 1655 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1656 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1657 Addr, 1658 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1659 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1660 return Address(Addr, Align); 1661 } 1662 1663 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1664 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1665 SourceLocation Loc) { 1666 CodeGenModule &CGM = CGF.CGM; 1667 if (CGM.getLangOpts().OpenMPUseTLS && 1668 CGM.getContext().getTargetInfo().isTLSSupported()) 1669 return VDAddr; 1670 1671 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1672 1673 llvm::Type *VarTy = VDAddr.getElementType(); 1674 llvm::Value *Data = 1675 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1676 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1677 std::string Suffix = getNameWithSeparators({"cache", ""}); 1678 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1679 1680 llvm::CallInst *ThreadPrivateCacheCall = 1681 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1682 1683 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1684 } 1685 1686 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1687 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1688 SmallString<128> Buffer; 1689 llvm::raw_svector_ostream OS(Buffer); 1690 StringRef Sep = FirstSeparator; 1691 for (StringRef Part : Parts) { 1692 OS << Sep << Part; 1693 Sep = Separator; 1694 } 1695 return OS.str().str(); 1696 } 1697 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1698 if (CGM.getLangOpts().OpenMPIRBuilder) { 1699 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1700 // Check if we have any if clause associated with the directive. 1701 llvm::Value *IfCond = nullptr; 1702 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1703 IfCond = EmitScalarExpr(C->getCondition(), 1704 /*IgnoreResultAssign=*/true); 1705 1706 llvm::Value *NumThreads = nullptr; 1707 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1708 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1709 /*IgnoreResultAssign=*/true); 1710 1711 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1712 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1713 ProcBind = ProcBindClause->getProcBindKind(); 1714 1715 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1716 1717 // The cleanup callback that finalizes all variabels at the given location, 1718 // thus calls destructors etc. 1719 auto FiniCB = [this](InsertPointTy IP) { 1720 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1721 }; 1722 1723 // Privatization callback that performs appropriate action for 1724 // shared/private/firstprivate/lastprivate/copyin/... variables. 1725 // 1726 // TODO: This defaults to shared right now. 1727 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1728 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1729 // The next line is appropriate only for variables (Val) with the 1730 // data-sharing attribute "shared". 1731 ReplVal = &Val; 1732 1733 return CodeGenIP; 1734 }; 1735 1736 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1737 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1738 1739 auto BodyGenCB = [ParallelRegionBodyStmt, 1740 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1741 llvm::BasicBlock &ContinuationBB) { 1742 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1743 ContinuationBB); 1744 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1745 CodeGenIP, ContinuationBB); 1746 }; 1747 1748 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1749 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1750 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1751 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1752 Builder.restoreIP( 1753 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1754 IfCond, NumThreads, ProcBind, S.hasCancel())); 1755 return; 1756 } 1757 1758 // Emit parallel region as a standalone region. 1759 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1760 Action.Enter(CGF); 1761 OMPPrivateScope PrivateScope(CGF); 1762 bool Copyins = CGF.EmitOMPCopyinClause(S); 1763 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1764 if (Copyins) { 1765 // Emit implicit barrier to synchronize threads and avoid data races on 1766 // propagation master's thread values of threadprivate variables to local 1767 // instances of that variables of all other implicit threads. 1768 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1769 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1770 /*ForceSimpleCall=*/true); 1771 } 1772 CGF.EmitOMPPrivateClause(S, PrivateScope); 1773 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1774 (void)PrivateScope.Privatize(); 1775 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1776 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1777 }; 1778 { 1779 auto LPCRegion = 1780 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1781 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1782 emitEmptyBoundParameters); 1783 emitPostUpdateForReductionClause(*this, S, 1784 [](CodeGenFunction &) { return nullptr; }); 1785 } 1786 // Check for outer lastprivate conditional update. 1787 checkForLastprivateConditionalUpdate(*this, S); 1788 } 1789 1790 namespace { 1791 /// RAII to handle scopes for loop transformation directives. 1792 class OMPTransformDirectiveScopeRAII { 1793 OMPLoopScope *Scope = nullptr; 1794 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1795 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1796 1797 public: 1798 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1799 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1800 Scope = new OMPLoopScope(CGF, *Dir); 1801 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1802 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1803 } 1804 } 1805 ~OMPTransformDirectiveScopeRAII() { 1806 if (!Scope) 1807 return; 1808 delete CapInfoRAII; 1809 delete CGSI; 1810 delete Scope; 1811 } 1812 }; 1813 } // namespace 1814 1815 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1816 int MaxLevel, int Level = 0) { 1817 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1818 const Stmt *SimplifiedS = S->IgnoreContainers(); 1819 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1820 PrettyStackTraceLoc CrashInfo( 1821 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1822 "LLVM IR generation of compound statement ('{}')"); 1823 1824 // Keep track of the current cleanup stack depth, including debug scopes. 1825 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1826 for (const Stmt *CurStmt : CS->body()) 1827 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1828 return; 1829 } 1830 if (SimplifiedS == NextLoop) { 1831 if (auto *Dir = dyn_cast<OMPTileDirective>(SimplifiedS)) 1832 SimplifiedS = Dir->getTransformedStmt(); 1833 if (auto *Dir = dyn_cast<OMPUnrollDirective>(SimplifiedS)) 1834 SimplifiedS = Dir->getTransformedStmt(); 1835 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1836 SimplifiedS = CanonLoop->getLoopStmt(); 1837 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1838 S = For->getBody(); 1839 } else { 1840 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1841 "Expected canonical for loop or range-based for loop."); 1842 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1843 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1844 S = CXXFor->getBody(); 1845 } 1846 if (Level + 1 < MaxLevel) { 1847 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1848 S, /*TryImperfectlyNestedLoops=*/true); 1849 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1850 return; 1851 } 1852 } 1853 CGF.EmitStmt(S); 1854 } 1855 1856 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1857 JumpDest LoopExit) { 1858 RunCleanupsScope BodyScope(*this); 1859 // Update counters values on current iteration. 1860 for (const Expr *UE : D.updates()) 1861 EmitIgnoredExpr(UE); 1862 // Update the linear variables. 1863 // In distribute directives only loop counters may be marked as linear, no 1864 // need to generate the code for them. 1865 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1866 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1867 for (const Expr *UE : C->updates()) 1868 EmitIgnoredExpr(UE); 1869 } 1870 } 1871 1872 // On a continue in the body, jump to the end. 1873 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1874 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1875 for (const Expr *E : D.finals_conditions()) { 1876 if (!E) 1877 continue; 1878 // Check that loop counter in non-rectangular nest fits into the iteration 1879 // space. 1880 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1881 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1882 getProfileCount(D.getBody())); 1883 EmitBlock(NextBB); 1884 } 1885 1886 OMPPrivateScope InscanScope(*this); 1887 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1888 bool IsInscanRegion = InscanScope.Privatize(); 1889 if (IsInscanRegion) { 1890 // Need to remember the block before and after scan directive 1891 // to dispatch them correctly depending on the clause used in 1892 // this directive, inclusive or exclusive. For inclusive scan the natural 1893 // order of the blocks is used, for exclusive clause the blocks must be 1894 // executed in reverse order. 1895 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1896 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1897 // No need to allocate inscan exit block, in simd mode it is selected in the 1898 // codegen for the scan directive. 1899 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1900 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1901 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1902 EmitBranch(OMPScanDispatch); 1903 EmitBlock(OMPBeforeScanBlock); 1904 } 1905 1906 // Emit loop variables for C++ range loops. 1907 const Stmt *Body = 1908 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1909 // Emit loop body. 1910 emitBody(*this, Body, 1911 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1912 Body, /*TryImperfectlyNestedLoops=*/true), 1913 D.getLoopsNumber()); 1914 1915 // Jump to the dispatcher at the end of the loop body. 1916 if (IsInscanRegion) 1917 EmitBranch(OMPScanExitBlock); 1918 1919 // The end (updates/cleanups). 1920 EmitBlock(Continue.getBlock()); 1921 BreakContinueStack.pop_back(); 1922 } 1923 1924 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1925 1926 /// Emit a captured statement and return the function as well as its captured 1927 /// closure context. 1928 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1929 const CapturedStmt *S) { 1930 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1931 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1932 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1933 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1934 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1935 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1936 1937 return {F, CapStruct.getPointer(ParentCGF)}; 1938 } 1939 1940 /// Emit a call to a previously captured closure. 1941 static llvm::CallInst * 1942 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1943 llvm::ArrayRef<llvm::Value *> Args) { 1944 // Append the closure context to the argument. 1945 SmallVector<llvm::Value *> EffectiveArgs; 1946 EffectiveArgs.reserve(Args.size() + 1); 1947 llvm::append_range(EffectiveArgs, Args); 1948 EffectiveArgs.push_back(Cap.second); 1949 1950 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1951 } 1952 1953 llvm::CanonicalLoopInfo * 1954 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1955 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1956 1957 EmitStmt(S); 1958 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1959 1960 // The last added loop is the outermost one. 1961 return OMPLoopNestStack.back(); 1962 } 1963 1964 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 1965 const Stmt *SyntacticalLoop = S->getLoopStmt(); 1966 if (!getLangOpts().OpenMPIRBuilder) { 1967 // Ignore if OpenMPIRBuilder is not enabled. 1968 EmitStmt(SyntacticalLoop); 1969 return; 1970 } 1971 1972 LexicalScope ForScope(*this, S->getSourceRange()); 1973 1974 // Emit init statements. The Distance/LoopVar funcs may reference variable 1975 // declarations they contain. 1976 const Stmt *BodyStmt; 1977 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 1978 if (const Stmt *InitStmt = For->getInit()) 1979 EmitStmt(InitStmt); 1980 BodyStmt = For->getBody(); 1981 } else if (const auto *RangeFor = 1982 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 1983 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 1984 EmitStmt(RangeStmt); 1985 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 1986 EmitStmt(BeginStmt); 1987 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 1988 EmitStmt(EndStmt); 1989 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 1990 EmitStmt(LoopVarStmt); 1991 BodyStmt = RangeFor->getBody(); 1992 } else 1993 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 1994 1995 // Emit closure for later use. By-value captures will be captured here. 1996 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 1997 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 1998 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 1999 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2000 2001 // Call the distance function to get the number of iterations of the loop to 2002 // come. 2003 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2004 ->getParam(0) 2005 ->getType() 2006 .getNonReferenceType(); 2007 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2008 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2009 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2010 2011 // Emit the loop structure. 2012 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2013 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2014 llvm::Value *IndVar) { 2015 Builder.restoreIP(CodeGenIP); 2016 2017 // Emit the loop body: Convert the logical iteration number to the loop 2018 // variable and emit the body. 2019 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2020 LValue LCVal = EmitLValue(LoopVarRef); 2021 Address LoopVarAddress = LCVal.getAddress(*this); 2022 emitCapturedStmtCall(*this, LoopVarClosure, 2023 {LoopVarAddress.getPointer(), IndVar}); 2024 2025 RunCleanupsScope BodyScope(*this); 2026 EmitStmt(BodyStmt); 2027 }; 2028 llvm::CanonicalLoopInfo *CL = 2029 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2030 2031 // Finish up the loop. 2032 Builder.restoreIP(CL->getAfterIP()); 2033 ForScope.ForceCleanup(); 2034 2035 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2036 OMPLoopNestStack.push_back(CL); 2037 } 2038 2039 void CodeGenFunction::EmitOMPInnerLoop( 2040 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2041 const Expr *IncExpr, 2042 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2043 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2044 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2045 2046 // Start the loop with a block that tests the condition. 2047 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2048 EmitBlock(CondBlock); 2049 const SourceRange R = S.getSourceRange(); 2050 2051 // If attributes are attached, push to the basic block with them. 2052 const auto &OMPED = cast<OMPExecutableDirective>(S); 2053 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2054 const Stmt *SS = ICS->getCapturedStmt(); 2055 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2056 OMPLoopNestStack.clear(); 2057 if (AS) 2058 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2059 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2060 SourceLocToDebugLoc(R.getEnd())); 2061 else 2062 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2063 SourceLocToDebugLoc(R.getEnd())); 2064 2065 // If there are any cleanups between here and the loop-exit scope, 2066 // create a block to stage a loop exit along. 2067 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2068 if (RequiresCleanup) 2069 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2070 2071 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2072 2073 // Emit condition. 2074 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2075 if (ExitBlock != LoopExit.getBlock()) { 2076 EmitBlock(ExitBlock); 2077 EmitBranchThroughCleanup(LoopExit); 2078 } 2079 2080 EmitBlock(LoopBody); 2081 incrementProfileCounter(&S); 2082 2083 // Create a block for the increment. 2084 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2085 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2086 2087 BodyGen(*this); 2088 2089 // Emit "IV = IV + 1" and a back-edge to the condition block. 2090 EmitBlock(Continue.getBlock()); 2091 EmitIgnoredExpr(IncExpr); 2092 PostIncGen(*this); 2093 BreakContinueStack.pop_back(); 2094 EmitBranch(CondBlock); 2095 LoopStack.pop(); 2096 // Emit the fall-through block. 2097 EmitBlock(LoopExit.getBlock()); 2098 } 2099 2100 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2101 if (!HaveInsertPoint()) 2102 return false; 2103 // Emit inits for the linear variables. 2104 bool HasLinears = false; 2105 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2106 for (const Expr *Init : C->inits()) { 2107 HasLinears = true; 2108 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2109 if (const auto *Ref = 2110 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2111 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2112 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2113 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2114 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2115 VD->getInit()->getType(), VK_LValue, 2116 VD->getInit()->getExprLoc()); 2117 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 2118 VD->getType()), 2119 /*capturedByInit=*/false); 2120 EmitAutoVarCleanups(Emission); 2121 } else { 2122 EmitVarDecl(*VD); 2123 } 2124 } 2125 // Emit the linear steps for the linear clauses. 2126 // If a step is not constant, it is pre-calculated before the loop. 2127 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2128 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2129 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2130 // Emit calculation of the linear step. 2131 EmitIgnoredExpr(CS); 2132 } 2133 } 2134 return HasLinears; 2135 } 2136 2137 void CodeGenFunction::EmitOMPLinearClauseFinal( 2138 const OMPLoopDirective &D, 2139 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2140 if (!HaveInsertPoint()) 2141 return; 2142 llvm::BasicBlock *DoneBB = nullptr; 2143 // Emit the final values of the linear variables. 2144 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2145 auto IC = C->varlist_begin(); 2146 for (const Expr *F : C->finals()) { 2147 if (!DoneBB) { 2148 if (llvm::Value *Cond = CondGen(*this)) { 2149 // If the first post-update expression is found, emit conditional 2150 // block if it was requested. 2151 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2152 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2153 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2154 EmitBlock(ThenBB); 2155 } 2156 } 2157 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2158 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2159 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2160 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2161 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2162 CodeGenFunction::OMPPrivateScope VarScope(*this); 2163 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2164 (void)VarScope.Privatize(); 2165 EmitIgnoredExpr(F); 2166 ++IC; 2167 } 2168 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2169 EmitIgnoredExpr(PostUpdate); 2170 } 2171 if (DoneBB) 2172 EmitBlock(DoneBB, /*IsFinished=*/true); 2173 } 2174 2175 static void emitAlignedClause(CodeGenFunction &CGF, 2176 const OMPExecutableDirective &D) { 2177 if (!CGF.HaveInsertPoint()) 2178 return; 2179 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2180 llvm::APInt ClauseAlignment(64, 0); 2181 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2182 auto *AlignmentCI = 2183 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2184 ClauseAlignment = AlignmentCI->getValue(); 2185 } 2186 for (const Expr *E : Clause->varlists()) { 2187 llvm::APInt Alignment(ClauseAlignment); 2188 if (Alignment == 0) { 2189 // OpenMP [2.8.1, Description] 2190 // If no optional parameter is specified, implementation-defined default 2191 // alignments for SIMD instructions on the target platforms are assumed. 2192 Alignment = 2193 CGF.getContext() 2194 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2195 E->getType()->getPointeeType())) 2196 .getQuantity(); 2197 } 2198 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2199 "alignment is not power of 2"); 2200 if (Alignment != 0) { 2201 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2202 CGF.emitAlignmentAssumption( 2203 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2204 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2205 } 2206 } 2207 } 2208 } 2209 2210 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2211 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2212 if (!HaveInsertPoint()) 2213 return; 2214 auto I = S.private_counters().begin(); 2215 for (const Expr *E : S.counters()) { 2216 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2217 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2218 // Emit var without initialization. 2219 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2220 EmitAutoVarCleanups(VarEmission); 2221 LocalDeclMap.erase(PrivateVD); 2222 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 2223 return VarEmission.getAllocatedAddress(); 2224 }); 2225 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2226 VD->hasGlobalStorage()) { 2227 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2228 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2229 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2230 E->getType(), VK_LValue, E->getExprLoc()); 2231 return EmitLValue(&DRE).getAddress(*this); 2232 }); 2233 } else { 2234 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2235 return VarEmission.getAllocatedAddress(); 2236 }); 2237 } 2238 ++I; 2239 } 2240 // Privatize extra loop counters used in loops for ordered(n) clauses. 2241 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2242 if (!C->getNumForLoops()) 2243 continue; 2244 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2245 I < E; ++I) { 2246 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2247 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2248 // Override only those variables that can be captured to avoid re-emission 2249 // of the variables declared within the loops. 2250 if (DRE->refersToEnclosingVariableOrCapture()) { 2251 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2252 return CreateMemTemp(DRE->getType(), VD->getName()); 2253 }); 2254 } 2255 } 2256 } 2257 } 2258 2259 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2260 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2261 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2262 if (!CGF.HaveInsertPoint()) 2263 return; 2264 { 2265 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2266 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2267 (void)PreCondScope.Privatize(); 2268 // Get initial values of real counters. 2269 for (const Expr *I : S.inits()) { 2270 CGF.EmitIgnoredExpr(I); 2271 } 2272 } 2273 // Create temp loop control variables with their init values to support 2274 // non-rectangular loops. 2275 CodeGenFunction::OMPMapVars PreCondVars; 2276 for (const Expr * E: S.dependent_counters()) { 2277 if (!E) 2278 continue; 2279 assert(!E->getType().getNonReferenceType()->isRecordType() && 2280 "dependent counter must not be an iterator."); 2281 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2282 Address CounterAddr = 2283 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2284 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2285 } 2286 (void)PreCondVars.apply(CGF); 2287 for (const Expr *E : S.dependent_inits()) { 2288 if (!E) 2289 continue; 2290 CGF.EmitIgnoredExpr(E); 2291 } 2292 // Check that loop is executed at least one time. 2293 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2294 PreCondVars.restore(CGF); 2295 } 2296 2297 void CodeGenFunction::EmitOMPLinearClause( 2298 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2299 if (!HaveInsertPoint()) 2300 return; 2301 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2302 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2303 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2304 for (const Expr *C : LoopDirective->counters()) { 2305 SIMDLCVs.insert( 2306 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2307 } 2308 } 2309 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2310 auto CurPrivate = C->privates().begin(); 2311 for (const Expr *E : C->varlists()) { 2312 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2313 const auto *PrivateVD = 2314 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2315 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2316 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2317 // Emit private VarDecl with copy init. 2318 EmitVarDecl(*PrivateVD); 2319 return GetAddrOfLocalVar(PrivateVD); 2320 }); 2321 assert(IsRegistered && "linear var already registered as private"); 2322 // Silence the warning about unused variable. 2323 (void)IsRegistered; 2324 } else { 2325 EmitVarDecl(*PrivateVD); 2326 } 2327 ++CurPrivate; 2328 } 2329 } 2330 } 2331 2332 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2333 const OMPExecutableDirective &D) { 2334 if (!CGF.HaveInsertPoint()) 2335 return; 2336 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2337 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2338 /*ignoreResult=*/true); 2339 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2340 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2341 // In presence of finite 'safelen', it may be unsafe to mark all 2342 // the memory instructions parallel, because loop-carried 2343 // dependences of 'safelen' iterations are possible. 2344 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2345 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2346 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2347 /*ignoreResult=*/true); 2348 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2349 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2350 // In presence of finite 'safelen', it may be unsafe to mark all 2351 // the memory instructions parallel, because loop-carried 2352 // dependences of 'safelen' iterations are possible. 2353 CGF.LoopStack.setParallel(/*Enable=*/false); 2354 } 2355 } 2356 2357 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2358 // Walk clauses and process safelen/lastprivate. 2359 LoopStack.setParallel(/*Enable=*/true); 2360 LoopStack.setVectorizeEnable(); 2361 emitSimdlenSafelenClause(*this, D); 2362 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2363 if (C->getKind() == OMPC_ORDER_concurrent) 2364 LoopStack.setParallel(/*Enable=*/true); 2365 if ((D.getDirectiveKind() == OMPD_simd || 2366 (getLangOpts().OpenMPSimd && 2367 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2368 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2369 [](const OMPReductionClause *C) { 2370 return C->getModifier() == OMPC_REDUCTION_inscan; 2371 })) 2372 // Disable parallel access in case of prefix sum. 2373 LoopStack.setParallel(/*Enable=*/false); 2374 } 2375 2376 void CodeGenFunction::EmitOMPSimdFinal( 2377 const OMPLoopDirective &D, 2378 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2379 if (!HaveInsertPoint()) 2380 return; 2381 llvm::BasicBlock *DoneBB = nullptr; 2382 auto IC = D.counters().begin(); 2383 auto IPC = D.private_counters().begin(); 2384 for (const Expr *F : D.finals()) { 2385 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2386 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2387 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2388 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2389 OrigVD->hasGlobalStorage() || CED) { 2390 if (!DoneBB) { 2391 if (llvm::Value *Cond = CondGen(*this)) { 2392 // If the first post-update expression is found, emit conditional 2393 // block if it was requested. 2394 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2395 DoneBB = createBasicBlock(".omp.final.done"); 2396 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2397 EmitBlock(ThenBB); 2398 } 2399 } 2400 Address OrigAddr = Address::invalid(); 2401 if (CED) { 2402 OrigAddr = 2403 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2404 } else { 2405 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2406 /*RefersToEnclosingVariableOrCapture=*/false, 2407 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2408 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2409 } 2410 OMPPrivateScope VarScope(*this); 2411 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2412 (void)VarScope.Privatize(); 2413 EmitIgnoredExpr(F); 2414 } 2415 ++IC; 2416 ++IPC; 2417 } 2418 if (DoneBB) 2419 EmitBlock(DoneBB, /*IsFinished=*/true); 2420 } 2421 2422 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2423 const OMPLoopDirective &S, 2424 CodeGenFunction::JumpDest LoopExit) { 2425 CGF.EmitOMPLoopBody(S, LoopExit); 2426 CGF.EmitStopPoint(&S); 2427 } 2428 2429 /// Emit a helper variable and return corresponding lvalue. 2430 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2431 const DeclRefExpr *Helper) { 2432 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2433 CGF.EmitVarDecl(*VDecl); 2434 return CGF.EmitLValue(Helper); 2435 } 2436 2437 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2438 const RegionCodeGenTy &SimdInitGen, 2439 const RegionCodeGenTy &BodyCodeGen) { 2440 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2441 PrePostActionTy &) { 2442 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2443 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2444 SimdInitGen(CGF); 2445 2446 BodyCodeGen(CGF); 2447 }; 2448 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2449 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2450 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2451 2452 BodyCodeGen(CGF); 2453 }; 2454 const Expr *IfCond = nullptr; 2455 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2456 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2457 if (CGF.getLangOpts().OpenMP >= 50 && 2458 (C->getNameModifier() == OMPD_unknown || 2459 C->getNameModifier() == OMPD_simd)) { 2460 IfCond = C->getCondition(); 2461 break; 2462 } 2463 } 2464 } 2465 if (IfCond) { 2466 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2467 } else { 2468 RegionCodeGenTy ThenRCG(ThenGen); 2469 ThenRCG(CGF); 2470 } 2471 } 2472 2473 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2474 PrePostActionTy &Action) { 2475 Action.Enter(CGF); 2476 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2477 "Expected simd directive"); 2478 OMPLoopScope PreInitScope(CGF, S); 2479 // if (PreCond) { 2480 // for (IV in 0..LastIteration) BODY; 2481 // <Final counter/linear vars updates>; 2482 // } 2483 // 2484 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2485 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2486 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2487 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2488 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2489 } 2490 2491 // Emit: if (PreCond) - begin. 2492 // If the condition constant folds and can be elided, avoid emitting the 2493 // whole loop. 2494 bool CondConstant; 2495 llvm::BasicBlock *ContBlock = nullptr; 2496 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2497 if (!CondConstant) 2498 return; 2499 } else { 2500 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2501 ContBlock = CGF.createBasicBlock("simd.if.end"); 2502 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2503 CGF.getProfileCount(&S)); 2504 CGF.EmitBlock(ThenBlock); 2505 CGF.incrementProfileCounter(&S); 2506 } 2507 2508 // Emit the loop iteration variable. 2509 const Expr *IVExpr = S.getIterationVariable(); 2510 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2511 CGF.EmitVarDecl(*IVDecl); 2512 CGF.EmitIgnoredExpr(S.getInit()); 2513 2514 // Emit the iterations count variable. 2515 // If it is not a variable, Sema decided to calculate iterations count on 2516 // each iteration (e.g., it is foldable into a constant). 2517 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2518 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2519 // Emit calculation of the iterations count. 2520 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2521 } 2522 2523 emitAlignedClause(CGF, S); 2524 (void)CGF.EmitOMPLinearClauseInit(S); 2525 { 2526 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2527 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2528 CGF.EmitOMPLinearClause(S, LoopScope); 2529 CGF.EmitOMPPrivateClause(S, LoopScope); 2530 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2531 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2532 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2533 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2534 (void)LoopScope.Privatize(); 2535 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2536 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2537 2538 emitCommonSimdLoop( 2539 CGF, S, 2540 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2541 CGF.EmitOMPSimdInit(S); 2542 }, 2543 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2544 CGF.EmitOMPInnerLoop( 2545 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2546 [&S](CodeGenFunction &CGF) { 2547 emitOMPLoopBodyWithStopPoint(CGF, S, 2548 CodeGenFunction::JumpDest()); 2549 }, 2550 [](CodeGenFunction &) {}); 2551 }); 2552 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2553 // Emit final copy of the lastprivate variables at the end of loops. 2554 if (HasLastprivateClause) 2555 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2556 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2557 emitPostUpdateForReductionClause(CGF, S, 2558 [](CodeGenFunction &) { return nullptr; }); 2559 } 2560 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2561 // Emit: if (PreCond) - end. 2562 if (ContBlock) { 2563 CGF.EmitBranch(ContBlock); 2564 CGF.EmitBlock(ContBlock, true); 2565 } 2566 } 2567 2568 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2569 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2570 OMPFirstScanLoop = true; 2571 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2572 emitOMPSimdRegion(CGF, S, Action); 2573 }; 2574 { 2575 auto LPCRegion = 2576 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2577 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2578 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2579 } 2580 // Check for outer lastprivate conditional update. 2581 checkForLastprivateConditionalUpdate(*this, S); 2582 } 2583 2584 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2585 // Emit the de-sugared statement. 2586 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2587 EmitStmt(S.getTransformedStmt()); 2588 } 2589 2590 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2591 // This function is only called if the unrolled loop is not consumed by any 2592 // other loop-associated construct. Such a loop-associated construct will have 2593 // used the transformed AST. 2594 2595 // Set the unroll metadata for the next emitted loop. 2596 LoopStack.setUnrollState(LoopAttributes::Enable); 2597 2598 if (S.hasClausesOfKind<OMPFullClause>()) { 2599 LoopStack.setUnrollState(LoopAttributes::Full); 2600 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2601 if (Expr *FactorExpr = PartialClause->getFactor()) { 2602 uint64_t Factor = 2603 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2604 assert(Factor >= 1 && "Only positive factors are valid"); 2605 LoopStack.setUnrollCount(Factor); 2606 } 2607 } 2608 2609 EmitStmt(S.getAssociatedStmt()); 2610 } 2611 2612 void CodeGenFunction::EmitOMPOuterLoop( 2613 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2614 CodeGenFunction::OMPPrivateScope &LoopScope, 2615 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2616 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2617 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2618 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2619 2620 const Expr *IVExpr = S.getIterationVariable(); 2621 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2622 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2623 2624 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2625 2626 // Start the loop with a block that tests the condition. 2627 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2628 EmitBlock(CondBlock); 2629 const SourceRange R = S.getSourceRange(); 2630 OMPLoopNestStack.clear(); 2631 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2632 SourceLocToDebugLoc(R.getEnd())); 2633 2634 llvm::Value *BoolCondVal = nullptr; 2635 if (!DynamicOrOrdered) { 2636 // UB = min(UB, GlobalUB) or 2637 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2638 // 'distribute parallel for') 2639 EmitIgnoredExpr(LoopArgs.EUB); 2640 // IV = LB 2641 EmitIgnoredExpr(LoopArgs.Init); 2642 // IV < UB 2643 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2644 } else { 2645 BoolCondVal = 2646 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2647 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2648 } 2649 2650 // If there are any cleanups between here and the loop-exit scope, 2651 // create a block to stage a loop exit along. 2652 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2653 if (LoopScope.requiresCleanups()) 2654 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2655 2656 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2657 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2658 if (ExitBlock != LoopExit.getBlock()) { 2659 EmitBlock(ExitBlock); 2660 EmitBranchThroughCleanup(LoopExit); 2661 } 2662 EmitBlock(LoopBody); 2663 2664 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2665 // LB for loop condition and emitted it above). 2666 if (DynamicOrOrdered) 2667 EmitIgnoredExpr(LoopArgs.Init); 2668 2669 // Create a block for the increment. 2670 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2671 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2672 2673 emitCommonSimdLoop( 2674 *this, S, 2675 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2676 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2677 // with dynamic/guided scheduling and without ordered clause. 2678 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2679 CGF.LoopStack.setParallel(!IsMonotonic); 2680 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2681 if (C->getKind() == OMPC_ORDER_concurrent) 2682 CGF.LoopStack.setParallel(/*Enable=*/true); 2683 } else { 2684 CGF.EmitOMPSimdInit(S); 2685 } 2686 }, 2687 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2688 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2689 SourceLocation Loc = S.getBeginLoc(); 2690 // when 'distribute' is not combined with a 'for': 2691 // while (idx <= UB) { BODY; ++idx; } 2692 // when 'distribute' is combined with a 'for' 2693 // (e.g. 'distribute parallel for') 2694 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2695 CGF.EmitOMPInnerLoop( 2696 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2697 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2698 CodeGenLoop(CGF, S, LoopExit); 2699 }, 2700 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2701 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2702 }); 2703 }); 2704 2705 EmitBlock(Continue.getBlock()); 2706 BreakContinueStack.pop_back(); 2707 if (!DynamicOrOrdered) { 2708 // Emit "LB = LB + Stride", "UB = UB + Stride". 2709 EmitIgnoredExpr(LoopArgs.NextLB); 2710 EmitIgnoredExpr(LoopArgs.NextUB); 2711 } 2712 2713 EmitBranch(CondBlock); 2714 OMPLoopNestStack.clear(); 2715 LoopStack.pop(); 2716 // Emit the fall-through block. 2717 EmitBlock(LoopExit.getBlock()); 2718 2719 // Tell the runtime we are done. 2720 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2721 if (!DynamicOrOrdered) 2722 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2723 S.getDirectiveKind()); 2724 }; 2725 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2726 } 2727 2728 void CodeGenFunction::EmitOMPForOuterLoop( 2729 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2730 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2731 const OMPLoopArguments &LoopArgs, 2732 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2733 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2734 2735 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2736 const bool DynamicOrOrdered = 2737 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2738 2739 assert((Ordered || 2740 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2741 LoopArgs.Chunk != nullptr)) && 2742 "static non-chunked schedule does not need outer loop"); 2743 2744 // Emit outer loop. 2745 // 2746 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2747 // When schedule(dynamic,chunk_size) is specified, the iterations are 2748 // distributed to threads in the team in chunks as the threads request them. 2749 // Each thread executes a chunk of iterations, then requests another chunk, 2750 // until no chunks remain to be distributed. Each chunk contains chunk_size 2751 // iterations, except for the last chunk to be distributed, which may have 2752 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2753 // 2754 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2755 // to threads in the team in chunks as the executing threads request them. 2756 // Each thread executes a chunk of iterations, then requests another chunk, 2757 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2758 // each chunk is proportional to the number of unassigned iterations divided 2759 // by the number of threads in the team, decreasing to 1. For a chunk_size 2760 // with value k (greater than 1), the size of each chunk is determined in the 2761 // same way, with the restriction that the chunks do not contain fewer than k 2762 // iterations (except for the last chunk to be assigned, which may have fewer 2763 // than k iterations). 2764 // 2765 // When schedule(auto) is specified, the decision regarding scheduling is 2766 // delegated to the compiler and/or runtime system. The programmer gives the 2767 // implementation the freedom to choose any possible mapping of iterations to 2768 // threads in the team. 2769 // 2770 // When schedule(runtime) is specified, the decision regarding scheduling is 2771 // deferred until run time, and the schedule and chunk size are taken from the 2772 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2773 // implementation defined 2774 // 2775 // while(__kmpc_dispatch_next(&LB, &UB)) { 2776 // idx = LB; 2777 // while (idx <= UB) { BODY; ++idx; 2778 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2779 // } // inner loop 2780 // } 2781 // 2782 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2783 // When schedule(static, chunk_size) is specified, iterations are divided into 2784 // chunks of size chunk_size, and the chunks are assigned to the threads in 2785 // the team in a round-robin fashion in the order of the thread number. 2786 // 2787 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2788 // while (idx <= UB) { BODY; ++idx; } // inner loop 2789 // LB = LB + ST; 2790 // UB = UB + ST; 2791 // } 2792 // 2793 2794 const Expr *IVExpr = S.getIterationVariable(); 2795 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2796 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2797 2798 if (DynamicOrOrdered) { 2799 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2800 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2801 llvm::Value *LBVal = DispatchBounds.first; 2802 llvm::Value *UBVal = DispatchBounds.second; 2803 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2804 LoopArgs.Chunk}; 2805 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2806 IVSigned, Ordered, DipatchRTInputValues); 2807 } else { 2808 CGOpenMPRuntime::StaticRTInput StaticInit( 2809 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2810 LoopArgs.ST, LoopArgs.Chunk); 2811 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2812 ScheduleKind, StaticInit); 2813 } 2814 2815 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2816 const unsigned IVSize, 2817 const bool IVSigned) { 2818 if (Ordered) { 2819 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2820 IVSigned); 2821 } 2822 }; 2823 2824 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2825 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2826 OuterLoopArgs.IncExpr = S.getInc(); 2827 OuterLoopArgs.Init = S.getInit(); 2828 OuterLoopArgs.Cond = S.getCond(); 2829 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2830 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2831 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2832 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2833 } 2834 2835 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2836 const unsigned IVSize, const bool IVSigned) {} 2837 2838 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2839 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2840 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2841 const CodeGenLoopTy &CodeGenLoopContent) { 2842 2843 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2844 2845 // Emit outer loop. 2846 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2847 // dynamic 2848 // 2849 2850 const Expr *IVExpr = S.getIterationVariable(); 2851 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2852 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2853 2854 CGOpenMPRuntime::StaticRTInput StaticInit( 2855 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2856 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2857 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2858 2859 // for combined 'distribute' and 'for' the increment expression of distribute 2860 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2861 Expr *IncExpr; 2862 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2863 IncExpr = S.getDistInc(); 2864 else 2865 IncExpr = S.getInc(); 2866 2867 // this routine is shared by 'omp distribute parallel for' and 2868 // 'omp distribute': select the right EUB expression depending on the 2869 // directive 2870 OMPLoopArguments OuterLoopArgs; 2871 OuterLoopArgs.LB = LoopArgs.LB; 2872 OuterLoopArgs.UB = LoopArgs.UB; 2873 OuterLoopArgs.ST = LoopArgs.ST; 2874 OuterLoopArgs.IL = LoopArgs.IL; 2875 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2876 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2877 ? S.getCombinedEnsureUpperBound() 2878 : S.getEnsureUpperBound(); 2879 OuterLoopArgs.IncExpr = IncExpr; 2880 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2881 ? S.getCombinedInit() 2882 : S.getInit(); 2883 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2884 ? S.getCombinedCond() 2885 : S.getCond(); 2886 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2887 ? S.getCombinedNextLowerBound() 2888 : S.getNextLowerBound(); 2889 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2890 ? S.getCombinedNextUpperBound() 2891 : S.getNextUpperBound(); 2892 2893 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2894 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2895 emitEmptyOrdered); 2896 } 2897 2898 static std::pair<LValue, LValue> 2899 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2900 const OMPExecutableDirective &S) { 2901 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2902 LValue LB = 2903 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2904 LValue UB = 2905 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2906 2907 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2908 // parallel for') we need to use the 'distribute' 2909 // chunk lower and upper bounds rather than the whole loop iteration 2910 // space. These are parameters to the outlined function for 'parallel' 2911 // and we copy the bounds of the previous schedule into the 2912 // the current ones. 2913 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2914 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2915 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2916 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2917 PrevLBVal = CGF.EmitScalarConversion( 2918 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2919 LS.getIterationVariable()->getType(), 2920 LS.getPrevLowerBoundVariable()->getExprLoc()); 2921 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2922 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2923 PrevUBVal = CGF.EmitScalarConversion( 2924 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2925 LS.getIterationVariable()->getType(), 2926 LS.getPrevUpperBoundVariable()->getExprLoc()); 2927 2928 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2929 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2930 2931 return {LB, UB}; 2932 } 2933 2934 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2935 /// we need to use the LB and UB expressions generated by the worksharing 2936 /// code generation support, whereas in non combined situations we would 2937 /// just emit 0 and the LastIteration expression 2938 /// This function is necessary due to the difference of the LB and UB 2939 /// types for the RT emission routines for 'for_static_init' and 2940 /// 'for_dispatch_init' 2941 static std::pair<llvm::Value *, llvm::Value *> 2942 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2943 const OMPExecutableDirective &S, 2944 Address LB, Address UB) { 2945 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2946 const Expr *IVExpr = LS.getIterationVariable(); 2947 // when implementing a dynamic schedule for a 'for' combined with a 2948 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2949 // is not normalized as each team only executes its own assigned 2950 // distribute chunk 2951 QualType IteratorTy = IVExpr->getType(); 2952 llvm::Value *LBVal = 2953 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2954 llvm::Value *UBVal = 2955 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2956 return {LBVal, UBVal}; 2957 } 2958 2959 static void emitDistributeParallelForDistributeInnerBoundParams( 2960 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2961 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2962 const auto &Dir = cast<OMPLoopDirective>(S); 2963 LValue LB = 2964 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2965 llvm::Value *LBCast = 2966 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2967 CGF.SizeTy, /*isSigned=*/false); 2968 CapturedVars.push_back(LBCast); 2969 LValue UB = 2970 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2971 2972 llvm::Value *UBCast = 2973 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2974 CGF.SizeTy, /*isSigned=*/false); 2975 CapturedVars.push_back(UBCast); 2976 } 2977 2978 static void 2979 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2980 const OMPLoopDirective &S, 2981 CodeGenFunction::JumpDest LoopExit) { 2982 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2983 PrePostActionTy &Action) { 2984 Action.Enter(CGF); 2985 bool HasCancel = false; 2986 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2987 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2988 HasCancel = D->hasCancel(); 2989 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2990 HasCancel = D->hasCancel(); 2991 else if (const auto *D = 2992 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2993 HasCancel = D->hasCancel(); 2994 } 2995 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2996 HasCancel); 2997 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2998 emitDistributeParallelForInnerBounds, 2999 emitDistributeParallelForDispatchBounds); 3000 }; 3001 3002 emitCommonOMPParallelDirective( 3003 CGF, S, 3004 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3005 CGInlinedWorksharingLoop, 3006 emitDistributeParallelForDistributeInnerBoundParams); 3007 } 3008 3009 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3010 const OMPDistributeParallelForDirective &S) { 3011 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3012 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3013 S.getDistInc()); 3014 }; 3015 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3016 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3017 } 3018 3019 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3020 const OMPDistributeParallelForSimdDirective &S) { 3021 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3022 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3023 S.getDistInc()); 3024 }; 3025 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3026 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3027 } 3028 3029 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3030 const OMPDistributeSimdDirective &S) { 3031 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3032 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3033 }; 3034 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3035 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3036 } 3037 3038 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3039 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3040 // Emit SPMD target parallel for region as a standalone region. 3041 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3042 emitOMPSimdRegion(CGF, S, Action); 3043 }; 3044 llvm::Function *Fn; 3045 llvm::Constant *Addr; 3046 // Emit target region as a standalone region. 3047 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3048 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3049 assert(Fn && Addr && "Target device function emission failed."); 3050 } 3051 3052 void CodeGenFunction::EmitOMPTargetSimdDirective( 3053 const OMPTargetSimdDirective &S) { 3054 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3055 emitOMPSimdRegion(CGF, S, Action); 3056 }; 3057 emitCommonOMPTargetDirective(*this, S, CodeGen); 3058 } 3059 3060 namespace { 3061 struct ScheduleKindModifiersTy { 3062 OpenMPScheduleClauseKind Kind; 3063 OpenMPScheduleClauseModifier M1; 3064 OpenMPScheduleClauseModifier M2; 3065 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3066 OpenMPScheduleClauseModifier M1, 3067 OpenMPScheduleClauseModifier M2) 3068 : Kind(Kind), M1(M1), M2(M2) {} 3069 }; 3070 } // namespace 3071 3072 bool CodeGenFunction::EmitOMPWorksharingLoop( 3073 const OMPLoopDirective &S, Expr *EUB, 3074 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3075 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3076 // Emit the loop iteration variable. 3077 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3078 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3079 EmitVarDecl(*IVDecl); 3080 3081 // Emit the iterations count variable. 3082 // If it is not a variable, Sema decided to calculate iterations count on each 3083 // iteration (e.g., it is foldable into a constant). 3084 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3085 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3086 // Emit calculation of the iterations count. 3087 EmitIgnoredExpr(S.getCalcLastIteration()); 3088 } 3089 3090 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3091 3092 bool HasLastprivateClause; 3093 // Check pre-condition. 3094 { 3095 OMPLoopScope PreInitScope(*this, S); 3096 // Skip the entire loop if we don't meet the precondition. 3097 // If the condition constant folds and can be elided, avoid emitting the 3098 // whole loop. 3099 bool CondConstant; 3100 llvm::BasicBlock *ContBlock = nullptr; 3101 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3102 if (!CondConstant) 3103 return false; 3104 } else { 3105 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3106 ContBlock = createBasicBlock("omp.precond.end"); 3107 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3108 getProfileCount(&S)); 3109 EmitBlock(ThenBlock); 3110 incrementProfileCounter(&S); 3111 } 3112 3113 RunCleanupsScope DoacrossCleanupScope(*this); 3114 bool Ordered = false; 3115 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3116 if (OrderedClause->getNumForLoops()) 3117 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3118 else 3119 Ordered = true; 3120 } 3121 3122 llvm::DenseSet<const Expr *> EmittedFinals; 3123 emitAlignedClause(*this, S); 3124 bool HasLinears = EmitOMPLinearClauseInit(S); 3125 // Emit helper vars inits. 3126 3127 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3128 LValue LB = Bounds.first; 3129 LValue UB = Bounds.second; 3130 LValue ST = 3131 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3132 LValue IL = 3133 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3134 3135 // Emit 'then' code. 3136 { 3137 OMPPrivateScope LoopScope(*this); 3138 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3139 // Emit implicit barrier to synchronize threads and avoid data races on 3140 // initialization of firstprivate variables and post-update of 3141 // lastprivate variables. 3142 CGM.getOpenMPRuntime().emitBarrierCall( 3143 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3144 /*ForceSimpleCall=*/true); 3145 } 3146 EmitOMPPrivateClause(S, LoopScope); 3147 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3148 *this, S, EmitLValue(S.getIterationVariable())); 3149 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3150 EmitOMPReductionClauseInit(S, LoopScope); 3151 EmitOMPPrivateLoopCounters(S, LoopScope); 3152 EmitOMPLinearClause(S, LoopScope); 3153 (void)LoopScope.Privatize(); 3154 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3155 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3156 3157 // Detect the loop schedule kind and chunk. 3158 const Expr *ChunkExpr = nullptr; 3159 OpenMPScheduleTy ScheduleKind; 3160 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3161 ScheduleKind.Schedule = C->getScheduleKind(); 3162 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3163 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3164 ChunkExpr = C->getChunkSize(); 3165 } else { 3166 // Default behaviour for schedule clause. 3167 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3168 *this, S, ScheduleKind.Schedule, ChunkExpr); 3169 } 3170 bool HasChunkSizeOne = false; 3171 llvm::Value *Chunk = nullptr; 3172 if (ChunkExpr) { 3173 Chunk = EmitScalarExpr(ChunkExpr); 3174 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3175 S.getIterationVariable()->getType(), 3176 S.getBeginLoc()); 3177 Expr::EvalResult Result; 3178 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3179 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3180 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3181 } 3182 } 3183 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3184 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3185 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3186 // If the static schedule kind is specified or if the ordered clause is 3187 // specified, and if no monotonic modifier is specified, the effect will 3188 // be as if the monotonic modifier was specified. 3189 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 3190 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 3191 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3192 bool IsMonotonic = 3193 Ordered || 3194 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3195 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3196 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3197 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3198 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3199 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3200 /* Chunked */ Chunk != nullptr) || 3201 StaticChunkedOne) && 3202 !Ordered) { 3203 JumpDest LoopExit = 3204 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3205 emitCommonSimdLoop( 3206 *this, S, 3207 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3208 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3209 CGF.EmitOMPSimdInit(S); 3210 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3211 if (C->getKind() == OMPC_ORDER_concurrent) 3212 CGF.LoopStack.setParallel(/*Enable=*/true); 3213 } 3214 }, 3215 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3216 &S, ScheduleKind, LoopExit, 3217 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3218 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3219 // When no chunk_size is specified, the iteration space is divided 3220 // into chunks that are approximately equal in size, and at most 3221 // one chunk is distributed to each thread. Note that the size of 3222 // the chunks is unspecified in this case. 3223 CGOpenMPRuntime::StaticRTInput StaticInit( 3224 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3225 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3226 StaticChunkedOne ? Chunk : nullptr); 3227 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3228 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3229 StaticInit); 3230 // UB = min(UB, GlobalUB); 3231 if (!StaticChunkedOne) 3232 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3233 // IV = LB; 3234 CGF.EmitIgnoredExpr(S.getInit()); 3235 // For unchunked static schedule generate: 3236 // 3237 // while (idx <= UB) { 3238 // BODY; 3239 // ++idx; 3240 // } 3241 // 3242 // For static schedule with chunk one: 3243 // 3244 // while (IV <= PrevUB) { 3245 // BODY; 3246 // IV += ST; 3247 // } 3248 CGF.EmitOMPInnerLoop( 3249 S, LoopScope.requiresCleanups(), 3250 StaticChunkedOne ? S.getCombinedParForInDistCond() 3251 : S.getCond(), 3252 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3253 [&S, LoopExit](CodeGenFunction &CGF) { 3254 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3255 }, 3256 [](CodeGenFunction &) {}); 3257 }); 3258 EmitBlock(LoopExit.getBlock()); 3259 // Tell the runtime we are done. 3260 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3261 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3262 S.getDirectiveKind()); 3263 }; 3264 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3265 } else { 3266 // Emit the outer loop, which requests its work chunk [LB..UB] from 3267 // runtime and runs the inner loop to process it. 3268 const OMPLoopArguments LoopArguments( 3269 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3270 IL.getAddress(*this), Chunk, EUB); 3271 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3272 LoopArguments, CGDispatchBounds); 3273 } 3274 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3275 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3276 return CGF.Builder.CreateIsNotNull( 3277 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3278 }); 3279 } 3280 EmitOMPReductionClauseFinal( 3281 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3282 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3283 : /*Parallel only*/ OMPD_parallel); 3284 // Emit post-update of the reduction variables if IsLastIter != 0. 3285 emitPostUpdateForReductionClause( 3286 *this, S, [IL, &S](CodeGenFunction &CGF) { 3287 return CGF.Builder.CreateIsNotNull( 3288 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3289 }); 3290 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3291 if (HasLastprivateClause) 3292 EmitOMPLastprivateClauseFinal( 3293 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3294 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3295 } 3296 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3297 return CGF.Builder.CreateIsNotNull( 3298 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3299 }); 3300 DoacrossCleanupScope.ForceCleanup(); 3301 // We're now done with the loop, so jump to the continuation block. 3302 if (ContBlock) { 3303 EmitBranch(ContBlock); 3304 EmitBlock(ContBlock, /*IsFinished=*/true); 3305 } 3306 } 3307 return HasLastprivateClause; 3308 } 3309 3310 /// The following two functions generate expressions for the loop lower 3311 /// and upper bounds in case of static and dynamic (dispatch) schedule 3312 /// of the associated 'for' or 'distribute' loop. 3313 static std::pair<LValue, LValue> 3314 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3315 const auto &LS = cast<OMPLoopDirective>(S); 3316 LValue LB = 3317 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3318 LValue UB = 3319 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3320 return {LB, UB}; 3321 } 3322 3323 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3324 /// consider the lower and upper bound expressions generated by the 3325 /// worksharing loop support, but we use 0 and the iteration space size as 3326 /// constants 3327 static std::pair<llvm::Value *, llvm::Value *> 3328 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3329 Address LB, Address UB) { 3330 const auto &LS = cast<OMPLoopDirective>(S); 3331 const Expr *IVExpr = LS.getIterationVariable(); 3332 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3333 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3334 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3335 return {LBVal, UBVal}; 3336 } 3337 3338 /// Emits internal temp array declarations for the directive with inscan 3339 /// reductions. 3340 /// The code is the following: 3341 /// \code 3342 /// size num_iters = <num_iters>; 3343 /// <type> buffer[num_iters]; 3344 /// \endcode 3345 static void emitScanBasedDirectiveDecls( 3346 CodeGenFunction &CGF, const OMPLoopDirective &S, 3347 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3348 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3349 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3350 SmallVector<const Expr *, 4> Shareds; 3351 SmallVector<const Expr *, 4> Privates; 3352 SmallVector<const Expr *, 4> ReductionOps; 3353 SmallVector<const Expr *, 4> CopyArrayTemps; 3354 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3355 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3356 "Only inscan reductions are expected."); 3357 Shareds.append(C->varlist_begin(), C->varlist_end()); 3358 Privates.append(C->privates().begin(), C->privates().end()); 3359 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3360 CopyArrayTemps.append(C->copy_array_temps().begin(), 3361 C->copy_array_temps().end()); 3362 } 3363 { 3364 // Emit buffers for each reduction variables. 3365 // ReductionCodeGen is required to emit correctly the code for array 3366 // reductions. 3367 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3368 unsigned Count = 0; 3369 auto *ITA = CopyArrayTemps.begin(); 3370 for (const Expr *IRef : Privates) { 3371 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3372 // Emit variably modified arrays, used for arrays/array sections 3373 // reductions. 3374 if (PrivateVD->getType()->isVariablyModifiedType()) { 3375 RedCG.emitSharedOrigLValue(CGF, Count); 3376 RedCG.emitAggregateType(CGF, Count); 3377 } 3378 CodeGenFunction::OpaqueValueMapping DimMapping( 3379 CGF, 3380 cast<OpaqueValueExpr>( 3381 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3382 ->getSizeExpr()), 3383 RValue::get(OMPScanNumIterations)); 3384 // Emit temp buffer. 3385 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3386 ++ITA; 3387 ++Count; 3388 } 3389 } 3390 } 3391 3392 /// Emits the code for the directive with inscan reductions. 3393 /// The code is the following: 3394 /// \code 3395 /// #pragma omp ... 3396 /// for (i: 0..<num_iters>) { 3397 /// <input phase>; 3398 /// buffer[i] = red; 3399 /// } 3400 /// #pragma omp master // in parallel region 3401 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3402 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3403 /// buffer[i] op= buffer[i-pow(2,k)]; 3404 /// #pragma omp barrier // in parallel region 3405 /// #pragma omp ... 3406 /// for (0..<num_iters>) { 3407 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3408 /// <scan phase>; 3409 /// } 3410 /// \endcode 3411 static void emitScanBasedDirective( 3412 CodeGenFunction &CGF, const OMPLoopDirective &S, 3413 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3414 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3415 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3416 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3417 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3418 SmallVector<const Expr *, 4> Privates; 3419 SmallVector<const Expr *, 4> ReductionOps; 3420 SmallVector<const Expr *, 4> LHSs; 3421 SmallVector<const Expr *, 4> RHSs; 3422 SmallVector<const Expr *, 4> CopyArrayElems; 3423 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3424 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3425 "Only inscan reductions are expected."); 3426 Privates.append(C->privates().begin(), C->privates().end()); 3427 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3428 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3429 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3430 CopyArrayElems.append(C->copy_array_elems().begin(), 3431 C->copy_array_elems().end()); 3432 } 3433 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3434 { 3435 // Emit loop with input phase: 3436 // #pragma omp ... 3437 // for (i: 0..<num_iters>) { 3438 // <input phase>; 3439 // buffer[i] = red; 3440 // } 3441 CGF.OMPFirstScanLoop = true; 3442 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3443 FirstGen(CGF); 3444 } 3445 // #pragma omp barrier // in parallel region 3446 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3447 &ReductionOps, 3448 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3449 Action.Enter(CGF); 3450 // Emit prefix reduction: 3451 // #pragma omp master // in parallel region 3452 // for (int k = 0; k <= ceil(log2(n)); ++k) 3453 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3454 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3455 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3456 llvm::Function *F = 3457 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3458 llvm::Value *Arg = 3459 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3460 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3461 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3462 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3463 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3464 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3465 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3466 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3467 CGF.EmitBlock(LoopBB); 3468 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3469 // size pow2k = 1; 3470 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3471 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3472 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3473 // for (size i = n - 1; i >= 2 ^ k; --i) 3474 // tmp[i] op= tmp[i-pow2k]; 3475 llvm::BasicBlock *InnerLoopBB = 3476 CGF.createBasicBlock("omp.inner.log.scan.body"); 3477 llvm::BasicBlock *InnerExitBB = 3478 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3479 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3480 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3481 CGF.EmitBlock(InnerLoopBB); 3482 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3483 IVal->addIncoming(NMin1, LoopBB); 3484 { 3485 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3486 auto *ILHS = LHSs.begin(); 3487 auto *IRHS = RHSs.begin(); 3488 for (const Expr *CopyArrayElem : CopyArrayElems) { 3489 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3490 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3491 Address LHSAddr = Address::invalid(); 3492 { 3493 CodeGenFunction::OpaqueValueMapping IdxMapping( 3494 CGF, 3495 cast<OpaqueValueExpr>( 3496 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3497 RValue::get(IVal)); 3498 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3499 } 3500 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3501 Address RHSAddr = Address::invalid(); 3502 { 3503 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3504 CodeGenFunction::OpaqueValueMapping IdxMapping( 3505 CGF, 3506 cast<OpaqueValueExpr>( 3507 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3508 RValue::get(OffsetIVal)); 3509 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3510 } 3511 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3512 ++ILHS; 3513 ++IRHS; 3514 } 3515 PrivScope.Privatize(); 3516 CGF.CGM.getOpenMPRuntime().emitReduction( 3517 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3518 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3519 } 3520 llvm::Value *NextIVal = 3521 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3522 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3523 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3524 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3525 CGF.EmitBlock(InnerExitBB); 3526 llvm::Value *Next = 3527 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3528 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3529 // pow2k <<= 1; 3530 llvm::Value *NextPow2K = 3531 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3532 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3533 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3534 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3535 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3536 CGF.EmitBlock(ExitBB); 3537 }; 3538 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3539 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3540 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3541 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3542 /*ForceSimpleCall=*/true); 3543 } else { 3544 RegionCodeGenTy RCG(CodeGen); 3545 RCG(CGF); 3546 } 3547 3548 CGF.OMPFirstScanLoop = false; 3549 SecondGen(CGF); 3550 } 3551 3552 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3553 const OMPLoopDirective &S, 3554 bool HasCancel) { 3555 bool HasLastprivates; 3556 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3557 [](const OMPReductionClause *C) { 3558 return C->getModifier() == OMPC_REDUCTION_inscan; 3559 })) { 3560 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3561 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3562 OMPLoopScope LoopScope(CGF, S); 3563 return CGF.EmitScalarExpr(S.getNumIterations()); 3564 }; 3565 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3566 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3567 CGF, S.getDirectiveKind(), HasCancel); 3568 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3569 emitForLoopBounds, 3570 emitDispatchForLoopBounds); 3571 // Emit an implicit barrier at the end. 3572 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3573 OMPD_for); 3574 }; 3575 const auto &&SecondGen = [&S, HasCancel, 3576 &HasLastprivates](CodeGenFunction &CGF) { 3577 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3578 CGF, S.getDirectiveKind(), HasCancel); 3579 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3580 emitForLoopBounds, 3581 emitDispatchForLoopBounds); 3582 }; 3583 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3584 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3585 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3586 } else { 3587 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3588 HasCancel); 3589 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3590 emitForLoopBounds, 3591 emitDispatchForLoopBounds); 3592 } 3593 return HasLastprivates; 3594 } 3595 3596 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3597 if (S.hasCancel()) 3598 return false; 3599 for (OMPClause *C : S.clauses()) 3600 if (!isa<OMPNowaitClause>(C)) 3601 return false; 3602 3603 return true; 3604 } 3605 3606 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3607 bool HasLastprivates = false; 3608 bool UseOMPIRBuilder = 3609 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3610 auto &&CodeGen = [this, &S, &HasLastprivates, 3611 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3612 // Use the OpenMPIRBuilder if enabled. 3613 if (UseOMPIRBuilder) { 3614 // Emit the associated statement and get its loop representation. 3615 const Stmt *Inner = S.getRawStmt(); 3616 llvm::CanonicalLoopInfo *CLI = 3617 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3618 3619 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3620 llvm::OpenMPIRBuilder &OMPBuilder = 3621 CGM.getOpenMPRuntime().getOMPBuilder(); 3622 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3623 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3624 OMPBuilder.applyWorkshareLoop(Builder.getCurrentDebugLocation(), CLI, 3625 AllocaIP, NeedsBarrier); 3626 return; 3627 } 3628 3629 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3630 }; 3631 { 3632 auto LPCRegion = 3633 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3634 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3635 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3636 S.hasCancel()); 3637 } 3638 3639 if (!UseOMPIRBuilder) { 3640 // Emit an implicit barrier at the end. 3641 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3642 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3643 } 3644 // Check for outer lastprivate conditional update. 3645 checkForLastprivateConditionalUpdate(*this, S); 3646 } 3647 3648 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3649 bool HasLastprivates = false; 3650 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3651 PrePostActionTy &) { 3652 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3653 }; 3654 { 3655 auto LPCRegion = 3656 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3657 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3658 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3659 } 3660 3661 // Emit an implicit barrier at the end. 3662 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3663 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3664 // Check for outer lastprivate conditional update. 3665 checkForLastprivateConditionalUpdate(*this, S); 3666 } 3667 3668 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3669 const Twine &Name, 3670 llvm::Value *Init = nullptr) { 3671 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3672 if (Init) 3673 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3674 return LVal; 3675 } 3676 3677 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3678 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3679 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3680 bool HasLastprivates = false; 3681 auto &&CodeGen = [&S, CapturedStmt, CS, 3682 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3683 const ASTContext &C = CGF.getContext(); 3684 QualType KmpInt32Ty = 3685 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3686 // Emit helper vars inits. 3687 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3688 CGF.Builder.getInt32(0)); 3689 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3690 ? CGF.Builder.getInt32(CS->size() - 1) 3691 : CGF.Builder.getInt32(0); 3692 LValue UB = 3693 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3694 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3695 CGF.Builder.getInt32(1)); 3696 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3697 CGF.Builder.getInt32(0)); 3698 // Loop counter. 3699 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3700 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3701 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3702 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3703 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3704 // Generate condition for loop. 3705 BinaryOperator *Cond = BinaryOperator::Create( 3706 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 3707 S.getBeginLoc(), FPOptionsOverride()); 3708 // Increment for loop counter. 3709 UnaryOperator *Inc = UnaryOperator::Create( 3710 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 3711 S.getBeginLoc(), true, FPOptionsOverride()); 3712 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3713 // Iterate through all sections and emit a switch construct: 3714 // switch (IV) { 3715 // case 0: 3716 // <SectionStmt[0]>; 3717 // break; 3718 // ... 3719 // case <NumSection> - 1: 3720 // <SectionStmt[<NumSection> - 1]>; 3721 // break; 3722 // } 3723 // .omp.sections.exit: 3724 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3725 llvm::SwitchInst *SwitchStmt = 3726 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3727 ExitBB, CS == nullptr ? 1 : CS->size()); 3728 if (CS) { 3729 unsigned CaseNumber = 0; 3730 for (const Stmt *SubStmt : CS->children()) { 3731 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3732 CGF.EmitBlock(CaseBB); 3733 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3734 CGF.EmitStmt(SubStmt); 3735 CGF.EmitBranch(ExitBB); 3736 ++CaseNumber; 3737 } 3738 } else { 3739 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3740 CGF.EmitBlock(CaseBB); 3741 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3742 CGF.EmitStmt(CapturedStmt); 3743 CGF.EmitBranch(ExitBB); 3744 } 3745 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3746 }; 3747 3748 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3749 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3750 // Emit implicit barrier to synchronize threads and avoid data races on 3751 // initialization of firstprivate variables and post-update of lastprivate 3752 // variables. 3753 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3754 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3755 /*ForceSimpleCall=*/true); 3756 } 3757 CGF.EmitOMPPrivateClause(S, LoopScope); 3758 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3759 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3760 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3761 (void)LoopScope.Privatize(); 3762 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3763 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3764 3765 // Emit static non-chunked loop. 3766 OpenMPScheduleTy ScheduleKind; 3767 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3768 CGOpenMPRuntime::StaticRTInput StaticInit( 3769 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3770 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3771 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3772 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3773 // UB = min(UB, GlobalUB); 3774 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3775 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3776 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3777 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3778 // IV = LB; 3779 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3780 // while (idx <= UB) { BODY; ++idx; } 3781 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3782 [](CodeGenFunction &) {}); 3783 // Tell the runtime we are done. 3784 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3785 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3786 S.getDirectiveKind()); 3787 }; 3788 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3789 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3790 // Emit post-update of the reduction variables if IsLastIter != 0. 3791 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3792 return CGF.Builder.CreateIsNotNull( 3793 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3794 }); 3795 3796 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3797 if (HasLastprivates) 3798 CGF.EmitOMPLastprivateClauseFinal( 3799 S, /*NoFinals=*/false, 3800 CGF.Builder.CreateIsNotNull( 3801 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3802 }; 3803 3804 bool HasCancel = false; 3805 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3806 HasCancel = OSD->hasCancel(); 3807 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3808 HasCancel = OPSD->hasCancel(); 3809 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3810 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3811 HasCancel); 3812 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3813 // clause. Otherwise the barrier will be generated by the codegen for the 3814 // directive. 3815 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3816 // Emit implicit barrier to synchronize threads and avoid data races on 3817 // initialization of firstprivate variables. 3818 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3819 OMPD_unknown); 3820 } 3821 } 3822 3823 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3824 if (CGM.getLangOpts().OpenMPIRBuilder) { 3825 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3826 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3827 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 3828 3829 auto FiniCB = [this](InsertPointTy IP) { 3830 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3831 }; 3832 3833 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 3834 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3835 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3836 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 3837 if (CS) { 3838 for (const Stmt *SubStmt : CS->children()) { 3839 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 3840 InsertPointTy CodeGenIP, 3841 llvm::BasicBlock &FiniBB) { 3842 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 3843 FiniBB); 3844 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP, 3845 FiniBB); 3846 }; 3847 SectionCBVector.push_back(SectionCB); 3848 } 3849 } else { 3850 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 3851 InsertPointTy CodeGenIP, 3852 llvm::BasicBlock &FiniBB) { 3853 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3854 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP, 3855 FiniBB); 3856 }; 3857 SectionCBVector.push_back(SectionCB); 3858 } 3859 3860 // Privatization callback that performs appropriate action for 3861 // shared/private/firstprivate/lastprivate/copyin/... variables. 3862 // 3863 // TODO: This defaults to shared right now. 3864 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 3865 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 3866 // The next line is appropriate only for variables (Val) with the 3867 // data-sharing attribute "shared". 3868 ReplVal = &Val; 3869 3870 return CodeGenIP; 3871 }; 3872 3873 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 3874 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3875 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3876 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3877 Builder.restoreIP(OMPBuilder.createSections( 3878 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 3879 S.getSingleClause<OMPNowaitClause>())); 3880 return; 3881 } 3882 { 3883 auto LPCRegion = 3884 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3885 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3886 EmitSections(S); 3887 } 3888 // Emit an implicit barrier at the end. 3889 if (!S.getSingleClause<OMPNowaitClause>()) { 3890 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3891 OMPD_sections); 3892 } 3893 // Check for outer lastprivate conditional update. 3894 checkForLastprivateConditionalUpdate(*this, S); 3895 } 3896 3897 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3898 if (CGM.getLangOpts().OpenMPIRBuilder) { 3899 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3900 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3901 3902 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 3903 auto FiniCB = [this](InsertPointTy IP) { 3904 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3905 }; 3906 3907 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 3908 InsertPointTy CodeGenIP, 3909 llvm::BasicBlock &FiniBB) { 3910 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3911 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt, 3912 CodeGenIP, FiniBB); 3913 }; 3914 3915 LexicalScope Scope(*this, S.getSourceRange()); 3916 EmitStopPoint(&S); 3917 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 3918 3919 return; 3920 } 3921 LexicalScope Scope(*this, S.getSourceRange()); 3922 EmitStopPoint(&S); 3923 EmitStmt(S.getAssociatedStmt()); 3924 } 3925 3926 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3927 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3928 llvm::SmallVector<const Expr *, 8> DestExprs; 3929 llvm::SmallVector<const Expr *, 8> SrcExprs; 3930 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3931 // Check if there are any 'copyprivate' clauses associated with this 3932 // 'single' construct. 3933 // Build a list of copyprivate variables along with helper expressions 3934 // (<source>, <destination>, <destination>=<source> expressions) 3935 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3936 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3937 DestExprs.append(C->destination_exprs().begin(), 3938 C->destination_exprs().end()); 3939 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3940 AssignmentOps.append(C->assignment_ops().begin(), 3941 C->assignment_ops().end()); 3942 } 3943 // Emit code for 'single' region along with 'copyprivate' clauses 3944 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3945 Action.Enter(CGF); 3946 OMPPrivateScope SingleScope(CGF); 3947 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3948 CGF.EmitOMPPrivateClause(S, SingleScope); 3949 (void)SingleScope.Privatize(); 3950 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3951 }; 3952 { 3953 auto LPCRegion = 3954 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3955 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3956 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3957 CopyprivateVars, DestExprs, 3958 SrcExprs, AssignmentOps); 3959 } 3960 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3961 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3962 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3963 CGM.getOpenMPRuntime().emitBarrierCall( 3964 *this, S.getBeginLoc(), 3965 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3966 } 3967 // Check for outer lastprivate conditional update. 3968 checkForLastprivateConditionalUpdate(*this, S); 3969 } 3970 3971 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3972 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3973 Action.Enter(CGF); 3974 CGF.EmitStmt(S.getRawStmt()); 3975 }; 3976 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3977 } 3978 3979 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3980 if (CGM.getLangOpts().OpenMPIRBuilder) { 3981 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3982 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3983 3984 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 3985 3986 auto FiniCB = [this](InsertPointTy IP) { 3987 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3988 }; 3989 3990 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 3991 InsertPointTy CodeGenIP, 3992 llvm::BasicBlock &FiniBB) { 3993 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3994 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 3995 CodeGenIP, FiniBB); 3996 }; 3997 3998 LexicalScope Scope(*this, S.getSourceRange()); 3999 EmitStopPoint(&S); 4000 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4001 4002 return; 4003 } 4004 LexicalScope Scope(*this, S.getSourceRange()); 4005 EmitStopPoint(&S); 4006 emitMaster(*this, S); 4007 } 4008 4009 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4010 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4011 Action.Enter(CGF); 4012 CGF.EmitStmt(S.getRawStmt()); 4013 }; 4014 Expr *Filter = nullptr; 4015 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4016 Filter = FilterClause->getThreadID(); 4017 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4018 Filter); 4019 } 4020 4021 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4022 if (CGM.getLangOpts().OpenMPIRBuilder) { 4023 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4024 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4025 4026 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4027 const Expr *Filter = nullptr; 4028 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4029 Filter = FilterClause->getThreadID(); 4030 llvm::Value *FilterVal = Filter 4031 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4032 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4033 4034 auto FiniCB = [this](InsertPointTy IP) { 4035 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4036 }; 4037 4038 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4039 InsertPointTy CodeGenIP, 4040 llvm::BasicBlock &FiniBB) { 4041 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4042 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt, 4043 CodeGenIP, FiniBB); 4044 }; 4045 4046 LexicalScope Scope(*this, S.getSourceRange()); 4047 EmitStopPoint(&S); 4048 Builder.restoreIP( 4049 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4050 4051 return; 4052 } 4053 LexicalScope Scope(*this, S.getSourceRange()); 4054 EmitStopPoint(&S); 4055 emitMasked(*this, S); 4056 } 4057 4058 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4059 if (CGM.getLangOpts().OpenMPIRBuilder) { 4060 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4061 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4062 4063 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4064 const Expr *Hint = nullptr; 4065 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4066 Hint = HintClause->getHint(); 4067 4068 // TODO: This is slightly different from what's currently being done in 4069 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4070 // about typing is final. 4071 llvm::Value *HintInst = nullptr; 4072 if (Hint) 4073 HintInst = 4074 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4075 4076 auto FiniCB = [this](InsertPointTy IP) { 4077 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4078 }; 4079 4080 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4081 InsertPointTy CodeGenIP, 4082 llvm::BasicBlock &FiniBB) { 4083 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4084 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 4085 CodeGenIP, FiniBB); 4086 }; 4087 4088 LexicalScope Scope(*this, S.getSourceRange()); 4089 EmitStopPoint(&S); 4090 Builder.restoreIP(OMPBuilder.createCritical( 4091 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4092 HintInst)); 4093 4094 return; 4095 } 4096 4097 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4098 Action.Enter(CGF); 4099 CGF.EmitStmt(S.getAssociatedStmt()); 4100 }; 4101 const Expr *Hint = nullptr; 4102 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4103 Hint = HintClause->getHint(); 4104 LexicalScope Scope(*this, S.getSourceRange()); 4105 EmitStopPoint(&S); 4106 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4107 S.getDirectiveName().getAsString(), 4108 CodeGen, S.getBeginLoc(), Hint); 4109 } 4110 4111 void CodeGenFunction::EmitOMPParallelForDirective( 4112 const OMPParallelForDirective &S) { 4113 // Emit directive as a combined directive that consists of two implicit 4114 // directives: 'parallel' with 'for' directive. 4115 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4116 Action.Enter(CGF); 4117 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4118 }; 4119 { 4120 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4121 [](const OMPReductionClause *C) { 4122 return C->getModifier() == OMPC_REDUCTION_inscan; 4123 })) { 4124 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4125 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4126 CGCapturedStmtInfo CGSI(CR_OpenMP); 4127 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4128 OMPLoopScope LoopScope(CGF, S); 4129 return CGF.EmitScalarExpr(S.getNumIterations()); 4130 }; 4131 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4132 } 4133 auto LPCRegion = 4134 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4135 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4136 emitEmptyBoundParameters); 4137 } 4138 // Check for outer lastprivate conditional update. 4139 checkForLastprivateConditionalUpdate(*this, S); 4140 } 4141 4142 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4143 const OMPParallelForSimdDirective &S) { 4144 // Emit directive as a combined directive that consists of two implicit 4145 // directives: 'parallel' with 'for' directive. 4146 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4147 Action.Enter(CGF); 4148 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4149 }; 4150 { 4151 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4152 [](const OMPReductionClause *C) { 4153 return C->getModifier() == OMPC_REDUCTION_inscan; 4154 })) { 4155 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4156 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4157 CGCapturedStmtInfo CGSI(CR_OpenMP); 4158 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4159 OMPLoopScope LoopScope(CGF, S); 4160 return CGF.EmitScalarExpr(S.getNumIterations()); 4161 }; 4162 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4163 } 4164 auto LPCRegion = 4165 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4166 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4167 emitEmptyBoundParameters); 4168 } 4169 // Check for outer lastprivate conditional update. 4170 checkForLastprivateConditionalUpdate(*this, S); 4171 } 4172 4173 void CodeGenFunction::EmitOMPParallelMasterDirective( 4174 const OMPParallelMasterDirective &S) { 4175 // Emit directive as a combined directive that consists of two implicit 4176 // directives: 'parallel' with 'master' directive. 4177 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4178 Action.Enter(CGF); 4179 OMPPrivateScope PrivateScope(CGF); 4180 bool Copyins = CGF.EmitOMPCopyinClause(S); 4181 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4182 if (Copyins) { 4183 // Emit implicit barrier to synchronize threads and avoid data races on 4184 // propagation master's thread values of threadprivate variables to local 4185 // instances of that variables of all other implicit threads. 4186 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4187 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4188 /*ForceSimpleCall=*/true); 4189 } 4190 CGF.EmitOMPPrivateClause(S, PrivateScope); 4191 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4192 (void)PrivateScope.Privatize(); 4193 emitMaster(CGF, S); 4194 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4195 }; 4196 { 4197 auto LPCRegion = 4198 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4199 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4200 emitEmptyBoundParameters); 4201 emitPostUpdateForReductionClause(*this, S, 4202 [](CodeGenFunction &) { return nullptr; }); 4203 } 4204 // Check for outer lastprivate conditional update. 4205 checkForLastprivateConditionalUpdate(*this, S); 4206 } 4207 4208 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4209 const OMPParallelSectionsDirective &S) { 4210 // Emit directive as a combined directive that consists of two implicit 4211 // directives: 'parallel' with 'sections' directive. 4212 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4213 Action.Enter(CGF); 4214 CGF.EmitSections(S); 4215 }; 4216 { 4217 auto LPCRegion = 4218 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4219 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4220 emitEmptyBoundParameters); 4221 } 4222 // Check for outer lastprivate conditional update. 4223 checkForLastprivateConditionalUpdate(*this, S); 4224 } 4225 4226 namespace { 4227 /// Get the list of variables declared in the context of the untied tasks. 4228 class CheckVarsEscapingUntiedTaskDeclContext final 4229 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4230 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4231 4232 public: 4233 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4234 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4235 void VisitDeclStmt(const DeclStmt *S) { 4236 if (!S) 4237 return; 4238 // Need to privatize only local vars, static locals can be processed as is. 4239 for (const Decl *D : S->decls()) { 4240 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4241 if (VD->hasLocalStorage()) 4242 PrivateDecls.push_back(VD); 4243 } 4244 } 4245 void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; } 4246 void VisitCapturedStmt(const CapturedStmt *) { return; } 4247 void VisitLambdaExpr(const LambdaExpr *) { return; } 4248 void VisitBlockExpr(const BlockExpr *) { return; } 4249 void VisitStmt(const Stmt *S) { 4250 if (!S) 4251 return; 4252 for (const Stmt *Child : S->children()) 4253 if (Child) 4254 Visit(Child); 4255 } 4256 4257 /// Swaps list of vars with the provided one. 4258 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4259 }; 4260 } // anonymous namespace 4261 4262 void CodeGenFunction::EmitOMPTaskBasedDirective( 4263 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4264 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4265 OMPTaskDataTy &Data) { 4266 // Emit outlined function for task construct. 4267 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4268 auto I = CS->getCapturedDecl()->param_begin(); 4269 auto PartId = std::next(I); 4270 auto TaskT = std::next(I, 4); 4271 // Check if the task is final 4272 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4273 // If the condition constant folds and can be elided, try to avoid emitting 4274 // the condition and the dead arm of the if/else. 4275 const Expr *Cond = Clause->getCondition(); 4276 bool CondConstant; 4277 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4278 Data.Final.setInt(CondConstant); 4279 else 4280 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4281 } else { 4282 // By default the task is not final. 4283 Data.Final.setInt(/*IntVal=*/false); 4284 } 4285 // Check if the task has 'priority' clause. 4286 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4287 const Expr *Prio = Clause->getPriority(); 4288 Data.Priority.setInt(/*IntVal=*/true); 4289 Data.Priority.setPointer(EmitScalarConversion( 4290 EmitScalarExpr(Prio), Prio->getType(), 4291 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4292 Prio->getExprLoc())); 4293 } 4294 // The first function argument for tasks is a thread id, the second one is a 4295 // part id (0 for tied tasks, >=0 for untied task). 4296 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4297 // Get list of private variables. 4298 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4299 auto IRef = C->varlist_begin(); 4300 for (const Expr *IInit : C->private_copies()) { 4301 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4302 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4303 Data.PrivateVars.push_back(*IRef); 4304 Data.PrivateCopies.push_back(IInit); 4305 } 4306 ++IRef; 4307 } 4308 } 4309 EmittedAsPrivate.clear(); 4310 // Get list of firstprivate variables. 4311 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4312 auto IRef = C->varlist_begin(); 4313 auto IElemInitRef = C->inits().begin(); 4314 for (const Expr *IInit : C->private_copies()) { 4315 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4316 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4317 Data.FirstprivateVars.push_back(*IRef); 4318 Data.FirstprivateCopies.push_back(IInit); 4319 Data.FirstprivateInits.push_back(*IElemInitRef); 4320 } 4321 ++IRef; 4322 ++IElemInitRef; 4323 } 4324 } 4325 // Get list of lastprivate variables (for taskloops). 4326 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4327 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4328 auto IRef = C->varlist_begin(); 4329 auto ID = C->destination_exprs().begin(); 4330 for (const Expr *IInit : C->private_copies()) { 4331 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4332 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4333 Data.LastprivateVars.push_back(*IRef); 4334 Data.LastprivateCopies.push_back(IInit); 4335 } 4336 LastprivateDstsOrigs.insert( 4337 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4338 cast<DeclRefExpr>(*IRef))); 4339 ++IRef; 4340 ++ID; 4341 } 4342 } 4343 SmallVector<const Expr *, 4> LHSs; 4344 SmallVector<const Expr *, 4> RHSs; 4345 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4346 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4347 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4348 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4349 Data.ReductionOps.append(C->reduction_ops().begin(), 4350 C->reduction_ops().end()); 4351 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4352 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4353 } 4354 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4355 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4356 // Build list of dependences. 4357 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4358 OMPTaskDataTy::DependData &DD = 4359 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4360 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4361 } 4362 // Get list of local vars for untied tasks. 4363 if (!Data.Tied) { 4364 CheckVarsEscapingUntiedTaskDeclContext Checker; 4365 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4366 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4367 Checker.getPrivateDecls().end()); 4368 } 4369 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4370 CapturedRegion](CodeGenFunction &CGF, 4371 PrePostActionTy &Action) { 4372 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4373 std::pair<Address, Address>> 4374 UntiedLocalVars; 4375 // Set proper addresses for generated private copies. 4376 OMPPrivateScope Scope(CGF); 4377 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4378 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4379 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4380 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4381 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4382 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4383 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4384 CS->getCapturedDecl()->getParam(PrivatesParam))); 4385 // Map privates. 4386 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4387 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4388 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4389 CallArgs.push_back(PrivatesPtr); 4390 ParamTypes.push_back(PrivatesPtr->getType()); 4391 for (const Expr *E : Data.PrivateVars) { 4392 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4393 Address PrivatePtr = CGF.CreateMemTemp( 4394 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4395 PrivatePtrs.emplace_back(VD, PrivatePtr); 4396 CallArgs.push_back(PrivatePtr.getPointer()); 4397 ParamTypes.push_back(PrivatePtr.getType()); 4398 } 4399 for (const Expr *E : Data.FirstprivateVars) { 4400 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4401 Address PrivatePtr = 4402 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4403 ".firstpriv.ptr.addr"); 4404 PrivatePtrs.emplace_back(VD, PrivatePtr); 4405 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4406 CallArgs.push_back(PrivatePtr.getPointer()); 4407 ParamTypes.push_back(PrivatePtr.getType()); 4408 } 4409 for (const Expr *E : Data.LastprivateVars) { 4410 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4411 Address PrivatePtr = 4412 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4413 ".lastpriv.ptr.addr"); 4414 PrivatePtrs.emplace_back(VD, PrivatePtr); 4415 CallArgs.push_back(PrivatePtr.getPointer()); 4416 ParamTypes.push_back(PrivatePtr.getType()); 4417 } 4418 for (const VarDecl *VD : Data.PrivateLocals) { 4419 QualType Ty = VD->getType().getNonReferenceType(); 4420 if (VD->getType()->isLValueReferenceType()) 4421 Ty = CGF.getContext().getPointerType(Ty); 4422 if (isAllocatableDecl(VD)) 4423 Ty = CGF.getContext().getPointerType(Ty); 4424 Address PrivatePtr = CGF.CreateMemTemp( 4425 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4426 auto Result = UntiedLocalVars.insert( 4427 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4428 // If key exists update in place. 4429 if (Result.second == false) 4430 *Result.first = std::make_pair( 4431 VD, std::make_pair(PrivatePtr, Address::invalid())); 4432 CallArgs.push_back(PrivatePtr.getPointer()); 4433 ParamTypes.push_back(PrivatePtr.getType()); 4434 } 4435 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4436 ParamTypes, /*isVarArg=*/false); 4437 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4438 CopyFn, CopyFnTy->getPointerTo()); 4439 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4440 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4441 for (const auto &Pair : LastprivateDstsOrigs) { 4442 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4443 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4444 /*RefersToEnclosingVariableOrCapture=*/ 4445 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4446 Pair.second->getType(), VK_LValue, 4447 Pair.second->getExprLoc()); 4448 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4449 return CGF.EmitLValue(&DRE).getAddress(CGF); 4450 }); 4451 } 4452 for (const auto &Pair : PrivatePtrs) { 4453 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4454 CGF.getContext().getDeclAlign(Pair.first)); 4455 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4456 } 4457 // Adjust mapping for internal locals by mapping actual memory instead of 4458 // a pointer to this memory. 4459 for (auto &Pair : UntiedLocalVars) { 4460 if (isAllocatableDecl(Pair.first)) { 4461 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4462 Address Replacement(Ptr, CGF.getPointerAlign()); 4463 Pair.second.first = Replacement; 4464 Ptr = CGF.Builder.CreateLoad(Replacement); 4465 Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4466 Pair.second.second = Replacement; 4467 } else { 4468 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4469 Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4470 Pair.second.first = Replacement; 4471 } 4472 } 4473 } 4474 if (Data.Reductions) { 4475 OMPPrivateScope FirstprivateScope(CGF); 4476 for (const auto &Pair : FirstprivatePtrs) { 4477 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4478 CGF.getContext().getDeclAlign(Pair.first)); 4479 FirstprivateScope.addPrivate(Pair.first, 4480 [Replacement]() { return Replacement; }); 4481 } 4482 (void)FirstprivateScope.Privatize(); 4483 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4484 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4485 Data.ReductionCopies, Data.ReductionOps); 4486 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4487 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4488 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4489 RedCG.emitSharedOrigLValue(CGF, Cnt); 4490 RedCG.emitAggregateType(CGF, Cnt); 4491 // FIXME: This must removed once the runtime library is fixed. 4492 // Emit required threadprivate variables for 4493 // initializer/combiner/finalizer. 4494 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4495 RedCG, Cnt); 4496 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4497 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4498 Replacement = 4499 Address(CGF.EmitScalarConversion( 4500 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4501 CGF.getContext().getPointerType( 4502 Data.ReductionCopies[Cnt]->getType()), 4503 Data.ReductionCopies[Cnt]->getExprLoc()), 4504 Replacement.getAlignment()); 4505 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4506 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4507 [Replacement]() { return Replacement; }); 4508 } 4509 } 4510 // Privatize all private variables except for in_reduction items. 4511 (void)Scope.Privatize(); 4512 SmallVector<const Expr *, 4> InRedVars; 4513 SmallVector<const Expr *, 4> InRedPrivs; 4514 SmallVector<const Expr *, 4> InRedOps; 4515 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4516 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4517 auto IPriv = C->privates().begin(); 4518 auto IRed = C->reduction_ops().begin(); 4519 auto ITD = C->taskgroup_descriptors().begin(); 4520 for (const Expr *Ref : C->varlists()) { 4521 InRedVars.emplace_back(Ref); 4522 InRedPrivs.emplace_back(*IPriv); 4523 InRedOps.emplace_back(*IRed); 4524 TaskgroupDescriptors.emplace_back(*ITD); 4525 std::advance(IPriv, 1); 4526 std::advance(IRed, 1); 4527 std::advance(ITD, 1); 4528 } 4529 } 4530 // Privatize in_reduction items here, because taskgroup descriptors must be 4531 // privatized earlier. 4532 OMPPrivateScope InRedScope(CGF); 4533 if (!InRedVars.empty()) { 4534 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4535 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4536 RedCG.emitSharedOrigLValue(CGF, Cnt); 4537 RedCG.emitAggregateType(CGF, Cnt); 4538 // The taskgroup descriptor variable is always implicit firstprivate and 4539 // privatized already during processing of the firstprivates. 4540 // FIXME: This must removed once the runtime library is fixed. 4541 // Emit required threadprivate variables for 4542 // initializer/combiner/finalizer. 4543 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4544 RedCG, Cnt); 4545 llvm::Value *ReductionsPtr; 4546 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4547 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4548 TRExpr->getExprLoc()); 4549 } else { 4550 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4551 } 4552 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4553 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4554 Replacement = Address( 4555 CGF.EmitScalarConversion( 4556 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4557 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4558 InRedPrivs[Cnt]->getExprLoc()), 4559 Replacement.getAlignment()); 4560 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4561 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4562 [Replacement]() { return Replacement; }); 4563 } 4564 } 4565 (void)InRedScope.Privatize(); 4566 4567 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4568 UntiedLocalVars); 4569 Action.Enter(CGF); 4570 BodyGen(CGF); 4571 }; 4572 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4573 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4574 Data.NumberOfParts); 4575 OMPLexicalScope Scope(*this, S, llvm::None, 4576 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4577 !isOpenMPSimdDirective(S.getDirectiveKind())); 4578 TaskGen(*this, OutlinedFn, Data); 4579 } 4580 4581 static ImplicitParamDecl * 4582 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4583 QualType Ty, CapturedDecl *CD, 4584 SourceLocation Loc) { 4585 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4586 ImplicitParamDecl::Other); 4587 auto *OrigRef = DeclRefExpr::Create( 4588 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4589 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4590 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4591 ImplicitParamDecl::Other); 4592 auto *PrivateRef = DeclRefExpr::Create( 4593 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4594 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4595 QualType ElemType = C.getBaseElementType(Ty); 4596 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4597 ImplicitParamDecl::Other); 4598 auto *InitRef = DeclRefExpr::Create( 4599 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4600 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4601 PrivateVD->setInitStyle(VarDecl::CInit); 4602 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4603 InitRef, /*BasePath=*/nullptr, 4604 VK_PRValue, FPOptionsOverride())); 4605 Data.FirstprivateVars.emplace_back(OrigRef); 4606 Data.FirstprivateCopies.emplace_back(PrivateRef); 4607 Data.FirstprivateInits.emplace_back(InitRef); 4608 return OrigVD; 4609 } 4610 4611 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4612 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4613 OMPTargetDataInfo &InputInfo) { 4614 // Emit outlined function for task construct. 4615 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4616 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4617 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4618 auto I = CS->getCapturedDecl()->param_begin(); 4619 auto PartId = std::next(I); 4620 auto TaskT = std::next(I, 4); 4621 OMPTaskDataTy Data; 4622 // The task is not final. 4623 Data.Final.setInt(/*IntVal=*/false); 4624 // Get list of firstprivate variables. 4625 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4626 auto IRef = C->varlist_begin(); 4627 auto IElemInitRef = C->inits().begin(); 4628 for (auto *IInit : C->private_copies()) { 4629 Data.FirstprivateVars.push_back(*IRef); 4630 Data.FirstprivateCopies.push_back(IInit); 4631 Data.FirstprivateInits.push_back(*IElemInitRef); 4632 ++IRef; 4633 ++IElemInitRef; 4634 } 4635 } 4636 OMPPrivateScope TargetScope(*this); 4637 VarDecl *BPVD = nullptr; 4638 VarDecl *PVD = nullptr; 4639 VarDecl *SVD = nullptr; 4640 VarDecl *MVD = nullptr; 4641 if (InputInfo.NumberOfTargetItems > 0) { 4642 auto *CD = CapturedDecl::Create( 4643 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4644 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4645 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4646 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4647 /*IndexTypeQuals=*/0); 4648 BPVD = createImplicitFirstprivateForType( 4649 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4650 PVD = createImplicitFirstprivateForType( 4651 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4652 QualType SizesType = getContext().getConstantArrayType( 4653 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4654 ArrSize, nullptr, ArrayType::Normal, 4655 /*IndexTypeQuals=*/0); 4656 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4657 S.getBeginLoc()); 4658 TargetScope.addPrivate( 4659 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4660 TargetScope.addPrivate(PVD, 4661 [&InputInfo]() { return InputInfo.PointersArray; }); 4662 TargetScope.addPrivate(SVD, 4663 [&InputInfo]() { return InputInfo.SizesArray; }); 4664 // If there is no user-defined mapper, the mapper array will be nullptr. In 4665 // this case, we don't need to privatize it. 4666 if (!dyn_cast_or_null<llvm::ConstantPointerNull>( 4667 InputInfo.MappersArray.getPointer())) { 4668 MVD = createImplicitFirstprivateForType( 4669 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4670 TargetScope.addPrivate(MVD, 4671 [&InputInfo]() { return InputInfo.MappersArray; }); 4672 } 4673 } 4674 (void)TargetScope.Privatize(); 4675 // Build list of dependences. 4676 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4677 OMPTaskDataTy::DependData &DD = 4678 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4679 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4680 } 4681 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4682 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4683 // Set proper addresses for generated private copies. 4684 OMPPrivateScope Scope(CGF); 4685 if (!Data.FirstprivateVars.empty()) { 4686 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4687 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4688 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4689 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4690 CS->getCapturedDecl()->getParam(PrivatesParam))); 4691 // Map privates. 4692 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4693 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4694 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4695 CallArgs.push_back(PrivatesPtr); 4696 ParamTypes.push_back(PrivatesPtr->getType()); 4697 for (const Expr *E : Data.FirstprivateVars) { 4698 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4699 Address PrivatePtr = 4700 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4701 ".firstpriv.ptr.addr"); 4702 PrivatePtrs.emplace_back(VD, PrivatePtr); 4703 CallArgs.push_back(PrivatePtr.getPointer()); 4704 ParamTypes.push_back(PrivatePtr.getType()); 4705 } 4706 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4707 ParamTypes, /*isVarArg=*/false); 4708 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4709 CopyFn, CopyFnTy->getPointerTo()); 4710 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4711 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4712 for (const auto &Pair : PrivatePtrs) { 4713 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4714 CGF.getContext().getDeclAlign(Pair.first)); 4715 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4716 } 4717 } 4718 // Privatize all private variables except for in_reduction items. 4719 (void)Scope.Privatize(); 4720 if (InputInfo.NumberOfTargetItems > 0) { 4721 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4722 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4723 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4724 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4725 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4726 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4727 // If MVD is nullptr, the mapper array is not privatized 4728 if (MVD) 4729 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4730 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4731 } 4732 4733 Action.Enter(CGF); 4734 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4735 BodyGen(CGF); 4736 }; 4737 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4738 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4739 Data.NumberOfParts); 4740 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4741 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4742 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4743 SourceLocation()); 4744 4745 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4746 SharedsTy, CapturedStruct, &IfCond, Data); 4747 } 4748 4749 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4750 // Emit outlined function for task construct. 4751 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4752 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4753 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4754 const Expr *IfCond = nullptr; 4755 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4756 if (C->getNameModifier() == OMPD_unknown || 4757 C->getNameModifier() == OMPD_task) { 4758 IfCond = C->getCondition(); 4759 break; 4760 } 4761 } 4762 4763 OMPTaskDataTy Data; 4764 // Check if we should emit tied or untied task. 4765 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4766 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4767 CGF.EmitStmt(CS->getCapturedStmt()); 4768 }; 4769 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4770 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4771 const OMPTaskDataTy &Data) { 4772 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4773 SharedsTy, CapturedStruct, IfCond, 4774 Data); 4775 }; 4776 auto LPCRegion = 4777 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4778 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4779 } 4780 4781 void CodeGenFunction::EmitOMPTaskyieldDirective( 4782 const OMPTaskyieldDirective &S) { 4783 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4784 } 4785 4786 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4787 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4788 } 4789 4790 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4791 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 4792 } 4793 4794 void CodeGenFunction::EmitOMPTaskgroupDirective( 4795 const OMPTaskgroupDirective &S) { 4796 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4797 Action.Enter(CGF); 4798 if (const Expr *E = S.getReductionRef()) { 4799 SmallVector<const Expr *, 4> LHSs; 4800 SmallVector<const Expr *, 4> RHSs; 4801 OMPTaskDataTy Data; 4802 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4803 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4804 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4805 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4806 Data.ReductionOps.append(C->reduction_ops().begin(), 4807 C->reduction_ops().end()); 4808 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4809 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4810 } 4811 llvm::Value *ReductionDesc = 4812 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4813 LHSs, RHSs, Data); 4814 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4815 CGF.EmitVarDecl(*VD); 4816 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4817 /*Volatile=*/false, E->getType()); 4818 } 4819 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4820 }; 4821 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4822 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4823 } 4824 4825 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4826 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4827 ? llvm::AtomicOrdering::NotAtomic 4828 : llvm::AtomicOrdering::AcquireRelease; 4829 CGM.getOpenMPRuntime().emitFlush( 4830 *this, 4831 [&S]() -> ArrayRef<const Expr *> { 4832 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4833 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4834 FlushClause->varlist_end()); 4835 return llvm::None; 4836 }(), 4837 S.getBeginLoc(), AO); 4838 } 4839 4840 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4841 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4842 LValue DOLVal = EmitLValue(DO->getDepobj()); 4843 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4844 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4845 DC->getModifier()); 4846 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4847 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4848 *this, Dependencies, DC->getBeginLoc()); 4849 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4850 return; 4851 } 4852 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4853 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4854 return; 4855 } 4856 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4857 CGM.getOpenMPRuntime().emitUpdateClause( 4858 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4859 return; 4860 } 4861 } 4862 4863 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4864 if (!OMPParentLoopDirectiveForScan) 4865 return; 4866 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4867 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4868 SmallVector<const Expr *, 4> Shareds; 4869 SmallVector<const Expr *, 4> Privates; 4870 SmallVector<const Expr *, 4> LHSs; 4871 SmallVector<const Expr *, 4> RHSs; 4872 SmallVector<const Expr *, 4> ReductionOps; 4873 SmallVector<const Expr *, 4> CopyOps; 4874 SmallVector<const Expr *, 4> CopyArrayTemps; 4875 SmallVector<const Expr *, 4> CopyArrayElems; 4876 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4877 if (C->getModifier() != OMPC_REDUCTION_inscan) 4878 continue; 4879 Shareds.append(C->varlist_begin(), C->varlist_end()); 4880 Privates.append(C->privates().begin(), C->privates().end()); 4881 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4882 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4883 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 4884 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 4885 CopyArrayTemps.append(C->copy_array_temps().begin(), 4886 C->copy_array_temps().end()); 4887 CopyArrayElems.append(C->copy_array_elems().begin(), 4888 C->copy_array_elems().end()); 4889 } 4890 if (ParentDir.getDirectiveKind() == OMPD_simd || 4891 (getLangOpts().OpenMPSimd && 4892 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 4893 // For simd directive and simd-based directives in simd only mode, use the 4894 // following codegen: 4895 // int x = 0; 4896 // #pragma omp simd reduction(inscan, +: x) 4897 // for (..) { 4898 // <first part> 4899 // #pragma omp scan inclusive(x) 4900 // <second part> 4901 // } 4902 // is transformed to: 4903 // int x = 0; 4904 // for (..) { 4905 // int x_priv = 0; 4906 // <first part> 4907 // x = x_priv + x; 4908 // x_priv = x; 4909 // <second part> 4910 // } 4911 // and 4912 // int x = 0; 4913 // #pragma omp simd reduction(inscan, +: x) 4914 // for (..) { 4915 // <first part> 4916 // #pragma omp scan exclusive(x) 4917 // <second part> 4918 // } 4919 // to 4920 // int x = 0; 4921 // for (..) { 4922 // int x_priv = 0; 4923 // <second part> 4924 // int temp = x; 4925 // x = x_priv + x; 4926 // x_priv = temp; 4927 // <first part> 4928 // } 4929 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 4930 EmitBranch(IsInclusive 4931 ? OMPScanReduce 4932 : BreakContinueStack.back().ContinueBlock.getBlock()); 4933 EmitBlock(OMPScanDispatch); 4934 { 4935 // New scope for correct construction/destruction of temp variables for 4936 // exclusive scan. 4937 LexicalScope Scope(*this, S.getSourceRange()); 4938 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 4939 EmitBlock(OMPScanReduce); 4940 if (!IsInclusive) { 4941 // Create temp var and copy LHS value to this temp value. 4942 // TMP = LHS; 4943 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4944 const Expr *PrivateExpr = Privates[I]; 4945 const Expr *TempExpr = CopyArrayTemps[I]; 4946 EmitAutoVarDecl( 4947 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 4948 LValue DestLVal = EmitLValue(TempExpr); 4949 LValue SrcLVal = EmitLValue(LHSs[I]); 4950 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4951 SrcLVal.getAddress(*this), 4952 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4953 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4954 CopyOps[I]); 4955 } 4956 } 4957 CGM.getOpenMPRuntime().emitReduction( 4958 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 4959 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 4960 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4961 const Expr *PrivateExpr = Privates[I]; 4962 LValue DestLVal; 4963 LValue SrcLVal; 4964 if (IsInclusive) { 4965 DestLVal = EmitLValue(RHSs[I]); 4966 SrcLVal = EmitLValue(LHSs[I]); 4967 } else { 4968 const Expr *TempExpr = CopyArrayTemps[I]; 4969 DestLVal = EmitLValue(RHSs[I]); 4970 SrcLVal = EmitLValue(TempExpr); 4971 } 4972 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4973 SrcLVal.getAddress(*this), 4974 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4975 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4976 CopyOps[I]); 4977 } 4978 } 4979 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 4980 OMPScanExitBlock = IsInclusive 4981 ? BreakContinueStack.back().ContinueBlock.getBlock() 4982 : OMPScanReduce; 4983 EmitBlock(OMPAfterScanBlock); 4984 return; 4985 } 4986 if (!IsInclusive) { 4987 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4988 EmitBlock(OMPScanExitBlock); 4989 } 4990 if (OMPFirstScanLoop) { 4991 // Emit buffer[i] = red; at the end of the input phase. 4992 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4993 .getIterationVariable() 4994 ->IgnoreParenImpCasts(); 4995 LValue IdxLVal = EmitLValue(IVExpr); 4996 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4997 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4998 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4999 const Expr *PrivateExpr = Privates[I]; 5000 const Expr *OrigExpr = Shareds[I]; 5001 const Expr *CopyArrayElem = CopyArrayElems[I]; 5002 OpaqueValueMapping IdxMapping( 5003 *this, 5004 cast<OpaqueValueExpr>( 5005 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5006 RValue::get(IdxVal)); 5007 LValue DestLVal = EmitLValue(CopyArrayElem); 5008 LValue SrcLVal = EmitLValue(OrigExpr); 5009 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5010 SrcLVal.getAddress(*this), 5011 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5012 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5013 CopyOps[I]); 5014 } 5015 } 5016 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5017 if (IsInclusive) { 5018 EmitBlock(OMPScanExitBlock); 5019 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5020 } 5021 EmitBlock(OMPScanDispatch); 5022 if (!OMPFirstScanLoop) { 5023 // Emit red = buffer[i]; at the entrance to the scan phase. 5024 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5025 .getIterationVariable() 5026 ->IgnoreParenImpCasts(); 5027 LValue IdxLVal = EmitLValue(IVExpr); 5028 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5029 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5030 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5031 if (!IsInclusive) { 5032 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5033 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5034 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5035 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5036 EmitBlock(ContBB); 5037 // Use idx - 1 iteration for exclusive scan. 5038 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5039 } 5040 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5041 const Expr *PrivateExpr = Privates[I]; 5042 const Expr *OrigExpr = Shareds[I]; 5043 const Expr *CopyArrayElem = CopyArrayElems[I]; 5044 OpaqueValueMapping IdxMapping( 5045 *this, 5046 cast<OpaqueValueExpr>( 5047 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5048 RValue::get(IdxVal)); 5049 LValue SrcLVal = EmitLValue(CopyArrayElem); 5050 LValue DestLVal = EmitLValue(OrigExpr); 5051 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5052 SrcLVal.getAddress(*this), 5053 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5054 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5055 CopyOps[I]); 5056 } 5057 if (!IsInclusive) { 5058 EmitBlock(ExclusiveExitBB); 5059 } 5060 } 5061 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5062 : OMPAfterScanBlock); 5063 EmitBlock(OMPAfterScanBlock); 5064 } 5065 5066 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5067 const CodeGenLoopTy &CodeGenLoop, 5068 Expr *IncExpr) { 5069 // Emit the loop iteration variable. 5070 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5071 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5072 EmitVarDecl(*IVDecl); 5073 5074 // Emit the iterations count variable. 5075 // If it is not a variable, Sema decided to calculate iterations count on each 5076 // iteration (e.g., it is foldable into a constant). 5077 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5078 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5079 // Emit calculation of the iterations count. 5080 EmitIgnoredExpr(S.getCalcLastIteration()); 5081 } 5082 5083 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5084 5085 bool HasLastprivateClause = false; 5086 // Check pre-condition. 5087 { 5088 OMPLoopScope PreInitScope(*this, S); 5089 // Skip the entire loop if we don't meet the precondition. 5090 // If the condition constant folds and can be elided, avoid emitting the 5091 // whole loop. 5092 bool CondConstant; 5093 llvm::BasicBlock *ContBlock = nullptr; 5094 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5095 if (!CondConstant) 5096 return; 5097 } else { 5098 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5099 ContBlock = createBasicBlock("omp.precond.end"); 5100 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5101 getProfileCount(&S)); 5102 EmitBlock(ThenBlock); 5103 incrementProfileCounter(&S); 5104 } 5105 5106 emitAlignedClause(*this, S); 5107 // Emit 'then' code. 5108 { 5109 // Emit helper vars inits. 5110 5111 LValue LB = EmitOMPHelperVar( 5112 *this, cast<DeclRefExpr>( 5113 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5114 ? S.getCombinedLowerBoundVariable() 5115 : S.getLowerBoundVariable()))); 5116 LValue UB = EmitOMPHelperVar( 5117 *this, cast<DeclRefExpr>( 5118 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5119 ? S.getCombinedUpperBoundVariable() 5120 : S.getUpperBoundVariable()))); 5121 LValue ST = 5122 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5123 LValue IL = 5124 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5125 5126 OMPPrivateScope LoopScope(*this); 5127 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5128 // Emit implicit barrier to synchronize threads and avoid data races 5129 // on initialization of firstprivate variables and post-update of 5130 // lastprivate variables. 5131 CGM.getOpenMPRuntime().emitBarrierCall( 5132 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5133 /*ForceSimpleCall=*/true); 5134 } 5135 EmitOMPPrivateClause(S, LoopScope); 5136 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5137 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5138 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5139 EmitOMPReductionClauseInit(S, LoopScope); 5140 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5141 EmitOMPPrivateLoopCounters(S, LoopScope); 5142 (void)LoopScope.Privatize(); 5143 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5144 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5145 5146 // Detect the distribute schedule kind and chunk. 5147 llvm::Value *Chunk = nullptr; 5148 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5149 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5150 ScheduleKind = C->getDistScheduleKind(); 5151 if (const Expr *Ch = C->getChunkSize()) { 5152 Chunk = EmitScalarExpr(Ch); 5153 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5154 S.getIterationVariable()->getType(), 5155 S.getBeginLoc()); 5156 } 5157 } else { 5158 // Default behaviour for dist_schedule clause. 5159 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5160 *this, S, ScheduleKind, Chunk); 5161 } 5162 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5163 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5164 5165 // OpenMP [2.10.8, distribute Construct, Description] 5166 // If dist_schedule is specified, kind must be static. If specified, 5167 // iterations are divided into chunks of size chunk_size, chunks are 5168 // assigned to the teams of the league in a round-robin fashion in the 5169 // order of the team number. When no chunk_size is specified, the 5170 // iteration space is divided into chunks that are approximately equal 5171 // in size, and at most one chunk is distributed to each team of the 5172 // league. The size of the chunks is unspecified in this case. 5173 bool StaticChunked = RT.isStaticChunked( 5174 ScheduleKind, /* Chunked */ Chunk != nullptr) && 5175 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5176 if (RT.isStaticNonchunked(ScheduleKind, 5177 /* Chunked */ Chunk != nullptr) || 5178 StaticChunked) { 5179 CGOpenMPRuntime::StaticRTInput StaticInit( 5180 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5181 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5182 StaticChunked ? Chunk : nullptr); 5183 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5184 StaticInit); 5185 JumpDest LoopExit = 5186 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5187 // UB = min(UB, GlobalUB); 5188 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5189 ? S.getCombinedEnsureUpperBound() 5190 : S.getEnsureUpperBound()); 5191 // IV = LB; 5192 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5193 ? S.getCombinedInit() 5194 : S.getInit()); 5195 5196 const Expr *Cond = 5197 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5198 ? S.getCombinedCond() 5199 : S.getCond(); 5200 5201 if (StaticChunked) 5202 Cond = S.getCombinedDistCond(); 5203 5204 // For static unchunked schedules generate: 5205 // 5206 // 1. For distribute alone, codegen 5207 // while (idx <= UB) { 5208 // BODY; 5209 // ++idx; 5210 // } 5211 // 5212 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5213 // while (idx <= UB) { 5214 // <CodeGen rest of pragma>(LB, UB); 5215 // idx += ST; 5216 // } 5217 // 5218 // For static chunk one schedule generate: 5219 // 5220 // while (IV <= GlobalUB) { 5221 // <CodeGen rest of pragma>(LB, UB); 5222 // LB += ST; 5223 // UB += ST; 5224 // UB = min(UB, GlobalUB); 5225 // IV = LB; 5226 // } 5227 // 5228 emitCommonSimdLoop( 5229 *this, S, 5230 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5231 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5232 CGF.EmitOMPSimdInit(S); 5233 }, 5234 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5235 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5236 CGF.EmitOMPInnerLoop( 5237 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5238 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5239 CodeGenLoop(CGF, S, LoopExit); 5240 }, 5241 [&S, StaticChunked](CodeGenFunction &CGF) { 5242 if (StaticChunked) { 5243 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5244 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5245 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5246 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5247 } 5248 }); 5249 }); 5250 EmitBlock(LoopExit.getBlock()); 5251 // Tell the runtime we are done. 5252 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5253 } else { 5254 // Emit the outer loop, which requests its work chunk [LB..UB] from 5255 // runtime and runs the inner loop to process it. 5256 const OMPLoopArguments LoopArguments = { 5257 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5258 IL.getAddress(*this), Chunk}; 5259 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5260 CodeGenLoop); 5261 } 5262 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5263 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5264 return CGF.Builder.CreateIsNotNull( 5265 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5266 }); 5267 } 5268 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5269 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5270 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5271 EmitOMPReductionClauseFinal(S, OMPD_simd); 5272 // Emit post-update of the reduction variables if IsLastIter != 0. 5273 emitPostUpdateForReductionClause( 5274 *this, S, [IL, &S](CodeGenFunction &CGF) { 5275 return CGF.Builder.CreateIsNotNull( 5276 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5277 }); 5278 } 5279 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5280 if (HasLastprivateClause) { 5281 EmitOMPLastprivateClauseFinal( 5282 S, /*NoFinals=*/false, 5283 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5284 } 5285 } 5286 5287 // We're now done with the loop, so jump to the continuation block. 5288 if (ContBlock) { 5289 EmitBranch(ContBlock); 5290 EmitBlock(ContBlock, true); 5291 } 5292 } 5293 } 5294 5295 void CodeGenFunction::EmitOMPDistributeDirective( 5296 const OMPDistributeDirective &S) { 5297 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5298 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5299 }; 5300 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5301 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5302 } 5303 5304 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5305 const CapturedStmt *S, 5306 SourceLocation Loc) { 5307 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5308 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5309 CGF.CapturedStmtInfo = &CapStmtInfo; 5310 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5311 Fn->setDoesNotRecurse(); 5312 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 5313 Fn->addFnAttr(llvm::Attribute::AlwaysInline); 5314 return Fn; 5315 } 5316 5317 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5318 if (S.hasClausesOfKind<OMPDependClause>()) { 5319 assert(!S.hasAssociatedStmt() && 5320 "No associated statement must be in ordered depend construct."); 5321 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5322 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5323 return; 5324 } 5325 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5326 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5327 PrePostActionTy &Action) { 5328 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5329 if (C) { 5330 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5331 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5332 llvm::Function *OutlinedFn = 5333 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5334 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5335 OutlinedFn, CapturedVars); 5336 } else { 5337 Action.Enter(CGF); 5338 CGF.EmitStmt(CS->getCapturedStmt()); 5339 } 5340 }; 5341 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5342 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5343 } 5344 5345 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5346 QualType SrcType, QualType DestType, 5347 SourceLocation Loc) { 5348 assert(CGF.hasScalarEvaluationKind(DestType) && 5349 "DestType must have scalar evaluation kind."); 5350 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5351 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5352 DestType, Loc) 5353 : CGF.EmitComplexToScalarConversion( 5354 Val.getComplexVal(), SrcType, DestType, Loc); 5355 } 5356 5357 static CodeGenFunction::ComplexPairTy 5358 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5359 QualType DestType, SourceLocation Loc) { 5360 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5361 "DestType must have complex evaluation kind."); 5362 CodeGenFunction::ComplexPairTy ComplexVal; 5363 if (Val.isScalar()) { 5364 // Convert the input element to the element type of the complex. 5365 QualType DestElementType = 5366 DestType->castAs<ComplexType>()->getElementType(); 5367 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5368 Val.getScalarVal(), SrcType, DestElementType, Loc); 5369 ComplexVal = CodeGenFunction::ComplexPairTy( 5370 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5371 } else { 5372 assert(Val.isComplex() && "Must be a scalar or complex."); 5373 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5374 QualType DestElementType = 5375 DestType->castAs<ComplexType>()->getElementType(); 5376 ComplexVal.first = CGF.EmitScalarConversion( 5377 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5378 ComplexVal.second = CGF.EmitScalarConversion( 5379 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5380 } 5381 return ComplexVal; 5382 } 5383 5384 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5385 LValue LVal, RValue RVal) { 5386 if (LVal.isGlobalReg()) 5387 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5388 else 5389 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5390 } 5391 5392 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5393 llvm::AtomicOrdering AO, LValue LVal, 5394 SourceLocation Loc) { 5395 if (LVal.isGlobalReg()) 5396 return CGF.EmitLoadOfLValue(LVal, Loc); 5397 return CGF.EmitAtomicLoad( 5398 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5399 LVal.isVolatile()); 5400 } 5401 5402 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5403 QualType RValTy, SourceLocation Loc) { 5404 switch (getEvaluationKind(LVal.getType())) { 5405 case TEK_Scalar: 5406 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5407 *this, RVal, RValTy, LVal.getType(), Loc)), 5408 LVal); 5409 break; 5410 case TEK_Complex: 5411 EmitStoreOfComplex( 5412 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5413 /*isInit=*/false); 5414 break; 5415 case TEK_Aggregate: 5416 llvm_unreachable("Must be a scalar or complex."); 5417 } 5418 } 5419 5420 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5421 const Expr *X, const Expr *V, 5422 SourceLocation Loc) { 5423 // v = x; 5424 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5425 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5426 LValue XLValue = CGF.EmitLValue(X); 5427 LValue VLValue = CGF.EmitLValue(V); 5428 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5429 // OpenMP, 2.17.7, atomic Construct 5430 // If the read or capture clause is specified and the acquire, acq_rel, or 5431 // seq_cst clause is specified then the strong flush on exit from the atomic 5432 // operation is also an acquire flush. 5433 switch (AO) { 5434 case llvm::AtomicOrdering::Acquire: 5435 case llvm::AtomicOrdering::AcquireRelease: 5436 case llvm::AtomicOrdering::SequentiallyConsistent: 5437 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5438 llvm::AtomicOrdering::Acquire); 5439 break; 5440 case llvm::AtomicOrdering::Monotonic: 5441 case llvm::AtomicOrdering::Release: 5442 break; 5443 case llvm::AtomicOrdering::NotAtomic: 5444 case llvm::AtomicOrdering::Unordered: 5445 llvm_unreachable("Unexpected ordering."); 5446 } 5447 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5448 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5449 } 5450 5451 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5452 llvm::AtomicOrdering AO, const Expr *X, 5453 const Expr *E, SourceLocation Loc) { 5454 // x = expr; 5455 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5456 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5457 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5458 // OpenMP, 2.17.7, atomic Construct 5459 // If the write, update, or capture clause is specified and the release, 5460 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5461 // the atomic operation is also a release flush. 5462 switch (AO) { 5463 case llvm::AtomicOrdering::Release: 5464 case llvm::AtomicOrdering::AcquireRelease: 5465 case llvm::AtomicOrdering::SequentiallyConsistent: 5466 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5467 llvm::AtomicOrdering::Release); 5468 break; 5469 case llvm::AtomicOrdering::Acquire: 5470 case llvm::AtomicOrdering::Monotonic: 5471 break; 5472 case llvm::AtomicOrdering::NotAtomic: 5473 case llvm::AtomicOrdering::Unordered: 5474 llvm_unreachable("Unexpected ordering."); 5475 } 5476 } 5477 5478 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5479 RValue Update, 5480 BinaryOperatorKind BO, 5481 llvm::AtomicOrdering AO, 5482 bool IsXLHSInRHSPart) { 5483 ASTContext &Context = CGF.getContext(); 5484 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5485 // expression is simple and atomic is allowed for the given type for the 5486 // target platform. 5487 if (BO == BO_Comma || !Update.isScalar() || 5488 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5489 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5490 (Update.getScalarVal()->getType() != 5491 X.getAddress(CGF).getElementType())) || 5492 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5493 !Context.getTargetInfo().hasBuiltinAtomic( 5494 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5495 return std::make_pair(false, RValue::get(nullptr)); 5496 5497 llvm::AtomicRMWInst::BinOp RMWOp; 5498 switch (BO) { 5499 case BO_Add: 5500 RMWOp = llvm::AtomicRMWInst::Add; 5501 break; 5502 case BO_Sub: 5503 if (!IsXLHSInRHSPart) 5504 return std::make_pair(false, RValue::get(nullptr)); 5505 RMWOp = llvm::AtomicRMWInst::Sub; 5506 break; 5507 case BO_And: 5508 RMWOp = llvm::AtomicRMWInst::And; 5509 break; 5510 case BO_Or: 5511 RMWOp = llvm::AtomicRMWInst::Or; 5512 break; 5513 case BO_Xor: 5514 RMWOp = llvm::AtomicRMWInst::Xor; 5515 break; 5516 case BO_LT: 5517 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5518 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5519 : llvm::AtomicRMWInst::Max) 5520 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5521 : llvm::AtomicRMWInst::UMax); 5522 break; 5523 case BO_GT: 5524 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5525 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5526 : llvm::AtomicRMWInst::Min) 5527 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5528 : llvm::AtomicRMWInst::UMin); 5529 break; 5530 case BO_Assign: 5531 RMWOp = llvm::AtomicRMWInst::Xchg; 5532 break; 5533 case BO_Mul: 5534 case BO_Div: 5535 case BO_Rem: 5536 case BO_Shl: 5537 case BO_Shr: 5538 case BO_LAnd: 5539 case BO_LOr: 5540 return std::make_pair(false, RValue::get(nullptr)); 5541 case BO_PtrMemD: 5542 case BO_PtrMemI: 5543 case BO_LE: 5544 case BO_GE: 5545 case BO_EQ: 5546 case BO_NE: 5547 case BO_Cmp: 5548 case BO_AddAssign: 5549 case BO_SubAssign: 5550 case BO_AndAssign: 5551 case BO_OrAssign: 5552 case BO_XorAssign: 5553 case BO_MulAssign: 5554 case BO_DivAssign: 5555 case BO_RemAssign: 5556 case BO_ShlAssign: 5557 case BO_ShrAssign: 5558 case BO_Comma: 5559 llvm_unreachable("Unsupported atomic update operation"); 5560 } 5561 llvm::Value *UpdateVal = Update.getScalarVal(); 5562 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5563 UpdateVal = CGF.Builder.CreateIntCast( 5564 IC, X.getAddress(CGF).getElementType(), 5565 X.getType()->hasSignedIntegerRepresentation()); 5566 } 5567 llvm::Value *Res = 5568 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5569 return std::make_pair(true, RValue::get(Res)); 5570 } 5571 5572 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5573 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5574 llvm::AtomicOrdering AO, SourceLocation Loc, 5575 const llvm::function_ref<RValue(RValue)> CommonGen) { 5576 // Update expressions are allowed to have the following forms: 5577 // x binop= expr; -> xrval + expr; 5578 // x++, ++x -> xrval + 1; 5579 // x--, --x -> xrval - 1; 5580 // x = x binop expr; -> xrval binop expr 5581 // x = expr Op x; - > expr binop xrval; 5582 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5583 if (!Res.first) { 5584 if (X.isGlobalReg()) { 5585 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5586 // 'xrval'. 5587 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5588 } else { 5589 // Perform compare-and-swap procedure. 5590 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5591 } 5592 } 5593 return Res; 5594 } 5595 5596 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5597 llvm::AtomicOrdering AO, const Expr *X, 5598 const Expr *E, const Expr *UE, 5599 bool IsXLHSInRHSPart, SourceLocation Loc) { 5600 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5601 "Update expr in 'atomic update' must be a binary operator."); 5602 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5603 // Update expressions are allowed to have the following forms: 5604 // x binop= expr; -> xrval + expr; 5605 // x++, ++x -> xrval + 1; 5606 // x--, --x -> xrval - 1; 5607 // x = x binop expr; -> xrval binop expr 5608 // x = expr Op x; - > expr binop xrval; 5609 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5610 LValue XLValue = CGF.EmitLValue(X); 5611 RValue ExprRValue = CGF.EmitAnyExpr(E); 5612 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5613 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5614 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5615 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5616 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5617 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5618 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5619 return CGF.EmitAnyExpr(UE); 5620 }; 5621 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5622 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5623 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5624 // OpenMP, 2.17.7, atomic Construct 5625 // If the write, update, or capture clause is specified and the release, 5626 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5627 // the atomic operation is also a release flush. 5628 switch (AO) { 5629 case llvm::AtomicOrdering::Release: 5630 case llvm::AtomicOrdering::AcquireRelease: 5631 case llvm::AtomicOrdering::SequentiallyConsistent: 5632 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5633 llvm::AtomicOrdering::Release); 5634 break; 5635 case llvm::AtomicOrdering::Acquire: 5636 case llvm::AtomicOrdering::Monotonic: 5637 break; 5638 case llvm::AtomicOrdering::NotAtomic: 5639 case llvm::AtomicOrdering::Unordered: 5640 llvm_unreachable("Unexpected ordering."); 5641 } 5642 } 5643 5644 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5645 QualType SourceType, QualType ResType, 5646 SourceLocation Loc) { 5647 switch (CGF.getEvaluationKind(ResType)) { 5648 case TEK_Scalar: 5649 return RValue::get( 5650 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5651 case TEK_Complex: { 5652 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5653 return RValue::getComplex(Res.first, Res.second); 5654 } 5655 case TEK_Aggregate: 5656 break; 5657 } 5658 llvm_unreachable("Must be a scalar or complex."); 5659 } 5660 5661 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5662 llvm::AtomicOrdering AO, 5663 bool IsPostfixUpdate, const Expr *V, 5664 const Expr *X, const Expr *E, 5665 const Expr *UE, bool IsXLHSInRHSPart, 5666 SourceLocation Loc) { 5667 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5668 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5669 RValue NewVVal; 5670 LValue VLValue = CGF.EmitLValue(V); 5671 LValue XLValue = CGF.EmitLValue(X); 5672 RValue ExprRValue = CGF.EmitAnyExpr(E); 5673 QualType NewVValType; 5674 if (UE) { 5675 // 'x' is updated with some additional value. 5676 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5677 "Update expr in 'atomic capture' must be a binary operator."); 5678 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5679 // Update expressions are allowed to have the following forms: 5680 // x binop= expr; -> xrval + expr; 5681 // x++, ++x -> xrval + 1; 5682 // x--, --x -> xrval - 1; 5683 // x = x binop expr; -> xrval binop expr 5684 // x = expr Op x; - > expr binop xrval; 5685 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5686 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5687 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5688 NewVValType = XRValExpr->getType(); 5689 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5690 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5691 IsPostfixUpdate](RValue XRValue) { 5692 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5693 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5694 RValue Res = CGF.EmitAnyExpr(UE); 5695 NewVVal = IsPostfixUpdate ? XRValue : Res; 5696 return Res; 5697 }; 5698 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5699 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5700 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5701 if (Res.first) { 5702 // 'atomicrmw' instruction was generated. 5703 if (IsPostfixUpdate) { 5704 // Use old value from 'atomicrmw'. 5705 NewVVal = Res.second; 5706 } else { 5707 // 'atomicrmw' does not provide new value, so evaluate it using old 5708 // value of 'x'. 5709 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5710 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5711 NewVVal = CGF.EmitAnyExpr(UE); 5712 } 5713 } 5714 } else { 5715 // 'x' is simply rewritten with some 'expr'. 5716 NewVValType = X->getType().getNonReferenceType(); 5717 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5718 X->getType().getNonReferenceType(), Loc); 5719 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5720 NewVVal = XRValue; 5721 return ExprRValue; 5722 }; 5723 // Try to perform atomicrmw xchg, otherwise simple exchange. 5724 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5725 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5726 Loc, Gen); 5727 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5728 if (Res.first) { 5729 // 'atomicrmw' instruction was generated. 5730 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5731 } 5732 } 5733 // Emit post-update store to 'v' of old/new 'x' value. 5734 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5735 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5736 // OpenMP 5.1 removes the required flush for capture clause. 5737 if (CGF.CGM.getLangOpts().OpenMP < 51) { 5738 // OpenMP, 2.17.7, atomic Construct 5739 // If the write, update, or capture clause is specified and the release, 5740 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5741 // the atomic operation is also a release flush. 5742 // If the read or capture clause is specified and the acquire, acq_rel, or 5743 // seq_cst clause is specified then the strong flush on exit from the atomic 5744 // operation is also an acquire flush. 5745 switch (AO) { 5746 case llvm::AtomicOrdering::Release: 5747 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5748 llvm::AtomicOrdering::Release); 5749 break; 5750 case llvm::AtomicOrdering::Acquire: 5751 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5752 llvm::AtomicOrdering::Acquire); 5753 break; 5754 case llvm::AtomicOrdering::AcquireRelease: 5755 case llvm::AtomicOrdering::SequentiallyConsistent: 5756 CGF.CGM.getOpenMPRuntime().emitFlush( 5757 CGF, llvm::None, Loc, llvm::AtomicOrdering::AcquireRelease); 5758 break; 5759 case llvm::AtomicOrdering::Monotonic: 5760 break; 5761 case llvm::AtomicOrdering::NotAtomic: 5762 case llvm::AtomicOrdering::Unordered: 5763 llvm_unreachable("Unexpected ordering."); 5764 } 5765 } 5766 } 5767 5768 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5769 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5770 const Expr *X, const Expr *V, const Expr *E, 5771 const Expr *UE, bool IsXLHSInRHSPart, 5772 SourceLocation Loc) { 5773 switch (Kind) { 5774 case OMPC_read: 5775 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5776 break; 5777 case OMPC_write: 5778 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5779 break; 5780 case OMPC_unknown: 5781 case OMPC_update: 5782 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5783 break; 5784 case OMPC_capture: 5785 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5786 IsXLHSInRHSPart, Loc); 5787 break; 5788 case OMPC_if: 5789 case OMPC_final: 5790 case OMPC_num_threads: 5791 case OMPC_private: 5792 case OMPC_firstprivate: 5793 case OMPC_lastprivate: 5794 case OMPC_reduction: 5795 case OMPC_task_reduction: 5796 case OMPC_in_reduction: 5797 case OMPC_safelen: 5798 case OMPC_simdlen: 5799 case OMPC_sizes: 5800 case OMPC_full: 5801 case OMPC_partial: 5802 case OMPC_allocator: 5803 case OMPC_allocate: 5804 case OMPC_collapse: 5805 case OMPC_default: 5806 case OMPC_seq_cst: 5807 case OMPC_acq_rel: 5808 case OMPC_acquire: 5809 case OMPC_release: 5810 case OMPC_relaxed: 5811 case OMPC_shared: 5812 case OMPC_linear: 5813 case OMPC_aligned: 5814 case OMPC_copyin: 5815 case OMPC_copyprivate: 5816 case OMPC_flush: 5817 case OMPC_depobj: 5818 case OMPC_proc_bind: 5819 case OMPC_schedule: 5820 case OMPC_ordered: 5821 case OMPC_nowait: 5822 case OMPC_untied: 5823 case OMPC_threadprivate: 5824 case OMPC_depend: 5825 case OMPC_mergeable: 5826 case OMPC_device: 5827 case OMPC_threads: 5828 case OMPC_simd: 5829 case OMPC_map: 5830 case OMPC_num_teams: 5831 case OMPC_thread_limit: 5832 case OMPC_priority: 5833 case OMPC_grainsize: 5834 case OMPC_nogroup: 5835 case OMPC_num_tasks: 5836 case OMPC_hint: 5837 case OMPC_dist_schedule: 5838 case OMPC_defaultmap: 5839 case OMPC_uniform: 5840 case OMPC_to: 5841 case OMPC_from: 5842 case OMPC_use_device_ptr: 5843 case OMPC_use_device_addr: 5844 case OMPC_is_device_ptr: 5845 case OMPC_unified_address: 5846 case OMPC_unified_shared_memory: 5847 case OMPC_reverse_offload: 5848 case OMPC_dynamic_allocators: 5849 case OMPC_atomic_default_mem_order: 5850 case OMPC_device_type: 5851 case OMPC_match: 5852 case OMPC_nontemporal: 5853 case OMPC_order: 5854 case OMPC_destroy: 5855 case OMPC_detach: 5856 case OMPC_inclusive: 5857 case OMPC_exclusive: 5858 case OMPC_uses_allocators: 5859 case OMPC_affinity: 5860 case OMPC_init: 5861 case OMPC_inbranch: 5862 case OMPC_notinbranch: 5863 case OMPC_link: 5864 case OMPC_use: 5865 case OMPC_novariants: 5866 case OMPC_nocontext: 5867 case OMPC_filter: 5868 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 5869 } 5870 } 5871 5872 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 5873 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 5874 bool MemOrderingSpecified = false; 5875 if (S.getSingleClause<OMPSeqCstClause>()) { 5876 AO = llvm::AtomicOrdering::SequentiallyConsistent; 5877 MemOrderingSpecified = true; 5878 } else if (S.getSingleClause<OMPAcqRelClause>()) { 5879 AO = llvm::AtomicOrdering::AcquireRelease; 5880 MemOrderingSpecified = true; 5881 } else if (S.getSingleClause<OMPAcquireClause>()) { 5882 AO = llvm::AtomicOrdering::Acquire; 5883 MemOrderingSpecified = true; 5884 } else if (S.getSingleClause<OMPReleaseClause>()) { 5885 AO = llvm::AtomicOrdering::Release; 5886 MemOrderingSpecified = true; 5887 } else if (S.getSingleClause<OMPRelaxedClause>()) { 5888 AO = llvm::AtomicOrdering::Monotonic; 5889 MemOrderingSpecified = true; 5890 } 5891 OpenMPClauseKind Kind = OMPC_unknown; 5892 for (const OMPClause *C : S.clauses()) { 5893 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 5894 // if it is first). 5895 if (C->getClauseKind() != OMPC_seq_cst && 5896 C->getClauseKind() != OMPC_acq_rel && 5897 C->getClauseKind() != OMPC_acquire && 5898 C->getClauseKind() != OMPC_release && 5899 C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) { 5900 Kind = C->getClauseKind(); 5901 break; 5902 } 5903 } 5904 if (!MemOrderingSpecified) { 5905 llvm::AtomicOrdering DefaultOrder = 5906 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 5907 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 5908 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 5909 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 5910 Kind == OMPC_capture)) { 5911 AO = DefaultOrder; 5912 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 5913 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 5914 AO = llvm::AtomicOrdering::Release; 5915 } else if (Kind == OMPC_read) { 5916 assert(Kind == OMPC_read && "Unexpected atomic kind."); 5917 AO = llvm::AtomicOrdering::Acquire; 5918 } 5919 } 5920 } 5921 5922 LexicalScope Scope(*this, S.getSourceRange()); 5923 EmitStopPoint(S.getAssociatedStmt()); 5924 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 5925 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 5926 S.getBeginLoc()); 5927 } 5928 5929 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 5930 const OMPExecutableDirective &S, 5931 const RegionCodeGenTy &CodeGen) { 5932 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 5933 CodeGenModule &CGM = CGF.CGM; 5934 5935 // On device emit this construct as inlined code. 5936 if (CGM.getLangOpts().OpenMPIsDevice) { 5937 OMPLexicalScope Scope(CGF, S, OMPD_target); 5938 CGM.getOpenMPRuntime().emitInlinedDirective( 5939 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5940 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5941 }); 5942 return; 5943 } 5944 5945 auto LPCRegion = 5946 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 5947 llvm::Function *Fn = nullptr; 5948 llvm::Constant *FnID = nullptr; 5949 5950 const Expr *IfCond = nullptr; 5951 // Check for the at most one if clause associated with the target region. 5952 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5953 if (C->getNameModifier() == OMPD_unknown || 5954 C->getNameModifier() == OMPD_target) { 5955 IfCond = C->getCondition(); 5956 break; 5957 } 5958 } 5959 5960 // Check if we have any device clause associated with the directive. 5961 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 5962 nullptr, OMPC_DEVICE_unknown); 5963 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 5964 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 5965 5966 // Check if we have an if clause whose conditional always evaluates to false 5967 // or if we do not have any targets specified. If so the target region is not 5968 // an offload entry point. 5969 bool IsOffloadEntry = true; 5970 if (IfCond) { 5971 bool Val; 5972 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 5973 IsOffloadEntry = false; 5974 } 5975 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5976 IsOffloadEntry = false; 5977 5978 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 5979 StringRef ParentName; 5980 // In case we have Ctors/Dtors we use the complete type variant to produce 5981 // the mangling of the device outlined kernel. 5982 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 5983 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 5984 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 5985 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 5986 else 5987 ParentName = 5988 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 5989 5990 // Emit target region as a standalone region. 5991 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 5992 IsOffloadEntry, CodeGen); 5993 OMPLexicalScope Scope(CGF, S, OMPD_task); 5994 auto &&SizeEmitter = 5995 [IsOffloadEntry](CodeGenFunction &CGF, 5996 const OMPLoopDirective &D) -> llvm::Value * { 5997 if (IsOffloadEntry) { 5998 OMPLoopScope(CGF, D); 5999 // Emit calculation of the iterations count. 6000 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6001 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6002 /*isSigned=*/false); 6003 return NumIterations; 6004 } 6005 return nullptr; 6006 }; 6007 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6008 SizeEmitter); 6009 } 6010 6011 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6012 PrePostActionTy &Action) { 6013 Action.Enter(CGF); 6014 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6015 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6016 CGF.EmitOMPPrivateClause(S, PrivateScope); 6017 (void)PrivateScope.Privatize(); 6018 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6019 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6020 6021 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6022 CGF.EnsureInsertPoint(); 6023 } 6024 6025 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6026 StringRef ParentName, 6027 const OMPTargetDirective &S) { 6028 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6029 emitTargetRegion(CGF, S, Action); 6030 }; 6031 llvm::Function *Fn; 6032 llvm::Constant *Addr; 6033 // Emit target region as a standalone region. 6034 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6035 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6036 assert(Fn && Addr && "Target device function emission failed."); 6037 } 6038 6039 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6040 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6041 emitTargetRegion(CGF, S, Action); 6042 }; 6043 emitCommonOMPTargetDirective(*this, S, CodeGen); 6044 } 6045 6046 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6047 const OMPExecutableDirective &S, 6048 OpenMPDirectiveKind InnermostKind, 6049 const RegionCodeGenTy &CodeGen) { 6050 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6051 llvm::Function *OutlinedFn = 6052 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6053 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6054 6055 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6056 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6057 if (NT || TL) { 6058 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6059 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6060 6061 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6062 S.getBeginLoc()); 6063 } 6064 6065 OMPTeamsScope Scope(CGF, S); 6066 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6067 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6068 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6069 CapturedVars); 6070 } 6071 6072 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6073 // Emit teams region as a standalone region. 6074 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6075 Action.Enter(CGF); 6076 OMPPrivateScope PrivateScope(CGF); 6077 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6078 CGF.EmitOMPPrivateClause(S, PrivateScope); 6079 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6080 (void)PrivateScope.Privatize(); 6081 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6082 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6083 }; 6084 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6085 emitPostUpdateForReductionClause(*this, S, 6086 [](CodeGenFunction &) { return nullptr; }); 6087 } 6088 6089 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6090 const OMPTargetTeamsDirective &S) { 6091 auto *CS = S.getCapturedStmt(OMPD_teams); 6092 Action.Enter(CGF); 6093 // Emit teams region as a standalone region. 6094 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6095 Action.Enter(CGF); 6096 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6097 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6098 CGF.EmitOMPPrivateClause(S, PrivateScope); 6099 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6100 (void)PrivateScope.Privatize(); 6101 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6102 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6103 CGF.EmitStmt(CS->getCapturedStmt()); 6104 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6105 }; 6106 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6107 emitPostUpdateForReductionClause(CGF, S, 6108 [](CodeGenFunction &) { return nullptr; }); 6109 } 6110 6111 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6112 CodeGenModule &CGM, StringRef ParentName, 6113 const OMPTargetTeamsDirective &S) { 6114 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6115 emitTargetTeamsRegion(CGF, Action, S); 6116 }; 6117 llvm::Function *Fn; 6118 llvm::Constant *Addr; 6119 // Emit target region as a standalone region. 6120 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6121 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6122 assert(Fn && Addr && "Target device function emission failed."); 6123 } 6124 6125 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6126 const OMPTargetTeamsDirective &S) { 6127 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6128 emitTargetTeamsRegion(CGF, Action, S); 6129 }; 6130 emitCommonOMPTargetDirective(*this, S, CodeGen); 6131 } 6132 6133 static void 6134 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6135 const OMPTargetTeamsDistributeDirective &S) { 6136 Action.Enter(CGF); 6137 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6138 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6139 }; 6140 6141 // Emit teams region as a standalone region. 6142 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6143 PrePostActionTy &Action) { 6144 Action.Enter(CGF); 6145 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6146 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6147 (void)PrivateScope.Privatize(); 6148 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6149 CodeGenDistribute); 6150 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6151 }; 6152 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6153 emitPostUpdateForReductionClause(CGF, S, 6154 [](CodeGenFunction &) { return nullptr; }); 6155 } 6156 6157 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6158 CodeGenModule &CGM, StringRef ParentName, 6159 const OMPTargetTeamsDistributeDirective &S) { 6160 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6161 emitTargetTeamsDistributeRegion(CGF, Action, S); 6162 }; 6163 llvm::Function *Fn; 6164 llvm::Constant *Addr; 6165 // Emit target region as a standalone region. 6166 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6167 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6168 assert(Fn && Addr && "Target device function emission failed."); 6169 } 6170 6171 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6172 const OMPTargetTeamsDistributeDirective &S) { 6173 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6174 emitTargetTeamsDistributeRegion(CGF, Action, S); 6175 }; 6176 emitCommonOMPTargetDirective(*this, S, CodeGen); 6177 } 6178 6179 static void emitTargetTeamsDistributeSimdRegion( 6180 CodeGenFunction &CGF, PrePostActionTy &Action, 6181 const OMPTargetTeamsDistributeSimdDirective &S) { 6182 Action.Enter(CGF); 6183 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6184 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6185 }; 6186 6187 // Emit teams region as a standalone region. 6188 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6189 PrePostActionTy &Action) { 6190 Action.Enter(CGF); 6191 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6192 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6193 (void)PrivateScope.Privatize(); 6194 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6195 CodeGenDistribute); 6196 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6197 }; 6198 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6199 emitPostUpdateForReductionClause(CGF, S, 6200 [](CodeGenFunction &) { return nullptr; }); 6201 } 6202 6203 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6204 CodeGenModule &CGM, StringRef ParentName, 6205 const OMPTargetTeamsDistributeSimdDirective &S) { 6206 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6207 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6208 }; 6209 llvm::Function *Fn; 6210 llvm::Constant *Addr; 6211 // Emit target region as a standalone region. 6212 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6213 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6214 assert(Fn && Addr && "Target device function emission failed."); 6215 } 6216 6217 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6218 const OMPTargetTeamsDistributeSimdDirective &S) { 6219 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6220 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6221 }; 6222 emitCommonOMPTargetDirective(*this, S, CodeGen); 6223 } 6224 6225 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6226 const OMPTeamsDistributeDirective &S) { 6227 6228 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6229 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6230 }; 6231 6232 // Emit teams region as a standalone region. 6233 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6234 PrePostActionTy &Action) { 6235 Action.Enter(CGF); 6236 OMPPrivateScope PrivateScope(CGF); 6237 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6238 (void)PrivateScope.Privatize(); 6239 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6240 CodeGenDistribute); 6241 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6242 }; 6243 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6244 emitPostUpdateForReductionClause(*this, S, 6245 [](CodeGenFunction &) { return nullptr; }); 6246 } 6247 6248 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6249 const OMPTeamsDistributeSimdDirective &S) { 6250 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6251 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6252 }; 6253 6254 // Emit teams region as a standalone region. 6255 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6256 PrePostActionTy &Action) { 6257 Action.Enter(CGF); 6258 OMPPrivateScope PrivateScope(CGF); 6259 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6260 (void)PrivateScope.Privatize(); 6261 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6262 CodeGenDistribute); 6263 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6264 }; 6265 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6266 emitPostUpdateForReductionClause(*this, S, 6267 [](CodeGenFunction &) { return nullptr; }); 6268 } 6269 6270 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6271 const OMPTeamsDistributeParallelForDirective &S) { 6272 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6273 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6274 S.getDistInc()); 6275 }; 6276 6277 // Emit teams region as a standalone region. 6278 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6279 PrePostActionTy &Action) { 6280 Action.Enter(CGF); 6281 OMPPrivateScope PrivateScope(CGF); 6282 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6283 (void)PrivateScope.Privatize(); 6284 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6285 CodeGenDistribute); 6286 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6287 }; 6288 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6289 emitPostUpdateForReductionClause(*this, S, 6290 [](CodeGenFunction &) { return nullptr; }); 6291 } 6292 6293 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6294 const OMPTeamsDistributeParallelForSimdDirective &S) { 6295 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6296 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6297 S.getDistInc()); 6298 }; 6299 6300 // Emit teams region as a standalone region. 6301 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6302 PrePostActionTy &Action) { 6303 Action.Enter(CGF); 6304 OMPPrivateScope PrivateScope(CGF); 6305 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6306 (void)PrivateScope.Privatize(); 6307 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6308 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6309 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6310 }; 6311 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6312 CodeGen); 6313 emitPostUpdateForReductionClause(*this, S, 6314 [](CodeGenFunction &) { return nullptr; }); 6315 } 6316 6317 static void emitTargetTeamsDistributeParallelForRegion( 6318 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 6319 PrePostActionTy &Action) { 6320 Action.Enter(CGF); 6321 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6322 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6323 S.getDistInc()); 6324 }; 6325 6326 // Emit teams region as a standalone region. 6327 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6328 PrePostActionTy &Action) { 6329 Action.Enter(CGF); 6330 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6331 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6332 (void)PrivateScope.Privatize(); 6333 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6334 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6335 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6336 }; 6337 6338 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 6339 CodeGenTeams); 6340 emitPostUpdateForReductionClause(CGF, S, 6341 [](CodeGenFunction &) { return nullptr; }); 6342 } 6343 6344 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 6345 CodeGenModule &CGM, StringRef ParentName, 6346 const OMPTargetTeamsDistributeParallelForDirective &S) { 6347 // Emit SPMD target teams distribute parallel for region as a standalone 6348 // region. 6349 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6350 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6351 }; 6352 llvm::Function *Fn; 6353 llvm::Constant *Addr; 6354 // Emit target region as a standalone region. 6355 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6356 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6357 assert(Fn && Addr && "Target device function emission failed."); 6358 } 6359 6360 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 6361 const OMPTargetTeamsDistributeParallelForDirective &S) { 6362 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6363 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6364 }; 6365 emitCommonOMPTargetDirective(*this, S, CodeGen); 6366 } 6367 6368 static void emitTargetTeamsDistributeParallelForSimdRegion( 6369 CodeGenFunction &CGF, 6370 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 6371 PrePostActionTy &Action) { 6372 Action.Enter(CGF); 6373 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6374 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6375 S.getDistInc()); 6376 }; 6377 6378 // Emit teams region as a standalone region. 6379 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6380 PrePostActionTy &Action) { 6381 Action.Enter(CGF); 6382 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6383 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6384 (void)PrivateScope.Privatize(); 6385 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6386 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6387 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6388 }; 6389 6390 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 6391 CodeGenTeams); 6392 emitPostUpdateForReductionClause(CGF, S, 6393 [](CodeGenFunction &) { return nullptr; }); 6394 } 6395 6396 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 6397 CodeGenModule &CGM, StringRef ParentName, 6398 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6399 // Emit SPMD target teams distribute parallel for simd region as a standalone 6400 // region. 6401 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6402 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6403 }; 6404 llvm::Function *Fn; 6405 llvm::Constant *Addr; 6406 // Emit target region as a standalone region. 6407 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6408 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6409 assert(Fn && Addr && "Target device function emission failed."); 6410 } 6411 6412 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 6413 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6414 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6415 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6416 }; 6417 emitCommonOMPTargetDirective(*this, S, CodeGen); 6418 } 6419 6420 void CodeGenFunction::EmitOMPCancellationPointDirective( 6421 const OMPCancellationPointDirective &S) { 6422 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 6423 S.getCancelRegion()); 6424 } 6425 6426 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 6427 const Expr *IfCond = nullptr; 6428 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6429 if (C->getNameModifier() == OMPD_unknown || 6430 C->getNameModifier() == OMPD_cancel) { 6431 IfCond = C->getCondition(); 6432 break; 6433 } 6434 } 6435 if (CGM.getLangOpts().OpenMPIRBuilder) { 6436 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6437 // TODO: This check is necessary as we only generate `omp parallel` through 6438 // the OpenMPIRBuilder for now. 6439 if (S.getCancelRegion() == OMPD_parallel || 6440 S.getCancelRegion() == OMPD_sections || 6441 S.getCancelRegion() == OMPD_section) { 6442 llvm::Value *IfCondition = nullptr; 6443 if (IfCond) 6444 IfCondition = EmitScalarExpr(IfCond, 6445 /*IgnoreResultAssign=*/true); 6446 return Builder.restoreIP( 6447 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 6448 } 6449 } 6450 6451 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 6452 S.getCancelRegion()); 6453 } 6454 6455 CodeGenFunction::JumpDest 6456 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 6457 if (Kind == OMPD_parallel || Kind == OMPD_task || 6458 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 6459 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 6460 return ReturnBlock; 6461 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 6462 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 6463 Kind == OMPD_distribute_parallel_for || 6464 Kind == OMPD_target_parallel_for || 6465 Kind == OMPD_teams_distribute_parallel_for || 6466 Kind == OMPD_target_teams_distribute_parallel_for); 6467 return OMPCancelStack.getExitBlock(); 6468 } 6469 6470 void CodeGenFunction::EmitOMPUseDevicePtrClause( 6471 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 6472 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6473 auto OrigVarIt = C.varlist_begin(); 6474 auto InitIt = C.inits().begin(); 6475 for (const Expr *PvtVarIt : C.private_copies()) { 6476 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6477 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6478 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6479 6480 // In order to identify the right initializer we need to match the 6481 // declaration used by the mapping logic. In some cases we may get 6482 // OMPCapturedExprDecl that refers to the original declaration. 6483 const ValueDecl *MatchingVD = OrigVD; 6484 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6485 // OMPCapturedExprDecl are used to privative fields of the current 6486 // structure. 6487 const auto *ME = cast<MemberExpr>(OED->getInit()); 6488 assert(isa<CXXThisExpr>(ME->getBase()) && 6489 "Base should be the current struct!"); 6490 MatchingVD = ME->getMemberDecl(); 6491 } 6492 6493 // If we don't have information about the current list item, move on to 6494 // the next one. 6495 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6496 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6497 continue; 6498 6499 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 6500 InitAddrIt, InitVD, 6501 PvtVD]() { 6502 // Initialize the temporary initialization variable with the address we 6503 // get from the runtime library. We have to cast the source address 6504 // because it is always a void *. References are materialized in the 6505 // privatization scope, so the initialization here disregards the fact 6506 // the original variable is a reference. 6507 QualType AddrQTy = 6508 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 6509 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 6510 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 6511 setAddrOfLocalVar(InitVD, InitAddr); 6512 6513 // Emit private declaration, it will be initialized by the value we 6514 // declaration we just added to the local declarations map. 6515 EmitDecl(*PvtVD); 6516 6517 // The initialization variables reached its purpose in the emission 6518 // of the previous declaration, so we don't need it anymore. 6519 LocalDeclMap.erase(InitVD); 6520 6521 // Return the address of the private variable. 6522 return GetAddrOfLocalVar(PvtVD); 6523 }); 6524 assert(IsRegistered && "firstprivate var already registered as private"); 6525 // Silence the warning about unused variable. 6526 (void)IsRegistered; 6527 6528 ++OrigVarIt; 6529 ++InitIt; 6530 } 6531 } 6532 6533 static const VarDecl *getBaseDecl(const Expr *Ref) { 6534 const Expr *Base = Ref->IgnoreParenImpCasts(); 6535 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6536 Base = OASE->getBase()->IgnoreParenImpCasts(); 6537 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6538 Base = ASE->getBase()->IgnoreParenImpCasts(); 6539 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6540 } 6541 6542 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6543 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6544 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6545 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6546 for (const Expr *Ref : C.varlists()) { 6547 const VarDecl *OrigVD = getBaseDecl(Ref); 6548 if (!Processed.insert(OrigVD).second) 6549 continue; 6550 // In order to identify the right initializer we need to match the 6551 // declaration used by the mapping logic. In some cases we may get 6552 // OMPCapturedExprDecl that refers to the original declaration. 6553 const ValueDecl *MatchingVD = OrigVD; 6554 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6555 // OMPCapturedExprDecl are used to privative fields of the current 6556 // structure. 6557 const auto *ME = cast<MemberExpr>(OED->getInit()); 6558 assert(isa<CXXThisExpr>(ME->getBase()) && 6559 "Base should be the current struct!"); 6560 MatchingVD = ME->getMemberDecl(); 6561 } 6562 6563 // If we don't have information about the current list item, move on to 6564 // the next one. 6565 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6566 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6567 continue; 6568 6569 Address PrivAddr = InitAddrIt->getSecond(); 6570 // For declrefs and variable length array need to load the pointer for 6571 // correct mapping, since the pointer to the data was passed to the runtime. 6572 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6573 MatchingVD->getType()->isArrayType()) 6574 PrivAddr = 6575 EmitLoadOfPointer(PrivAddr, getContext() 6576 .getPointerType(OrigVD->getType()) 6577 ->castAs<PointerType>()); 6578 llvm::Type *RealTy = 6579 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6580 ->getPointerTo(); 6581 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6582 6583 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6584 } 6585 } 6586 6587 // Generate the instructions for '#pragma omp target data' directive. 6588 void CodeGenFunction::EmitOMPTargetDataDirective( 6589 const OMPTargetDataDirective &S) { 6590 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 6591 /*SeparateBeginEndCalls=*/true); 6592 6593 // Create a pre/post action to signal the privatization of the device pointer. 6594 // This action can be replaced by the OpenMP runtime code generation to 6595 // deactivate privatization. 6596 bool PrivatizeDevicePointers = false; 6597 class DevicePointerPrivActionTy : public PrePostActionTy { 6598 bool &PrivatizeDevicePointers; 6599 6600 public: 6601 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6602 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6603 void Enter(CodeGenFunction &CGF) override { 6604 PrivatizeDevicePointers = true; 6605 } 6606 }; 6607 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6608 6609 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6610 CodeGenFunction &CGF, PrePostActionTy &Action) { 6611 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6612 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6613 }; 6614 6615 // Codegen that selects whether to generate the privatization code or not. 6616 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6617 &InnermostCodeGen](CodeGenFunction &CGF, 6618 PrePostActionTy &Action) { 6619 RegionCodeGenTy RCG(InnermostCodeGen); 6620 PrivatizeDevicePointers = false; 6621 6622 // Call the pre-action to change the status of PrivatizeDevicePointers if 6623 // needed. 6624 Action.Enter(CGF); 6625 6626 if (PrivatizeDevicePointers) { 6627 OMPPrivateScope PrivateScope(CGF); 6628 // Emit all instances of the use_device_ptr clause. 6629 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6630 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6631 Info.CaptureDeviceAddrMap); 6632 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6633 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6634 Info.CaptureDeviceAddrMap); 6635 (void)PrivateScope.Privatize(); 6636 RCG(CGF); 6637 } else { 6638 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6639 RCG(CGF); 6640 } 6641 }; 6642 6643 // Forward the provided action to the privatization codegen. 6644 RegionCodeGenTy PrivRCG(PrivCodeGen); 6645 PrivRCG.setAction(Action); 6646 6647 // Notwithstanding the body of the region is emitted as inlined directive, 6648 // we don't use an inline scope as changes in the references inside the 6649 // region are expected to be visible outside, so we do not privative them. 6650 OMPLexicalScope Scope(CGF, S); 6651 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6652 PrivRCG); 6653 }; 6654 6655 RegionCodeGenTy RCG(CodeGen); 6656 6657 // If we don't have target devices, don't bother emitting the data mapping 6658 // code. 6659 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6660 RCG(*this); 6661 return; 6662 } 6663 6664 // Check if we have any if clause associated with the directive. 6665 const Expr *IfCond = nullptr; 6666 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6667 IfCond = C->getCondition(); 6668 6669 // Check if we have any device clause associated with the directive. 6670 const Expr *Device = nullptr; 6671 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6672 Device = C->getDevice(); 6673 6674 // Set the action to signal privatization of device pointers. 6675 RCG.setAction(PrivAction); 6676 6677 // Emit region code. 6678 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6679 Info); 6680 } 6681 6682 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6683 const OMPTargetEnterDataDirective &S) { 6684 // If we don't have target devices, don't bother emitting the data mapping 6685 // code. 6686 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6687 return; 6688 6689 // Check if we have any if clause associated with the directive. 6690 const Expr *IfCond = nullptr; 6691 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6692 IfCond = C->getCondition(); 6693 6694 // Check if we have any device clause associated with the directive. 6695 const Expr *Device = nullptr; 6696 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6697 Device = C->getDevice(); 6698 6699 OMPLexicalScope Scope(*this, S, OMPD_task); 6700 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6701 } 6702 6703 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6704 const OMPTargetExitDataDirective &S) { 6705 // If we don't have target devices, don't bother emitting the data mapping 6706 // code. 6707 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6708 return; 6709 6710 // Check if we have any if clause associated with the directive. 6711 const Expr *IfCond = nullptr; 6712 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6713 IfCond = C->getCondition(); 6714 6715 // Check if we have any device clause associated with the directive. 6716 const Expr *Device = nullptr; 6717 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6718 Device = C->getDevice(); 6719 6720 OMPLexicalScope Scope(*this, S, OMPD_task); 6721 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6722 } 6723 6724 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6725 const OMPTargetParallelDirective &S, 6726 PrePostActionTy &Action) { 6727 // Get the captured statement associated with the 'parallel' region. 6728 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6729 Action.Enter(CGF); 6730 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6731 Action.Enter(CGF); 6732 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6733 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6734 CGF.EmitOMPPrivateClause(S, PrivateScope); 6735 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6736 (void)PrivateScope.Privatize(); 6737 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6738 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6739 // TODO: Add support for clauses. 6740 CGF.EmitStmt(CS->getCapturedStmt()); 6741 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6742 }; 6743 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6744 emitEmptyBoundParameters); 6745 emitPostUpdateForReductionClause(CGF, S, 6746 [](CodeGenFunction &) { return nullptr; }); 6747 } 6748 6749 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6750 CodeGenModule &CGM, StringRef ParentName, 6751 const OMPTargetParallelDirective &S) { 6752 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6753 emitTargetParallelRegion(CGF, S, Action); 6754 }; 6755 llvm::Function *Fn; 6756 llvm::Constant *Addr; 6757 // Emit target region as a standalone region. 6758 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6759 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6760 assert(Fn && Addr && "Target device function emission failed."); 6761 } 6762 6763 void CodeGenFunction::EmitOMPTargetParallelDirective( 6764 const OMPTargetParallelDirective &S) { 6765 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6766 emitTargetParallelRegion(CGF, S, Action); 6767 }; 6768 emitCommonOMPTargetDirective(*this, S, CodeGen); 6769 } 6770 6771 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6772 const OMPTargetParallelForDirective &S, 6773 PrePostActionTy &Action) { 6774 Action.Enter(CGF); 6775 // Emit directive as a combined directive that consists of two implicit 6776 // directives: 'parallel' with 'for' directive. 6777 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6778 Action.Enter(CGF); 6779 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6780 CGF, OMPD_target_parallel_for, S.hasCancel()); 6781 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6782 emitDispatchForLoopBounds); 6783 }; 6784 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6785 emitEmptyBoundParameters); 6786 } 6787 6788 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6789 CodeGenModule &CGM, StringRef ParentName, 6790 const OMPTargetParallelForDirective &S) { 6791 // Emit SPMD target parallel for region as a standalone region. 6792 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6793 emitTargetParallelForRegion(CGF, S, Action); 6794 }; 6795 llvm::Function *Fn; 6796 llvm::Constant *Addr; 6797 // Emit target region as a standalone region. 6798 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6799 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6800 assert(Fn && Addr && "Target device function emission failed."); 6801 } 6802 6803 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6804 const OMPTargetParallelForDirective &S) { 6805 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6806 emitTargetParallelForRegion(CGF, S, Action); 6807 }; 6808 emitCommonOMPTargetDirective(*this, S, CodeGen); 6809 } 6810 6811 static void 6812 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 6813 const OMPTargetParallelForSimdDirective &S, 6814 PrePostActionTy &Action) { 6815 Action.Enter(CGF); 6816 // Emit directive as a combined directive that consists of two implicit 6817 // directives: 'parallel' with 'for' directive. 6818 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6819 Action.Enter(CGF); 6820 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6821 emitDispatchForLoopBounds); 6822 }; 6823 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 6824 emitEmptyBoundParameters); 6825 } 6826 6827 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 6828 CodeGenModule &CGM, StringRef ParentName, 6829 const OMPTargetParallelForSimdDirective &S) { 6830 // Emit SPMD target parallel for region as a standalone region. 6831 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6832 emitTargetParallelForSimdRegion(CGF, S, Action); 6833 }; 6834 llvm::Function *Fn; 6835 llvm::Constant *Addr; 6836 // Emit target region as a standalone region. 6837 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6838 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6839 assert(Fn && Addr && "Target device function emission failed."); 6840 } 6841 6842 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 6843 const OMPTargetParallelForSimdDirective &S) { 6844 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6845 emitTargetParallelForSimdRegion(CGF, S, Action); 6846 }; 6847 emitCommonOMPTargetDirective(*this, S, CodeGen); 6848 } 6849 6850 /// Emit a helper variable and return corresponding lvalue. 6851 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 6852 const ImplicitParamDecl *PVD, 6853 CodeGenFunction::OMPPrivateScope &Privates) { 6854 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 6855 Privates.addPrivate(VDecl, 6856 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 6857 } 6858 6859 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 6860 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 6861 // Emit outlined function for task construct. 6862 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 6863 Address CapturedStruct = Address::invalid(); 6864 { 6865 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6866 CapturedStruct = GenerateCapturedStmtArgument(*CS); 6867 } 6868 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 6869 const Expr *IfCond = nullptr; 6870 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6871 if (C->getNameModifier() == OMPD_unknown || 6872 C->getNameModifier() == OMPD_taskloop) { 6873 IfCond = C->getCondition(); 6874 break; 6875 } 6876 } 6877 6878 OMPTaskDataTy Data; 6879 // Check if taskloop must be emitted without taskgroup. 6880 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 6881 // TODO: Check if we should emit tied or untied task. 6882 Data.Tied = true; 6883 // Set scheduling for taskloop 6884 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 6885 // grainsize clause 6886 Data.Schedule.setInt(/*IntVal=*/false); 6887 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 6888 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 6889 // num_tasks clause 6890 Data.Schedule.setInt(/*IntVal=*/true); 6891 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 6892 } 6893 6894 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 6895 // if (PreCond) { 6896 // for (IV in 0..LastIteration) BODY; 6897 // <Final counter/linear vars updates>; 6898 // } 6899 // 6900 6901 // Emit: if (PreCond) - begin. 6902 // If the condition constant folds and can be elided, avoid emitting the 6903 // whole loop. 6904 bool CondConstant; 6905 llvm::BasicBlock *ContBlock = nullptr; 6906 OMPLoopScope PreInitScope(CGF, S); 6907 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 6908 if (!CondConstant) 6909 return; 6910 } else { 6911 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 6912 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 6913 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 6914 CGF.getProfileCount(&S)); 6915 CGF.EmitBlock(ThenBlock); 6916 CGF.incrementProfileCounter(&S); 6917 } 6918 6919 (void)CGF.EmitOMPLinearClauseInit(S); 6920 6921 OMPPrivateScope LoopScope(CGF); 6922 // Emit helper vars inits. 6923 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 6924 auto *I = CS->getCapturedDecl()->param_begin(); 6925 auto *LBP = std::next(I, LowerBound); 6926 auto *UBP = std::next(I, UpperBound); 6927 auto *STP = std::next(I, Stride); 6928 auto *LIP = std::next(I, LastIter); 6929 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 6930 LoopScope); 6931 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 6932 LoopScope); 6933 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 6934 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 6935 LoopScope); 6936 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 6937 CGF.EmitOMPLinearClause(S, LoopScope); 6938 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 6939 (void)LoopScope.Privatize(); 6940 // Emit the loop iteration variable. 6941 const Expr *IVExpr = S.getIterationVariable(); 6942 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 6943 CGF.EmitVarDecl(*IVDecl); 6944 CGF.EmitIgnoredExpr(S.getInit()); 6945 6946 // Emit the iterations count variable. 6947 // If it is not a variable, Sema decided to calculate iterations count on 6948 // each iteration (e.g., it is foldable into a constant). 6949 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 6950 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 6951 // Emit calculation of the iterations count. 6952 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 6953 } 6954 6955 { 6956 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6957 emitCommonSimdLoop( 6958 CGF, S, 6959 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6960 if (isOpenMPSimdDirective(S.getDirectiveKind())) 6961 CGF.EmitOMPSimdInit(S); 6962 }, 6963 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 6964 CGF.EmitOMPInnerLoop( 6965 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 6966 [&S](CodeGenFunction &CGF) { 6967 emitOMPLoopBodyWithStopPoint(CGF, S, 6968 CodeGenFunction::JumpDest()); 6969 }, 6970 [](CodeGenFunction &) {}); 6971 }); 6972 } 6973 // Emit: if (PreCond) - end. 6974 if (ContBlock) { 6975 CGF.EmitBranch(ContBlock); 6976 CGF.EmitBlock(ContBlock, true); 6977 } 6978 // Emit final copy of the lastprivate variables if IsLastIter != 0. 6979 if (HasLastprivateClause) { 6980 CGF.EmitOMPLastprivateClauseFinal( 6981 S, isOpenMPSimdDirective(S.getDirectiveKind()), 6982 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 6983 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6984 (*LIP)->getType(), S.getBeginLoc()))); 6985 } 6986 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 6987 return CGF.Builder.CreateIsNotNull( 6988 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6989 (*LIP)->getType(), S.getBeginLoc())); 6990 }); 6991 }; 6992 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 6993 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 6994 const OMPTaskDataTy &Data) { 6995 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 6996 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 6997 OMPLoopScope PreInitScope(CGF, S); 6998 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 6999 OutlinedFn, SharedsTy, 7000 CapturedStruct, IfCond, Data); 7001 }; 7002 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7003 CodeGen); 7004 }; 7005 if (Data.Nogroup) { 7006 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7007 } else { 7008 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7009 *this, 7010 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7011 PrePostActionTy &Action) { 7012 Action.Enter(CGF); 7013 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7014 Data); 7015 }, 7016 S.getBeginLoc()); 7017 } 7018 } 7019 7020 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7021 auto LPCRegion = 7022 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7023 EmitOMPTaskLoopBasedDirective(S); 7024 } 7025 7026 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7027 const OMPTaskLoopSimdDirective &S) { 7028 auto LPCRegion = 7029 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7030 OMPLexicalScope Scope(*this, S); 7031 EmitOMPTaskLoopBasedDirective(S); 7032 } 7033 7034 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7035 const OMPMasterTaskLoopDirective &S) { 7036 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7037 Action.Enter(CGF); 7038 EmitOMPTaskLoopBasedDirective(S); 7039 }; 7040 auto LPCRegion = 7041 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7042 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 7043 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7044 } 7045 7046 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7047 const OMPMasterTaskLoopSimdDirective &S) { 7048 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7049 Action.Enter(CGF); 7050 EmitOMPTaskLoopBasedDirective(S); 7051 }; 7052 auto LPCRegion = 7053 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7054 OMPLexicalScope Scope(*this, S); 7055 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7056 } 7057 7058 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7059 const OMPParallelMasterTaskLoopDirective &S) { 7060 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7061 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7062 PrePostActionTy &Action) { 7063 Action.Enter(CGF); 7064 CGF.EmitOMPTaskLoopBasedDirective(S); 7065 }; 7066 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7067 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7068 S.getBeginLoc()); 7069 }; 7070 auto LPCRegion = 7071 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7072 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7073 emitEmptyBoundParameters); 7074 } 7075 7076 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7077 const OMPParallelMasterTaskLoopSimdDirective &S) { 7078 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7079 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7080 PrePostActionTy &Action) { 7081 Action.Enter(CGF); 7082 CGF.EmitOMPTaskLoopBasedDirective(S); 7083 }; 7084 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7085 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7086 S.getBeginLoc()); 7087 }; 7088 auto LPCRegion = 7089 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7090 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7091 emitEmptyBoundParameters); 7092 } 7093 7094 // Generate the instructions for '#pragma omp target update' directive. 7095 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7096 const OMPTargetUpdateDirective &S) { 7097 // If we don't have target devices, don't bother emitting the data mapping 7098 // code. 7099 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7100 return; 7101 7102 // Check if we have any if clause associated with the directive. 7103 const Expr *IfCond = nullptr; 7104 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7105 IfCond = C->getCondition(); 7106 7107 // Check if we have any device clause associated with the directive. 7108 const Expr *Device = nullptr; 7109 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7110 Device = C->getDevice(); 7111 7112 OMPLexicalScope Scope(*this, S, OMPD_task); 7113 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7114 } 7115 7116 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7117 const OMPExecutableDirective &D) { 7118 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7119 EmitOMPScanDirective(*SD); 7120 return; 7121 } 7122 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7123 return; 7124 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7125 OMPPrivateScope GlobalsScope(CGF); 7126 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7127 // Capture global firstprivates to avoid crash. 7128 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7129 for (const Expr *Ref : C->varlists()) { 7130 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7131 if (!DRE) 7132 continue; 7133 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7134 if (!VD || VD->hasLocalStorage()) 7135 continue; 7136 if (!CGF.LocalDeclMap.count(VD)) { 7137 LValue GlobLVal = CGF.EmitLValue(Ref); 7138 GlobalsScope.addPrivate( 7139 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7140 } 7141 } 7142 } 7143 } 7144 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7145 (void)GlobalsScope.Privatize(); 7146 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7147 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7148 } else { 7149 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7150 for (const Expr *E : LD->counters()) { 7151 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7152 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7153 LValue GlobLVal = CGF.EmitLValue(E); 7154 GlobalsScope.addPrivate( 7155 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7156 } 7157 if (isa<OMPCapturedExprDecl>(VD)) { 7158 // Emit only those that were not explicitly referenced in clauses. 7159 if (!CGF.LocalDeclMap.count(VD)) 7160 CGF.EmitVarDecl(*VD); 7161 } 7162 } 7163 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7164 if (!C->getNumForLoops()) 7165 continue; 7166 for (unsigned I = LD->getLoopsNumber(), 7167 E = C->getLoopNumIterations().size(); 7168 I < E; ++I) { 7169 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7170 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7171 // Emit only those that were not explicitly referenced in clauses. 7172 if (!CGF.LocalDeclMap.count(VD)) 7173 CGF.EmitVarDecl(*VD); 7174 } 7175 } 7176 } 7177 } 7178 (void)GlobalsScope.Privatize(); 7179 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7180 } 7181 }; 7182 if (D.getDirectiveKind() == OMPD_atomic || 7183 D.getDirectiveKind() == OMPD_critical || 7184 D.getDirectiveKind() == OMPD_section || 7185 D.getDirectiveKind() == OMPD_master || 7186 D.getDirectiveKind() == OMPD_masked) { 7187 EmitStmt(D.getAssociatedStmt()); 7188 } else { 7189 auto LPCRegion = 7190 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7191 OMPSimdLexicalScope Scope(*this, D); 7192 CGM.getOpenMPRuntime().emitInlinedDirective( 7193 *this, 7194 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7195 : D.getDirectiveKind(), 7196 CodeGen); 7197 } 7198 // Check for outer lastprivate conditional update. 7199 checkForLastprivateConditionalUpdate(*this, D); 7200 } 7201