1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit OpenMP nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCleanup.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Stmt.h"
19 #include "clang/AST/StmtOpenMP.h"
20 #include "clang/AST/DeclOpenMP.h"
21 #include "clang/Basic/PrettyStackTrace.h"
22 using namespace clang;
23 using namespace CodeGen;
24 
25 namespace {
26 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
27 /// for captured expressions.
28 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
29   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
30     for (const auto *C : S.clauses()) {
31       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
32         if (const auto *PreInit =
33                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
34           for (const auto *I : PreInit->decls()) {
35             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
36               CGF.EmitVarDecl(cast<VarDecl>(*I));
37             } else {
38               CodeGenFunction::AutoVarEmission Emission =
39                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
40               CGF.EmitAutoVarCleanups(Emission);
41             }
42           }
43         }
44       }
45     }
46   }
47   CodeGenFunction::OMPPrivateScope InlinedShareds;
48 
49   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
50     return CGF.LambdaCaptureFields.lookup(VD) ||
51            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
52            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
53   }
54 
55 public:
56   OMPLexicalScope(
57       CodeGenFunction &CGF, const OMPExecutableDirective &S,
58       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
59       const bool EmitPreInitStmt = true)
60       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
61         InlinedShareds(CGF) {
62     if (EmitPreInitStmt)
63       emitPreInitStmt(CGF, S);
64     if (!CapturedRegion.hasValue())
65       return;
66     assert(S.hasAssociatedStmt() &&
67            "Expected associated statement for inlined directive.");
68     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
69     for (const auto &C : CS->captures()) {
70       if (C.capturesVariable() || C.capturesVariableByCopy()) {
71         auto *VD = C.getCapturedVar();
72         assert(VD == VD->getCanonicalDecl() &&
73                "Canonical decl must be captured.");
74         DeclRefExpr DRE(
75             CGF.getContext(), const_cast<VarDecl *>(VD),
76             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
77                                        InlinedShareds.isGlobalVarCaptured(VD)),
78             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
79         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
80           return CGF.EmitLValue(&DRE).getAddress();
81         });
82       }
83     }
84     (void)InlinedShareds.Privatize();
85   }
86 };
87 
88 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
89 /// for captured expressions.
90 class OMPParallelScope final : public OMPLexicalScope {
91   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
92     OpenMPDirectiveKind Kind = S.getDirectiveKind();
93     return !(isOpenMPTargetExecutionDirective(Kind) ||
94              isOpenMPLoopBoundSharingDirective(Kind)) &&
95            isOpenMPParallelDirective(Kind);
96   }
97 
98 public:
99   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
100       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
101                         EmitPreInitStmt(S)) {}
102 };
103 
104 /// Lexical scope for OpenMP teams construct, that handles correct codegen
105 /// for captured expressions.
106 class OMPTeamsScope final : public OMPLexicalScope {
107   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
108     OpenMPDirectiveKind Kind = S.getDirectiveKind();
109     return !isOpenMPTargetExecutionDirective(Kind) &&
110            isOpenMPTeamsDirective(Kind);
111   }
112 
113 public:
114   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
115       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
116                         EmitPreInitStmt(S)) {}
117 };
118 
119 /// Private scope for OpenMP loop-based directives, that supports capturing
120 /// of used expression from loop statement.
121 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
122   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
123     CodeGenFunction::OMPMapVars PreCondVars;
124     llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
125     for (const auto *E : S.counters()) {
126       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
127       EmittedAsPrivate.insert(VD->getCanonicalDecl());
128       (void)PreCondVars.setVarAddr(
129           CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
130     }
131     // Mark private vars as undefs.
132     for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
133       for (const Expr *IRef : C->varlists()) {
134         const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
135         if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
136           (void)PreCondVars.setVarAddr(
137               CGF, OrigVD,
138               Address(llvm::UndefValue::get(
139                           CGF.ConvertTypeForMem(CGF.getContext().getPointerType(
140                               OrigVD->getType().getNonReferenceType()))),
141                       CGF.getContext().getDeclAlign(OrigVD)));
142         }
143       }
144     }
145     (void)PreCondVars.apply(CGF);
146     // Emit init, __range and __end variables for C++ range loops.
147     const Stmt *Body =
148         S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
149     for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) {
150       Body = OMPLoopDirective::tryToFindNextInnerLoop(
151           Body, /*TryImperfectlyNestedLoops=*/true);
152       if (auto *For = dyn_cast<ForStmt>(Body)) {
153         Body = For->getBody();
154       } else {
155         assert(isa<CXXForRangeStmt>(Body) &&
156                "Expected canonical for loop or range-based for loop.");
157         auto *CXXFor = cast<CXXForRangeStmt>(Body);
158         if (const Stmt *Init = CXXFor->getInit())
159           CGF.EmitStmt(Init);
160         CGF.EmitStmt(CXXFor->getRangeStmt());
161         CGF.EmitStmt(CXXFor->getEndStmt());
162         Body = CXXFor->getBody();
163       }
164     }
165     if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) {
166       for (const auto *I : PreInits->decls())
167         CGF.EmitVarDecl(cast<VarDecl>(*I));
168     }
169     PreCondVars.restore(CGF);
170   }
171 
172 public:
173   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
174       : CodeGenFunction::RunCleanupsScope(CGF) {
175     emitPreInitStmt(CGF, S);
176   }
177 };
178 
179 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
180   CodeGenFunction::OMPPrivateScope InlinedShareds;
181 
182   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
183     return CGF.LambdaCaptureFields.lookup(VD) ||
184            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
185            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
186             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
187   }
188 
189 public:
190   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
191       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
192         InlinedShareds(CGF) {
193     for (const auto *C : S.clauses()) {
194       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
195         if (const auto *PreInit =
196                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
197           for (const auto *I : PreInit->decls()) {
198             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
199               CGF.EmitVarDecl(cast<VarDecl>(*I));
200             } else {
201               CodeGenFunction::AutoVarEmission Emission =
202                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
203               CGF.EmitAutoVarCleanups(Emission);
204             }
205           }
206         }
207       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
208         for (const Expr *E : UDP->varlists()) {
209           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
210           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
211             CGF.EmitVarDecl(*OED);
212         }
213       }
214     }
215     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
216       CGF.EmitOMPPrivateClause(S, InlinedShareds);
217     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
218       if (const Expr *E = TG->getReductionRef())
219         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
220     }
221     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
222     while (CS) {
223       for (auto &C : CS->captures()) {
224         if (C.capturesVariable() || C.capturesVariableByCopy()) {
225           auto *VD = C.getCapturedVar();
226           assert(VD == VD->getCanonicalDecl() &&
227                  "Canonical decl must be captured.");
228           DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
229                           isCapturedVar(CGF, VD) ||
230                               (CGF.CapturedStmtInfo &&
231                                InlinedShareds.isGlobalVarCaptured(VD)),
232                           VD->getType().getNonReferenceType(), VK_LValue,
233                           C.getLocation());
234           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
235             return CGF.EmitLValue(&DRE).getAddress();
236           });
237         }
238       }
239       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
240     }
241     (void)InlinedShareds.Privatize();
242   }
243 };
244 
245 } // namespace
246 
247 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
248                                          const OMPExecutableDirective &S,
249                                          const RegionCodeGenTy &CodeGen);
250 
251 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
252   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
253     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
254       OrigVD = OrigVD->getCanonicalDecl();
255       bool IsCaptured =
256           LambdaCaptureFields.lookup(OrigVD) ||
257           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
258           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
259       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured,
260                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
261       return EmitLValue(&DRE);
262     }
263   }
264   return EmitLValue(E);
265 }
266 
267 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
268   ASTContext &C = getContext();
269   llvm::Value *Size = nullptr;
270   auto SizeInChars = C.getTypeSizeInChars(Ty);
271   if (SizeInChars.isZero()) {
272     // getTypeSizeInChars() returns 0 for a VLA.
273     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
274       VlaSizePair VlaSize = getVLASize(VAT);
275       Ty = VlaSize.Type;
276       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
277                   : VlaSize.NumElts;
278     }
279     SizeInChars = C.getTypeSizeInChars(Ty);
280     if (SizeInChars.isZero())
281       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
282     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
283   }
284   return CGM.getSize(SizeInChars);
285 }
286 
287 void CodeGenFunction::GenerateOpenMPCapturedVars(
288     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
289   const RecordDecl *RD = S.getCapturedRecordDecl();
290   auto CurField = RD->field_begin();
291   auto CurCap = S.captures().begin();
292   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
293                                                  E = S.capture_init_end();
294        I != E; ++I, ++CurField, ++CurCap) {
295     if (CurField->hasCapturedVLAType()) {
296       const VariableArrayType *VAT = CurField->getCapturedVLAType();
297       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
298       CapturedVars.push_back(Val);
299     } else if (CurCap->capturesThis()) {
300       CapturedVars.push_back(CXXThisValue);
301     } else if (CurCap->capturesVariableByCopy()) {
302       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
303 
304       // If the field is not a pointer, we need to save the actual value
305       // and load it as a void pointer.
306       if (!CurField->getType()->isAnyPointerType()) {
307         ASTContext &Ctx = getContext();
308         Address DstAddr = CreateMemTemp(
309             Ctx.getUIntPtrType(),
310             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
311         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
312 
313         llvm::Value *SrcAddrVal = EmitScalarConversion(
314             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
315             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
316         LValue SrcLV =
317             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
318 
319         // Store the value using the source type pointer.
320         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
321 
322         // Load the value using the destination type pointer.
323         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
324       }
325       CapturedVars.push_back(CV);
326     } else {
327       assert(CurCap->capturesVariable() && "Expected capture by reference.");
328       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
329     }
330   }
331 }
332 
333 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
334                                     QualType DstType, StringRef Name,
335                                     LValue AddrLV) {
336   ASTContext &Ctx = CGF.getContext();
337 
338   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
339       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
340       Ctx.getPointerType(DstType), Loc);
341   Address TmpAddr =
342       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
343           .getAddress();
344   return TmpAddr;
345 }
346 
347 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
348   if (T->isLValueReferenceType())
349     return C.getLValueReferenceType(
350         getCanonicalParamType(C, T.getNonReferenceType()),
351         /*SpelledAsLValue=*/false);
352   if (T->isPointerType())
353     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
354   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
355     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
356       return getCanonicalParamType(C, VLA->getElementType());
357     if (!A->isVariablyModifiedType())
358       return C.getCanonicalType(T);
359   }
360   return C.getCanonicalParamType(T);
361 }
362 
363 namespace {
364   /// Contains required data for proper outlined function codegen.
365   struct FunctionOptions {
366     /// Captured statement for which the function is generated.
367     const CapturedStmt *S = nullptr;
368     /// true if cast to/from  UIntPtr is required for variables captured by
369     /// value.
370     const bool UIntPtrCastRequired = true;
371     /// true if only casted arguments must be registered as local args or VLA
372     /// sizes.
373     const bool RegisterCastedArgsOnly = false;
374     /// Name of the generated function.
375     const StringRef FunctionName;
376     explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
377                              bool RegisterCastedArgsOnly,
378                              StringRef FunctionName)
379         : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
380           RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
381           FunctionName(FunctionName) {}
382   };
383 }
384 
385 static llvm::Function *emitOutlinedFunctionPrologue(
386     CodeGenFunction &CGF, FunctionArgList &Args,
387     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
388         &LocalAddrs,
389     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
390         &VLASizes,
391     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
392   const CapturedDecl *CD = FO.S->getCapturedDecl();
393   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
394   assert(CD->hasBody() && "missing CapturedDecl body");
395 
396   CXXThisValue = nullptr;
397   // Build the argument list.
398   CodeGenModule &CGM = CGF.CGM;
399   ASTContext &Ctx = CGM.getContext();
400   FunctionArgList TargetArgs;
401   Args.append(CD->param_begin(),
402               std::next(CD->param_begin(), CD->getContextParamPosition()));
403   TargetArgs.append(
404       CD->param_begin(),
405       std::next(CD->param_begin(), CD->getContextParamPosition()));
406   auto I = FO.S->captures().begin();
407   FunctionDecl *DebugFunctionDecl = nullptr;
408   if (!FO.UIntPtrCastRequired) {
409     FunctionProtoType::ExtProtoInfo EPI;
410     QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI);
411     DebugFunctionDecl = FunctionDecl::Create(
412         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
413         SourceLocation(), DeclarationName(), FunctionTy,
414         Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static,
415         /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
416   }
417   for (const FieldDecl *FD : RD->fields()) {
418     QualType ArgType = FD->getType();
419     IdentifierInfo *II = nullptr;
420     VarDecl *CapVar = nullptr;
421 
422     // If this is a capture by copy and the type is not a pointer, the outlined
423     // function argument type should be uintptr and the value properly casted to
424     // uintptr. This is necessary given that the runtime library is only able to
425     // deal with pointers. We can pass in the same way the VLA type sizes to the
426     // outlined function.
427     if (FO.UIntPtrCastRequired &&
428         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
429          I->capturesVariableArrayType()))
430       ArgType = Ctx.getUIntPtrType();
431 
432     if (I->capturesVariable() || I->capturesVariableByCopy()) {
433       CapVar = I->getCapturedVar();
434       II = CapVar->getIdentifier();
435     } else if (I->capturesThis()) {
436       II = &Ctx.Idents.get("this");
437     } else {
438       assert(I->capturesVariableArrayType());
439       II = &Ctx.Idents.get("vla");
440     }
441     if (ArgType->isVariablyModifiedType())
442       ArgType = getCanonicalParamType(Ctx, ArgType);
443     VarDecl *Arg;
444     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
445       Arg = ParmVarDecl::Create(
446           Ctx, DebugFunctionDecl,
447           CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
448           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
449           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
450     } else {
451       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
452                                       II, ArgType, ImplicitParamDecl::Other);
453     }
454     Args.emplace_back(Arg);
455     // Do not cast arguments if we emit function with non-original types.
456     TargetArgs.emplace_back(
457         FO.UIntPtrCastRequired
458             ? Arg
459             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
460     ++I;
461   }
462   Args.append(
463       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
464       CD->param_end());
465   TargetArgs.append(
466       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
467       CD->param_end());
468 
469   // Create the function declaration.
470   const CGFunctionInfo &FuncInfo =
471       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
472   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
473 
474   auto *F =
475       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
476                              FO.FunctionName, &CGM.getModule());
477   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
478   if (CD->isNothrow())
479     F->setDoesNotThrow();
480   F->setDoesNotRecurse();
481 
482   // Generate the function.
483   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
484                     FO.S->getBeginLoc(), CD->getBody()->getBeginLoc());
485   unsigned Cnt = CD->getContextParamPosition();
486   I = FO.S->captures().begin();
487   for (const FieldDecl *FD : RD->fields()) {
488     // Do not map arguments if we emit function with non-original types.
489     Address LocalAddr(Address::invalid());
490     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
491       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
492                                                              TargetArgs[Cnt]);
493     } else {
494       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
495     }
496     // If we are capturing a pointer by copy we don't need to do anything, just
497     // use the value that we get from the arguments.
498     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
499       const VarDecl *CurVD = I->getCapturedVar();
500       if (!FO.RegisterCastedArgsOnly)
501         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
502       ++Cnt;
503       ++I;
504       continue;
505     }
506 
507     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
508                                         AlignmentSource::Decl);
509     if (FD->hasCapturedVLAType()) {
510       if (FO.UIntPtrCastRequired) {
511         ArgLVal = CGF.MakeAddrLValue(
512             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
513                                  Args[Cnt]->getName(), ArgLVal),
514             FD->getType(), AlignmentSource::Decl);
515       }
516       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
517       const VariableArrayType *VAT = FD->getCapturedVLAType();
518       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
519     } else if (I->capturesVariable()) {
520       const VarDecl *Var = I->getCapturedVar();
521       QualType VarTy = Var->getType();
522       Address ArgAddr = ArgLVal.getAddress();
523       if (ArgLVal.getType()->isLValueReferenceType()) {
524         ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
525       } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
526         assert(ArgLVal.getType()->isPointerType());
527         ArgAddr = CGF.EmitLoadOfPointer(
528             ArgAddr, ArgLVal.getType()->castAs<PointerType>());
529       }
530       if (!FO.RegisterCastedArgsOnly) {
531         LocalAddrs.insert(
532             {Args[Cnt],
533              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
534       }
535     } else if (I->capturesVariableByCopy()) {
536       assert(!FD->getType()->isAnyPointerType() &&
537              "Not expecting a captured pointer.");
538       const VarDecl *Var = I->getCapturedVar();
539       LocalAddrs.insert({Args[Cnt],
540                          {Var, FO.UIntPtrCastRequired
541                                    ? castValueFromUintptr(
542                                          CGF, I->getLocation(), FD->getType(),
543                                          Args[Cnt]->getName(), ArgLVal)
544                                    : ArgLVal.getAddress()}});
545     } else {
546       // If 'this' is captured, load it into CXXThisValue.
547       assert(I->capturesThis());
548       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
549       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}});
550     }
551     ++Cnt;
552     ++I;
553   }
554 
555   return F;
556 }
557 
558 llvm::Function *
559 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
560   assert(
561       CapturedStmtInfo &&
562       "CapturedStmtInfo should be set when generating the captured function");
563   const CapturedDecl *CD = S.getCapturedDecl();
564   // Build the argument list.
565   bool NeedWrapperFunction =
566       getDebugInfo() &&
567       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo;
568   FunctionArgList Args;
569   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
570   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
571   SmallString<256> Buffer;
572   llvm::raw_svector_ostream Out(Buffer);
573   Out << CapturedStmtInfo->getHelperName();
574   if (NeedWrapperFunction)
575     Out << "_debug__";
576   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
577                      Out.str());
578   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
579                                                    VLASizes, CXXThisValue, FO);
580   CodeGenFunction::OMPPrivateScope LocalScope(*this);
581   for (const auto &LocalAddrPair : LocalAddrs) {
582     if (LocalAddrPair.second.first) {
583       LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() {
584         return LocalAddrPair.second.second;
585       });
586     }
587   }
588   (void)LocalScope.Privatize();
589   for (const auto &VLASizePair : VLASizes)
590     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
591   PGO.assignRegionCounters(GlobalDecl(CD), F);
592   CapturedStmtInfo->EmitBody(*this, CD->getBody());
593   (void)LocalScope.ForceCleanup();
594   FinishFunction(CD->getBodyRBrace());
595   if (!NeedWrapperFunction)
596     return F;
597 
598   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
599                             /*RegisterCastedArgsOnly=*/true,
600                             CapturedStmtInfo->getHelperName());
601   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
602   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
603   Args.clear();
604   LocalAddrs.clear();
605   VLASizes.clear();
606   llvm::Function *WrapperF =
607       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
608                                    WrapperCGF.CXXThisValue, WrapperFO);
609   llvm::SmallVector<llvm::Value *, 4> CallArgs;
610   for (const auto *Arg : Args) {
611     llvm::Value *CallArg;
612     auto I = LocalAddrs.find(Arg);
613     if (I != LocalAddrs.end()) {
614       LValue LV = WrapperCGF.MakeAddrLValue(
615           I->second.second,
616           I->second.first ? I->second.first->getType() : Arg->getType(),
617           AlignmentSource::Decl);
618       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
619     } else {
620       auto EI = VLASizes.find(Arg);
621       if (EI != VLASizes.end()) {
622         CallArg = EI->second.second;
623       } else {
624         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
625                                               Arg->getType(),
626                                               AlignmentSource::Decl);
627         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
628       }
629     }
630     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
631   }
632   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(),
633                                                   F, CallArgs);
634   WrapperCGF.FinishFunction();
635   return WrapperF;
636 }
637 
638 //===----------------------------------------------------------------------===//
639 //                              OpenMP Directive Emission
640 //===----------------------------------------------------------------------===//
641 void CodeGenFunction::EmitOMPAggregateAssign(
642     Address DestAddr, Address SrcAddr, QualType OriginalType,
643     const llvm::function_ref<void(Address, Address)> CopyGen) {
644   // Perform element-by-element initialization.
645   QualType ElementTy;
646 
647   // Drill down to the base element type on both arrays.
648   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
649   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
650   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
651 
652   llvm::Value *SrcBegin = SrcAddr.getPointer();
653   llvm::Value *DestBegin = DestAddr.getPointer();
654   // Cast from pointer to array type to pointer to single element.
655   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
656   // The basic structure here is a while-do loop.
657   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
658   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
659   llvm::Value *IsEmpty =
660       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
661   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
662 
663   // Enter the loop body, making that address the current address.
664   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
665   EmitBlock(BodyBB);
666 
667   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
668 
669   llvm::PHINode *SrcElementPHI =
670     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
671   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
672   Address SrcElementCurrent =
673       Address(SrcElementPHI,
674               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
675 
676   llvm::PHINode *DestElementPHI =
677     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
678   DestElementPHI->addIncoming(DestBegin, EntryBB);
679   Address DestElementCurrent =
680     Address(DestElementPHI,
681             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
682 
683   // Emit copy.
684   CopyGen(DestElementCurrent, SrcElementCurrent);
685 
686   // Shift the address forward by one element.
687   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
688       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
689   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
690       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
691   // Check whether we've reached the end.
692   llvm::Value *Done =
693       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
694   Builder.CreateCondBr(Done, DoneBB, BodyBB);
695   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
696   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
697 
698   // Done.
699   EmitBlock(DoneBB, /*IsFinished=*/true);
700 }
701 
702 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
703                                   Address SrcAddr, const VarDecl *DestVD,
704                                   const VarDecl *SrcVD, const Expr *Copy) {
705   if (OriginalType->isArrayType()) {
706     const auto *BO = dyn_cast<BinaryOperator>(Copy);
707     if (BO && BO->getOpcode() == BO_Assign) {
708       // Perform simple memcpy for simple copying.
709       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
710       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
711       EmitAggregateAssign(Dest, Src, OriginalType);
712     } else {
713       // For arrays with complex element types perform element by element
714       // copying.
715       EmitOMPAggregateAssign(
716           DestAddr, SrcAddr, OriginalType,
717           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
718             // Working with the single array element, so have to remap
719             // destination and source variables to corresponding array
720             // elements.
721             CodeGenFunction::OMPPrivateScope Remap(*this);
722             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
723             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
724             (void)Remap.Privatize();
725             EmitIgnoredExpr(Copy);
726           });
727     }
728   } else {
729     // Remap pseudo source variable to private copy.
730     CodeGenFunction::OMPPrivateScope Remap(*this);
731     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
732     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
733     (void)Remap.Privatize();
734     // Emit copying of the whole variable.
735     EmitIgnoredExpr(Copy);
736   }
737 }
738 
739 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
740                                                 OMPPrivateScope &PrivateScope) {
741   if (!HaveInsertPoint())
742     return false;
743   bool DeviceConstTarget =
744       getLangOpts().OpenMPIsDevice &&
745       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
746   bool FirstprivateIsLastprivate = false;
747   llvm::DenseSet<const VarDecl *> Lastprivates;
748   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
749     for (const auto *D : C->varlists())
750       Lastprivates.insert(
751           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
752   }
753   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
754   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
755   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
756   // Force emission of the firstprivate copy if the directive does not emit
757   // outlined function, like omp for, omp simd, omp distribute etc.
758   bool MustEmitFirstprivateCopy =
759       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
760   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
761     auto IRef = C->varlist_begin();
762     auto InitsRef = C->inits().begin();
763     for (const Expr *IInit : C->private_copies()) {
764       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
765       bool ThisFirstprivateIsLastprivate =
766           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
767       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
768       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
769       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
770           !FD->getType()->isReferenceType() &&
771           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
772         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
773         ++IRef;
774         ++InitsRef;
775         continue;
776       }
777       // Do not emit copy for firstprivate constant variables in target regions,
778       // captured by reference.
779       if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) &&
780           FD && FD->getType()->isReferenceType() &&
781           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
782         (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this,
783                                                                     OrigVD);
784         ++IRef;
785         ++InitsRef;
786         continue;
787       }
788       FirstprivateIsLastprivate =
789           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
790       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
791         const auto *VDInit =
792             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
793         bool IsRegistered;
794         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
795                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
796                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
797         LValue OriginalLVal;
798         if (!FD) {
799           // Check if the firstprivate variable is just a constant value.
800           ConstantEmission CE = tryEmitAsConstant(&DRE);
801           if (CE && !CE.isReference()) {
802             // Constant value, no need to create a copy.
803             ++IRef;
804             ++InitsRef;
805             continue;
806           }
807           if (CE && CE.isReference()) {
808             OriginalLVal = CE.getReferenceLValue(*this, &DRE);
809           } else {
810             assert(!CE && "Expected non-constant firstprivate.");
811             OriginalLVal = EmitLValue(&DRE);
812           }
813         } else {
814           OriginalLVal = EmitLValue(&DRE);
815         }
816         QualType Type = VD->getType();
817         if (Type->isArrayType()) {
818           // Emit VarDecl with copy init for arrays.
819           // Get the address of the original variable captured in current
820           // captured region.
821           IsRegistered = PrivateScope.addPrivate(
822               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
823                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
824                 const Expr *Init = VD->getInit();
825                 if (!isa<CXXConstructExpr>(Init) ||
826                     isTrivialInitializer(Init)) {
827                   // Perform simple memcpy.
828                   LValue Dest =
829                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
830                   EmitAggregateAssign(Dest, OriginalLVal, Type);
831                 } else {
832                   EmitOMPAggregateAssign(
833                       Emission.getAllocatedAddress(), OriginalLVal.getAddress(),
834                       Type,
835                       [this, VDInit, Init](Address DestElement,
836                                            Address SrcElement) {
837                         // Clean up any temporaries needed by the
838                         // initialization.
839                         RunCleanupsScope InitScope(*this);
840                         // Emit initialization for single element.
841                         setAddrOfLocalVar(VDInit, SrcElement);
842                         EmitAnyExprToMem(Init, DestElement,
843                                          Init->getType().getQualifiers(),
844                                          /*IsInitializer*/ false);
845                         LocalDeclMap.erase(VDInit);
846                       });
847                 }
848                 EmitAutoVarCleanups(Emission);
849                 return Emission.getAllocatedAddress();
850               });
851         } else {
852           Address OriginalAddr = OriginalLVal.getAddress();
853           IsRegistered = PrivateScope.addPrivate(
854               OrigVD, [this, VDInit, OriginalAddr, VD]() {
855                 // Emit private VarDecl with copy init.
856                 // Remap temp VDInit variable to the address of the original
857                 // variable (for proper handling of captured global variables).
858                 setAddrOfLocalVar(VDInit, OriginalAddr);
859                 EmitDecl(*VD);
860                 LocalDeclMap.erase(VDInit);
861                 return GetAddrOfLocalVar(VD);
862               });
863         }
864         assert(IsRegistered &&
865                "firstprivate var already registered as private");
866         // Silence the warning about unused variable.
867         (void)IsRegistered;
868       }
869       ++IRef;
870       ++InitsRef;
871     }
872   }
873   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
874 }
875 
876 void CodeGenFunction::EmitOMPPrivateClause(
877     const OMPExecutableDirective &D,
878     CodeGenFunction::OMPPrivateScope &PrivateScope) {
879   if (!HaveInsertPoint())
880     return;
881   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
882   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
883     auto IRef = C->varlist_begin();
884     for (const Expr *IInit : C->private_copies()) {
885       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
886       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
887         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
888         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
889           // Emit private VarDecl with copy init.
890           EmitDecl(*VD);
891           return GetAddrOfLocalVar(VD);
892         });
893         assert(IsRegistered && "private var already registered as private");
894         // Silence the warning about unused variable.
895         (void)IsRegistered;
896       }
897       ++IRef;
898     }
899   }
900 }
901 
902 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
903   if (!HaveInsertPoint())
904     return false;
905   // threadprivate_var1 = master_threadprivate_var1;
906   // operator=(threadprivate_var2, master_threadprivate_var2);
907   // ...
908   // __kmpc_barrier(&loc, global_tid);
909   llvm::DenseSet<const VarDecl *> CopiedVars;
910   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
911   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
912     auto IRef = C->varlist_begin();
913     auto ISrcRef = C->source_exprs().begin();
914     auto IDestRef = C->destination_exprs().begin();
915     for (const Expr *AssignOp : C->assignment_ops()) {
916       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
917       QualType Type = VD->getType();
918       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
919         // Get the address of the master variable. If we are emitting code with
920         // TLS support, the address is passed from the master as field in the
921         // captured declaration.
922         Address MasterAddr = Address::invalid();
923         if (getLangOpts().OpenMPUseTLS &&
924             getContext().getTargetInfo().isTLSSupported()) {
925           assert(CapturedStmtInfo->lookup(VD) &&
926                  "Copyin threadprivates should have been captured!");
927           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true,
928                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
929           MasterAddr = EmitLValue(&DRE).getAddress();
930           LocalDeclMap.erase(VD);
931         } else {
932           MasterAddr =
933             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
934                                         : CGM.GetAddrOfGlobal(VD),
935                     getContext().getDeclAlign(VD));
936         }
937         // Get the address of the threadprivate variable.
938         Address PrivateAddr = EmitLValue(*IRef).getAddress();
939         if (CopiedVars.size() == 1) {
940           // At first check if current thread is a master thread. If it is, no
941           // need to copy data.
942           CopyBegin = createBasicBlock("copyin.not.master");
943           CopyEnd = createBasicBlock("copyin.not.master.end");
944           Builder.CreateCondBr(
945               Builder.CreateICmpNE(
946                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
947                   Builder.CreatePtrToInt(PrivateAddr.getPointer(),
948                                          CGM.IntPtrTy)),
949               CopyBegin, CopyEnd);
950           EmitBlock(CopyBegin);
951         }
952         const auto *SrcVD =
953             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
954         const auto *DestVD =
955             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
956         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
957       }
958       ++IRef;
959       ++ISrcRef;
960       ++IDestRef;
961     }
962   }
963   if (CopyEnd) {
964     // Exit out of copying procedure for non-master thread.
965     EmitBlock(CopyEnd, /*IsFinished=*/true);
966     return true;
967   }
968   return false;
969 }
970 
971 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
972     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
973   if (!HaveInsertPoint())
974     return false;
975   bool HasAtLeastOneLastprivate = false;
976   llvm::DenseSet<const VarDecl *> SIMDLCVs;
977   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
978     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
979     for (const Expr *C : LoopDirective->counters()) {
980       SIMDLCVs.insert(
981           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
982     }
983   }
984   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
985   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
986     HasAtLeastOneLastprivate = true;
987     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
988         !getLangOpts().OpenMPSimd)
989       break;
990     auto IRef = C->varlist_begin();
991     auto IDestRef = C->destination_exprs().begin();
992     for (const Expr *IInit : C->private_copies()) {
993       // Keep the address of the original variable for future update at the end
994       // of the loop.
995       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
996       // Taskloops do not require additional initialization, it is done in
997       // runtime support library.
998       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
999         const auto *DestVD =
1000             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1001         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
1002           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1003                           /*RefersToEnclosingVariableOrCapture=*/
1004                               CapturedStmtInfo->lookup(OrigVD) != nullptr,
1005                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
1006           return EmitLValue(&DRE).getAddress();
1007         });
1008         // Check if the variable is also a firstprivate: in this case IInit is
1009         // not generated. Initialization of this variable will happen in codegen
1010         // for 'firstprivate' clause.
1011         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
1012           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
1013           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
1014             // Emit private VarDecl with copy init.
1015             EmitDecl(*VD);
1016             return GetAddrOfLocalVar(VD);
1017           });
1018           assert(IsRegistered &&
1019                  "lastprivate var already registered as private");
1020           (void)IsRegistered;
1021         }
1022       }
1023       ++IRef;
1024       ++IDestRef;
1025     }
1026   }
1027   return HasAtLeastOneLastprivate;
1028 }
1029 
1030 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
1031     const OMPExecutableDirective &D, bool NoFinals,
1032     llvm::Value *IsLastIterCond) {
1033   if (!HaveInsertPoint())
1034     return;
1035   // Emit following code:
1036   // if (<IsLastIterCond>) {
1037   //   orig_var1 = private_orig_var1;
1038   //   ...
1039   //   orig_varn = private_orig_varn;
1040   // }
1041   llvm::BasicBlock *ThenBB = nullptr;
1042   llvm::BasicBlock *DoneBB = nullptr;
1043   if (IsLastIterCond) {
1044     ThenBB = createBasicBlock(".omp.lastprivate.then");
1045     DoneBB = createBasicBlock(".omp.lastprivate.done");
1046     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1047     EmitBlock(ThenBB);
1048   }
1049   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1050   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1051   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1052     auto IC = LoopDirective->counters().begin();
1053     for (const Expr *F : LoopDirective->finals()) {
1054       const auto *D =
1055           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1056       if (NoFinals)
1057         AlreadyEmittedVars.insert(D);
1058       else
1059         LoopCountersAndUpdates[D] = F;
1060       ++IC;
1061     }
1062   }
1063   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1064     auto IRef = C->varlist_begin();
1065     auto ISrcRef = C->source_exprs().begin();
1066     auto IDestRef = C->destination_exprs().begin();
1067     for (const Expr *AssignOp : C->assignment_ops()) {
1068       const auto *PrivateVD =
1069           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1070       QualType Type = PrivateVD->getType();
1071       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1072       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1073         // If lastprivate variable is a loop control variable for loop-based
1074         // directive, update its value before copyin back to original
1075         // variable.
1076         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1077           EmitIgnoredExpr(FinalExpr);
1078         const auto *SrcVD =
1079             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1080         const auto *DestVD =
1081             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1082         // Get the address of the original variable.
1083         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1084         // Get the address of the private variable.
1085         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1086         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1087           PrivateAddr =
1088               Address(Builder.CreateLoad(PrivateAddr),
1089                       getNaturalTypeAlignment(RefTy->getPointeeType()));
1090         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1091       }
1092       ++IRef;
1093       ++ISrcRef;
1094       ++IDestRef;
1095     }
1096     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1097       EmitIgnoredExpr(PostUpdate);
1098   }
1099   if (IsLastIterCond)
1100     EmitBlock(DoneBB, /*IsFinished=*/true);
1101 }
1102 
1103 void CodeGenFunction::EmitOMPReductionClauseInit(
1104     const OMPExecutableDirective &D,
1105     CodeGenFunction::OMPPrivateScope &PrivateScope) {
1106   if (!HaveInsertPoint())
1107     return;
1108   SmallVector<const Expr *, 4> Shareds;
1109   SmallVector<const Expr *, 4> Privates;
1110   SmallVector<const Expr *, 4> ReductionOps;
1111   SmallVector<const Expr *, 4> LHSs;
1112   SmallVector<const Expr *, 4> RHSs;
1113   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1114     auto IPriv = C->privates().begin();
1115     auto IRed = C->reduction_ops().begin();
1116     auto ILHS = C->lhs_exprs().begin();
1117     auto IRHS = C->rhs_exprs().begin();
1118     for (const Expr *Ref : C->varlists()) {
1119       Shareds.emplace_back(Ref);
1120       Privates.emplace_back(*IPriv);
1121       ReductionOps.emplace_back(*IRed);
1122       LHSs.emplace_back(*ILHS);
1123       RHSs.emplace_back(*IRHS);
1124       std::advance(IPriv, 1);
1125       std::advance(IRed, 1);
1126       std::advance(ILHS, 1);
1127       std::advance(IRHS, 1);
1128     }
1129   }
1130   ReductionCodeGen RedCG(Shareds, Privates, ReductionOps);
1131   unsigned Count = 0;
1132   auto ILHS = LHSs.begin();
1133   auto IRHS = RHSs.begin();
1134   auto IPriv = Privates.begin();
1135   for (const Expr *IRef : Shareds) {
1136     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1137     // Emit private VarDecl with reduction init.
1138     RedCG.emitSharedLValue(*this, Count);
1139     RedCG.emitAggregateType(*this, Count);
1140     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1141     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1142                              RedCG.getSharedLValue(Count),
1143                              [&Emission](CodeGenFunction &CGF) {
1144                                CGF.EmitAutoVarInit(Emission);
1145                                return true;
1146                              });
1147     EmitAutoVarCleanups(Emission);
1148     Address BaseAddr = RedCG.adjustPrivateAddress(
1149         *this, Count, Emission.getAllocatedAddress());
1150     bool IsRegistered = PrivateScope.addPrivate(
1151         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1152     assert(IsRegistered && "private var already registered as private");
1153     // Silence the warning about unused variable.
1154     (void)IsRegistered;
1155 
1156     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1157     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1158     QualType Type = PrivateVD->getType();
1159     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1160     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1161       // Store the address of the original variable associated with the LHS
1162       // implicit variable.
1163       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1164         return RedCG.getSharedLValue(Count).getAddress();
1165       });
1166       PrivateScope.addPrivate(
1167           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1168     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1169                isa<ArraySubscriptExpr>(IRef)) {
1170       // Store the address of the original variable associated with the LHS
1171       // implicit variable.
1172       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1173         return RedCG.getSharedLValue(Count).getAddress();
1174       });
1175       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1176         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1177                                             ConvertTypeForMem(RHSVD->getType()),
1178                                             "rhs.begin");
1179       });
1180     } else {
1181       QualType Type = PrivateVD->getType();
1182       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1183       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress();
1184       // Store the address of the original variable associated with the LHS
1185       // implicit variable.
1186       if (IsArray) {
1187         OriginalAddr = Builder.CreateElementBitCast(
1188             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1189       }
1190       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1191       PrivateScope.addPrivate(
1192           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1193             return IsArray
1194                        ? Builder.CreateElementBitCast(
1195                              GetAddrOfLocalVar(PrivateVD),
1196                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1197                        : GetAddrOfLocalVar(PrivateVD);
1198           });
1199     }
1200     ++ILHS;
1201     ++IRHS;
1202     ++IPriv;
1203     ++Count;
1204   }
1205 }
1206 
1207 void CodeGenFunction::EmitOMPReductionClauseFinal(
1208     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1209   if (!HaveInsertPoint())
1210     return;
1211   llvm::SmallVector<const Expr *, 8> Privates;
1212   llvm::SmallVector<const Expr *, 8> LHSExprs;
1213   llvm::SmallVector<const Expr *, 8> RHSExprs;
1214   llvm::SmallVector<const Expr *, 8> ReductionOps;
1215   bool HasAtLeastOneReduction = false;
1216   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1217     HasAtLeastOneReduction = true;
1218     Privates.append(C->privates().begin(), C->privates().end());
1219     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1220     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1221     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1222   }
1223   if (HasAtLeastOneReduction) {
1224     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1225                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1226                       ReductionKind == OMPD_simd;
1227     bool SimpleReduction = ReductionKind == OMPD_simd;
1228     // Emit nowait reduction if nowait clause is present or directive is a
1229     // parallel directive (it always has implicit barrier).
1230     CGM.getOpenMPRuntime().emitReduction(
1231         *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
1232         {WithNowait, SimpleReduction, ReductionKind});
1233   }
1234 }
1235 
1236 static void emitPostUpdateForReductionClause(
1237     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1238     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1239   if (!CGF.HaveInsertPoint())
1240     return;
1241   llvm::BasicBlock *DoneBB = nullptr;
1242   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1243     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1244       if (!DoneBB) {
1245         if (llvm::Value *Cond = CondGen(CGF)) {
1246           // If the first post-update expression is found, emit conditional
1247           // block if it was requested.
1248           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1249           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1250           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1251           CGF.EmitBlock(ThenBB);
1252         }
1253       }
1254       CGF.EmitIgnoredExpr(PostUpdate);
1255     }
1256   }
1257   if (DoneBB)
1258     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1259 }
1260 
1261 namespace {
1262 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1263 /// parallel function. This is necessary for combined constructs such as
1264 /// 'distribute parallel for'
1265 typedef llvm::function_ref<void(CodeGenFunction &,
1266                                 const OMPExecutableDirective &,
1267                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1268     CodeGenBoundParametersTy;
1269 } // anonymous namespace
1270 
1271 static void emitCommonOMPParallelDirective(
1272     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1273     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1274     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1275   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1276   llvm::Function *OutlinedFn =
1277       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1278           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1279   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1280     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1281     llvm::Value *NumThreads =
1282         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1283                            /*IgnoreResultAssign=*/true);
1284     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1285         CGF, NumThreads, NumThreadsClause->getBeginLoc());
1286   }
1287   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1288     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1289     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1290         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
1291   }
1292   const Expr *IfCond = nullptr;
1293   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1294     if (C->getNameModifier() == OMPD_unknown ||
1295         C->getNameModifier() == OMPD_parallel) {
1296       IfCond = C->getCondition();
1297       break;
1298     }
1299   }
1300 
1301   OMPParallelScope Scope(CGF, S);
1302   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1303   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1304   // lower and upper bounds with the pragma 'for' chunking mechanism.
1305   // The following lambda takes care of appending the lower and upper bound
1306   // parameters when necessary
1307   CodeGenBoundParameters(CGF, S, CapturedVars);
1308   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1309   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
1310                                               CapturedVars, IfCond);
1311 }
1312 
1313 static void emitEmptyBoundParameters(CodeGenFunction &,
1314                                      const OMPExecutableDirective &,
1315                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1316 
1317 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1318   // Emit parallel region as a standalone region.
1319   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1320     Action.Enter(CGF);
1321     OMPPrivateScope PrivateScope(CGF);
1322     bool Copyins = CGF.EmitOMPCopyinClause(S);
1323     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1324     if (Copyins) {
1325       // Emit implicit barrier to synchronize threads and avoid data races on
1326       // propagation master's thread values of threadprivate variables to local
1327       // instances of that variables of all other implicit threads.
1328       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1329           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
1330           /*ForceSimpleCall=*/true);
1331     }
1332     CGF.EmitOMPPrivateClause(S, PrivateScope);
1333     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1334     (void)PrivateScope.Privatize();
1335     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1336     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1337   };
1338   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1339                                  emitEmptyBoundParameters);
1340   emitPostUpdateForReductionClause(*this, S,
1341                                    [](CodeGenFunction &) { return nullptr; });
1342 }
1343 
1344 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop,
1345                      int MaxLevel, int Level = 0) {
1346   assert(Level < MaxLevel && "Too deep lookup during loop body codegen.");
1347   const Stmt *SimplifiedS = S->IgnoreContainers();
1348   if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) {
1349     PrettyStackTraceLoc CrashInfo(
1350         CGF.getContext().getSourceManager(), CS->getLBracLoc(),
1351         "LLVM IR generation of compound statement ('{}')");
1352 
1353     // Keep track of the current cleanup stack depth, including debug scopes.
1354     CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange());
1355     for (const Stmt *CurStmt : CS->body())
1356       emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level);
1357     return;
1358   }
1359   if (SimplifiedS == NextLoop) {
1360     if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) {
1361       S = For->getBody();
1362     } else {
1363       assert(isa<CXXForRangeStmt>(SimplifiedS) &&
1364              "Expected canonical for loop or range-based for loop.");
1365       const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS);
1366       CGF.EmitStmt(CXXFor->getLoopVarStmt());
1367       S = CXXFor->getBody();
1368     }
1369     if (Level + 1 < MaxLevel) {
1370       NextLoop = OMPLoopDirective::tryToFindNextInnerLoop(
1371           S, /*TryImperfectlyNestedLoops=*/true);
1372       emitBody(CGF, S, NextLoop, MaxLevel, Level + 1);
1373       return;
1374     }
1375   }
1376   CGF.EmitStmt(S);
1377 }
1378 
1379 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1380                                       JumpDest LoopExit) {
1381   RunCleanupsScope BodyScope(*this);
1382   // Update counters values on current iteration.
1383   for (const Expr *UE : D.updates())
1384     EmitIgnoredExpr(UE);
1385   // Update the linear variables.
1386   // In distribute directives only loop counters may be marked as linear, no
1387   // need to generate the code for them.
1388   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1389     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1390       for (const Expr *UE : C->updates())
1391         EmitIgnoredExpr(UE);
1392     }
1393   }
1394 
1395   // On a continue in the body, jump to the end.
1396   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1397   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1398   for (const Expr *E : D.finals_conditions()) {
1399     if (!E)
1400       continue;
1401     // Check that loop counter in non-rectangular nest fits into the iteration
1402     // space.
1403     llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next");
1404     EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(),
1405                          getProfileCount(D.getBody()));
1406     EmitBlock(NextBB);
1407   }
1408   // Emit loop variables for C++ range loops.
1409   const Stmt *Body =
1410       D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
1411   // Emit loop body.
1412   emitBody(*this, Body,
1413            OMPLoopDirective::tryToFindNextInnerLoop(
1414                Body, /*TryImperfectlyNestedLoops=*/true),
1415            D.getCollapsedNumber());
1416 
1417   // The end (updates/cleanups).
1418   EmitBlock(Continue.getBlock());
1419   BreakContinueStack.pop_back();
1420 }
1421 
1422 void CodeGenFunction::EmitOMPInnerLoop(
1423     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1424     const Expr *IncExpr,
1425     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
1426     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
1427   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1428 
1429   // Start the loop with a block that tests the condition.
1430   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1431   EmitBlock(CondBlock);
1432   const SourceRange R = S.getSourceRange();
1433   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1434                  SourceLocToDebugLoc(R.getEnd()));
1435 
1436   // If there are any cleanups between here and the loop-exit scope,
1437   // create a block to stage a loop exit along.
1438   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1439   if (RequiresCleanup)
1440     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1441 
1442   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
1443 
1444   // Emit condition.
1445   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1446   if (ExitBlock != LoopExit.getBlock()) {
1447     EmitBlock(ExitBlock);
1448     EmitBranchThroughCleanup(LoopExit);
1449   }
1450 
1451   EmitBlock(LoopBody);
1452   incrementProfileCounter(&S);
1453 
1454   // Create a block for the increment.
1455   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1456   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1457 
1458   BodyGen(*this);
1459 
1460   // Emit "IV = IV + 1" and a back-edge to the condition block.
1461   EmitBlock(Continue.getBlock());
1462   EmitIgnoredExpr(IncExpr);
1463   PostIncGen(*this);
1464   BreakContinueStack.pop_back();
1465   EmitBranch(CondBlock);
1466   LoopStack.pop();
1467   // Emit the fall-through block.
1468   EmitBlock(LoopExit.getBlock());
1469 }
1470 
1471 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1472   if (!HaveInsertPoint())
1473     return false;
1474   // Emit inits for the linear variables.
1475   bool HasLinears = false;
1476   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1477     for (const Expr *Init : C->inits()) {
1478       HasLinears = true;
1479       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1480       if (const auto *Ref =
1481               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1482         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1483         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1484         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1485                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1486                         VD->getInit()->getType(), VK_LValue,
1487                         VD->getInit()->getExprLoc());
1488         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1489                                                 VD->getType()),
1490                        /*capturedByInit=*/false);
1491         EmitAutoVarCleanups(Emission);
1492       } else {
1493         EmitVarDecl(*VD);
1494       }
1495     }
1496     // Emit the linear steps for the linear clauses.
1497     // If a step is not constant, it is pre-calculated before the loop.
1498     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1499       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1500         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1501         // Emit calculation of the linear step.
1502         EmitIgnoredExpr(CS);
1503       }
1504   }
1505   return HasLinears;
1506 }
1507 
1508 void CodeGenFunction::EmitOMPLinearClauseFinal(
1509     const OMPLoopDirective &D,
1510     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1511   if (!HaveInsertPoint())
1512     return;
1513   llvm::BasicBlock *DoneBB = nullptr;
1514   // Emit the final values of the linear variables.
1515   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1516     auto IC = C->varlist_begin();
1517     for (const Expr *F : C->finals()) {
1518       if (!DoneBB) {
1519         if (llvm::Value *Cond = CondGen(*this)) {
1520           // If the first post-update expression is found, emit conditional
1521           // block if it was requested.
1522           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
1523           DoneBB = createBasicBlock(".omp.linear.pu.done");
1524           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1525           EmitBlock(ThenBB);
1526         }
1527       }
1528       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1529       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1530                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1531                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1532       Address OrigAddr = EmitLValue(&DRE).getAddress();
1533       CodeGenFunction::OMPPrivateScope VarScope(*this);
1534       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1535       (void)VarScope.Privatize();
1536       EmitIgnoredExpr(F);
1537       ++IC;
1538     }
1539     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1540       EmitIgnoredExpr(PostUpdate);
1541   }
1542   if (DoneBB)
1543     EmitBlock(DoneBB, /*IsFinished=*/true);
1544 }
1545 
1546 static void emitAlignedClause(CodeGenFunction &CGF,
1547                               const OMPExecutableDirective &D) {
1548   if (!CGF.HaveInsertPoint())
1549     return;
1550   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1551     llvm::APInt ClauseAlignment(64, 0);
1552     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
1553       auto *AlignmentCI =
1554           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1555       ClauseAlignment = AlignmentCI->getValue();
1556     }
1557     for (const Expr *E : Clause->varlists()) {
1558       llvm::APInt Alignment(ClauseAlignment);
1559       if (Alignment == 0) {
1560         // OpenMP [2.8.1, Description]
1561         // If no optional parameter is specified, implementation-defined default
1562         // alignments for SIMD instructions on the target platforms are assumed.
1563         Alignment =
1564             CGF.getContext()
1565                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1566                     E->getType()->getPointeeType()))
1567                 .getQuantity();
1568       }
1569       assert((Alignment == 0 || Alignment.isPowerOf2()) &&
1570              "alignment is not power of 2");
1571       if (Alignment != 0) {
1572         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1573         CGF.EmitAlignmentAssumption(
1574             PtrValue, E, /*No second loc needed*/ SourceLocation(),
1575             llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment));
1576       }
1577     }
1578   }
1579 }
1580 
1581 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1582     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1583   if (!HaveInsertPoint())
1584     return;
1585   auto I = S.private_counters().begin();
1586   for (const Expr *E : S.counters()) {
1587     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1588     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1589     // Emit var without initialization.
1590     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
1591     EmitAutoVarCleanups(VarEmission);
1592     LocalDeclMap.erase(PrivateVD);
1593     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
1594       return VarEmission.getAllocatedAddress();
1595     });
1596     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1597         VD->hasGlobalStorage()) {
1598       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
1599         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD),
1600                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1601                         E->getType(), VK_LValue, E->getExprLoc());
1602         return EmitLValue(&DRE).getAddress();
1603       });
1604     } else {
1605       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
1606         return VarEmission.getAllocatedAddress();
1607       });
1608     }
1609     ++I;
1610   }
1611   // Privatize extra loop counters used in loops for ordered(n) clauses.
1612   for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
1613     if (!C->getNumForLoops())
1614       continue;
1615     for (unsigned I = S.getCollapsedNumber(),
1616                   E = C->getLoopNumIterations().size();
1617          I < E; ++I) {
1618       const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
1619       const auto *VD = cast<VarDecl>(DRE->getDecl());
1620       // Override only those variables that can be captured to avoid re-emission
1621       // of the variables declared within the loops.
1622       if (DRE->refersToEnclosingVariableOrCapture()) {
1623         (void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
1624           return CreateMemTemp(DRE->getType(), VD->getName());
1625         });
1626       }
1627     }
1628   }
1629 }
1630 
1631 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1632                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1633                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1634   if (!CGF.HaveInsertPoint())
1635     return;
1636   {
1637     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1638     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1639     (void)PreCondScope.Privatize();
1640     // Get initial values of real counters.
1641     for (const Expr *I : S.inits()) {
1642       CGF.EmitIgnoredExpr(I);
1643     }
1644   }
1645   // Create temp loop control variables with their init values to support
1646   // non-rectangular loops.
1647   CodeGenFunction::OMPMapVars PreCondVars;
1648   for (const Expr * E: S.dependent_counters()) {
1649     if (!E)
1650       continue;
1651     assert(!E->getType().getNonReferenceType()->isRecordType() &&
1652            "dependent counter must not be an iterator.");
1653     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1654     Address CounterAddr =
1655         CGF.CreateMemTemp(VD->getType().getNonReferenceType());
1656     (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr);
1657   }
1658   (void)PreCondVars.apply(CGF);
1659   for (const Expr *E : S.dependent_inits()) {
1660     if (!E)
1661       continue;
1662     CGF.EmitIgnoredExpr(E);
1663   }
1664   // Check that loop is executed at least one time.
1665   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1666   PreCondVars.restore(CGF);
1667 }
1668 
1669 void CodeGenFunction::EmitOMPLinearClause(
1670     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1671   if (!HaveInsertPoint())
1672     return;
1673   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1674   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1675     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1676     for (const Expr *C : LoopDirective->counters()) {
1677       SIMDLCVs.insert(
1678           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1679     }
1680   }
1681   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1682     auto CurPrivate = C->privates().begin();
1683     for (const Expr *E : C->varlists()) {
1684       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1685       const auto *PrivateVD =
1686           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1687       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1688         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
1689           // Emit private VarDecl with copy init.
1690           EmitVarDecl(*PrivateVD);
1691           return GetAddrOfLocalVar(PrivateVD);
1692         });
1693         assert(IsRegistered && "linear var already registered as private");
1694         // Silence the warning about unused variable.
1695         (void)IsRegistered;
1696       } else {
1697         EmitVarDecl(*PrivateVD);
1698       }
1699       ++CurPrivate;
1700     }
1701   }
1702 }
1703 
1704 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1705                                      const OMPExecutableDirective &D,
1706                                      bool IsMonotonic) {
1707   if (!CGF.HaveInsertPoint())
1708     return;
1709   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1710     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1711                                  /*ignoreResult=*/true);
1712     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1713     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1714     // In presence of finite 'safelen', it may be unsafe to mark all
1715     // the memory instructions parallel, because loop-carried
1716     // dependences of 'safelen' iterations are possible.
1717     if (!IsMonotonic)
1718       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1719   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1720     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1721                                  /*ignoreResult=*/true);
1722     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1723     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1724     // In presence of finite 'safelen', it may be unsafe to mark all
1725     // the memory instructions parallel, because loop-carried
1726     // dependences of 'safelen' iterations are possible.
1727     CGF.LoopStack.setParallel(/*Enable=*/false);
1728   }
1729 }
1730 
1731 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1732                                       bool IsMonotonic) {
1733   // Walk clauses and process safelen/lastprivate.
1734   LoopStack.setParallel(!IsMonotonic);
1735   LoopStack.setVectorizeEnable();
1736   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1737 }
1738 
1739 void CodeGenFunction::EmitOMPSimdFinal(
1740     const OMPLoopDirective &D,
1741     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1742   if (!HaveInsertPoint())
1743     return;
1744   llvm::BasicBlock *DoneBB = nullptr;
1745   auto IC = D.counters().begin();
1746   auto IPC = D.private_counters().begin();
1747   for (const Expr *F : D.finals()) {
1748     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1749     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1750     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1751     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1752         OrigVD->hasGlobalStorage() || CED) {
1753       if (!DoneBB) {
1754         if (llvm::Value *Cond = CondGen(*this)) {
1755           // If the first post-update expression is found, emit conditional
1756           // block if it was requested.
1757           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
1758           DoneBB = createBasicBlock(".omp.final.done");
1759           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1760           EmitBlock(ThenBB);
1761         }
1762       }
1763       Address OrigAddr = Address::invalid();
1764       if (CED) {
1765         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1766       } else {
1767         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD),
1768                         /*RefersToEnclosingVariableOrCapture=*/false,
1769                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1770         OrigAddr = EmitLValue(&DRE).getAddress();
1771       }
1772       OMPPrivateScope VarScope(*this);
1773       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1774       (void)VarScope.Privatize();
1775       EmitIgnoredExpr(F);
1776     }
1777     ++IC;
1778     ++IPC;
1779   }
1780   if (DoneBB)
1781     EmitBlock(DoneBB, /*IsFinished=*/true);
1782 }
1783 
1784 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
1785                                          const OMPLoopDirective &S,
1786                                          CodeGenFunction::JumpDest LoopExit) {
1787   CGF.EmitOMPLoopBody(S, LoopExit);
1788   CGF.EmitStopPoint(&S);
1789 }
1790 
1791 /// Emit a helper variable and return corresponding lvalue.
1792 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1793                                const DeclRefExpr *Helper) {
1794   auto VDecl = cast<VarDecl>(Helper->getDecl());
1795   CGF.EmitVarDecl(*VDecl);
1796   return CGF.EmitLValue(Helper);
1797 }
1798 
1799 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
1800                               PrePostActionTy &Action) {
1801   Action.Enter(CGF);
1802   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
1803          "Expected simd directive");
1804   OMPLoopScope PreInitScope(CGF, S);
1805   // if (PreCond) {
1806   //   for (IV in 0..LastIteration) BODY;
1807   //   <Final counter/linear vars updates>;
1808   // }
1809   //
1810   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
1811       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
1812       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
1813     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1814     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
1815   }
1816 
1817   // Emit: if (PreCond) - begin.
1818   // If the condition constant folds and can be elided, avoid emitting the
1819   // whole loop.
1820   bool CondConstant;
1821   llvm::BasicBlock *ContBlock = nullptr;
1822   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1823     if (!CondConstant)
1824       return;
1825   } else {
1826     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
1827     ContBlock = CGF.createBasicBlock("simd.if.end");
1828     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1829                 CGF.getProfileCount(&S));
1830     CGF.EmitBlock(ThenBlock);
1831     CGF.incrementProfileCounter(&S);
1832   }
1833 
1834   // Emit the loop iteration variable.
1835   const Expr *IVExpr = S.getIterationVariable();
1836   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1837   CGF.EmitVarDecl(*IVDecl);
1838   CGF.EmitIgnoredExpr(S.getInit());
1839 
1840   // Emit the iterations count variable.
1841   // If it is not a variable, Sema decided to calculate iterations count on
1842   // each iteration (e.g., it is foldable into a constant).
1843   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1844     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1845     // Emit calculation of the iterations count.
1846     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1847   }
1848 
1849   CGF.EmitOMPSimdInit(S);
1850 
1851   emitAlignedClause(CGF, S);
1852   (void)CGF.EmitOMPLinearClauseInit(S);
1853   {
1854     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
1855     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1856     CGF.EmitOMPLinearClause(S, LoopScope);
1857     CGF.EmitOMPPrivateClause(S, LoopScope);
1858     CGF.EmitOMPReductionClauseInit(S, LoopScope);
1859     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1860     (void)LoopScope.Privatize();
1861     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
1862       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
1863     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1864                          S.getInc(),
1865                          [&S](CodeGenFunction &CGF) {
1866                            CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest());
1867                            CGF.EmitStopPoint(&S);
1868                          },
1869                          [](CodeGenFunction &) {});
1870     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
1871     // Emit final copy of the lastprivate variables at the end of loops.
1872     if (HasLastprivateClause)
1873       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1874     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
1875     emitPostUpdateForReductionClause(CGF, S,
1876                                      [](CodeGenFunction &) { return nullptr; });
1877   }
1878   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
1879   // Emit: if (PreCond) - end.
1880   if (ContBlock) {
1881     CGF.EmitBranch(ContBlock);
1882     CGF.EmitBlock(ContBlock, true);
1883   }
1884 }
1885 
1886 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1887   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1888     emitOMPSimdRegion(CGF, S, Action);
1889   };
1890   OMPLexicalScope Scope(*this, S, OMPD_unknown);
1891   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1892 }
1893 
1894 void CodeGenFunction::EmitOMPOuterLoop(
1895     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
1896     CodeGenFunction::OMPPrivateScope &LoopScope,
1897     const CodeGenFunction::OMPLoopArguments &LoopArgs,
1898     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
1899     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
1900   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1901 
1902   const Expr *IVExpr = S.getIterationVariable();
1903   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1904   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1905 
1906   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1907 
1908   // Start the loop with a block that tests the condition.
1909   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
1910   EmitBlock(CondBlock);
1911   const SourceRange R = S.getSourceRange();
1912   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1913                  SourceLocToDebugLoc(R.getEnd()));
1914 
1915   llvm::Value *BoolCondVal = nullptr;
1916   if (!DynamicOrOrdered) {
1917     // UB = min(UB, GlobalUB) or
1918     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
1919     // 'distribute parallel for')
1920     EmitIgnoredExpr(LoopArgs.EUB);
1921     // IV = LB
1922     EmitIgnoredExpr(LoopArgs.Init);
1923     // IV < UB
1924     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
1925   } else {
1926     BoolCondVal =
1927         RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
1928                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
1929   }
1930 
1931   // If there are any cleanups between here and the loop-exit scope,
1932   // create a block to stage a loop exit along.
1933   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1934   if (LoopScope.requiresCleanups())
1935     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1936 
1937   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
1938   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1939   if (ExitBlock != LoopExit.getBlock()) {
1940     EmitBlock(ExitBlock);
1941     EmitBranchThroughCleanup(LoopExit);
1942   }
1943   EmitBlock(LoopBody);
1944 
1945   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1946   // LB for loop condition and emitted it above).
1947   if (DynamicOrOrdered)
1948     EmitIgnoredExpr(LoopArgs.Init);
1949 
1950   // Create a block for the increment.
1951   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1952   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1953 
1954   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1955   // with dynamic/guided scheduling and without ordered clause.
1956   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1957     LoopStack.setParallel(!IsMonotonic);
1958   else
1959     EmitOMPSimdInit(S, IsMonotonic);
1960 
1961   SourceLocation Loc = S.getBeginLoc();
1962 
1963   // when 'distribute' is not combined with a 'for':
1964   // while (idx <= UB) { BODY; ++idx; }
1965   // when 'distribute' is combined with a 'for'
1966   // (e.g. 'distribute parallel for')
1967   // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
1968   EmitOMPInnerLoop(
1969       S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
1970       [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
1971         CodeGenLoop(CGF, S, LoopExit);
1972       },
1973       [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
1974         CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
1975       });
1976 
1977   EmitBlock(Continue.getBlock());
1978   BreakContinueStack.pop_back();
1979   if (!DynamicOrOrdered) {
1980     // Emit "LB = LB + Stride", "UB = UB + Stride".
1981     EmitIgnoredExpr(LoopArgs.NextLB);
1982     EmitIgnoredExpr(LoopArgs.NextUB);
1983   }
1984 
1985   EmitBranch(CondBlock);
1986   LoopStack.pop();
1987   // Emit the fall-through block.
1988   EmitBlock(LoopExit.getBlock());
1989 
1990   // Tell the runtime we are done.
1991   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
1992     if (!DynamicOrOrdered)
1993       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
1994                                                      S.getDirectiveKind());
1995   };
1996   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
1997 }
1998 
1999 void CodeGenFunction::EmitOMPForOuterLoop(
2000     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
2001     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2002     const OMPLoopArguments &LoopArgs,
2003     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2004   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2005 
2006   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
2007   const bool DynamicOrOrdered =
2008       Ordered || RT.isDynamic(ScheduleKind.Schedule);
2009 
2010   assert((Ordered ||
2011           !RT.isStaticNonchunked(ScheduleKind.Schedule,
2012                                  LoopArgs.Chunk != nullptr)) &&
2013          "static non-chunked schedule does not need outer loop");
2014 
2015   // Emit outer loop.
2016   //
2017   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2018   // When schedule(dynamic,chunk_size) is specified, the iterations are
2019   // distributed to threads in the team in chunks as the threads request them.
2020   // Each thread executes a chunk of iterations, then requests another chunk,
2021   // until no chunks remain to be distributed. Each chunk contains chunk_size
2022   // iterations, except for the last chunk to be distributed, which may have
2023   // fewer iterations. When no chunk_size is specified, it defaults to 1.
2024   //
2025   // When schedule(guided,chunk_size) is specified, the iterations are assigned
2026   // to threads in the team in chunks as the executing threads request them.
2027   // Each thread executes a chunk of iterations, then requests another chunk,
2028   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
2029   // each chunk is proportional to the number of unassigned iterations divided
2030   // by the number of threads in the team, decreasing to 1. For a chunk_size
2031   // with value k (greater than 1), the size of each chunk is determined in the
2032   // same way, with the restriction that the chunks do not contain fewer than k
2033   // iterations (except for the last chunk to be assigned, which may have fewer
2034   // than k iterations).
2035   //
2036   // When schedule(auto) is specified, the decision regarding scheduling is
2037   // delegated to the compiler and/or runtime system. The programmer gives the
2038   // implementation the freedom to choose any possible mapping of iterations to
2039   // threads in the team.
2040   //
2041   // When schedule(runtime) is specified, the decision regarding scheduling is
2042   // deferred until run time, and the schedule and chunk size are taken from the
2043   // run-sched-var ICV. If the ICV is set to auto, the schedule is
2044   // implementation defined
2045   //
2046   // while(__kmpc_dispatch_next(&LB, &UB)) {
2047   //   idx = LB;
2048   //   while (idx <= UB) { BODY; ++idx;
2049   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
2050   //   } // inner loop
2051   // }
2052   //
2053   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2054   // When schedule(static, chunk_size) is specified, iterations are divided into
2055   // chunks of size chunk_size, and the chunks are assigned to the threads in
2056   // the team in a round-robin fashion in the order of the thread number.
2057   //
2058   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
2059   //   while (idx <= UB) { BODY; ++idx; } // inner loop
2060   //   LB = LB + ST;
2061   //   UB = UB + ST;
2062   // }
2063   //
2064 
2065   const Expr *IVExpr = S.getIterationVariable();
2066   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2067   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2068 
2069   if (DynamicOrOrdered) {
2070     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
2071         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
2072     llvm::Value *LBVal = DispatchBounds.first;
2073     llvm::Value *UBVal = DispatchBounds.second;
2074     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
2075                                                              LoopArgs.Chunk};
2076     RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
2077                            IVSigned, Ordered, DipatchRTInputValues);
2078   } else {
2079     CGOpenMPRuntime::StaticRTInput StaticInit(
2080         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
2081         LoopArgs.ST, LoopArgs.Chunk);
2082     RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2083                          ScheduleKind, StaticInit);
2084   }
2085 
2086   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
2087                                     const unsigned IVSize,
2088                                     const bool IVSigned) {
2089     if (Ordered) {
2090       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
2091                                                             IVSigned);
2092     }
2093   };
2094 
2095   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
2096                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
2097   OuterLoopArgs.IncExpr = S.getInc();
2098   OuterLoopArgs.Init = S.getInit();
2099   OuterLoopArgs.Cond = S.getCond();
2100   OuterLoopArgs.NextLB = S.getNextLowerBound();
2101   OuterLoopArgs.NextUB = S.getNextUpperBound();
2102   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
2103                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
2104 }
2105 
2106 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
2107                              const unsigned IVSize, const bool IVSigned) {}
2108 
2109 void CodeGenFunction::EmitOMPDistributeOuterLoop(
2110     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
2111     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
2112     const CodeGenLoopTy &CodeGenLoopContent) {
2113 
2114   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2115 
2116   // Emit outer loop.
2117   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
2118   // dynamic
2119   //
2120 
2121   const Expr *IVExpr = S.getIterationVariable();
2122   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2123   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2124 
2125   CGOpenMPRuntime::StaticRTInput StaticInit(
2126       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
2127       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
2128   RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
2129 
2130   // for combined 'distribute' and 'for' the increment expression of distribute
2131   // is stored in DistInc. For 'distribute' alone, it is in Inc.
2132   Expr *IncExpr;
2133   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
2134     IncExpr = S.getDistInc();
2135   else
2136     IncExpr = S.getInc();
2137 
2138   // this routine is shared by 'omp distribute parallel for' and
2139   // 'omp distribute': select the right EUB expression depending on the
2140   // directive
2141   OMPLoopArguments OuterLoopArgs;
2142   OuterLoopArgs.LB = LoopArgs.LB;
2143   OuterLoopArgs.UB = LoopArgs.UB;
2144   OuterLoopArgs.ST = LoopArgs.ST;
2145   OuterLoopArgs.IL = LoopArgs.IL;
2146   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2147   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2148                           ? S.getCombinedEnsureUpperBound()
2149                           : S.getEnsureUpperBound();
2150   OuterLoopArgs.IncExpr = IncExpr;
2151   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2152                            ? S.getCombinedInit()
2153                            : S.getInit();
2154   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2155                            ? S.getCombinedCond()
2156                            : S.getCond();
2157   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2158                              ? S.getCombinedNextLowerBound()
2159                              : S.getNextLowerBound();
2160   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2161                              ? S.getCombinedNextUpperBound()
2162                              : S.getNextUpperBound();
2163 
2164   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2165                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2166                    emitEmptyOrdered);
2167 }
2168 
2169 static std::pair<LValue, LValue>
2170 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2171                                      const OMPExecutableDirective &S) {
2172   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2173   LValue LB =
2174       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2175   LValue UB =
2176       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2177 
2178   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2179   // parallel for') we need to use the 'distribute'
2180   // chunk lower and upper bounds rather than the whole loop iteration
2181   // space. These are parameters to the outlined function for 'parallel'
2182   // and we copy the bounds of the previous schedule into the
2183   // the current ones.
2184   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2185   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2186   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2187       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2188   PrevLBVal = CGF.EmitScalarConversion(
2189       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2190       LS.getIterationVariable()->getType(),
2191       LS.getPrevLowerBoundVariable()->getExprLoc());
2192   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2193       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2194   PrevUBVal = CGF.EmitScalarConversion(
2195       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2196       LS.getIterationVariable()->getType(),
2197       LS.getPrevUpperBoundVariable()->getExprLoc());
2198 
2199   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2200   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2201 
2202   return {LB, UB};
2203 }
2204 
2205 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2206 /// we need to use the LB and UB expressions generated by the worksharing
2207 /// code generation support, whereas in non combined situations we would
2208 /// just emit 0 and the LastIteration expression
2209 /// This function is necessary due to the difference of the LB and UB
2210 /// types for the RT emission routines for 'for_static_init' and
2211 /// 'for_dispatch_init'
2212 static std::pair<llvm::Value *, llvm::Value *>
2213 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2214                                         const OMPExecutableDirective &S,
2215                                         Address LB, Address UB) {
2216   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2217   const Expr *IVExpr = LS.getIterationVariable();
2218   // when implementing a dynamic schedule for a 'for' combined with a
2219   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2220   // is not normalized as each team only executes its own assigned
2221   // distribute chunk
2222   QualType IteratorTy = IVExpr->getType();
2223   llvm::Value *LBVal =
2224       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2225   llvm::Value *UBVal =
2226       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2227   return {LBVal, UBVal};
2228 }
2229 
2230 static void emitDistributeParallelForDistributeInnerBoundParams(
2231     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2232     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2233   const auto &Dir = cast<OMPLoopDirective>(S);
2234   LValue LB =
2235       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2236   llvm::Value *LBCast = CGF.Builder.CreateIntCast(
2237       CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2238   CapturedVars.push_back(LBCast);
2239   LValue UB =
2240       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2241 
2242   llvm::Value *UBCast = CGF.Builder.CreateIntCast(
2243       CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2244   CapturedVars.push_back(UBCast);
2245 }
2246 
2247 static void
2248 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2249                                  const OMPLoopDirective &S,
2250                                  CodeGenFunction::JumpDest LoopExit) {
2251   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2252                                          PrePostActionTy &Action) {
2253     Action.Enter(CGF);
2254     bool HasCancel = false;
2255     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2256       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2257         HasCancel = D->hasCancel();
2258       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2259         HasCancel = D->hasCancel();
2260       else if (const auto *D =
2261                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2262         HasCancel = D->hasCancel();
2263     }
2264     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2265                                                      HasCancel);
2266     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2267                                emitDistributeParallelForInnerBounds,
2268                                emitDistributeParallelForDispatchBounds);
2269   };
2270 
2271   emitCommonOMPParallelDirective(
2272       CGF, S,
2273       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2274       CGInlinedWorksharingLoop,
2275       emitDistributeParallelForDistributeInnerBoundParams);
2276 }
2277 
2278 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2279     const OMPDistributeParallelForDirective &S) {
2280   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2281     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2282                               S.getDistInc());
2283   };
2284   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2285   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2286 }
2287 
2288 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2289     const OMPDistributeParallelForSimdDirective &S) {
2290   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2291     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2292                               S.getDistInc());
2293   };
2294   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2295   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2296 }
2297 
2298 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2299     const OMPDistributeSimdDirective &S) {
2300   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2301     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
2302   };
2303   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2304   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2305 }
2306 
2307 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
2308     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
2309   // Emit SPMD target parallel for region as a standalone region.
2310   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2311     emitOMPSimdRegion(CGF, S, Action);
2312   };
2313   llvm::Function *Fn;
2314   llvm::Constant *Addr;
2315   // Emit target region as a standalone region.
2316   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
2317       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
2318   assert(Fn && Addr && "Target device function emission failed.");
2319 }
2320 
2321 void CodeGenFunction::EmitOMPTargetSimdDirective(
2322     const OMPTargetSimdDirective &S) {
2323   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2324     emitOMPSimdRegion(CGF, S, Action);
2325   };
2326   emitCommonOMPTargetDirective(*this, S, CodeGen);
2327 }
2328 
2329 namespace {
2330   struct ScheduleKindModifiersTy {
2331     OpenMPScheduleClauseKind Kind;
2332     OpenMPScheduleClauseModifier M1;
2333     OpenMPScheduleClauseModifier M2;
2334     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
2335                             OpenMPScheduleClauseModifier M1,
2336                             OpenMPScheduleClauseModifier M2)
2337         : Kind(Kind), M1(M1), M2(M2) {}
2338   };
2339 } // namespace
2340 
2341 bool CodeGenFunction::EmitOMPWorksharingLoop(
2342     const OMPLoopDirective &S, Expr *EUB,
2343     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2344     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2345   // Emit the loop iteration variable.
2346   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2347   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
2348   EmitVarDecl(*IVDecl);
2349 
2350   // Emit the iterations count variable.
2351   // If it is not a variable, Sema decided to calculate iterations count on each
2352   // iteration (e.g., it is foldable into a constant).
2353   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2354     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2355     // Emit calculation of the iterations count.
2356     EmitIgnoredExpr(S.getCalcLastIteration());
2357   }
2358 
2359   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2360 
2361   bool HasLastprivateClause;
2362   // Check pre-condition.
2363   {
2364     OMPLoopScope PreInitScope(*this, S);
2365     // Skip the entire loop if we don't meet the precondition.
2366     // If the condition constant folds and can be elided, avoid emitting the
2367     // whole loop.
2368     bool CondConstant;
2369     llvm::BasicBlock *ContBlock = nullptr;
2370     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2371       if (!CondConstant)
2372         return false;
2373     } else {
2374       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
2375       ContBlock = createBasicBlock("omp.precond.end");
2376       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2377                   getProfileCount(&S));
2378       EmitBlock(ThenBlock);
2379       incrementProfileCounter(&S);
2380     }
2381 
2382     RunCleanupsScope DoacrossCleanupScope(*this);
2383     bool Ordered = false;
2384     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2385       if (OrderedClause->getNumForLoops())
2386         RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
2387       else
2388         Ordered = true;
2389     }
2390 
2391     llvm::DenseSet<const Expr *> EmittedFinals;
2392     emitAlignedClause(*this, S);
2393     bool HasLinears = EmitOMPLinearClauseInit(S);
2394     // Emit helper vars inits.
2395 
2396     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
2397     LValue LB = Bounds.first;
2398     LValue UB = Bounds.second;
2399     LValue ST =
2400         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2401     LValue IL =
2402         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2403 
2404     // Emit 'then' code.
2405     {
2406       OMPPrivateScope LoopScope(*this);
2407       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
2408         // Emit implicit barrier to synchronize threads and avoid data races on
2409         // initialization of firstprivate variables and post-update of
2410         // lastprivate variables.
2411         CGM.getOpenMPRuntime().emitBarrierCall(
2412             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2413             /*ForceSimpleCall=*/true);
2414       }
2415       EmitOMPPrivateClause(S, LoopScope);
2416       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2417       EmitOMPReductionClauseInit(S, LoopScope);
2418       EmitOMPPrivateLoopCounters(S, LoopScope);
2419       EmitOMPLinearClause(S, LoopScope);
2420       (void)LoopScope.Privatize();
2421       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2422         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
2423 
2424       // Detect the loop schedule kind and chunk.
2425       const Expr *ChunkExpr = nullptr;
2426       OpenMPScheduleTy ScheduleKind;
2427       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
2428         ScheduleKind.Schedule = C->getScheduleKind();
2429         ScheduleKind.M1 = C->getFirstScheduleModifier();
2430         ScheduleKind.M2 = C->getSecondScheduleModifier();
2431         ChunkExpr = C->getChunkSize();
2432       } else {
2433         // Default behaviour for schedule clause.
2434         CGM.getOpenMPRuntime().getDefaultScheduleAndChunk(
2435             *this, S, ScheduleKind.Schedule, ChunkExpr);
2436       }
2437       bool HasChunkSizeOne = false;
2438       llvm::Value *Chunk = nullptr;
2439       if (ChunkExpr) {
2440         Chunk = EmitScalarExpr(ChunkExpr);
2441         Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(),
2442                                      S.getIterationVariable()->getType(),
2443                                      S.getBeginLoc());
2444         Expr::EvalResult Result;
2445         if (ChunkExpr->EvaluateAsInt(Result, getContext())) {
2446           llvm::APSInt EvaluatedChunk = Result.Val.getInt();
2447           HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1);
2448         }
2449       }
2450       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2451       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2452       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2453       // If the static schedule kind is specified or if the ordered clause is
2454       // specified, and if no monotonic modifier is specified, the effect will
2455       // be as if the monotonic modifier was specified.
2456       bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule,
2457           /* Chunked */ Chunk != nullptr) && HasChunkSizeOne &&
2458           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
2459       if ((RT.isStaticNonchunked(ScheduleKind.Schedule,
2460                                  /* Chunked */ Chunk != nullptr) ||
2461            StaticChunkedOne) &&
2462           !Ordered) {
2463         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2464           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2465         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2466         // When no chunk_size is specified, the iteration space is divided into
2467         // chunks that are approximately equal in size, and at most one chunk is
2468         // distributed to each thread. Note that the size of the chunks is
2469         // unspecified in this case.
2470         CGOpenMPRuntime::StaticRTInput StaticInit(
2471             IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(),
2472             UB.getAddress(), ST.getAddress(),
2473             StaticChunkedOne ? Chunk : nullptr);
2474         RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2475                              ScheduleKind, StaticInit);
2476         JumpDest LoopExit =
2477             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2478         // UB = min(UB, GlobalUB);
2479         if (!StaticChunkedOne)
2480           EmitIgnoredExpr(S.getEnsureUpperBound());
2481         // IV = LB;
2482         EmitIgnoredExpr(S.getInit());
2483         // For unchunked static schedule generate:
2484         //
2485         // while (idx <= UB) {
2486         //   BODY;
2487         //   ++idx;
2488         // }
2489         //
2490         // For static schedule with chunk one:
2491         //
2492         // while (IV <= PrevUB) {
2493         //   BODY;
2494         //   IV += ST;
2495         // }
2496         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
2497             StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(),
2498             StaticChunkedOne ? S.getDistInc() : S.getInc(),
2499             [&S, LoopExit](CodeGenFunction &CGF) {
2500              CGF.EmitOMPLoopBody(S, LoopExit);
2501              CGF.EmitStopPoint(&S);
2502             },
2503             [](CodeGenFunction &) {});
2504         EmitBlock(LoopExit.getBlock());
2505         // Tell the runtime we are done.
2506         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2507           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2508                                                          S.getDirectiveKind());
2509         };
2510         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2511       } else {
2512         const bool IsMonotonic =
2513             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2514             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2515             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2516             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2517         // Emit the outer loop, which requests its work chunk [LB..UB] from
2518         // runtime and runs the inner loop to process it.
2519         const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(),
2520                                              ST.getAddress(), IL.getAddress(),
2521                                              Chunk, EUB);
2522         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2523                             LoopArguments, CGDispatchBounds);
2524       }
2525       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2526         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
2527           return CGF.Builder.CreateIsNotNull(
2528               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2529         });
2530       }
2531       EmitOMPReductionClauseFinal(
2532           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
2533                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
2534                  : /*Parallel only*/ OMPD_parallel);
2535       // Emit post-update of the reduction variables if IsLastIter != 0.
2536       emitPostUpdateForReductionClause(
2537           *this, S, [IL, &S](CodeGenFunction &CGF) {
2538             return CGF.Builder.CreateIsNotNull(
2539                 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2540           });
2541       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2542       if (HasLastprivateClause)
2543         EmitOMPLastprivateClauseFinal(
2544             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2545             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
2546     }
2547     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
2548       return CGF.Builder.CreateIsNotNull(
2549           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2550     });
2551     DoacrossCleanupScope.ForceCleanup();
2552     // We're now done with the loop, so jump to the continuation block.
2553     if (ContBlock) {
2554       EmitBranch(ContBlock);
2555       EmitBlock(ContBlock, /*IsFinished=*/true);
2556     }
2557   }
2558   return HasLastprivateClause;
2559 }
2560 
2561 /// The following two functions generate expressions for the loop lower
2562 /// and upper bounds in case of static and dynamic (dispatch) schedule
2563 /// of the associated 'for' or 'distribute' loop.
2564 static std::pair<LValue, LValue>
2565 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
2566   const auto &LS = cast<OMPLoopDirective>(S);
2567   LValue LB =
2568       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2569   LValue UB =
2570       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2571   return {LB, UB};
2572 }
2573 
2574 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
2575 /// consider the lower and upper bound expressions generated by the
2576 /// worksharing loop support, but we use 0 and the iteration space size as
2577 /// constants
2578 static std::pair<llvm::Value *, llvm::Value *>
2579 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
2580                           Address LB, Address UB) {
2581   const auto &LS = cast<OMPLoopDirective>(S);
2582   const Expr *IVExpr = LS.getIterationVariable();
2583   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
2584   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
2585   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
2586   return {LBVal, UBVal};
2587 }
2588 
2589 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2590   bool HasLastprivates = false;
2591   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2592                                           PrePostActionTy &) {
2593     OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel());
2594     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2595                                                  emitForLoopBounds,
2596                                                  emitDispatchForLoopBounds);
2597   };
2598   {
2599     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2600     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2601                                                 S.hasCancel());
2602   }
2603 
2604   // Emit an implicit barrier at the end.
2605   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2606     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2607 }
2608 
2609 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2610   bool HasLastprivates = false;
2611   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2612                                           PrePostActionTy &) {
2613     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2614                                                  emitForLoopBounds,
2615                                                  emitDispatchForLoopBounds);
2616   };
2617   {
2618     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2619     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2620   }
2621 
2622   // Emit an implicit barrier at the end.
2623   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2624     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2625 }
2626 
2627 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2628                                 const Twine &Name,
2629                                 llvm::Value *Init = nullptr) {
2630   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2631   if (Init)
2632     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2633   return LVal;
2634 }
2635 
2636 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2637   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
2638   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
2639   bool HasLastprivates = false;
2640   auto &&CodeGen = [&S, CapturedStmt, CS,
2641                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
2642     ASTContext &C = CGF.getContext();
2643     QualType KmpInt32Ty =
2644         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2645     // Emit helper vars inits.
2646     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2647                                   CGF.Builder.getInt32(0));
2648     llvm::ConstantInt *GlobalUBVal = CS != nullptr
2649                                          ? CGF.Builder.getInt32(CS->size() - 1)
2650                                          : CGF.Builder.getInt32(0);
2651     LValue UB =
2652         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2653     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2654                                   CGF.Builder.getInt32(1));
2655     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2656                                   CGF.Builder.getInt32(0));
2657     // Loop counter.
2658     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2659     OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2660     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2661     OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2662     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2663     // Generate condition for loop.
2664     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2665                         OK_Ordinary, S.getBeginLoc(), FPOptions());
2666     // Increment for loop counter.
2667     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2668                       S.getBeginLoc(), true);
2669     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
2670       // Iterate through all sections and emit a switch construct:
2671       // switch (IV) {
2672       //   case 0:
2673       //     <SectionStmt[0]>;
2674       //     break;
2675       // ...
2676       //   case <NumSection> - 1:
2677       //     <SectionStmt[<NumSection> - 1]>;
2678       //     break;
2679       // }
2680       // .omp.sections.exit:
2681       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2682       llvm::SwitchInst *SwitchStmt =
2683           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
2684                                    ExitBB, CS == nullptr ? 1 : CS->size());
2685       if (CS) {
2686         unsigned CaseNumber = 0;
2687         for (const Stmt *SubStmt : CS->children()) {
2688           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2689           CGF.EmitBlock(CaseBB);
2690           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2691           CGF.EmitStmt(SubStmt);
2692           CGF.EmitBranch(ExitBB);
2693           ++CaseNumber;
2694         }
2695       } else {
2696         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
2697         CGF.EmitBlock(CaseBB);
2698         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2699         CGF.EmitStmt(CapturedStmt);
2700         CGF.EmitBranch(ExitBB);
2701       }
2702       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2703     };
2704 
2705     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2706     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2707       // Emit implicit barrier to synchronize threads and avoid data races on
2708       // initialization of firstprivate variables and post-update of lastprivate
2709       // variables.
2710       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2711           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2712           /*ForceSimpleCall=*/true);
2713     }
2714     CGF.EmitOMPPrivateClause(S, LoopScope);
2715     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2716     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2717     (void)LoopScope.Privatize();
2718     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2719       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
2720 
2721     // Emit static non-chunked loop.
2722     OpenMPScheduleTy ScheduleKind;
2723     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2724     CGOpenMPRuntime::StaticRTInput StaticInit(
2725         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
2726         LB.getAddress(), UB.getAddress(), ST.getAddress());
2727     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2728         CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
2729     // UB = min(UB, GlobalUB);
2730     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
2731     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
2732         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2733     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2734     // IV = LB;
2735     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
2736     // while (idx <= UB) { BODY; ++idx; }
2737     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2738                          [](CodeGenFunction &) {});
2739     // Tell the runtime we are done.
2740     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2741       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2742                                                      S.getDirectiveKind());
2743     };
2744     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
2745     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
2746     // Emit post-update of the reduction variables if IsLastIter != 0.
2747     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
2748       return CGF.Builder.CreateIsNotNull(
2749           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2750     });
2751 
2752     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2753     if (HasLastprivates)
2754       CGF.EmitOMPLastprivateClauseFinal(
2755           S, /*NoFinals=*/false,
2756           CGF.Builder.CreateIsNotNull(
2757               CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
2758   };
2759 
2760   bool HasCancel = false;
2761   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2762     HasCancel = OSD->hasCancel();
2763   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2764     HasCancel = OPSD->hasCancel();
2765   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
2766   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2767                                               HasCancel);
2768   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2769   // clause. Otherwise the barrier will be generated by the codegen for the
2770   // directive.
2771   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2772     // Emit implicit barrier to synchronize threads and avoid data races on
2773     // initialization of firstprivate variables.
2774     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
2775                                            OMPD_unknown);
2776   }
2777 }
2778 
2779 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2780   {
2781     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2782     EmitSections(S);
2783   }
2784   // Emit an implicit barrier at the end.
2785   if (!S.getSingleClause<OMPNowaitClause>()) {
2786     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
2787                                            OMPD_sections);
2788   }
2789 }
2790 
2791 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2792   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2793     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2794   };
2795   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2796   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2797                                               S.hasCancel());
2798 }
2799 
2800 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2801   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2802   llvm::SmallVector<const Expr *, 8> DestExprs;
2803   llvm::SmallVector<const Expr *, 8> SrcExprs;
2804   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2805   // Check if there are any 'copyprivate' clauses associated with this
2806   // 'single' construct.
2807   // Build a list of copyprivate variables along with helper expressions
2808   // (<source>, <destination>, <destination>=<source> expressions)
2809   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2810     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2811     DestExprs.append(C->destination_exprs().begin(),
2812                      C->destination_exprs().end());
2813     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2814     AssignmentOps.append(C->assignment_ops().begin(),
2815                          C->assignment_ops().end());
2816   }
2817   // Emit code for 'single' region along with 'copyprivate' clauses
2818   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2819     Action.Enter(CGF);
2820     OMPPrivateScope SingleScope(CGF);
2821     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2822     CGF.EmitOMPPrivateClause(S, SingleScope);
2823     (void)SingleScope.Privatize();
2824     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2825   };
2826   {
2827     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2828     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
2829                                             CopyprivateVars, DestExprs,
2830                                             SrcExprs, AssignmentOps);
2831   }
2832   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2833   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2834   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2835     CGM.getOpenMPRuntime().emitBarrierCall(
2836         *this, S.getBeginLoc(),
2837         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2838   }
2839 }
2840 
2841 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2842   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2843     Action.Enter(CGF);
2844     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2845   };
2846   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2847   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
2848 }
2849 
2850 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2851   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2852     Action.Enter(CGF);
2853     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2854   };
2855   const Expr *Hint = nullptr;
2856   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
2857     Hint = HintClause->getHint();
2858   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2859   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2860                                             S.getDirectiveName().getAsString(),
2861                                             CodeGen, S.getBeginLoc(), Hint);
2862 }
2863 
2864 void CodeGenFunction::EmitOMPParallelForDirective(
2865     const OMPParallelForDirective &S) {
2866   // Emit directive as a combined directive that consists of two implicit
2867   // directives: 'parallel' with 'for' directive.
2868   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2869     Action.Enter(CGF);
2870     OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel());
2871     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2872                                emitDispatchForLoopBounds);
2873   };
2874   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
2875                                  emitEmptyBoundParameters);
2876 }
2877 
2878 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2879     const OMPParallelForSimdDirective &S) {
2880   // Emit directive as a combined directive that consists of two implicit
2881   // directives: 'parallel' with 'for' directive.
2882   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2883     Action.Enter(CGF);
2884     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2885                                emitDispatchForLoopBounds);
2886   };
2887   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen,
2888                                  emitEmptyBoundParameters);
2889 }
2890 
2891 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2892     const OMPParallelSectionsDirective &S) {
2893   // Emit directive as a combined directive that consists of two implicit
2894   // directives: 'parallel' with 'sections' directive.
2895   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2896     Action.Enter(CGF);
2897     CGF.EmitSections(S);
2898   };
2899   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
2900                                  emitEmptyBoundParameters);
2901 }
2902 
2903 void CodeGenFunction::EmitOMPTaskBasedDirective(
2904     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
2905     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
2906     OMPTaskDataTy &Data) {
2907   // Emit outlined function for task construct.
2908   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
2909   auto I = CS->getCapturedDecl()->param_begin();
2910   auto PartId = std::next(I);
2911   auto TaskT = std::next(I, 4);
2912   // Check if the task is final
2913   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2914     // If the condition constant folds and can be elided, try to avoid emitting
2915     // the condition and the dead arm of the if/else.
2916     const Expr *Cond = Clause->getCondition();
2917     bool CondConstant;
2918     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2919       Data.Final.setInt(CondConstant);
2920     else
2921       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2922   } else {
2923     // By default the task is not final.
2924     Data.Final.setInt(/*IntVal=*/false);
2925   }
2926   // Check if the task has 'priority' clause.
2927   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2928     const Expr *Prio = Clause->getPriority();
2929     Data.Priority.setInt(/*IntVal=*/true);
2930     Data.Priority.setPointer(EmitScalarConversion(
2931         EmitScalarExpr(Prio), Prio->getType(),
2932         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2933         Prio->getExprLoc()));
2934   }
2935   // The first function argument for tasks is a thread id, the second one is a
2936   // part id (0 for tied tasks, >=0 for untied task).
2937   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2938   // Get list of private variables.
2939   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2940     auto IRef = C->varlist_begin();
2941     for (const Expr *IInit : C->private_copies()) {
2942       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2943       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2944         Data.PrivateVars.push_back(*IRef);
2945         Data.PrivateCopies.push_back(IInit);
2946       }
2947       ++IRef;
2948     }
2949   }
2950   EmittedAsPrivate.clear();
2951   // Get list of firstprivate variables.
2952   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2953     auto IRef = C->varlist_begin();
2954     auto IElemInitRef = C->inits().begin();
2955     for (const Expr *IInit : C->private_copies()) {
2956       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2957       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2958         Data.FirstprivateVars.push_back(*IRef);
2959         Data.FirstprivateCopies.push_back(IInit);
2960         Data.FirstprivateInits.push_back(*IElemInitRef);
2961       }
2962       ++IRef;
2963       ++IElemInitRef;
2964     }
2965   }
2966   // Get list of lastprivate variables (for taskloops).
2967   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2968   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2969     auto IRef = C->varlist_begin();
2970     auto ID = C->destination_exprs().begin();
2971     for (const Expr *IInit : C->private_copies()) {
2972       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2973       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2974         Data.LastprivateVars.push_back(*IRef);
2975         Data.LastprivateCopies.push_back(IInit);
2976       }
2977       LastprivateDstsOrigs.insert(
2978           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2979            cast<DeclRefExpr>(*IRef)});
2980       ++IRef;
2981       ++ID;
2982     }
2983   }
2984   SmallVector<const Expr *, 4> LHSs;
2985   SmallVector<const Expr *, 4> RHSs;
2986   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
2987     auto IPriv = C->privates().begin();
2988     auto IRed = C->reduction_ops().begin();
2989     auto ILHS = C->lhs_exprs().begin();
2990     auto IRHS = C->rhs_exprs().begin();
2991     for (const Expr *Ref : C->varlists()) {
2992       Data.ReductionVars.emplace_back(Ref);
2993       Data.ReductionCopies.emplace_back(*IPriv);
2994       Data.ReductionOps.emplace_back(*IRed);
2995       LHSs.emplace_back(*ILHS);
2996       RHSs.emplace_back(*IRHS);
2997       std::advance(IPriv, 1);
2998       std::advance(IRed, 1);
2999       std::advance(ILHS, 1);
3000       std::advance(IRHS, 1);
3001     }
3002   }
3003   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
3004       *this, S.getBeginLoc(), LHSs, RHSs, Data);
3005   // Build list of dependences.
3006   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
3007     for (const Expr *IRef : C->varlists())
3008       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
3009   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
3010                     CapturedRegion](CodeGenFunction &CGF,
3011                                     PrePostActionTy &Action) {
3012     // Set proper addresses for generated private copies.
3013     OMPPrivateScope Scope(CGF);
3014     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
3015         !Data.LastprivateVars.empty()) {
3016       llvm::FunctionType *CopyFnTy = llvm::FunctionType::get(
3017           CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true);
3018       enum { PrivatesParam = 2, CopyFnParam = 3 };
3019       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
3020           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
3021       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
3022           CS->getCapturedDecl()->getParam(PrivatesParam)));
3023       // Map privates.
3024       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
3025       llvm::SmallVector<llvm::Value *, 16> CallArgs;
3026       CallArgs.push_back(PrivatesPtr);
3027       for (const Expr *E : Data.PrivateVars) {
3028         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3029         Address PrivatePtr = CGF.CreateMemTemp(
3030             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
3031         PrivatePtrs.emplace_back(VD, PrivatePtr);
3032         CallArgs.push_back(PrivatePtr.getPointer());
3033       }
3034       for (const Expr *E : Data.FirstprivateVars) {
3035         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3036         Address PrivatePtr =
3037             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3038                               ".firstpriv.ptr.addr");
3039         PrivatePtrs.emplace_back(VD, PrivatePtr);
3040         CallArgs.push_back(PrivatePtr.getPointer());
3041       }
3042       for (const Expr *E : Data.LastprivateVars) {
3043         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3044         Address PrivatePtr =
3045             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3046                               ".lastpriv.ptr.addr");
3047         PrivatePtrs.emplace_back(VD, PrivatePtr);
3048         CallArgs.push_back(PrivatePtr.getPointer());
3049       }
3050       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3051           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
3052       for (const auto &Pair : LastprivateDstsOrigs) {
3053         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
3054         DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD),
3055                         /*RefersToEnclosingVariableOrCapture=*/
3056                             CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
3057                         Pair.second->getType(), VK_LValue,
3058                         Pair.second->getExprLoc());
3059         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
3060           return CGF.EmitLValue(&DRE).getAddress();
3061         });
3062       }
3063       for (const auto &Pair : PrivatePtrs) {
3064         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
3065                             CGF.getContext().getDeclAlign(Pair.first));
3066         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
3067       }
3068     }
3069     if (Data.Reductions) {
3070       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
3071       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies,
3072                              Data.ReductionOps);
3073       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
3074           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
3075       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
3076         RedCG.emitSharedLValue(CGF, Cnt);
3077         RedCG.emitAggregateType(CGF, Cnt);
3078         // FIXME: This must removed once the runtime library is fixed.
3079         // Emit required threadprivate variables for
3080         // initializer/combiner/finalizer.
3081         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
3082                                                            RedCG, Cnt);
3083         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
3084             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
3085         Replacement =
3086             Address(CGF.EmitScalarConversion(
3087                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
3088                         CGF.getContext().getPointerType(
3089                             Data.ReductionCopies[Cnt]->getType()),
3090                         Data.ReductionCopies[Cnt]->getExprLoc()),
3091                     Replacement.getAlignment());
3092         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
3093         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
3094                          [Replacement]() { return Replacement; });
3095       }
3096     }
3097     // Privatize all private variables except for in_reduction items.
3098     (void)Scope.Privatize();
3099     SmallVector<const Expr *, 4> InRedVars;
3100     SmallVector<const Expr *, 4> InRedPrivs;
3101     SmallVector<const Expr *, 4> InRedOps;
3102     SmallVector<const Expr *, 4> TaskgroupDescriptors;
3103     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
3104       auto IPriv = C->privates().begin();
3105       auto IRed = C->reduction_ops().begin();
3106       auto ITD = C->taskgroup_descriptors().begin();
3107       for (const Expr *Ref : C->varlists()) {
3108         InRedVars.emplace_back(Ref);
3109         InRedPrivs.emplace_back(*IPriv);
3110         InRedOps.emplace_back(*IRed);
3111         TaskgroupDescriptors.emplace_back(*ITD);
3112         std::advance(IPriv, 1);
3113         std::advance(IRed, 1);
3114         std::advance(ITD, 1);
3115       }
3116     }
3117     // Privatize in_reduction items here, because taskgroup descriptors must be
3118     // privatized earlier.
3119     OMPPrivateScope InRedScope(CGF);
3120     if (!InRedVars.empty()) {
3121       ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps);
3122       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
3123         RedCG.emitSharedLValue(CGF, Cnt);
3124         RedCG.emitAggregateType(CGF, Cnt);
3125         // The taskgroup descriptor variable is always implicit firstprivate and
3126         // privatized already during processing of the firstprivates.
3127         // FIXME: This must removed once the runtime library is fixed.
3128         // Emit required threadprivate variables for
3129         // initializer/combiner/finalizer.
3130         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
3131                                                            RedCG, Cnt);
3132         llvm::Value *ReductionsPtr =
3133             CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]),
3134                                  TaskgroupDescriptors[Cnt]->getExprLoc());
3135         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
3136             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
3137         Replacement = Address(
3138             CGF.EmitScalarConversion(
3139                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
3140                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
3141                 InRedPrivs[Cnt]->getExprLoc()),
3142             Replacement.getAlignment());
3143         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
3144         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
3145                               [Replacement]() { return Replacement; });
3146       }
3147     }
3148     (void)InRedScope.Privatize();
3149 
3150     Action.Enter(CGF);
3151     BodyGen(CGF);
3152   };
3153   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3154       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
3155       Data.NumberOfParts);
3156   OMPLexicalScope Scope(*this, S, llvm::None,
3157                         !isOpenMPParallelDirective(S.getDirectiveKind()));
3158   TaskGen(*this, OutlinedFn, Data);
3159 }
3160 
3161 static ImplicitParamDecl *
3162 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
3163                                   QualType Ty, CapturedDecl *CD,
3164                                   SourceLocation Loc) {
3165   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3166                                            ImplicitParamDecl::Other);
3167   auto *OrigRef = DeclRefExpr::Create(
3168       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
3169       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3170   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3171                                               ImplicitParamDecl::Other);
3172   auto *PrivateRef = DeclRefExpr::Create(
3173       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
3174       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3175   QualType ElemType = C.getBaseElementType(Ty);
3176   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
3177                                            ImplicitParamDecl::Other);
3178   auto *InitRef = DeclRefExpr::Create(
3179       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
3180       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
3181   PrivateVD->setInitStyle(VarDecl::CInit);
3182   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
3183                                               InitRef, /*BasePath=*/nullptr,
3184                                               VK_RValue));
3185   Data.FirstprivateVars.emplace_back(OrigRef);
3186   Data.FirstprivateCopies.emplace_back(PrivateRef);
3187   Data.FirstprivateInits.emplace_back(InitRef);
3188   return OrigVD;
3189 }
3190 
3191 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
3192     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
3193     OMPTargetDataInfo &InputInfo) {
3194   // Emit outlined function for task construct.
3195   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3196   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3197   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3198   auto I = CS->getCapturedDecl()->param_begin();
3199   auto PartId = std::next(I);
3200   auto TaskT = std::next(I, 4);
3201   OMPTaskDataTy Data;
3202   // The task is not final.
3203   Data.Final.setInt(/*IntVal=*/false);
3204   // Get list of firstprivate variables.
3205   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
3206     auto IRef = C->varlist_begin();
3207     auto IElemInitRef = C->inits().begin();
3208     for (auto *IInit : C->private_copies()) {
3209       Data.FirstprivateVars.push_back(*IRef);
3210       Data.FirstprivateCopies.push_back(IInit);
3211       Data.FirstprivateInits.push_back(*IElemInitRef);
3212       ++IRef;
3213       ++IElemInitRef;
3214     }
3215   }
3216   OMPPrivateScope TargetScope(*this);
3217   VarDecl *BPVD = nullptr;
3218   VarDecl *PVD = nullptr;
3219   VarDecl *SVD = nullptr;
3220   if (InputInfo.NumberOfTargetItems > 0) {
3221     auto *CD = CapturedDecl::Create(
3222         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
3223     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
3224     QualType BaseAndPointersType = getContext().getConstantArrayType(
3225         getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal,
3226         /*IndexTypeQuals=*/0);
3227     BPVD = createImplicitFirstprivateForType(
3228         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3229     PVD = createImplicitFirstprivateForType(
3230         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3231     QualType SizesType = getContext().getConstantArrayType(
3232         getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1),
3233         ArrSize, nullptr, ArrayType::Normal,
3234         /*IndexTypeQuals=*/0);
3235     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
3236                                             S.getBeginLoc());
3237     TargetScope.addPrivate(
3238         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
3239     TargetScope.addPrivate(PVD,
3240                            [&InputInfo]() { return InputInfo.PointersArray; });
3241     TargetScope.addPrivate(SVD,
3242                            [&InputInfo]() { return InputInfo.SizesArray; });
3243   }
3244   (void)TargetScope.Privatize();
3245   // Build list of dependences.
3246   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
3247     for (const Expr *IRef : C->varlists())
3248       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
3249   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD,
3250                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
3251     // Set proper addresses for generated private copies.
3252     OMPPrivateScope Scope(CGF);
3253     if (!Data.FirstprivateVars.empty()) {
3254       llvm::FunctionType *CopyFnTy = llvm::FunctionType::get(
3255           CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true);
3256       enum { PrivatesParam = 2, CopyFnParam = 3 };
3257       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
3258           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
3259       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
3260           CS->getCapturedDecl()->getParam(PrivatesParam)));
3261       // Map privates.
3262       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
3263       llvm::SmallVector<llvm::Value *, 16> CallArgs;
3264       CallArgs.push_back(PrivatesPtr);
3265       for (const Expr *E : Data.FirstprivateVars) {
3266         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3267         Address PrivatePtr =
3268             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3269                               ".firstpriv.ptr.addr");
3270         PrivatePtrs.emplace_back(VD, PrivatePtr);
3271         CallArgs.push_back(PrivatePtr.getPointer());
3272       }
3273       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3274           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
3275       for (const auto &Pair : PrivatePtrs) {
3276         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
3277                             CGF.getContext().getDeclAlign(Pair.first));
3278         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
3279       }
3280     }
3281     // Privatize all private variables except for in_reduction items.
3282     (void)Scope.Privatize();
3283     if (InputInfo.NumberOfTargetItems > 0) {
3284       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
3285           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0);
3286       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
3287           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0);
3288       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
3289           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0);
3290     }
3291 
3292     Action.Enter(CGF);
3293     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
3294     BodyGen(CGF);
3295   };
3296   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3297       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
3298       Data.NumberOfParts);
3299   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
3300   IntegerLiteral IfCond(getContext(), TrueOrFalse,
3301                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3302                         SourceLocation());
3303 
3304   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
3305                                       SharedsTy, CapturedStruct, &IfCond, Data);
3306 }
3307 
3308 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
3309   // Emit outlined function for task construct.
3310   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3311   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3312   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3313   const Expr *IfCond = nullptr;
3314   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3315     if (C->getNameModifier() == OMPD_unknown ||
3316         C->getNameModifier() == OMPD_task) {
3317       IfCond = C->getCondition();
3318       break;
3319     }
3320   }
3321 
3322   OMPTaskDataTy Data;
3323   // Check if we should emit tied or untied task.
3324   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
3325   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
3326     CGF.EmitStmt(CS->getCapturedStmt());
3327   };
3328   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3329                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
3330                             const OMPTaskDataTy &Data) {
3331     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
3332                                             SharedsTy, CapturedStruct, IfCond,
3333                                             Data);
3334   };
3335   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
3336 }
3337 
3338 void CodeGenFunction::EmitOMPTaskyieldDirective(
3339     const OMPTaskyieldDirective &S) {
3340   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
3341 }
3342 
3343 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
3344   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
3345 }
3346 
3347 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
3348   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
3349 }
3350 
3351 void CodeGenFunction::EmitOMPTaskgroupDirective(
3352     const OMPTaskgroupDirective &S) {
3353   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3354     Action.Enter(CGF);
3355     if (const Expr *E = S.getReductionRef()) {
3356       SmallVector<const Expr *, 4> LHSs;
3357       SmallVector<const Expr *, 4> RHSs;
3358       OMPTaskDataTy Data;
3359       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
3360         auto IPriv = C->privates().begin();
3361         auto IRed = C->reduction_ops().begin();
3362         auto ILHS = C->lhs_exprs().begin();
3363         auto IRHS = C->rhs_exprs().begin();
3364         for (const Expr *Ref : C->varlists()) {
3365           Data.ReductionVars.emplace_back(Ref);
3366           Data.ReductionCopies.emplace_back(*IPriv);
3367           Data.ReductionOps.emplace_back(*IRed);
3368           LHSs.emplace_back(*ILHS);
3369           RHSs.emplace_back(*IRHS);
3370           std::advance(IPriv, 1);
3371           std::advance(IRed, 1);
3372           std::advance(ILHS, 1);
3373           std::advance(IRHS, 1);
3374         }
3375       }
3376       llvm::Value *ReductionDesc =
3377           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
3378                                                            LHSs, RHSs, Data);
3379       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3380       CGF.EmitVarDecl(*VD);
3381       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
3382                             /*Volatile=*/false, E->getType());
3383     }
3384     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3385   };
3386   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3387   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
3388 }
3389 
3390 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
3391   CGM.getOpenMPRuntime().emitFlush(
3392       *this,
3393       [&S]() -> ArrayRef<const Expr *> {
3394         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
3395           return llvm::makeArrayRef(FlushClause->varlist_begin(),
3396                                     FlushClause->varlist_end());
3397         return llvm::None;
3398       }(),
3399       S.getBeginLoc());
3400 }
3401 
3402 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
3403                                             const CodeGenLoopTy &CodeGenLoop,
3404                                             Expr *IncExpr) {
3405   // Emit the loop iteration variable.
3406   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3407   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3408   EmitVarDecl(*IVDecl);
3409 
3410   // Emit the iterations count variable.
3411   // If it is not a variable, Sema decided to calculate iterations count on each
3412   // iteration (e.g., it is foldable into a constant).
3413   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3414     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3415     // Emit calculation of the iterations count.
3416     EmitIgnoredExpr(S.getCalcLastIteration());
3417   }
3418 
3419   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3420 
3421   bool HasLastprivateClause = false;
3422   // Check pre-condition.
3423   {
3424     OMPLoopScope PreInitScope(*this, S);
3425     // Skip the entire loop if we don't meet the precondition.
3426     // If the condition constant folds and can be elided, avoid emitting the
3427     // whole loop.
3428     bool CondConstant;
3429     llvm::BasicBlock *ContBlock = nullptr;
3430     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3431       if (!CondConstant)
3432         return;
3433     } else {
3434       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3435       ContBlock = createBasicBlock("omp.precond.end");
3436       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3437                   getProfileCount(&S));
3438       EmitBlock(ThenBlock);
3439       incrementProfileCounter(&S);
3440     }
3441 
3442     emitAlignedClause(*this, S);
3443     // Emit 'then' code.
3444     {
3445       // Emit helper vars inits.
3446 
3447       LValue LB = EmitOMPHelperVar(
3448           *this, cast<DeclRefExpr>(
3449                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3450                           ? S.getCombinedLowerBoundVariable()
3451                           : S.getLowerBoundVariable())));
3452       LValue UB = EmitOMPHelperVar(
3453           *this, cast<DeclRefExpr>(
3454                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3455                           ? S.getCombinedUpperBoundVariable()
3456                           : S.getUpperBoundVariable())));
3457       LValue ST =
3458           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3459       LValue IL =
3460           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3461 
3462       OMPPrivateScope LoopScope(*this);
3463       if (EmitOMPFirstprivateClause(S, LoopScope)) {
3464         // Emit implicit barrier to synchronize threads and avoid data races
3465         // on initialization of firstprivate variables and post-update of
3466         // lastprivate variables.
3467         CGM.getOpenMPRuntime().emitBarrierCall(
3468             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3469             /*ForceSimpleCall=*/true);
3470       }
3471       EmitOMPPrivateClause(S, LoopScope);
3472       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3473           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3474           !isOpenMPTeamsDirective(S.getDirectiveKind()))
3475         EmitOMPReductionClauseInit(S, LoopScope);
3476       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3477       EmitOMPPrivateLoopCounters(S, LoopScope);
3478       (void)LoopScope.Privatize();
3479       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3480         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
3481 
3482       // Detect the distribute schedule kind and chunk.
3483       llvm::Value *Chunk = nullptr;
3484       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
3485       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
3486         ScheduleKind = C->getDistScheduleKind();
3487         if (const Expr *Ch = C->getChunkSize()) {
3488           Chunk = EmitScalarExpr(Ch);
3489           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
3490                                        S.getIterationVariable()->getType(),
3491                                        S.getBeginLoc());
3492         }
3493       } else {
3494         // Default behaviour for dist_schedule clause.
3495         CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk(
3496             *this, S, ScheduleKind, Chunk);
3497       }
3498       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3499       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3500 
3501       // OpenMP [2.10.8, distribute Construct, Description]
3502       // If dist_schedule is specified, kind must be static. If specified,
3503       // iterations are divided into chunks of size chunk_size, chunks are
3504       // assigned to the teams of the league in a round-robin fashion in the
3505       // order of the team number. When no chunk_size is specified, the
3506       // iteration space is divided into chunks that are approximately equal
3507       // in size, and at most one chunk is distributed to each team of the
3508       // league. The size of the chunks is unspecified in this case.
3509       bool StaticChunked = RT.isStaticChunked(
3510           ScheduleKind, /* Chunked */ Chunk != nullptr) &&
3511           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
3512       if (RT.isStaticNonchunked(ScheduleKind,
3513                                 /* Chunked */ Chunk != nullptr) ||
3514           StaticChunked) {
3515         if (isOpenMPSimdDirective(S.getDirectiveKind()))
3516           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
3517         CGOpenMPRuntime::StaticRTInput StaticInit(
3518             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(),
3519             LB.getAddress(), UB.getAddress(), ST.getAddress(),
3520             StaticChunked ? Chunk : nullptr);
3521         RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
3522                                     StaticInit);
3523         JumpDest LoopExit =
3524             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3525         // UB = min(UB, GlobalUB);
3526         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3527                             ? S.getCombinedEnsureUpperBound()
3528                             : S.getEnsureUpperBound());
3529         // IV = LB;
3530         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3531                             ? S.getCombinedInit()
3532                             : S.getInit());
3533 
3534         const Expr *Cond =
3535             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3536                 ? S.getCombinedCond()
3537                 : S.getCond();
3538 
3539         if (StaticChunked)
3540           Cond = S.getCombinedDistCond();
3541 
3542         // For static unchunked schedules generate:
3543         //
3544         //  1. For distribute alone, codegen
3545         //    while (idx <= UB) {
3546         //      BODY;
3547         //      ++idx;
3548         //    }
3549         //
3550         //  2. When combined with 'for' (e.g. as in 'distribute parallel for')
3551         //    while (idx <= UB) {
3552         //      <CodeGen rest of pragma>(LB, UB);
3553         //      idx += ST;
3554         //    }
3555         //
3556         // For static chunk one schedule generate:
3557         //
3558         // while (IV <= GlobalUB) {
3559         //   <CodeGen rest of pragma>(LB, UB);
3560         //   LB += ST;
3561         //   UB += ST;
3562         //   UB = min(UB, GlobalUB);
3563         //   IV = LB;
3564         // }
3565         //
3566         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr,
3567                          [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
3568                            CodeGenLoop(CGF, S, LoopExit);
3569                          },
3570                          [&S, StaticChunked](CodeGenFunction &CGF) {
3571                            if (StaticChunked) {
3572                              CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound());
3573                              CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound());
3574                              CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound());
3575                              CGF.EmitIgnoredExpr(S.getCombinedInit());
3576                            }
3577                          });
3578         EmitBlock(LoopExit.getBlock());
3579         // Tell the runtime we are done.
3580         RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind());
3581       } else {
3582         // Emit the outer loop, which requests its work chunk [LB..UB] from
3583         // runtime and runs the inner loop to process it.
3584         const OMPLoopArguments LoopArguments = {
3585             LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(),
3586             Chunk};
3587         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
3588                                    CodeGenLoop);
3589       }
3590       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3591         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3592           return CGF.Builder.CreateIsNotNull(
3593               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3594         });
3595       }
3596       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3597           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3598           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
3599         EmitOMPReductionClauseFinal(S, OMPD_simd);
3600         // Emit post-update of the reduction variables if IsLastIter != 0.
3601         emitPostUpdateForReductionClause(
3602             *this, S, [IL, &S](CodeGenFunction &CGF) {
3603               return CGF.Builder.CreateIsNotNull(
3604                   CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3605             });
3606       }
3607       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3608       if (HasLastprivateClause) {
3609         EmitOMPLastprivateClauseFinal(
3610             S, /*NoFinals=*/false,
3611             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
3612       }
3613     }
3614 
3615     // We're now done with the loop, so jump to the continuation block.
3616     if (ContBlock) {
3617       EmitBranch(ContBlock);
3618       EmitBlock(ContBlock, true);
3619     }
3620   }
3621 }
3622 
3623 void CodeGenFunction::EmitOMPDistributeDirective(
3624     const OMPDistributeDirective &S) {
3625   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3626     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
3627   };
3628   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3629   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
3630 }
3631 
3632 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
3633                                                    const CapturedStmt *S) {
3634   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3635   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
3636   CGF.CapturedStmtInfo = &CapStmtInfo;
3637   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
3638   Fn->setDoesNotRecurse();
3639   return Fn;
3640 }
3641 
3642 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
3643   if (S.hasClausesOfKind<OMPDependClause>()) {
3644     assert(!S.getAssociatedStmt() &&
3645            "No associated statement must be in ordered depend construct.");
3646     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
3647       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
3648     return;
3649   }
3650   const auto *C = S.getSingleClause<OMPSIMDClause>();
3651   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
3652                                  PrePostActionTy &Action) {
3653     const CapturedStmt *CS = S.getInnermostCapturedStmt();
3654     if (C) {
3655       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3656       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3657       llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
3658       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
3659                                                       OutlinedFn, CapturedVars);
3660     } else {
3661       Action.Enter(CGF);
3662       CGF.EmitStmt(CS->getCapturedStmt());
3663     }
3664   };
3665   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3666   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
3667 }
3668 
3669 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
3670                                          QualType SrcType, QualType DestType,
3671                                          SourceLocation Loc) {
3672   assert(CGF.hasScalarEvaluationKind(DestType) &&
3673          "DestType must have scalar evaluation kind.");
3674   assert(!Val.isAggregate() && "Must be a scalar or complex.");
3675   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
3676                                                    DestType, Loc)
3677                         : CGF.EmitComplexToScalarConversion(
3678                               Val.getComplexVal(), SrcType, DestType, Loc);
3679 }
3680 
3681 static CodeGenFunction::ComplexPairTy
3682 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
3683                       QualType DestType, SourceLocation Loc) {
3684   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
3685          "DestType must have complex evaluation kind.");
3686   CodeGenFunction::ComplexPairTy ComplexVal;
3687   if (Val.isScalar()) {
3688     // Convert the input element to the element type of the complex.
3689     QualType DestElementType =
3690         DestType->castAs<ComplexType>()->getElementType();
3691     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
3692         Val.getScalarVal(), SrcType, DestElementType, Loc);
3693     ComplexVal = CodeGenFunction::ComplexPairTy(
3694         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
3695   } else {
3696     assert(Val.isComplex() && "Must be a scalar or complex.");
3697     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
3698     QualType DestElementType =
3699         DestType->castAs<ComplexType>()->getElementType();
3700     ComplexVal.first = CGF.EmitScalarConversion(
3701         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
3702     ComplexVal.second = CGF.EmitScalarConversion(
3703         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
3704   }
3705   return ComplexVal;
3706 }
3707 
3708 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
3709                                   LValue LVal, RValue RVal) {
3710   if (LVal.isGlobalReg()) {
3711     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
3712   } else {
3713     CGF.EmitAtomicStore(RVal, LVal,
3714                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3715                                  : llvm::AtomicOrdering::Monotonic,
3716                         LVal.isVolatile(), /*isInit=*/false);
3717   }
3718 }
3719 
3720 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
3721                                          QualType RValTy, SourceLocation Loc) {
3722   switch (getEvaluationKind(LVal.getType())) {
3723   case TEK_Scalar:
3724     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
3725                                *this, RVal, RValTy, LVal.getType(), Loc)),
3726                            LVal);
3727     break;
3728   case TEK_Complex:
3729     EmitStoreOfComplex(
3730         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
3731         /*isInit=*/false);
3732     break;
3733   case TEK_Aggregate:
3734     llvm_unreachable("Must be a scalar or complex.");
3735   }
3736 }
3737 
3738 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
3739                                   const Expr *X, const Expr *V,
3740                                   SourceLocation Loc) {
3741   // v = x;
3742   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
3743   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
3744   LValue XLValue = CGF.EmitLValue(X);
3745   LValue VLValue = CGF.EmitLValue(V);
3746   RValue Res = XLValue.isGlobalReg()
3747                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
3748                    : CGF.EmitAtomicLoad(
3749                          XLValue, Loc,
3750                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3751                                   : llvm::AtomicOrdering::Monotonic,
3752                          XLValue.isVolatile());
3753   // OpenMP, 2.12.6, atomic Construct
3754   // Any atomic construct with a seq_cst clause forces the atomically
3755   // performed operation to include an implicit flush operation without a
3756   // list.
3757   if (IsSeqCst)
3758     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3759   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
3760 }
3761 
3762 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
3763                                    const Expr *X, const Expr *E,
3764                                    SourceLocation Loc) {
3765   // x = expr;
3766   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
3767   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
3768   // OpenMP, 2.12.6, atomic Construct
3769   // Any atomic construct with a seq_cst clause forces the atomically
3770   // performed operation to include an implicit flush operation without a
3771   // list.
3772   if (IsSeqCst)
3773     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3774 }
3775 
3776 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
3777                                                 RValue Update,
3778                                                 BinaryOperatorKind BO,
3779                                                 llvm::AtomicOrdering AO,
3780                                                 bool IsXLHSInRHSPart) {
3781   ASTContext &Context = CGF.getContext();
3782   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
3783   // expression is simple and atomic is allowed for the given type for the
3784   // target platform.
3785   if (BO == BO_Comma || !Update.isScalar() ||
3786       !Update.getScalarVal()->getType()->isIntegerTy() ||
3787       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
3788                         (Update.getScalarVal()->getType() !=
3789                          X.getAddress().getElementType())) ||
3790       !X.getAddress().getElementType()->isIntegerTy() ||
3791       !Context.getTargetInfo().hasBuiltinAtomic(
3792           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
3793     return std::make_pair(false, RValue::get(nullptr));
3794 
3795   llvm::AtomicRMWInst::BinOp RMWOp;
3796   switch (BO) {
3797   case BO_Add:
3798     RMWOp = llvm::AtomicRMWInst::Add;
3799     break;
3800   case BO_Sub:
3801     if (!IsXLHSInRHSPart)
3802       return std::make_pair(false, RValue::get(nullptr));
3803     RMWOp = llvm::AtomicRMWInst::Sub;
3804     break;
3805   case BO_And:
3806     RMWOp = llvm::AtomicRMWInst::And;
3807     break;
3808   case BO_Or:
3809     RMWOp = llvm::AtomicRMWInst::Or;
3810     break;
3811   case BO_Xor:
3812     RMWOp = llvm::AtomicRMWInst::Xor;
3813     break;
3814   case BO_LT:
3815     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3816                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
3817                                    : llvm::AtomicRMWInst::Max)
3818                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
3819                                    : llvm::AtomicRMWInst::UMax);
3820     break;
3821   case BO_GT:
3822     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3823                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
3824                                    : llvm::AtomicRMWInst::Min)
3825                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
3826                                    : llvm::AtomicRMWInst::UMin);
3827     break;
3828   case BO_Assign:
3829     RMWOp = llvm::AtomicRMWInst::Xchg;
3830     break;
3831   case BO_Mul:
3832   case BO_Div:
3833   case BO_Rem:
3834   case BO_Shl:
3835   case BO_Shr:
3836   case BO_LAnd:
3837   case BO_LOr:
3838     return std::make_pair(false, RValue::get(nullptr));
3839   case BO_PtrMemD:
3840   case BO_PtrMemI:
3841   case BO_LE:
3842   case BO_GE:
3843   case BO_EQ:
3844   case BO_NE:
3845   case BO_Cmp:
3846   case BO_AddAssign:
3847   case BO_SubAssign:
3848   case BO_AndAssign:
3849   case BO_OrAssign:
3850   case BO_XorAssign:
3851   case BO_MulAssign:
3852   case BO_DivAssign:
3853   case BO_RemAssign:
3854   case BO_ShlAssign:
3855   case BO_ShrAssign:
3856   case BO_Comma:
3857     llvm_unreachable("Unsupported atomic update operation");
3858   }
3859   llvm::Value *UpdateVal = Update.getScalarVal();
3860   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3861     UpdateVal = CGF.Builder.CreateIntCast(
3862         IC, X.getAddress().getElementType(),
3863         X.getType()->hasSignedIntegerRepresentation());
3864   }
3865   llvm::Value *Res =
3866       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3867   return std::make_pair(true, RValue::get(Res));
3868 }
3869 
3870 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3871     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3872     llvm::AtomicOrdering AO, SourceLocation Loc,
3873     const llvm::function_ref<RValue(RValue)> CommonGen) {
3874   // Update expressions are allowed to have the following forms:
3875   // x binop= expr; -> xrval + expr;
3876   // x++, ++x -> xrval + 1;
3877   // x--, --x -> xrval - 1;
3878   // x = x binop expr; -> xrval binop expr
3879   // x = expr Op x; - > expr binop xrval;
3880   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3881   if (!Res.first) {
3882     if (X.isGlobalReg()) {
3883       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3884       // 'xrval'.
3885       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3886     } else {
3887       // Perform compare-and-swap procedure.
3888       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3889     }
3890   }
3891   return Res;
3892 }
3893 
3894 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3895                                     const Expr *X, const Expr *E,
3896                                     const Expr *UE, bool IsXLHSInRHSPart,
3897                                     SourceLocation Loc) {
3898   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3899          "Update expr in 'atomic update' must be a binary operator.");
3900   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3901   // Update expressions are allowed to have the following forms:
3902   // x binop= expr; -> xrval + expr;
3903   // x++, ++x -> xrval + 1;
3904   // x--, --x -> xrval - 1;
3905   // x = x binop expr; -> xrval binop expr
3906   // x = expr Op x; - > expr binop xrval;
3907   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3908   LValue XLValue = CGF.EmitLValue(X);
3909   RValue ExprRValue = CGF.EmitAnyExpr(E);
3910   llvm::AtomicOrdering AO = IsSeqCst
3911                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3912                                 : llvm::AtomicOrdering::Monotonic;
3913   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3914   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3915   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3916   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3917   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
3918     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3919     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3920     return CGF.EmitAnyExpr(UE);
3921   };
3922   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3923       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3924   // OpenMP, 2.12.6, atomic Construct
3925   // Any atomic construct with a seq_cst clause forces the atomically
3926   // performed operation to include an implicit flush operation without a
3927   // list.
3928   if (IsSeqCst)
3929     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3930 }
3931 
3932 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3933                             QualType SourceType, QualType ResType,
3934                             SourceLocation Loc) {
3935   switch (CGF.getEvaluationKind(ResType)) {
3936   case TEK_Scalar:
3937     return RValue::get(
3938         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3939   case TEK_Complex: {
3940     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3941     return RValue::getComplex(Res.first, Res.second);
3942   }
3943   case TEK_Aggregate:
3944     break;
3945   }
3946   llvm_unreachable("Must be a scalar or complex.");
3947 }
3948 
3949 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3950                                      bool IsPostfixUpdate, const Expr *V,
3951                                      const Expr *X, const Expr *E,
3952                                      const Expr *UE, bool IsXLHSInRHSPart,
3953                                      SourceLocation Loc) {
3954   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3955   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3956   RValue NewVVal;
3957   LValue VLValue = CGF.EmitLValue(V);
3958   LValue XLValue = CGF.EmitLValue(X);
3959   RValue ExprRValue = CGF.EmitAnyExpr(E);
3960   llvm::AtomicOrdering AO = IsSeqCst
3961                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3962                                 : llvm::AtomicOrdering::Monotonic;
3963   QualType NewVValType;
3964   if (UE) {
3965     // 'x' is updated with some additional value.
3966     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3967            "Update expr in 'atomic capture' must be a binary operator.");
3968     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3969     // Update expressions are allowed to have the following forms:
3970     // x binop= expr; -> xrval + expr;
3971     // x++, ++x -> xrval + 1;
3972     // x--, --x -> xrval - 1;
3973     // x = x binop expr; -> xrval binop expr
3974     // x = expr Op x; - > expr binop xrval;
3975     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3976     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3977     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3978     NewVValType = XRValExpr->getType();
3979     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3980     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3981                   IsPostfixUpdate](RValue XRValue) {
3982       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3983       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3984       RValue Res = CGF.EmitAnyExpr(UE);
3985       NewVVal = IsPostfixUpdate ? XRValue : Res;
3986       return Res;
3987     };
3988     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3989         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3990     if (Res.first) {
3991       // 'atomicrmw' instruction was generated.
3992       if (IsPostfixUpdate) {
3993         // Use old value from 'atomicrmw'.
3994         NewVVal = Res.second;
3995       } else {
3996         // 'atomicrmw' does not provide new value, so evaluate it using old
3997         // value of 'x'.
3998         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3999         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
4000         NewVVal = CGF.EmitAnyExpr(UE);
4001       }
4002     }
4003   } else {
4004     // 'x' is simply rewritten with some 'expr'.
4005     NewVValType = X->getType().getNonReferenceType();
4006     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
4007                                X->getType().getNonReferenceType(), Loc);
4008     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
4009       NewVVal = XRValue;
4010       return ExprRValue;
4011     };
4012     // Try to perform atomicrmw xchg, otherwise simple exchange.
4013     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
4014         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
4015         Loc, Gen);
4016     if (Res.first) {
4017       // 'atomicrmw' instruction was generated.
4018       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
4019     }
4020   }
4021   // Emit post-update store to 'v' of old/new 'x' value.
4022   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
4023   // OpenMP, 2.12.6, atomic Construct
4024   // Any atomic construct with a seq_cst clause forces the atomically
4025   // performed operation to include an implicit flush operation without a
4026   // list.
4027   if (IsSeqCst)
4028     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
4029 }
4030 
4031 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
4032                               bool IsSeqCst, bool IsPostfixUpdate,
4033                               const Expr *X, const Expr *V, const Expr *E,
4034                               const Expr *UE, bool IsXLHSInRHSPart,
4035                               SourceLocation Loc) {
4036   switch (Kind) {
4037   case OMPC_read:
4038     emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
4039     break;
4040   case OMPC_write:
4041     emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
4042     break;
4043   case OMPC_unknown:
4044   case OMPC_update:
4045     emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
4046     break;
4047   case OMPC_capture:
4048     emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
4049                              IsXLHSInRHSPart, Loc);
4050     break;
4051   case OMPC_if:
4052   case OMPC_final:
4053   case OMPC_num_threads:
4054   case OMPC_private:
4055   case OMPC_firstprivate:
4056   case OMPC_lastprivate:
4057   case OMPC_reduction:
4058   case OMPC_task_reduction:
4059   case OMPC_in_reduction:
4060   case OMPC_safelen:
4061   case OMPC_simdlen:
4062   case OMPC_allocator:
4063   case OMPC_allocate:
4064   case OMPC_collapse:
4065   case OMPC_default:
4066   case OMPC_seq_cst:
4067   case OMPC_shared:
4068   case OMPC_linear:
4069   case OMPC_aligned:
4070   case OMPC_copyin:
4071   case OMPC_copyprivate:
4072   case OMPC_flush:
4073   case OMPC_proc_bind:
4074   case OMPC_schedule:
4075   case OMPC_ordered:
4076   case OMPC_nowait:
4077   case OMPC_untied:
4078   case OMPC_threadprivate:
4079   case OMPC_depend:
4080   case OMPC_mergeable:
4081   case OMPC_device:
4082   case OMPC_threads:
4083   case OMPC_simd:
4084   case OMPC_map:
4085   case OMPC_num_teams:
4086   case OMPC_thread_limit:
4087   case OMPC_priority:
4088   case OMPC_grainsize:
4089   case OMPC_nogroup:
4090   case OMPC_num_tasks:
4091   case OMPC_hint:
4092   case OMPC_dist_schedule:
4093   case OMPC_defaultmap:
4094   case OMPC_uniform:
4095   case OMPC_to:
4096   case OMPC_from:
4097   case OMPC_use_device_ptr:
4098   case OMPC_is_device_ptr:
4099   case OMPC_unified_address:
4100   case OMPC_unified_shared_memory:
4101   case OMPC_reverse_offload:
4102   case OMPC_dynamic_allocators:
4103   case OMPC_atomic_default_mem_order:
4104   case OMPC_device_type:
4105   case OMPC_match:
4106     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
4107   }
4108 }
4109 
4110 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
4111   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
4112   OpenMPClauseKind Kind = OMPC_unknown;
4113   for (const OMPClause *C : S.clauses()) {
4114     // Find first clause (skip seq_cst clause, if it is first).
4115     if (C->getClauseKind() != OMPC_seq_cst) {
4116       Kind = C->getClauseKind();
4117       break;
4118     }
4119   }
4120 
4121   const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers();
4122   if (const auto *FE = dyn_cast<FullExpr>(CS))
4123     enterFullExpression(FE);
4124   // Processing for statements under 'atomic capture'.
4125   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
4126     for (const Stmt *C : Compound->body()) {
4127       if (const auto *FE = dyn_cast<FullExpr>(C))
4128         enterFullExpression(FE);
4129     }
4130   }
4131 
4132   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
4133                                             PrePostActionTy &) {
4134     CGF.EmitStopPoint(CS);
4135     emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
4136                       S.getV(), S.getExpr(), S.getUpdateExpr(),
4137                       S.isXLHSInRHSPart(), S.getBeginLoc());
4138   };
4139   OMPLexicalScope Scope(*this, S, OMPD_unknown);
4140   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
4141 }
4142 
4143 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
4144                                          const OMPExecutableDirective &S,
4145                                          const RegionCodeGenTy &CodeGen) {
4146   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
4147   CodeGenModule &CGM = CGF.CGM;
4148 
4149   // On device emit this construct as inlined code.
4150   if (CGM.getLangOpts().OpenMPIsDevice) {
4151     OMPLexicalScope Scope(CGF, S, OMPD_target);
4152     CGM.getOpenMPRuntime().emitInlinedDirective(
4153         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4154           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4155         });
4156     return;
4157   }
4158 
4159   llvm::Function *Fn = nullptr;
4160   llvm::Constant *FnID = nullptr;
4161 
4162   const Expr *IfCond = nullptr;
4163   // Check for the at most one if clause associated with the target region.
4164   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4165     if (C->getNameModifier() == OMPD_unknown ||
4166         C->getNameModifier() == OMPD_target) {
4167       IfCond = C->getCondition();
4168       break;
4169     }
4170   }
4171 
4172   // Check if we have any device clause associated with the directive.
4173   const Expr *Device = nullptr;
4174   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4175     Device = C->getDevice();
4176 
4177   // Check if we have an if clause whose conditional always evaluates to false
4178   // or if we do not have any targets specified. If so the target region is not
4179   // an offload entry point.
4180   bool IsOffloadEntry = true;
4181   if (IfCond) {
4182     bool Val;
4183     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
4184       IsOffloadEntry = false;
4185   }
4186   if (CGM.getLangOpts().OMPTargetTriples.empty())
4187     IsOffloadEntry = false;
4188 
4189   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
4190   StringRef ParentName;
4191   // In case we have Ctors/Dtors we use the complete type variant to produce
4192   // the mangling of the device outlined kernel.
4193   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
4194     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
4195   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
4196     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
4197   else
4198     ParentName =
4199         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
4200 
4201   // Emit target region as a standalone region.
4202   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
4203                                                     IsOffloadEntry, CodeGen);
4204   OMPLexicalScope Scope(CGF, S, OMPD_task);
4205   auto &&SizeEmitter =
4206       [IsOffloadEntry](CodeGenFunction &CGF,
4207                        const OMPLoopDirective &D) -> llvm::Value * {
4208     if (IsOffloadEntry) {
4209       OMPLoopScope(CGF, D);
4210       // Emit calculation of the iterations count.
4211       llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations());
4212       NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty,
4213                                                 /*isSigned=*/false);
4214       return NumIterations;
4215     }
4216     return nullptr;
4217   };
4218   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device,
4219                                         SizeEmitter);
4220 }
4221 
4222 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
4223                              PrePostActionTy &Action) {
4224   Action.Enter(CGF);
4225   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4226   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4227   CGF.EmitOMPPrivateClause(S, PrivateScope);
4228   (void)PrivateScope.Privatize();
4229   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4230     CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4231 
4232   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
4233 }
4234 
4235 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
4236                                                   StringRef ParentName,
4237                                                   const OMPTargetDirective &S) {
4238   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4239     emitTargetRegion(CGF, S, Action);
4240   };
4241   llvm::Function *Fn;
4242   llvm::Constant *Addr;
4243   // Emit target region as a standalone region.
4244   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4245       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4246   assert(Fn && Addr && "Target device function emission failed.");
4247 }
4248 
4249 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
4250   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4251     emitTargetRegion(CGF, S, Action);
4252   };
4253   emitCommonOMPTargetDirective(*this, S, CodeGen);
4254 }
4255 
4256 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
4257                                         const OMPExecutableDirective &S,
4258                                         OpenMPDirectiveKind InnermostKind,
4259                                         const RegionCodeGenTy &CodeGen) {
4260   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
4261   llvm::Function *OutlinedFn =
4262       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
4263           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
4264 
4265   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
4266   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
4267   if (NT || TL) {
4268     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
4269     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
4270 
4271     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
4272                                                   S.getBeginLoc());
4273   }
4274 
4275   OMPTeamsScope Scope(CGF, S);
4276   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
4277   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
4278   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
4279                                            CapturedVars);
4280 }
4281 
4282 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
4283   // Emit teams region as a standalone region.
4284   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4285     Action.Enter(CGF);
4286     OMPPrivateScope PrivateScope(CGF);
4287     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4288     CGF.EmitOMPPrivateClause(S, PrivateScope);
4289     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4290     (void)PrivateScope.Privatize();
4291     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
4292     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4293   };
4294   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4295   emitPostUpdateForReductionClause(*this, S,
4296                                    [](CodeGenFunction &) { return nullptr; });
4297 }
4298 
4299 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4300                                   const OMPTargetTeamsDirective &S) {
4301   auto *CS = S.getCapturedStmt(OMPD_teams);
4302   Action.Enter(CGF);
4303   // Emit teams region as a standalone region.
4304   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4305     Action.Enter(CGF);
4306     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4307     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4308     CGF.EmitOMPPrivateClause(S, PrivateScope);
4309     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4310     (void)PrivateScope.Privatize();
4311     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4312       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4313     CGF.EmitStmt(CS->getCapturedStmt());
4314     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4315   };
4316   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
4317   emitPostUpdateForReductionClause(CGF, S,
4318                                    [](CodeGenFunction &) { return nullptr; });
4319 }
4320 
4321 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
4322     CodeGenModule &CGM, StringRef ParentName,
4323     const OMPTargetTeamsDirective &S) {
4324   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4325     emitTargetTeamsRegion(CGF, Action, S);
4326   };
4327   llvm::Function *Fn;
4328   llvm::Constant *Addr;
4329   // Emit target region as a standalone region.
4330   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4331       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4332   assert(Fn && Addr && "Target device function emission failed.");
4333 }
4334 
4335 void CodeGenFunction::EmitOMPTargetTeamsDirective(
4336     const OMPTargetTeamsDirective &S) {
4337   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4338     emitTargetTeamsRegion(CGF, Action, S);
4339   };
4340   emitCommonOMPTargetDirective(*this, S, CodeGen);
4341 }
4342 
4343 static void
4344 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4345                                 const OMPTargetTeamsDistributeDirective &S) {
4346   Action.Enter(CGF);
4347   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4348     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4349   };
4350 
4351   // Emit teams region as a standalone region.
4352   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4353                                             PrePostActionTy &Action) {
4354     Action.Enter(CGF);
4355     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4356     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4357     (void)PrivateScope.Privatize();
4358     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4359                                                     CodeGenDistribute);
4360     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4361   };
4362   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
4363   emitPostUpdateForReductionClause(CGF, S,
4364                                    [](CodeGenFunction &) { return nullptr; });
4365 }
4366 
4367 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
4368     CodeGenModule &CGM, StringRef ParentName,
4369     const OMPTargetTeamsDistributeDirective &S) {
4370   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4371     emitTargetTeamsDistributeRegion(CGF, Action, S);
4372   };
4373   llvm::Function *Fn;
4374   llvm::Constant *Addr;
4375   // Emit target region as a standalone region.
4376   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4377       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4378   assert(Fn && Addr && "Target device function emission failed.");
4379 }
4380 
4381 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
4382     const OMPTargetTeamsDistributeDirective &S) {
4383   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4384     emitTargetTeamsDistributeRegion(CGF, Action, S);
4385   };
4386   emitCommonOMPTargetDirective(*this, S, CodeGen);
4387 }
4388 
4389 static void emitTargetTeamsDistributeSimdRegion(
4390     CodeGenFunction &CGF, PrePostActionTy &Action,
4391     const OMPTargetTeamsDistributeSimdDirective &S) {
4392   Action.Enter(CGF);
4393   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4394     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4395   };
4396 
4397   // Emit teams region as a standalone region.
4398   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4399                                             PrePostActionTy &Action) {
4400     Action.Enter(CGF);
4401     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4402     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4403     (void)PrivateScope.Privatize();
4404     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4405                                                     CodeGenDistribute);
4406     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4407   };
4408   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
4409   emitPostUpdateForReductionClause(CGF, S,
4410                                    [](CodeGenFunction &) { return nullptr; });
4411 }
4412 
4413 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
4414     CodeGenModule &CGM, StringRef ParentName,
4415     const OMPTargetTeamsDistributeSimdDirective &S) {
4416   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4417     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4418   };
4419   llvm::Function *Fn;
4420   llvm::Constant *Addr;
4421   // Emit target region as a standalone region.
4422   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4423       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4424   assert(Fn && Addr && "Target device function emission failed.");
4425 }
4426 
4427 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
4428     const OMPTargetTeamsDistributeSimdDirective &S) {
4429   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4430     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4431   };
4432   emitCommonOMPTargetDirective(*this, S, CodeGen);
4433 }
4434 
4435 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
4436     const OMPTeamsDistributeDirective &S) {
4437 
4438   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4439     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4440   };
4441 
4442   // Emit teams region as a standalone region.
4443   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4444                                             PrePostActionTy &Action) {
4445     Action.Enter(CGF);
4446     OMPPrivateScope PrivateScope(CGF);
4447     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4448     (void)PrivateScope.Privatize();
4449     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4450                                                     CodeGenDistribute);
4451     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4452   };
4453   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4454   emitPostUpdateForReductionClause(*this, S,
4455                                    [](CodeGenFunction &) { return nullptr; });
4456 }
4457 
4458 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
4459     const OMPTeamsDistributeSimdDirective &S) {
4460   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4461     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4462   };
4463 
4464   // Emit teams region as a standalone region.
4465   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4466                                             PrePostActionTy &Action) {
4467     Action.Enter(CGF);
4468     OMPPrivateScope PrivateScope(CGF);
4469     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4470     (void)PrivateScope.Privatize();
4471     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
4472                                                     CodeGenDistribute);
4473     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4474   };
4475   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
4476   emitPostUpdateForReductionClause(*this, S,
4477                                    [](CodeGenFunction &) { return nullptr; });
4478 }
4479 
4480 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
4481     const OMPTeamsDistributeParallelForDirective &S) {
4482   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4483     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4484                               S.getDistInc());
4485   };
4486 
4487   // Emit teams region as a standalone region.
4488   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4489                                             PrePostActionTy &Action) {
4490     Action.Enter(CGF);
4491     OMPPrivateScope PrivateScope(CGF);
4492     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4493     (void)PrivateScope.Privatize();
4494     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4495                                                     CodeGenDistribute);
4496     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4497   };
4498   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4499   emitPostUpdateForReductionClause(*this, S,
4500                                    [](CodeGenFunction &) { return nullptr; });
4501 }
4502 
4503 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
4504     const OMPTeamsDistributeParallelForSimdDirective &S) {
4505   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4506     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4507                               S.getDistInc());
4508   };
4509 
4510   // Emit teams region as a standalone region.
4511   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4512                                             PrePostActionTy &Action) {
4513     Action.Enter(CGF);
4514     OMPPrivateScope PrivateScope(CGF);
4515     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4516     (void)PrivateScope.Privatize();
4517     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4518         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4519     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4520   };
4521   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4522   emitPostUpdateForReductionClause(*this, S,
4523                                    [](CodeGenFunction &) { return nullptr; });
4524 }
4525 
4526 static void emitTargetTeamsDistributeParallelForRegion(
4527     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
4528     PrePostActionTy &Action) {
4529   Action.Enter(CGF);
4530   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4531     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4532                               S.getDistInc());
4533   };
4534 
4535   // Emit teams region as a standalone region.
4536   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4537                                                  PrePostActionTy &Action) {
4538     Action.Enter(CGF);
4539     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4540     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4541     (void)PrivateScope.Privatize();
4542     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4543         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4544     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4545   };
4546 
4547   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
4548                               CodeGenTeams);
4549   emitPostUpdateForReductionClause(CGF, S,
4550                                    [](CodeGenFunction &) { return nullptr; });
4551 }
4552 
4553 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
4554     CodeGenModule &CGM, StringRef ParentName,
4555     const OMPTargetTeamsDistributeParallelForDirective &S) {
4556   // Emit SPMD target teams distribute parallel for region as a standalone
4557   // region.
4558   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4559     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4560   };
4561   llvm::Function *Fn;
4562   llvm::Constant *Addr;
4563   // Emit target region as a standalone region.
4564   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4565       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4566   assert(Fn && Addr && "Target device function emission failed.");
4567 }
4568 
4569 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
4570     const OMPTargetTeamsDistributeParallelForDirective &S) {
4571   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4572     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4573   };
4574   emitCommonOMPTargetDirective(*this, S, CodeGen);
4575 }
4576 
4577 static void emitTargetTeamsDistributeParallelForSimdRegion(
4578     CodeGenFunction &CGF,
4579     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
4580     PrePostActionTy &Action) {
4581   Action.Enter(CGF);
4582   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4583     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4584                               S.getDistInc());
4585   };
4586 
4587   // Emit teams region as a standalone region.
4588   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4589                                                  PrePostActionTy &Action) {
4590     Action.Enter(CGF);
4591     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4592     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4593     (void)PrivateScope.Privatize();
4594     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4595         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4596     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4597   };
4598 
4599   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
4600                               CodeGenTeams);
4601   emitPostUpdateForReductionClause(CGF, S,
4602                                    [](CodeGenFunction &) { return nullptr; });
4603 }
4604 
4605 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
4606     CodeGenModule &CGM, StringRef ParentName,
4607     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4608   // Emit SPMD target teams distribute parallel for simd region as a standalone
4609   // region.
4610   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4611     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4612   };
4613   llvm::Function *Fn;
4614   llvm::Constant *Addr;
4615   // Emit target region as a standalone region.
4616   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4617       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4618   assert(Fn && Addr && "Target device function emission failed.");
4619 }
4620 
4621 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
4622     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4623   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4624     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4625   };
4626   emitCommonOMPTargetDirective(*this, S, CodeGen);
4627 }
4628 
4629 void CodeGenFunction::EmitOMPCancellationPointDirective(
4630     const OMPCancellationPointDirective &S) {
4631   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
4632                                                    S.getCancelRegion());
4633 }
4634 
4635 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
4636   const Expr *IfCond = nullptr;
4637   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4638     if (C->getNameModifier() == OMPD_unknown ||
4639         C->getNameModifier() == OMPD_cancel) {
4640       IfCond = C->getCondition();
4641       break;
4642     }
4643   }
4644   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
4645                                         S.getCancelRegion());
4646 }
4647 
4648 CodeGenFunction::JumpDest
4649 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
4650   if (Kind == OMPD_parallel || Kind == OMPD_task ||
4651       Kind == OMPD_target_parallel)
4652     return ReturnBlock;
4653   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
4654          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
4655          Kind == OMPD_distribute_parallel_for ||
4656          Kind == OMPD_target_parallel_for ||
4657          Kind == OMPD_teams_distribute_parallel_for ||
4658          Kind == OMPD_target_teams_distribute_parallel_for);
4659   return OMPCancelStack.getExitBlock();
4660 }
4661 
4662 void CodeGenFunction::EmitOMPUseDevicePtrClause(
4663     const OMPClause &NC, OMPPrivateScope &PrivateScope,
4664     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
4665   const auto &C = cast<OMPUseDevicePtrClause>(NC);
4666   auto OrigVarIt = C.varlist_begin();
4667   auto InitIt = C.inits().begin();
4668   for (const Expr *PvtVarIt : C.private_copies()) {
4669     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
4670     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
4671     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
4672 
4673     // In order to identify the right initializer we need to match the
4674     // declaration used by the mapping logic. In some cases we may get
4675     // OMPCapturedExprDecl that refers to the original declaration.
4676     const ValueDecl *MatchingVD = OrigVD;
4677     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
4678       // OMPCapturedExprDecl are used to privative fields of the current
4679       // structure.
4680       const auto *ME = cast<MemberExpr>(OED->getInit());
4681       assert(isa<CXXThisExpr>(ME->getBase()) &&
4682              "Base should be the current struct!");
4683       MatchingVD = ME->getMemberDecl();
4684     }
4685 
4686     // If we don't have information about the current list item, move on to
4687     // the next one.
4688     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
4689     if (InitAddrIt == CaptureDeviceAddrMap.end())
4690       continue;
4691 
4692     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
4693                                                          InitAddrIt, InitVD,
4694                                                          PvtVD]() {
4695       // Initialize the temporary initialization variable with the address we
4696       // get from the runtime library. We have to cast the source address
4697       // because it is always a void *. References are materialized in the
4698       // privatization scope, so the initialization here disregards the fact
4699       // the original variable is a reference.
4700       QualType AddrQTy =
4701           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
4702       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
4703       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
4704       setAddrOfLocalVar(InitVD, InitAddr);
4705 
4706       // Emit private declaration, it will be initialized by the value we
4707       // declaration we just added to the local declarations map.
4708       EmitDecl(*PvtVD);
4709 
4710       // The initialization variables reached its purpose in the emission
4711       // of the previous declaration, so we don't need it anymore.
4712       LocalDeclMap.erase(InitVD);
4713 
4714       // Return the address of the private variable.
4715       return GetAddrOfLocalVar(PvtVD);
4716     });
4717     assert(IsRegistered && "firstprivate var already registered as private");
4718     // Silence the warning about unused variable.
4719     (void)IsRegistered;
4720 
4721     ++OrigVarIt;
4722     ++InitIt;
4723   }
4724 }
4725 
4726 // Generate the instructions for '#pragma omp target data' directive.
4727 void CodeGenFunction::EmitOMPTargetDataDirective(
4728     const OMPTargetDataDirective &S) {
4729   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
4730 
4731   // Create a pre/post action to signal the privatization of the device pointer.
4732   // This action can be replaced by the OpenMP runtime code generation to
4733   // deactivate privatization.
4734   bool PrivatizeDevicePointers = false;
4735   class DevicePointerPrivActionTy : public PrePostActionTy {
4736     bool &PrivatizeDevicePointers;
4737 
4738   public:
4739     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
4740         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
4741     void Enter(CodeGenFunction &CGF) override {
4742       PrivatizeDevicePointers = true;
4743     }
4744   };
4745   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
4746 
4747   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
4748                        CodeGenFunction &CGF, PrePostActionTy &Action) {
4749     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4750       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4751     };
4752 
4753     // Codegen that selects whether to generate the privatization code or not.
4754     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
4755                           &InnermostCodeGen](CodeGenFunction &CGF,
4756                                              PrePostActionTy &Action) {
4757       RegionCodeGenTy RCG(InnermostCodeGen);
4758       PrivatizeDevicePointers = false;
4759 
4760       // Call the pre-action to change the status of PrivatizeDevicePointers if
4761       // needed.
4762       Action.Enter(CGF);
4763 
4764       if (PrivatizeDevicePointers) {
4765         OMPPrivateScope PrivateScope(CGF);
4766         // Emit all instances of the use_device_ptr clause.
4767         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
4768           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
4769                                         Info.CaptureDeviceAddrMap);
4770         (void)PrivateScope.Privatize();
4771         RCG(CGF);
4772       } else {
4773         RCG(CGF);
4774       }
4775     };
4776 
4777     // Forward the provided action to the privatization codegen.
4778     RegionCodeGenTy PrivRCG(PrivCodeGen);
4779     PrivRCG.setAction(Action);
4780 
4781     // Notwithstanding the body of the region is emitted as inlined directive,
4782     // we don't use an inline scope as changes in the references inside the
4783     // region are expected to be visible outside, so we do not privative them.
4784     OMPLexicalScope Scope(CGF, S);
4785     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
4786                                                     PrivRCG);
4787   };
4788 
4789   RegionCodeGenTy RCG(CodeGen);
4790 
4791   // If we don't have target devices, don't bother emitting the data mapping
4792   // code.
4793   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
4794     RCG(*this);
4795     return;
4796   }
4797 
4798   // Check if we have any if clause associated with the directive.
4799   const Expr *IfCond = nullptr;
4800   if (const auto *C = S.getSingleClause<OMPIfClause>())
4801     IfCond = C->getCondition();
4802 
4803   // Check if we have any device clause associated with the directive.
4804   const Expr *Device = nullptr;
4805   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4806     Device = C->getDevice();
4807 
4808   // Set the action to signal privatization of device pointers.
4809   RCG.setAction(PrivAction);
4810 
4811   // Emit region code.
4812   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
4813                                              Info);
4814 }
4815 
4816 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
4817     const OMPTargetEnterDataDirective &S) {
4818   // If we don't have target devices, don't bother emitting the data mapping
4819   // code.
4820   if (CGM.getLangOpts().OMPTargetTriples.empty())
4821     return;
4822 
4823   // Check if we have any if clause associated with the directive.
4824   const Expr *IfCond = nullptr;
4825   if (const auto *C = S.getSingleClause<OMPIfClause>())
4826     IfCond = C->getCondition();
4827 
4828   // Check if we have any device clause associated with the directive.
4829   const Expr *Device = nullptr;
4830   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4831     Device = C->getDevice();
4832 
4833   OMPLexicalScope Scope(*this, S, OMPD_task);
4834   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4835 }
4836 
4837 void CodeGenFunction::EmitOMPTargetExitDataDirective(
4838     const OMPTargetExitDataDirective &S) {
4839   // If we don't have target devices, don't bother emitting the data mapping
4840   // code.
4841   if (CGM.getLangOpts().OMPTargetTriples.empty())
4842     return;
4843 
4844   // Check if we have any if clause associated with the directive.
4845   const Expr *IfCond = nullptr;
4846   if (const auto *C = S.getSingleClause<OMPIfClause>())
4847     IfCond = C->getCondition();
4848 
4849   // Check if we have any device clause associated with the directive.
4850   const Expr *Device = nullptr;
4851   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4852     Device = C->getDevice();
4853 
4854   OMPLexicalScope Scope(*this, S, OMPD_task);
4855   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4856 }
4857 
4858 static void emitTargetParallelRegion(CodeGenFunction &CGF,
4859                                      const OMPTargetParallelDirective &S,
4860                                      PrePostActionTy &Action) {
4861   // Get the captured statement associated with the 'parallel' region.
4862   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
4863   Action.Enter(CGF);
4864   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4865     Action.Enter(CGF);
4866     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4867     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4868     CGF.EmitOMPPrivateClause(S, PrivateScope);
4869     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4870     (void)PrivateScope.Privatize();
4871     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4872       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4873     // TODO: Add support for clauses.
4874     CGF.EmitStmt(CS->getCapturedStmt());
4875     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
4876   };
4877   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
4878                                  emitEmptyBoundParameters);
4879   emitPostUpdateForReductionClause(CGF, S,
4880                                    [](CodeGenFunction &) { return nullptr; });
4881 }
4882 
4883 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
4884     CodeGenModule &CGM, StringRef ParentName,
4885     const OMPTargetParallelDirective &S) {
4886   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4887     emitTargetParallelRegion(CGF, S, Action);
4888   };
4889   llvm::Function *Fn;
4890   llvm::Constant *Addr;
4891   // Emit target region as a standalone region.
4892   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4893       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4894   assert(Fn && Addr && "Target device function emission failed.");
4895 }
4896 
4897 void CodeGenFunction::EmitOMPTargetParallelDirective(
4898     const OMPTargetParallelDirective &S) {
4899   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4900     emitTargetParallelRegion(CGF, S, Action);
4901   };
4902   emitCommonOMPTargetDirective(*this, S, CodeGen);
4903 }
4904 
4905 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
4906                                         const OMPTargetParallelForDirective &S,
4907                                         PrePostActionTy &Action) {
4908   Action.Enter(CGF);
4909   // Emit directive as a combined directive that consists of two implicit
4910   // directives: 'parallel' with 'for' directive.
4911   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4912     Action.Enter(CGF);
4913     CodeGenFunction::OMPCancelStackRAII CancelRegion(
4914         CGF, OMPD_target_parallel_for, S.hasCancel());
4915     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4916                                emitDispatchForLoopBounds);
4917   };
4918   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
4919                                  emitEmptyBoundParameters);
4920 }
4921 
4922 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
4923     CodeGenModule &CGM, StringRef ParentName,
4924     const OMPTargetParallelForDirective &S) {
4925   // Emit SPMD target parallel for region as a standalone region.
4926   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4927     emitTargetParallelForRegion(CGF, S, Action);
4928   };
4929   llvm::Function *Fn;
4930   llvm::Constant *Addr;
4931   // Emit target region as a standalone region.
4932   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4933       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4934   assert(Fn && Addr && "Target device function emission failed.");
4935 }
4936 
4937 void CodeGenFunction::EmitOMPTargetParallelForDirective(
4938     const OMPTargetParallelForDirective &S) {
4939   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4940     emitTargetParallelForRegion(CGF, S, Action);
4941   };
4942   emitCommonOMPTargetDirective(*this, S, CodeGen);
4943 }
4944 
4945 static void
4946 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
4947                                 const OMPTargetParallelForSimdDirective &S,
4948                                 PrePostActionTy &Action) {
4949   Action.Enter(CGF);
4950   // Emit directive as a combined directive that consists of two implicit
4951   // directives: 'parallel' with 'for' directive.
4952   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4953     Action.Enter(CGF);
4954     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4955                                emitDispatchForLoopBounds);
4956   };
4957   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
4958                                  emitEmptyBoundParameters);
4959 }
4960 
4961 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
4962     CodeGenModule &CGM, StringRef ParentName,
4963     const OMPTargetParallelForSimdDirective &S) {
4964   // Emit SPMD target parallel for region as a standalone region.
4965   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4966     emitTargetParallelForSimdRegion(CGF, S, Action);
4967   };
4968   llvm::Function *Fn;
4969   llvm::Constant *Addr;
4970   // Emit target region as a standalone region.
4971   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4972       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4973   assert(Fn && Addr && "Target device function emission failed.");
4974 }
4975 
4976 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
4977     const OMPTargetParallelForSimdDirective &S) {
4978   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4979     emitTargetParallelForSimdRegion(CGF, S, Action);
4980   };
4981   emitCommonOMPTargetDirective(*this, S, CodeGen);
4982 }
4983 
4984 /// Emit a helper variable and return corresponding lvalue.
4985 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
4986                      const ImplicitParamDecl *PVD,
4987                      CodeGenFunction::OMPPrivateScope &Privates) {
4988   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
4989   Privates.addPrivate(VDecl,
4990                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
4991 }
4992 
4993 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
4994   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
4995   // Emit outlined function for task construct.
4996   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
4997   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4998   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4999   const Expr *IfCond = nullptr;
5000   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
5001     if (C->getNameModifier() == OMPD_unknown ||
5002         C->getNameModifier() == OMPD_taskloop) {
5003       IfCond = C->getCondition();
5004       break;
5005     }
5006   }
5007 
5008   OMPTaskDataTy Data;
5009   // Check if taskloop must be emitted without taskgroup.
5010   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
5011   // TODO: Check if we should emit tied or untied task.
5012   Data.Tied = true;
5013   // Set scheduling for taskloop
5014   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
5015     // grainsize clause
5016     Data.Schedule.setInt(/*IntVal=*/false);
5017     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
5018   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
5019     // num_tasks clause
5020     Data.Schedule.setInt(/*IntVal=*/true);
5021     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
5022   }
5023 
5024   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
5025     // if (PreCond) {
5026     //   for (IV in 0..LastIteration) BODY;
5027     //   <Final counter/linear vars updates>;
5028     // }
5029     //
5030 
5031     // Emit: if (PreCond) - begin.
5032     // If the condition constant folds and can be elided, avoid emitting the
5033     // whole loop.
5034     bool CondConstant;
5035     llvm::BasicBlock *ContBlock = nullptr;
5036     OMPLoopScope PreInitScope(CGF, S);
5037     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
5038       if (!CondConstant)
5039         return;
5040     } else {
5041       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
5042       ContBlock = CGF.createBasicBlock("taskloop.if.end");
5043       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
5044                   CGF.getProfileCount(&S));
5045       CGF.EmitBlock(ThenBlock);
5046       CGF.incrementProfileCounter(&S);
5047     }
5048 
5049     if (isOpenMPSimdDirective(S.getDirectiveKind())) {
5050       CGF.EmitOMPSimdInit(S);
5051       (void)CGF.EmitOMPLinearClauseInit(S);
5052     }
5053 
5054     OMPPrivateScope LoopScope(CGF);
5055     // Emit helper vars inits.
5056     enum { LowerBound = 5, UpperBound, Stride, LastIter };
5057     auto *I = CS->getCapturedDecl()->param_begin();
5058     auto *LBP = std::next(I, LowerBound);
5059     auto *UBP = std::next(I, UpperBound);
5060     auto *STP = std::next(I, Stride);
5061     auto *LIP = std::next(I, LastIter);
5062     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
5063              LoopScope);
5064     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
5065              LoopScope);
5066     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
5067     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
5068              LoopScope);
5069     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
5070     CGF.EmitOMPLinearClause(S, LoopScope);
5071     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
5072     (void)LoopScope.Privatize();
5073     // Emit the loop iteration variable.
5074     const Expr *IVExpr = S.getIterationVariable();
5075     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
5076     CGF.EmitVarDecl(*IVDecl);
5077     CGF.EmitIgnoredExpr(S.getInit());
5078 
5079     // Emit the iterations count variable.
5080     // If it is not a variable, Sema decided to calculate iterations count on
5081     // each iteration (e.g., it is foldable into a constant).
5082     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
5083       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
5084       // Emit calculation of the iterations count.
5085       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
5086     }
5087 
5088     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
5089                          S.getInc(),
5090                          [&S](CodeGenFunction &CGF) {
5091                            CGF.EmitOMPLoopBody(S, JumpDest());
5092                            CGF.EmitStopPoint(&S);
5093                          },
5094                          [](CodeGenFunction &) {});
5095     // Emit: if (PreCond) - end.
5096     if (ContBlock) {
5097       CGF.EmitBranch(ContBlock);
5098       CGF.EmitBlock(ContBlock, true);
5099     }
5100     // Emit final copy of the lastprivate variables if IsLastIter != 0.
5101     if (HasLastprivateClause) {
5102       CGF.EmitOMPLastprivateClauseFinal(
5103           S, isOpenMPSimdDirective(S.getDirectiveKind()),
5104           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
5105               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
5106               (*LIP)->getType(), S.getBeginLoc())));
5107     }
5108     CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) {
5109       return CGF.Builder.CreateIsNotNull(
5110           CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
5111                                (*LIP)->getType(), S.getBeginLoc()));
5112     });
5113   };
5114   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
5115                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
5116                             const OMPTaskDataTy &Data) {
5117     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
5118                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
5119       OMPLoopScope PreInitScope(CGF, S);
5120       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
5121                                                   OutlinedFn, SharedsTy,
5122                                                   CapturedStruct, IfCond, Data);
5123     };
5124     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
5125                                                     CodeGen);
5126   };
5127   if (Data.Nogroup) {
5128     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
5129   } else {
5130     CGM.getOpenMPRuntime().emitTaskgroupRegion(
5131         *this,
5132         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
5133                                         PrePostActionTy &Action) {
5134           Action.Enter(CGF);
5135           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
5136                                         Data);
5137         },
5138         S.getBeginLoc());
5139   }
5140 }
5141 
5142 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
5143   EmitOMPTaskLoopBasedDirective(S);
5144 }
5145 
5146 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
5147     const OMPTaskLoopSimdDirective &S) {
5148   EmitOMPTaskLoopBasedDirective(S);
5149 }
5150 
5151 void CodeGenFunction::EmitOMPMasterTaskLoopDirective(
5152     const OMPMasterTaskLoopDirective &S) {
5153   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5154     Action.Enter(CGF);
5155     EmitOMPTaskLoopBasedDirective(S);
5156   };
5157   OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false);
5158   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
5159 }
5160 
5161 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective(
5162     const OMPMasterTaskLoopSimdDirective &S) {
5163   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5164     Action.Enter(CGF);
5165     EmitOMPTaskLoopBasedDirective(S);
5166   };
5167   OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false);
5168   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
5169 }
5170 
5171 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective(
5172     const OMPParallelMasterTaskLoopDirective &S) {
5173   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5174     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
5175                                   PrePostActionTy &Action) {
5176       Action.Enter(CGF);
5177       CGF.EmitOMPTaskLoopBasedDirective(S);
5178     };
5179     OMPLexicalScope Scope(CGF, S, llvm::None, /*EmitPreInitStmt=*/false);
5180     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
5181                                             S.getBeginLoc());
5182   };
5183   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen,
5184                                  emitEmptyBoundParameters);
5185 }
5186 
5187 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective(
5188     const OMPParallelMasterTaskLoopSimdDirective &S) {
5189   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5190     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
5191                                   PrePostActionTy &Action) {
5192       Action.Enter(CGF);
5193       CGF.EmitOMPTaskLoopBasedDirective(S);
5194     };
5195     OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
5196     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
5197                                             S.getBeginLoc());
5198   };
5199   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen,
5200                                  emitEmptyBoundParameters);
5201 }
5202 
5203 // Generate the instructions for '#pragma omp target update' directive.
5204 void CodeGenFunction::EmitOMPTargetUpdateDirective(
5205     const OMPTargetUpdateDirective &S) {
5206   // If we don't have target devices, don't bother emitting the data mapping
5207   // code.
5208   if (CGM.getLangOpts().OMPTargetTriples.empty())
5209     return;
5210 
5211   // Check if we have any if clause associated with the directive.
5212   const Expr *IfCond = nullptr;
5213   if (const auto *C = S.getSingleClause<OMPIfClause>())
5214     IfCond = C->getCondition();
5215 
5216   // Check if we have any device clause associated with the directive.
5217   const Expr *Device = nullptr;
5218   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
5219     Device = C->getDevice();
5220 
5221   OMPLexicalScope Scope(*this, S, OMPD_task);
5222   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
5223 }
5224 
5225 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
5226     const OMPExecutableDirective &D) {
5227   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
5228     return;
5229   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
5230     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
5231       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
5232     } else {
5233       OMPPrivateScope LoopGlobals(CGF);
5234       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
5235         for (const Expr *E : LD->counters()) {
5236           const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
5237           if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) {
5238             LValue GlobLVal = CGF.EmitLValue(E);
5239             LoopGlobals.addPrivate(
5240                 VD, [&GlobLVal]() { return GlobLVal.getAddress(); });
5241           }
5242           if (isa<OMPCapturedExprDecl>(VD)) {
5243             // Emit only those that were not explicitly referenced in clauses.
5244             if (!CGF.LocalDeclMap.count(VD))
5245               CGF.EmitVarDecl(*VD);
5246           }
5247         }
5248         for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
5249           if (!C->getNumForLoops())
5250             continue;
5251           for (unsigned I = LD->getCollapsedNumber(),
5252                         E = C->getLoopNumIterations().size();
5253                I < E; ++I) {
5254             if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
5255                     cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
5256               // Emit only those that were not explicitly referenced in clauses.
5257               if (!CGF.LocalDeclMap.count(VD))
5258                 CGF.EmitVarDecl(*VD);
5259             }
5260           }
5261         }
5262       }
5263       LoopGlobals.Privatize();
5264       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
5265     }
5266   };
5267   OMPSimdLexicalScope Scope(*this, D);
5268   CGM.getOpenMPRuntime().emitInlinedDirective(
5269       *this,
5270       isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
5271                                                   : D.getDirectiveKind(),
5272       CodeGen);
5273 }
5274