1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/Support/AtomicOrdering.h" 37 using namespace clang; 38 using namespace CodeGen; 39 using namespace llvm::omp; 40 41 static const VarDecl *getBaseDecl(const Expr *Ref); 42 43 namespace { 44 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 45 /// for captured expressions. 46 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 47 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 48 for (const auto *C : S.clauses()) { 49 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 50 if (const auto *PreInit = 51 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 52 for (const auto *I : PreInit->decls()) { 53 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 54 CGF.EmitVarDecl(cast<VarDecl>(*I)); 55 } else { 56 CodeGenFunction::AutoVarEmission Emission = 57 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 58 CGF.EmitAutoVarCleanups(Emission); 59 } 60 } 61 } 62 } 63 } 64 } 65 CodeGenFunction::OMPPrivateScope InlinedShareds; 66 67 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 68 return CGF.LambdaCaptureFields.lookup(VD) || 69 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 70 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 71 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 72 } 73 74 public: 75 OMPLexicalScope( 76 CodeGenFunction &CGF, const OMPExecutableDirective &S, 77 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 78 const bool EmitPreInitStmt = true) 79 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 80 InlinedShareds(CGF) { 81 if (EmitPreInitStmt) 82 emitPreInitStmt(CGF, S); 83 if (!CapturedRegion.hasValue()) 84 return; 85 assert(S.hasAssociatedStmt() && 86 "Expected associated statement for inlined directive."); 87 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 88 for (const auto &C : CS->captures()) { 89 if (C.capturesVariable() || C.capturesVariableByCopy()) { 90 auto *VD = C.getCapturedVar(); 91 assert(VD == VD->getCanonicalDecl() && 92 "Canonical decl must be captured."); 93 DeclRefExpr DRE( 94 CGF.getContext(), const_cast<VarDecl *>(VD), 95 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 96 InlinedShareds.isGlobalVarCaptured(VD)), 97 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 98 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 99 return CGF.EmitLValue(&DRE).getAddress(CGF); 100 }); 101 } 102 } 103 (void)InlinedShareds.Privatize(); 104 } 105 }; 106 107 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 108 /// for captured expressions. 109 class OMPParallelScope final : public OMPLexicalScope { 110 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 111 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 112 return !(isOpenMPTargetExecutionDirective(Kind) || 113 isOpenMPLoopBoundSharingDirective(Kind)) && 114 isOpenMPParallelDirective(Kind); 115 } 116 117 public: 118 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 119 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 120 EmitPreInitStmt(S)) {} 121 }; 122 123 /// Lexical scope for OpenMP teams construct, that handles correct codegen 124 /// for captured expressions. 125 class OMPTeamsScope final : public OMPLexicalScope { 126 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 127 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 128 return !isOpenMPTargetExecutionDirective(Kind) && 129 isOpenMPTeamsDirective(Kind); 130 } 131 132 public: 133 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 134 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 135 EmitPreInitStmt(S)) {} 136 }; 137 138 /// Private scope for OpenMP loop-based directives, that supports capturing 139 /// of used expression from loop statement. 140 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 141 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 142 const DeclStmt *PreInits; 143 CodeGenFunction::OMPMapVars PreCondVars; 144 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 145 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 146 for (const auto *E : LD->counters()) { 147 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 148 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 149 (void)PreCondVars.setVarAddr( 150 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 151 } 152 // Mark private vars as undefs. 153 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 154 for (const Expr *IRef : C->varlists()) { 155 const auto *OrigVD = 156 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 157 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 158 (void)PreCondVars.setVarAddr( 159 CGF, OrigVD, 160 Address::deprecated( 161 llvm::UndefValue::get( 162 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 163 OrigVD->getType().getNonReferenceType()))), 164 CGF.getContext().getDeclAlign(OrigVD))); 165 } 166 } 167 } 168 (void)PreCondVars.apply(CGF); 169 // Emit init, __range and __end variables for C++ range loops. 170 (void)OMPLoopBasedDirective::doForAllLoops( 171 LD->getInnermostCapturedStmt()->getCapturedStmt(), 172 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 173 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 174 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 175 if (const Stmt *Init = CXXFor->getInit()) 176 CGF.EmitStmt(Init); 177 CGF.EmitStmt(CXXFor->getRangeStmt()); 178 CGF.EmitStmt(CXXFor->getEndStmt()); 179 } 180 return false; 181 }); 182 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 183 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 184 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 185 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 186 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 187 } else { 188 llvm_unreachable("Unknown loop-based directive kind."); 189 } 190 if (PreInits) { 191 for (const auto *I : PreInits->decls()) 192 CGF.EmitVarDecl(cast<VarDecl>(*I)); 193 } 194 PreCondVars.restore(CGF); 195 } 196 197 public: 198 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 199 : CodeGenFunction::RunCleanupsScope(CGF) { 200 emitPreInitStmt(CGF, S); 201 } 202 }; 203 204 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 205 CodeGenFunction::OMPPrivateScope InlinedShareds; 206 207 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 208 return CGF.LambdaCaptureFields.lookup(VD) || 209 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 210 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 211 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 212 } 213 214 public: 215 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 216 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 217 InlinedShareds(CGF) { 218 for (const auto *C : S.clauses()) { 219 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 220 if (const auto *PreInit = 221 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 222 for (const auto *I : PreInit->decls()) { 223 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 224 CGF.EmitVarDecl(cast<VarDecl>(*I)); 225 } else { 226 CodeGenFunction::AutoVarEmission Emission = 227 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 228 CGF.EmitAutoVarCleanups(Emission); 229 } 230 } 231 } 232 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 233 for (const Expr *E : UDP->varlists()) { 234 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 235 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 236 CGF.EmitVarDecl(*OED); 237 } 238 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 239 for (const Expr *E : UDP->varlists()) { 240 const Decl *D = getBaseDecl(E); 241 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 242 CGF.EmitVarDecl(*OED); 243 } 244 } 245 } 246 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 247 CGF.EmitOMPPrivateClause(S, InlinedShareds); 248 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 249 if (const Expr *E = TG->getReductionRef()) 250 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 251 } 252 // Temp copy arrays for inscan reductions should not be emitted as they are 253 // not used in simd only mode. 254 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 255 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 256 if (C->getModifier() != OMPC_REDUCTION_inscan) 257 continue; 258 for (const Expr *E : C->copy_array_temps()) 259 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 260 } 261 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 262 while (CS) { 263 for (auto &C : CS->captures()) { 264 if (C.capturesVariable() || C.capturesVariableByCopy()) { 265 auto *VD = C.getCapturedVar(); 266 if (CopyArrayTemps.contains(VD)) 267 continue; 268 assert(VD == VD->getCanonicalDecl() && 269 "Canonical decl must be captured."); 270 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 271 isCapturedVar(CGF, VD) || 272 (CGF.CapturedStmtInfo && 273 InlinedShareds.isGlobalVarCaptured(VD)), 274 VD->getType().getNonReferenceType(), VK_LValue, 275 C.getLocation()); 276 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 277 return CGF.EmitLValue(&DRE).getAddress(CGF); 278 }); 279 } 280 } 281 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 282 } 283 (void)InlinedShareds.Privatize(); 284 } 285 }; 286 287 } // namespace 288 289 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 290 const OMPExecutableDirective &S, 291 const RegionCodeGenTy &CodeGen); 292 293 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 294 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 295 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 296 OrigVD = OrigVD->getCanonicalDecl(); 297 bool IsCaptured = 298 LambdaCaptureFields.lookup(OrigVD) || 299 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 300 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 301 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 302 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 303 return EmitLValue(&DRE); 304 } 305 } 306 return EmitLValue(E); 307 } 308 309 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 310 ASTContext &C = getContext(); 311 llvm::Value *Size = nullptr; 312 auto SizeInChars = C.getTypeSizeInChars(Ty); 313 if (SizeInChars.isZero()) { 314 // getTypeSizeInChars() returns 0 for a VLA. 315 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 316 VlaSizePair VlaSize = getVLASize(VAT); 317 Ty = VlaSize.Type; 318 Size = 319 Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) : VlaSize.NumElts; 320 } 321 SizeInChars = C.getTypeSizeInChars(Ty); 322 if (SizeInChars.isZero()) 323 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 324 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 325 } 326 return CGM.getSize(SizeInChars); 327 } 328 329 void CodeGenFunction::GenerateOpenMPCapturedVars( 330 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 331 const RecordDecl *RD = S.getCapturedRecordDecl(); 332 auto CurField = RD->field_begin(); 333 auto CurCap = S.captures().begin(); 334 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 335 E = S.capture_init_end(); 336 I != E; ++I, ++CurField, ++CurCap) { 337 if (CurField->hasCapturedVLAType()) { 338 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 339 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 340 CapturedVars.push_back(Val); 341 } else if (CurCap->capturesThis()) { 342 CapturedVars.push_back(CXXThisValue); 343 } else if (CurCap->capturesVariableByCopy()) { 344 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 345 346 // If the field is not a pointer, we need to save the actual value 347 // and load it as a void pointer. 348 if (!CurField->getType()->isAnyPointerType()) { 349 ASTContext &Ctx = getContext(); 350 Address DstAddr = CreateMemTemp( 351 Ctx.getUIntPtrType(), 352 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 353 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 354 355 llvm::Value *SrcAddrVal = EmitScalarConversion( 356 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 357 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 358 LValue SrcLV = 359 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 360 361 // Store the value using the source type pointer. 362 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 363 364 // Load the value using the destination type pointer. 365 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 366 } 367 CapturedVars.push_back(CV); 368 } else { 369 assert(CurCap->capturesVariable() && "Expected capture by reference."); 370 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 371 } 372 } 373 } 374 375 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 376 QualType DstType, StringRef Name, 377 LValue AddrLV) { 378 ASTContext &Ctx = CGF.getContext(); 379 380 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 381 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 382 Ctx.getPointerType(DstType), Loc); 383 Address TmpAddr = 384 CGF.MakeNaturalAlignAddrLValue(CastedPtr, DstType).getAddress(CGF); 385 return TmpAddr; 386 } 387 388 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 389 if (T->isLValueReferenceType()) 390 return C.getLValueReferenceType( 391 getCanonicalParamType(C, T.getNonReferenceType()), 392 /*SpelledAsLValue=*/false); 393 if (T->isPointerType()) 394 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 395 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 396 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 397 return getCanonicalParamType(C, VLA->getElementType()); 398 if (!A->isVariablyModifiedType()) 399 return C.getCanonicalType(T); 400 } 401 return C.getCanonicalParamType(T); 402 } 403 404 namespace { 405 /// Contains required data for proper outlined function codegen. 406 struct FunctionOptions { 407 /// Captured statement for which the function is generated. 408 const CapturedStmt *S = nullptr; 409 /// true if cast to/from UIntPtr is required for variables captured by 410 /// value. 411 const bool UIntPtrCastRequired = true; 412 /// true if only casted arguments must be registered as local args or VLA 413 /// sizes. 414 const bool RegisterCastedArgsOnly = false; 415 /// Name of the generated function. 416 const StringRef FunctionName; 417 /// Location of the non-debug version of the outlined function. 418 SourceLocation Loc; 419 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 420 bool RegisterCastedArgsOnly, StringRef FunctionName, 421 SourceLocation Loc) 422 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 423 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 424 FunctionName(FunctionName), Loc(Loc) {} 425 }; 426 } // namespace 427 428 static llvm::Function *emitOutlinedFunctionPrologue( 429 CodeGenFunction &CGF, FunctionArgList &Args, 430 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 431 &LocalAddrs, 432 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 433 &VLASizes, 434 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 435 const CapturedDecl *CD = FO.S->getCapturedDecl(); 436 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 437 assert(CD->hasBody() && "missing CapturedDecl body"); 438 439 CXXThisValue = nullptr; 440 // Build the argument list. 441 CodeGenModule &CGM = CGF.CGM; 442 ASTContext &Ctx = CGM.getContext(); 443 FunctionArgList TargetArgs; 444 Args.append(CD->param_begin(), 445 std::next(CD->param_begin(), CD->getContextParamPosition())); 446 TargetArgs.append( 447 CD->param_begin(), 448 std::next(CD->param_begin(), CD->getContextParamPosition())); 449 auto I = FO.S->captures().begin(); 450 FunctionDecl *DebugFunctionDecl = nullptr; 451 if (!FO.UIntPtrCastRequired) { 452 FunctionProtoType::ExtProtoInfo EPI; 453 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 454 DebugFunctionDecl = FunctionDecl::Create( 455 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 456 SourceLocation(), DeclarationName(), FunctionTy, 457 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 458 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 459 /*hasWrittenPrototype=*/false); 460 } 461 for (const FieldDecl *FD : RD->fields()) { 462 QualType ArgType = FD->getType(); 463 IdentifierInfo *II = nullptr; 464 VarDecl *CapVar = nullptr; 465 466 // If this is a capture by copy and the type is not a pointer, the outlined 467 // function argument type should be uintptr and the value properly casted to 468 // uintptr. This is necessary given that the runtime library is only able to 469 // deal with pointers. We can pass in the same way the VLA type sizes to the 470 // outlined function. 471 if (FO.UIntPtrCastRequired && 472 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 473 I->capturesVariableArrayType())) 474 ArgType = Ctx.getUIntPtrType(); 475 476 if (I->capturesVariable() || I->capturesVariableByCopy()) { 477 CapVar = I->getCapturedVar(); 478 II = CapVar->getIdentifier(); 479 } else if (I->capturesThis()) { 480 II = &Ctx.Idents.get("this"); 481 } else { 482 assert(I->capturesVariableArrayType()); 483 II = &Ctx.Idents.get("vla"); 484 } 485 if (ArgType->isVariablyModifiedType()) 486 ArgType = getCanonicalParamType(Ctx, ArgType); 487 VarDecl *Arg; 488 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 489 Arg = ParmVarDecl::Create( 490 Ctx, DebugFunctionDecl, 491 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 492 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 493 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 494 } else { 495 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 496 II, ArgType, ImplicitParamDecl::Other); 497 } 498 Args.emplace_back(Arg); 499 // Do not cast arguments if we emit function with non-original types. 500 TargetArgs.emplace_back( 501 FO.UIntPtrCastRequired 502 ? Arg 503 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 504 ++I; 505 } 506 Args.append(std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 507 CD->param_end()); 508 TargetArgs.append( 509 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 510 CD->param_end()); 511 512 // Create the function declaration. 513 const CGFunctionInfo &FuncInfo = 514 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 515 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 516 517 auto *F = 518 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 519 FO.FunctionName, &CGM.getModule()); 520 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 521 if (CD->isNothrow()) 522 F->setDoesNotThrow(); 523 F->setDoesNotRecurse(); 524 525 // Always inline the outlined function if optimizations are enabled. 526 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 527 F->removeFnAttr(llvm::Attribute::NoInline); 528 F->addFnAttr(llvm::Attribute::AlwaysInline); 529 } 530 531 // Generate the function. 532 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 533 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 534 FO.UIntPtrCastRequired ? FO.Loc 535 : CD->getBody()->getBeginLoc()); 536 unsigned Cnt = CD->getContextParamPosition(); 537 I = FO.S->captures().begin(); 538 for (const FieldDecl *FD : RD->fields()) { 539 // Do not map arguments if we emit function with non-original types. 540 Address LocalAddr(Address::invalid()); 541 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 542 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 543 TargetArgs[Cnt]); 544 } else { 545 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 546 } 547 // If we are capturing a pointer by copy we don't need to do anything, just 548 // use the value that we get from the arguments. 549 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 550 const VarDecl *CurVD = I->getCapturedVar(); 551 if (!FO.RegisterCastedArgsOnly) 552 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 553 ++Cnt; 554 ++I; 555 continue; 556 } 557 558 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 559 AlignmentSource::Decl); 560 if (FD->hasCapturedVLAType()) { 561 if (FO.UIntPtrCastRequired) { 562 ArgLVal = CGF.MakeAddrLValue( 563 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 564 Args[Cnt]->getName(), ArgLVal), 565 FD->getType(), AlignmentSource::Decl); 566 } 567 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 568 const VariableArrayType *VAT = FD->getCapturedVLAType(); 569 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 570 } else if (I->capturesVariable()) { 571 const VarDecl *Var = I->getCapturedVar(); 572 QualType VarTy = Var->getType(); 573 Address ArgAddr = ArgLVal.getAddress(CGF); 574 if (ArgLVal.getType()->isLValueReferenceType()) { 575 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 576 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 577 assert(ArgLVal.getType()->isPointerType()); 578 ArgAddr = CGF.EmitLoadOfPointer( 579 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 580 } 581 if (!FO.RegisterCastedArgsOnly) { 582 LocalAddrs.insert( 583 {Args[Cnt], {Var, ArgAddr.withAlignment(Ctx.getDeclAlign(Var))}}); 584 } 585 } else if (I->capturesVariableByCopy()) { 586 assert(!FD->getType()->isAnyPointerType() && 587 "Not expecting a captured pointer."); 588 const VarDecl *Var = I->getCapturedVar(); 589 LocalAddrs.insert({Args[Cnt], 590 {Var, FO.UIntPtrCastRequired 591 ? castValueFromUintptr( 592 CGF, I->getLocation(), FD->getType(), 593 Args[Cnt]->getName(), ArgLVal) 594 : ArgLVal.getAddress(CGF)}}); 595 } else { 596 // If 'this' is captured, load it into CXXThisValue. 597 assert(I->capturesThis()); 598 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 599 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 600 } 601 ++Cnt; 602 ++I; 603 } 604 605 return F; 606 } 607 608 llvm::Function * 609 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 610 SourceLocation Loc) { 611 assert( 612 CapturedStmtInfo && 613 "CapturedStmtInfo should be set when generating the captured function"); 614 const CapturedDecl *CD = S.getCapturedDecl(); 615 // Build the argument list. 616 bool NeedWrapperFunction = 617 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 618 FunctionArgList Args; 619 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 620 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 621 SmallString<256> Buffer; 622 llvm::raw_svector_ostream Out(Buffer); 623 Out << CapturedStmtInfo->getHelperName(); 624 if (NeedWrapperFunction) 625 Out << "_debug__"; 626 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 627 Out.str(), Loc); 628 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 629 VLASizes, CXXThisValue, FO); 630 CodeGenFunction::OMPPrivateScope LocalScope(*this); 631 for (const auto &LocalAddrPair : LocalAddrs) { 632 if (LocalAddrPair.second.first) { 633 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 634 return LocalAddrPair.second.second; 635 }); 636 } 637 } 638 (void)LocalScope.Privatize(); 639 for (const auto &VLASizePair : VLASizes) 640 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 641 PGO.assignRegionCounters(GlobalDecl(CD), F); 642 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 643 (void)LocalScope.ForceCleanup(); 644 FinishFunction(CD->getBodyRBrace()); 645 if (!NeedWrapperFunction) 646 return F; 647 648 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 649 /*RegisterCastedArgsOnly=*/true, 650 CapturedStmtInfo->getHelperName(), Loc); 651 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 652 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 653 Args.clear(); 654 LocalAddrs.clear(); 655 VLASizes.clear(); 656 llvm::Function *WrapperF = 657 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 658 WrapperCGF.CXXThisValue, WrapperFO); 659 llvm::SmallVector<llvm::Value *, 4> CallArgs; 660 auto *PI = F->arg_begin(); 661 for (const auto *Arg : Args) { 662 llvm::Value *CallArg; 663 auto I = LocalAddrs.find(Arg); 664 if (I != LocalAddrs.end()) { 665 LValue LV = WrapperCGF.MakeAddrLValue( 666 I->second.second, 667 I->second.first ? I->second.first->getType() : Arg->getType(), 668 AlignmentSource::Decl); 669 if (LV.getType()->isAnyComplexType()) 670 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 671 LV.getAddress(WrapperCGF), 672 PI->getType()->getPointerTo( 673 LV.getAddress(WrapperCGF).getAddressSpace()))); 674 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 675 } else { 676 auto EI = VLASizes.find(Arg); 677 if (EI != VLASizes.end()) { 678 CallArg = EI->second.second; 679 } else { 680 LValue LV = 681 WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 682 Arg->getType(), AlignmentSource::Decl); 683 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 684 } 685 } 686 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 687 ++PI; 688 } 689 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 690 WrapperCGF.FinishFunction(); 691 return WrapperF; 692 } 693 694 //===----------------------------------------------------------------------===// 695 // OpenMP Directive Emission 696 //===----------------------------------------------------------------------===// 697 void CodeGenFunction::EmitOMPAggregateAssign( 698 Address DestAddr, Address SrcAddr, QualType OriginalType, 699 const llvm::function_ref<void(Address, Address)> CopyGen) { 700 // Perform element-by-element initialization. 701 QualType ElementTy; 702 703 // Drill down to the base element type on both arrays. 704 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 705 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 706 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 707 708 llvm::Value *SrcBegin = SrcAddr.getPointer(); 709 llvm::Value *DestBegin = DestAddr.getPointer(); 710 // Cast from pointer to array type to pointer to single element. 711 llvm::Value *DestEnd = 712 Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); 713 // The basic structure here is a while-do loop. 714 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 715 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 716 llvm::Value *IsEmpty = 717 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 718 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 719 720 // Enter the loop body, making that address the current address. 721 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 722 EmitBlock(BodyBB); 723 724 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 725 726 llvm::PHINode *SrcElementPHI = 727 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 728 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 729 Address SrcElementCurrent = 730 Address(SrcElementPHI, SrcAddr.getElementType(), 731 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 732 733 llvm::PHINode *DestElementPHI = Builder.CreatePHI( 734 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 735 DestElementPHI->addIncoming(DestBegin, EntryBB); 736 Address DestElementCurrent = 737 Address(DestElementPHI, DestAddr.getElementType(), 738 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 739 740 // Emit copy. 741 CopyGen(DestElementCurrent, SrcElementCurrent); 742 743 // Shift the address forward by one element. 744 llvm::Value *DestElementNext = 745 Builder.CreateConstGEP1_32(DestAddr.getElementType(), DestElementPHI, 746 /*Idx0=*/1, "omp.arraycpy.dest.element"); 747 llvm::Value *SrcElementNext = 748 Builder.CreateConstGEP1_32(SrcAddr.getElementType(), SrcElementPHI, 749 /*Idx0=*/1, "omp.arraycpy.src.element"); 750 // Check whether we've reached the end. 751 llvm::Value *Done = 752 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 753 Builder.CreateCondBr(Done, DoneBB, BodyBB); 754 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 755 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 756 757 // Done. 758 EmitBlock(DoneBB, /*IsFinished=*/true); 759 } 760 761 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 762 Address SrcAddr, const VarDecl *DestVD, 763 const VarDecl *SrcVD, const Expr *Copy) { 764 if (OriginalType->isArrayType()) { 765 const auto *BO = dyn_cast<BinaryOperator>(Copy); 766 if (BO && BO->getOpcode() == BO_Assign) { 767 // Perform simple memcpy for simple copying. 768 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 769 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 770 EmitAggregateAssign(Dest, Src, OriginalType); 771 } else { 772 // For arrays with complex element types perform element by element 773 // copying. 774 EmitOMPAggregateAssign( 775 DestAddr, SrcAddr, OriginalType, 776 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 777 // Working with the single array element, so have to remap 778 // destination and source variables to corresponding array 779 // elements. 780 CodeGenFunction::OMPPrivateScope Remap(*this); 781 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 782 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 783 (void)Remap.Privatize(); 784 EmitIgnoredExpr(Copy); 785 }); 786 } 787 } else { 788 // Remap pseudo source variable to private copy. 789 CodeGenFunction::OMPPrivateScope Remap(*this); 790 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 791 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 792 (void)Remap.Privatize(); 793 // Emit copying of the whole variable. 794 EmitIgnoredExpr(Copy); 795 } 796 } 797 798 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 799 OMPPrivateScope &PrivateScope) { 800 if (!HaveInsertPoint()) 801 return false; 802 bool DeviceConstTarget = 803 getLangOpts().OpenMPIsDevice && 804 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 805 bool FirstprivateIsLastprivate = false; 806 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 807 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 808 for (const auto *D : C->varlists()) 809 Lastprivates.try_emplace( 810 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 811 C->getKind()); 812 } 813 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 814 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 815 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 816 // Force emission of the firstprivate copy if the directive does not emit 817 // outlined function, like omp for, omp simd, omp distribute etc. 818 bool MustEmitFirstprivateCopy = 819 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 820 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 821 const auto *IRef = C->varlist_begin(); 822 const auto *InitsRef = C->inits().begin(); 823 for (const Expr *IInit : C->private_copies()) { 824 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 825 bool ThisFirstprivateIsLastprivate = 826 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 827 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 828 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 829 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 830 !FD->getType()->isReferenceType() && 831 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 832 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 833 ++IRef; 834 ++InitsRef; 835 continue; 836 } 837 // Do not emit copy for firstprivate constant variables in target regions, 838 // captured by reference. 839 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 840 FD && FD->getType()->isReferenceType() && 841 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 842 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 843 ++IRef; 844 ++InitsRef; 845 continue; 846 } 847 FirstprivateIsLastprivate = 848 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 849 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 850 const auto *VDInit = 851 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 852 bool IsRegistered; 853 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 854 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 855 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 856 LValue OriginalLVal; 857 if (!FD) { 858 // Check if the firstprivate variable is just a constant value. 859 ConstantEmission CE = tryEmitAsConstant(&DRE); 860 if (CE && !CE.isReference()) { 861 // Constant value, no need to create a copy. 862 ++IRef; 863 ++InitsRef; 864 continue; 865 } 866 if (CE && CE.isReference()) { 867 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 868 } else { 869 assert(!CE && "Expected non-constant firstprivate."); 870 OriginalLVal = EmitLValue(&DRE); 871 } 872 } else { 873 OriginalLVal = EmitLValue(&DRE); 874 } 875 QualType Type = VD->getType(); 876 if (Type->isArrayType()) { 877 // Emit VarDecl with copy init for arrays. 878 // Get the address of the original variable captured in current 879 // captured region. 880 IsRegistered = PrivateScope.addPrivate( 881 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 882 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 883 const Expr *Init = VD->getInit(); 884 if (!isa<CXXConstructExpr>(Init) || 885 isTrivialInitializer(Init)) { 886 // Perform simple memcpy. 887 LValue Dest = 888 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 889 EmitAggregateAssign(Dest, OriginalLVal, Type); 890 } else { 891 EmitOMPAggregateAssign( 892 Emission.getAllocatedAddress(), 893 OriginalLVal.getAddress(*this), Type, 894 [this, VDInit, Init](Address DestElement, 895 Address SrcElement) { 896 // Clean up any temporaries needed by the 897 // initialization. 898 RunCleanupsScope InitScope(*this); 899 // Emit initialization for single element. 900 setAddrOfLocalVar(VDInit, SrcElement); 901 EmitAnyExprToMem(Init, DestElement, 902 Init->getType().getQualifiers(), 903 /*IsInitializer*/ false); 904 LocalDeclMap.erase(VDInit); 905 }); 906 } 907 EmitAutoVarCleanups(Emission); 908 return Emission.getAllocatedAddress(); 909 }); 910 } else { 911 Address OriginalAddr = OriginalLVal.getAddress(*this); 912 IsRegistered = 913 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 914 ThisFirstprivateIsLastprivate, 915 OrigVD, &Lastprivates, IRef]() { 916 // Emit private VarDecl with copy init. 917 // Remap temp VDInit variable to the address of the original 918 // variable (for proper handling of captured global variables). 919 setAddrOfLocalVar(VDInit, OriginalAddr); 920 EmitDecl(*VD); 921 LocalDeclMap.erase(VDInit); 922 if (ThisFirstprivateIsLastprivate && 923 Lastprivates[OrigVD->getCanonicalDecl()] == 924 OMPC_LASTPRIVATE_conditional) { 925 // Create/init special variable for lastprivate conditionals. 926 Address VDAddr = 927 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 928 *this, OrigVD); 929 llvm::Value *V = EmitLoadOfScalar( 930 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 931 AlignmentSource::Decl), 932 (*IRef)->getExprLoc()); 933 EmitStoreOfScalar(V, 934 MakeAddrLValue(VDAddr, (*IRef)->getType(), 935 AlignmentSource::Decl)); 936 LocalDeclMap.erase(VD); 937 setAddrOfLocalVar(VD, VDAddr); 938 return VDAddr; 939 } 940 return GetAddrOfLocalVar(VD); 941 }); 942 } 943 assert(IsRegistered && 944 "firstprivate var already registered as private"); 945 // Silence the warning about unused variable. 946 (void)IsRegistered; 947 } 948 ++IRef; 949 ++InitsRef; 950 } 951 } 952 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 953 } 954 955 void CodeGenFunction::EmitOMPPrivateClause( 956 const OMPExecutableDirective &D, 957 CodeGenFunction::OMPPrivateScope &PrivateScope) { 958 if (!HaveInsertPoint()) 959 return; 960 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 961 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 962 auto IRef = C->varlist_begin(); 963 for (const Expr *IInit : C->private_copies()) { 964 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 965 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 966 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 967 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 968 // Emit private VarDecl with copy init. 969 EmitDecl(*VD); 970 return GetAddrOfLocalVar(VD); 971 }); 972 assert(IsRegistered && "private var already registered as private"); 973 // Silence the warning about unused variable. 974 (void)IsRegistered; 975 } 976 ++IRef; 977 } 978 } 979 } 980 981 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 982 if (!HaveInsertPoint()) 983 return false; 984 // threadprivate_var1 = master_threadprivate_var1; 985 // operator=(threadprivate_var2, master_threadprivate_var2); 986 // ... 987 // __kmpc_barrier(&loc, global_tid); 988 llvm::DenseSet<const VarDecl *> CopiedVars; 989 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 990 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 991 auto IRef = C->varlist_begin(); 992 auto ISrcRef = C->source_exprs().begin(); 993 auto IDestRef = C->destination_exprs().begin(); 994 for (const Expr *AssignOp : C->assignment_ops()) { 995 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 996 QualType Type = VD->getType(); 997 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 998 // Get the address of the master variable. If we are emitting code with 999 // TLS support, the address is passed from the master as field in the 1000 // captured declaration. 1001 Address MasterAddr = Address::invalid(); 1002 if (getLangOpts().OpenMPUseTLS && 1003 getContext().getTargetInfo().isTLSSupported()) { 1004 assert(CapturedStmtInfo->lookup(VD) && 1005 "Copyin threadprivates should have been captured!"); 1006 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 1007 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1008 MasterAddr = EmitLValue(&DRE).getAddress(*this); 1009 LocalDeclMap.erase(VD); 1010 } else { 1011 MasterAddr = Address::deprecated( 1012 VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1013 : CGM.GetAddrOfGlobal(VD), 1014 getContext().getDeclAlign(VD)); 1015 } 1016 // Get the address of the threadprivate variable. 1017 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1018 if (CopiedVars.size() == 1) { 1019 // At first check if current thread is a master thread. If it is, no 1020 // need to copy data. 1021 CopyBegin = createBasicBlock("copyin.not.master"); 1022 CopyEnd = createBasicBlock("copyin.not.master.end"); 1023 // TODO: Avoid ptrtoint conversion. 1024 auto *MasterAddrInt = 1025 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1026 auto *PrivateAddrInt = 1027 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1028 Builder.CreateCondBr( 1029 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1030 CopyEnd); 1031 EmitBlock(CopyBegin); 1032 } 1033 const auto *SrcVD = 1034 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1035 const auto *DestVD = 1036 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1037 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1038 } 1039 ++IRef; 1040 ++ISrcRef; 1041 ++IDestRef; 1042 } 1043 } 1044 if (CopyEnd) { 1045 // Exit out of copying procedure for non-master thread. 1046 EmitBlock(CopyEnd, /*IsFinished=*/true); 1047 return true; 1048 } 1049 return false; 1050 } 1051 1052 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1053 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1054 if (!HaveInsertPoint()) 1055 return false; 1056 bool HasAtLeastOneLastprivate = false; 1057 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1058 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1059 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1060 for (const Expr *C : LoopDirective->counters()) { 1061 SIMDLCVs.insert( 1062 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1063 } 1064 } 1065 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1066 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1067 HasAtLeastOneLastprivate = true; 1068 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1069 !getLangOpts().OpenMPSimd) 1070 break; 1071 const auto *IRef = C->varlist_begin(); 1072 const auto *IDestRef = C->destination_exprs().begin(); 1073 for (const Expr *IInit : C->private_copies()) { 1074 // Keep the address of the original variable for future update at the end 1075 // of the loop. 1076 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1077 // Taskloops do not require additional initialization, it is done in 1078 // runtime support library. 1079 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1080 const auto *DestVD = 1081 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1082 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1083 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1084 /*RefersToEnclosingVariableOrCapture=*/ 1085 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1086 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1087 return EmitLValue(&DRE).getAddress(*this); 1088 }); 1089 // Check if the variable is also a firstprivate: in this case IInit is 1090 // not generated. Initialization of this variable will happen in codegen 1091 // for 'firstprivate' clause. 1092 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1093 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1094 bool IsRegistered = 1095 PrivateScope.addPrivate(OrigVD, [this, VD, C, OrigVD]() { 1096 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1097 Address VDAddr = 1098 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 1099 *this, OrigVD); 1100 setAddrOfLocalVar(VD, VDAddr); 1101 return VDAddr; 1102 } 1103 // Emit private VarDecl with copy init. 1104 EmitDecl(*VD); 1105 return GetAddrOfLocalVar(VD); 1106 }); 1107 assert(IsRegistered && 1108 "lastprivate var already registered as private"); 1109 (void)IsRegistered; 1110 } 1111 } 1112 ++IRef; 1113 ++IDestRef; 1114 } 1115 } 1116 return HasAtLeastOneLastprivate; 1117 } 1118 1119 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1120 const OMPExecutableDirective &D, bool NoFinals, 1121 llvm::Value *IsLastIterCond) { 1122 if (!HaveInsertPoint()) 1123 return; 1124 // Emit following code: 1125 // if (<IsLastIterCond>) { 1126 // orig_var1 = private_orig_var1; 1127 // ... 1128 // orig_varn = private_orig_varn; 1129 // } 1130 llvm::BasicBlock *ThenBB = nullptr; 1131 llvm::BasicBlock *DoneBB = nullptr; 1132 if (IsLastIterCond) { 1133 // Emit implicit barrier if at least one lastprivate conditional is found 1134 // and this is not a simd mode. 1135 if (!getLangOpts().OpenMPSimd && 1136 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1137 [](const OMPLastprivateClause *C) { 1138 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1139 })) { 1140 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1141 OMPD_unknown, 1142 /*EmitChecks=*/false, 1143 /*ForceSimpleCall=*/true); 1144 } 1145 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1146 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1147 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1148 EmitBlock(ThenBB); 1149 } 1150 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1151 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1152 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1153 auto IC = LoopDirective->counters().begin(); 1154 for (const Expr *F : LoopDirective->finals()) { 1155 const auto *D = 1156 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1157 if (NoFinals) 1158 AlreadyEmittedVars.insert(D); 1159 else 1160 LoopCountersAndUpdates[D] = F; 1161 ++IC; 1162 } 1163 } 1164 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1165 auto IRef = C->varlist_begin(); 1166 auto ISrcRef = C->source_exprs().begin(); 1167 auto IDestRef = C->destination_exprs().begin(); 1168 for (const Expr *AssignOp : C->assignment_ops()) { 1169 const auto *PrivateVD = 1170 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1171 QualType Type = PrivateVD->getType(); 1172 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1173 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1174 // If lastprivate variable is a loop control variable for loop-based 1175 // directive, update its value before copyin back to original 1176 // variable. 1177 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1178 EmitIgnoredExpr(FinalExpr); 1179 const auto *SrcVD = 1180 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1181 const auto *DestVD = 1182 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1183 // Get the address of the private variable. 1184 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1185 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1186 PrivateAddr = Address::deprecated( 1187 Builder.CreateLoad(PrivateAddr), 1188 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1189 // Store the last value to the private copy in the last iteration. 1190 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1191 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1192 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1193 (*IRef)->getExprLoc()); 1194 // Get the address of the original variable. 1195 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1196 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1197 } 1198 ++IRef; 1199 ++ISrcRef; 1200 ++IDestRef; 1201 } 1202 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1203 EmitIgnoredExpr(PostUpdate); 1204 } 1205 if (IsLastIterCond) 1206 EmitBlock(DoneBB, /*IsFinished=*/true); 1207 } 1208 1209 void CodeGenFunction::EmitOMPReductionClauseInit( 1210 const OMPExecutableDirective &D, 1211 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1212 if (!HaveInsertPoint()) 1213 return; 1214 SmallVector<const Expr *, 4> Shareds; 1215 SmallVector<const Expr *, 4> Privates; 1216 SmallVector<const Expr *, 4> ReductionOps; 1217 SmallVector<const Expr *, 4> LHSs; 1218 SmallVector<const Expr *, 4> RHSs; 1219 OMPTaskDataTy Data; 1220 SmallVector<const Expr *, 4> TaskLHSs; 1221 SmallVector<const Expr *, 4> TaskRHSs; 1222 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1223 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1224 continue; 1225 Shareds.append(C->varlist_begin(), C->varlist_end()); 1226 Privates.append(C->privates().begin(), C->privates().end()); 1227 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1228 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1229 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1230 if (C->getModifier() == OMPC_REDUCTION_task) { 1231 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1232 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1233 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1234 Data.ReductionOps.append(C->reduction_ops().begin(), 1235 C->reduction_ops().end()); 1236 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1237 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1238 } 1239 } 1240 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1241 unsigned Count = 0; 1242 auto *ILHS = LHSs.begin(); 1243 auto *IRHS = RHSs.begin(); 1244 auto *IPriv = Privates.begin(); 1245 for (const Expr *IRef : Shareds) { 1246 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1247 // Emit private VarDecl with reduction init. 1248 RedCG.emitSharedOrigLValue(*this, Count); 1249 RedCG.emitAggregateType(*this, Count); 1250 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1251 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1252 RedCG.getSharedLValue(Count).getAddress(*this), 1253 [&Emission](CodeGenFunction &CGF) { 1254 CGF.EmitAutoVarInit(Emission); 1255 return true; 1256 }); 1257 EmitAutoVarCleanups(Emission); 1258 Address BaseAddr = RedCG.adjustPrivateAddress( 1259 *this, Count, Emission.getAllocatedAddress()); 1260 bool IsRegistered = PrivateScope.addPrivate( 1261 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1262 assert(IsRegistered && "private var already registered as private"); 1263 // Silence the warning about unused variable. 1264 (void)IsRegistered; 1265 1266 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1267 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1268 QualType Type = PrivateVD->getType(); 1269 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1270 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1271 // Store the address of the original variable associated with the LHS 1272 // implicit variable. 1273 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1274 return RedCG.getSharedLValue(Count).getAddress(*this); 1275 }); 1276 PrivateScope.addPrivate( 1277 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1278 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1279 isa<ArraySubscriptExpr>(IRef)) { 1280 // Store the address of the original variable associated with the LHS 1281 // implicit variable. 1282 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1283 return RedCG.getSharedLValue(Count).getAddress(*this); 1284 }); 1285 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1286 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1287 ConvertTypeForMem(RHSVD->getType()), 1288 "rhs.begin"); 1289 }); 1290 } else { 1291 QualType Type = PrivateVD->getType(); 1292 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1293 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1294 // Store the address of the original variable associated with the LHS 1295 // implicit variable. 1296 if (IsArray) { 1297 OriginalAddr = Builder.CreateElementBitCast( 1298 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1299 } 1300 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1301 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1302 return IsArray ? Builder.CreateElementBitCast( 1303 GetAddrOfLocalVar(PrivateVD), 1304 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1305 : GetAddrOfLocalVar(PrivateVD); 1306 }); 1307 } 1308 ++ILHS; 1309 ++IRHS; 1310 ++IPriv; 1311 ++Count; 1312 } 1313 if (!Data.ReductionVars.empty()) { 1314 Data.IsReductionWithTaskMod = true; 1315 Data.IsWorksharingReduction = 1316 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1317 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1318 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1319 const Expr *TaskRedRef = nullptr; 1320 switch (D.getDirectiveKind()) { 1321 case OMPD_parallel: 1322 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1323 break; 1324 case OMPD_for: 1325 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1326 break; 1327 case OMPD_sections: 1328 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1329 break; 1330 case OMPD_parallel_for: 1331 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1332 break; 1333 case OMPD_parallel_master: 1334 TaskRedRef = 1335 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1336 break; 1337 case OMPD_parallel_sections: 1338 TaskRedRef = 1339 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1340 break; 1341 case OMPD_target_parallel: 1342 TaskRedRef = 1343 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1344 break; 1345 case OMPD_target_parallel_for: 1346 TaskRedRef = 1347 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1348 break; 1349 case OMPD_distribute_parallel_for: 1350 TaskRedRef = 1351 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1352 break; 1353 case OMPD_teams_distribute_parallel_for: 1354 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1355 .getTaskReductionRefExpr(); 1356 break; 1357 case OMPD_target_teams_distribute_parallel_for: 1358 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1359 .getTaskReductionRefExpr(); 1360 break; 1361 case OMPD_simd: 1362 case OMPD_for_simd: 1363 case OMPD_section: 1364 case OMPD_single: 1365 case OMPD_master: 1366 case OMPD_critical: 1367 case OMPD_parallel_for_simd: 1368 case OMPD_task: 1369 case OMPD_taskyield: 1370 case OMPD_barrier: 1371 case OMPD_taskwait: 1372 case OMPD_taskgroup: 1373 case OMPD_flush: 1374 case OMPD_depobj: 1375 case OMPD_scan: 1376 case OMPD_ordered: 1377 case OMPD_atomic: 1378 case OMPD_teams: 1379 case OMPD_target: 1380 case OMPD_cancellation_point: 1381 case OMPD_cancel: 1382 case OMPD_target_data: 1383 case OMPD_target_enter_data: 1384 case OMPD_target_exit_data: 1385 case OMPD_taskloop: 1386 case OMPD_taskloop_simd: 1387 case OMPD_master_taskloop: 1388 case OMPD_master_taskloop_simd: 1389 case OMPD_parallel_master_taskloop: 1390 case OMPD_parallel_master_taskloop_simd: 1391 case OMPD_distribute: 1392 case OMPD_target_update: 1393 case OMPD_distribute_parallel_for_simd: 1394 case OMPD_distribute_simd: 1395 case OMPD_target_parallel_for_simd: 1396 case OMPD_target_simd: 1397 case OMPD_teams_distribute: 1398 case OMPD_teams_distribute_simd: 1399 case OMPD_teams_distribute_parallel_for_simd: 1400 case OMPD_target_teams: 1401 case OMPD_target_teams_distribute: 1402 case OMPD_target_teams_distribute_parallel_for_simd: 1403 case OMPD_target_teams_distribute_simd: 1404 case OMPD_declare_target: 1405 case OMPD_end_declare_target: 1406 case OMPD_threadprivate: 1407 case OMPD_allocate: 1408 case OMPD_declare_reduction: 1409 case OMPD_declare_mapper: 1410 case OMPD_declare_simd: 1411 case OMPD_requires: 1412 case OMPD_declare_variant: 1413 case OMPD_begin_declare_variant: 1414 case OMPD_end_declare_variant: 1415 case OMPD_unknown: 1416 default: 1417 llvm_unreachable("Enexpected directive with task reductions."); 1418 } 1419 1420 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1421 EmitVarDecl(*VD); 1422 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1423 /*Volatile=*/false, TaskRedRef->getType()); 1424 } 1425 } 1426 1427 void CodeGenFunction::EmitOMPReductionClauseFinal( 1428 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1429 if (!HaveInsertPoint()) 1430 return; 1431 llvm::SmallVector<const Expr *, 8> Privates; 1432 llvm::SmallVector<const Expr *, 8> LHSExprs; 1433 llvm::SmallVector<const Expr *, 8> RHSExprs; 1434 llvm::SmallVector<const Expr *, 8> ReductionOps; 1435 bool HasAtLeastOneReduction = false; 1436 bool IsReductionWithTaskMod = false; 1437 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1438 // Do not emit for inscan reductions. 1439 if (C->getModifier() == OMPC_REDUCTION_inscan) 1440 continue; 1441 HasAtLeastOneReduction = true; 1442 Privates.append(C->privates().begin(), C->privates().end()); 1443 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1444 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1445 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1446 IsReductionWithTaskMod = 1447 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1448 } 1449 if (HasAtLeastOneReduction) { 1450 if (IsReductionWithTaskMod) { 1451 CGM.getOpenMPRuntime().emitTaskReductionFini( 1452 *this, D.getBeginLoc(), 1453 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1454 } 1455 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1456 isOpenMPParallelDirective(D.getDirectiveKind()) || 1457 ReductionKind == OMPD_simd; 1458 bool SimpleReduction = ReductionKind == OMPD_simd; 1459 // Emit nowait reduction if nowait clause is present or directive is a 1460 // parallel directive (it always has implicit barrier). 1461 CGM.getOpenMPRuntime().emitReduction( 1462 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1463 {WithNowait, SimpleReduction, ReductionKind}); 1464 } 1465 } 1466 1467 static void emitPostUpdateForReductionClause( 1468 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1469 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1470 if (!CGF.HaveInsertPoint()) 1471 return; 1472 llvm::BasicBlock *DoneBB = nullptr; 1473 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1474 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1475 if (!DoneBB) { 1476 if (llvm::Value *Cond = CondGen(CGF)) { 1477 // If the first post-update expression is found, emit conditional 1478 // block if it was requested. 1479 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1480 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1481 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1482 CGF.EmitBlock(ThenBB); 1483 } 1484 } 1485 CGF.EmitIgnoredExpr(PostUpdate); 1486 } 1487 } 1488 if (DoneBB) 1489 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1490 } 1491 1492 namespace { 1493 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1494 /// parallel function. This is necessary for combined constructs such as 1495 /// 'distribute parallel for' 1496 typedef llvm::function_ref<void(CodeGenFunction &, 1497 const OMPExecutableDirective &, 1498 llvm::SmallVectorImpl<llvm::Value *> &)> 1499 CodeGenBoundParametersTy; 1500 } // anonymous namespace 1501 1502 static void 1503 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1504 const OMPExecutableDirective &S) { 1505 if (CGF.getLangOpts().OpenMP < 50) 1506 return; 1507 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1508 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1509 for (const Expr *Ref : C->varlists()) { 1510 if (!Ref->getType()->isScalarType()) 1511 continue; 1512 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1513 if (!DRE) 1514 continue; 1515 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1516 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1517 } 1518 } 1519 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1520 for (const Expr *Ref : C->varlists()) { 1521 if (!Ref->getType()->isScalarType()) 1522 continue; 1523 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1524 if (!DRE) 1525 continue; 1526 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1527 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1528 } 1529 } 1530 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1531 for (const Expr *Ref : C->varlists()) { 1532 if (!Ref->getType()->isScalarType()) 1533 continue; 1534 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1535 if (!DRE) 1536 continue; 1537 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1538 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1539 } 1540 } 1541 // Privates should ne analyzed since they are not captured at all. 1542 // Task reductions may be skipped - tasks are ignored. 1543 // Firstprivates do not return value but may be passed by reference - no need 1544 // to check for updated lastprivate conditional. 1545 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1546 for (const Expr *Ref : C->varlists()) { 1547 if (!Ref->getType()->isScalarType()) 1548 continue; 1549 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1550 if (!DRE) 1551 continue; 1552 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1553 } 1554 } 1555 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1556 CGF, S, PrivateDecls); 1557 } 1558 1559 static void emitCommonOMPParallelDirective( 1560 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1561 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1562 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1563 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1564 llvm::Value *NumThreads = nullptr; 1565 llvm::Function *OutlinedFn = 1566 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1567 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1568 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1569 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1570 NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1571 /*IgnoreResultAssign=*/true); 1572 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1573 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1574 } 1575 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1576 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1577 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1578 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1579 } 1580 const Expr *IfCond = nullptr; 1581 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1582 if (C->getNameModifier() == OMPD_unknown || 1583 C->getNameModifier() == OMPD_parallel) { 1584 IfCond = C->getCondition(); 1585 break; 1586 } 1587 } 1588 1589 OMPParallelScope Scope(CGF, S); 1590 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1591 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1592 // lower and upper bounds with the pragma 'for' chunking mechanism. 1593 // The following lambda takes care of appending the lower and upper bound 1594 // parameters when necessary 1595 CodeGenBoundParameters(CGF, S, CapturedVars); 1596 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1597 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1598 CapturedVars, IfCond, NumThreads); 1599 } 1600 1601 static bool isAllocatableDecl(const VarDecl *VD) { 1602 const VarDecl *CVD = VD->getCanonicalDecl(); 1603 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1604 return false; 1605 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1606 // Use the default allocation. 1607 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1608 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1609 !AA->getAllocator()); 1610 } 1611 1612 static void emitEmptyBoundParameters(CodeGenFunction &, 1613 const OMPExecutableDirective &, 1614 llvm::SmallVectorImpl<llvm::Value *> &) {} 1615 1616 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1617 CodeGenFunction &CGF, const VarDecl *VD) { 1618 CodeGenModule &CGM = CGF.CGM; 1619 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1620 1621 if (!VD) 1622 return Address::invalid(); 1623 const VarDecl *CVD = VD->getCanonicalDecl(); 1624 if (!isAllocatableDecl(CVD)) 1625 return Address::invalid(); 1626 llvm::Value *Size; 1627 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1628 if (CVD->getType()->isVariablyModifiedType()) { 1629 Size = CGF.getTypeSize(CVD->getType()); 1630 // Align the size: ((size + align - 1) / align) * align 1631 Size = CGF.Builder.CreateNUWAdd( 1632 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1633 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1634 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1635 } else { 1636 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1637 Size = CGM.getSize(Sz.alignTo(Align)); 1638 } 1639 1640 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1641 assert(AA->getAllocator() && 1642 "Expected allocator expression for non-default allocator."); 1643 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1644 // According to the standard, the original allocator type is a enum (integer). 1645 // Convert to pointer type, if required. 1646 if (Allocator->getType()->isIntegerTy()) 1647 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1648 else if (Allocator->getType()->isPointerTy()) 1649 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1650 CGM.VoidPtrTy); 1651 1652 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1653 CGF.Builder, Size, Allocator, 1654 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1655 llvm::CallInst *FreeCI = 1656 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1657 1658 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1659 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1660 Addr, 1661 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1662 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1663 return Address::deprecated(Addr, Align); 1664 } 1665 1666 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1667 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1668 SourceLocation Loc) { 1669 CodeGenModule &CGM = CGF.CGM; 1670 if (CGM.getLangOpts().OpenMPUseTLS && 1671 CGM.getContext().getTargetInfo().isTLSSupported()) 1672 return VDAddr; 1673 1674 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1675 1676 llvm::Type *VarTy = VDAddr.getElementType(); 1677 llvm::Value *Data = 1678 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1679 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1680 std::string Suffix = getNameWithSeparators({"cache", ""}); 1681 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1682 1683 llvm::CallInst *ThreadPrivateCacheCall = 1684 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1685 1686 return Address::deprecated(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1687 } 1688 1689 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1690 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1691 SmallString<128> Buffer; 1692 llvm::raw_svector_ostream OS(Buffer); 1693 StringRef Sep = FirstSeparator; 1694 for (StringRef Part : Parts) { 1695 OS << Sep << Part; 1696 Sep = Separator; 1697 } 1698 return OS.str().str(); 1699 } 1700 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1701 if (CGM.getLangOpts().OpenMPIRBuilder) { 1702 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1703 // Check if we have any if clause associated with the directive. 1704 llvm::Value *IfCond = nullptr; 1705 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1706 IfCond = EmitScalarExpr(C->getCondition(), 1707 /*IgnoreResultAssign=*/true); 1708 1709 llvm::Value *NumThreads = nullptr; 1710 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1711 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1712 /*IgnoreResultAssign=*/true); 1713 1714 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1715 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1716 ProcBind = ProcBindClause->getProcBindKind(); 1717 1718 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1719 1720 // The cleanup callback that finalizes all variabels at the given location, 1721 // thus calls destructors etc. 1722 auto FiniCB = [this](InsertPointTy IP) { 1723 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1724 }; 1725 1726 // Privatization callback that performs appropriate action for 1727 // shared/private/firstprivate/lastprivate/copyin/... variables. 1728 // 1729 // TODO: This defaults to shared right now. 1730 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1731 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1732 // The next line is appropriate only for variables (Val) with the 1733 // data-sharing attribute "shared". 1734 ReplVal = &Val; 1735 1736 return CodeGenIP; 1737 }; 1738 1739 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1740 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1741 1742 auto BodyGenCB = [ParallelRegionBodyStmt, 1743 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1744 llvm::BasicBlock &ContinuationBB) { 1745 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1746 ContinuationBB); 1747 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1748 CodeGenIP, ContinuationBB); 1749 }; 1750 1751 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1752 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1753 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1754 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1755 Builder.restoreIP( 1756 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1757 IfCond, NumThreads, ProcBind, S.hasCancel())); 1758 return; 1759 } 1760 1761 // Emit parallel region as a standalone region. 1762 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1763 Action.Enter(CGF); 1764 OMPPrivateScope PrivateScope(CGF); 1765 bool Copyins = CGF.EmitOMPCopyinClause(S); 1766 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1767 if (Copyins) { 1768 // Emit implicit barrier to synchronize threads and avoid data races on 1769 // propagation master's thread values of threadprivate variables to local 1770 // instances of that variables of all other implicit threads. 1771 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1772 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1773 /*ForceSimpleCall=*/true); 1774 } 1775 CGF.EmitOMPPrivateClause(S, PrivateScope); 1776 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1777 (void)PrivateScope.Privatize(); 1778 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1779 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1780 }; 1781 { 1782 auto LPCRegion = 1783 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1784 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1785 emitEmptyBoundParameters); 1786 emitPostUpdateForReductionClause(*this, S, 1787 [](CodeGenFunction &) { return nullptr; }); 1788 } 1789 // Check for outer lastprivate conditional update. 1790 checkForLastprivateConditionalUpdate(*this, S); 1791 } 1792 1793 void CodeGenFunction::EmitOMPMetaDirective(const OMPMetaDirective &S) { 1794 EmitStmt(S.getIfStmt()); 1795 } 1796 1797 namespace { 1798 /// RAII to handle scopes for loop transformation directives. 1799 class OMPTransformDirectiveScopeRAII { 1800 OMPLoopScope *Scope = nullptr; 1801 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1802 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1803 1804 public: 1805 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1806 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1807 Scope = new OMPLoopScope(CGF, *Dir); 1808 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1809 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1810 } 1811 } 1812 ~OMPTransformDirectiveScopeRAII() { 1813 if (!Scope) 1814 return; 1815 delete CapInfoRAII; 1816 delete CGSI; 1817 delete Scope; 1818 } 1819 }; 1820 } // namespace 1821 1822 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1823 int MaxLevel, int Level = 0) { 1824 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1825 const Stmt *SimplifiedS = S->IgnoreContainers(); 1826 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1827 PrettyStackTraceLoc CrashInfo( 1828 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1829 "LLVM IR generation of compound statement ('{}')"); 1830 1831 // Keep track of the current cleanup stack depth, including debug scopes. 1832 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1833 for (const Stmt *CurStmt : CS->body()) 1834 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1835 return; 1836 } 1837 if (SimplifiedS == NextLoop) { 1838 if (auto *Dir = dyn_cast<OMPLoopTransformationDirective>(SimplifiedS)) 1839 SimplifiedS = Dir->getTransformedStmt(); 1840 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1841 SimplifiedS = CanonLoop->getLoopStmt(); 1842 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1843 S = For->getBody(); 1844 } else { 1845 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1846 "Expected canonical for loop or range-based for loop."); 1847 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1848 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1849 S = CXXFor->getBody(); 1850 } 1851 if (Level + 1 < MaxLevel) { 1852 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1853 S, /*TryImperfectlyNestedLoops=*/true); 1854 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1855 return; 1856 } 1857 } 1858 CGF.EmitStmt(S); 1859 } 1860 1861 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1862 JumpDest LoopExit) { 1863 RunCleanupsScope BodyScope(*this); 1864 // Update counters values on current iteration. 1865 for (const Expr *UE : D.updates()) 1866 EmitIgnoredExpr(UE); 1867 // Update the linear variables. 1868 // In distribute directives only loop counters may be marked as linear, no 1869 // need to generate the code for them. 1870 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1871 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1872 for (const Expr *UE : C->updates()) 1873 EmitIgnoredExpr(UE); 1874 } 1875 } 1876 1877 // On a continue in the body, jump to the end. 1878 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1879 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1880 for (const Expr *E : D.finals_conditions()) { 1881 if (!E) 1882 continue; 1883 // Check that loop counter in non-rectangular nest fits into the iteration 1884 // space. 1885 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1886 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1887 getProfileCount(D.getBody())); 1888 EmitBlock(NextBB); 1889 } 1890 1891 OMPPrivateScope InscanScope(*this); 1892 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1893 bool IsInscanRegion = InscanScope.Privatize(); 1894 if (IsInscanRegion) { 1895 // Need to remember the block before and after scan directive 1896 // to dispatch them correctly depending on the clause used in 1897 // this directive, inclusive or exclusive. For inclusive scan the natural 1898 // order of the blocks is used, for exclusive clause the blocks must be 1899 // executed in reverse order. 1900 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1901 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1902 // No need to allocate inscan exit block, in simd mode it is selected in the 1903 // codegen for the scan directive. 1904 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1905 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1906 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1907 EmitBranch(OMPScanDispatch); 1908 EmitBlock(OMPBeforeScanBlock); 1909 } 1910 1911 // Emit loop variables for C++ range loops. 1912 const Stmt *Body = 1913 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1914 // Emit loop body. 1915 emitBody(*this, Body, 1916 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1917 Body, /*TryImperfectlyNestedLoops=*/true), 1918 D.getLoopsNumber()); 1919 1920 // Jump to the dispatcher at the end of the loop body. 1921 if (IsInscanRegion) 1922 EmitBranch(OMPScanExitBlock); 1923 1924 // The end (updates/cleanups). 1925 EmitBlock(Continue.getBlock()); 1926 BreakContinueStack.pop_back(); 1927 } 1928 1929 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1930 1931 /// Emit a captured statement and return the function as well as its captured 1932 /// closure context. 1933 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1934 const CapturedStmt *S) { 1935 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1936 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1937 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1938 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1939 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1940 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1941 1942 return {F, CapStruct.getPointer(ParentCGF)}; 1943 } 1944 1945 /// Emit a call to a previously captured closure. 1946 static llvm::CallInst * 1947 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1948 llvm::ArrayRef<llvm::Value *> Args) { 1949 // Append the closure context to the argument. 1950 SmallVector<llvm::Value *> EffectiveArgs; 1951 EffectiveArgs.reserve(Args.size() + 1); 1952 llvm::append_range(EffectiveArgs, Args); 1953 EffectiveArgs.push_back(Cap.second); 1954 1955 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1956 } 1957 1958 llvm::CanonicalLoopInfo * 1959 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1960 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1961 1962 // The caller is processing the loop-associated directive processing the \p 1963 // Depth loops nested in \p S. Put the previous pending loop-associated 1964 // directive to the stack. If the current loop-associated directive is a loop 1965 // transformation directive, it will push its generated loops onto the stack 1966 // such that together with the loops left here they form the combined loop 1967 // nest for the parent loop-associated directive. 1968 int ParentExpectedOMPLoopDepth = ExpectedOMPLoopDepth; 1969 ExpectedOMPLoopDepth = Depth; 1970 1971 EmitStmt(S); 1972 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1973 1974 // The last added loop is the outermost one. 1975 llvm::CanonicalLoopInfo *Result = OMPLoopNestStack.back(); 1976 1977 // Pop the \p Depth loops requested by the call from that stack and restore 1978 // the previous context. 1979 OMPLoopNestStack.pop_back_n(Depth); 1980 ExpectedOMPLoopDepth = ParentExpectedOMPLoopDepth; 1981 1982 return Result; 1983 } 1984 1985 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 1986 const Stmt *SyntacticalLoop = S->getLoopStmt(); 1987 if (!getLangOpts().OpenMPIRBuilder) { 1988 // Ignore if OpenMPIRBuilder is not enabled. 1989 EmitStmt(SyntacticalLoop); 1990 return; 1991 } 1992 1993 LexicalScope ForScope(*this, S->getSourceRange()); 1994 1995 // Emit init statements. The Distance/LoopVar funcs may reference variable 1996 // declarations they contain. 1997 const Stmt *BodyStmt; 1998 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 1999 if (const Stmt *InitStmt = For->getInit()) 2000 EmitStmt(InitStmt); 2001 BodyStmt = For->getBody(); 2002 } else if (const auto *RangeFor = 2003 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 2004 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 2005 EmitStmt(RangeStmt); 2006 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 2007 EmitStmt(BeginStmt); 2008 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 2009 EmitStmt(EndStmt); 2010 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 2011 EmitStmt(LoopVarStmt); 2012 BodyStmt = RangeFor->getBody(); 2013 } else 2014 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 2015 2016 // Emit closure for later use. By-value captures will be captured here. 2017 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 2018 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 2019 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 2020 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2021 2022 // Call the distance function to get the number of iterations of the loop to 2023 // come. 2024 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2025 ->getParam(0) 2026 ->getType() 2027 .getNonReferenceType(); 2028 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2029 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2030 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2031 2032 // Emit the loop structure. 2033 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2034 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2035 llvm::Value *IndVar) { 2036 Builder.restoreIP(CodeGenIP); 2037 2038 // Emit the loop body: Convert the logical iteration number to the loop 2039 // variable and emit the body. 2040 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2041 LValue LCVal = EmitLValue(LoopVarRef); 2042 Address LoopVarAddress = LCVal.getAddress(*this); 2043 emitCapturedStmtCall(*this, LoopVarClosure, 2044 {LoopVarAddress.getPointer(), IndVar}); 2045 2046 RunCleanupsScope BodyScope(*this); 2047 EmitStmt(BodyStmt); 2048 }; 2049 llvm::CanonicalLoopInfo *CL = 2050 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2051 2052 // Finish up the loop. 2053 Builder.restoreIP(CL->getAfterIP()); 2054 ForScope.ForceCleanup(); 2055 2056 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2057 OMPLoopNestStack.push_back(CL); 2058 } 2059 2060 void CodeGenFunction::EmitOMPInnerLoop( 2061 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2062 const Expr *IncExpr, 2063 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2064 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2065 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2066 2067 // Start the loop with a block that tests the condition. 2068 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2069 EmitBlock(CondBlock); 2070 const SourceRange R = S.getSourceRange(); 2071 2072 // If attributes are attached, push to the basic block with them. 2073 const auto &OMPED = cast<OMPExecutableDirective>(S); 2074 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2075 const Stmt *SS = ICS->getCapturedStmt(); 2076 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2077 OMPLoopNestStack.clear(); 2078 if (AS) 2079 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2080 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2081 SourceLocToDebugLoc(R.getEnd())); 2082 else 2083 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2084 SourceLocToDebugLoc(R.getEnd())); 2085 2086 // If there are any cleanups between here and the loop-exit scope, 2087 // create a block to stage a loop exit along. 2088 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2089 if (RequiresCleanup) 2090 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2091 2092 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2093 2094 // Emit condition. 2095 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2096 if (ExitBlock != LoopExit.getBlock()) { 2097 EmitBlock(ExitBlock); 2098 EmitBranchThroughCleanup(LoopExit); 2099 } 2100 2101 EmitBlock(LoopBody); 2102 incrementProfileCounter(&S); 2103 2104 // Create a block for the increment. 2105 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2106 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2107 2108 BodyGen(*this); 2109 2110 // Emit "IV = IV + 1" and a back-edge to the condition block. 2111 EmitBlock(Continue.getBlock()); 2112 EmitIgnoredExpr(IncExpr); 2113 PostIncGen(*this); 2114 BreakContinueStack.pop_back(); 2115 EmitBranch(CondBlock); 2116 LoopStack.pop(); 2117 // Emit the fall-through block. 2118 EmitBlock(LoopExit.getBlock()); 2119 } 2120 2121 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2122 if (!HaveInsertPoint()) 2123 return false; 2124 // Emit inits for the linear variables. 2125 bool HasLinears = false; 2126 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2127 for (const Expr *Init : C->inits()) { 2128 HasLinears = true; 2129 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2130 if (const auto *Ref = 2131 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2132 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2133 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2134 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2135 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2136 VD->getInit()->getType(), VK_LValue, 2137 VD->getInit()->getExprLoc()); 2138 EmitExprAsInit( 2139 &DRE, VD, 2140 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 2141 /*capturedByInit=*/false); 2142 EmitAutoVarCleanups(Emission); 2143 } else { 2144 EmitVarDecl(*VD); 2145 } 2146 } 2147 // Emit the linear steps for the linear clauses. 2148 // If a step is not constant, it is pre-calculated before the loop. 2149 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2150 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2151 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2152 // Emit calculation of the linear step. 2153 EmitIgnoredExpr(CS); 2154 } 2155 } 2156 return HasLinears; 2157 } 2158 2159 void CodeGenFunction::EmitOMPLinearClauseFinal( 2160 const OMPLoopDirective &D, 2161 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2162 if (!HaveInsertPoint()) 2163 return; 2164 llvm::BasicBlock *DoneBB = nullptr; 2165 // Emit the final values of the linear variables. 2166 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2167 auto IC = C->varlist_begin(); 2168 for (const Expr *F : C->finals()) { 2169 if (!DoneBB) { 2170 if (llvm::Value *Cond = CondGen(*this)) { 2171 // If the first post-update expression is found, emit conditional 2172 // block if it was requested. 2173 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2174 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2175 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2176 EmitBlock(ThenBB); 2177 } 2178 } 2179 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2180 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2181 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2182 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2183 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2184 CodeGenFunction::OMPPrivateScope VarScope(*this); 2185 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2186 (void)VarScope.Privatize(); 2187 EmitIgnoredExpr(F); 2188 ++IC; 2189 } 2190 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2191 EmitIgnoredExpr(PostUpdate); 2192 } 2193 if (DoneBB) 2194 EmitBlock(DoneBB, /*IsFinished=*/true); 2195 } 2196 2197 static void emitAlignedClause(CodeGenFunction &CGF, 2198 const OMPExecutableDirective &D) { 2199 if (!CGF.HaveInsertPoint()) 2200 return; 2201 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2202 llvm::APInt ClauseAlignment(64, 0); 2203 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2204 auto *AlignmentCI = 2205 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2206 ClauseAlignment = AlignmentCI->getValue(); 2207 } 2208 for (const Expr *E : Clause->varlists()) { 2209 llvm::APInt Alignment(ClauseAlignment); 2210 if (Alignment == 0) { 2211 // OpenMP [2.8.1, Description] 2212 // If no optional parameter is specified, implementation-defined default 2213 // alignments for SIMD instructions on the target platforms are assumed. 2214 Alignment = 2215 CGF.getContext() 2216 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2217 E->getType()->getPointeeType())) 2218 .getQuantity(); 2219 } 2220 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2221 "alignment is not power of 2"); 2222 if (Alignment != 0) { 2223 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2224 CGF.emitAlignmentAssumption( 2225 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2226 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2227 } 2228 } 2229 } 2230 } 2231 2232 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2233 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2234 if (!HaveInsertPoint()) 2235 return; 2236 auto I = S.private_counters().begin(); 2237 for (const Expr *E : S.counters()) { 2238 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2239 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2240 // Emit var without initialization. 2241 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2242 EmitAutoVarCleanups(VarEmission); 2243 LocalDeclMap.erase(PrivateVD); 2244 (void)LoopScope.addPrivate( 2245 VD, [&VarEmission]() { return VarEmission.getAllocatedAddress(); }); 2246 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2247 VD->hasGlobalStorage()) { 2248 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2249 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2250 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2251 E->getType(), VK_LValue, E->getExprLoc()); 2252 return EmitLValue(&DRE).getAddress(*this); 2253 }); 2254 } else { 2255 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2256 return VarEmission.getAllocatedAddress(); 2257 }); 2258 } 2259 ++I; 2260 } 2261 // Privatize extra loop counters used in loops for ordered(n) clauses. 2262 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2263 if (!C->getNumForLoops()) 2264 continue; 2265 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2266 I < E; ++I) { 2267 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2268 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2269 // Override only those variables that can be captured to avoid re-emission 2270 // of the variables declared within the loops. 2271 if (DRE->refersToEnclosingVariableOrCapture()) { 2272 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2273 return CreateMemTemp(DRE->getType(), VD->getName()); 2274 }); 2275 } 2276 } 2277 } 2278 } 2279 2280 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2281 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2282 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2283 if (!CGF.HaveInsertPoint()) 2284 return; 2285 { 2286 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2287 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2288 (void)PreCondScope.Privatize(); 2289 // Get initial values of real counters. 2290 for (const Expr *I : S.inits()) { 2291 CGF.EmitIgnoredExpr(I); 2292 } 2293 } 2294 // Create temp loop control variables with their init values to support 2295 // non-rectangular loops. 2296 CodeGenFunction::OMPMapVars PreCondVars; 2297 for (const Expr *E : S.dependent_counters()) { 2298 if (!E) 2299 continue; 2300 assert(!E->getType().getNonReferenceType()->isRecordType() && 2301 "dependent counter must not be an iterator."); 2302 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2303 Address CounterAddr = 2304 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2305 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2306 } 2307 (void)PreCondVars.apply(CGF); 2308 for (const Expr *E : S.dependent_inits()) { 2309 if (!E) 2310 continue; 2311 CGF.EmitIgnoredExpr(E); 2312 } 2313 // Check that loop is executed at least one time. 2314 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2315 PreCondVars.restore(CGF); 2316 } 2317 2318 void CodeGenFunction::EmitOMPLinearClause( 2319 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2320 if (!HaveInsertPoint()) 2321 return; 2322 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2323 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2324 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2325 for (const Expr *C : LoopDirective->counters()) { 2326 SIMDLCVs.insert( 2327 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2328 } 2329 } 2330 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2331 auto CurPrivate = C->privates().begin(); 2332 for (const Expr *E : C->varlists()) { 2333 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2334 const auto *PrivateVD = 2335 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2336 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2337 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2338 // Emit private VarDecl with copy init. 2339 EmitVarDecl(*PrivateVD); 2340 return GetAddrOfLocalVar(PrivateVD); 2341 }); 2342 assert(IsRegistered && "linear var already registered as private"); 2343 // Silence the warning about unused variable. 2344 (void)IsRegistered; 2345 } else { 2346 EmitVarDecl(*PrivateVD); 2347 } 2348 ++CurPrivate; 2349 } 2350 } 2351 } 2352 2353 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2354 const OMPExecutableDirective &D) { 2355 if (!CGF.HaveInsertPoint()) 2356 return; 2357 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2358 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2359 /*ignoreResult=*/true); 2360 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2361 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2362 // In presence of finite 'safelen', it may be unsafe to mark all 2363 // the memory instructions parallel, because loop-carried 2364 // dependences of 'safelen' iterations are possible. 2365 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2366 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2367 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2368 /*ignoreResult=*/true); 2369 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2370 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2371 // In presence of finite 'safelen', it may be unsafe to mark all 2372 // the memory instructions parallel, because loop-carried 2373 // dependences of 'safelen' iterations are possible. 2374 CGF.LoopStack.setParallel(/*Enable=*/false); 2375 } 2376 } 2377 2378 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2379 // Walk clauses and process safelen/lastprivate. 2380 LoopStack.setParallel(/*Enable=*/true); 2381 LoopStack.setVectorizeEnable(); 2382 emitSimdlenSafelenClause(*this, D); 2383 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2384 if (C->getKind() == OMPC_ORDER_concurrent) 2385 LoopStack.setParallel(/*Enable=*/true); 2386 if ((D.getDirectiveKind() == OMPD_simd || 2387 (getLangOpts().OpenMPSimd && 2388 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2389 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2390 [](const OMPReductionClause *C) { 2391 return C->getModifier() == OMPC_REDUCTION_inscan; 2392 })) 2393 // Disable parallel access in case of prefix sum. 2394 LoopStack.setParallel(/*Enable=*/false); 2395 } 2396 2397 void CodeGenFunction::EmitOMPSimdFinal( 2398 const OMPLoopDirective &D, 2399 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2400 if (!HaveInsertPoint()) 2401 return; 2402 llvm::BasicBlock *DoneBB = nullptr; 2403 auto IC = D.counters().begin(); 2404 auto IPC = D.private_counters().begin(); 2405 for (const Expr *F : D.finals()) { 2406 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2407 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2408 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2409 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2410 OrigVD->hasGlobalStorage() || CED) { 2411 if (!DoneBB) { 2412 if (llvm::Value *Cond = CondGen(*this)) { 2413 // If the first post-update expression is found, emit conditional 2414 // block if it was requested. 2415 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2416 DoneBB = createBasicBlock(".omp.final.done"); 2417 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2418 EmitBlock(ThenBB); 2419 } 2420 } 2421 Address OrigAddr = Address::invalid(); 2422 if (CED) { 2423 OrigAddr = 2424 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2425 } else { 2426 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2427 /*RefersToEnclosingVariableOrCapture=*/false, 2428 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2429 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2430 } 2431 OMPPrivateScope VarScope(*this); 2432 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2433 (void)VarScope.Privatize(); 2434 EmitIgnoredExpr(F); 2435 } 2436 ++IC; 2437 ++IPC; 2438 } 2439 if (DoneBB) 2440 EmitBlock(DoneBB, /*IsFinished=*/true); 2441 } 2442 2443 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2444 const OMPLoopDirective &S, 2445 CodeGenFunction::JumpDest LoopExit) { 2446 CGF.EmitOMPLoopBody(S, LoopExit); 2447 CGF.EmitStopPoint(&S); 2448 } 2449 2450 /// Emit a helper variable and return corresponding lvalue. 2451 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2452 const DeclRefExpr *Helper) { 2453 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2454 CGF.EmitVarDecl(*VDecl); 2455 return CGF.EmitLValue(Helper); 2456 } 2457 2458 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2459 const RegionCodeGenTy &SimdInitGen, 2460 const RegionCodeGenTy &BodyCodeGen) { 2461 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2462 PrePostActionTy &) { 2463 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2464 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2465 SimdInitGen(CGF); 2466 2467 BodyCodeGen(CGF); 2468 }; 2469 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2470 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2471 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2472 2473 BodyCodeGen(CGF); 2474 }; 2475 const Expr *IfCond = nullptr; 2476 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2477 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2478 if (CGF.getLangOpts().OpenMP >= 50 && 2479 (C->getNameModifier() == OMPD_unknown || 2480 C->getNameModifier() == OMPD_simd)) { 2481 IfCond = C->getCondition(); 2482 break; 2483 } 2484 } 2485 } 2486 if (IfCond) { 2487 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2488 } else { 2489 RegionCodeGenTy ThenRCG(ThenGen); 2490 ThenRCG(CGF); 2491 } 2492 } 2493 2494 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2495 PrePostActionTy &Action) { 2496 Action.Enter(CGF); 2497 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2498 "Expected simd directive"); 2499 OMPLoopScope PreInitScope(CGF, S); 2500 // if (PreCond) { 2501 // for (IV in 0..LastIteration) BODY; 2502 // <Final counter/linear vars updates>; 2503 // } 2504 // 2505 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2506 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2507 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2508 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2509 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2510 } 2511 2512 // Emit: if (PreCond) - begin. 2513 // If the condition constant folds and can be elided, avoid emitting the 2514 // whole loop. 2515 bool CondConstant; 2516 llvm::BasicBlock *ContBlock = nullptr; 2517 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2518 if (!CondConstant) 2519 return; 2520 } else { 2521 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2522 ContBlock = CGF.createBasicBlock("simd.if.end"); 2523 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2524 CGF.getProfileCount(&S)); 2525 CGF.EmitBlock(ThenBlock); 2526 CGF.incrementProfileCounter(&S); 2527 } 2528 2529 // Emit the loop iteration variable. 2530 const Expr *IVExpr = S.getIterationVariable(); 2531 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2532 CGF.EmitVarDecl(*IVDecl); 2533 CGF.EmitIgnoredExpr(S.getInit()); 2534 2535 // Emit the iterations count variable. 2536 // If it is not a variable, Sema decided to calculate iterations count on 2537 // each iteration (e.g., it is foldable into a constant). 2538 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2539 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2540 // Emit calculation of the iterations count. 2541 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2542 } 2543 2544 emitAlignedClause(CGF, S); 2545 (void)CGF.EmitOMPLinearClauseInit(S); 2546 { 2547 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2548 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2549 CGF.EmitOMPLinearClause(S, LoopScope); 2550 CGF.EmitOMPPrivateClause(S, LoopScope); 2551 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2552 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2553 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2554 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2555 (void)LoopScope.Privatize(); 2556 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2557 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2558 2559 emitCommonSimdLoop( 2560 CGF, S, 2561 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2562 CGF.EmitOMPSimdInit(S); 2563 }, 2564 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2565 CGF.EmitOMPInnerLoop( 2566 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2567 [&S](CodeGenFunction &CGF) { 2568 emitOMPLoopBodyWithStopPoint(CGF, S, 2569 CodeGenFunction::JumpDest()); 2570 }, 2571 [](CodeGenFunction &) {}); 2572 }); 2573 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2574 // Emit final copy of the lastprivate variables at the end of loops. 2575 if (HasLastprivateClause) 2576 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2577 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2578 emitPostUpdateForReductionClause(CGF, S, 2579 [](CodeGenFunction &) { return nullptr; }); 2580 } 2581 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2582 // Emit: if (PreCond) - end. 2583 if (ContBlock) { 2584 CGF.EmitBranch(ContBlock); 2585 CGF.EmitBlock(ContBlock, true); 2586 } 2587 } 2588 2589 static bool isSupportedByOpenMPIRBuilder(const OMPExecutableDirective &S) { 2590 // Check for unsupported clauses 2591 if (!S.clauses().empty()) { 2592 // Currently no clause is supported 2593 return false; 2594 } 2595 2596 // Check if we have a statement with the ordered directive. 2597 // Visit the statement hierarchy to find a compound statement 2598 // with a ordered directive in it. 2599 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(S.getRawStmt())) { 2600 if (const Stmt *SyntacticalLoop = CanonLoop->getLoopStmt()) { 2601 for (const Stmt *SubStmt : SyntacticalLoop->children()) { 2602 if (!SubStmt) 2603 continue; 2604 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(SubStmt)) { 2605 for (const Stmt *CSSubStmt : CS->children()) { 2606 if (!CSSubStmt) 2607 continue; 2608 if (isa<OMPOrderedDirective>(CSSubStmt)) { 2609 return false; 2610 } 2611 } 2612 } 2613 } 2614 } 2615 } 2616 return true; 2617 } 2618 2619 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2620 bool UseOMPIRBuilder = 2621 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 2622 if (UseOMPIRBuilder) { 2623 auto &&CodeGenIRBuilder = [this, &S, UseOMPIRBuilder](CodeGenFunction &CGF, 2624 PrePostActionTy &) { 2625 // Use the OpenMPIRBuilder if enabled. 2626 if (UseOMPIRBuilder) { 2627 // Emit the associated statement and get its loop representation. 2628 llvm::DebugLoc DL = SourceLocToDebugLoc(S.getBeginLoc()); 2629 const Stmt *Inner = S.getRawStmt(); 2630 llvm::CanonicalLoopInfo *CLI = 2631 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2632 2633 llvm::OpenMPIRBuilder &OMPBuilder = 2634 CGM.getOpenMPRuntime().getOMPBuilder(); 2635 // Add SIMD specific metadata 2636 OMPBuilder.applySimd(DL, CLI); 2637 return; 2638 } 2639 }; 2640 { 2641 auto LPCRegion = 2642 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2643 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2644 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, 2645 CodeGenIRBuilder); 2646 } 2647 return; 2648 } 2649 2650 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2651 OMPFirstScanLoop = true; 2652 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2653 emitOMPSimdRegion(CGF, S, Action); 2654 }; 2655 { 2656 auto LPCRegion = 2657 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2658 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2659 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2660 } 2661 // Check for outer lastprivate conditional update. 2662 checkForLastprivateConditionalUpdate(*this, S); 2663 } 2664 2665 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2666 // Emit the de-sugared statement. 2667 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2668 EmitStmt(S.getTransformedStmt()); 2669 } 2670 2671 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2672 bool UseOMPIRBuilder = CGM.getLangOpts().OpenMPIRBuilder; 2673 2674 if (UseOMPIRBuilder) { 2675 auto DL = SourceLocToDebugLoc(S.getBeginLoc()); 2676 const Stmt *Inner = S.getRawStmt(); 2677 2678 // Consume nested loop. Clear the entire remaining loop stack because a 2679 // fully unrolled loop is non-transformable. For partial unrolling the 2680 // generated outer loop is pushed back to the stack. 2681 llvm::CanonicalLoopInfo *CLI = EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2682 OMPLoopNestStack.clear(); 2683 2684 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2685 2686 bool NeedsUnrolledCLI = ExpectedOMPLoopDepth >= 1; 2687 llvm::CanonicalLoopInfo *UnrolledCLI = nullptr; 2688 2689 if (S.hasClausesOfKind<OMPFullClause>()) { 2690 assert(ExpectedOMPLoopDepth == 0); 2691 OMPBuilder.unrollLoopFull(DL, CLI); 2692 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2693 uint64_t Factor = 0; 2694 if (Expr *FactorExpr = PartialClause->getFactor()) { 2695 Factor = FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2696 assert(Factor >= 1 && "Only positive factors are valid"); 2697 } 2698 OMPBuilder.unrollLoopPartial(DL, CLI, Factor, 2699 NeedsUnrolledCLI ? &UnrolledCLI : nullptr); 2700 } else { 2701 OMPBuilder.unrollLoopHeuristic(DL, CLI); 2702 } 2703 2704 assert((!NeedsUnrolledCLI || UnrolledCLI) && 2705 "NeedsUnrolledCLI implies UnrolledCLI to be set"); 2706 if (UnrolledCLI) 2707 OMPLoopNestStack.push_back(UnrolledCLI); 2708 2709 return; 2710 } 2711 2712 // This function is only called if the unrolled loop is not consumed by any 2713 // other loop-associated construct. Such a loop-associated construct will have 2714 // used the transformed AST. 2715 2716 // Set the unroll metadata for the next emitted loop. 2717 LoopStack.setUnrollState(LoopAttributes::Enable); 2718 2719 if (S.hasClausesOfKind<OMPFullClause>()) { 2720 LoopStack.setUnrollState(LoopAttributes::Full); 2721 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2722 if (Expr *FactorExpr = PartialClause->getFactor()) { 2723 uint64_t Factor = 2724 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2725 assert(Factor >= 1 && "Only positive factors are valid"); 2726 LoopStack.setUnrollCount(Factor); 2727 } 2728 } 2729 2730 EmitStmt(S.getAssociatedStmt()); 2731 } 2732 2733 void CodeGenFunction::EmitOMPOuterLoop( 2734 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2735 CodeGenFunction::OMPPrivateScope &LoopScope, 2736 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2737 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2738 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2739 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2740 2741 const Expr *IVExpr = S.getIterationVariable(); 2742 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2743 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2744 2745 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2746 2747 // Start the loop with a block that tests the condition. 2748 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2749 EmitBlock(CondBlock); 2750 const SourceRange R = S.getSourceRange(); 2751 OMPLoopNestStack.clear(); 2752 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2753 SourceLocToDebugLoc(R.getEnd())); 2754 2755 llvm::Value *BoolCondVal = nullptr; 2756 if (!DynamicOrOrdered) { 2757 // UB = min(UB, GlobalUB) or 2758 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2759 // 'distribute parallel for') 2760 EmitIgnoredExpr(LoopArgs.EUB); 2761 // IV = LB 2762 EmitIgnoredExpr(LoopArgs.Init); 2763 // IV < UB 2764 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2765 } else { 2766 BoolCondVal = 2767 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2768 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2769 } 2770 2771 // If there are any cleanups between here and the loop-exit scope, 2772 // create a block to stage a loop exit along. 2773 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2774 if (LoopScope.requiresCleanups()) 2775 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2776 2777 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2778 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2779 if (ExitBlock != LoopExit.getBlock()) { 2780 EmitBlock(ExitBlock); 2781 EmitBranchThroughCleanup(LoopExit); 2782 } 2783 EmitBlock(LoopBody); 2784 2785 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2786 // LB for loop condition and emitted it above). 2787 if (DynamicOrOrdered) 2788 EmitIgnoredExpr(LoopArgs.Init); 2789 2790 // Create a block for the increment. 2791 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2792 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2793 2794 emitCommonSimdLoop( 2795 *this, S, 2796 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2797 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2798 // with dynamic/guided scheduling and without ordered clause. 2799 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2800 CGF.LoopStack.setParallel(!IsMonotonic); 2801 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2802 if (C->getKind() == OMPC_ORDER_concurrent) 2803 CGF.LoopStack.setParallel(/*Enable=*/true); 2804 } else { 2805 CGF.EmitOMPSimdInit(S); 2806 } 2807 }, 2808 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2809 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2810 SourceLocation Loc = S.getBeginLoc(); 2811 // when 'distribute' is not combined with a 'for': 2812 // while (idx <= UB) { BODY; ++idx; } 2813 // when 'distribute' is combined with a 'for' 2814 // (e.g. 'distribute parallel for') 2815 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2816 CGF.EmitOMPInnerLoop( 2817 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2818 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2819 CodeGenLoop(CGF, S, LoopExit); 2820 }, 2821 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2822 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2823 }); 2824 }); 2825 2826 EmitBlock(Continue.getBlock()); 2827 BreakContinueStack.pop_back(); 2828 if (!DynamicOrOrdered) { 2829 // Emit "LB = LB + Stride", "UB = UB + Stride". 2830 EmitIgnoredExpr(LoopArgs.NextLB); 2831 EmitIgnoredExpr(LoopArgs.NextUB); 2832 } 2833 2834 EmitBranch(CondBlock); 2835 OMPLoopNestStack.clear(); 2836 LoopStack.pop(); 2837 // Emit the fall-through block. 2838 EmitBlock(LoopExit.getBlock()); 2839 2840 // Tell the runtime we are done. 2841 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2842 if (!DynamicOrOrdered) 2843 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2844 S.getDirectiveKind()); 2845 }; 2846 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2847 } 2848 2849 void CodeGenFunction::EmitOMPForOuterLoop( 2850 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2851 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2852 const OMPLoopArguments &LoopArgs, 2853 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2854 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2855 2856 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2857 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind.Schedule); 2858 2859 assert((Ordered || !RT.isStaticNonchunked(ScheduleKind.Schedule, 2860 LoopArgs.Chunk != nullptr)) && 2861 "static non-chunked schedule does not need outer loop"); 2862 2863 // Emit outer loop. 2864 // 2865 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2866 // When schedule(dynamic,chunk_size) is specified, the iterations are 2867 // distributed to threads in the team in chunks as the threads request them. 2868 // Each thread executes a chunk of iterations, then requests another chunk, 2869 // until no chunks remain to be distributed. Each chunk contains chunk_size 2870 // iterations, except for the last chunk to be distributed, which may have 2871 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2872 // 2873 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2874 // to threads in the team in chunks as the executing threads request them. 2875 // Each thread executes a chunk of iterations, then requests another chunk, 2876 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2877 // each chunk is proportional to the number of unassigned iterations divided 2878 // by the number of threads in the team, decreasing to 1. For a chunk_size 2879 // with value k (greater than 1), the size of each chunk is determined in the 2880 // same way, with the restriction that the chunks do not contain fewer than k 2881 // iterations (except for the last chunk to be assigned, which may have fewer 2882 // than k iterations). 2883 // 2884 // When schedule(auto) is specified, the decision regarding scheduling is 2885 // delegated to the compiler and/or runtime system. The programmer gives the 2886 // implementation the freedom to choose any possible mapping of iterations to 2887 // threads in the team. 2888 // 2889 // When schedule(runtime) is specified, the decision regarding scheduling is 2890 // deferred until run time, and the schedule and chunk size are taken from the 2891 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2892 // implementation defined 2893 // 2894 // while(__kmpc_dispatch_next(&LB, &UB)) { 2895 // idx = LB; 2896 // while (idx <= UB) { BODY; ++idx; 2897 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2898 // } // inner loop 2899 // } 2900 // 2901 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2902 // When schedule(static, chunk_size) is specified, iterations are divided into 2903 // chunks of size chunk_size, and the chunks are assigned to the threads in 2904 // the team in a round-robin fashion in the order of the thread number. 2905 // 2906 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2907 // while (idx <= UB) { BODY; ++idx; } // inner loop 2908 // LB = LB + ST; 2909 // UB = UB + ST; 2910 // } 2911 // 2912 2913 const Expr *IVExpr = S.getIterationVariable(); 2914 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2915 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2916 2917 if (DynamicOrOrdered) { 2918 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2919 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2920 llvm::Value *LBVal = DispatchBounds.first; 2921 llvm::Value *UBVal = DispatchBounds.second; 2922 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2923 LoopArgs.Chunk}; 2924 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2925 IVSigned, Ordered, DipatchRTInputValues); 2926 } else { 2927 CGOpenMPRuntime::StaticRTInput StaticInit( 2928 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2929 LoopArgs.ST, LoopArgs.Chunk); 2930 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2931 ScheduleKind, StaticInit); 2932 } 2933 2934 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2935 const unsigned IVSize, 2936 const bool IVSigned) { 2937 if (Ordered) { 2938 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2939 IVSigned); 2940 } 2941 }; 2942 2943 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2944 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2945 OuterLoopArgs.IncExpr = S.getInc(); 2946 OuterLoopArgs.Init = S.getInit(); 2947 OuterLoopArgs.Cond = S.getCond(); 2948 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2949 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2950 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2951 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2952 } 2953 2954 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2955 const unsigned IVSize, const bool IVSigned) {} 2956 2957 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2958 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2959 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2960 const CodeGenLoopTy &CodeGenLoopContent) { 2961 2962 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2963 2964 // Emit outer loop. 2965 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2966 // dynamic 2967 // 2968 2969 const Expr *IVExpr = S.getIterationVariable(); 2970 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2971 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2972 2973 CGOpenMPRuntime::StaticRTInput StaticInit( 2974 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2975 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2976 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2977 2978 // for combined 'distribute' and 'for' the increment expression of distribute 2979 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2980 Expr *IncExpr; 2981 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2982 IncExpr = S.getDistInc(); 2983 else 2984 IncExpr = S.getInc(); 2985 2986 // this routine is shared by 'omp distribute parallel for' and 2987 // 'omp distribute': select the right EUB expression depending on the 2988 // directive 2989 OMPLoopArguments OuterLoopArgs; 2990 OuterLoopArgs.LB = LoopArgs.LB; 2991 OuterLoopArgs.UB = LoopArgs.UB; 2992 OuterLoopArgs.ST = LoopArgs.ST; 2993 OuterLoopArgs.IL = LoopArgs.IL; 2994 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2995 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2996 ? S.getCombinedEnsureUpperBound() 2997 : S.getEnsureUpperBound(); 2998 OuterLoopArgs.IncExpr = IncExpr; 2999 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3000 ? S.getCombinedInit() 3001 : S.getInit(); 3002 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3003 ? S.getCombinedCond() 3004 : S.getCond(); 3005 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3006 ? S.getCombinedNextLowerBound() 3007 : S.getNextLowerBound(); 3008 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3009 ? S.getCombinedNextUpperBound() 3010 : S.getNextUpperBound(); 3011 3012 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 3013 LoopScope, OuterLoopArgs, CodeGenLoopContent, 3014 emitEmptyOrdered); 3015 } 3016 3017 static std::pair<LValue, LValue> 3018 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 3019 const OMPExecutableDirective &S) { 3020 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3021 LValue LB = 3022 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3023 LValue UB = 3024 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3025 3026 // When composing 'distribute' with 'for' (e.g. as in 'distribute 3027 // parallel for') we need to use the 'distribute' 3028 // chunk lower and upper bounds rather than the whole loop iteration 3029 // space. These are parameters to the outlined function for 'parallel' 3030 // and we copy the bounds of the previous schedule into the 3031 // the current ones. 3032 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 3033 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 3034 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 3035 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 3036 PrevLBVal = CGF.EmitScalarConversion( 3037 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 3038 LS.getIterationVariable()->getType(), 3039 LS.getPrevLowerBoundVariable()->getExprLoc()); 3040 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 3041 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 3042 PrevUBVal = CGF.EmitScalarConversion( 3043 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 3044 LS.getIterationVariable()->getType(), 3045 LS.getPrevUpperBoundVariable()->getExprLoc()); 3046 3047 CGF.EmitStoreOfScalar(PrevLBVal, LB); 3048 CGF.EmitStoreOfScalar(PrevUBVal, UB); 3049 3050 return {LB, UB}; 3051 } 3052 3053 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 3054 /// we need to use the LB and UB expressions generated by the worksharing 3055 /// code generation support, whereas in non combined situations we would 3056 /// just emit 0 and the LastIteration expression 3057 /// This function is necessary due to the difference of the LB and UB 3058 /// types for the RT emission routines for 'for_static_init' and 3059 /// 'for_dispatch_init' 3060 static std::pair<llvm::Value *, llvm::Value *> 3061 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 3062 const OMPExecutableDirective &S, 3063 Address LB, Address UB) { 3064 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3065 const Expr *IVExpr = LS.getIterationVariable(); 3066 // when implementing a dynamic schedule for a 'for' combined with a 3067 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 3068 // is not normalized as each team only executes its own assigned 3069 // distribute chunk 3070 QualType IteratorTy = IVExpr->getType(); 3071 llvm::Value *LBVal = 3072 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3073 llvm::Value *UBVal = 3074 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3075 return {LBVal, UBVal}; 3076 } 3077 3078 static void emitDistributeParallelForDistributeInnerBoundParams( 3079 CodeGenFunction &CGF, const OMPExecutableDirective &S, 3080 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 3081 const auto &Dir = cast<OMPLoopDirective>(S); 3082 LValue LB = 3083 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 3084 llvm::Value *LBCast = 3085 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 3086 CGF.SizeTy, /*isSigned=*/false); 3087 CapturedVars.push_back(LBCast); 3088 LValue UB = 3089 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 3090 3091 llvm::Value *UBCast = 3092 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 3093 CGF.SizeTy, /*isSigned=*/false); 3094 CapturedVars.push_back(UBCast); 3095 } 3096 3097 static void 3098 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 3099 const OMPLoopDirective &S, 3100 CodeGenFunction::JumpDest LoopExit) { 3101 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 3102 PrePostActionTy &Action) { 3103 Action.Enter(CGF); 3104 bool HasCancel = false; 3105 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 3106 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 3107 HasCancel = D->hasCancel(); 3108 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 3109 HasCancel = D->hasCancel(); 3110 else if (const auto *D = 3111 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 3112 HasCancel = D->hasCancel(); 3113 } 3114 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3115 HasCancel); 3116 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 3117 emitDistributeParallelForInnerBounds, 3118 emitDistributeParallelForDispatchBounds); 3119 }; 3120 3121 emitCommonOMPParallelDirective( 3122 CGF, S, 3123 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3124 CGInlinedWorksharingLoop, 3125 emitDistributeParallelForDistributeInnerBoundParams); 3126 } 3127 3128 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3129 const OMPDistributeParallelForDirective &S) { 3130 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3131 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3132 S.getDistInc()); 3133 }; 3134 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3135 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3136 } 3137 3138 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3139 const OMPDistributeParallelForSimdDirective &S) { 3140 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3141 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3142 S.getDistInc()); 3143 }; 3144 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3145 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3146 } 3147 3148 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3149 const OMPDistributeSimdDirective &S) { 3150 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3151 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3152 }; 3153 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3154 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3155 } 3156 3157 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3158 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3159 // Emit SPMD target parallel for region as a standalone region. 3160 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3161 emitOMPSimdRegion(CGF, S, Action); 3162 }; 3163 llvm::Function *Fn; 3164 llvm::Constant *Addr; 3165 // Emit target region as a standalone region. 3166 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3167 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3168 assert(Fn && Addr && "Target device function emission failed."); 3169 } 3170 3171 void CodeGenFunction::EmitOMPTargetSimdDirective( 3172 const OMPTargetSimdDirective &S) { 3173 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3174 emitOMPSimdRegion(CGF, S, Action); 3175 }; 3176 emitCommonOMPTargetDirective(*this, S, CodeGen); 3177 } 3178 3179 namespace { 3180 struct ScheduleKindModifiersTy { 3181 OpenMPScheduleClauseKind Kind; 3182 OpenMPScheduleClauseModifier M1; 3183 OpenMPScheduleClauseModifier M2; 3184 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3185 OpenMPScheduleClauseModifier M1, 3186 OpenMPScheduleClauseModifier M2) 3187 : Kind(Kind), M1(M1), M2(M2) {} 3188 }; 3189 } // namespace 3190 3191 bool CodeGenFunction::EmitOMPWorksharingLoop( 3192 const OMPLoopDirective &S, Expr *EUB, 3193 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3194 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3195 // Emit the loop iteration variable. 3196 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3197 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3198 EmitVarDecl(*IVDecl); 3199 3200 // Emit the iterations count variable. 3201 // If it is not a variable, Sema decided to calculate iterations count on each 3202 // iteration (e.g., it is foldable into a constant). 3203 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3204 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3205 // Emit calculation of the iterations count. 3206 EmitIgnoredExpr(S.getCalcLastIteration()); 3207 } 3208 3209 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3210 3211 bool HasLastprivateClause; 3212 // Check pre-condition. 3213 { 3214 OMPLoopScope PreInitScope(*this, S); 3215 // Skip the entire loop if we don't meet the precondition. 3216 // If the condition constant folds and can be elided, avoid emitting the 3217 // whole loop. 3218 bool CondConstant; 3219 llvm::BasicBlock *ContBlock = nullptr; 3220 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3221 if (!CondConstant) 3222 return false; 3223 } else { 3224 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3225 ContBlock = createBasicBlock("omp.precond.end"); 3226 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3227 getProfileCount(&S)); 3228 EmitBlock(ThenBlock); 3229 incrementProfileCounter(&S); 3230 } 3231 3232 RunCleanupsScope DoacrossCleanupScope(*this); 3233 bool Ordered = false; 3234 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3235 if (OrderedClause->getNumForLoops()) 3236 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3237 else 3238 Ordered = true; 3239 } 3240 3241 llvm::DenseSet<const Expr *> EmittedFinals; 3242 emitAlignedClause(*this, S); 3243 bool HasLinears = EmitOMPLinearClauseInit(S); 3244 // Emit helper vars inits. 3245 3246 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3247 LValue LB = Bounds.first; 3248 LValue UB = Bounds.second; 3249 LValue ST = 3250 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3251 LValue IL = 3252 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3253 3254 // Emit 'then' code. 3255 { 3256 OMPPrivateScope LoopScope(*this); 3257 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3258 // Emit implicit barrier to synchronize threads and avoid data races on 3259 // initialization of firstprivate variables and post-update of 3260 // lastprivate variables. 3261 CGM.getOpenMPRuntime().emitBarrierCall( 3262 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3263 /*ForceSimpleCall=*/true); 3264 } 3265 EmitOMPPrivateClause(S, LoopScope); 3266 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3267 *this, S, EmitLValue(S.getIterationVariable())); 3268 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3269 EmitOMPReductionClauseInit(S, LoopScope); 3270 EmitOMPPrivateLoopCounters(S, LoopScope); 3271 EmitOMPLinearClause(S, LoopScope); 3272 (void)LoopScope.Privatize(); 3273 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3274 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3275 3276 // Detect the loop schedule kind and chunk. 3277 const Expr *ChunkExpr = nullptr; 3278 OpenMPScheduleTy ScheduleKind; 3279 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3280 ScheduleKind.Schedule = C->getScheduleKind(); 3281 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3282 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3283 ChunkExpr = C->getChunkSize(); 3284 } else { 3285 // Default behaviour for schedule clause. 3286 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3287 *this, S, ScheduleKind.Schedule, ChunkExpr); 3288 } 3289 bool HasChunkSizeOne = false; 3290 llvm::Value *Chunk = nullptr; 3291 if (ChunkExpr) { 3292 Chunk = EmitScalarExpr(ChunkExpr); 3293 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3294 S.getIterationVariable()->getType(), 3295 S.getBeginLoc()); 3296 Expr::EvalResult Result; 3297 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3298 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3299 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3300 } 3301 } 3302 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3303 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3304 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3305 // If the static schedule kind is specified or if the ordered clause is 3306 // specified, and if no monotonic modifier is specified, the effect will 3307 // be as if the monotonic modifier was specified. 3308 bool StaticChunkedOne = 3309 RT.isStaticChunked(ScheduleKind.Schedule, 3310 /* Chunked */ Chunk != nullptr) && 3311 HasChunkSizeOne && 3312 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3313 bool IsMonotonic = 3314 Ordered || 3315 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3316 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3317 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3318 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3319 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3320 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3321 /* Chunked */ Chunk != nullptr) || 3322 StaticChunkedOne) && 3323 !Ordered) { 3324 JumpDest LoopExit = 3325 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3326 emitCommonSimdLoop( 3327 *this, S, 3328 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3329 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3330 CGF.EmitOMPSimdInit(S); 3331 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3332 if (C->getKind() == OMPC_ORDER_concurrent) 3333 CGF.LoopStack.setParallel(/*Enable=*/true); 3334 } 3335 }, 3336 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3337 &S, ScheduleKind, LoopExit, 3338 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3339 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3340 // When no chunk_size is specified, the iteration space is divided 3341 // into chunks that are approximately equal in size, and at most 3342 // one chunk is distributed to each thread. Note that the size of 3343 // the chunks is unspecified in this case. 3344 CGOpenMPRuntime::StaticRTInput StaticInit( 3345 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3346 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3347 StaticChunkedOne ? Chunk : nullptr); 3348 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3349 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3350 StaticInit); 3351 // UB = min(UB, GlobalUB); 3352 if (!StaticChunkedOne) 3353 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3354 // IV = LB; 3355 CGF.EmitIgnoredExpr(S.getInit()); 3356 // For unchunked static schedule generate: 3357 // 3358 // while (idx <= UB) { 3359 // BODY; 3360 // ++idx; 3361 // } 3362 // 3363 // For static schedule with chunk one: 3364 // 3365 // while (IV <= PrevUB) { 3366 // BODY; 3367 // IV += ST; 3368 // } 3369 CGF.EmitOMPInnerLoop( 3370 S, LoopScope.requiresCleanups(), 3371 StaticChunkedOne ? S.getCombinedParForInDistCond() 3372 : S.getCond(), 3373 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3374 [&S, LoopExit](CodeGenFunction &CGF) { 3375 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3376 }, 3377 [](CodeGenFunction &) {}); 3378 }); 3379 EmitBlock(LoopExit.getBlock()); 3380 // Tell the runtime we are done. 3381 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3382 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3383 S.getDirectiveKind()); 3384 }; 3385 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3386 } else { 3387 // Emit the outer loop, which requests its work chunk [LB..UB] from 3388 // runtime and runs the inner loop to process it. 3389 const OMPLoopArguments LoopArguments( 3390 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3391 IL.getAddress(*this), Chunk, EUB); 3392 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3393 LoopArguments, CGDispatchBounds); 3394 } 3395 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3396 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3397 return CGF.Builder.CreateIsNotNull( 3398 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3399 }); 3400 } 3401 EmitOMPReductionClauseFinal( 3402 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3403 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3404 : /*Parallel only*/ OMPD_parallel); 3405 // Emit post-update of the reduction variables if IsLastIter != 0. 3406 emitPostUpdateForReductionClause( 3407 *this, S, [IL, &S](CodeGenFunction &CGF) { 3408 return CGF.Builder.CreateIsNotNull( 3409 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3410 }); 3411 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3412 if (HasLastprivateClause) 3413 EmitOMPLastprivateClauseFinal( 3414 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3415 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3416 } 3417 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3418 return CGF.Builder.CreateIsNotNull( 3419 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3420 }); 3421 DoacrossCleanupScope.ForceCleanup(); 3422 // We're now done with the loop, so jump to the continuation block. 3423 if (ContBlock) { 3424 EmitBranch(ContBlock); 3425 EmitBlock(ContBlock, /*IsFinished=*/true); 3426 } 3427 } 3428 return HasLastprivateClause; 3429 } 3430 3431 /// The following two functions generate expressions for the loop lower 3432 /// and upper bounds in case of static and dynamic (dispatch) schedule 3433 /// of the associated 'for' or 'distribute' loop. 3434 static std::pair<LValue, LValue> 3435 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3436 const auto &LS = cast<OMPLoopDirective>(S); 3437 LValue LB = 3438 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3439 LValue UB = 3440 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3441 return {LB, UB}; 3442 } 3443 3444 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3445 /// consider the lower and upper bound expressions generated by the 3446 /// worksharing loop support, but we use 0 and the iteration space size as 3447 /// constants 3448 static std::pair<llvm::Value *, llvm::Value *> 3449 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3450 Address LB, Address UB) { 3451 const auto &LS = cast<OMPLoopDirective>(S); 3452 const Expr *IVExpr = LS.getIterationVariable(); 3453 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3454 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3455 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3456 return {LBVal, UBVal}; 3457 } 3458 3459 /// Emits internal temp array declarations for the directive with inscan 3460 /// reductions. 3461 /// The code is the following: 3462 /// \code 3463 /// size num_iters = <num_iters>; 3464 /// <type> buffer[num_iters]; 3465 /// \endcode 3466 static void emitScanBasedDirectiveDecls( 3467 CodeGenFunction &CGF, const OMPLoopDirective &S, 3468 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3469 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3470 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3471 SmallVector<const Expr *, 4> Shareds; 3472 SmallVector<const Expr *, 4> Privates; 3473 SmallVector<const Expr *, 4> ReductionOps; 3474 SmallVector<const Expr *, 4> CopyArrayTemps; 3475 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3476 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3477 "Only inscan reductions are expected."); 3478 Shareds.append(C->varlist_begin(), C->varlist_end()); 3479 Privates.append(C->privates().begin(), C->privates().end()); 3480 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3481 CopyArrayTemps.append(C->copy_array_temps().begin(), 3482 C->copy_array_temps().end()); 3483 } 3484 { 3485 // Emit buffers for each reduction variables. 3486 // ReductionCodeGen is required to emit correctly the code for array 3487 // reductions. 3488 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3489 unsigned Count = 0; 3490 auto *ITA = CopyArrayTemps.begin(); 3491 for (const Expr *IRef : Privates) { 3492 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3493 // Emit variably modified arrays, used for arrays/array sections 3494 // reductions. 3495 if (PrivateVD->getType()->isVariablyModifiedType()) { 3496 RedCG.emitSharedOrigLValue(CGF, Count); 3497 RedCG.emitAggregateType(CGF, Count); 3498 } 3499 CodeGenFunction::OpaqueValueMapping DimMapping( 3500 CGF, 3501 cast<OpaqueValueExpr>( 3502 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3503 ->getSizeExpr()), 3504 RValue::get(OMPScanNumIterations)); 3505 // Emit temp buffer. 3506 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3507 ++ITA; 3508 ++Count; 3509 } 3510 } 3511 } 3512 3513 /// Emits the code for the directive with inscan reductions. 3514 /// The code is the following: 3515 /// \code 3516 /// #pragma omp ... 3517 /// for (i: 0..<num_iters>) { 3518 /// <input phase>; 3519 /// buffer[i] = red; 3520 /// } 3521 /// #pragma omp master // in parallel region 3522 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3523 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3524 /// buffer[i] op= buffer[i-pow(2,k)]; 3525 /// #pragma omp barrier // in parallel region 3526 /// #pragma omp ... 3527 /// for (0..<num_iters>) { 3528 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3529 /// <scan phase>; 3530 /// } 3531 /// \endcode 3532 static void emitScanBasedDirective( 3533 CodeGenFunction &CGF, const OMPLoopDirective &S, 3534 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3535 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3536 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3537 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3538 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3539 SmallVector<const Expr *, 4> Privates; 3540 SmallVector<const Expr *, 4> ReductionOps; 3541 SmallVector<const Expr *, 4> LHSs; 3542 SmallVector<const Expr *, 4> RHSs; 3543 SmallVector<const Expr *, 4> CopyArrayElems; 3544 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3545 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3546 "Only inscan reductions are expected."); 3547 Privates.append(C->privates().begin(), C->privates().end()); 3548 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3549 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3550 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3551 CopyArrayElems.append(C->copy_array_elems().begin(), 3552 C->copy_array_elems().end()); 3553 } 3554 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3555 { 3556 // Emit loop with input phase: 3557 // #pragma omp ... 3558 // for (i: 0..<num_iters>) { 3559 // <input phase>; 3560 // buffer[i] = red; 3561 // } 3562 CGF.OMPFirstScanLoop = true; 3563 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3564 FirstGen(CGF); 3565 } 3566 // #pragma omp barrier // in parallel region 3567 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3568 &ReductionOps, 3569 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3570 Action.Enter(CGF); 3571 // Emit prefix reduction: 3572 // #pragma omp master // in parallel region 3573 // for (int k = 0; k <= ceil(log2(n)); ++k) 3574 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3575 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3576 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3577 llvm::Function *F = 3578 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3579 llvm::Value *Arg = 3580 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3581 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3582 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3583 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3584 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3585 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3586 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3587 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3588 CGF.EmitBlock(LoopBB); 3589 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3590 // size pow2k = 1; 3591 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3592 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3593 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3594 // for (size i = n - 1; i >= 2 ^ k; --i) 3595 // tmp[i] op= tmp[i-pow2k]; 3596 llvm::BasicBlock *InnerLoopBB = 3597 CGF.createBasicBlock("omp.inner.log.scan.body"); 3598 llvm::BasicBlock *InnerExitBB = 3599 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3600 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3601 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3602 CGF.EmitBlock(InnerLoopBB); 3603 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3604 IVal->addIncoming(NMin1, LoopBB); 3605 { 3606 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3607 auto *ILHS = LHSs.begin(); 3608 auto *IRHS = RHSs.begin(); 3609 for (const Expr *CopyArrayElem : CopyArrayElems) { 3610 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3611 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3612 Address LHSAddr = Address::invalid(); 3613 { 3614 CodeGenFunction::OpaqueValueMapping IdxMapping( 3615 CGF, 3616 cast<OpaqueValueExpr>( 3617 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3618 RValue::get(IVal)); 3619 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3620 } 3621 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3622 Address RHSAddr = Address::invalid(); 3623 { 3624 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3625 CodeGenFunction::OpaqueValueMapping IdxMapping( 3626 CGF, 3627 cast<OpaqueValueExpr>( 3628 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3629 RValue::get(OffsetIVal)); 3630 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3631 } 3632 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3633 ++ILHS; 3634 ++IRHS; 3635 } 3636 PrivScope.Privatize(); 3637 CGF.CGM.getOpenMPRuntime().emitReduction( 3638 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3639 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3640 } 3641 llvm::Value *NextIVal = 3642 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3643 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3644 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3645 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3646 CGF.EmitBlock(InnerExitBB); 3647 llvm::Value *Next = 3648 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3649 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3650 // pow2k <<= 1; 3651 llvm::Value *NextPow2K = 3652 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3653 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3654 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3655 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3656 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3657 CGF.EmitBlock(ExitBB); 3658 }; 3659 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3660 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3661 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3662 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3663 /*ForceSimpleCall=*/true); 3664 } else { 3665 RegionCodeGenTy RCG(CodeGen); 3666 RCG(CGF); 3667 } 3668 3669 CGF.OMPFirstScanLoop = false; 3670 SecondGen(CGF); 3671 } 3672 3673 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3674 const OMPLoopDirective &S, 3675 bool HasCancel) { 3676 bool HasLastprivates; 3677 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3678 [](const OMPReductionClause *C) { 3679 return C->getModifier() == OMPC_REDUCTION_inscan; 3680 })) { 3681 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3682 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3683 OMPLoopScope LoopScope(CGF, S); 3684 return CGF.EmitScalarExpr(S.getNumIterations()); 3685 }; 3686 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3687 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3688 CGF, S.getDirectiveKind(), HasCancel); 3689 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3690 emitForLoopBounds, 3691 emitDispatchForLoopBounds); 3692 // Emit an implicit barrier at the end. 3693 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3694 OMPD_for); 3695 }; 3696 const auto &&SecondGen = [&S, HasCancel, 3697 &HasLastprivates](CodeGenFunction &CGF) { 3698 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3699 CGF, S.getDirectiveKind(), HasCancel); 3700 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3701 emitForLoopBounds, 3702 emitDispatchForLoopBounds); 3703 }; 3704 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3705 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3706 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3707 } else { 3708 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3709 HasCancel); 3710 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3711 emitForLoopBounds, 3712 emitDispatchForLoopBounds); 3713 } 3714 return HasLastprivates; 3715 } 3716 3717 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3718 if (S.hasCancel()) 3719 return false; 3720 for (OMPClause *C : S.clauses()) { 3721 if (isa<OMPNowaitClause>(C)) 3722 continue; 3723 3724 if (auto *SC = dyn_cast<OMPScheduleClause>(C)) { 3725 if (SC->getFirstScheduleModifier() != OMPC_SCHEDULE_MODIFIER_unknown) 3726 return false; 3727 if (SC->getSecondScheduleModifier() != OMPC_SCHEDULE_MODIFIER_unknown) 3728 return false; 3729 switch (SC->getScheduleKind()) { 3730 case OMPC_SCHEDULE_auto: 3731 case OMPC_SCHEDULE_dynamic: 3732 case OMPC_SCHEDULE_runtime: 3733 case OMPC_SCHEDULE_guided: 3734 case OMPC_SCHEDULE_static: 3735 continue; 3736 case OMPC_SCHEDULE_unknown: 3737 return false; 3738 } 3739 } 3740 3741 return false; 3742 } 3743 3744 return true; 3745 } 3746 3747 static llvm::omp::ScheduleKind 3748 convertClauseKindToSchedKind(OpenMPScheduleClauseKind ScheduleClauseKind) { 3749 switch (ScheduleClauseKind) { 3750 case OMPC_SCHEDULE_unknown: 3751 return llvm::omp::OMP_SCHEDULE_Default; 3752 case OMPC_SCHEDULE_auto: 3753 return llvm::omp::OMP_SCHEDULE_Auto; 3754 case OMPC_SCHEDULE_dynamic: 3755 return llvm::omp::OMP_SCHEDULE_Dynamic; 3756 case OMPC_SCHEDULE_guided: 3757 return llvm::omp::OMP_SCHEDULE_Guided; 3758 case OMPC_SCHEDULE_runtime: 3759 return llvm::omp::OMP_SCHEDULE_Runtime; 3760 case OMPC_SCHEDULE_static: 3761 return llvm::omp::OMP_SCHEDULE_Static; 3762 } 3763 llvm_unreachable("Unhandled schedule kind"); 3764 } 3765 3766 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3767 bool HasLastprivates = false; 3768 bool UseOMPIRBuilder = 3769 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3770 auto &&CodeGen = [this, &S, &HasLastprivates, 3771 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3772 // Use the OpenMPIRBuilder if enabled. 3773 if (UseOMPIRBuilder) { 3774 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3775 3776 llvm::omp::ScheduleKind SchedKind = llvm::omp::OMP_SCHEDULE_Default; 3777 llvm::Value *ChunkSize = nullptr; 3778 if (auto *SchedClause = S.getSingleClause<OMPScheduleClause>()) { 3779 SchedKind = 3780 convertClauseKindToSchedKind(SchedClause->getScheduleKind()); 3781 if (const Expr *ChunkSizeExpr = SchedClause->getChunkSize()) 3782 ChunkSize = EmitScalarExpr(ChunkSizeExpr); 3783 } 3784 3785 // Emit the associated statement and get its loop representation. 3786 const Stmt *Inner = S.getRawStmt(); 3787 llvm::CanonicalLoopInfo *CLI = 3788 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3789 3790 llvm::OpenMPIRBuilder &OMPBuilder = 3791 CGM.getOpenMPRuntime().getOMPBuilder(); 3792 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3793 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3794 OMPBuilder.applyWorkshareLoop(Builder.getCurrentDebugLocation(), CLI, 3795 AllocaIP, NeedsBarrier, SchedKind, 3796 ChunkSize); 3797 return; 3798 } 3799 3800 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3801 }; 3802 { 3803 auto LPCRegion = 3804 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3805 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3806 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3807 S.hasCancel()); 3808 } 3809 3810 if (!UseOMPIRBuilder) { 3811 // Emit an implicit barrier at the end. 3812 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3813 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3814 } 3815 // Check for outer lastprivate conditional update. 3816 checkForLastprivateConditionalUpdate(*this, S); 3817 } 3818 3819 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3820 bool HasLastprivates = false; 3821 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3822 PrePostActionTy &) { 3823 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3824 }; 3825 { 3826 auto LPCRegion = 3827 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3828 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3829 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3830 } 3831 3832 // Emit an implicit barrier at the end. 3833 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3834 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3835 // Check for outer lastprivate conditional update. 3836 checkForLastprivateConditionalUpdate(*this, S); 3837 } 3838 3839 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3840 const Twine &Name, 3841 llvm::Value *Init = nullptr) { 3842 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3843 if (Init) 3844 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3845 return LVal; 3846 } 3847 3848 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3849 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3850 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3851 bool HasLastprivates = false; 3852 auto &&CodeGen = [&S, CapturedStmt, CS, 3853 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3854 const ASTContext &C = CGF.getContext(); 3855 QualType KmpInt32Ty = 3856 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3857 // Emit helper vars inits. 3858 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3859 CGF.Builder.getInt32(0)); 3860 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3861 ? CGF.Builder.getInt32(CS->size() - 1) 3862 : CGF.Builder.getInt32(0); 3863 LValue UB = 3864 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3865 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3866 CGF.Builder.getInt32(1)); 3867 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3868 CGF.Builder.getInt32(0)); 3869 // Loop counter. 3870 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3871 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3872 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3873 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3874 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3875 // Generate condition for loop. 3876 BinaryOperator *Cond = BinaryOperator::Create( 3877 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 3878 S.getBeginLoc(), FPOptionsOverride()); 3879 // Increment for loop counter. 3880 UnaryOperator *Inc = UnaryOperator::Create( 3881 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 3882 S.getBeginLoc(), true, FPOptionsOverride()); 3883 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3884 // Iterate through all sections and emit a switch construct: 3885 // switch (IV) { 3886 // case 0: 3887 // <SectionStmt[0]>; 3888 // break; 3889 // ... 3890 // case <NumSection> - 1: 3891 // <SectionStmt[<NumSection> - 1]>; 3892 // break; 3893 // } 3894 // .omp.sections.exit: 3895 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3896 llvm::SwitchInst *SwitchStmt = 3897 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3898 ExitBB, CS == nullptr ? 1 : CS->size()); 3899 if (CS) { 3900 unsigned CaseNumber = 0; 3901 for (const Stmt *SubStmt : CS->children()) { 3902 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3903 CGF.EmitBlock(CaseBB); 3904 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3905 CGF.EmitStmt(SubStmt); 3906 CGF.EmitBranch(ExitBB); 3907 ++CaseNumber; 3908 } 3909 } else { 3910 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3911 CGF.EmitBlock(CaseBB); 3912 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3913 CGF.EmitStmt(CapturedStmt); 3914 CGF.EmitBranch(ExitBB); 3915 } 3916 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3917 }; 3918 3919 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3920 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3921 // Emit implicit barrier to synchronize threads and avoid data races on 3922 // initialization of firstprivate variables and post-update of lastprivate 3923 // variables. 3924 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3925 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3926 /*ForceSimpleCall=*/true); 3927 } 3928 CGF.EmitOMPPrivateClause(S, LoopScope); 3929 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3930 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3931 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3932 (void)LoopScope.Privatize(); 3933 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3934 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3935 3936 // Emit static non-chunked loop. 3937 OpenMPScheduleTy ScheduleKind; 3938 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3939 CGOpenMPRuntime::StaticRTInput StaticInit( 3940 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3941 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3942 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3943 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3944 // UB = min(UB, GlobalUB); 3945 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3946 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3947 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3948 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3949 // IV = LB; 3950 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3951 // while (idx <= UB) { BODY; ++idx; } 3952 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3953 [](CodeGenFunction &) {}); 3954 // Tell the runtime we are done. 3955 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3956 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3957 S.getDirectiveKind()); 3958 }; 3959 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3960 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3961 // Emit post-update of the reduction variables if IsLastIter != 0. 3962 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3963 return CGF.Builder.CreateIsNotNull( 3964 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3965 }); 3966 3967 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3968 if (HasLastprivates) 3969 CGF.EmitOMPLastprivateClauseFinal( 3970 S, /*NoFinals=*/false, 3971 CGF.Builder.CreateIsNotNull( 3972 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3973 }; 3974 3975 bool HasCancel = false; 3976 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3977 HasCancel = OSD->hasCancel(); 3978 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3979 HasCancel = OPSD->hasCancel(); 3980 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3981 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3982 HasCancel); 3983 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3984 // clause. Otherwise the barrier will be generated by the codegen for the 3985 // directive. 3986 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3987 // Emit implicit barrier to synchronize threads and avoid data races on 3988 // initialization of firstprivate variables. 3989 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3990 OMPD_unknown); 3991 } 3992 } 3993 3994 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3995 if (CGM.getLangOpts().OpenMPIRBuilder) { 3996 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3997 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3998 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 3999 4000 auto FiniCB = [this](InsertPointTy IP) { 4001 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4002 }; 4003 4004 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 4005 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 4006 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 4007 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 4008 if (CS) { 4009 for (const Stmt *SubStmt : CS->children()) { 4010 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 4011 InsertPointTy CodeGenIP, 4012 llvm::BasicBlock &FiniBB) { 4013 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 4014 FiniBB); 4015 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP, 4016 FiniBB); 4017 }; 4018 SectionCBVector.push_back(SectionCB); 4019 } 4020 } else { 4021 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 4022 InsertPointTy CodeGenIP, 4023 llvm::BasicBlock &FiniBB) { 4024 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4025 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP, 4026 FiniBB); 4027 }; 4028 SectionCBVector.push_back(SectionCB); 4029 } 4030 4031 // Privatization callback that performs appropriate action for 4032 // shared/private/firstprivate/lastprivate/copyin/... variables. 4033 // 4034 // TODO: This defaults to shared right now. 4035 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 4036 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 4037 // The next line is appropriate only for variables (Val) with the 4038 // data-sharing attribute "shared". 4039 ReplVal = &Val; 4040 4041 return CodeGenIP; 4042 }; 4043 4044 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 4045 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 4046 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 4047 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 4048 Builder.restoreIP(OMPBuilder.createSections( 4049 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 4050 S.getSingleClause<OMPNowaitClause>())); 4051 return; 4052 } 4053 { 4054 auto LPCRegion = 4055 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4056 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4057 EmitSections(S); 4058 } 4059 // Emit an implicit barrier at the end. 4060 if (!S.getSingleClause<OMPNowaitClause>()) { 4061 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 4062 OMPD_sections); 4063 } 4064 // Check for outer lastprivate conditional update. 4065 checkForLastprivateConditionalUpdate(*this, S); 4066 } 4067 4068 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 4069 if (CGM.getLangOpts().OpenMPIRBuilder) { 4070 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4071 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4072 4073 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 4074 auto FiniCB = [this](InsertPointTy IP) { 4075 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4076 }; 4077 4078 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 4079 InsertPointTy CodeGenIP, 4080 llvm::BasicBlock &FiniBB) { 4081 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4082 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt, 4083 CodeGenIP, FiniBB); 4084 }; 4085 4086 LexicalScope Scope(*this, S.getSourceRange()); 4087 EmitStopPoint(&S); 4088 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 4089 4090 return; 4091 } 4092 LexicalScope Scope(*this, S.getSourceRange()); 4093 EmitStopPoint(&S); 4094 EmitStmt(S.getAssociatedStmt()); 4095 } 4096 4097 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 4098 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 4099 llvm::SmallVector<const Expr *, 8> DestExprs; 4100 llvm::SmallVector<const Expr *, 8> SrcExprs; 4101 llvm::SmallVector<const Expr *, 8> AssignmentOps; 4102 // Check if there are any 'copyprivate' clauses associated with this 4103 // 'single' construct. 4104 // Build a list of copyprivate variables along with helper expressions 4105 // (<source>, <destination>, <destination>=<source> expressions) 4106 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 4107 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 4108 DestExprs.append(C->destination_exprs().begin(), 4109 C->destination_exprs().end()); 4110 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 4111 AssignmentOps.append(C->assignment_ops().begin(), 4112 C->assignment_ops().end()); 4113 } 4114 // Emit code for 'single' region along with 'copyprivate' clauses 4115 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4116 Action.Enter(CGF); 4117 OMPPrivateScope SingleScope(CGF); 4118 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 4119 CGF.EmitOMPPrivateClause(S, SingleScope); 4120 (void)SingleScope.Privatize(); 4121 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4122 }; 4123 { 4124 auto LPCRegion = 4125 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4126 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4127 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 4128 CopyprivateVars, DestExprs, 4129 SrcExprs, AssignmentOps); 4130 } 4131 // Emit an implicit barrier at the end (to avoid data race on firstprivate 4132 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 4133 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 4134 CGM.getOpenMPRuntime().emitBarrierCall( 4135 *this, S.getBeginLoc(), 4136 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 4137 } 4138 // Check for outer lastprivate conditional update. 4139 checkForLastprivateConditionalUpdate(*this, S); 4140 } 4141 4142 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4143 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4144 Action.Enter(CGF); 4145 CGF.EmitStmt(S.getRawStmt()); 4146 }; 4147 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 4148 } 4149 4150 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 4151 if (CGM.getLangOpts().OpenMPIRBuilder) { 4152 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4153 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4154 4155 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 4156 4157 auto FiniCB = [this](InsertPointTy IP) { 4158 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4159 }; 4160 4161 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 4162 InsertPointTy CodeGenIP, 4163 llvm::BasicBlock &FiniBB) { 4164 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4165 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 4166 CodeGenIP, FiniBB); 4167 }; 4168 4169 LexicalScope Scope(*this, S.getSourceRange()); 4170 EmitStopPoint(&S); 4171 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4172 4173 return; 4174 } 4175 LexicalScope Scope(*this, S.getSourceRange()); 4176 EmitStopPoint(&S); 4177 emitMaster(*this, S); 4178 } 4179 4180 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4181 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4182 Action.Enter(CGF); 4183 CGF.EmitStmt(S.getRawStmt()); 4184 }; 4185 Expr *Filter = nullptr; 4186 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4187 Filter = FilterClause->getThreadID(); 4188 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4189 Filter); 4190 } 4191 4192 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4193 if (CGM.getLangOpts().OpenMPIRBuilder) { 4194 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4195 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4196 4197 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4198 const Expr *Filter = nullptr; 4199 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4200 Filter = FilterClause->getThreadID(); 4201 llvm::Value *FilterVal = Filter 4202 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4203 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4204 4205 auto FiniCB = [this](InsertPointTy IP) { 4206 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4207 }; 4208 4209 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4210 InsertPointTy CodeGenIP, 4211 llvm::BasicBlock &FiniBB) { 4212 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4213 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt, 4214 CodeGenIP, FiniBB); 4215 }; 4216 4217 LexicalScope Scope(*this, S.getSourceRange()); 4218 EmitStopPoint(&S); 4219 Builder.restoreIP( 4220 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4221 4222 return; 4223 } 4224 LexicalScope Scope(*this, S.getSourceRange()); 4225 EmitStopPoint(&S); 4226 emitMasked(*this, S); 4227 } 4228 4229 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4230 if (CGM.getLangOpts().OpenMPIRBuilder) { 4231 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4232 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4233 4234 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4235 const Expr *Hint = nullptr; 4236 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4237 Hint = HintClause->getHint(); 4238 4239 // TODO: This is slightly different from what's currently being done in 4240 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4241 // about typing is final. 4242 llvm::Value *HintInst = nullptr; 4243 if (Hint) 4244 HintInst = 4245 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4246 4247 auto FiniCB = [this](InsertPointTy IP) { 4248 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4249 }; 4250 4251 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4252 InsertPointTy CodeGenIP, 4253 llvm::BasicBlock &FiniBB) { 4254 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4255 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 4256 CodeGenIP, FiniBB); 4257 }; 4258 4259 LexicalScope Scope(*this, S.getSourceRange()); 4260 EmitStopPoint(&S); 4261 Builder.restoreIP(OMPBuilder.createCritical( 4262 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4263 HintInst)); 4264 4265 return; 4266 } 4267 4268 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4269 Action.Enter(CGF); 4270 CGF.EmitStmt(S.getAssociatedStmt()); 4271 }; 4272 const Expr *Hint = nullptr; 4273 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4274 Hint = HintClause->getHint(); 4275 LexicalScope Scope(*this, S.getSourceRange()); 4276 EmitStopPoint(&S); 4277 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4278 S.getDirectiveName().getAsString(), 4279 CodeGen, S.getBeginLoc(), Hint); 4280 } 4281 4282 void CodeGenFunction::EmitOMPParallelForDirective( 4283 const OMPParallelForDirective &S) { 4284 // Emit directive as a combined directive that consists of two implicit 4285 // directives: 'parallel' with 'for' directive. 4286 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4287 Action.Enter(CGF); 4288 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4289 }; 4290 { 4291 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4292 [](const OMPReductionClause *C) { 4293 return C->getModifier() == OMPC_REDUCTION_inscan; 4294 })) { 4295 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4296 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4297 CGCapturedStmtInfo CGSI(CR_OpenMP); 4298 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4299 OMPLoopScope LoopScope(CGF, S); 4300 return CGF.EmitScalarExpr(S.getNumIterations()); 4301 }; 4302 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4303 } 4304 auto LPCRegion = 4305 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4306 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4307 emitEmptyBoundParameters); 4308 } 4309 // Check for outer lastprivate conditional update. 4310 checkForLastprivateConditionalUpdate(*this, S); 4311 } 4312 4313 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4314 const OMPParallelForSimdDirective &S) { 4315 // Emit directive as a combined directive that consists of two implicit 4316 // directives: 'parallel' with 'for' directive. 4317 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4318 Action.Enter(CGF); 4319 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4320 }; 4321 { 4322 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4323 [](const OMPReductionClause *C) { 4324 return C->getModifier() == OMPC_REDUCTION_inscan; 4325 })) { 4326 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4327 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4328 CGCapturedStmtInfo CGSI(CR_OpenMP); 4329 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4330 OMPLoopScope LoopScope(CGF, S); 4331 return CGF.EmitScalarExpr(S.getNumIterations()); 4332 }; 4333 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4334 } 4335 auto LPCRegion = 4336 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4337 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4338 emitEmptyBoundParameters); 4339 } 4340 // Check for outer lastprivate conditional update. 4341 checkForLastprivateConditionalUpdate(*this, S); 4342 } 4343 4344 void CodeGenFunction::EmitOMPParallelMasterDirective( 4345 const OMPParallelMasterDirective &S) { 4346 // Emit directive as a combined directive that consists of two implicit 4347 // directives: 'parallel' with 'master' directive. 4348 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4349 Action.Enter(CGF); 4350 OMPPrivateScope PrivateScope(CGF); 4351 bool Copyins = CGF.EmitOMPCopyinClause(S); 4352 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4353 if (Copyins) { 4354 // Emit implicit barrier to synchronize threads and avoid data races on 4355 // propagation master's thread values of threadprivate variables to local 4356 // instances of that variables of all other implicit threads. 4357 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4358 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4359 /*ForceSimpleCall=*/true); 4360 } 4361 CGF.EmitOMPPrivateClause(S, PrivateScope); 4362 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4363 (void)PrivateScope.Privatize(); 4364 emitMaster(CGF, S); 4365 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4366 }; 4367 { 4368 auto LPCRegion = 4369 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4370 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4371 emitEmptyBoundParameters); 4372 emitPostUpdateForReductionClause(*this, S, 4373 [](CodeGenFunction &) { return nullptr; }); 4374 } 4375 // Check for outer lastprivate conditional update. 4376 checkForLastprivateConditionalUpdate(*this, S); 4377 } 4378 4379 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4380 const OMPParallelSectionsDirective &S) { 4381 // Emit directive as a combined directive that consists of two implicit 4382 // directives: 'parallel' with 'sections' directive. 4383 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4384 Action.Enter(CGF); 4385 CGF.EmitSections(S); 4386 }; 4387 { 4388 auto LPCRegion = 4389 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4390 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4391 emitEmptyBoundParameters); 4392 } 4393 // Check for outer lastprivate conditional update. 4394 checkForLastprivateConditionalUpdate(*this, S); 4395 } 4396 4397 namespace { 4398 /// Get the list of variables declared in the context of the untied tasks. 4399 class CheckVarsEscapingUntiedTaskDeclContext final 4400 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4401 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4402 4403 public: 4404 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4405 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4406 void VisitDeclStmt(const DeclStmt *S) { 4407 if (!S) 4408 return; 4409 // Need to privatize only local vars, static locals can be processed as is. 4410 for (const Decl *D : S->decls()) { 4411 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4412 if (VD->hasLocalStorage()) 4413 PrivateDecls.push_back(VD); 4414 } 4415 } 4416 void VisitOMPExecutableDirective(const OMPExecutableDirective *) {} 4417 void VisitCapturedStmt(const CapturedStmt *) {} 4418 void VisitLambdaExpr(const LambdaExpr *) {} 4419 void VisitBlockExpr(const BlockExpr *) {} 4420 void VisitStmt(const Stmt *S) { 4421 if (!S) 4422 return; 4423 for (const Stmt *Child : S->children()) 4424 if (Child) 4425 Visit(Child); 4426 } 4427 4428 /// Swaps list of vars with the provided one. 4429 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4430 }; 4431 } // anonymous namespace 4432 4433 void CodeGenFunction::EmitOMPTaskBasedDirective( 4434 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4435 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4436 OMPTaskDataTy &Data) { 4437 // Emit outlined function for task construct. 4438 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4439 auto I = CS->getCapturedDecl()->param_begin(); 4440 auto PartId = std::next(I); 4441 auto TaskT = std::next(I, 4); 4442 // Check if the task is final 4443 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4444 // If the condition constant folds and can be elided, try to avoid emitting 4445 // the condition and the dead arm of the if/else. 4446 const Expr *Cond = Clause->getCondition(); 4447 bool CondConstant; 4448 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4449 Data.Final.setInt(CondConstant); 4450 else 4451 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4452 } else { 4453 // By default the task is not final. 4454 Data.Final.setInt(/*IntVal=*/false); 4455 } 4456 // Check if the task has 'priority' clause. 4457 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4458 const Expr *Prio = Clause->getPriority(); 4459 Data.Priority.setInt(/*IntVal=*/true); 4460 Data.Priority.setPointer(EmitScalarConversion( 4461 EmitScalarExpr(Prio), Prio->getType(), 4462 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4463 Prio->getExprLoc())); 4464 } 4465 // The first function argument for tasks is a thread id, the second one is a 4466 // part id (0 for tied tasks, >=0 for untied task). 4467 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4468 // Get list of private variables. 4469 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4470 auto IRef = C->varlist_begin(); 4471 for (const Expr *IInit : C->private_copies()) { 4472 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4473 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4474 Data.PrivateVars.push_back(*IRef); 4475 Data.PrivateCopies.push_back(IInit); 4476 } 4477 ++IRef; 4478 } 4479 } 4480 EmittedAsPrivate.clear(); 4481 // Get list of firstprivate variables. 4482 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4483 auto IRef = C->varlist_begin(); 4484 auto IElemInitRef = C->inits().begin(); 4485 for (const Expr *IInit : C->private_copies()) { 4486 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4487 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4488 Data.FirstprivateVars.push_back(*IRef); 4489 Data.FirstprivateCopies.push_back(IInit); 4490 Data.FirstprivateInits.push_back(*IElemInitRef); 4491 } 4492 ++IRef; 4493 ++IElemInitRef; 4494 } 4495 } 4496 // Get list of lastprivate variables (for taskloops). 4497 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4498 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4499 auto IRef = C->varlist_begin(); 4500 auto ID = C->destination_exprs().begin(); 4501 for (const Expr *IInit : C->private_copies()) { 4502 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4503 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4504 Data.LastprivateVars.push_back(*IRef); 4505 Data.LastprivateCopies.push_back(IInit); 4506 } 4507 LastprivateDstsOrigs.insert( 4508 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4509 cast<DeclRefExpr>(*IRef))); 4510 ++IRef; 4511 ++ID; 4512 } 4513 } 4514 SmallVector<const Expr *, 4> LHSs; 4515 SmallVector<const Expr *, 4> RHSs; 4516 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4517 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4518 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4519 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4520 Data.ReductionOps.append(C->reduction_ops().begin(), 4521 C->reduction_ops().end()); 4522 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4523 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4524 } 4525 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4526 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4527 // Build list of dependences. 4528 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4529 OMPTaskDataTy::DependData &DD = 4530 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4531 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4532 } 4533 // Get list of local vars for untied tasks. 4534 if (!Data.Tied) { 4535 CheckVarsEscapingUntiedTaskDeclContext Checker; 4536 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4537 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4538 Checker.getPrivateDecls().end()); 4539 } 4540 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4541 CapturedRegion](CodeGenFunction &CGF, 4542 PrePostActionTy &Action) { 4543 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4544 std::pair<Address, Address>> 4545 UntiedLocalVars; 4546 // Set proper addresses for generated private copies. 4547 OMPPrivateScope Scope(CGF); 4548 // Generate debug info for variables present in shared clause. 4549 if (auto *DI = CGF.getDebugInfo()) { 4550 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields = 4551 CGF.CapturedStmtInfo->getCaptureFields(); 4552 llvm::Value *ContextValue = CGF.CapturedStmtInfo->getContextValue(); 4553 if (CaptureFields.size() && ContextValue) { 4554 unsigned CharWidth = CGF.getContext().getCharWidth(); 4555 // The shared variables are packed together as members of structure. 4556 // So the address of each shared variable can be computed by adding 4557 // offset of it (within record) to the base address of record. For each 4558 // shared variable, debug intrinsic llvm.dbg.declare is generated with 4559 // appropriate expressions (DIExpression). 4560 // Ex: 4561 // %12 = load %struct.anon*, %struct.anon** %__context.addr.i 4562 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4563 // metadata !svar1, 4564 // metadata !DIExpression(DW_OP_deref)) 4565 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4566 // metadata !svar2, 4567 // metadata !DIExpression(DW_OP_plus_uconst, 8, DW_OP_deref)) 4568 for (auto It = CaptureFields.begin(); It != CaptureFields.end(); ++It) { 4569 const VarDecl *SharedVar = It->first; 4570 RecordDecl *CaptureRecord = It->second->getParent(); 4571 const ASTRecordLayout &Layout = 4572 CGF.getContext().getASTRecordLayout(CaptureRecord); 4573 unsigned Offset = 4574 Layout.getFieldOffset(It->second->getFieldIndex()) / CharWidth; 4575 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4576 (void)DI->EmitDeclareOfAutoVariable(SharedVar, ContextValue, 4577 CGF.Builder, false); 4578 llvm::Instruction &Last = CGF.Builder.GetInsertBlock()->back(); 4579 // Get the call dbg.declare instruction we just created and update 4580 // its DIExpression to add offset to base address. 4581 if (auto DDI = dyn_cast<llvm::DbgVariableIntrinsic>(&Last)) { 4582 SmallVector<uint64_t, 8> Ops; 4583 // Add offset to the base address if non zero. 4584 if (Offset) { 4585 Ops.push_back(llvm::dwarf::DW_OP_plus_uconst); 4586 Ops.push_back(Offset); 4587 } 4588 Ops.push_back(llvm::dwarf::DW_OP_deref); 4589 auto &Ctx = DDI->getContext(); 4590 llvm::DIExpression *DIExpr = llvm::DIExpression::get(Ctx, Ops); 4591 Last.setOperand(2, llvm::MetadataAsValue::get(Ctx, DIExpr)); 4592 } 4593 } 4594 } 4595 } 4596 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4597 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4598 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4599 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4600 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4601 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4602 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4603 CS->getCapturedDecl()->getParam(PrivatesParam))); 4604 // Map privates. 4605 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4606 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4607 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4608 CallArgs.push_back(PrivatesPtr); 4609 ParamTypes.push_back(PrivatesPtr->getType()); 4610 for (const Expr *E : Data.PrivateVars) { 4611 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4612 Address PrivatePtr = CGF.CreateMemTemp( 4613 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4614 PrivatePtrs.emplace_back(VD, PrivatePtr); 4615 CallArgs.push_back(PrivatePtr.getPointer()); 4616 ParamTypes.push_back(PrivatePtr.getType()); 4617 } 4618 for (const Expr *E : Data.FirstprivateVars) { 4619 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4620 Address PrivatePtr = 4621 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4622 ".firstpriv.ptr.addr"); 4623 PrivatePtrs.emplace_back(VD, PrivatePtr); 4624 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4625 CallArgs.push_back(PrivatePtr.getPointer()); 4626 ParamTypes.push_back(PrivatePtr.getType()); 4627 } 4628 for (const Expr *E : Data.LastprivateVars) { 4629 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4630 Address PrivatePtr = 4631 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4632 ".lastpriv.ptr.addr"); 4633 PrivatePtrs.emplace_back(VD, PrivatePtr); 4634 CallArgs.push_back(PrivatePtr.getPointer()); 4635 ParamTypes.push_back(PrivatePtr.getType()); 4636 } 4637 for (const VarDecl *VD : Data.PrivateLocals) { 4638 QualType Ty = VD->getType().getNonReferenceType(); 4639 if (VD->getType()->isLValueReferenceType()) 4640 Ty = CGF.getContext().getPointerType(Ty); 4641 if (isAllocatableDecl(VD)) 4642 Ty = CGF.getContext().getPointerType(Ty); 4643 Address PrivatePtr = CGF.CreateMemTemp( 4644 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4645 auto Result = UntiedLocalVars.insert( 4646 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4647 // If key exists update in place. 4648 if (Result.second == false) 4649 *Result.first = std::make_pair( 4650 VD, std::make_pair(PrivatePtr, Address::invalid())); 4651 CallArgs.push_back(PrivatePtr.getPointer()); 4652 ParamTypes.push_back(PrivatePtr.getType()); 4653 } 4654 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4655 ParamTypes, /*isVarArg=*/false); 4656 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4657 CopyFn, CopyFnTy->getPointerTo()); 4658 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4659 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4660 for (const auto &Pair : LastprivateDstsOrigs) { 4661 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4662 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4663 /*RefersToEnclosingVariableOrCapture=*/ 4664 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4665 Pair.second->getType(), VK_LValue, 4666 Pair.second->getExprLoc()); 4667 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4668 return CGF.EmitLValue(&DRE).getAddress(CGF); 4669 }); 4670 } 4671 for (const auto &Pair : PrivatePtrs) { 4672 Address Replacement = 4673 Address::deprecated(CGF.Builder.CreateLoad(Pair.second), 4674 CGF.getContext().getDeclAlign(Pair.first)); 4675 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4676 if (auto *DI = CGF.getDebugInfo()) 4677 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4678 (void)DI->EmitDeclareOfAutoVariable( 4679 Pair.first, Pair.second.getPointer(), CGF.Builder, 4680 /*UsePointerValue*/ true); 4681 } 4682 // Adjust mapping for internal locals by mapping actual memory instead of 4683 // a pointer to this memory. 4684 for (auto &Pair : UntiedLocalVars) { 4685 if (isAllocatableDecl(Pair.first)) { 4686 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4687 Address Replacement = Address::deprecated(Ptr, CGF.getPointerAlign()); 4688 Pair.second.first = Replacement; 4689 Ptr = CGF.Builder.CreateLoad(Replacement); 4690 Replacement = Address::deprecated( 4691 Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4692 Pair.second.second = Replacement; 4693 } else { 4694 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4695 Address Replacement = Address::deprecated( 4696 Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4697 Pair.second.first = Replacement; 4698 } 4699 } 4700 } 4701 if (Data.Reductions) { 4702 OMPPrivateScope FirstprivateScope(CGF); 4703 for (const auto &Pair : FirstprivatePtrs) { 4704 Address Replacement = 4705 Address::deprecated(CGF.Builder.CreateLoad(Pair.second), 4706 CGF.getContext().getDeclAlign(Pair.first)); 4707 FirstprivateScope.addPrivate(Pair.first, 4708 [Replacement]() { return Replacement; }); 4709 } 4710 (void)FirstprivateScope.Privatize(); 4711 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4712 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4713 Data.ReductionCopies, Data.ReductionOps); 4714 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4715 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4716 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4717 RedCG.emitSharedOrigLValue(CGF, Cnt); 4718 RedCG.emitAggregateType(CGF, Cnt); 4719 // FIXME: This must removed once the runtime library is fixed. 4720 // Emit required threadprivate variables for 4721 // initializer/combiner/finalizer. 4722 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4723 RedCG, Cnt); 4724 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4725 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4726 Replacement = Address::deprecated( 4727 CGF.EmitScalarConversion(Replacement.getPointer(), 4728 CGF.getContext().VoidPtrTy, 4729 CGF.getContext().getPointerType( 4730 Data.ReductionCopies[Cnt]->getType()), 4731 Data.ReductionCopies[Cnt]->getExprLoc()), 4732 Replacement.getAlignment()); 4733 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4734 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4735 [Replacement]() { return Replacement; }); 4736 } 4737 } 4738 // Privatize all private variables except for in_reduction items. 4739 (void)Scope.Privatize(); 4740 SmallVector<const Expr *, 4> InRedVars; 4741 SmallVector<const Expr *, 4> InRedPrivs; 4742 SmallVector<const Expr *, 4> InRedOps; 4743 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4744 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4745 auto IPriv = C->privates().begin(); 4746 auto IRed = C->reduction_ops().begin(); 4747 auto ITD = C->taskgroup_descriptors().begin(); 4748 for (const Expr *Ref : C->varlists()) { 4749 InRedVars.emplace_back(Ref); 4750 InRedPrivs.emplace_back(*IPriv); 4751 InRedOps.emplace_back(*IRed); 4752 TaskgroupDescriptors.emplace_back(*ITD); 4753 std::advance(IPriv, 1); 4754 std::advance(IRed, 1); 4755 std::advance(ITD, 1); 4756 } 4757 } 4758 // Privatize in_reduction items here, because taskgroup descriptors must be 4759 // privatized earlier. 4760 OMPPrivateScope InRedScope(CGF); 4761 if (!InRedVars.empty()) { 4762 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4763 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4764 RedCG.emitSharedOrigLValue(CGF, Cnt); 4765 RedCG.emitAggregateType(CGF, Cnt); 4766 // The taskgroup descriptor variable is always implicit firstprivate and 4767 // privatized already during processing of the firstprivates. 4768 // FIXME: This must removed once the runtime library is fixed. 4769 // Emit required threadprivate variables for 4770 // initializer/combiner/finalizer. 4771 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4772 RedCG, Cnt); 4773 llvm::Value *ReductionsPtr; 4774 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4775 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4776 TRExpr->getExprLoc()); 4777 } else { 4778 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4779 } 4780 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4781 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4782 Replacement = Address::deprecated( 4783 CGF.EmitScalarConversion( 4784 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4785 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4786 InRedPrivs[Cnt]->getExprLoc()), 4787 Replacement.getAlignment()); 4788 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4789 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4790 [Replacement]() { return Replacement; }); 4791 } 4792 } 4793 (void)InRedScope.Privatize(); 4794 4795 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4796 UntiedLocalVars); 4797 Action.Enter(CGF); 4798 BodyGen(CGF); 4799 }; 4800 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4801 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4802 Data.NumberOfParts); 4803 OMPLexicalScope Scope(*this, S, llvm::None, 4804 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4805 !isOpenMPSimdDirective(S.getDirectiveKind())); 4806 TaskGen(*this, OutlinedFn, Data); 4807 } 4808 4809 static ImplicitParamDecl * 4810 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4811 QualType Ty, CapturedDecl *CD, 4812 SourceLocation Loc) { 4813 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4814 ImplicitParamDecl::Other); 4815 auto *OrigRef = DeclRefExpr::Create( 4816 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4817 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4818 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4819 ImplicitParamDecl::Other); 4820 auto *PrivateRef = DeclRefExpr::Create( 4821 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4822 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4823 QualType ElemType = C.getBaseElementType(Ty); 4824 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4825 ImplicitParamDecl::Other); 4826 auto *InitRef = DeclRefExpr::Create( 4827 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4828 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4829 PrivateVD->setInitStyle(VarDecl::CInit); 4830 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4831 InitRef, /*BasePath=*/nullptr, 4832 VK_PRValue, FPOptionsOverride())); 4833 Data.FirstprivateVars.emplace_back(OrigRef); 4834 Data.FirstprivateCopies.emplace_back(PrivateRef); 4835 Data.FirstprivateInits.emplace_back(InitRef); 4836 return OrigVD; 4837 } 4838 4839 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4840 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4841 OMPTargetDataInfo &InputInfo) { 4842 // Emit outlined function for task construct. 4843 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4844 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4845 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4846 auto I = CS->getCapturedDecl()->param_begin(); 4847 auto PartId = std::next(I); 4848 auto TaskT = std::next(I, 4); 4849 OMPTaskDataTy Data; 4850 // The task is not final. 4851 Data.Final.setInt(/*IntVal=*/false); 4852 // Get list of firstprivate variables. 4853 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4854 auto IRef = C->varlist_begin(); 4855 auto IElemInitRef = C->inits().begin(); 4856 for (auto *IInit : C->private_copies()) { 4857 Data.FirstprivateVars.push_back(*IRef); 4858 Data.FirstprivateCopies.push_back(IInit); 4859 Data.FirstprivateInits.push_back(*IElemInitRef); 4860 ++IRef; 4861 ++IElemInitRef; 4862 } 4863 } 4864 OMPPrivateScope TargetScope(*this); 4865 VarDecl *BPVD = nullptr; 4866 VarDecl *PVD = nullptr; 4867 VarDecl *SVD = nullptr; 4868 VarDecl *MVD = nullptr; 4869 if (InputInfo.NumberOfTargetItems > 0) { 4870 auto *CD = CapturedDecl::Create( 4871 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4872 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4873 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4874 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4875 /*IndexTypeQuals=*/0); 4876 BPVD = createImplicitFirstprivateForType( 4877 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4878 PVD = createImplicitFirstprivateForType( 4879 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4880 QualType SizesType = getContext().getConstantArrayType( 4881 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4882 ArrSize, nullptr, ArrayType::Normal, 4883 /*IndexTypeQuals=*/0); 4884 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4885 S.getBeginLoc()); 4886 TargetScope.addPrivate( 4887 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4888 TargetScope.addPrivate(PVD, 4889 [&InputInfo]() { return InputInfo.PointersArray; }); 4890 TargetScope.addPrivate(SVD, 4891 [&InputInfo]() { return InputInfo.SizesArray; }); 4892 // If there is no user-defined mapper, the mapper array will be nullptr. In 4893 // this case, we don't need to privatize it. 4894 if (!isa_and_nonnull<llvm::ConstantPointerNull>( 4895 InputInfo.MappersArray.getPointer())) { 4896 MVD = createImplicitFirstprivateForType( 4897 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4898 TargetScope.addPrivate(MVD, 4899 [&InputInfo]() { return InputInfo.MappersArray; }); 4900 } 4901 } 4902 (void)TargetScope.Privatize(); 4903 // Build list of dependences. 4904 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4905 OMPTaskDataTy::DependData &DD = 4906 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4907 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4908 } 4909 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4910 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4911 // Set proper addresses for generated private copies. 4912 OMPPrivateScope Scope(CGF); 4913 if (!Data.FirstprivateVars.empty()) { 4914 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4915 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4916 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4917 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4918 CS->getCapturedDecl()->getParam(PrivatesParam))); 4919 // Map privates. 4920 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4921 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4922 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4923 CallArgs.push_back(PrivatesPtr); 4924 ParamTypes.push_back(PrivatesPtr->getType()); 4925 for (const Expr *E : Data.FirstprivateVars) { 4926 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4927 Address PrivatePtr = 4928 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4929 ".firstpriv.ptr.addr"); 4930 PrivatePtrs.emplace_back(VD, PrivatePtr); 4931 CallArgs.push_back(PrivatePtr.getPointer()); 4932 ParamTypes.push_back(PrivatePtr.getType()); 4933 } 4934 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4935 ParamTypes, /*isVarArg=*/false); 4936 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4937 CopyFn, CopyFnTy->getPointerTo()); 4938 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4939 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4940 for (const auto &Pair : PrivatePtrs) { 4941 Address Replacement = 4942 Address::deprecated(CGF.Builder.CreateLoad(Pair.second), 4943 CGF.getContext().getDeclAlign(Pair.first)); 4944 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4945 } 4946 } 4947 // Privatize all private variables except for in_reduction items. 4948 (void)Scope.Privatize(); 4949 if (InputInfo.NumberOfTargetItems > 0) { 4950 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4951 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4952 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4953 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4954 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4955 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4956 // If MVD is nullptr, the mapper array is not privatized 4957 if (MVD) 4958 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4959 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4960 } 4961 4962 Action.Enter(CGF); 4963 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4964 BodyGen(CGF); 4965 }; 4966 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4967 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4968 Data.NumberOfParts); 4969 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4970 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4971 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4972 SourceLocation()); 4973 4974 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4975 SharedsTy, CapturedStruct, &IfCond, Data); 4976 } 4977 4978 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4979 // Emit outlined function for task construct. 4980 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4981 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4982 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4983 const Expr *IfCond = nullptr; 4984 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4985 if (C->getNameModifier() == OMPD_unknown || 4986 C->getNameModifier() == OMPD_task) { 4987 IfCond = C->getCondition(); 4988 break; 4989 } 4990 } 4991 4992 OMPTaskDataTy Data; 4993 // Check if we should emit tied or untied task. 4994 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4995 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4996 CGF.EmitStmt(CS->getCapturedStmt()); 4997 }; 4998 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4999 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5000 const OMPTaskDataTy &Data) { 5001 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 5002 SharedsTy, CapturedStruct, IfCond, 5003 Data); 5004 }; 5005 auto LPCRegion = 5006 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5007 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 5008 } 5009 5010 void CodeGenFunction::EmitOMPTaskyieldDirective( 5011 const OMPTaskyieldDirective &S) { 5012 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 5013 } 5014 5015 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 5016 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 5017 } 5018 5019 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 5020 OMPTaskDataTy Data; 5021 // Build list of dependences 5022 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 5023 OMPTaskDataTy::DependData &DD = 5024 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 5025 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 5026 } 5027 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc(), Data); 5028 } 5029 5030 void CodeGenFunction::EmitOMPTaskgroupDirective( 5031 const OMPTaskgroupDirective &S) { 5032 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5033 Action.Enter(CGF); 5034 if (const Expr *E = S.getReductionRef()) { 5035 SmallVector<const Expr *, 4> LHSs; 5036 SmallVector<const Expr *, 4> RHSs; 5037 OMPTaskDataTy Data; 5038 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 5039 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 5040 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 5041 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 5042 Data.ReductionOps.append(C->reduction_ops().begin(), 5043 C->reduction_ops().end()); 5044 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5045 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5046 } 5047 llvm::Value *ReductionDesc = 5048 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 5049 LHSs, RHSs, Data); 5050 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5051 CGF.EmitVarDecl(*VD); 5052 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 5053 /*Volatile=*/false, E->getType()); 5054 } 5055 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5056 }; 5057 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5058 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 5059 } 5060 5061 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 5062 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 5063 ? llvm::AtomicOrdering::NotAtomic 5064 : llvm::AtomicOrdering::AcquireRelease; 5065 CGM.getOpenMPRuntime().emitFlush( 5066 *this, 5067 [&S]() -> ArrayRef<const Expr *> { 5068 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 5069 return llvm::makeArrayRef(FlushClause->varlist_begin(), 5070 FlushClause->varlist_end()); 5071 return llvm::None; 5072 }(), 5073 S.getBeginLoc(), AO); 5074 } 5075 5076 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 5077 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 5078 LValue DOLVal = EmitLValue(DO->getDepobj()); 5079 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 5080 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 5081 DC->getModifier()); 5082 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 5083 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 5084 *this, Dependencies, DC->getBeginLoc()); 5085 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 5086 return; 5087 } 5088 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 5089 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 5090 return; 5091 } 5092 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 5093 CGM.getOpenMPRuntime().emitUpdateClause( 5094 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 5095 return; 5096 } 5097 } 5098 5099 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 5100 if (!OMPParentLoopDirectiveForScan) 5101 return; 5102 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 5103 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 5104 SmallVector<const Expr *, 4> Shareds; 5105 SmallVector<const Expr *, 4> Privates; 5106 SmallVector<const Expr *, 4> LHSs; 5107 SmallVector<const Expr *, 4> RHSs; 5108 SmallVector<const Expr *, 4> ReductionOps; 5109 SmallVector<const Expr *, 4> CopyOps; 5110 SmallVector<const Expr *, 4> CopyArrayTemps; 5111 SmallVector<const Expr *, 4> CopyArrayElems; 5112 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 5113 if (C->getModifier() != OMPC_REDUCTION_inscan) 5114 continue; 5115 Shareds.append(C->varlist_begin(), C->varlist_end()); 5116 Privates.append(C->privates().begin(), C->privates().end()); 5117 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5118 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5119 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 5120 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 5121 CopyArrayTemps.append(C->copy_array_temps().begin(), 5122 C->copy_array_temps().end()); 5123 CopyArrayElems.append(C->copy_array_elems().begin(), 5124 C->copy_array_elems().end()); 5125 } 5126 if (ParentDir.getDirectiveKind() == OMPD_simd || 5127 (getLangOpts().OpenMPSimd && 5128 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 5129 // For simd directive and simd-based directives in simd only mode, use the 5130 // following codegen: 5131 // int x = 0; 5132 // #pragma omp simd reduction(inscan, +: x) 5133 // for (..) { 5134 // <first part> 5135 // #pragma omp scan inclusive(x) 5136 // <second part> 5137 // } 5138 // is transformed to: 5139 // int x = 0; 5140 // for (..) { 5141 // int x_priv = 0; 5142 // <first part> 5143 // x = x_priv + x; 5144 // x_priv = x; 5145 // <second part> 5146 // } 5147 // and 5148 // int x = 0; 5149 // #pragma omp simd reduction(inscan, +: x) 5150 // for (..) { 5151 // <first part> 5152 // #pragma omp scan exclusive(x) 5153 // <second part> 5154 // } 5155 // to 5156 // int x = 0; 5157 // for (..) { 5158 // int x_priv = 0; 5159 // <second part> 5160 // int temp = x; 5161 // x = x_priv + x; 5162 // x_priv = temp; 5163 // <first part> 5164 // } 5165 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 5166 EmitBranch(IsInclusive 5167 ? OMPScanReduce 5168 : BreakContinueStack.back().ContinueBlock.getBlock()); 5169 EmitBlock(OMPScanDispatch); 5170 { 5171 // New scope for correct construction/destruction of temp variables for 5172 // exclusive scan. 5173 LexicalScope Scope(*this, S.getSourceRange()); 5174 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 5175 EmitBlock(OMPScanReduce); 5176 if (!IsInclusive) { 5177 // Create temp var and copy LHS value to this temp value. 5178 // TMP = LHS; 5179 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5180 const Expr *PrivateExpr = Privates[I]; 5181 const Expr *TempExpr = CopyArrayTemps[I]; 5182 EmitAutoVarDecl( 5183 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 5184 LValue DestLVal = EmitLValue(TempExpr); 5185 LValue SrcLVal = EmitLValue(LHSs[I]); 5186 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5187 SrcLVal.getAddress(*this), 5188 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5189 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5190 CopyOps[I]); 5191 } 5192 } 5193 CGM.getOpenMPRuntime().emitReduction( 5194 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 5195 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 5196 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5197 const Expr *PrivateExpr = Privates[I]; 5198 LValue DestLVal; 5199 LValue SrcLVal; 5200 if (IsInclusive) { 5201 DestLVal = EmitLValue(RHSs[I]); 5202 SrcLVal = EmitLValue(LHSs[I]); 5203 } else { 5204 const Expr *TempExpr = CopyArrayTemps[I]; 5205 DestLVal = EmitLValue(RHSs[I]); 5206 SrcLVal = EmitLValue(TempExpr); 5207 } 5208 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5209 SrcLVal.getAddress(*this), 5210 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5211 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5212 CopyOps[I]); 5213 } 5214 } 5215 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 5216 OMPScanExitBlock = IsInclusive 5217 ? BreakContinueStack.back().ContinueBlock.getBlock() 5218 : OMPScanReduce; 5219 EmitBlock(OMPAfterScanBlock); 5220 return; 5221 } 5222 if (!IsInclusive) { 5223 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5224 EmitBlock(OMPScanExitBlock); 5225 } 5226 if (OMPFirstScanLoop) { 5227 // Emit buffer[i] = red; at the end of the input phase. 5228 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5229 .getIterationVariable() 5230 ->IgnoreParenImpCasts(); 5231 LValue IdxLVal = EmitLValue(IVExpr); 5232 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5233 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5234 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5235 const Expr *PrivateExpr = Privates[I]; 5236 const Expr *OrigExpr = Shareds[I]; 5237 const Expr *CopyArrayElem = CopyArrayElems[I]; 5238 OpaqueValueMapping IdxMapping( 5239 *this, 5240 cast<OpaqueValueExpr>( 5241 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5242 RValue::get(IdxVal)); 5243 LValue DestLVal = EmitLValue(CopyArrayElem); 5244 LValue SrcLVal = EmitLValue(OrigExpr); 5245 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5246 SrcLVal.getAddress(*this), 5247 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5248 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5249 CopyOps[I]); 5250 } 5251 } 5252 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5253 if (IsInclusive) { 5254 EmitBlock(OMPScanExitBlock); 5255 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5256 } 5257 EmitBlock(OMPScanDispatch); 5258 if (!OMPFirstScanLoop) { 5259 // Emit red = buffer[i]; at the entrance to the scan phase. 5260 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5261 .getIterationVariable() 5262 ->IgnoreParenImpCasts(); 5263 LValue IdxLVal = EmitLValue(IVExpr); 5264 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5265 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5266 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5267 if (!IsInclusive) { 5268 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5269 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5270 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5271 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5272 EmitBlock(ContBB); 5273 // Use idx - 1 iteration for exclusive scan. 5274 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5275 } 5276 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5277 const Expr *PrivateExpr = Privates[I]; 5278 const Expr *OrigExpr = Shareds[I]; 5279 const Expr *CopyArrayElem = CopyArrayElems[I]; 5280 OpaqueValueMapping IdxMapping( 5281 *this, 5282 cast<OpaqueValueExpr>( 5283 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5284 RValue::get(IdxVal)); 5285 LValue SrcLVal = EmitLValue(CopyArrayElem); 5286 LValue DestLVal = EmitLValue(OrigExpr); 5287 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5288 SrcLVal.getAddress(*this), 5289 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5290 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5291 CopyOps[I]); 5292 } 5293 if (!IsInclusive) { 5294 EmitBlock(ExclusiveExitBB); 5295 } 5296 } 5297 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5298 : OMPAfterScanBlock); 5299 EmitBlock(OMPAfterScanBlock); 5300 } 5301 5302 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5303 const CodeGenLoopTy &CodeGenLoop, 5304 Expr *IncExpr) { 5305 // Emit the loop iteration variable. 5306 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5307 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5308 EmitVarDecl(*IVDecl); 5309 5310 // Emit the iterations count variable. 5311 // If it is not a variable, Sema decided to calculate iterations count on each 5312 // iteration (e.g., it is foldable into a constant). 5313 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5314 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5315 // Emit calculation of the iterations count. 5316 EmitIgnoredExpr(S.getCalcLastIteration()); 5317 } 5318 5319 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5320 5321 bool HasLastprivateClause = false; 5322 // Check pre-condition. 5323 { 5324 OMPLoopScope PreInitScope(*this, S); 5325 // Skip the entire loop if we don't meet the precondition. 5326 // If the condition constant folds and can be elided, avoid emitting the 5327 // whole loop. 5328 bool CondConstant; 5329 llvm::BasicBlock *ContBlock = nullptr; 5330 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5331 if (!CondConstant) 5332 return; 5333 } else { 5334 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5335 ContBlock = createBasicBlock("omp.precond.end"); 5336 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5337 getProfileCount(&S)); 5338 EmitBlock(ThenBlock); 5339 incrementProfileCounter(&S); 5340 } 5341 5342 emitAlignedClause(*this, S); 5343 // Emit 'then' code. 5344 { 5345 // Emit helper vars inits. 5346 5347 LValue LB = EmitOMPHelperVar( 5348 *this, cast<DeclRefExpr>( 5349 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5350 ? S.getCombinedLowerBoundVariable() 5351 : S.getLowerBoundVariable()))); 5352 LValue UB = EmitOMPHelperVar( 5353 *this, cast<DeclRefExpr>( 5354 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5355 ? S.getCombinedUpperBoundVariable() 5356 : S.getUpperBoundVariable()))); 5357 LValue ST = 5358 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5359 LValue IL = 5360 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5361 5362 OMPPrivateScope LoopScope(*this); 5363 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5364 // Emit implicit barrier to synchronize threads and avoid data races 5365 // on initialization of firstprivate variables and post-update of 5366 // lastprivate variables. 5367 CGM.getOpenMPRuntime().emitBarrierCall( 5368 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5369 /*ForceSimpleCall=*/true); 5370 } 5371 EmitOMPPrivateClause(S, LoopScope); 5372 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5373 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5374 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5375 EmitOMPReductionClauseInit(S, LoopScope); 5376 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5377 EmitOMPPrivateLoopCounters(S, LoopScope); 5378 (void)LoopScope.Privatize(); 5379 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5380 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5381 5382 // Detect the distribute schedule kind and chunk. 5383 llvm::Value *Chunk = nullptr; 5384 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5385 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5386 ScheduleKind = C->getDistScheduleKind(); 5387 if (const Expr *Ch = C->getChunkSize()) { 5388 Chunk = EmitScalarExpr(Ch); 5389 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5390 S.getIterationVariable()->getType(), 5391 S.getBeginLoc()); 5392 } 5393 } else { 5394 // Default behaviour for dist_schedule clause. 5395 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5396 *this, S, ScheduleKind, Chunk); 5397 } 5398 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5399 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5400 5401 // OpenMP [2.10.8, distribute Construct, Description] 5402 // If dist_schedule is specified, kind must be static. If specified, 5403 // iterations are divided into chunks of size chunk_size, chunks are 5404 // assigned to the teams of the league in a round-robin fashion in the 5405 // order of the team number. When no chunk_size is specified, the 5406 // iteration space is divided into chunks that are approximately equal 5407 // in size, and at most one chunk is distributed to each team of the 5408 // league. The size of the chunks is unspecified in this case. 5409 bool StaticChunked = 5410 RT.isStaticChunked(ScheduleKind, /* Chunked */ Chunk != nullptr) && 5411 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5412 if (RT.isStaticNonchunked(ScheduleKind, 5413 /* Chunked */ Chunk != nullptr) || 5414 StaticChunked) { 5415 CGOpenMPRuntime::StaticRTInput StaticInit( 5416 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5417 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5418 StaticChunked ? Chunk : nullptr); 5419 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5420 StaticInit); 5421 JumpDest LoopExit = 5422 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5423 // UB = min(UB, GlobalUB); 5424 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5425 ? S.getCombinedEnsureUpperBound() 5426 : S.getEnsureUpperBound()); 5427 // IV = LB; 5428 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5429 ? S.getCombinedInit() 5430 : S.getInit()); 5431 5432 const Expr *Cond = 5433 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5434 ? S.getCombinedCond() 5435 : S.getCond(); 5436 5437 if (StaticChunked) 5438 Cond = S.getCombinedDistCond(); 5439 5440 // For static unchunked schedules generate: 5441 // 5442 // 1. For distribute alone, codegen 5443 // while (idx <= UB) { 5444 // BODY; 5445 // ++idx; 5446 // } 5447 // 5448 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5449 // while (idx <= UB) { 5450 // <CodeGen rest of pragma>(LB, UB); 5451 // idx += ST; 5452 // } 5453 // 5454 // For static chunk one schedule generate: 5455 // 5456 // while (IV <= GlobalUB) { 5457 // <CodeGen rest of pragma>(LB, UB); 5458 // LB += ST; 5459 // UB += ST; 5460 // UB = min(UB, GlobalUB); 5461 // IV = LB; 5462 // } 5463 // 5464 emitCommonSimdLoop( 5465 *this, S, 5466 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5467 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5468 CGF.EmitOMPSimdInit(S); 5469 }, 5470 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5471 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5472 CGF.EmitOMPInnerLoop( 5473 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5474 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5475 CodeGenLoop(CGF, S, LoopExit); 5476 }, 5477 [&S, StaticChunked](CodeGenFunction &CGF) { 5478 if (StaticChunked) { 5479 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5480 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5481 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5482 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5483 } 5484 }); 5485 }); 5486 EmitBlock(LoopExit.getBlock()); 5487 // Tell the runtime we are done. 5488 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5489 } else { 5490 // Emit the outer loop, which requests its work chunk [LB..UB] from 5491 // runtime and runs the inner loop to process it. 5492 const OMPLoopArguments LoopArguments = { 5493 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5494 IL.getAddress(*this), Chunk}; 5495 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5496 CodeGenLoop); 5497 } 5498 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5499 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5500 return CGF.Builder.CreateIsNotNull( 5501 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5502 }); 5503 } 5504 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5505 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5506 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5507 EmitOMPReductionClauseFinal(S, OMPD_simd); 5508 // Emit post-update of the reduction variables if IsLastIter != 0. 5509 emitPostUpdateForReductionClause( 5510 *this, S, [IL, &S](CodeGenFunction &CGF) { 5511 return CGF.Builder.CreateIsNotNull( 5512 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5513 }); 5514 } 5515 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5516 if (HasLastprivateClause) { 5517 EmitOMPLastprivateClauseFinal( 5518 S, /*NoFinals=*/false, 5519 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5520 } 5521 } 5522 5523 // We're now done with the loop, so jump to the continuation block. 5524 if (ContBlock) { 5525 EmitBranch(ContBlock); 5526 EmitBlock(ContBlock, true); 5527 } 5528 } 5529 } 5530 5531 void CodeGenFunction::EmitOMPDistributeDirective( 5532 const OMPDistributeDirective &S) { 5533 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5534 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5535 }; 5536 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5537 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5538 } 5539 5540 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5541 const CapturedStmt *S, 5542 SourceLocation Loc) { 5543 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5544 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5545 CGF.CapturedStmtInfo = &CapStmtInfo; 5546 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5547 Fn->setDoesNotRecurse(); 5548 return Fn; 5549 } 5550 5551 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5552 if (CGM.getLangOpts().OpenMPIRBuilder) { 5553 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5554 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5555 5556 if (S.hasClausesOfKind<OMPDependClause>()) { 5557 // The ordered directive with depend clause. 5558 assert(!S.hasAssociatedStmt() && 5559 "No associated statement must be in ordered depend construct."); 5560 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5561 AllocaInsertPt->getIterator()); 5562 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) { 5563 unsigned NumLoops = DC->getNumLoops(); 5564 QualType Int64Ty = CGM.getContext().getIntTypeForBitwidth( 5565 /*DestWidth=*/64, /*Signed=*/1); 5566 llvm::SmallVector<llvm::Value *> StoreValues; 5567 for (unsigned I = 0; I < NumLoops; I++) { 5568 const Expr *CounterVal = DC->getLoopData(I); 5569 assert(CounterVal); 5570 llvm::Value *StoreValue = EmitScalarConversion( 5571 EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, 5572 CounterVal->getExprLoc()); 5573 StoreValues.emplace_back(StoreValue); 5574 } 5575 bool IsDependSource = false; 5576 if (DC->getDependencyKind() == OMPC_DEPEND_source) 5577 IsDependSource = true; 5578 Builder.restoreIP(OMPBuilder.createOrderedDepend( 5579 Builder, AllocaIP, NumLoops, StoreValues, ".cnt.addr", 5580 IsDependSource)); 5581 } 5582 } else { 5583 // The ordered directive with threads or simd clause, or without clause. 5584 // Without clause, it behaves as if the threads clause is specified. 5585 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5586 5587 auto FiniCB = [this](InsertPointTy IP) { 5588 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 5589 }; 5590 5591 auto BodyGenCB = [&S, C, this](InsertPointTy AllocaIP, 5592 InsertPointTy CodeGenIP, 5593 llvm::BasicBlock &FiniBB) { 5594 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5595 if (C) { 5596 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5597 GenerateOpenMPCapturedVars(*CS, CapturedVars); 5598 llvm::Function *OutlinedFn = 5599 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5600 assert(S.getBeginLoc().isValid() && 5601 "Outlined function call location must be valid."); 5602 ApplyDebugLocation::CreateDefaultArtificial(*this, S.getBeginLoc()); 5603 OMPBuilderCBHelpers::EmitCaptureStmt(*this, CodeGenIP, FiniBB, 5604 OutlinedFn, CapturedVars); 5605 } else { 5606 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 5607 FiniBB); 5608 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CS->getCapturedStmt(), 5609 CodeGenIP, FiniBB); 5610 } 5611 }; 5612 5613 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5614 Builder.restoreIP( 5615 OMPBuilder.createOrderedThreadsSimd(Builder, BodyGenCB, FiniCB, !C)); 5616 } 5617 return; 5618 } 5619 5620 if (S.hasClausesOfKind<OMPDependClause>()) { 5621 assert(!S.hasAssociatedStmt() && 5622 "No associated statement must be in ordered depend construct."); 5623 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5624 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5625 return; 5626 } 5627 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5628 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5629 PrePostActionTy &Action) { 5630 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5631 if (C) { 5632 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5633 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5634 llvm::Function *OutlinedFn = 5635 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5636 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5637 OutlinedFn, CapturedVars); 5638 } else { 5639 Action.Enter(CGF); 5640 CGF.EmitStmt(CS->getCapturedStmt()); 5641 } 5642 }; 5643 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5644 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5645 } 5646 5647 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5648 QualType SrcType, QualType DestType, 5649 SourceLocation Loc) { 5650 assert(CGF.hasScalarEvaluationKind(DestType) && 5651 "DestType must have scalar evaluation kind."); 5652 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5653 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5654 DestType, Loc) 5655 : CGF.EmitComplexToScalarConversion( 5656 Val.getComplexVal(), SrcType, DestType, Loc); 5657 } 5658 5659 static CodeGenFunction::ComplexPairTy 5660 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5661 QualType DestType, SourceLocation Loc) { 5662 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5663 "DestType must have complex evaluation kind."); 5664 CodeGenFunction::ComplexPairTy ComplexVal; 5665 if (Val.isScalar()) { 5666 // Convert the input element to the element type of the complex. 5667 QualType DestElementType = 5668 DestType->castAs<ComplexType>()->getElementType(); 5669 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5670 Val.getScalarVal(), SrcType, DestElementType, Loc); 5671 ComplexVal = CodeGenFunction::ComplexPairTy( 5672 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5673 } else { 5674 assert(Val.isComplex() && "Must be a scalar or complex."); 5675 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5676 QualType DestElementType = 5677 DestType->castAs<ComplexType>()->getElementType(); 5678 ComplexVal.first = CGF.EmitScalarConversion( 5679 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5680 ComplexVal.second = CGF.EmitScalarConversion( 5681 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5682 } 5683 return ComplexVal; 5684 } 5685 5686 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5687 LValue LVal, RValue RVal) { 5688 if (LVal.isGlobalReg()) 5689 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5690 else 5691 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5692 } 5693 5694 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5695 llvm::AtomicOrdering AO, LValue LVal, 5696 SourceLocation Loc) { 5697 if (LVal.isGlobalReg()) 5698 return CGF.EmitLoadOfLValue(LVal, Loc); 5699 return CGF.EmitAtomicLoad( 5700 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5701 LVal.isVolatile()); 5702 } 5703 5704 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5705 QualType RValTy, SourceLocation Loc) { 5706 switch (getEvaluationKind(LVal.getType())) { 5707 case TEK_Scalar: 5708 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5709 *this, RVal, RValTy, LVal.getType(), Loc)), 5710 LVal); 5711 break; 5712 case TEK_Complex: 5713 EmitStoreOfComplex( 5714 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5715 /*isInit=*/false); 5716 break; 5717 case TEK_Aggregate: 5718 llvm_unreachable("Must be a scalar or complex."); 5719 } 5720 } 5721 5722 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5723 const Expr *X, const Expr *V, 5724 SourceLocation Loc) { 5725 // v = x; 5726 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5727 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5728 LValue XLValue = CGF.EmitLValue(X); 5729 LValue VLValue = CGF.EmitLValue(V); 5730 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5731 // OpenMP, 2.17.7, atomic Construct 5732 // If the read or capture clause is specified and the acquire, acq_rel, or 5733 // seq_cst clause is specified then the strong flush on exit from the atomic 5734 // operation is also an acquire flush. 5735 switch (AO) { 5736 case llvm::AtomicOrdering::Acquire: 5737 case llvm::AtomicOrdering::AcquireRelease: 5738 case llvm::AtomicOrdering::SequentiallyConsistent: 5739 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5740 llvm::AtomicOrdering::Acquire); 5741 break; 5742 case llvm::AtomicOrdering::Monotonic: 5743 case llvm::AtomicOrdering::Release: 5744 break; 5745 case llvm::AtomicOrdering::NotAtomic: 5746 case llvm::AtomicOrdering::Unordered: 5747 llvm_unreachable("Unexpected ordering."); 5748 } 5749 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5750 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5751 } 5752 5753 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5754 llvm::AtomicOrdering AO, const Expr *X, 5755 const Expr *E, SourceLocation Loc) { 5756 // x = expr; 5757 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5758 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5759 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5760 // OpenMP, 2.17.7, atomic Construct 5761 // If the write, update, or capture clause is specified and the release, 5762 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5763 // the atomic operation is also a release flush. 5764 switch (AO) { 5765 case llvm::AtomicOrdering::Release: 5766 case llvm::AtomicOrdering::AcquireRelease: 5767 case llvm::AtomicOrdering::SequentiallyConsistent: 5768 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5769 llvm::AtomicOrdering::Release); 5770 break; 5771 case llvm::AtomicOrdering::Acquire: 5772 case llvm::AtomicOrdering::Monotonic: 5773 break; 5774 case llvm::AtomicOrdering::NotAtomic: 5775 case llvm::AtomicOrdering::Unordered: 5776 llvm_unreachable("Unexpected ordering."); 5777 } 5778 } 5779 5780 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5781 RValue Update, 5782 BinaryOperatorKind BO, 5783 llvm::AtomicOrdering AO, 5784 bool IsXLHSInRHSPart) { 5785 ASTContext &Context = CGF.getContext(); 5786 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5787 // expression is simple and atomic is allowed for the given type for the 5788 // target platform. 5789 if (BO == BO_Comma || !Update.isScalar() || 5790 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5791 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5792 (Update.getScalarVal()->getType() != 5793 X.getAddress(CGF).getElementType())) || 5794 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5795 !Context.getTargetInfo().hasBuiltinAtomic( 5796 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5797 return std::make_pair(false, RValue::get(nullptr)); 5798 5799 llvm::AtomicRMWInst::BinOp RMWOp; 5800 switch (BO) { 5801 case BO_Add: 5802 RMWOp = llvm::AtomicRMWInst::Add; 5803 break; 5804 case BO_Sub: 5805 if (!IsXLHSInRHSPart) 5806 return std::make_pair(false, RValue::get(nullptr)); 5807 RMWOp = llvm::AtomicRMWInst::Sub; 5808 break; 5809 case BO_And: 5810 RMWOp = llvm::AtomicRMWInst::And; 5811 break; 5812 case BO_Or: 5813 RMWOp = llvm::AtomicRMWInst::Or; 5814 break; 5815 case BO_Xor: 5816 RMWOp = llvm::AtomicRMWInst::Xor; 5817 break; 5818 case BO_LT: 5819 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5820 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5821 : llvm::AtomicRMWInst::Max) 5822 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5823 : llvm::AtomicRMWInst::UMax); 5824 break; 5825 case BO_GT: 5826 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5827 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5828 : llvm::AtomicRMWInst::Min) 5829 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5830 : llvm::AtomicRMWInst::UMin); 5831 break; 5832 case BO_Assign: 5833 RMWOp = llvm::AtomicRMWInst::Xchg; 5834 break; 5835 case BO_Mul: 5836 case BO_Div: 5837 case BO_Rem: 5838 case BO_Shl: 5839 case BO_Shr: 5840 case BO_LAnd: 5841 case BO_LOr: 5842 return std::make_pair(false, RValue::get(nullptr)); 5843 case BO_PtrMemD: 5844 case BO_PtrMemI: 5845 case BO_LE: 5846 case BO_GE: 5847 case BO_EQ: 5848 case BO_NE: 5849 case BO_Cmp: 5850 case BO_AddAssign: 5851 case BO_SubAssign: 5852 case BO_AndAssign: 5853 case BO_OrAssign: 5854 case BO_XorAssign: 5855 case BO_MulAssign: 5856 case BO_DivAssign: 5857 case BO_RemAssign: 5858 case BO_ShlAssign: 5859 case BO_ShrAssign: 5860 case BO_Comma: 5861 llvm_unreachable("Unsupported atomic update operation"); 5862 } 5863 llvm::Value *UpdateVal = Update.getScalarVal(); 5864 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5865 UpdateVal = CGF.Builder.CreateIntCast( 5866 IC, X.getAddress(CGF).getElementType(), 5867 X.getType()->hasSignedIntegerRepresentation()); 5868 } 5869 llvm::Value *Res = 5870 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5871 return std::make_pair(true, RValue::get(Res)); 5872 } 5873 5874 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5875 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5876 llvm::AtomicOrdering AO, SourceLocation Loc, 5877 const llvm::function_ref<RValue(RValue)> CommonGen) { 5878 // Update expressions are allowed to have the following forms: 5879 // x binop= expr; -> xrval + expr; 5880 // x++, ++x -> xrval + 1; 5881 // x--, --x -> xrval - 1; 5882 // x = x binop expr; -> xrval binop expr 5883 // x = expr Op x; - > expr binop xrval; 5884 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5885 if (!Res.first) { 5886 if (X.isGlobalReg()) { 5887 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5888 // 'xrval'. 5889 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5890 } else { 5891 // Perform compare-and-swap procedure. 5892 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5893 } 5894 } 5895 return Res; 5896 } 5897 5898 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5899 llvm::AtomicOrdering AO, const Expr *X, 5900 const Expr *E, const Expr *UE, 5901 bool IsXLHSInRHSPart, SourceLocation Loc) { 5902 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5903 "Update expr in 'atomic update' must be a binary operator."); 5904 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5905 // Update expressions are allowed to have the following forms: 5906 // x binop= expr; -> xrval + expr; 5907 // x++, ++x -> xrval + 1; 5908 // x--, --x -> xrval - 1; 5909 // x = x binop expr; -> xrval binop expr 5910 // x = expr Op x; - > expr binop xrval; 5911 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5912 LValue XLValue = CGF.EmitLValue(X); 5913 RValue ExprRValue = CGF.EmitAnyExpr(E); 5914 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5915 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5916 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5917 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5918 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5919 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5920 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5921 return CGF.EmitAnyExpr(UE); 5922 }; 5923 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5924 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5925 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5926 // OpenMP, 2.17.7, atomic Construct 5927 // If the write, update, or capture clause is specified and the release, 5928 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5929 // the atomic operation is also a release flush. 5930 switch (AO) { 5931 case llvm::AtomicOrdering::Release: 5932 case llvm::AtomicOrdering::AcquireRelease: 5933 case llvm::AtomicOrdering::SequentiallyConsistent: 5934 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5935 llvm::AtomicOrdering::Release); 5936 break; 5937 case llvm::AtomicOrdering::Acquire: 5938 case llvm::AtomicOrdering::Monotonic: 5939 break; 5940 case llvm::AtomicOrdering::NotAtomic: 5941 case llvm::AtomicOrdering::Unordered: 5942 llvm_unreachable("Unexpected ordering."); 5943 } 5944 } 5945 5946 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5947 QualType SourceType, QualType ResType, 5948 SourceLocation Loc) { 5949 switch (CGF.getEvaluationKind(ResType)) { 5950 case TEK_Scalar: 5951 return RValue::get( 5952 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5953 case TEK_Complex: { 5954 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5955 return RValue::getComplex(Res.first, Res.second); 5956 } 5957 case TEK_Aggregate: 5958 break; 5959 } 5960 llvm_unreachable("Must be a scalar or complex."); 5961 } 5962 5963 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5964 llvm::AtomicOrdering AO, 5965 bool IsPostfixUpdate, const Expr *V, 5966 const Expr *X, const Expr *E, 5967 const Expr *UE, bool IsXLHSInRHSPart, 5968 SourceLocation Loc) { 5969 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5970 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5971 RValue NewVVal; 5972 LValue VLValue = CGF.EmitLValue(V); 5973 LValue XLValue = CGF.EmitLValue(X); 5974 RValue ExprRValue = CGF.EmitAnyExpr(E); 5975 QualType NewVValType; 5976 if (UE) { 5977 // 'x' is updated with some additional value. 5978 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5979 "Update expr in 'atomic capture' must be a binary operator."); 5980 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5981 // Update expressions are allowed to have the following forms: 5982 // x binop= expr; -> xrval + expr; 5983 // x++, ++x -> xrval + 1; 5984 // x--, --x -> xrval - 1; 5985 // x = x binop expr; -> xrval binop expr 5986 // x = expr Op x; - > expr binop xrval; 5987 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5988 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5989 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5990 NewVValType = XRValExpr->getType(); 5991 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5992 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5993 IsPostfixUpdate](RValue XRValue) { 5994 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5995 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5996 RValue Res = CGF.EmitAnyExpr(UE); 5997 NewVVal = IsPostfixUpdate ? XRValue : Res; 5998 return Res; 5999 }; 6000 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 6001 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 6002 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6003 if (Res.first) { 6004 // 'atomicrmw' instruction was generated. 6005 if (IsPostfixUpdate) { 6006 // Use old value from 'atomicrmw'. 6007 NewVVal = Res.second; 6008 } else { 6009 // 'atomicrmw' does not provide new value, so evaluate it using old 6010 // value of 'x'. 6011 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 6012 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 6013 NewVVal = CGF.EmitAnyExpr(UE); 6014 } 6015 } 6016 } else { 6017 // 'x' is simply rewritten with some 'expr'. 6018 NewVValType = X->getType().getNonReferenceType(); 6019 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 6020 X->getType().getNonReferenceType(), Loc); 6021 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 6022 NewVVal = XRValue; 6023 return ExprRValue; 6024 }; 6025 // Try to perform atomicrmw xchg, otherwise simple exchange. 6026 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 6027 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 6028 Loc, Gen); 6029 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6030 if (Res.first) { 6031 // 'atomicrmw' instruction was generated. 6032 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 6033 } 6034 } 6035 // Emit post-update store to 'v' of old/new 'x' value. 6036 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 6037 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 6038 // OpenMP 5.1 removes the required flush for capture clause. 6039 if (CGF.CGM.getLangOpts().OpenMP < 51) { 6040 // OpenMP, 2.17.7, atomic Construct 6041 // If the write, update, or capture clause is specified and the release, 6042 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 6043 // the atomic operation is also a release flush. 6044 // If the read or capture clause is specified and the acquire, acq_rel, or 6045 // seq_cst clause is specified then the strong flush on exit from the atomic 6046 // operation is also an acquire flush. 6047 switch (AO) { 6048 case llvm::AtomicOrdering::Release: 6049 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 6050 llvm::AtomicOrdering::Release); 6051 break; 6052 case llvm::AtomicOrdering::Acquire: 6053 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 6054 llvm::AtomicOrdering::Acquire); 6055 break; 6056 case llvm::AtomicOrdering::AcquireRelease: 6057 case llvm::AtomicOrdering::SequentiallyConsistent: 6058 CGF.CGM.getOpenMPRuntime().emitFlush( 6059 CGF, llvm::None, Loc, llvm::AtomicOrdering::AcquireRelease); 6060 break; 6061 case llvm::AtomicOrdering::Monotonic: 6062 break; 6063 case llvm::AtomicOrdering::NotAtomic: 6064 case llvm::AtomicOrdering::Unordered: 6065 llvm_unreachable("Unexpected ordering."); 6066 } 6067 } 6068 } 6069 6070 static void emitOMPAtomicCompareExpr(CodeGenFunction &CGF, 6071 llvm::AtomicOrdering AO, const Expr *X, 6072 const Expr *E, const Expr *D, 6073 const Expr *CE, bool IsXBinopExpr, 6074 SourceLocation Loc) { 6075 llvm::OpenMPIRBuilder &OMPBuilder = 6076 CGF.CGM.getOpenMPRuntime().getOMPBuilder(); 6077 6078 OMPAtomicCompareOp Op; 6079 assert(isa<BinaryOperator>(CE) && "CE is not a BinaryOperator"); 6080 switch (cast<BinaryOperator>(CE)->getOpcode()) { 6081 case BO_EQ: 6082 Op = OMPAtomicCompareOp::EQ; 6083 break; 6084 case BO_LT: 6085 Op = OMPAtomicCompareOp::MIN; 6086 break; 6087 case BO_GT: 6088 Op = OMPAtomicCompareOp::MAX; 6089 break; 6090 default: 6091 llvm_unreachable("unsupported atomic compare binary operator"); 6092 } 6093 6094 LValue XLVal = CGF.EmitLValue(X); 6095 Address XAddr = XLVal.getAddress(CGF); 6096 llvm::Value *EVal = CGF.EmitScalarExpr(E); 6097 llvm::Value *DVal = D ? CGF.EmitScalarExpr(D) : nullptr; 6098 6099 llvm::OpenMPIRBuilder::AtomicOpValue XOpVal{ 6100 XAddr.getPointer(), XAddr.getElementType(), 6101 X->getType().isVolatileQualified(), 6102 X->getType()->hasSignedIntegerRepresentation()}; 6103 6104 CGF.Builder.restoreIP(OMPBuilder.createAtomicCompare( 6105 CGF.Builder, XOpVal, EVal, DVal, AO, Op, IsXBinopExpr)); 6106 } 6107 6108 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 6109 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 6110 const Expr *X, const Expr *V, const Expr *E, 6111 const Expr *UE, const Expr *D, const Expr *CE, 6112 bool IsXLHSInRHSPart, bool IsCompareCapture, 6113 SourceLocation Loc) { 6114 switch (Kind) { 6115 case OMPC_read: 6116 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 6117 break; 6118 case OMPC_write: 6119 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 6120 break; 6121 case OMPC_unknown: 6122 case OMPC_update: 6123 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 6124 break; 6125 case OMPC_capture: 6126 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 6127 IsXLHSInRHSPart, Loc); 6128 break; 6129 case OMPC_compare: { 6130 if (IsCompareCapture) { 6131 // Emit an error here. 6132 unsigned DiagID = CGF.CGM.getDiags().getCustomDiagID( 6133 DiagnosticsEngine::Error, 6134 "'atomic compare capture' is not supported for now"); 6135 CGF.CGM.getDiags().Report(DiagID); 6136 } else { 6137 emitOMPAtomicCompareExpr(CGF, AO, X, E, D, CE, IsXLHSInRHSPart, Loc); 6138 } 6139 break; 6140 } 6141 case OMPC_if: 6142 case OMPC_final: 6143 case OMPC_num_threads: 6144 case OMPC_private: 6145 case OMPC_firstprivate: 6146 case OMPC_lastprivate: 6147 case OMPC_reduction: 6148 case OMPC_task_reduction: 6149 case OMPC_in_reduction: 6150 case OMPC_safelen: 6151 case OMPC_simdlen: 6152 case OMPC_sizes: 6153 case OMPC_full: 6154 case OMPC_partial: 6155 case OMPC_allocator: 6156 case OMPC_allocate: 6157 case OMPC_collapse: 6158 case OMPC_default: 6159 case OMPC_seq_cst: 6160 case OMPC_acq_rel: 6161 case OMPC_acquire: 6162 case OMPC_release: 6163 case OMPC_relaxed: 6164 case OMPC_shared: 6165 case OMPC_linear: 6166 case OMPC_aligned: 6167 case OMPC_copyin: 6168 case OMPC_copyprivate: 6169 case OMPC_flush: 6170 case OMPC_depobj: 6171 case OMPC_proc_bind: 6172 case OMPC_schedule: 6173 case OMPC_ordered: 6174 case OMPC_nowait: 6175 case OMPC_untied: 6176 case OMPC_threadprivate: 6177 case OMPC_depend: 6178 case OMPC_mergeable: 6179 case OMPC_device: 6180 case OMPC_threads: 6181 case OMPC_simd: 6182 case OMPC_map: 6183 case OMPC_num_teams: 6184 case OMPC_thread_limit: 6185 case OMPC_priority: 6186 case OMPC_grainsize: 6187 case OMPC_nogroup: 6188 case OMPC_num_tasks: 6189 case OMPC_hint: 6190 case OMPC_dist_schedule: 6191 case OMPC_defaultmap: 6192 case OMPC_uniform: 6193 case OMPC_to: 6194 case OMPC_from: 6195 case OMPC_use_device_ptr: 6196 case OMPC_use_device_addr: 6197 case OMPC_is_device_ptr: 6198 case OMPC_unified_address: 6199 case OMPC_unified_shared_memory: 6200 case OMPC_reverse_offload: 6201 case OMPC_dynamic_allocators: 6202 case OMPC_atomic_default_mem_order: 6203 case OMPC_device_type: 6204 case OMPC_match: 6205 case OMPC_nontemporal: 6206 case OMPC_order: 6207 case OMPC_destroy: 6208 case OMPC_detach: 6209 case OMPC_inclusive: 6210 case OMPC_exclusive: 6211 case OMPC_uses_allocators: 6212 case OMPC_affinity: 6213 case OMPC_init: 6214 case OMPC_inbranch: 6215 case OMPC_notinbranch: 6216 case OMPC_link: 6217 case OMPC_indirect: 6218 case OMPC_use: 6219 case OMPC_novariants: 6220 case OMPC_nocontext: 6221 case OMPC_filter: 6222 case OMPC_when: 6223 case OMPC_adjust_args: 6224 case OMPC_append_args: 6225 case OMPC_memory_order: 6226 case OMPC_bind: 6227 case OMPC_align: 6228 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 6229 } 6230 } 6231 6232 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 6233 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 6234 bool MemOrderingSpecified = false; 6235 if (S.getSingleClause<OMPSeqCstClause>()) { 6236 AO = llvm::AtomicOrdering::SequentiallyConsistent; 6237 MemOrderingSpecified = true; 6238 } else if (S.getSingleClause<OMPAcqRelClause>()) { 6239 AO = llvm::AtomicOrdering::AcquireRelease; 6240 MemOrderingSpecified = true; 6241 } else if (S.getSingleClause<OMPAcquireClause>()) { 6242 AO = llvm::AtomicOrdering::Acquire; 6243 MemOrderingSpecified = true; 6244 } else if (S.getSingleClause<OMPReleaseClause>()) { 6245 AO = llvm::AtomicOrdering::Release; 6246 MemOrderingSpecified = true; 6247 } else if (S.getSingleClause<OMPRelaxedClause>()) { 6248 AO = llvm::AtomicOrdering::Monotonic; 6249 MemOrderingSpecified = true; 6250 } 6251 llvm::SmallSet<OpenMPClauseKind, 2> KindsEncountered; 6252 OpenMPClauseKind Kind = OMPC_unknown; 6253 for (const OMPClause *C : S.clauses()) { 6254 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 6255 // if it is first). 6256 OpenMPClauseKind K = C->getClauseKind(); 6257 if (K == OMPC_seq_cst || K == OMPC_acq_rel || K == OMPC_acquire || 6258 K == OMPC_release || K == OMPC_relaxed || K == OMPC_hint) 6259 continue; 6260 Kind = K; 6261 KindsEncountered.insert(K); 6262 } 6263 bool IsCompareCapture = false; 6264 if (KindsEncountered.contains(OMPC_compare) && 6265 KindsEncountered.contains(OMPC_capture)) { 6266 IsCompareCapture = true; 6267 Kind = OMPC_compare; 6268 } 6269 if (!MemOrderingSpecified) { 6270 llvm::AtomicOrdering DefaultOrder = 6271 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 6272 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 6273 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 6274 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 6275 Kind == OMPC_capture)) { 6276 AO = DefaultOrder; 6277 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 6278 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 6279 AO = llvm::AtomicOrdering::Release; 6280 } else if (Kind == OMPC_read) { 6281 assert(Kind == OMPC_read && "Unexpected atomic kind."); 6282 AO = llvm::AtomicOrdering::Acquire; 6283 } 6284 } 6285 } 6286 6287 LexicalScope Scope(*this, S.getSourceRange()); 6288 EmitStopPoint(S.getAssociatedStmt()); 6289 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 6290 S.getExpr(), S.getUpdateExpr(), S.getD(), S.getCondExpr(), 6291 S.isXLHSInRHSPart(), IsCompareCapture, S.getBeginLoc()); 6292 } 6293 6294 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 6295 const OMPExecutableDirective &S, 6296 const RegionCodeGenTy &CodeGen) { 6297 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 6298 CodeGenModule &CGM = CGF.CGM; 6299 6300 // On device emit this construct as inlined code. 6301 if (CGM.getLangOpts().OpenMPIsDevice) { 6302 OMPLexicalScope Scope(CGF, S, OMPD_target); 6303 CGM.getOpenMPRuntime().emitInlinedDirective( 6304 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6305 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6306 }); 6307 return; 6308 } 6309 6310 auto LPCRegion = CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 6311 llvm::Function *Fn = nullptr; 6312 llvm::Constant *FnID = nullptr; 6313 6314 const Expr *IfCond = nullptr; 6315 // Check for the at most one if clause associated with the target region. 6316 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6317 if (C->getNameModifier() == OMPD_unknown || 6318 C->getNameModifier() == OMPD_target) { 6319 IfCond = C->getCondition(); 6320 break; 6321 } 6322 } 6323 6324 // Check if we have any device clause associated with the directive. 6325 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 6326 nullptr, OMPC_DEVICE_unknown); 6327 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 6328 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 6329 6330 // Check if we have an if clause whose conditional always evaluates to false 6331 // or if we do not have any targets specified. If so the target region is not 6332 // an offload entry point. 6333 bool IsOffloadEntry = true; 6334 if (IfCond) { 6335 bool Val; 6336 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 6337 IsOffloadEntry = false; 6338 } 6339 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6340 IsOffloadEntry = false; 6341 6342 if (CGM.getLangOpts().OpenMPOffloadMandatory && !IsOffloadEntry) { 6343 unsigned DiagID = CGM.getDiags().getCustomDiagID( 6344 DiagnosticsEngine::Error, 6345 "No offloading entry generated while offloading is mandatory."); 6346 CGM.getDiags().Report(DiagID); 6347 } 6348 6349 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 6350 StringRef ParentName; 6351 // In case we have Ctors/Dtors we use the complete type variant to produce 6352 // the mangling of the device outlined kernel. 6353 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 6354 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 6355 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 6356 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 6357 else 6358 ParentName = 6359 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 6360 6361 // Emit target region as a standalone region. 6362 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 6363 IsOffloadEntry, CodeGen); 6364 OMPLexicalScope Scope(CGF, S, OMPD_task); 6365 auto &&SizeEmitter = 6366 [IsOffloadEntry](CodeGenFunction &CGF, 6367 const OMPLoopDirective &D) -> llvm::Value * { 6368 if (IsOffloadEntry) { 6369 OMPLoopScope(CGF, D); 6370 // Emit calculation of the iterations count. 6371 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6372 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6373 /*isSigned=*/false); 6374 return NumIterations; 6375 } 6376 return nullptr; 6377 }; 6378 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6379 SizeEmitter); 6380 } 6381 6382 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6383 PrePostActionTy &Action) { 6384 Action.Enter(CGF); 6385 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6386 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6387 CGF.EmitOMPPrivateClause(S, PrivateScope); 6388 (void)PrivateScope.Privatize(); 6389 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6390 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6391 6392 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6393 CGF.EnsureInsertPoint(); 6394 } 6395 6396 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6397 StringRef ParentName, 6398 const OMPTargetDirective &S) { 6399 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6400 emitTargetRegion(CGF, S, Action); 6401 }; 6402 llvm::Function *Fn; 6403 llvm::Constant *Addr; 6404 // Emit target region as a standalone region. 6405 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6406 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6407 assert(Fn && Addr && "Target device function emission failed."); 6408 } 6409 6410 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6411 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6412 emitTargetRegion(CGF, S, Action); 6413 }; 6414 emitCommonOMPTargetDirective(*this, S, CodeGen); 6415 } 6416 6417 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6418 const OMPExecutableDirective &S, 6419 OpenMPDirectiveKind InnermostKind, 6420 const RegionCodeGenTy &CodeGen) { 6421 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6422 llvm::Function *OutlinedFn = 6423 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6424 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6425 6426 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6427 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6428 if (NT || TL) { 6429 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6430 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6431 6432 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6433 S.getBeginLoc()); 6434 } 6435 6436 OMPTeamsScope Scope(CGF, S); 6437 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6438 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6439 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6440 CapturedVars); 6441 } 6442 6443 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6444 // Emit teams region as a standalone region. 6445 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6446 Action.Enter(CGF); 6447 OMPPrivateScope PrivateScope(CGF); 6448 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6449 CGF.EmitOMPPrivateClause(S, PrivateScope); 6450 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6451 (void)PrivateScope.Privatize(); 6452 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6453 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6454 }; 6455 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6456 emitPostUpdateForReductionClause(*this, S, 6457 [](CodeGenFunction &) { return nullptr; }); 6458 } 6459 6460 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6461 const OMPTargetTeamsDirective &S) { 6462 auto *CS = S.getCapturedStmt(OMPD_teams); 6463 Action.Enter(CGF); 6464 // Emit teams region as a standalone region. 6465 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6466 Action.Enter(CGF); 6467 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6468 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6469 CGF.EmitOMPPrivateClause(S, PrivateScope); 6470 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6471 (void)PrivateScope.Privatize(); 6472 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6473 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6474 CGF.EmitStmt(CS->getCapturedStmt()); 6475 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6476 }; 6477 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6478 emitPostUpdateForReductionClause(CGF, S, 6479 [](CodeGenFunction &) { return nullptr; }); 6480 } 6481 6482 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6483 CodeGenModule &CGM, StringRef ParentName, 6484 const OMPTargetTeamsDirective &S) { 6485 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6486 emitTargetTeamsRegion(CGF, Action, S); 6487 }; 6488 llvm::Function *Fn; 6489 llvm::Constant *Addr; 6490 // Emit target region as a standalone region. 6491 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6492 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6493 assert(Fn && Addr && "Target device function emission failed."); 6494 } 6495 6496 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6497 const OMPTargetTeamsDirective &S) { 6498 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6499 emitTargetTeamsRegion(CGF, Action, S); 6500 }; 6501 emitCommonOMPTargetDirective(*this, S, CodeGen); 6502 } 6503 6504 static void 6505 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6506 const OMPTargetTeamsDistributeDirective &S) { 6507 Action.Enter(CGF); 6508 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6509 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6510 }; 6511 6512 // Emit teams region as a standalone region. 6513 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6514 PrePostActionTy &Action) { 6515 Action.Enter(CGF); 6516 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6517 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6518 (void)PrivateScope.Privatize(); 6519 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6520 CodeGenDistribute); 6521 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6522 }; 6523 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6524 emitPostUpdateForReductionClause(CGF, S, 6525 [](CodeGenFunction &) { return nullptr; }); 6526 } 6527 6528 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6529 CodeGenModule &CGM, StringRef ParentName, 6530 const OMPTargetTeamsDistributeDirective &S) { 6531 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6532 emitTargetTeamsDistributeRegion(CGF, Action, S); 6533 }; 6534 llvm::Function *Fn; 6535 llvm::Constant *Addr; 6536 // Emit target region as a standalone region. 6537 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6538 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6539 assert(Fn && Addr && "Target device function emission failed."); 6540 } 6541 6542 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6543 const OMPTargetTeamsDistributeDirective &S) { 6544 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6545 emitTargetTeamsDistributeRegion(CGF, Action, S); 6546 }; 6547 emitCommonOMPTargetDirective(*this, S, CodeGen); 6548 } 6549 6550 static void emitTargetTeamsDistributeSimdRegion( 6551 CodeGenFunction &CGF, PrePostActionTy &Action, 6552 const OMPTargetTeamsDistributeSimdDirective &S) { 6553 Action.Enter(CGF); 6554 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6555 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6556 }; 6557 6558 // Emit teams region as a standalone region. 6559 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6560 PrePostActionTy &Action) { 6561 Action.Enter(CGF); 6562 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6563 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6564 (void)PrivateScope.Privatize(); 6565 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6566 CodeGenDistribute); 6567 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6568 }; 6569 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6570 emitPostUpdateForReductionClause(CGF, S, 6571 [](CodeGenFunction &) { return nullptr; }); 6572 } 6573 6574 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6575 CodeGenModule &CGM, StringRef ParentName, 6576 const OMPTargetTeamsDistributeSimdDirective &S) { 6577 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6578 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6579 }; 6580 llvm::Function *Fn; 6581 llvm::Constant *Addr; 6582 // Emit target region as a standalone region. 6583 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6584 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6585 assert(Fn && Addr && "Target device function emission failed."); 6586 } 6587 6588 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6589 const OMPTargetTeamsDistributeSimdDirective &S) { 6590 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6591 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6592 }; 6593 emitCommonOMPTargetDirective(*this, S, CodeGen); 6594 } 6595 6596 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6597 const OMPTeamsDistributeDirective &S) { 6598 6599 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6600 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6601 }; 6602 6603 // Emit teams region as a standalone region. 6604 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6605 PrePostActionTy &Action) { 6606 Action.Enter(CGF); 6607 OMPPrivateScope PrivateScope(CGF); 6608 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6609 (void)PrivateScope.Privatize(); 6610 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6611 CodeGenDistribute); 6612 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6613 }; 6614 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6615 emitPostUpdateForReductionClause(*this, S, 6616 [](CodeGenFunction &) { return nullptr; }); 6617 } 6618 6619 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6620 const OMPTeamsDistributeSimdDirective &S) { 6621 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6622 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6623 }; 6624 6625 // Emit teams region as a standalone region. 6626 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6627 PrePostActionTy &Action) { 6628 Action.Enter(CGF); 6629 OMPPrivateScope PrivateScope(CGF); 6630 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6631 (void)PrivateScope.Privatize(); 6632 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6633 CodeGenDistribute); 6634 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6635 }; 6636 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6637 emitPostUpdateForReductionClause(*this, S, 6638 [](CodeGenFunction &) { return nullptr; }); 6639 } 6640 6641 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6642 const OMPTeamsDistributeParallelForDirective &S) { 6643 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6644 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6645 S.getDistInc()); 6646 }; 6647 6648 // Emit teams region as a standalone region. 6649 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6650 PrePostActionTy &Action) { 6651 Action.Enter(CGF); 6652 OMPPrivateScope PrivateScope(CGF); 6653 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6654 (void)PrivateScope.Privatize(); 6655 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6656 CodeGenDistribute); 6657 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6658 }; 6659 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6660 emitPostUpdateForReductionClause(*this, S, 6661 [](CodeGenFunction &) { return nullptr; }); 6662 } 6663 6664 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6665 const OMPTeamsDistributeParallelForSimdDirective &S) { 6666 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6667 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6668 S.getDistInc()); 6669 }; 6670 6671 // Emit teams region as a standalone region. 6672 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6673 PrePostActionTy &Action) { 6674 Action.Enter(CGF); 6675 OMPPrivateScope PrivateScope(CGF); 6676 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6677 (void)PrivateScope.Privatize(); 6678 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6679 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6680 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6681 }; 6682 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6683 CodeGen); 6684 emitPostUpdateForReductionClause(*this, S, 6685 [](CodeGenFunction &) { return nullptr; }); 6686 } 6687 6688 void CodeGenFunction::EmitOMPInteropDirective(const OMPInteropDirective &S) { 6689 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6690 llvm::Value *Device = nullptr; 6691 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6692 Device = EmitScalarExpr(C->getDevice()); 6693 6694 llvm::Value *NumDependences = nullptr; 6695 llvm::Value *DependenceAddress = nullptr; 6696 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 6697 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 6698 DC->getModifier()); 6699 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 6700 std::pair<llvm::Value *, Address> DependencePair = 6701 CGM.getOpenMPRuntime().emitDependClause(*this, Dependencies, 6702 DC->getBeginLoc()); 6703 NumDependences = DependencePair.first; 6704 DependenceAddress = Builder.CreatePointerCast( 6705 DependencePair.second.getPointer(), CGM.Int8PtrTy); 6706 } 6707 6708 assert(!(S.hasClausesOfKind<OMPNowaitClause>() && 6709 !(S.getSingleClause<OMPInitClause>() || 6710 S.getSingleClause<OMPDestroyClause>() || 6711 S.getSingleClause<OMPUseClause>())) && 6712 "OMPNowaitClause clause is used separately in OMPInteropDirective."); 6713 6714 if (const auto *C = S.getSingleClause<OMPInitClause>()) { 6715 llvm::Value *InteropvarPtr = 6716 EmitLValue(C->getInteropVar()).getPointer(*this); 6717 llvm::omp::OMPInteropType InteropType = llvm::omp::OMPInteropType::Unknown; 6718 if (C->getIsTarget()) { 6719 InteropType = llvm::omp::OMPInteropType::Target; 6720 } else { 6721 assert(C->getIsTargetSync() && "Expected interop-type target/targetsync"); 6722 InteropType = llvm::omp::OMPInteropType::TargetSync; 6723 } 6724 OMPBuilder.createOMPInteropInit(Builder, InteropvarPtr, InteropType, Device, 6725 NumDependences, DependenceAddress, 6726 S.hasClausesOfKind<OMPNowaitClause>()); 6727 } else if (const auto *C = S.getSingleClause<OMPDestroyClause>()) { 6728 llvm::Value *InteropvarPtr = 6729 EmitLValue(C->getInteropVar()).getPointer(*this); 6730 OMPBuilder.createOMPInteropDestroy(Builder, InteropvarPtr, Device, 6731 NumDependences, DependenceAddress, 6732 S.hasClausesOfKind<OMPNowaitClause>()); 6733 } else if (const auto *C = S.getSingleClause<OMPUseClause>()) { 6734 llvm::Value *InteropvarPtr = 6735 EmitLValue(C->getInteropVar()).getPointer(*this); 6736 OMPBuilder.createOMPInteropUse(Builder, InteropvarPtr, Device, 6737 NumDependences, DependenceAddress, 6738 S.hasClausesOfKind<OMPNowaitClause>()); 6739 } 6740 } 6741 6742 static void emitTargetTeamsDistributeParallelForRegion( 6743 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 6744 PrePostActionTy &Action) { 6745 Action.Enter(CGF); 6746 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6747 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6748 S.getDistInc()); 6749 }; 6750 6751 // Emit teams region as a standalone region. 6752 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6753 PrePostActionTy &Action) { 6754 Action.Enter(CGF); 6755 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6756 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6757 (void)PrivateScope.Privatize(); 6758 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6759 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6760 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6761 }; 6762 6763 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 6764 CodeGenTeams); 6765 emitPostUpdateForReductionClause(CGF, S, 6766 [](CodeGenFunction &) { return nullptr; }); 6767 } 6768 6769 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 6770 CodeGenModule &CGM, StringRef ParentName, 6771 const OMPTargetTeamsDistributeParallelForDirective &S) { 6772 // Emit SPMD target teams distribute parallel for region as a standalone 6773 // region. 6774 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6775 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6776 }; 6777 llvm::Function *Fn; 6778 llvm::Constant *Addr; 6779 // Emit target region as a standalone region. 6780 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6781 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6782 assert(Fn && Addr && "Target device function emission failed."); 6783 } 6784 6785 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 6786 const OMPTargetTeamsDistributeParallelForDirective &S) { 6787 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6788 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6789 }; 6790 emitCommonOMPTargetDirective(*this, S, CodeGen); 6791 } 6792 6793 static void emitTargetTeamsDistributeParallelForSimdRegion( 6794 CodeGenFunction &CGF, 6795 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 6796 PrePostActionTy &Action) { 6797 Action.Enter(CGF); 6798 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6799 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6800 S.getDistInc()); 6801 }; 6802 6803 // Emit teams region as a standalone region. 6804 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6805 PrePostActionTy &Action) { 6806 Action.Enter(CGF); 6807 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6808 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6809 (void)PrivateScope.Privatize(); 6810 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6811 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6812 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6813 }; 6814 6815 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 6816 CodeGenTeams); 6817 emitPostUpdateForReductionClause(CGF, S, 6818 [](CodeGenFunction &) { return nullptr; }); 6819 } 6820 6821 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 6822 CodeGenModule &CGM, StringRef ParentName, 6823 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6824 // Emit SPMD target teams distribute parallel for simd region as a standalone 6825 // region. 6826 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6827 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6828 }; 6829 llvm::Function *Fn; 6830 llvm::Constant *Addr; 6831 // Emit target region as a standalone region. 6832 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6833 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6834 assert(Fn && Addr && "Target device function emission failed."); 6835 } 6836 6837 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 6838 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6839 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6840 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6841 }; 6842 emitCommonOMPTargetDirective(*this, S, CodeGen); 6843 } 6844 6845 void CodeGenFunction::EmitOMPCancellationPointDirective( 6846 const OMPCancellationPointDirective &S) { 6847 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 6848 S.getCancelRegion()); 6849 } 6850 6851 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 6852 const Expr *IfCond = nullptr; 6853 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6854 if (C->getNameModifier() == OMPD_unknown || 6855 C->getNameModifier() == OMPD_cancel) { 6856 IfCond = C->getCondition(); 6857 break; 6858 } 6859 } 6860 if (CGM.getLangOpts().OpenMPIRBuilder) { 6861 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6862 // TODO: This check is necessary as we only generate `omp parallel` through 6863 // the OpenMPIRBuilder for now. 6864 if (S.getCancelRegion() == OMPD_parallel || 6865 S.getCancelRegion() == OMPD_sections || 6866 S.getCancelRegion() == OMPD_section) { 6867 llvm::Value *IfCondition = nullptr; 6868 if (IfCond) 6869 IfCondition = EmitScalarExpr(IfCond, 6870 /*IgnoreResultAssign=*/true); 6871 return Builder.restoreIP( 6872 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 6873 } 6874 } 6875 6876 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 6877 S.getCancelRegion()); 6878 } 6879 6880 CodeGenFunction::JumpDest 6881 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 6882 if (Kind == OMPD_parallel || Kind == OMPD_task || 6883 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 6884 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 6885 return ReturnBlock; 6886 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 6887 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 6888 Kind == OMPD_distribute_parallel_for || 6889 Kind == OMPD_target_parallel_for || 6890 Kind == OMPD_teams_distribute_parallel_for || 6891 Kind == OMPD_target_teams_distribute_parallel_for); 6892 return OMPCancelStack.getExitBlock(); 6893 } 6894 6895 void CodeGenFunction::EmitOMPUseDevicePtrClause( 6896 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 6897 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6898 auto OrigVarIt = C.varlist_begin(); 6899 auto InitIt = C.inits().begin(); 6900 for (const Expr *PvtVarIt : C.private_copies()) { 6901 const auto *OrigVD = 6902 cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6903 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6904 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6905 6906 // In order to identify the right initializer we need to match the 6907 // declaration used by the mapping logic. In some cases we may get 6908 // OMPCapturedExprDecl that refers to the original declaration. 6909 const ValueDecl *MatchingVD = OrigVD; 6910 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6911 // OMPCapturedExprDecl are used to privative fields of the current 6912 // structure. 6913 const auto *ME = cast<MemberExpr>(OED->getInit()); 6914 assert(isa<CXXThisExpr>(ME->getBase()) && 6915 "Base should be the current struct!"); 6916 MatchingVD = ME->getMemberDecl(); 6917 } 6918 6919 // If we don't have information about the current list item, move on to 6920 // the next one. 6921 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6922 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6923 continue; 6924 6925 bool IsRegistered = PrivateScope.addPrivate( 6926 OrigVD, [this, OrigVD, InitAddrIt, InitVD, PvtVD]() { 6927 // Initialize the temporary initialization variable with the address 6928 // we get from the runtime library. We have to cast the source address 6929 // because it is always a void *. References are materialized in the 6930 // privatization scope, so the initialization here disregards the fact 6931 // the original variable is a reference. 6932 llvm::Type *Ty = 6933 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()); 6934 Address InitAddr = 6935 Builder.CreateElementBitCast(InitAddrIt->second, Ty); 6936 setAddrOfLocalVar(InitVD, InitAddr); 6937 6938 // Emit private declaration, it will be initialized by the value we 6939 // declaration we just added to the local declarations map. 6940 EmitDecl(*PvtVD); 6941 6942 // The initialization variables reached its purpose in the emission 6943 // of the previous declaration, so we don't need it anymore. 6944 LocalDeclMap.erase(InitVD); 6945 6946 // Return the address of the private variable. 6947 return GetAddrOfLocalVar(PvtVD); 6948 }); 6949 assert(IsRegistered && "firstprivate var already registered as private"); 6950 // Silence the warning about unused variable. 6951 (void)IsRegistered; 6952 6953 ++OrigVarIt; 6954 ++InitIt; 6955 } 6956 } 6957 6958 static const VarDecl *getBaseDecl(const Expr *Ref) { 6959 const Expr *Base = Ref->IgnoreParenImpCasts(); 6960 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6961 Base = OASE->getBase()->IgnoreParenImpCasts(); 6962 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6963 Base = ASE->getBase()->IgnoreParenImpCasts(); 6964 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6965 } 6966 6967 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6968 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6969 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6970 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6971 for (const Expr *Ref : C.varlists()) { 6972 const VarDecl *OrigVD = getBaseDecl(Ref); 6973 if (!Processed.insert(OrigVD).second) 6974 continue; 6975 // In order to identify the right initializer we need to match the 6976 // declaration used by the mapping logic. In some cases we may get 6977 // OMPCapturedExprDecl that refers to the original declaration. 6978 const ValueDecl *MatchingVD = OrigVD; 6979 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6980 // OMPCapturedExprDecl are used to privative fields of the current 6981 // structure. 6982 const auto *ME = cast<MemberExpr>(OED->getInit()); 6983 assert(isa<CXXThisExpr>(ME->getBase()) && 6984 "Base should be the current struct!"); 6985 MatchingVD = ME->getMemberDecl(); 6986 } 6987 6988 // If we don't have information about the current list item, move on to 6989 // the next one. 6990 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6991 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6992 continue; 6993 6994 Address PrivAddr = InitAddrIt->getSecond(); 6995 // For declrefs and variable length array need to load the pointer for 6996 // correct mapping, since the pointer to the data was passed to the runtime. 6997 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6998 MatchingVD->getType()->isArrayType()) 6999 PrivAddr = 7000 EmitLoadOfPointer(PrivAddr, getContext() 7001 .getPointerType(OrigVD->getType()) 7002 ->castAs<PointerType>()); 7003 llvm::Type *RealTy = 7004 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 7005 ->getPointerTo(); 7006 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 7007 7008 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 7009 } 7010 } 7011 7012 // Generate the instructions for '#pragma omp target data' directive. 7013 void CodeGenFunction::EmitOMPTargetDataDirective( 7014 const OMPTargetDataDirective &S) { 7015 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 7016 /*SeparateBeginEndCalls=*/true); 7017 7018 // Create a pre/post action to signal the privatization of the device pointer. 7019 // This action can be replaced by the OpenMP runtime code generation to 7020 // deactivate privatization. 7021 bool PrivatizeDevicePointers = false; 7022 class DevicePointerPrivActionTy : public PrePostActionTy { 7023 bool &PrivatizeDevicePointers; 7024 7025 public: 7026 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 7027 : PrivatizeDevicePointers(PrivatizeDevicePointers) {} 7028 void Enter(CodeGenFunction &CGF) override { 7029 PrivatizeDevicePointers = true; 7030 } 7031 }; 7032 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 7033 7034 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 7035 CodeGenFunction &CGF, PrePostActionTy &Action) { 7036 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7037 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 7038 }; 7039 7040 // Codegen that selects whether to generate the privatization code or not. 7041 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 7042 &InnermostCodeGen](CodeGenFunction &CGF, 7043 PrePostActionTy &Action) { 7044 RegionCodeGenTy RCG(InnermostCodeGen); 7045 PrivatizeDevicePointers = false; 7046 7047 // Call the pre-action to change the status of PrivatizeDevicePointers if 7048 // needed. 7049 Action.Enter(CGF); 7050 7051 if (PrivatizeDevicePointers) { 7052 OMPPrivateScope PrivateScope(CGF); 7053 // Emit all instances of the use_device_ptr clause. 7054 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 7055 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 7056 Info.CaptureDeviceAddrMap); 7057 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 7058 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 7059 Info.CaptureDeviceAddrMap); 7060 (void)PrivateScope.Privatize(); 7061 RCG(CGF); 7062 } else { 7063 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 7064 RCG(CGF); 7065 } 7066 }; 7067 7068 // Forward the provided action to the privatization codegen. 7069 RegionCodeGenTy PrivRCG(PrivCodeGen); 7070 PrivRCG.setAction(Action); 7071 7072 // Notwithstanding the body of the region is emitted as inlined directive, 7073 // we don't use an inline scope as changes in the references inside the 7074 // region are expected to be visible outside, so we do not privative them. 7075 OMPLexicalScope Scope(CGF, S); 7076 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 7077 PrivRCG); 7078 }; 7079 7080 RegionCodeGenTy RCG(CodeGen); 7081 7082 // If we don't have target devices, don't bother emitting the data mapping 7083 // code. 7084 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 7085 RCG(*this); 7086 return; 7087 } 7088 7089 // Check if we have any if clause associated with the directive. 7090 const Expr *IfCond = nullptr; 7091 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7092 IfCond = C->getCondition(); 7093 7094 // Check if we have any device clause associated with the directive. 7095 const Expr *Device = nullptr; 7096 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7097 Device = C->getDevice(); 7098 7099 // Set the action to signal privatization of device pointers. 7100 RCG.setAction(PrivAction); 7101 7102 // Emit region code. 7103 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 7104 Info); 7105 } 7106 7107 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 7108 const OMPTargetEnterDataDirective &S) { 7109 // If we don't have target devices, don't bother emitting the data mapping 7110 // code. 7111 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7112 return; 7113 7114 // Check if we have any if clause associated with the directive. 7115 const Expr *IfCond = nullptr; 7116 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7117 IfCond = C->getCondition(); 7118 7119 // Check if we have any device clause associated with the directive. 7120 const Expr *Device = nullptr; 7121 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7122 Device = C->getDevice(); 7123 7124 OMPLexicalScope Scope(*this, S, OMPD_task); 7125 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7126 } 7127 7128 void CodeGenFunction::EmitOMPTargetExitDataDirective( 7129 const OMPTargetExitDataDirective &S) { 7130 // If we don't have target devices, don't bother emitting the data mapping 7131 // code. 7132 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7133 return; 7134 7135 // Check if we have any if clause associated with the directive. 7136 const Expr *IfCond = nullptr; 7137 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7138 IfCond = C->getCondition(); 7139 7140 // Check if we have any device clause associated with the directive. 7141 const Expr *Device = nullptr; 7142 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7143 Device = C->getDevice(); 7144 7145 OMPLexicalScope Scope(*this, S, OMPD_task); 7146 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7147 } 7148 7149 static void emitTargetParallelRegion(CodeGenFunction &CGF, 7150 const OMPTargetParallelDirective &S, 7151 PrePostActionTy &Action) { 7152 // Get the captured statement associated with the 'parallel' region. 7153 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 7154 Action.Enter(CGF); 7155 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 7156 Action.Enter(CGF); 7157 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7158 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 7159 CGF.EmitOMPPrivateClause(S, PrivateScope); 7160 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7161 (void)PrivateScope.Privatize(); 7162 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 7163 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 7164 // TODO: Add support for clauses. 7165 CGF.EmitStmt(CS->getCapturedStmt()); 7166 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 7167 }; 7168 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 7169 emitEmptyBoundParameters); 7170 emitPostUpdateForReductionClause(CGF, S, 7171 [](CodeGenFunction &) { return nullptr; }); 7172 } 7173 7174 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 7175 CodeGenModule &CGM, StringRef ParentName, 7176 const OMPTargetParallelDirective &S) { 7177 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7178 emitTargetParallelRegion(CGF, S, Action); 7179 }; 7180 llvm::Function *Fn; 7181 llvm::Constant *Addr; 7182 // Emit target region as a standalone region. 7183 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7184 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7185 assert(Fn && Addr && "Target device function emission failed."); 7186 } 7187 7188 void CodeGenFunction::EmitOMPTargetParallelDirective( 7189 const OMPTargetParallelDirective &S) { 7190 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7191 emitTargetParallelRegion(CGF, S, Action); 7192 }; 7193 emitCommonOMPTargetDirective(*this, S, CodeGen); 7194 } 7195 7196 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 7197 const OMPTargetParallelForDirective &S, 7198 PrePostActionTy &Action) { 7199 Action.Enter(CGF); 7200 // Emit directive as a combined directive that consists of two implicit 7201 // directives: 'parallel' with 'for' directive. 7202 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7203 Action.Enter(CGF); 7204 CodeGenFunction::OMPCancelStackRAII CancelRegion( 7205 CGF, OMPD_target_parallel_for, S.hasCancel()); 7206 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7207 emitDispatchForLoopBounds); 7208 }; 7209 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 7210 emitEmptyBoundParameters); 7211 } 7212 7213 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 7214 CodeGenModule &CGM, StringRef ParentName, 7215 const OMPTargetParallelForDirective &S) { 7216 // Emit SPMD target parallel for region as a standalone region. 7217 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7218 emitTargetParallelForRegion(CGF, S, Action); 7219 }; 7220 llvm::Function *Fn; 7221 llvm::Constant *Addr; 7222 // Emit target region as a standalone region. 7223 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7224 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7225 assert(Fn && Addr && "Target device function emission failed."); 7226 } 7227 7228 void CodeGenFunction::EmitOMPTargetParallelForDirective( 7229 const OMPTargetParallelForDirective &S) { 7230 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7231 emitTargetParallelForRegion(CGF, S, Action); 7232 }; 7233 emitCommonOMPTargetDirective(*this, S, CodeGen); 7234 } 7235 7236 static void 7237 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 7238 const OMPTargetParallelForSimdDirective &S, 7239 PrePostActionTy &Action) { 7240 Action.Enter(CGF); 7241 // Emit directive as a combined directive that consists of two implicit 7242 // directives: 'parallel' with 'for' directive. 7243 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7244 Action.Enter(CGF); 7245 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7246 emitDispatchForLoopBounds); 7247 }; 7248 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 7249 emitEmptyBoundParameters); 7250 } 7251 7252 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 7253 CodeGenModule &CGM, StringRef ParentName, 7254 const OMPTargetParallelForSimdDirective &S) { 7255 // Emit SPMD target parallel for region as a standalone region. 7256 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7257 emitTargetParallelForSimdRegion(CGF, S, Action); 7258 }; 7259 llvm::Function *Fn; 7260 llvm::Constant *Addr; 7261 // Emit target region as a standalone region. 7262 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7263 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7264 assert(Fn && Addr && "Target device function emission failed."); 7265 } 7266 7267 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 7268 const OMPTargetParallelForSimdDirective &S) { 7269 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7270 emitTargetParallelForSimdRegion(CGF, S, Action); 7271 }; 7272 emitCommonOMPTargetDirective(*this, S, CodeGen); 7273 } 7274 7275 /// Emit a helper variable and return corresponding lvalue. 7276 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 7277 const ImplicitParamDecl *PVD, 7278 CodeGenFunction::OMPPrivateScope &Privates) { 7279 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 7280 Privates.addPrivate(VDecl, 7281 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 7282 } 7283 7284 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 7285 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 7286 // Emit outlined function for task construct. 7287 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 7288 Address CapturedStruct = Address::invalid(); 7289 { 7290 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7291 CapturedStruct = GenerateCapturedStmtArgument(*CS); 7292 } 7293 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 7294 const Expr *IfCond = nullptr; 7295 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 7296 if (C->getNameModifier() == OMPD_unknown || 7297 C->getNameModifier() == OMPD_taskloop) { 7298 IfCond = C->getCondition(); 7299 break; 7300 } 7301 } 7302 7303 OMPTaskDataTy Data; 7304 // Check if taskloop must be emitted without taskgroup. 7305 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 7306 // TODO: Check if we should emit tied or untied task. 7307 Data.Tied = true; 7308 // Set scheduling for taskloop 7309 if (const auto *Clause = S.getSingleClause<OMPGrainsizeClause>()) { 7310 // grainsize clause 7311 Data.Schedule.setInt(/*IntVal=*/false); 7312 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 7313 } else if (const auto *Clause = S.getSingleClause<OMPNumTasksClause>()) { 7314 // num_tasks clause 7315 Data.Schedule.setInt(/*IntVal=*/true); 7316 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 7317 } 7318 7319 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 7320 // if (PreCond) { 7321 // for (IV in 0..LastIteration) BODY; 7322 // <Final counter/linear vars updates>; 7323 // } 7324 // 7325 7326 // Emit: if (PreCond) - begin. 7327 // If the condition constant folds and can be elided, avoid emitting the 7328 // whole loop. 7329 bool CondConstant; 7330 llvm::BasicBlock *ContBlock = nullptr; 7331 OMPLoopScope PreInitScope(CGF, S); 7332 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 7333 if (!CondConstant) 7334 return; 7335 } else { 7336 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 7337 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 7338 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 7339 CGF.getProfileCount(&S)); 7340 CGF.EmitBlock(ThenBlock); 7341 CGF.incrementProfileCounter(&S); 7342 } 7343 7344 (void)CGF.EmitOMPLinearClauseInit(S); 7345 7346 OMPPrivateScope LoopScope(CGF); 7347 // Emit helper vars inits. 7348 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 7349 auto *I = CS->getCapturedDecl()->param_begin(); 7350 auto *LBP = std::next(I, LowerBound); 7351 auto *UBP = std::next(I, UpperBound); 7352 auto *STP = std::next(I, Stride); 7353 auto *LIP = std::next(I, LastIter); 7354 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 7355 LoopScope); 7356 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 7357 LoopScope); 7358 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 7359 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 7360 LoopScope); 7361 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 7362 CGF.EmitOMPLinearClause(S, LoopScope); 7363 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 7364 (void)LoopScope.Privatize(); 7365 // Emit the loop iteration variable. 7366 const Expr *IVExpr = S.getIterationVariable(); 7367 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 7368 CGF.EmitVarDecl(*IVDecl); 7369 CGF.EmitIgnoredExpr(S.getInit()); 7370 7371 // Emit the iterations count variable. 7372 // If it is not a variable, Sema decided to calculate iterations count on 7373 // each iteration (e.g., it is foldable into a constant). 7374 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 7375 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 7376 // Emit calculation of the iterations count. 7377 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 7378 } 7379 7380 { 7381 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7382 emitCommonSimdLoop( 7383 CGF, S, 7384 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7385 if (isOpenMPSimdDirective(S.getDirectiveKind())) 7386 CGF.EmitOMPSimdInit(S); 7387 }, 7388 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 7389 CGF.EmitOMPInnerLoop( 7390 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 7391 [&S](CodeGenFunction &CGF) { 7392 emitOMPLoopBodyWithStopPoint(CGF, S, 7393 CodeGenFunction::JumpDest()); 7394 }, 7395 [](CodeGenFunction &) {}); 7396 }); 7397 } 7398 // Emit: if (PreCond) - end. 7399 if (ContBlock) { 7400 CGF.EmitBranch(ContBlock); 7401 CGF.EmitBlock(ContBlock, true); 7402 } 7403 // Emit final copy of the lastprivate variables if IsLastIter != 0. 7404 if (HasLastprivateClause) { 7405 CGF.EmitOMPLastprivateClauseFinal( 7406 S, isOpenMPSimdDirective(S.getDirectiveKind()), 7407 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 7408 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7409 (*LIP)->getType(), S.getBeginLoc()))); 7410 } 7411 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 7412 return CGF.Builder.CreateIsNotNull( 7413 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7414 (*LIP)->getType(), S.getBeginLoc())); 7415 }); 7416 }; 7417 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 7418 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 7419 const OMPTaskDataTy &Data) { 7420 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 7421 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 7422 OMPLoopScope PreInitScope(CGF, S); 7423 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 7424 OutlinedFn, SharedsTy, 7425 CapturedStruct, IfCond, Data); 7426 }; 7427 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7428 CodeGen); 7429 }; 7430 if (Data.Nogroup) { 7431 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7432 } else { 7433 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7434 *this, 7435 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7436 PrePostActionTy &Action) { 7437 Action.Enter(CGF); 7438 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7439 Data); 7440 }, 7441 S.getBeginLoc()); 7442 } 7443 } 7444 7445 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7446 auto LPCRegion = 7447 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7448 EmitOMPTaskLoopBasedDirective(S); 7449 } 7450 7451 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7452 const OMPTaskLoopSimdDirective &S) { 7453 auto LPCRegion = 7454 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7455 OMPLexicalScope Scope(*this, S); 7456 EmitOMPTaskLoopBasedDirective(S); 7457 } 7458 7459 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7460 const OMPMasterTaskLoopDirective &S) { 7461 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7462 Action.Enter(CGF); 7463 EmitOMPTaskLoopBasedDirective(S); 7464 }; 7465 auto LPCRegion = 7466 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7467 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 7468 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7469 } 7470 7471 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7472 const OMPMasterTaskLoopSimdDirective &S) { 7473 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7474 Action.Enter(CGF); 7475 EmitOMPTaskLoopBasedDirective(S); 7476 }; 7477 auto LPCRegion = 7478 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7479 OMPLexicalScope Scope(*this, S); 7480 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7481 } 7482 7483 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7484 const OMPParallelMasterTaskLoopDirective &S) { 7485 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7486 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7487 PrePostActionTy &Action) { 7488 Action.Enter(CGF); 7489 CGF.EmitOMPTaskLoopBasedDirective(S); 7490 }; 7491 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7492 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7493 S.getBeginLoc()); 7494 }; 7495 auto LPCRegion = 7496 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7497 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7498 emitEmptyBoundParameters); 7499 } 7500 7501 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7502 const OMPParallelMasterTaskLoopSimdDirective &S) { 7503 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7504 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7505 PrePostActionTy &Action) { 7506 Action.Enter(CGF); 7507 CGF.EmitOMPTaskLoopBasedDirective(S); 7508 }; 7509 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7510 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7511 S.getBeginLoc()); 7512 }; 7513 auto LPCRegion = 7514 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7515 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7516 emitEmptyBoundParameters); 7517 } 7518 7519 // Generate the instructions for '#pragma omp target update' directive. 7520 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7521 const OMPTargetUpdateDirective &S) { 7522 // If we don't have target devices, don't bother emitting the data mapping 7523 // code. 7524 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7525 return; 7526 7527 // Check if we have any if clause associated with the directive. 7528 const Expr *IfCond = nullptr; 7529 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7530 IfCond = C->getCondition(); 7531 7532 // Check if we have any device clause associated with the directive. 7533 const Expr *Device = nullptr; 7534 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7535 Device = C->getDevice(); 7536 7537 OMPLexicalScope Scope(*this, S, OMPD_task); 7538 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7539 } 7540 7541 void CodeGenFunction::EmitOMPGenericLoopDirective( 7542 const OMPGenericLoopDirective &S) { 7543 // Unimplemented, just inline the underlying statement for now. 7544 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7545 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 7546 }; 7547 OMPLexicalScope Scope(*this, S, OMPD_unknown); 7548 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_loop, CodeGen); 7549 } 7550 7551 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7552 const OMPExecutableDirective &D) { 7553 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7554 EmitOMPScanDirective(*SD); 7555 return; 7556 } 7557 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7558 return; 7559 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7560 OMPPrivateScope GlobalsScope(CGF); 7561 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7562 // Capture global firstprivates to avoid crash. 7563 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7564 for (const Expr *Ref : C->varlists()) { 7565 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7566 if (!DRE) 7567 continue; 7568 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7569 if (!VD || VD->hasLocalStorage()) 7570 continue; 7571 if (!CGF.LocalDeclMap.count(VD)) { 7572 LValue GlobLVal = CGF.EmitLValue(Ref); 7573 GlobalsScope.addPrivate( 7574 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7575 } 7576 } 7577 } 7578 } 7579 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7580 (void)GlobalsScope.Privatize(); 7581 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7582 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7583 } else { 7584 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7585 for (const Expr *E : LD->counters()) { 7586 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7587 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7588 LValue GlobLVal = CGF.EmitLValue(E); 7589 GlobalsScope.addPrivate( 7590 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7591 } 7592 if (isa<OMPCapturedExprDecl>(VD)) { 7593 // Emit only those that were not explicitly referenced in clauses. 7594 if (!CGF.LocalDeclMap.count(VD)) 7595 CGF.EmitVarDecl(*VD); 7596 } 7597 } 7598 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7599 if (!C->getNumForLoops()) 7600 continue; 7601 for (unsigned I = LD->getLoopsNumber(), 7602 E = C->getLoopNumIterations().size(); 7603 I < E; ++I) { 7604 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7605 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7606 // Emit only those that were not explicitly referenced in clauses. 7607 if (!CGF.LocalDeclMap.count(VD)) 7608 CGF.EmitVarDecl(*VD); 7609 } 7610 } 7611 } 7612 } 7613 (void)GlobalsScope.Privatize(); 7614 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7615 } 7616 }; 7617 if (D.getDirectiveKind() == OMPD_atomic || 7618 D.getDirectiveKind() == OMPD_critical || 7619 D.getDirectiveKind() == OMPD_section || 7620 D.getDirectiveKind() == OMPD_master || 7621 D.getDirectiveKind() == OMPD_masked) { 7622 EmitStmt(D.getAssociatedStmt()); 7623 } else { 7624 auto LPCRegion = 7625 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7626 OMPSimdLexicalScope Scope(*this, D); 7627 CGM.getOpenMPRuntime().emitInlinedDirective( 7628 *this, 7629 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7630 : D.getDirectiveKind(), 7631 CodeGen); 7632 } 7633 // Check for outer lastprivate conditional update. 7634 checkForLastprivateConditionalUpdate(*this, D); 7635 } 7636