1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
34           for (const auto *I : PreInit->decls()) {
35             if (!I->hasAttr<OMPCaptureNoInitAttr>())
36               CGF.EmitVarDecl(cast<VarDecl>(*I));
37             else {
38               CodeGenFunction::AutoVarEmission Emission =
39                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
40               CGF.EmitAutoVarCleanups(Emission);
41             }
42           }
43         }
44       }
45     }
46   }
47   CodeGenFunction::OMPPrivateScope InlinedShareds;
48 
49   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
50     return CGF.LambdaCaptureFields.lookup(VD) ||
51            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
52            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
53   }
54 
55 public:
56   OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S,
57                   bool AsInlined = false)
58       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
59         InlinedShareds(CGF) {
60     emitPreInitStmt(CGF, S);
61     if (AsInlined) {
62       if (S.hasAssociatedStmt()) {
63         auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
64         for (auto &C : CS->captures()) {
65           if (C.capturesVariable() || C.capturesVariableByCopy()) {
66             auto *VD = C.getCapturedVar();
67             DeclRefExpr DRE(const_cast<VarDecl *>(VD),
68                             isCapturedVar(CGF, VD) ||
69                                 (CGF.CapturedStmtInfo &&
70                                  InlinedShareds.isGlobalVarCaptured(VD)),
71                             VD->getType().getNonReferenceType(), VK_LValue,
72                             SourceLocation());
73             InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
74               return CGF.EmitLValue(&DRE).getAddress();
75             });
76           }
77         }
78         (void)InlinedShareds.Privatize();
79       }
80     }
81   }
82 };
83 
84 /// Private scope for OpenMP loop-based directives, that supports capturing
85 /// of used expression from loop statement.
86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
87   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
88     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
89       if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) {
90         for (const auto *I : PreInits->decls())
91           CGF.EmitVarDecl(cast<VarDecl>(*I));
92       }
93     }
94   }
95 
96 public:
97   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
98       : CodeGenFunction::RunCleanupsScope(CGF) {
99     emitPreInitStmt(CGF, S);
100   }
101 };
102 
103 } // namespace
104 
105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
106   auto &C = getContext();
107   llvm::Value *Size = nullptr;
108   auto SizeInChars = C.getTypeSizeInChars(Ty);
109   if (SizeInChars.isZero()) {
110     // getTypeSizeInChars() returns 0 for a VLA.
111     while (auto *VAT = C.getAsVariableArrayType(Ty)) {
112       llvm::Value *ArraySize;
113       std::tie(ArraySize, Ty) = getVLASize(VAT);
114       Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize;
115     }
116     SizeInChars = C.getTypeSizeInChars(Ty);
117     if (SizeInChars.isZero())
118       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
119     Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
120   } else
121     Size = CGM.getSize(SizeInChars);
122   return Size;
123 }
124 
125 void CodeGenFunction::GenerateOpenMPCapturedVars(
126     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
127   const RecordDecl *RD = S.getCapturedRecordDecl();
128   auto CurField = RD->field_begin();
129   auto CurCap = S.captures().begin();
130   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
131                                                  E = S.capture_init_end();
132        I != E; ++I, ++CurField, ++CurCap) {
133     if (CurField->hasCapturedVLAType()) {
134       auto VAT = CurField->getCapturedVLAType();
135       auto *Val = VLASizeMap[VAT->getSizeExpr()];
136       CapturedVars.push_back(Val);
137     } else if (CurCap->capturesThis())
138       CapturedVars.push_back(CXXThisValue);
139     else if (CurCap->capturesVariableByCopy()) {
140       llvm::Value *CV =
141           EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal();
142 
143       // If the field is not a pointer, we need to save the actual value
144       // and load it as a void pointer.
145       if (!CurField->getType()->isAnyPointerType()) {
146         auto &Ctx = getContext();
147         auto DstAddr = CreateMemTemp(
148             Ctx.getUIntPtrType(),
149             Twine(CurCap->getCapturedVar()->getName()) + ".casted");
150         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
151 
152         auto *SrcAddrVal = EmitScalarConversion(
153             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
154             Ctx.getPointerType(CurField->getType()), SourceLocation());
155         LValue SrcLV =
156             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
157 
158         // Store the value using the source type pointer.
159         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
160 
161         // Load the value using the destination type pointer.
162         CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal();
163       }
164       CapturedVars.push_back(CV);
165     } else {
166       assert(CurCap->capturesVariable() && "Expected capture by reference.");
167       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
168     }
169   }
170 }
171 
172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
173                                     StringRef Name, LValue AddrLV,
174                                     bool isReferenceType = false) {
175   ASTContext &Ctx = CGF.getContext();
176 
177   auto *CastedPtr = CGF.EmitScalarConversion(
178       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
179       Ctx.getPointerType(DstType), SourceLocation());
180   auto TmpAddr =
181       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
182           .getAddress();
183 
184   // If we are dealing with references we need to return the address of the
185   // reference instead of the reference of the value.
186   if (isReferenceType) {
187     QualType RefType = Ctx.getLValueReferenceType(DstType);
188     auto *RefVal = TmpAddr.getPointer();
189     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
190     auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
191     CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true);
192   }
193 
194   return TmpAddr;
195 }
196 
197 llvm::Function *
198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
199   assert(
200       CapturedStmtInfo &&
201       "CapturedStmtInfo should be set when generating the captured function");
202   const CapturedDecl *CD = S.getCapturedDecl();
203   const RecordDecl *RD = S.getCapturedRecordDecl();
204   assert(CD->hasBody() && "missing CapturedDecl body");
205 
206   // Build the argument list.
207   ASTContext &Ctx = CGM.getContext();
208   FunctionArgList Args;
209   Args.append(CD->param_begin(),
210               std::next(CD->param_begin(), CD->getContextParamPosition()));
211   auto I = S.captures().begin();
212   for (auto *FD : RD->fields()) {
213     QualType ArgType = FD->getType();
214     IdentifierInfo *II = nullptr;
215     VarDecl *CapVar = nullptr;
216 
217     // If this is a capture by copy and the type is not a pointer, the outlined
218     // function argument type should be uintptr and the value properly casted to
219     // uintptr. This is necessary given that the runtime library is only able to
220     // deal with pointers. We can pass in the same way the VLA type sizes to the
221     // outlined function.
222     if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
223         I->capturesVariableArrayType())
224       ArgType = Ctx.getUIntPtrType();
225 
226     if (I->capturesVariable() || I->capturesVariableByCopy()) {
227       CapVar = I->getCapturedVar();
228       II = CapVar->getIdentifier();
229     } else if (I->capturesThis())
230       II = &getContext().Idents.get("this");
231     else {
232       assert(I->capturesVariableArrayType());
233       II = &getContext().Idents.get("vla");
234     }
235     if (ArgType->isVariablyModifiedType()) {
236       bool IsReference = ArgType->isLValueReferenceType();
237       ArgType =
238           getContext().getCanonicalParamType(ArgType.getNonReferenceType());
239       if (IsReference && !ArgType->isPointerType()) {
240         ArgType = getContext().getLValueReferenceType(
241             ArgType, /*SpelledAsLValue=*/false);
242       }
243     }
244     Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr,
245                                              FD->getLocation(), II, ArgType));
246     ++I;
247   }
248   Args.append(
249       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
250       CD->param_end());
251 
252   // Create the function declaration.
253   FunctionType::ExtInfo ExtInfo;
254   const CGFunctionInfo &FuncInfo =
255       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
256   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
257 
258   llvm::Function *F = llvm::Function::Create(
259       FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
260       CapturedStmtInfo->getHelperName(), &CGM.getModule());
261   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
262   if (CD->isNothrow())
263     F->addFnAttr(llvm::Attribute::NoUnwind);
264 
265   // Generate the function.
266   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
267                 CD->getBody()->getLocStart());
268   unsigned Cnt = CD->getContextParamPosition();
269   I = S.captures().begin();
270   for (auto *FD : RD->fields()) {
271     // If we are capturing a pointer by copy we don't need to do anything, just
272     // use the value that we get from the arguments.
273     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
274       const VarDecl *CurVD = I->getCapturedVar();
275       Address LocalAddr = GetAddrOfLocalVar(Args[Cnt]);
276       // If the variable is a reference we need to materialize it here.
277       if (CurVD->getType()->isReferenceType()) {
278         Address RefAddr = CreateMemTemp(CurVD->getType(), getPointerAlign(),
279                                         ".materialized_ref");
280         EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, /*Volatile=*/false,
281                           CurVD->getType());
282         LocalAddr = RefAddr;
283       }
284       setAddrOfLocalVar(CurVD, LocalAddr);
285       ++Cnt;
286       ++I;
287       continue;
288     }
289 
290     LValue ArgLVal =
291         MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(),
292                        AlignmentSource::Decl);
293     if (FD->hasCapturedVLAType()) {
294       LValue CastedArgLVal =
295           MakeAddrLValue(castValueFromUintptr(*this, FD->getType(),
296                                               Args[Cnt]->getName(), ArgLVal),
297                          FD->getType(), AlignmentSource::Decl);
298       auto *ExprArg =
299           EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal();
300       auto VAT = FD->getCapturedVLAType();
301       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
302     } else if (I->capturesVariable()) {
303       auto *Var = I->getCapturedVar();
304       QualType VarTy = Var->getType();
305       Address ArgAddr = ArgLVal.getAddress();
306       if (!VarTy->isReferenceType()) {
307         if (ArgLVal.getType()->isLValueReferenceType()) {
308           ArgAddr = EmitLoadOfReference(
309               ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
310         } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
311           assert(ArgLVal.getType()->isPointerType());
312           ArgAddr = EmitLoadOfPointer(
313               ArgAddr, ArgLVal.getType()->castAs<PointerType>());
314         }
315       }
316       setAddrOfLocalVar(
317           Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var)));
318     } else if (I->capturesVariableByCopy()) {
319       assert(!FD->getType()->isAnyPointerType() &&
320              "Not expecting a captured pointer.");
321       auto *Var = I->getCapturedVar();
322       QualType VarTy = Var->getType();
323       setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(),
324                                                   Args[Cnt]->getName(), ArgLVal,
325                                                   VarTy->isReferenceType()));
326     } else {
327       // If 'this' is captured, load it into CXXThisValue.
328       assert(I->capturesThis());
329       CXXThisValue =
330           EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal();
331     }
332     ++Cnt;
333     ++I;
334   }
335 
336   PGO.assignRegionCounters(GlobalDecl(CD), F);
337   CapturedStmtInfo->EmitBody(*this, CD->getBody());
338   FinishFunction(CD->getBodyRBrace());
339 
340   return F;
341 }
342 
343 //===----------------------------------------------------------------------===//
344 //                              OpenMP Directive Emission
345 //===----------------------------------------------------------------------===//
346 void CodeGenFunction::EmitOMPAggregateAssign(
347     Address DestAddr, Address SrcAddr, QualType OriginalType,
348     const llvm::function_ref<void(Address, Address)> &CopyGen) {
349   // Perform element-by-element initialization.
350   QualType ElementTy;
351 
352   // Drill down to the base element type on both arrays.
353   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
354   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
355   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
356 
357   auto SrcBegin = SrcAddr.getPointer();
358   auto DestBegin = DestAddr.getPointer();
359   // Cast from pointer to array type to pointer to single element.
360   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
361   // The basic structure here is a while-do loop.
362   auto BodyBB = createBasicBlock("omp.arraycpy.body");
363   auto DoneBB = createBasicBlock("omp.arraycpy.done");
364   auto IsEmpty =
365       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
366   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
367 
368   // Enter the loop body, making that address the current address.
369   auto EntryBB = Builder.GetInsertBlock();
370   EmitBlock(BodyBB);
371 
372   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
373 
374   llvm::PHINode *SrcElementPHI =
375     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
376   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
377   Address SrcElementCurrent =
378       Address(SrcElementPHI,
379               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
380 
381   llvm::PHINode *DestElementPHI =
382     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
383   DestElementPHI->addIncoming(DestBegin, EntryBB);
384   Address DestElementCurrent =
385     Address(DestElementPHI,
386             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
387 
388   // Emit copy.
389   CopyGen(DestElementCurrent, SrcElementCurrent);
390 
391   // Shift the address forward by one element.
392   auto DestElementNext = Builder.CreateConstGEP1_32(
393       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
394   auto SrcElementNext = Builder.CreateConstGEP1_32(
395       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
396   // Check whether we've reached the end.
397   auto Done =
398       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
399   Builder.CreateCondBr(Done, DoneBB, BodyBB);
400   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
401   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
402 
403   // Done.
404   EmitBlock(DoneBB, /*IsFinished=*/true);
405 }
406 
407 /// Check if the combiner is a call to UDR combiner and if it is so return the
408 /// UDR decl used for reduction.
409 static const OMPDeclareReductionDecl *
410 getReductionInit(const Expr *ReductionOp) {
411   if (auto *CE = dyn_cast<CallExpr>(ReductionOp))
412     if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
413       if (auto *DRE =
414               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
415         if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
416           return DRD;
417   return nullptr;
418 }
419 
420 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
421                                              const OMPDeclareReductionDecl *DRD,
422                                              const Expr *InitOp,
423                                              Address Private, Address Original,
424                                              QualType Ty) {
425   if (DRD->getInitializer()) {
426     std::pair<llvm::Function *, llvm::Function *> Reduction =
427         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
428     auto *CE = cast<CallExpr>(InitOp);
429     auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
430     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
431     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
432     auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
433     auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
434     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
435     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
436                             [=]() -> Address { return Private; });
437     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
438                             [=]() -> Address { return Original; });
439     (void)PrivateScope.Privatize();
440     RValue Func = RValue::get(Reduction.second);
441     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
442     CGF.EmitIgnoredExpr(InitOp);
443   } else {
444     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
445     auto *GV = new llvm::GlobalVariable(
446         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
447         llvm::GlobalValue::PrivateLinkage, Init, ".init");
448     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
449     RValue InitRVal;
450     switch (CGF.getEvaluationKind(Ty)) {
451     case TEK_Scalar:
452       InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation());
453       break;
454     case TEK_Complex:
455       InitRVal =
456           RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation()));
457       break;
458     case TEK_Aggregate:
459       InitRVal = RValue::getAggregate(LV.getAddress());
460       break;
461     }
462     OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue);
463     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
464     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
465                          /*IsInitializer=*/false);
466   }
467 }
468 
469 /// \brief Emit initialization of arrays of complex types.
470 /// \param DestAddr Address of the array.
471 /// \param Type Type of array.
472 /// \param Init Initial expression of array.
473 /// \param SrcAddr Address of the original array.
474 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
475                                  QualType Type, const Expr *Init,
476                                  Address SrcAddr = Address::invalid()) {
477   auto *DRD = getReductionInit(Init);
478   // Perform element-by-element initialization.
479   QualType ElementTy;
480 
481   // Drill down to the base element type on both arrays.
482   auto ArrayTy = Type->getAsArrayTypeUnsafe();
483   auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
484   DestAddr =
485       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
486   if (DRD)
487     SrcAddr =
488         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
489 
490   llvm::Value *SrcBegin = nullptr;
491   if (DRD)
492     SrcBegin = SrcAddr.getPointer();
493   auto DestBegin = DestAddr.getPointer();
494   // Cast from pointer to array type to pointer to single element.
495   auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
496   // The basic structure here is a while-do loop.
497   auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
498   auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
499   auto IsEmpty =
500       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
501   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
502 
503   // Enter the loop body, making that address the current address.
504   auto EntryBB = CGF.Builder.GetInsertBlock();
505   CGF.EmitBlock(BodyBB);
506 
507   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
508 
509   llvm::PHINode *SrcElementPHI = nullptr;
510   Address SrcElementCurrent = Address::invalid();
511   if (DRD) {
512     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
513                                           "omp.arraycpy.srcElementPast");
514     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
515     SrcElementCurrent =
516         Address(SrcElementPHI,
517                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
518   }
519   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
520       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
521   DestElementPHI->addIncoming(DestBegin, EntryBB);
522   Address DestElementCurrent =
523       Address(DestElementPHI,
524               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
525 
526   // Emit copy.
527   {
528     CodeGenFunction::RunCleanupsScope InitScope(CGF);
529     if (DRD && (DRD->getInitializer() || !Init)) {
530       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
531                                        SrcElementCurrent, ElementTy);
532     } else
533       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
534                            /*IsInitializer=*/false);
535   }
536 
537   if (DRD) {
538     // Shift the address forward by one element.
539     auto SrcElementNext = CGF.Builder.CreateConstGEP1_32(
540         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
541     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
542   }
543 
544   // Shift the address forward by one element.
545   auto DestElementNext = CGF.Builder.CreateConstGEP1_32(
546       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
547   // Check whether we've reached the end.
548   auto Done =
549       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
550   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
551   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
552 
553   // Done.
554   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
555 }
556 
557 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
558                                   Address SrcAddr, const VarDecl *DestVD,
559                                   const VarDecl *SrcVD, const Expr *Copy) {
560   if (OriginalType->isArrayType()) {
561     auto *BO = dyn_cast<BinaryOperator>(Copy);
562     if (BO && BO->getOpcode() == BO_Assign) {
563       // Perform simple memcpy for simple copying.
564       EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
565     } else {
566       // For arrays with complex element types perform element by element
567       // copying.
568       EmitOMPAggregateAssign(
569           DestAddr, SrcAddr, OriginalType,
570           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
571             // Working with the single array element, so have to remap
572             // destination and source variables to corresponding array
573             // elements.
574             CodeGenFunction::OMPPrivateScope Remap(*this);
575             Remap.addPrivate(DestVD, [DestElement]() -> Address {
576               return DestElement;
577             });
578             Remap.addPrivate(
579                 SrcVD, [SrcElement]() -> Address { return SrcElement; });
580             (void)Remap.Privatize();
581             EmitIgnoredExpr(Copy);
582           });
583     }
584   } else {
585     // Remap pseudo source variable to private copy.
586     CodeGenFunction::OMPPrivateScope Remap(*this);
587     Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
588     Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
589     (void)Remap.Privatize();
590     // Emit copying of the whole variable.
591     EmitIgnoredExpr(Copy);
592   }
593 }
594 
595 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
596                                                 OMPPrivateScope &PrivateScope) {
597   if (!HaveInsertPoint())
598     return false;
599   bool FirstprivateIsLastprivate = false;
600   llvm::DenseSet<const VarDecl *> Lastprivates;
601   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
602     for (const auto *D : C->varlists())
603       Lastprivates.insert(
604           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
605   }
606   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
607   CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt()));
608   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
609     auto IRef = C->varlist_begin();
610     auto InitsRef = C->inits().begin();
611     for (auto IInit : C->private_copies()) {
612       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
613       bool ThisFirstprivateIsLastprivate =
614           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
615       auto *CapFD = CapturesInfo.lookup(OrigVD);
616       auto *FD = CapturedStmtInfo->lookup(OrigVD);
617       if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) &&
618           !FD->getType()->isReferenceType()) {
619         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
620         ++IRef;
621         ++InitsRef;
622         continue;
623       }
624       FirstprivateIsLastprivate =
625           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
626       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
627         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
628         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
629         bool IsRegistered;
630         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
631                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
632                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
633         Address OriginalAddr = EmitLValue(&DRE).getAddress();
634         QualType Type = VD->getType();
635         if (Type->isArrayType()) {
636           // Emit VarDecl with copy init for arrays.
637           // Get the address of the original variable captured in current
638           // captured region.
639           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
640             auto Emission = EmitAutoVarAlloca(*VD);
641             auto *Init = VD->getInit();
642             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
643               // Perform simple memcpy.
644               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
645                                   Type);
646             } else {
647               EmitOMPAggregateAssign(
648                   Emission.getAllocatedAddress(), OriginalAddr, Type,
649                   [this, VDInit, Init](Address DestElement,
650                                        Address SrcElement) {
651                     // Clean up any temporaries needed by the initialization.
652                     RunCleanupsScope InitScope(*this);
653                     // Emit initialization for single element.
654                     setAddrOfLocalVar(VDInit, SrcElement);
655                     EmitAnyExprToMem(Init, DestElement,
656                                      Init->getType().getQualifiers(),
657                                      /*IsInitializer*/ false);
658                     LocalDeclMap.erase(VDInit);
659                   });
660             }
661             EmitAutoVarCleanups(Emission);
662             return Emission.getAllocatedAddress();
663           });
664         } else {
665           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
666             // Emit private VarDecl with copy init.
667             // Remap temp VDInit variable to the address of the original
668             // variable
669             // (for proper handling of captured global variables).
670             setAddrOfLocalVar(VDInit, OriginalAddr);
671             EmitDecl(*VD);
672             LocalDeclMap.erase(VDInit);
673             return GetAddrOfLocalVar(VD);
674           });
675         }
676         assert(IsRegistered &&
677                "firstprivate var already registered as private");
678         // Silence the warning about unused variable.
679         (void)IsRegistered;
680       }
681       ++IRef;
682       ++InitsRef;
683     }
684   }
685   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
686 }
687 
688 void CodeGenFunction::EmitOMPPrivateClause(
689     const OMPExecutableDirective &D,
690     CodeGenFunction::OMPPrivateScope &PrivateScope) {
691   if (!HaveInsertPoint())
692     return;
693   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
694   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
695     auto IRef = C->varlist_begin();
696     for (auto IInit : C->private_copies()) {
697       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
698       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
699         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
700         bool IsRegistered =
701             PrivateScope.addPrivate(OrigVD, [&]() -> Address {
702               // Emit private VarDecl with copy init.
703               EmitDecl(*VD);
704               return GetAddrOfLocalVar(VD);
705             });
706         assert(IsRegistered && "private var already registered as private");
707         // Silence the warning about unused variable.
708         (void)IsRegistered;
709       }
710       ++IRef;
711     }
712   }
713 }
714 
715 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
716   if (!HaveInsertPoint())
717     return false;
718   // threadprivate_var1 = master_threadprivate_var1;
719   // operator=(threadprivate_var2, master_threadprivate_var2);
720   // ...
721   // __kmpc_barrier(&loc, global_tid);
722   llvm::DenseSet<const VarDecl *> CopiedVars;
723   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
724   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
725     auto IRef = C->varlist_begin();
726     auto ISrcRef = C->source_exprs().begin();
727     auto IDestRef = C->destination_exprs().begin();
728     for (auto *AssignOp : C->assignment_ops()) {
729       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
730       QualType Type = VD->getType();
731       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
732         // Get the address of the master variable. If we are emitting code with
733         // TLS support, the address is passed from the master as field in the
734         // captured declaration.
735         Address MasterAddr = Address::invalid();
736         if (getLangOpts().OpenMPUseTLS &&
737             getContext().getTargetInfo().isTLSSupported()) {
738           assert(CapturedStmtInfo->lookup(VD) &&
739                  "Copyin threadprivates should have been captured!");
740           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
741                           VK_LValue, (*IRef)->getExprLoc());
742           MasterAddr = EmitLValue(&DRE).getAddress();
743           LocalDeclMap.erase(VD);
744         } else {
745           MasterAddr =
746             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
747                                         : CGM.GetAddrOfGlobal(VD),
748                     getContext().getDeclAlign(VD));
749         }
750         // Get the address of the threadprivate variable.
751         Address PrivateAddr = EmitLValue(*IRef).getAddress();
752         if (CopiedVars.size() == 1) {
753           // At first check if current thread is a master thread. If it is, no
754           // need to copy data.
755           CopyBegin = createBasicBlock("copyin.not.master");
756           CopyEnd = createBasicBlock("copyin.not.master.end");
757           Builder.CreateCondBr(
758               Builder.CreateICmpNE(
759                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
760                   Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
761               CopyBegin, CopyEnd);
762           EmitBlock(CopyBegin);
763         }
764         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
765         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
766         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
767       }
768       ++IRef;
769       ++ISrcRef;
770       ++IDestRef;
771     }
772   }
773   if (CopyEnd) {
774     // Exit out of copying procedure for non-master thread.
775     EmitBlock(CopyEnd, /*IsFinished=*/true);
776     return true;
777   }
778   return false;
779 }
780 
781 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
782     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
783   if (!HaveInsertPoint())
784     return false;
785   bool HasAtLeastOneLastprivate = false;
786   llvm::DenseSet<const VarDecl *> SIMDLCVs;
787   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
788     auto *LoopDirective = cast<OMPLoopDirective>(&D);
789     for (auto *C : LoopDirective->counters()) {
790       SIMDLCVs.insert(
791           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
792     }
793   }
794   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
795   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
796     HasAtLeastOneLastprivate = true;
797     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()))
798       break;
799     auto IRef = C->varlist_begin();
800     auto IDestRef = C->destination_exprs().begin();
801     for (auto *IInit : C->private_copies()) {
802       // Keep the address of the original variable for future update at the end
803       // of the loop.
804       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
805       // Taskloops do not require additional initialization, it is done in
806       // runtime support library.
807       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
808         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
809         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
810           DeclRefExpr DRE(
811               const_cast<VarDecl *>(OrigVD),
812               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
813                   OrigVD) != nullptr,
814               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
815           return EmitLValue(&DRE).getAddress();
816         });
817         // Check if the variable is also a firstprivate: in this case IInit is
818         // not generated. Initialization of this variable will happen in codegen
819         // for 'firstprivate' clause.
820         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
821           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
822           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
823             // Emit private VarDecl with copy init.
824             EmitDecl(*VD);
825             return GetAddrOfLocalVar(VD);
826           });
827           assert(IsRegistered &&
828                  "lastprivate var already registered as private");
829           (void)IsRegistered;
830         }
831       }
832       ++IRef;
833       ++IDestRef;
834     }
835   }
836   return HasAtLeastOneLastprivate;
837 }
838 
839 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
840     const OMPExecutableDirective &D, bool NoFinals,
841     llvm::Value *IsLastIterCond) {
842   if (!HaveInsertPoint())
843     return;
844   // Emit following code:
845   // if (<IsLastIterCond>) {
846   //   orig_var1 = private_orig_var1;
847   //   ...
848   //   orig_varn = private_orig_varn;
849   // }
850   llvm::BasicBlock *ThenBB = nullptr;
851   llvm::BasicBlock *DoneBB = nullptr;
852   if (IsLastIterCond) {
853     ThenBB = createBasicBlock(".omp.lastprivate.then");
854     DoneBB = createBasicBlock(".omp.lastprivate.done");
855     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
856     EmitBlock(ThenBB);
857   }
858   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
859   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
860   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
861     auto IC = LoopDirective->counters().begin();
862     for (auto F : LoopDirective->finals()) {
863       auto *D =
864           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
865       if (NoFinals)
866         AlreadyEmittedVars.insert(D);
867       else
868         LoopCountersAndUpdates[D] = F;
869       ++IC;
870     }
871   }
872   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
873     auto IRef = C->varlist_begin();
874     auto ISrcRef = C->source_exprs().begin();
875     auto IDestRef = C->destination_exprs().begin();
876     for (auto *AssignOp : C->assignment_ops()) {
877       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
878       QualType Type = PrivateVD->getType();
879       auto *CanonicalVD = PrivateVD->getCanonicalDecl();
880       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
881         // If lastprivate variable is a loop control variable for loop-based
882         // directive, update its value before copyin back to original
883         // variable.
884         if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
885           EmitIgnoredExpr(FinalExpr);
886         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
887         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
888         // Get the address of the original variable.
889         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
890         // Get the address of the private variable.
891         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
892         if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
893           PrivateAddr =
894               Address(Builder.CreateLoad(PrivateAddr),
895                       getNaturalTypeAlignment(RefTy->getPointeeType()));
896         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
897       }
898       ++IRef;
899       ++ISrcRef;
900       ++IDestRef;
901     }
902     if (auto *PostUpdate = C->getPostUpdateExpr())
903       EmitIgnoredExpr(PostUpdate);
904   }
905   if (IsLastIterCond)
906     EmitBlock(DoneBB, /*IsFinished=*/true);
907 }
908 
909 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
910                           LValue BaseLV, llvm::Value *Addr) {
911   Address Tmp = Address::invalid();
912   Address TopTmp = Address::invalid();
913   Address MostTopTmp = Address::invalid();
914   BaseTy = BaseTy.getNonReferenceType();
915   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
916          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
917     Tmp = CGF.CreateMemTemp(BaseTy);
918     if (TopTmp.isValid())
919       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
920     else
921       MostTopTmp = Tmp;
922     TopTmp = Tmp;
923     BaseTy = BaseTy->getPointeeType();
924   }
925   llvm::Type *Ty = BaseLV.getPointer()->getType();
926   if (Tmp.isValid())
927     Ty = Tmp.getElementType();
928   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
929   if (Tmp.isValid()) {
930     CGF.Builder.CreateStore(Addr, Tmp);
931     return MostTopTmp;
932   }
933   return Address(Addr, BaseLV.getAlignment());
934 }
935 
936 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
937                           LValue BaseLV) {
938   BaseTy = BaseTy.getNonReferenceType();
939   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
940          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
941     if (auto *PtrTy = BaseTy->getAs<PointerType>())
942       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
943     else {
944       BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(),
945                                              BaseTy->castAs<ReferenceType>());
946     }
947     BaseTy = BaseTy->getPointeeType();
948   }
949   return CGF.MakeAddrLValue(
950       Address(
951           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
952               BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()),
953           BaseLV.getAlignment()),
954       BaseLV.getType(), BaseLV.getAlignmentSource());
955 }
956 
957 void CodeGenFunction::EmitOMPReductionClauseInit(
958     const OMPExecutableDirective &D,
959     CodeGenFunction::OMPPrivateScope &PrivateScope) {
960   if (!HaveInsertPoint())
961     return;
962   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
963     auto ILHS = C->lhs_exprs().begin();
964     auto IRHS = C->rhs_exprs().begin();
965     auto IPriv = C->privates().begin();
966     auto IRed = C->reduction_ops().begin();
967     for (auto IRef : C->varlists()) {
968       auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
969       auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
970       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
971       auto *DRD = getReductionInit(*IRed);
972       if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) {
973         auto *Base = OASE->getBase()->IgnoreParenImpCasts();
974         while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
975           Base = TempOASE->getBase()->IgnoreParenImpCasts();
976         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
977           Base = TempASE->getBase()->IgnoreParenImpCasts();
978         auto *DE = cast<DeclRefExpr>(Base);
979         auto *OrigVD = cast<VarDecl>(DE->getDecl());
980         auto OASELValueLB = EmitOMPArraySectionExpr(OASE);
981         auto OASELValueUB =
982             EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
983         auto OriginalBaseLValue = EmitLValue(DE);
984         LValue BaseLValue =
985             loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(),
986                         OriginalBaseLValue);
987         // Store the address of the original variable associated with the LHS
988         // implicit variable.
989         PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address {
990           return OASELValueLB.getAddress();
991         });
992         // Emit reduction copy.
993         bool IsRegistered = PrivateScope.addPrivate(
994             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB,
995                      OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address {
996               // Emit VarDecl with copy init for arrays.
997               // Get the address of the original variable captured in current
998               // captured region.
999               auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(),
1000                                                  OASELValueLB.getPointer());
1001               Size = Builder.CreateNUWAdd(
1002                   Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
1003               CodeGenFunction::OpaqueValueMapping OpaqueMap(
1004                   *this, cast<OpaqueValueExpr>(
1005                              getContext()
1006                                  .getAsVariableArrayType(PrivateVD->getType())
1007                                  ->getSizeExpr()),
1008                   RValue::get(Size));
1009               EmitVariablyModifiedType(PrivateVD->getType());
1010               auto Emission = EmitAutoVarAlloca(*PrivateVD);
1011               auto Addr = Emission.getAllocatedAddress();
1012               auto *Init = PrivateVD->getInit();
1013               EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
1014                                    DRD ? *IRed : Init,
1015                                    OASELValueLB.getAddress());
1016               EmitAutoVarCleanups(Emission);
1017               // Emit private VarDecl with reduction init.
1018               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
1019                                                    OASELValueLB.getPointer());
1020               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
1021               return castToBase(*this, OrigVD->getType(),
1022                                 OASELValueLB.getType(), OriginalBaseLValue,
1023                                 Ptr);
1024             });
1025         assert(IsRegistered && "private var already registered as private");
1026         // Silence the warning about unused variable.
1027         (void)IsRegistered;
1028         PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1029           return GetAddrOfLocalVar(PrivateVD);
1030         });
1031       } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) {
1032         auto *Base = ASE->getBase()->IgnoreParenImpCasts();
1033         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1034           Base = TempASE->getBase()->IgnoreParenImpCasts();
1035         auto *DE = cast<DeclRefExpr>(Base);
1036         auto *OrigVD = cast<VarDecl>(DE->getDecl());
1037         auto ASELValue = EmitLValue(ASE);
1038         auto OriginalBaseLValue = EmitLValue(DE);
1039         LValue BaseLValue = loadToBegin(
1040             *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue);
1041         // Store the address of the original variable associated with the LHS
1042         // implicit variable.
1043         PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address {
1044           return ASELValue.getAddress();
1045         });
1046         // Emit reduction copy.
1047         bool IsRegistered = PrivateScope.addPrivate(
1048             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue,
1049                      OriginalBaseLValue, DRD, IRed]() -> Address {
1050               // Emit private VarDecl with reduction init.
1051               AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1052               auto Addr = Emission.getAllocatedAddress();
1053               if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1054                 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1055                                                  ASELValue.getAddress(),
1056                                                  ASELValue.getType());
1057               } else
1058                 EmitAutoVarInit(Emission);
1059               EmitAutoVarCleanups(Emission);
1060               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
1061                                                    ASELValue.getPointer());
1062               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
1063               return castToBase(*this, OrigVD->getType(), ASELValue.getType(),
1064                                 OriginalBaseLValue, Ptr);
1065             });
1066         assert(IsRegistered && "private var already registered as private");
1067         // Silence the warning about unused variable.
1068         (void)IsRegistered;
1069         PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1070           return Builder.CreateElementBitCast(
1071               GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()),
1072               "rhs.begin");
1073         });
1074       } else {
1075         auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
1076         QualType Type = PrivateVD->getType();
1077         if (getContext().getAsArrayType(Type)) {
1078           // Store the address of the original variable associated with the LHS
1079           // implicit variable.
1080           DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1081                           CapturedStmtInfo->lookup(OrigVD) != nullptr,
1082                           IRef->getType(), VK_LValue, IRef->getExprLoc());
1083           Address OriginalAddr = EmitLValue(&DRE).getAddress();
1084           PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr,
1085                                           LHSVD]() -> Address {
1086             OriginalAddr = Builder.CreateElementBitCast(
1087                 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1088             return OriginalAddr;
1089           });
1090           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
1091             if (Type->isVariablyModifiedType()) {
1092               CodeGenFunction::OpaqueValueMapping OpaqueMap(
1093                   *this, cast<OpaqueValueExpr>(
1094                              getContext()
1095                                  .getAsVariableArrayType(PrivateVD->getType())
1096                                  ->getSizeExpr()),
1097                   RValue::get(
1098                       getTypeSize(OrigVD->getType().getNonReferenceType())));
1099               EmitVariablyModifiedType(Type);
1100             }
1101             auto Emission = EmitAutoVarAlloca(*PrivateVD);
1102             auto Addr = Emission.getAllocatedAddress();
1103             auto *Init = PrivateVD->getInit();
1104             EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
1105                                  DRD ? *IRed : Init, OriginalAddr);
1106             EmitAutoVarCleanups(Emission);
1107             return Emission.getAllocatedAddress();
1108           });
1109           assert(IsRegistered && "private var already registered as private");
1110           // Silence the warning about unused variable.
1111           (void)IsRegistered;
1112           PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1113             return Builder.CreateElementBitCast(
1114                 GetAddrOfLocalVar(PrivateVD),
1115                 ConvertTypeForMem(RHSVD->getType()), "rhs.begin");
1116           });
1117         } else {
1118           // Store the address of the original variable associated with the LHS
1119           // implicit variable.
1120           Address OriginalAddr = Address::invalid();
1121           PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef,
1122                                           &OriginalAddr]() -> Address {
1123             DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1124                             CapturedStmtInfo->lookup(OrigVD) != nullptr,
1125                             IRef->getType(), VK_LValue, IRef->getExprLoc());
1126             OriginalAddr = EmitLValue(&DRE).getAddress();
1127             return OriginalAddr;
1128           });
1129           // Emit reduction copy.
1130           bool IsRegistered = PrivateScope.addPrivate(
1131               OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address {
1132                 // Emit private VarDecl with reduction init.
1133                 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1134                 auto Addr = Emission.getAllocatedAddress();
1135                 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1136                   emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1137                                                    OriginalAddr,
1138                                                    PrivateVD->getType());
1139                 } else
1140                   EmitAutoVarInit(Emission);
1141                 EmitAutoVarCleanups(Emission);
1142                 return Addr;
1143               });
1144           assert(IsRegistered && "private var already registered as private");
1145           // Silence the warning about unused variable.
1146           (void)IsRegistered;
1147           PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1148             return GetAddrOfLocalVar(PrivateVD);
1149           });
1150         }
1151       }
1152       ++ILHS;
1153       ++IRHS;
1154       ++IPriv;
1155       ++IRed;
1156     }
1157   }
1158 }
1159 
1160 void CodeGenFunction::EmitOMPReductionClauseFinal(
1161     const OMPExecutableDirective &D) {
1162   if (!HaveInsertPoint())
1163     return;
1164   llvm::SmallVector<const Expr *, 8> Privates;
1165   llvm::SmallVector<const Expr *, 8> LHSExprs;
1166   llvm::SmallVector<const Expr *, 8> RHSExprs;
1167   llvm::SmallVector<const Expr *, 8> ReductionOps;
1168   bool HasAtLeastOneReduction = false;
1169   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1170     HasAtLeastOneReduction = true;
1171     Privates.append(C->privates().begin(), C->privates().end());
1172     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1173     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1174     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1175   }
1176   if (HasAtLeastOneReduction) {
1177     // Emit nowait reduction if nowait clause is present or directive is a
1178     // parallel directive (it always has implicit barrier).
1179     CGM.getOpenMPRuntime().emitReduction(
1180         *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
1181         D.getSingleClause<OMPNowaitClause>() ||
1182             isOpenMPParallelDirective(D.getDirectiveKind()) ||
1183             D.getDirectiveKind() == OMPD_simd,
1184         D.getDirectiveKind() == OMPD_simd);
1185   }
1186 }
1187 
1188 static void emitPostUpdateForReductionClause(
1189     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1190     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1191   if (!CGF.HaveInsertPoint())
1192     return;
1193   llvm::BasicBlock *DoneBB = nullptr;
1194   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1195     if (auto *PostUpdate = C->getPostUpdateExpr()) {
1196       if (!DoneBB) {
1197         if (auto *Cond = CondGen(CGF)) {
1198           // If the first post-update expression is found, emit conditional
1199           // block if it was requested.
1200           auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1201           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1202           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1203           CGF.EmitBlock(ThenBB);
1204         }
1205       }
1206       CGF.EmitIgnoredExpr(PostUpdate);
1207     }
1208   }
1209   if (DoneBB)
1210     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1211 }
1212 
1213 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
1214                                            const OMPExecutableDirective &S,
1215                                            OpenMPDirectiveKind InnermostKind,
1216                                            const RegionCodeGenTy &CodeGen) {
1217   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
1218   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
1219       emitParallelOrTeamsOutlinedFunction(S,
1220           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1221   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1222     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1223     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1224                                          /*IgnoreResultAssign*/ true);
1225     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1226         CGF, NumThreads, NumThreadsClause->getLocStart());
1227   }
1228   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1229     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1230     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1231         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
1232   }
1233   const Expr *IfCond = nullptr;
1234   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1235     if (C->getNameModifier() == OMPD_unknown ||
1236         C->getNameModifier() == OMPD_parallel) {
1237       IfCond = C->getCondition();
1238       break;
1239     }
1240   }
1241 
1242   OMPLexicalScope Scope(CGF, S);
1243   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1244   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1245   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
1246                                               CapturedVars, IfCond);
1247 }
1248 
1249 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1250   // Emit parallel region as a standalone region.
1251   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1252     OMPPrivateScope PrivateScope(CGF);
1253     bool Copyins = CGF.EmitOMPCopyinClause(S);
1254     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1255     if (Copyins) {
1256       // Emit implicit barrier to synchronize threads and avoid data races on
1257       // propagation master's thread values of threadprivate variables to local
1258       // instances of that variables of all other implicit threads.
1259       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1260           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
1261           /*ForceSimpleCall=*/true);
1262     }
1263     CGF.EmitOMPPrivateClause(S, PrivateScope);
1264     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1265     (void)PrivateScope.Privatize();
1266     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1267     CGF.EmitOMPReductionClauseFinal(S);
1268   };
1269   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
1270   emitPostUpdateForReductionClause(
1271       *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1272 }
1273 
1274 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1275                                       JumpDest LoopExit) {
1276   RunCleanupsScope BodyScope(*this);
1277   // Update counters values on current iteration.
1278   for (auto I : D.updates()) {
1279     EmitIgnoredExpr(I);
1280   }
1281   // Update the linear variables.
1282   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1283     for (auto *U : C->updates())
1284       EmitIgnoredExpr(U);
1285   }
1286 
1287   // On a continue in the body, jump to the end.
1288   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
1289   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1290   // Emit loop body.
1291   EmitStmt(D.getBody());
1292   // The end (updates/cleanups).
1293   EmitBlock(Continue.getBlock());
1294   BreakContinueStack.pop_back();
1295 }
1296 
1297 void CodeGenFunction::EmitOMPInnerLoop(
1298     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1299     const Expr *IncExpr,
1300     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
1301     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
1302   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1303 
1304   // Start the loop with a block that tests the condition.
1305   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1306   EmitBlock(CondBlock);
1307   const SourceRange &R = S.getSourceRange();
1308   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1309                  SourceLocToDebugLoc(R.getEnd()));
1310 
1311   // If there are any cleanups between here and the loop-exit scope,
1312   // create a block to stage a loop exit along.
1313   auto ExitBlock = LoopExit.getBlock();
1314   if (RequiresCleanup)
1315     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1316 
1317   auto LoopBody = createBasicBlock("omp.inner.for.body");
1318 
1319   // Emit condition.
1320   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1321   if (ExitBlock != LoopExit.getBlock()) {
1322     EmitBlock(ExitBlock);
1323     EmitBranchThroughCleanup(LoopExit);
1324   }
1325 
1326   EmitBlock(LoopBody);
1327   incrementProfileCounter(&S);
1328 
1329   // Create a block for the increment.
1330   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1331   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1332 
1333   BodyGen(*this);
1334 
1335   // Emit "IV = IV + 1" and a back-edge to the condition block.
1336   EmitBlock(Continue.getBlock());
1337   EmitIgnoredExpr(IncExpr);
1338   PostIncGen(*this);
1339   BreakContinueStack.pop_back();
1340   EmitBranch(CondBlock);
1341   LoopStack.pop();
1342   // Emit the fall-through block.
1343   EmitBlock(LoopExit.getBlock());
1344 }
1345 
1346 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1347   if (!HaveInsertPoint())
1348     return;
1349   // Emit inits for the linear variables.
1350   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1351     for (auto *Init : C->inits()) {
1352       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1353       if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1354         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1355         auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1356         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1357                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1358                         VD->getInit()->getType(), VK_LValue,
1359                         VD->getInit()->getExprLoc());
1360         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1361                                                 VD->getType()),
1362                        /*capturedByInit=*/false);
1363         EmitAutoVarCleanups(Emission);
1364       } else
1365         EmitVarDecl(*VD);
1366     }
1367     // Emit the linear steps for the linear clauses.
1368     // If a step is not constant, it is pre-calculated before the loop.
1369     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1370       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1371         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1372         // Emit calculation of the linear step.
1373         EmitIgnoredExpr(CS);
1374       }
1375   }
1376 }
1377 
1378 void CodeGenFunction::EmitOMPLinearClauseFinal(
1379     const OMPLoopDirective &D,
1380     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1381   if (!HaveInsertPoint())
1382     return;
1383   llvm::BasicBlock *DoneBB = nullptr;
1384   // Emit the final values of the linear variables.
1385   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1386     auto IC = C->varlist_begin();
1387     for (auto *F : C->finals()) {
1388       if (!DoneBB) {
1389         if (auto *Cond = CondGen(*this)) {
1390           // If the first post-update expression is found, emit conditional
1391           // block if it was requested.
1392           auto *ThenBB = createBasicBlock(".omp.linear.pu");
1393           DoneBB = createBasicBlock(".omp.linear.pu.done");
1394           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1395           EmitBlock(ThenBB);
1396         }
1397       }
1398       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1399       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1400                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1401                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1402       Address OrigAddr = EmitLValue(&DRE).getAddress();
1403       CodeGenFunction::OMPPrivateScope VarScope(*this);
1404       VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; });
1405       (void)VarScope.Privatize();
1406       EmitIgnoredExpr(F);
1407       ++IC;
1408     }
1409     if (auto *PostUpdate = C->getPostUpdateExpr())
1410       EmitIgnoredExpr(PostUpdate);
1411   }
1412   if (DoneBB)
1413     EmitBlock(DoneBB, /*IsFinished=*/true);
1414 }
1415 
1416 static void emitAlignedClause(CodeGenFunction &CGF,
1417                               const OMPExecutableDirective &D) {
1418   if (!CGF.HaveInsertPoint())
1419     return;
1420   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1421     unsigned ClauseAlignment = 0;
1422     if (auto AlignmentExpr = Clause->getAlignment()) {
1423       auto AlignmentCI =
1424           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1425       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1426     }
1427     for (auto E : Clause->varlists()) {
1428       unsigned Alignment = ClauseAlignment;
1429       if (Alignment == 0) {
1430         // OpenMP [2.8.1, Description]
1431         // If no optional parameter is specified, implementation-defined default
1432         // alignments for SIMD instructions on the target platforms are assumed.
1433         Alignment =
1434             CGF.getContext()
1435                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1436                     E->getType()->getPointeeType()))
1437                 .getQuantity();
1438       }
1439       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1440              "alignment is not power of 2");
1441       if (Alignment != 0) {
1442         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1443         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1444       }
1445     }
1446   }
1447 }
1448 
1449 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1450     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1451   if (!HaveInsertPoint())
1452     return;
1453   auto I = S.private_counters().begin();
1454   for (auto *E : S.counters()) {
1455     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1456     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1457     (void)LoopScope.addPrivate(VD, [&]() -> Address {
1458       // Emit var without initialization.
1459       if (!LocalDeclMap.count(PrivateVD)) {
1460         auto VarEmission = EmitAutoVarAlloca(*PrivateVD);
1461         EmitAutoVarCleanups(VarEmission);
1462       }
1463       DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1464                       /*RefersToEnclosingVariableOrCapture=*/false,
1465                       (*I)->getType(), VK_LValue, (*I)->getExprLoc());
1466       return EmitLValue(&DRE).getAddress();
1467     });
1468     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1469         VD->hasGlobalStorage()) {
1470       (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
1471         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1472                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1473                         E->getType(), VK_LValue, E->getExprLoc());
1474         return EmitLValue(&DRE).getAddress();
1475       });
1476     }
1477     ++I;
1478   }
1479 }
1480 
1481 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1482                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1483                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1484   if (!CGF.HaveInsertPoint())
1485     return;
1486   {
1487     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1488     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1489     (void)PreCondScope.Privatize();
1490     // Get initial values of real counters.
1491     for (auto I : S.inits()) {
1492       CGF.EmitIgnoredExpr(I);
1493     }
1494   }
1495   // Check that loop is executed at least one time.
1496   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1497 }
1498 
1499 void CodeGenFunction::EmitOMPLinearClause(
1500     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1501   if (!HaveInsertPoint())
1502     return;
1503   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1504   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1505     auto *LoopDirective = cast<OMPLoopDirective>(&D);
1506     for (auto *C : LoopDirective->counters()) {
1507       SIMDLCVs.insert(
1508           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1509     }
1510   }
1511   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1512     auto CurPrivate = C->privates().begin();
1513     for (auto *E : C->varlists()) {
1514       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1515       auto *PrivateVD =
1516           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1517       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1518         bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
1519           // Emit private VarDecl with copy init.
1520           EmitVarDecl(*PrivateVD);
1521           return GetAddrOfLocalVar(PrivateVD);
1522         });
1523         assert(IsRegistered && "linear var already registered as private");
1524         // Silence the warning about unused variable.
1525         (void)IsRegistered;
1526       } else
1527         EmitVarDecl(*PrivateVD);
1528       ++CurPrivate;
1529     }
1530   }
1531 }
1532 
1533 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1534                                      const OMPExecutableDirective &D,
1535                                      bool IsMonotonic) {
1536   if (!CGF.HaveInsertPoint())
1537     return;
1538   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1539     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1540                                  /*ignoreResult=*/true);
1541     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1542     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1543     // In presence of finite 'safelen', it may be unsafe to mark all
1544     // the memory instructions parallel, because loop-carried
1545     // dependences of 'safelen' iterations are possible.
1546     if (!IsMonotonic)
1547       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1548   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1549     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1550                                  /*ignoreResult=*/true);
1551     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1552     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1553     // In presence of finite 'safelen', it may be unsafe to mark all
1554     // the memory instructions parallel, because loop-carried
1555     // dependences of 'safelen' iterations are possible.
1556     CGF.LoopStack.setParallel(false);
1557   }
1558 }
1559 
1560 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1561                                       bool IsMonotonic) {
1562   // Walk clauses and process safelen/lastprivate.
1563   LoopStack.setParallel(!IsMonotonic);
1564   LoopStack.setVectorizeEnable(true);
1565   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1566 }
1567 
1568 void CodeGenFunction::EmitOMPSimdFinal(
1569     const OMPLoopDirective &D,
1570     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1571   if (!HaveInsertPoint())
1572     return;
1573   llvm::BasicBlock *DoneBB = nullptr;
1574   auto IC = D.counters().begin();
1575   auto IPC = D.private_counters().begin();
1576   for (auto F : D.finals()) {
1577     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1578     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1579     auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1580     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1581         OrigVD->hasGlobalStorage() || CED) {
1582       if (!DoneBB) {
1583         if (auto *Cond = CondGen(*this)) {
1584           // If the first post-update expression is found, emit conditional
1585           // block if it was requested.
1586           auto *ThenBB = createBasicBlock(".omp.final.then");
1587           DoneBB = createBasicBlock(".omp.final.done");
1588           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1589           EmitBlock(ThenBB);
1590         }
1591       }
1592       Address OrigAddr = Address::invalid();
1593       if (CED)
1594         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1595       else {
1596         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1597                         /*RefersToEnclosingVariableOrCapture=*/false,
1598                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1599         OrigAddr = EmitLValue(&DRE).getAddress();
1600       }
1601       OMPPrivateScope VarScope(*this);
1602       VarScope.addPrivate(OrigVD,
1603                           [OrigAddr]() -> Address { return OrigAddr; });
1604       (void)VarScope.Privatize();
1605       EmitIgnoredExpr(F);
1606     }
1607     ++IC;
1608     ++IPC;
1609   }
1610   if (DoneBB)
1611     EmitBlock(DoneBB, /*IsFinished=*/true);
1612 }
1613 
1614 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1615   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1616     OMPLoopScope PreInitScope(CGF, S);
1617     // if (PreCond) {
1618     //   for (IV in 0..LastIteration) BODY;
1619     //   <Final counter/linear vars updates>;
1620     // }
1621     //
1622 
1623     // Emit: if (PreCond) - begin.
1624     // If the condition constant folds and can be elided, avoid emitting the
1625     // whole loop.
1626     bool CondConstant;
1627     llvm::BasicBlock *ContBlock = nullptr;
1628     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1629       if (!CondConstant)
1630         return;
1631     } else {
1632       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
1633       ContBlock = CGF.createBasicBlock("simd.if.end");
1634       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1635                   CGF.getProfileCount(&S));
1636       CGF.EmitBlock(ThenBlock);
1637       CGF.incrementProfileCounter(&S);
1638     }
1639 
1640     // Emit the loop iteration variable.
1641     const Expr *IVExpr = S.getIterationVariable();
1642     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1643     CGF.EmitVarDecl(*IVDecl);
1644     CGF.EmitIgnoredExpr(S.getInit());
1645 
1646     // Emit the iterations count variable.
1647     // If it is not a variable, Sema decided to calculate iterations count on
1648     // each iteration (e.g., it is foldable into a constant).
1649     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1650       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1651       // Emit calculation of the iterations count.
1652       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1653     }
1654 
1655     CGF.EmitOMPSimdInit(S);
1656 
1657     emitAlignedClause(CGF, S);
1658     CGF.EmitOMPLinearClauseInit(S);
1659     {
1660       OMPPrivateScope LoopScope(CGF);
1661       CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1662       CGF.EmitOMPLinearClause(S, LoopScope);
1663       CGF.EmitOMPPrivateClause(S, LoopScope);
1664       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1665       bool HasLastprivateClause =
1666           CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1667       (void)LoopScope.Privatize();
1668       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1669                            S.getInc(),
1670                            [&S](CodeGenFunction &CGF) {
1671                              CGF.EmitOMPLoopBody(S, JumpDest());
1672                              CGF.EmitStopPoint(&S);
1673                            },
1674                            [](CodeGenFunction &) {});
1675       CGF.EmitOMPSimdFinal(
1676           S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1677       // Emit final copy of the lastprivate variables at the end of loops.
1678       if (HasLastprivateClause)
1679         CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1680       CGF.EmitOMPReductionClauseFinal(S);
1681       emitPostUpdateForReductionClause(
1682           CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1683     }
1684     CGF.EmitOMPLinearClauseFinal(
1685         S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1686     // Emit: if (PreCond) - end.
1687     if (ContBlock) {
1688       CGF.EmitBranch(ContBlock);
1689       CGF.EmitBlock(ContBlock, true);
1690     }
1691   };
1692   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1693   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1694 }
1695 
1696 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
1697     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1698     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1699   auto &RT = CGM.getOpenMPRuntime();
1700 
1701   const Expr *IVExpr = S.getIterationVariable();
1702   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1703   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1704 
1705   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1706 
1707   // Start the loop with a block that tests the condition.
1708   auto CondBlock = createBasicBlock("omp.dispatch.cond");
1709   EmitBlock(CondBlock);
1710   const SourceRange &R = S.getSourceRange();
1711   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1712                  SourceLocToDebugLoc(R.getEnd()));
1713 
1714   llvm::Value *BoolCondVal = nullptr;
1715   if (!DynamicOrOrdered) {
1716     // UB = min(UB, GlobalUB)
1717     EmitIgnoredExpr(S.getEnsureUpperBound());
1718     // IV = LB
1719     EmitIgnoredExpr(S.getInit());
1720     // IV < UB
1721     BoolCondVal = EvaluateExprAsBool(S.getCond());
1722   } else {
1723     BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL,
1724                                  LB, UB, ST);
1725   }
1726 
1727   // If there are any cleanups between here and the loop-exit scope,
1728   // create a block to stage a loop exit along.
1729   auto ExitBlock = LoopExit.getBlock();
1730   if (LoopScope.requiresCleanups())
1731     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1732 
1733   auto LoopBody = createBasicBlock("omp.dispatch.body");
1734   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1735   if (ExitBlock != LoopExit.getBlock()) {
1736     EmitBlock(ExitBlock);
1737     EmitBranchThroughCleanup(LoopExit);
1738   }
1739   EmitBlock(LoopBody);
1740 
1741   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1742   // LB for loop condition and emitted it above).
1743   if (DynamicOrOrdered)
1744     EmitIgnoredExpr(S.getInit());
1745 
1746   // Create a block for the increment.
1747   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1748   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1749 
1750   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1751   // with dynamic/guided scheduling and without ordered clause.
1752   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1753     LoopStack.setParallel(!IsMonotonic);
1754   else
1755     EmitOMPSimdInit(S, IsMonotonic);
1756 
1757   SourceLocation Loc = S.getLocStart();
1758   EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
1759                    [&S, LoopExit](CodeGenFunction &CGF) {
1760                      CGF.EmitOMPLoopBody(S, LoopExit);
1761                      CGF.EmitStopPoint(&S);
1762                    },
1763                    [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
1764                      if (Ordered) {
1765                        CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
1766                            CGF, Loc, IVSize, IVSigned);
1767                      }
1768                    });
1769 
1770   EmitBlock(Continue.getBlock());
1771   BreakContinueStack.pop_back();
1772   if (!DynamicOrOrdered) {
1773     // Emit "LB = LB + Stride", "UB = UB + Stride".
1774     EmitIgnoredExpr(S.getNextLowerBound());
1775     EmitIgnoredExpr(S.getNextUpperBound());
1776   }
1777 
1778   EmitBranch(CondBlock);
1779   LoopStack.pop();
1780   // Emit the fall-through block.
1781   EmitBlock(LoopExit.getBlock());
1782 
1783   // Tell the runtime we are done.
1784   if (!DynamicOrOrdered)
1785     RT.emitForStaticFinish(*this, S.getLocEnd());
1786 
1787 }
1788 
1789 void CodeGenFunction::EmitOMPForOuterLoop(
1790     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1791     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1792     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1793   auto &RT = CGM.getOpenMPRuntime();
1794 
1795   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1796   const bool DynamicOrOrdered =
1797       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1798 
1799   assert((Ordered ||
1800           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1801                                  /*Chunked=*/Chunk != nullptr)) &&
1802          "static non-chunked schedule does not need outer loop");
1803 
1804   // Emit outer loop.
1805   //
1806   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1807   // When schedule(dynamic,chunk_size) is specified, the iterations are
1808   // distributed to threads in the team in chunks as the threads request them.
1809   // Each thread executes a chunk of iterations, then requests another chunk,
1810   // until no chunks remain to be distributed. Each chunk contains chunk_size
1811   // iterations, except for the last chunk to be distributed, which may have
1812   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1813   //
1814   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1815   // to threads in the team in chunks as the executing threads request them.
1816   // Each thread executes a chunk of iterations, then requests another chunk,
1817   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1818   // each chunk is proportional to the number of unassigned iterations divided
1819   // by the number of threads in the team, decreasing to 1. For a chunk_size
1820   // with value k (greater than 1), the size of each chunk is determined in the
1821   // same way, with the restriction that the chunks do not contain fewer than k
1822   // iterations (except for the last chunk to be assigned, which may have fewer
1823   // than k iterations).
1824   //
1825   // When schedule(auto) is specified, the decision regarding scheduling is
1826   // delegated to the compiler and/or runtime system. The programmer gives the
1827   // implementation the freedom to choose any possible mapping of iterations to
1828   // threads in the team.
1829   //
1830   // When schedule(runtime) is specified, the decision regarding scheduling is
1831   // deferred until run time, and the schedule and chunk size are taken from the
1832   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1833   // implementation defined
1834   //
1835   // while(__kmpc_dispatch_next(&LB, &UB)) {
1836   //   idx = LB;
1837   //   while (idx <= UB) { BODY; ++idx;
1838   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1839   //   } // inner loop
1840   // }
1841   //
1842   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1843   // When schedule(static, chunk_size) is specified, iterations are divided into
1844   // chunks of size chunk_size, and the chunks are assigned to the threads in
1845   // the team in a round-robin fashion in the order of the thread number.
1846   //
1847   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1848   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1849   //   LB = LB + ST;
1850   //   UB = UB + ST;
1851   // }
1852   //
1853 
1854   const Expr *IVExpr = S.getIterationVariable();
1855   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1856   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1857 
1858   if (DynamicOrOrdered) {
1859     llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration());
1860     RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize,
1861                            IVSigned, Ordered, UBVal, Chunk);
1862   } else {
1863     RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
1864                          Ordered, IL, LB, UB, ST, Chunk);
1865   }
1866 
1867   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB,
1868                    ST, IL, Chunk);
1869 }
1870 
1871 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1872     OpenMPDistScheduleClauseKind ScheduleKind,
1873     const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
1874     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1875 
1876   auto &RT = CGM.getOpenMPRuntime();
1877 
1878   // Emit outer loop.
1879   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1880   // dynamic
1881   //
1882 
1883   const Expr *IVExpr = S.getIterationVariable();
1884   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1885   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1886 
1887   RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
1888                               IVSize, IVSigned, /* Ordered = */ false,
1889                               IL, LB, UB, ST, Chunk);
1890 
1891   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false,
1892                    S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk);
1893 }
1894 
1895 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
1896     const OMPDistributeParallelForDirective &S) {
1897   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1898   CGM.getOpenMPRuntime().emitInlinedDirective(
1899       *this, OMPD_distribute_parallel_for,
1900       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1901         OMPLoopScope PreInitScope(CGF, S);
1902         CGF.EmitStmt(
1903             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1904       });
1905 }
1906 
1907 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
1908     const OMPDistributeParallelForSimdDirective &S) {
1909   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1910   CGM.getOpenMPRuntime().emitInlinedDirective(
1911       *this, OMPD_distribute_parallel_for_simd,
1912       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1913         OMPLoopScope PreInitScope(CGF, S);
1914         CGF.EmitStmt(
1915             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1916       });
1917 }
1918 
1919 void CodeGenFunction::EmitOMPDistributeSimdDirective(
1920     const OMPDistributeSimdDirective &S) {
1921   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1922   CGM.getOpenMPRuntime().emitInlinedDirective(
1923       *this, OMPD_distribute_simd,
1924       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1925         OMPLoopScope PreInitScope(CGF, S);
1926         CGF.EmitStmt(
1927             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1928       });
1929 }
1930 
1931 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
1932     const OMPTargetParallelForSimdDirective &S) {
1933   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1934   CGM.getOpenMPRuntime().emitInlinedDirective(
1935       *this, OMPD_target_parallel_for_simd,
1936       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1937         OMPLoopScope PreInitScope(CGF, S);
1938         CGF.EmitStmt(
1939             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1940       });
1941 }
1942 
1943 void CodeGenFunction::EmitOMPTargetSimdDirective(
1944     const OMPTargetSimdDirective &S) {
1945   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1946   CGM.getOpenMPRuntime().emitInlinedDirective(
1947       *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1948         OMPLoopScope PreInitScope(CGF, S);
1949         CGF.EmitStmt(
1950             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1951       });
1952 }
1953 
1954 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
1955     const OMPTeamsDistributeDirective &S) {
1956   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1957   CGM.getOpenMPRuntime().emitInlinedDirective(
1958       *this, OMPD_teams_distribute,
1959       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1960         OMPLoopScope PreInitScope(CGF, S);
1961         CGF.EmitStmt(
1962             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1963       });
1964 }
1965 
1966 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
1967     const OMPTeamsDistributeSimdDirective &S) {
1968   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1969   CGM.getOpenMPRuntime().emitInlinedDirective(
1970       *this, OMPD_teams_distribute_simd,
1971       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1972         OMPLoopScope PreInitScope(CGF, S);
1973         CGF.EmitStmt(
1974             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1975       });
1976 }
1977 
1978 
1979 /// \brief Emit a helper variable and return corresponding lvalue.
1980 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1981                                const DeclRefExpr *Helper) {
1982   auto VDecl = cast<VarDecl>(Helper->getDecl());
1983   CGF.EmitVarDecl(*VDecl);
1984   return CGF.EmitLValue(Helper);
1985 }
1986 
1987 namespace {
1988   struct ScheduleKindModifiersTy {
1989     OpenMPScheduleClauseKind Kind;
1990     OpenMPScheduleClauseModifier M1;
1991     OpenMPScheduleClauseModifier M2;
1992     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
1993                             OpenMPScheduleClauseModifier M1,
1994                             OpenMPScheduleClauseModifier M2)
1995         : Kind(Kind), M1(M1), M2(M2) {}
1996   };
1997 } // namespace
1998 
1999 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
2000   // Emit the loop iteration variable.
2001   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2002   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
2003   EmitVarDecl(*IVDecl);
2004 
2005   // Emit the iterations count variable.
2006   // If it is not a variable, Sema decided to calculate iterations count on each
2007   // iteration (e.g., it is foldable into a constant).
2008   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2009     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2010     // Emit calculation of the iterations count.
2011     EmitIgnoredExpr(S.getCalcLastIteration());
2012   }
2013 
2014   auto &RT = CGM.getOpenMPRuntime();
2015 
2016   bool HasLastprivateClause;
2017   // Check pre-condition.
2018   {
2019     OMPLoopScope PreInitScope(*this, S);
2020     // Skip the entire loop if we don't meet the precondition.
2021     // If the condition constant folds and can be elided, avoid emitting the
2022     // whole loop.
2023     bool CondConstant;
2024     llvm::BasicBlock *ContBlock = nullptr;
2025     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2026       if (!CondConstant)
2027         return false;
2028     } else {
2029       auto *ThenBlock = createBasicBlock("omp.precond.then");
2030       ContBlock = createBasicBlock("omp.precond.end");
2031       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2032                   getProfileCount(&S));
2033       EmitBlock(ThenBlock);
2034       incrementProfileCounter(&S);
2035     }
2036 
2037     bool Ordered = false;
2038     if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2039       if (OrderedClause->getNumForLoops())
2040         RT.emitDoacrossInit(*this, S);
2041       else
2042         Ordered = true;
2043     }
2044 
2045     llvm::DenseSet<const Expr *> EmittedFinals;
2046     emitAlignedClause(*this, S);
2047     EmitOMPLinearClauseInit(S);
2048     // Emit helper vars inits.
2049     LValue LB =
2050         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2051     LValue UB =
2052         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2053     LValue ST =
2054         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2055     LValue IL =
2056         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2057 
2058     // Emit 'then' code.
2059     {
2060       OMPPrivateScope LoopScope(*this);
2061       if (EmitOMPFirstprivateClause(S, LoopScope)) {
2062         // Emit implicit barrier to synchronize threads and avoid data races on
2063         // initialization of firstprivate variables and post-update of
2064         // lastprivate variables.
2065         CGM.getOpenMPRuntime().emitBarrierCall(
2066             *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2067             /*ForceSimpleCall=*/true);
2068       }
2069       EmitOMPPrivateClause(S, LoopScope);
2070       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2071       EmitOMPReductionClauseInit(S, LoopScope);
2072       EmitOMPPrivateLoopCounters(S, LoopScope);
2073       EmitOMPLinearClause(S, LoopScope);
2074       (void)LoopScope.Privatize();
2075 
2076       // Detect the loop schedule kind and chunk.
2077       llvm::Value *Chunk = nullptr;
2078       OpenMPScheduleTy ScheduleKind;
2079       if (auto *C = S.getSingleClause<OMPScheduleClause>()) {
2080         ScheduleKind.Schedule = C->getScheduleKind();
2081         ScheduleKind.M1 = C->getFirstScheduleModifier();
2082         ScheduleKind.M2 = C->getSecondScheduleModifier();
2083         if (const auto *Ch = C->getChunkSize()) {
2084           Chunk = EmitScalarExpr(Ch);
2085           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2086                                        S.getIterationVariable()->getType(),
2087                                        S.getLocStart());
2088         }
2089       }
2090       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2091       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2092       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2093       // If the static schedule kind is specified or if the ordered clause is
2094       // specified, and if no monotonic modifier is specified, the effect will
2095       // be as if the monotonic modifier was specified.
2096       if (RT.isStaticNonchunked(ScheduleKind.Schedule,
2097                                 /* Chunked */ Chunk != nullptr) &&
2098           !Ordered) {
2099         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2100           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2101         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2102         // When no chunk_size is specified, the iteration space is divided into
2103         // chunks that are approximately equal in size, and at most one chunk is
2104         // distributed to each thread. Note that the size of the chunks is
2105         // unspecified in this case.
2106         RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
2107                              IVSize, IVSigned, Ordered,
2108                              IL.getAddress(), LB.getAddress(),
2109                              UB.getAddress(), ST.getAddress());
2110         auto LoopExit =
2111             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2112         // UB = min(UB, GlobalUB);
2113         EmitIgnoredExpr(S.getEnsureUpperBound());
2114         // IV = LB;
2115         EmitIgnoredExpr(S.getInit());
2116         // while (idx <= UB) { BODY; ++idx; }
2117         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2118                          S.getInc(),
2119                          [&S, LoopExit](CodeGenFunction &CGF) {
2120                            CGF.EmitOMPLoopBody(S, LoopExit);
2121                            CGF.EmitStopPoint(&S);
2122                          },
2123                          [](CodeGenFunction &) {});
2124         EmitBlock(LoopExit.getBlock());
2125         // Tell the runtime we are done.
2126         RT.emitForStaticFinish(*this, S.getLocStart());
2127       } else {
2128         const bool IsMonotonic =
2129             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2130             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2131             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2132             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2133         // Emit the outer loop, which requests its work chunk [LB..UB] from
2134         // runtime and runs the inner loop to process it.
2135         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2136                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2137                             IL.getAddress(), Chunk);
2138       }
2139       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2140         EmitOMPSimdFinal(S,
2141                          [&](CodeGenFunction &CGF) -> llvm::Value * {
2142                            return CGF.Builder.CreateIsNotNull(
2143                                CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2144                          });
2145       }
2146       EmitOMPReductionClauseFinal(S);
2147       // Emit post-update of the reduction variables if IsLastIter != 0.
2148       emitPostUpdateForReductionClause(
2149           *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2150             return CGF.Builder.CreateIsNotNull(
2151                 CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2152           });
2153       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2154       if (HasLastprivateClause)
2155         EmitOMPLastprivateClauseFinal(
2156             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2157             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
2158     }
2159     EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2160       return CGF.Builder.CreateIsNotNull(
2161           CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2162     });
2163     // We're now done with the loop, so jump to the continuation block.
2164     if (ContBlock) {
2165       EmitBranch(ContBlock);
2166       EmitBlock(ContBlock, true);
2167     }
2168   }
2169   return HasLastprivateClause;
2170 }
2171 
2172 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2173   bool HasLastprivates = false;
2174   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2175                                           PrePostActionTy &) {
2176     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2177   };
2178   {
2179     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2180     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2181                                                 S.hasCancel());
2182   }
2183 
2184   // Emit an implicit barrier at the end.
2185   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2186     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2187   }
2188 }
2189 
2190 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2191   bool HasLastprivates = false;
2192   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2193                                           PrePostActionTy &) {
2194     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2195   };
2196   {
2197     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2198     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2199   }
2200 
2201   // Emit an implicit barrier at the end.
2202   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2203     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2204   }
2205 }
2206 
2207 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2208                                 const Twine &Name,
2209                                 llvm::Value *Init = nullptr) {
2210   auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2211   if (Init)
2212     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2213   return LVal;
2214 }
2215 
2216 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2217   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
2218   auto *CS = dyn_cast<CompoundStmt>(Stmt);
2219   bool HasLastprivates = false;
2220   auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF,
2221                                                     PrePostActionTy &) {
2222     auto &C = CGF.CGM.getContext();
2223     auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2224     // Emit helper vars inits.
2225     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2226                                   CGF.Builder.getInt32(0));
2227     auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1)
2228                                       : CGF.Builder.getInt32(0);
2229     LValue UB =
2230         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2231     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2232                                   CGF.Builder.getInt32(1));
2233     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2234                                   CGF.Builder.getInt32(0));
2235     // Loop counter.
2236     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2237     OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2238     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2239     OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2240     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2241     // Generate condition for loop.
2242     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2243                         OK_Ordinary, S.getLocStart(),
2244                         /*fpContractable=*/false);
2245     // Increment for loop counter.
2246     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2247                       S.getLocStart());
2248     auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) {
2249       // Iterate through all sections and emit a switch construct:
2250       // switch (IV) {
2251       //   case 0:
2252       //     <SectionStmt[0]>;
2253       //     break;
2254       // ...
2255       //   case <NumSection> - 1:
2256       //     <SectionStmt[<NumSection> - 1]>;
2257       //     break;
2258       // }
2259       // .omp.sections.exit:
2260       auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2261       auto *SwitchStmt = CGF.Builder.CreateSwitch(
2262           CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
2263           CS == nullptr ? 1 : CS->size());
2264       if (CS) {
2265         unsigned CaseNumber = 0;
2266         for (auto *SubStmt : CS->children()) {
2267           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2268           CGF.EmitBlock(CaseBB);
2269           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2270           CGF.EmitStmt(SubStmt);
2271           CGF.EmitBranch(ExitBB);
2272           ++CaseNumber;
2273         }
2274       } else {
2275         auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2276         CGF.EmitBlock(CaseBB);
2277         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2278         CGF.EmitStmt(Stmt);
2279         CGF.EmitBranch(ExitBB);
2280       }
2281       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2282     };
2283 
2284     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2285     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2286       // Emit implicit barrier to synchronize threads and avoid data races on
2287       // initialization of firstprivate variables and post-update of lastprivate
2288       // variables.
2289       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2290           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2291           /*ForceSimpleCall=*/true);
2292     }
2293     CGF.EmitOMPPrivateClause(S, LoopScope);
2294     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2295     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2296     (void)LoopScope.Privatize();
2297 
2298     // Emit static non-chunked loop.
2299     OpenMPScheduleTy ScheduleKind;
2300     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2301     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2302         CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32,
2303         /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(),
2304         UB.getAddress(), ST.getAddress());
2305     // UB = min(UB, GlobalUB);
2306     auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
2307     auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
2308         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2309     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2310     // IV = LB;
2311     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
2312     // while (idx <= UB) { BODY; ++idx; }
2313     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2314                          [](CodeGenFunction &) {});
2315     // Tell the runtime we are done.
2316     CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
2317     CGF.EmitOMPReductionClauseFinal(S);
2318     // Emit post-update of the reduction variables if IsLastIter != 0.
2319     emitPostUpdateForReductionClause(
2320         CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2321           return CGF.Builder.CreateIsNotNull(
2322               CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2323         });
2324 
2325     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2326     if (HasLastprivates)
2327       CGF.EmitOMPLastprivateClauseFinal(
2328           S, /*NoFinals=*/false,
2329           CGF.Builder.CreateIsNotNull(
2330               CGF.EmitLoadOfScalar(IL, S.getLocStart())));
2331   };
2332 
2333   bool HasCancel = false;
2334   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2335     HasCancel = OSD->hasCancel();
2336   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2337     HasCancel = OPSD->hasCancel();
2338   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2339                                               HasCancel);
2340   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2341   // clause. Otherwise the barrier will be generated by the codegen for the
2342   // directive.
2343   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2344     // Emit implicit barrier to synchronize threads and avoid data races on
2345     // initialization of firstprivate variables.
2346     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2347                                            OMPD_unknown);
2348   }
2349 }
2350 
2351 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2352   {
2353     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2354     EmitSections(S);
2355   }
2356   // Emit an implicit barrier at the end.
2357   if (!S.getSingleClause<OMPNowaitClause>()) {
2358     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2359                                            OMPD_sections);
2360   }
2361 }
2362 
2363 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2364   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2365     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2366   };
2367   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2368   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2369                                               S.hasCancel());
2370 }
2371 
2372 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2373   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2374   llvm::SmallVector<const Expr *, 8> DestExprs;
2375   llvm::SmallVector<const Expr *, 8> SrcExprs;
2376   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2377   // Check if there are any 'copyprivate' clauses associated with this
2378   // 'single' construct.
2379   // Build a list of copyprivate variables along with helper expressions
2380   // (<source>, <destination>, <destination>=<source> expressions)
2381   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2382     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2383     DestExprs.append(C->destination_exprs().begin(),
2384                      C->destination_exprs().end());
2385     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2386     AssignmentOps.append(C->assignment_ops().begin(),
2387                          C->assignment_ops().end());
2388   }
2389   // Emit code for 'single' region along with 'copyprivate' clauses
2390   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2391     Action.Enter(CGF);
2392     OMPPrivateScope SingleScope(CGF);
2393     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2394     CGF.EmitOMPPrivateClause(S, SingleScope);
2395     (void)SingleScope.Privatize();
2396     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2397   };
2398   {
2399     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2400     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
2401                                             CopyprivateVars, DestExprs,
2402                                             SrcExprs, AssignmentOps);
2403   }
2404   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2405   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2406   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2407     CGM.getOpenMPRuntime().emitBarrierCall(
2408         *this, S.getLocStart(),
2409         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2410   }
2411 }
2412 
2413 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2414   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2415     Action.Enter(CGF);
2416     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2417   };
2418   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2419   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
2420 }
2421 
2422 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2423   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2424     Action.Enter(CGF);
2425     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2426   };
2427   Expr *Hint = nullptr;
2428   if (auto *HintClause = S.getSingleClause<OMPHintClause>())
2429     Hint = HintClause->getHint();
2430   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2431   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2432                                             S.getDirectiveName().getAsString(),
2433                                             CodeGen, S.getLocStart(), Hint);
2434 }
2435 
2436 void CodeGenFunction::EmitOMPParallelForDirective(
2437     const OMPParallelForDirective &S) {
2438   // Emit directive as a combined directive that consists of two implicit
2439   // directives: 'parallel' with 'for' directive.
2440   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2441     CGF.EmitOMPWorksharingLoop(S);
2442   };
2443   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
2444 }
2445 
2446 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2447     const OMPParallelForSimdDirective &S) {
2448   // Emit directive as a combined directive that consists of two implicit
2449   // directives: 'parallel' with 'for' directive.
2450   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2451     CGF.EmitOMPWorksharingLoop(S);
2452   };
2453   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
2454 }
2455 
2456 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2457     const OMPParallelSectionsDirective &S) {
2458   // Emit directive as a combined directive that consists of two implicit
2459   // directives: 'parallel' with 'sections' directive.
2460   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2461     CGF.EmitSections(S);
2462   };
2463   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
2464 }
2465 
2466 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2467                                                 const RegionCodeGenTy &BodyGen,
2468                                                 const TaskGenTy &TaskGen,
2469                                                 OMPTaskDataTy &Data) {
2470   // Emit outlined function for task construct.
2471   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2472   auto *I = CS->getCapturedDecl()->param_begin();
2473   auto *PartId = std::next(I);
2474   auto *TaskT = std::next(I, 4);
2475   // Check if the task is final
2476   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2477     // If the condition constant folds and can be elided, try to avoid emitting
2478     // the condition and the dead arm of the if/else.
2479     auto *Cond = Clause->getCondition();
2480     bool CondConstant;
2481     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2482       Data.Final.setInt(CondConstant);
2483     else
2484       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2485   } else {
2486     // By default the task is not final.
2487     Data.Final.setInt(/*IntVal=*/false);
2488   }
2489   // Check if the task has 'priority' clause.
2490   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2491     auto *Prio = Clause->getPriority();
2492     Data.Priority.setInt(/*IntVal=*/true);
2493     Data.Priority.setPointer(EmitScalarConversion(
2494         EmitScalarExpr(Prio), Prio->getType(),
2495         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2496         Prio->getExprLoc()));
2497   }
2498   // The first function argument for tasks is a thread id, the second one is a
2499   // part id (0 for tied tasks, >=0 for untied task).
2500   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2501   // Get list of private variables.
2502   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2503     auto IRef = C->varlist_begin();
2504     for (auto *IInit : C->private_copies()) {
2505       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2506       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2507         Data.PrivateVars.push_back(*IRef);
2508         Data.PrivateCopies.push_back(IInit);
2509       }
2510       ++IRef;
2511     }
2512   }
2513   EmittedAsPrivate.clear();
2514   // Get list of firstprivate variables.
2515   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2516     auto IRef = C->varlist_begin();
2517     auto IElemInitRef = C->inits().begin();
2518     for (auto *IInit : C->private_copies()) {
2519       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2520       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2521         Data.FirstprivateVars.push_back(*IRef);
2522         Data.FirstprivateCopies.push_back(IInit);
2523         Data.FirstprivateInits.push_back(*IElemInitRef);
2524       }
2525       ++IRef;
2526       ++IElemInitRef;
2527     }
2528   }
2529   // Get list of lastprivate variables (for taskloops).
2530   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2531   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2532     auto IRef = C->varlist_begin();
2533     auto ID = C->destination_exprs().begin();
2534     for (auto *IInit : C->private_copies()) {
2535       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2536       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2537         Data.LastprivateVars.push_back(*IRef);
2538         Data.LastprivateCopies.push_back(IInit);
2539       }
2540       LastprivateDstsOrigs.insert(
2541           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2542            cast<DeclRefExpr>(*IRef)});
2543       ++IRef;
2544       ++ID;
2545     }
2546   }
2547   // Build list of dependences.
2548   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2549     for (auto *IRef : C->varlists())
2550       Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
2551   auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs](
2552       CodeGenFunction &CGF, PrePostActionTy &Action) {
2553     // Set proper addresses for generated private copies.
2554     OMPPrivateScope Scope(CGF);
2555     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2556         !Data.LastprivateVars.empty()) {
2557       auto *CopyFn = CGF.Builder.CreateLoad(
2558           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
2559       auto *PrivatesPtr = CGF.Builder.CreateLoad(
2560           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
2561       // Map privates.
2562       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2563       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2564       CallArgs.push_back(PrivatesPtr);
2565       for (auto *E : Data.PrivateVars) {
2566         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2567         Address PrivatePtr = CGF.CreateMemTemp(
2568             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2569         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2570         CallArgs.push_back(PrivatePtr.getPointer());
2571       }
2572       for (auto *E : Data.FirstprivateVars) {
2573         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2574         Address PrivatePtr =
2575             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2576                               ".firstpriv.ptr.addr");
2577         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2578         CallArgs.push_back(PrivatePtr.getPointer());
2579       }
2580       for (auto *E : Data.LastprivateVars) {
2581         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2582         Address PrivatePtr =
2583             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2584                               ".lastpriv.ptr.addr");
2585         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2586         CallArgs.push_back(PrivatePtr.getPointer());
2587       }
2588       CGF.EmitRuntimeCall(CopyFn, CallArgs);
2589       for (auto &&Pair : LastprivateDstsOrigs) {
2590         auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2591         DeclRefExpr DRE(
2592             const_cast<VarDecl *>(OrigVD),
2593             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2594                 OrigVD) != nullptr,
2595             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2596         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2597           return CGF.EmitLValue(&DRE).getAddress();
2598         });
2599       }
2600       for (auto &&Pair : PrivatePtrs) {
2601         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2602                             CGF.getContext().getDeclAlign(Pair.first));
2603         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2604       }
2605     }
2606     (void)Scope.Privatize();
2607 
2608     Action.Enter(CGF);
2609     BodyGen(CGF);
2610   };
2611   auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
2612       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
2613       Data.NumberOfParts);
2614   OMPLexicalScope Scope(*this, S);
2615   TaskGen(*this, OutlinedFn, Data);
2616 }
2617 
2618 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
2619   // Emit outlined function for task construct.
2620   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2621   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
2622   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
2623   const Expr *IfCond = nullptr;
2624   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2625     if (C->getNameModifier() == OMPD_unknown ||
2626         C->getNameModifier() == OMPD_task) {
2627       IfCond = C->getCondition();
2628       break;
2629     }
2630   }
2631 
2632   OMPTaskDataTy Data;
2633   // Check if we should emit tied or untied task.
2634   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
2635   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
2636     CGF.EmitStmt(CS->getCapturedStmt());
2637   };
2638   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
2639                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
2640                             const OMPTaskDataTy &Data) {
2641     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn,
2642                                             SharedsTy, CapturedStruct, IfCond,
2643                                             Data);
2644   };
2645   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
2646 }
2647 
2648 void CodeGenFunction::EmitOMPTaskyieldDirective(
2649     const OMPTaskyieldDirective &S) {
2650   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
2651 }
2652 
2653 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
2654   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
2655 }
2656 
2657 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
2658   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
2659 }
2660 
2661 void CodeGenFunction::EmitOMPTaskgroupDirective(
2662     const OMPTaskgroupDirective &S) {
2663   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2664     Action.Enter(CGF);
2665     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2666   };
2667   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2668   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
2669 }
2670 
2671 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
2672   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
2673     if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
2674       return llvm::makeArrayRef(FlushClause->varlist_begin(),
2675                                 FlushClause->varlist_end());
2676     }
2677     return llvm::None;
2678   }(), S.getLocStart());
2679 }
2680 
2681 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) {
2682   // Emit the loop iteration variable.
2683   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2684   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
2685   EmitVarDecl(*IVDecl);
2686 
2687   // Emit the iterations count variable.
2688   // If it is not a variable, Sema decided to calculate iterations count on each
2689   // iteration (e.g., it is foldable into a constant).
2690   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2691     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2692     // Emit calculation of the iterations count.
2693     EmitIgnoredExpr(S.getCalcLastIteration());
2694   }
2695 
2696   auto &RT = CGM.getOpenMPRuntime();
2697 
2698   // Check pre-condition.
2699   {
2700     OMPLoopScope PreInitScope(*this, S);
2701     // Skip the entire loop if we don't meet the precondition.
2702     // If the condition constant folds and can be elided, avoid emitting the
2703     // whole loop.
2704     bool CondConstant;
2705     llvm::BasicBlock *ContBlock = nullptr;
2706     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2707       if (!CondConstant)
2708         return;
2709     } else {
2710       auto *ThenBlock = createBasicBlock("omp.precond.then");
2711       ContBlock = createBasicBlock("omp.precond.end");
2712       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2713                   getProfileCount(&S));
2714       EmitBlock(ThenBlock);
2715       incrementProfileCounter(&S);
2716     }
2717 
2718     // Emit 'then' code.
2719     {
2720       // Emit helper vars inits.
2721       LValue LB =
2722           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2723       LValue UB =
2724           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2725       LValue ST =
2726           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2727       LValue IL =
2728           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2729 
2730       OMPPrivateScope LoopScope(*this);
2731       EmitOMPPrivateLoopCounters(S, LoopScope);
2732       (void)LoopScope.Privatize();
2733 
2734       // Detect the distribute schedule kind and chunk.
2735       llvm::Value *Chunk = nullptr;
2736       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
2737       if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
2738         ScheduleKind = C->getDistScheduleKind();
2739         if (const auto *Ch = C->getChunkSize()) {
2740           Chunk = EmitScalarExpr(Ch);
2741           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2742           S.getIterationVariable()->getType(),
2743           S.getLocStart());
2744         }
2745       }
2746       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2747       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2748 
2749       // OpenMP [2.10.8, distribute Construct, Description]
2750       // If dist_schedule is specified, kind must be static. If specified,
2751       // iterations are divided into chunks of size chunk_size, chunks are
2752       // assigned to the teams of the league in a round-robin fashion in the
2753       // order of the team number. When no chunk_size is specified, the
2754       // iteration space is divided into chunks that are approximately equal
2755       // in size, and at most one chunk is distributed to each team of the
2756       // league. The size of the chunks is unspecified in this case.
2757       if (RT.isStaticNonchunked(ScheduleKind,
2758                                 /* Chunked */ Chunk != nullptr)) {
2759         RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
2760                              IVSize, IVSigned, /* Ordered = */ false,
2761                              IL.getAddress(), LB.getAddress(),
2762                              UB.getAddress(), ST.getAddress());
2763         auto LoopExit =
2764             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2765         // UB = min(UB, GlobalUB);
2766         EmitIgnoredExpr(S.getEnsureUpperBound());
2767         // IV = LB;
2768         EmitIgnoredExpr(S.getInit());
2769         // while (idx <= UB) { BODY; ++idx; }
2770         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2771                          S.getInc(),
2772                          [&S, LoopExit](CodeGenFunction &CGF) {
2773                            CGF.EmitOMPLoopBody(S, LoopExit);
2774                            CGF.EmitStopPoint(&S);
2775                          },
2776                          [](CodeGenFunction &) {});
2777         EmitBlock(LoopExit.getBlock());
2778         // Tell the runtime we are done.
2779         RT.emitForStaticFinish(*this, S.getLocStart());
2780       } else {
2781         // Emit the outer loop, which requests its work chunk [LB..UB] from
2782         // runtime and runs the inner loop to process it.
2783         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope,
2784                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2785                             IL.getAddress(), Chunk);
2786       }
2787     }
2788 
2789     // We're now done with the loop, so jump to the continuation block.
2790     if (ContBlock) {
2791       EmitBranch(ContBlock);
2792       EmitBlock(ContBlock, true);
2793     }
2794   }
2795 }
2796 
2797 void CodeGenFunction::EmitOMPDistributeDirective(
2798     const OMPDistributeDirective &S) {
2799   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2800     CGF.EmitOMPDistributeLoop(S);
2801   };
2802   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2803   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen,
2804                                               false);
2805 }
2806 
2807 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
2808                                                    const CapturedStmt *S) {
2809   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
2810   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
2811   CGF.CapturedStmtInfo = &CapStmtInfo;
2812   auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
2813   Fn->addFnAttr(llvm::Attribute::NoInline);
2814   return Fn;
2815 }
2816 
2817 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
2818   if (!S.getAssociatedStmt()) {
2819     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
2820       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
2821     return;
2822   }
2823   auto *C = S.getSingleClause<OMPSIMDClause>();
2824   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
2825                                  PrePostActionTy &Action) {
2826     if (C) {
2827       auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2828       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
2829       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
2830       auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
2831       CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars);
2832     } else {
2833       Action.Enter(CGF);
2834       CGF.EmitStmt(
2835           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2836     }
2837   };
2838   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2839   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
2840 }
2841 
2842 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
2843                                          QualType SrcType, QualType DestType,
2844                                          SourceLocation Loc) {
2845   assert(CGF.hasScalarEvaluationKind(DestType) &&
2846          "DestType must have scalar evaluation kind.");
2847   assert(!Val.isAggregate() && "Must be a scalar or complex.");
2848   return Val.isScalar()
2849              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
2850                                         Loc)
2851              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
2852                                                  DestType, Loc);
2853 }
2854 
2855 static CodeGenFunction::ComplexPairTy
2856 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
2857                       QualType DestType, SourceLocation Loc) {
2858   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
2859          "DestType must have complex evaluation kind.");
2860   CodeGenFunction::ComplexPairTy ComplexVal;
2861   if (Val.isScalar()) {
2862     // Convert the input element to the element type of the complex.
2863     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2864     auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
2865                                               DestElementType, Loc);
2866     ComplexVal = CodeGenFunction::ComplexPairTy(
2867         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
2868   } else {
2869     assert(Val.isComplex() && "Must be a scalar or complex.");
2870     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
2871     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2872     ComplexVal.first = CGF.EmitScalarConversion(
2873         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
2874     ComplexVal.second = CGF.EmitScalarConversion(
2875         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
2876   }
2877   return ComplexVal;
2878 }
2879 
2880 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
2881                                   LValue LVal, RValue RVal) {
2882   if (LVal.isGlobalReg()) {
2883     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
2884   } else {
2885     CGF.EmitAtomicStore(RVal, LVal,
2886                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2887                                  : llvm::AtomicOrdering::Monotonic,
2888                         LVal.isVolatile(), /*IsInit=*/false);
2889   }
2890 }
2891 
2892 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
2893                                          QualType RValTy, SourceLocation Loc) {
2894   switch (getEvaluationKind(LVal.getType())) {
2895   case TEK_Scalar:
2896     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
2897                                *this, RVal, RValTy, LVal.getType(), Loc)),
2898                            LVal);
2899     break;
2900   case TEK_Complex:
2901     EmitStoreOfComplex(
2902         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
2903         /*isInit=*/false);
2904     break;
2905   case TEK_Aggregate:
2906     llvm_unreachable("Must be a scalar or complex.");
2907   }
2908 }
2909 
2910 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
2911                                   const Expr *X, const Expr *V,
2912                                   SourceLocation Loc) {
2913   // v = x;
2914   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
2915   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
2916   LValue XLValue = CGF.EmitLValue(X);
2917   LValue VLValue = CGF.EmitLValue(V);
2918   RValue Res = XLValue.isGlobalReg()
2919                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
2920                    : CGF.EmitAtomicLoad(
2921                          XLValue, Loc,
2922                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2923                                   : llvm::AtomicOrdering::Monotonic,
2924                          XLValue.isVolatile());
2925   // OpenMP, 2.12.6, atomic Construct
2926   // Any atomic construct with a seq_cst clause forces the atomically
2927   // performed operation to include an implicit flush operation without a
2928   // list.
2929   if (IsSeqCst)
2930     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2931   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
2932 }
2933 
2934 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
2935                                    const Expr *X, const Expr *E,
2936                                    SourceLocation Loc) {
2937   // x = expr;
2938   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
2939   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
2940   // OpenMP, 2.12.6, atomic Construct
2941   // Any atomic construct with a seq_cst clause forces the atomically
2942   // performed operation to include an implicit flush operation without a
2943   // list.
2944   if (IsSeqCst)
2945     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2946 }
2947 
2948 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
2949                                                 RValue Update,
2950                                                 BinaryOperatorKind BO,
2951                                                 llvm::AtomicOrdering AO,
2952                                                 bool IsXLHSInRHSPart) {
2953   auto &Context = CGF.CGM.getContext();
2954   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
2955   // expression is simple and atomic is allowed for the given type for the
2956   // target platform.
2957   if (BO == BO_Comma || !Update.isScalar() ||
2958       !Update.getScalarVal()->getType()->isIntegerTy() ||
2959       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
2960                         (Update.getScalarVal()->getType() !=
2961                          X.getAddress().getElementType())) ||
2962       !X.getAddress().getElementType()->isIntegerTy() ||
2963       !Context.getTargetInfo().hasBuiltinAtomic(
2964           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
2965     return std::make_pair(false, RValue::get(nullptr));
2966 
2967   llvm::AtomicRMWInst::BinOp RMWOp;
2968   switch (BO) {
2969   case BO_Add:
2970     RMWOp = llvm::AtomicRMWInst::Add;
2971     break;
2972   case BO_Sub:
2973     if (!IsXLHSInRHSPart)
2974       return std::make_pair(false, RValue::get(nullptr));
2975     RMWOp = llvm::AtomicRMWInst::Sub;
2976     break;
2977   case BO_And:
2978     RMWOp = llvm::AtomicRMWInst::And;
2979     break;
2980   case BO_Or:
2981     RMWOp = llvm::AtomicRMWInst::Or;
2982     break;
2983   case BO_Xor:
2984     RMWOp = llvm::AtomicRMWInst::Xor;
2985     break;
2986   case BO_LT:
2987     RMWOp = X.getType()->hasSignedIntegerRepresentation()
2988                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
2989                                    : llvm::AtomicRMWInst::Max)
2990                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
2991                                    : llvm::AtomicRMWInst::UMax);
2992     break;
2993   case BO_GT:
2994     RMWOp = X.getType()->hasSignedIntegerRepresentation()
2995                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
2996                                    : llvm::AtomicRMWInst::Min)
2997                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
2998                                    : llvm::AtomicRMWInst::UMin);
2999     break;
3000   case BO_Assign:
3001     RMWOp = llvm::AtomicRMWInst::Xchg;
3002     break;
3003   case BO_Mul:
3004   case BO_Div:
3005   case BO_Rem:
3006   case BO_Shl:
3007   case BO_Shr:
3008   case BO_LAnd:
3009   case BO_LOr:
3010     return std::make_pair(false, RValue::get(nullptr));
3011   case BO_PtrMemD:
3012   case BO_PtrMemI:
3013   case BO_LE:
3014   case BO_GE:
3015   case BO_EQ:
3016   case BO_NE:
3017   case BO_AddAssign:
3018   case BO_SubAssign:
3019   case BO_AndAssign:
3020   case BO_OrAssign:
3021   case BO_XorAssign:
3022   case BO_MulAssign:
3023   case BO_DivAssign:
3024   case BO_RemAssign:
3025   case BO_ShlAssign:
3026   case BO_ShrAssign:
3027   case BO_Comma:
3028     llvm_unreachable("Unsupported atomic update operation");
3029   }
3030   auto *UpdateVal = Update.getScalarVal();
3031   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3032     UpdateVal = CGF.Builder.CreateIntCast(
3033         IC, X.getAddress().getElementType(),
3034         X.getType()->hasSignedIntegerRepresentation());
3035   }
3036   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3037   return std::make_pair(true, RValue::get(Res));
3038 }
3039 
3040 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3041     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3042     llvm::AtomicOrdering AO, SourceLocation Loc,
3043     const llvm::function_ref<RValue(RValue)> &CommonGen) {
3044   // Update expressions are allowed to have the following forms:
3045   // x binop= expr; -> xrval + expr;
3046   // x++, ++x -> xrval + 1;
3047   // x--, --x -> xrval - 1;
3048   // x = x binop expr; -> xrval binop expr
3049   // x = expr Op x; - > expr binop xrval;
3050   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3051   if (!Res.first) {
3052     if (X.isGlobalReg()) {
3053       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3054       // 'xrval'.
3055       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3056     } else {
3057       // Perform compare-and-swap procedure.
3058       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3059     }
3060   }
3061   return Res;
3062 }
3063 
3064 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3065                                     const Expr *X, const Expr *E,
3066                                     const Expr *UE, bool IsXLHSInRHSPart,
3067                                     SourceLocation Loc) {
3068   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3069          "Update expr in 'atomic update' must be a binary operator.");
3070   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3071   // Update expressions are allowed to have the following forms:
3072   // x binop= expr; -> xrval + expr;
3073   // x++, ++x -> xrval + 1;
3074   // x--, --x -> xrval - 1;
3075   // x = x binop expr; -> xrval binop expr
3076   // x = expr Op x; - > expr binop xrval;
3077   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3078   LValue XLValue = CGF.EmitLValue(X);
3079   RValue ExprRValue = CGF.EmitAnyExpr(E);
3080   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3081                      : llvm::AtomicOrdering::Monotonic;
3082   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3083   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3084   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3085   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3086   auto Gen =
3087       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
3088         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3089         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3090         return CGF.EmitAnyExpr(UE);
3091       };
3092   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3093       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3094   // OpenMP, 2.12.6, atomic Construct
3095   // Any atomic construct with a seq_cst clause forces the atomically
3096   // performed operation to include an implicit flush operation without a
3097   // list.
3098   if (IsSeqCst)
3099     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3100 }
3101 
3102 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3103                             QualType SourceType, QualType ResType,
3104                             SourceLocation Loc) {
3105   switch (CGF.getEvaluationKind(ResType)) {
3106   case TEK_Scalar:
3107     return RValue::get(
3108         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3109   case TEK_Complex: {
3110     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3111     return RValue::getComplex(Res.first, Res.second);
3112   }
3113   case TEK_Aggregate:
3114     break;
3115   }
3116   llvm_unreachable("Must be a scalar or complex.");
3117 }
3118 
3119 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3120                                      bool IsPostfixUpdate, const Expr *V,
3121                                      const Expr *X, const Expr *E,
3122                                      const Expr *UE, bool IsXLHSInRHSPart,
3123                                      SourceLocation Loc) {
3124   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3125   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3126   RValue NewVVal;
3127   LValue VLValue = CGF.EmitLValue(V);
3128   LValue XLValue = CGF.EmitLValue(X);
3129   RValue ExprRValue = CGF.EmitAnyExpr(E);
3130   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3131                      : llvm::AtomicOrdering::Monotonic;
3132   QualType NewVValType;
3133   if (UE) {
3134     // 'x' is updated with some additional value.
3135     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3136            "Update expr in 'atomic capture' must be a binary operator.");
3137     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3138     // Update expressions are allowed to have the following forms:
3139     // x binop= expr; -> xrval + expr;
3140     // x++, ++x -> xrval + 1;
3141     // x--, --x -> xrval - 1;
3142     // x = x binop expr; -> xrval binop expr
3143     // x = expr Op x; - > expr binop xrval;
3144     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3145     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3146     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3147     NewVValType = XRValExpr->getType();
3148     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3149     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3150                   IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
3151       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3152       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3153       RValue Res = CGF.EmitAnyExpr(UE);
3154       NewVVal = IsPostfixUpdate ? XRValue : Res;
3155       return Res;
3156     };
3157     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3158         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3159     if (Res.first) {
3160       // 'atomicrmw' instruction was generated.
3161       if (IsPostfixUpdate) {
3162         // Use old value from 'atomicrmw'.
3163         NewVVal = Res.second;
3164       } else {
3165         // 'atomicrmw' does not provide new value, so evaluate it using old
3166         // value of 'x'.
3167         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3168         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3169         NewVVal = CGF.EmitAnyExpr(UE);
3170       }
3171     }
3172   } else {
3173     // 'x' is simply rewritten with some 'expr'.
3174     NewVValType = X->getType().getNonReferenceType();
3175     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3176                                X->getType().getNonReferenceType(), Loc);
3177     auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
3178       NewVVal = XRValue;
3179       return ExprRValue;
3180     };
3181     // Try to perform atomicrmw xchg, otherwise simple exchange.
3182     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3183         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3184         Loc, Gen);
3185     if (Res.first) {
3186       // 'atomicrmw' instruction was generated.
3187       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3188     }
3189   }
3190   // Emit post-update store to 'v' of old/new 'x' value.
3191   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3192   // OpenMP, 2.12.6, atomic Construct
3193   // Any atomic construct with a seq_cst clause forces the atomically
3194   // performed operation to include an implicit flush operation without a
3195   // list.
3196   if (IsSeqCst)
3197     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3198 }
3199 
3200 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3201                               bool IsSeqCst, bool IsPostfixUpdate,
3202                               const Expr *X, const Expr *V, const Expr *E,
3203                               const Expr *UE, bool IsXLHSInRHSPart,
3204                               SourceLocation Loc) {
3205   switch (Kind) {
3206   case OMPC_read:
3207     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3208     break;
3209   case OMPC_write:
3210     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3211     break;
3212   case OMPC_unknown:
3213   case OMPC_update:
3214     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3215     break;
3216   case OMPC_capture:
3217     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3218                              IsXLHSInRHSPart, Loc);
3219     break;
3220   case OMPC_if:
3221   case OMPC_final:
3222   case OMPC_num_threads:
3223   case OMPC_private:
3224   case OMPC_firstprivate:
3225   case OMPC_lastprivate:
3226   case OMPC_reduction:
3227   case OMPC_safelen:
3228   case OMPC_simdlen:
3229   case OMPC_collapse:
3230   case OMPC_default:
3231   case OMPC_seq_cst:
3232   case OMPC_shared:
3233   case OMPC_linear:
3234   case OMPC_aligned:
3235   case OMPC_copyin:
3236   case OMPC_copyprivate:
3237   case OMPC_flush:
3238   case OMPC_proc_bind:
3239   case OMPC_schedule:
3240   case OMPC_ordered:
3241   case OMPC_nowait:
3242   case OMPC_untied:
3243   case OMPC_threadprivate:
3244   case OMPC_depend:
3245   case OMPC_mergeable:
3246   case OMPC_device:
3247   case OMPC_threads:
3248   case OMPC_simd:
3249   case OMPC_map:
3250   case OMPC_num_teams:
3251   case OMPC_thread_limit:
3252   case OMPC_priority:
3253   case OMPC_grainsize:
3254   case OMPC_nogroup:
3255   case OMPC_num_tasks:
3256   case OMPC_hint:
3257   case OMPC_dist_schedule:
3258   case OMPC_defaultmap:
3259   case OMPC_uniform:
3260   case OMPC_to:
3261   case OMPC_from:
3262   case OMPC_use_device_ptr:
3263   case OMPC_is_device_ptr:
3264     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3265   }
3266 }
3267 
3268 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3269   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3270   OpenMPClauseKind Kind = OMPC_unknown;
3271   for (auto *C : S.clauses()) {
3272     // Find first clause (skip seq_cst clause, if it is first).
3273     if (C->getClauseKind() != OMPC_seq_cst) {
3274       Kind = C->getClauseKind();
3275       break;
3276     }
3277   }
3278 
3279   const auto *CS =
3280       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
3281   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
3282     enterFullExpression(EWC);
3283   }
3284   // Processing for statements under 'atomic capture'.
3285   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3286     for (const auto *C : Compound->body()) {
3287       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
3288         enterFullExpression(EWC);
3289       }
3290     }
3291   }
3292 
3293   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
3294                                             PrePostActionTy &) {
3295     CGF.EmitStopPoint(CS);
3296     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
3297                       S.getV(), S.getExpr(), S.getUpdateExpr(),
3298                       S.isXLHSInRHSPart(), S.getLocStart());
3299   };
3300   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3301   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
3302 }
3303 
3304 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/>
3305 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction(
3306     CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName,
3307     bool IsOffloadEntry) {
3308   llvm::Function *OutlinedFn = nullptr;
3309   llvm::Constant *OutlinedFnID = nullptr;
3310   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3311     OMPPrivateScope PrivateScope(CGF);
3312     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3313     CGF.EmitOMPPrivateClause(S, PrivateScope);
3314     (void)PrivateScope.Privatize();
3315 
3316     Action.Enter(CGF);
3317     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3318   };
3319   // Emit target region as a standalone region.
3320   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3321       S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen);
3322   return std::make_pair(OutlinedFn, OutlinedFnID);
3323 }
3324 
3325 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
3326   const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());
3327 
3328   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3329   GenerateOpenMPCapturedVars(CS, CapturedVars);
3330 
3331   llvm::Function *Fn = nullptr;
3332   llvm::Constant *FnID = nullptr;
3333 
3334   // Check if we have any if clause associated with the directive.
3335   const Expr *IfCond = nullptr;
3336 
3337   if (auto *C = S.getSingleClause<OMPIfClause>()) {
3338     IfCond = C->getCondition();
3339   }
3340 
3341   // Check if we have any device clause associated with the directive.
3342   const Expr *Device = nullptr;
3343   if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
3344     Device = C->getDevice();
3345   }
3346 
3347   // Check if we have an if clause whose conditional always evaluates to false
3348   // or if we do not have any targets specified. If so the target region is not
3349   // an offload entry point.
3350   bool IsOffloadEntry = true;
3351   if (IfCond) {
3352     bool Val;
3353     if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
3354       IsOffloadEntry = false;
3355   }
3356   if (CGM.getLangOpts().OMPTargetTriples.empty())
3357     IsOffloadEntry = false;
3358 
3359   assert(CurFuncDecl && "No parent declaration for target region!");
3360   StringRef ParentName;
3361   // In case we have Ctors/Dtors we use the complete type variant to produce
3362   // the mangling of the device outlined kernel.
3363   if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl))
3364     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
3365   else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl))
3366     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
3367   else
3368     ParentName =
3369         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl)));
3370 
3371   std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction(
3372       CGM, S, ParentName, IsOffloadEntry);
3373   OMPLexicalScope Scope(*this, S);
3374   CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device,
3375                                         CapturedVars);
3376 }
3377 
3378 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
3379                                         const OMPExecutableDirective &S,
3380                                         OpenMPDirectiveKind InnermostKind,
3381                                         const RegionCodeGenTy &CodeGen) {
3382   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3383   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
3384       emitParallelOrTeamsOutlinedFunction(S,
3385           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
3386 
3387   const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S);
3388   const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>();
3389   const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>();
3390   if (NT || TL) {
3391     Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr;
3392     Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr;
3393 
3394     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
3395                                                   S.getLocStart());
3396   }
3397 
3398   OMPLexicalScope Scope(CGF, S);
3399   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3400   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3401   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn,
3402                                            CapturedVars);
3403 }
3404 
3405 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
3406   // Emit parallel region as a standalone region.
3407   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3408     OMPPrivateScope PrivateScope(CGF);
3409     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3410     CGF.EmitOMPPrivateClause(S, PrivateScope);
3411     (void)PrivateScope.Privatize();
3412     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3413   };
3414   emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen);
3415 }
3416 
3417 void CodeGenFunction::EmitOMPCancellationPointDirective(
3418     const OMPCancellationPointDirective &S) {
3419   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
3420                                                    S.getCancelRegion());
3421 }
3422 
3423 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
3424   const Expr *IfCond = nullptr;
3425   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3426     if (C->getNameModifier() == OMPD_unknown ||
3427         C->getNameModifier() == OMPD_cancel) {
3428       IfCond = C->getCondition();
3429       break;
3430     }
3431   }
3432   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
3433                                         S.getCancelRegion());
3434 }
3435 
3436 CodeGenFunction::JumpDest
3437 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
3438   if (Kind == OMPD_parallel || Kind == OMPD_task)
3439     return ReturnBlock;
3440   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
3441          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for);
3442   return BreakContinueStack.back().BreakBlock;
3443 }
3444 
3445 void CodeGenFunction::EmitOMPUseDevicePtrClause(
3446     const OMPClause &NC, OMPPrivateScope &PrivateScope,
3447     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
3448   const auto &C = cast<OMPUseDevicePtrClause>(NC);
3449   auto OrigVarIt = C.varlist_begin();
3450   auto InitIt = C.inits().begin();
3451   for (auto PvtVarIt : C.private_copies()) {
3452     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
3453     auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
3454     auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
3455 
3456     // In order to identify the right initializer we need to match the
3457     // declaration used by the mapping logic. In some cases we may get
3458     // OMPCapturedExprDecl that refers to the original declaration.
3459     const ValueDecl *MatchingVD = OrigVD;
3460     if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
3461       // OMPCapturedExprDecl are used to privative fields of the current
3462       // structure.
3463       auto *ME = cast<MemberExpr>(OED->getInit());
3464       assert(isa<CXXThisExpr>(ME->getBase()) &&
3465              "Base should be the current struct!");
3466       MatchingVD = ME->getMemberDecl();
3467     }
3468 
3469     // If we don't have information about the current list item, move on to
3470     // the next one.
3471     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
3472     if (InitAddrIt == CaptureDeviceAddrMap.end())
3473       continue;
3474 
3475     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
3476       // Initialize the temporary initialization variable with the address we
3477       // get from the runtime library. We have to cast the source address
3478       // because it is always a void *. References are materialized in the
3479       // privatization scope, so the initialization here disregards the fact
3480       // the original variable is a reference.
3481       QualType AddrQTy =
3482           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
3483       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
3484       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
3485       setAddrOfLocalVar(InitVD, InitAddr);
3486 
3487       // Emit private declaration, it will be initialized by the value we
3488       // declaration we just added to the local declarations map.
3489       EmitDecl(*PvtVD);
3490 
3491       // The initialization variables reached its purpose in the emission
3492       // ofthe previous declaration, so we don't need it anymore.
3493       LocalDeclMap.erase(InitVD);
3494 
3495       // Return the address of the private variable.
3496       return GetAddrOfLocalVar(PvtVD);
3497     });
3498     assert(IsRegistered && "firstprivate var already registered as private");
3499     // Silence the warning about unused variable.
3500     (void)IsRegistered;
3501 
3502     ++OrigVarIt;
3503     ++InitIt;
3504   }
3505 }
3506 
3507 // Generate the instructions for '#pragma omp target data' directive.
3508 void CodeGenFunction::EmitOMPTargetDataDirective(
3509     const OMPTargetDataDirective &S) {
3510   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
3511 
3512   // Create a pre/post action to signal the privatization of the device pointer.
3513   // This action can be replaced by the OpenMP runtime code generation to
3514   // deactivate privatization.
3515   bool PrivatizeDevicePointers = false;
3516   class DevicePointerPrivActionTy : public PrePostActionTy {
3517     bool &PrivatizeDevicePointers;
3518 
3519   public:
3520     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
3521         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
3522     void Enter(CodeGenFunction &CGF) override {
3523       PrivatizeDevicePointers = true;
3524     }
3525   };
3526   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
3527 
3528   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
3529       CodeGenFunction &CGF, PrePostActionTy &Action) {
3530     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3531       CGF.EmitStmt(
3532           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3533     };
3534 
3535     // Codegen that selects wheather to generate the privatization code or not.
3536     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
3537                           &InnermostCodeGen](CodeGenFunction &CGF,
3538                                              PrePostActionTy &Action) {
3539       RegionCodeGenTy RCG(InnermostCodeGen);
3540       PrivatizeDevicePointers = false;
3541 
3542       // Call the pre-action to change the status of PrivatizeDevicePointers if
3543       // needed.
3544       Action.Enter(CGF);
3545 
3546       if (PrivatizeDevicePointers) {
3547         OMPPrivateScope PrivateScope(CGF);
3548         // Emit all instances of the use_device_ptr clause.
3549         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
3550           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
3551                                         Info.CaptureDeviceAddrMap);
3552         (void)PrivateScope.Privatize();
3553         RCG(CGF);
3554       } else
3555         RCG(CGF);
3556     };
3557 
3558     // Forward the provided action to the privatization codegen.
3559     RegionCodeGenTy PrivRCG(PrivCodeGen);
3560     PrivRCG.setAction(Action);
3561 
3562     // Notwithstanding the body of the region is emitted as inlined directive,
3563     // we don't use an inline scope as changes in the references inside the
3564     // region are expected to be visible outside, so we do not privative them.
3565     OMPLexicalScope Scope(CGF, S);
3566     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
3567                                                     PrivRCG);
3568   };
3569 
3570   RegionCodeGenTy RCG(CodeGen);
3571 
3572   // If we don't have target devices, don't bother emitting the data mapping
3573   // code.
3574   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
3575     RCG(*this);
3576     return;
3577   }
3578 
3579   // Check if we have any if clause associated with the directive.
3580   const Expr *IfCond = nullptr;
3581   if (auto *C = S.getSingleClause<OMPIfClause>())
3582     IfCond = C->getCondition();
3583 
3584   // Check if we have any device clause associated with the directive.
3585   const Expr *Device = nullptr;
3586   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3587     Device = C->getDevice();
3588 
3589   // Set the action to signal privatization of device pointers.
3590   RCG.setAction(PrivAction);
3591 
3592   // Emit region code.
3593   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
3594                                              Info);
3595 }
3596 
3597 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
3598     const OMPTargetEnterDataDirective &S) {
3599   // If we don't have target devices, don't bother emitting the data mapping
3600   // code.
3601   if (CGM.getLangOpts().OMPTargetTriples.empty())
3602     return;
3603 
3604   // Check if we have any if clause associated with the directive.
3605   const Expr *IfCond = nullptr;
3606   if (auto *C = S.getSingleClause<OMPIfClause>())
3607     IfCond = C->getCondition();
3608 
3609   // Check if we have any device clause associated with the directive.
3610   const Expr *Device = nullptr;
3611   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3612     Device = C->getDevice();
3613 
3614   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3615 }
3616 
3617 void CodeGenFunction::EmitOMPTargetExitDataDirective(
3618     const OMPTargetExitDataDirective &S) {
3619   // If we don't have target devices, don't bother emitting the data mapping
3620   // code.
3621   if (CGM.getLangOpts().OMPTargetTriples.empty())
3622     return;
3623 
3624   // Check if we have any if clause associated with the directive.
3625   const Expr *IfCond = nullptr;
3626   if (auto *C = S.getSingleClause<OMPIfClause>())
3627     IfCond = C->getCondition();
3628 
3629   // Check if we have any device clause associated with the directive.
3630   const Expr *Device = nullptr;
3631   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3632     Device = C->getDevice();
3633 
3634   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3635 }
3636 
3637 void CodeGenFunction::EmitOMPTargetParallelDirective(
3638     const OMPTargetParallelDirective &S) {
3639   // TODO: codegen for target parallel.
3640 }
3641 
3642 void CodeGenFunction::EmitOMPTargetParallelForDirective(
3643     const OMPTargetParallelForDirective &S) {
3644   // TODO: codegen for target parallel for.
3645 }
3646 
3647 /// Emit a helper variable and return corresponding lvalue.
3648 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
3649                      const ImplicitParamDecl *PVD,
3650                      CodeGenFunction::OMPPrivateScope &Privates) {
3651   auto *VDecl = cast<VarDecl>(Helper->getDecl());
3652   Privates.addPrivate(
3653       VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); });
3654 }
3655 
3656 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
3657   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
3658   // Emit outlined function for task construct.
3659   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3660   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
3661   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3662   const Expr *IfCond = nullptr;
3663   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3664     if (C->getNameModifier() == OMPD_unknown ||
3665         C->getNameModifier() == OMPD_taskloop) {
3666       IfCond = C->getCondition();
3667       break;
3668     }
3669   }
3670 
3671   OMPTaskDataTy Data;
3672   // Check if taskloop must be emitted without taskgroup.
3673   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
3674   // TODO: Check if we should emit tied or untied task.
3675   Data.Tied = true;
3676   // Set scheduling for taskloop
3677   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
3678     // grainsize clause
3679     Data.Schedule.setInt(/*IntVal=*/false);
3680     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
3681   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
3682     // num_tasks clause
3683     Data.Schedule.setInt(/*IntVal=*/true);
3684     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
3685   }
3686 
3687   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
3688     // if (PreCond) {
3689     //   for (IV in 0..LastIteration) BODY;
3690     //   <Final counter/linear vars updates>;
3691     // }
3692     //
3693 
3694     // Emit: if (PreCond) - begin.
3695     // If the condition constant folds and can be elided, avoid emitting the
3696     // whole loop.
3697     bool CondConstant;
3698     llvm::BasicBlock *ContBlock = nullptr;
3699     OMPLoopScope PreInitScope(CGF, S);
3700     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3701       if (!CondConstant)
3702         return;
3703     } else {
3704       auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
3705       ContBlock = CGF.createBasicBlock("taskloop.if.end");
3706       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
3707                   CGF.getProfileCount(&S));
3708       CGF.EmitBlock(ThenBlock);
3709       CGF.incrementProfileCounter(&S);
3710     }
3711 
3712     if (isOpenMPSimdDirective(S.getDirectiveKind()))
3713       CGF.EmitOMPSimdInit(S);
3714 
3715     OMPPrivateScope LoopScope(CGF);
3716     // Emit helper vars inits.
3717     enum { LowerBound = 5, UpperBound, Stride, LastIter };
3718     auto *I = CS->getCapturedDecl()->param_begin();
3719     auto *LBP = std::next(I, LowerBound);
3720     auto *UBP = std::next(I, UpperBound);
3721     auto *STP = std::next(I, Stride);
3722     auto *LIP = std::next(I, LastIter);
3723     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
3724              LoopScope);
3725     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
3726              LoopScope);
3727     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
3728     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
3729              LoopScope);
3730     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
3731     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3732     (void)LoopScope.Privatize();
3733     // Emit the loop iteration variable.
3734     const Expr *IVExpr = S.getIterationVariable();
3735     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
3736     CGF.EmitVarDecl(*IVDecl);
3737     CGF.EmitIgnoredExpr(S.getInit());
3738 
3739     // Emit the iterations count variable.
3740     // If it is not a variable, Sema decided to calculate iterations count on
3741     // each iteration (e.g., it is foldable into a constant).
3742     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3743       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3744       // Emit calculation of the iterations count.
3745       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
3746     }
3747 
3748     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
3749                          S.getInc(),
3750                          [&S](CodeGenFunction &CGF) {
3751                            CGF.EmitOMPLoopBody(S, JumpDest());
3752                            CGF.EmitStopPoint(&S);
3753                          },
3754                          [](CodeGenFunction &) {});
3755     // Emit: if (PreCond) - end.
3756     if (ContBlock) {
3757       CGF.EmitBranch(ContBlock);
3758       CGF.EmitBlock(ContBlock, true);
3759     }
3760     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3761     if (HasLastprivateClause) {
3762       CGF.EmitOMPLastprivateClauseFinal(
3763           S, isOpenMPSimdDirective(S.getDirectiveKind()),
3764           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
3765               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
3766               (*LIP)->getType(), S.getLocStart())));
3767     }
3768   };
3769   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3770                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
3771                             const OMPTaskDataTy &Data) {
3772     auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) {
3773       OMPLoopScope PreInitScope(CGF, S);
3774       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S,
3775                                                   OutlinedFn, SharedsTy,
3776                                                   CapturedStruct, IfCond, Data);
3777     };
3778     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
3779                                                     CodeGen);
3780   };
3781   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
3782 }
3783 
3784 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
3785   EmitOMPTaskLoopBasedDirective(S);
3786 }
3787 
3788 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
3789     const OMPTaskLoopSimdDirective &S) {
3790   EmitOMPTaskLoopBasedDirective(S);
3791 }
3792 
3793 // Generate the instructions for '#pragma omp target update' directive.
3794 void CodeGenFunction::EmitOMPTargetUpdateDirective(
3795     const OMPTargetUpdateDirective &S) {
3796   // If we don't have target devices, don't bother emitting the data mapping
3797   // code.
3798   if (CGM.getLangOpts().OMPTargetTriples.empty())
3799     return;
3800 
3801   // Check if we have any if clause associated with the directive.
3802   const Expr *IfCond = nullptr;
3803   if (auto *C = S.getSingleClause<OMPIfClause>())
3804     IfCond = C->getCondition();
3805 
3806   // Check if we have any device clause associated with the directive.
3807   const Expr *Device = nullptr;
3808   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3809     Device = C->getDevice();
3810 
3811   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3812 }
3813