1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 bool AsInlined = false) 58 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 59 InlinedShareds(CGF) { 60 emitPreInitStmt(CGF, S); 61 if (AsInlined) { 62 if (S.hasAssociatedStmt()) { 63 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 64 for (auto &C : CS->captures()) { 65 if (C.capturesVariable() || C.capturesVariableByCopy()) { 66 auto *VD = C.getCapturedVar(); 67 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 68 isCapturedVar(CGF, VD) || 69 (CGF.CapturedStmtInfo && 70 InlinedShareds.isGlobalVarCaptured(VD)), 71 VD->getType().getNonReferenceType(), VK_LValue, 72 SourceLocation()); 73 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 74 return CGF.EmitLValue(&DRE).getAddress(); 75 }); 76 } 77 } 78 (void)InlinedShareds.Privatize(); 79 } 80 } 81 } 82 }; 83 84 /// Private scope for OpenMP loop-based directives, that supports capturing 85 /// of used expression from loop statement. 86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 87 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 88 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 89 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 90 for (const auto *I : PreInits->decls()) 91 CGF.EmitVarDecl(cast<VarDecl>(*I)); 92 } 93 } 94 } 95 96 public: 97 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 98 : CodeGenFunction::RunCleanupsScope(CGF) { 99 emitPreInitStmt(CGF, S); 100 } 101 }; 102 103 } // namespace 104 105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 106 auto &C = getContext(); 107 llvm::Value *Size = nullptr; 108 auto SizeInChars = C.getTypeSizeInChars(Ty); 109 if (SizeInChars.isZero()) { 110 // getTypeSizeInChars() returns 0 for a VLA. 111 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 112 llvm::Value *ArraySize; 113 std::tie(ArraySize, Ty) = getVLASize(VAT); 114 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 115 } 116 SizeInChars = C.getTypeSizeInChars(Ty); 117 if (SizeInChars.isZero()) 118 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 119 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 120 } else 121 Size = CGM.getSize(SizeInChars); 122 return Size; 123 } 124 125 void CodeGenFunction::GenerateOpenMPCapturedVars( 126 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 127 const RecordDecl *RD = S.getCapturedRecordDecl(); 128 auto CurField = RD->field_begin(); 129 auto CurCap = S.captures().begin(); 130 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 131 E = S.capture_init_end(); 132 I != E; ++I, ++CurField, ++CurCap) { 133 if (CurField->hasCapturedVLAType()) { 134 auto VAT = CurField->getCapturedVLAType(); 135 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 136 CapturedVars.push_back(Val); 137 } else if (CurCap->capturesThis()) 138 CapturedVars.push_back(CXXThisValue); 139 else if (CurCap->capturesVariableByCopy()) { 140 llvm::Value *CV = 141 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal(); 142 143 // If the field is not a pointer, we need to save the actual value 144 // and load it as a void pointer. 145 if (!CurField->getType()->isAnyPointerType()) { 146 auto &Ctx = getContext(); 147 auto DstAddr = CreateMemTemp( 148 Ctx.getUIntPtrType(), 149 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 150 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 151 152 auto *SrcAddrVal = EmitScalarConversion( 153 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 154 Ctx.getPointerType(CurField->getType()), SourceLocation()); 155 LValue SrcLV = 156 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 157 158 // Store the value using the source type pointer. 159 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 160 161 // Load the value using the destination type pointer. 162 CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal(); 163 } 164 CapturedVars.push_back(CV); 165 } else { 166 assert(CurCap->capturesVariable() && "Expected capture by reference."); 167 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 168 } 169 } 170 } 171 172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 173 StringRef Name, LValue AddrLV, 174 bool isReferenceType = false) { 175 ASTContext &Ctx = CGF.getContext(); 176 177 auto *CastedPtr = CGF.EmitScalarConversion( 178 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 179 Ctx.getPointerType(DstType), SourceLocation()); 180 auto TmpAddr = 181 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 182 .getAddress(); 183 184 // If we are dealing with references we need to return the address of the 185 // reference instead of the reference of the value. 186 if (isReferenceType) { 187 QualType RefType = Ctx.getLValueReferenceType(DstType); 188 auto *RefVal = TmpAddr.getPointer(); 189 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 190 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 191 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true); 192 } 193 194 return TmpAddr; 195 } 196 197 llvm::Function * 198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 199 assert( 200 CapturedStmtInfo && 201 "CapturedStmtInfo should be set when generating the captured function"); 202 const CapturedDecl *CD = S.getCapturedDecl(); 203 const RecordDecl *RD = S.getCapturedRecordDecl(); 204 assert(CD->hasBody() && "missing CapturedDecl body"); 205 206 // Build the argument list. 207 ASTContext &Ctx = CGM.getContext(); 208 FunctionArgList Args; 209 Args.append(CD->param_begin(), 210 std::next(CD->param_begin(), CD->getContextParamPosition())); 211 auto I = S.captures().begin(); 212 for (auto *FD : RD->fields()) { 213 QualType ArgType = FD->getType(); 214 IdentifierInfo *II = nullptr; 215 VarDecl *CapVar = nullptr; 216 217 // If this is a capture by copy and the type is not a pointer, the outlined 218 // function argument type should be uintptr and the value properly casted to 219 // uintptr. This is necessary given that the runtime library is only able to 220 // deal with pointers. We can pass in the same way the VLA type sizes to the 221 // outlined function. 222 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 223 I->capturesVariableArrayType()) 224 ArgType = Ctx.getUIntPtrType(); 225 226 if (I->capturesVariable() || I->capturesVariableByCopy()) { 227 CapVar = I->getCapturedVar(); 228 II = CapVar->getIdentifier(); 229 } else if (I->capturesThis()) 230 II = &getContext().Idents.get("this"); 231 else { 232 assert(I->capturesVariableArrayType()); 233 II = &getContext().Idents.get("vla"); 234 } 235 if (ArgType->isVariablyModifiedType()) { 236 bool IsReference = ArgType->isLValueReferenceType(); 237 ArgType = 238 getContext().getCanonicalParamType(ArgType.getNonReferenceType()); 239 if (IsReference && !ArgType->isPointerType()) { 240 ArgType = getContext().getLValueReferenceType( 241 ArgType, /*SpelledAsLValue=*/false); 242 } 243 } 244 Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr, 245 FD->getLocation(), II, ArgType)); 246 ++I; 247 } 248 Args.append( 249 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 250 CD->param_end()); 251 252 // Create the function declaration. 253 FunctionType::ExtInfo ExtInfo; 254 const CGFunctionInfo &FuncInfo = 255 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 256 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 257 258 llvm::Function *F = llvm::Function::Create( 259 FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 260 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 261 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 262 if (CD->isNothrow()) 263 F->addFnAttr(llvm::Attribute::NoUnwind); 264 265 // Generate the function. 266 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 267 CD->getBody()->getLocStart()); 268 unsigned Cnt = CD->getContextParamPosition(); 269 I = S.captures().begin(); 270 for (auto *FD : RD->fields()) { 271 // If we are capturing a pointer by copy we don't need to do anything, just 272 // use the value that we get from the arguments. 273 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 274 const VarDecl *CurVD = I->getCapturedVar(); 275 Address LocalAddr = GetAddrOfLocalVar(Args[Cnt]); 276 // If the variable is a reference we need to materialize it here. 277 if (CurVD->getType()->isReferenceType()) { 278 Address RefAddr = CreateMemTemp(CurVD->getType(), getPointerAlign(), 279 ".materialized_ref"); 280 EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, /*Volatile=*/false, 281 CurVD->getType()); 282 LocalAddr = RefAddr; 283 } 284 setAddrOfLocalVar(CurVD, LocalAddr); 285 ++Cnt; 286 ++I; 287 continue; 288 } 289 290 LValue ArgLVal = 291 MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(), 292 AlignmentSource::Decl); 293 if (FD->hasCapturedVLAType()) { 294 LValue CastedArgLVal = 295 MakeAddrLValue(castValueFromUintptr(*this, FD->getType(), 296 Args[Cnt]->getName(), ArgLVal), 297 FD->getType(), AlignmentSource::Decl); 298 auto *ExprArg = 299 EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal(); 300 auto VAT = FD->getCapturedVLAType(); 301 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 302 } else if (I->capturesVariable()) { 303 auto *Var = I->getCapturedVar(); 304 QualType VarTy = Var->getType(); 305 Address ArgAddr = ArgLVal.getAddress(); 306 if (!VarTy->isReferenceType()) { 307 if (ArgLVal.getType()->isLValueReferenceType()) { 308 ArgAddr = EmitLoadOfReference( 309 ArgAddr, ArgLVal.getType()->castAs<ReferenceType>()); 310 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 311 assert(ArgLVal.getType()->isPointerType()); 312 ArgAddr = EmitLoadOfPointer( 313 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 314 } 315 } 316 setAddrOfLocalVar( 317 Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var))); 318 } else if (I->capturesVariableByCopy()) { 319 assert(!FD->getType()->isAnyPointerType() && 320 "Not expecting a captured pointer."); 321 auto *Var = I->getCapturedVar(); 322 QualType VarTy = Var->getType(); 323 setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(), 324 Args[Cnt]->getName(), ArgLVal, 325 VarTy->isReferenceType())); 326 } else { 327 // If 'this' is captured, load it into CXXThisValue. 328 assert(I->capturesThis()); 329 CXXThisValue = 330 EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal(); 331 } 332 ++Cnt; 333 ++I; 334 } 335 336 PGO.assignRegionCounters(GlobalDecl(CD), F); 337 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 338 FinishFunction(CD->getBodyRBrace()); 339 340 return F; 341 } 342 343 //===----------------------------------------------------------------------===// 344 // OpenMP Directive Emission 345 //===----------------------------------------------------------------------===// 346 void CodeGenFunction::EmitOMPAggregateAssign( 347 Address DestAddr, Address SrcAddr, QualType OriginalType, 348 const llvm::function_ref<void(Address, Address)> &CopyGen) { 349 // Perform element-by-element initialization. 350 QualType ElementTy; 351 352 // Drill down to the base element type on both arrays. 353 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 354 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 355 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 356 357 auto SrcBegin = SrcAddr.getPointer(); 358 auto DestBegin = DestAddr.getPointer(); 359 // Cast from pointer to array type to pointer to single element. 360 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 361 // The basic structure here is a while-do loop. 362 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 363 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 364 auto IsEmpty = 365 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 366 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 367 368 // Enter the loop body, making that address the current address. 369 auto EntryBB = Builder.GetInsertBlock(); 370 EmitBlock(BodyBB); 371 372 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 373 374 llvm::PHINode *SrcElementPHI = 375 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 376 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 377 Address SrcElementCurrent = 378 Address(SrcElementPHI, 379 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 380 381 llvm::PHINode *DestElementPHI = 382 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 383 DestElementPHI->addIncoming(DestBegin, EntryBB); 384 Address DestElementCurrent = 385 Address(DestElementPHI, 386 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 387 388 // Emit copy. 389 CopyGen(DestElementCurrent, SrcElementCurrent); 390 391 // Shift the address forward by one element. 392 auto DestElementNext = Builder.CreateConstGEP1_32( 393 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 394 auto SrcElementNext = Builder.CreateConstGEP1_32( 395 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 396 // Check whether we've reached the end. 397 auto Done = 398 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 399 Builder.CreateCondBr(Done, DoneBB, BodyBB); 400 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 401 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 402 403 // Done. 404 EmitBlock(DoneBB, /*IsFinished=*/true); 405 } 406 407 /// Check if the combiner is a call to UDR combiner and if it is so return the 408 /// UDR decl used for reduction. 409 static const OMPDeclareReductionDecl * 410 getReductionInit(const Expr *ReductionOp) { 411 if (auto *CE = dyn_cast<CallExpr>(ReductionOp)) 412 if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) 413 if (auto *DRE = 414 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) 415 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) 416 return DRD; 417 return nullptr; 418 } 419 420 static void emitInitWithReductionInitializer(CodeGenFunction &CGF, 421 const OMPDeclareReductionDecl *DRD, 422 const Expr *InitOp, 423 Address Private, Address Original, 424 QualType Ty) { 425 if (DRD->getInitializer()) { 426 std::pair<llvm::Function *, llvm::Function *> Reduction = 427 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); 428 auto *CE = cast<CallExpr>(InitOp); 429 auto *OVE = cast<OpaqueValueExpr>(CE->getCallee()); 430 const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); 431 const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); 432 auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr()); 433 auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr()); 434 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 435 PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), 436 [=]() -> Address { return Private; }); 437 PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), 438 [=]() -> Address { return Original; }); 439 (void)PrivateScope.Privatize(); 440 RValue Func = RValue::get(Reduction.second); 441 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); 442 CGF.EmitIgnoredExpr(InitOp); 443 } else { 444 llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); 445 auto *GV = new llvm::GlobalVariable( 446 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 447 llvm::GlobalValue::PrivateLinkage, Init, ".init"); 448 LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); 449 RValue InitRVal; 450 switch (CGF.getEvaluationKind(Ty)) { 451 case TEK_Scalar: 452 InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation()); 453 break; 454 case TEK_Complex: 455 InitRVal = 456 RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation())); 457 break; 458 case TEK_Aggregate: 459 InitRVal = RValue::getAggregate(LV.getAddress()); 460 break; 461 } 462 OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue); 463 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); 464 CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), 465 /*IsInitializer=*/false); 466 } 467 } 468 469 /// \brief Emit initialization of arrays of complex types. 470 /// \param DestAddr Address of the array. 471 /// \param Type Type of array. 472 /// \param Init Initial expression of array. 473 /// \param SrcAddr Address of the original array. 474 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, 475 QualType Type, const Expr *Init, 476 Address SrcAddr = Address::invalid()) { 477 auto *DRD = getReductionInit(Init); 478 // Perform element-by-element initialization. 479 QualType ElementTy; 480 481 // Drill down to the base element type on both arrays. 482 auto ArrayTy = Type->getAsArrayTypeUnsafe(); 483 auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); 484 DestAddr = 485 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); 486 if (DRD) 487 SrcAddr = 488 CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 489 490 llvm::Value *SrcBegin = nullptr; 491 if (DRD) 492 SrcBegin = SrcAddr.getPointer(); 493 auto DestBegin = DestAddr.getPointer(); 494 // Cast from pointer to array type to pointer to single element. 495 auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); 496 // The basic structure here is a while-do loop. 497 auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); 498 auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); 499 auto IsEmpty = 500 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); 501 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 502 503 // Enter the loop body, making that address the current address. 504 auto EntryBB = CGF.Builder.GetInsertBlock(); 505 CGF.EmitBlock(BodyBB); 506 507 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); 508 509 llvm::PHINode *SrcElementPHI = nullptr; 510 Address SrcElementCurrent = Address::invalid(); 511 if (DRD) { 512 SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, 513 "omp.arraycpy.srcElementPast"); 514 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 515 SrcElementCurrent = 516 Address(SrcElementPHI, 517 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 518 } 519 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( 520 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 521 DestElementPHI->addIncoming(DestBegin, EntryBB); 522 Address DestElementCurrent = 523 Address(DestElementPHI, 524 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 525 526 // Emit copy. 527 { 528 CodeGenFunction::RunCleanupsScope InitScope(CGF); 529 if (DRD && (DRD->getInitializer() || !Init)) { 530 emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, 531 SrcElementCurrent, ElementTy); 532 } else 533 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), 534 /*IsInitializer=*/false); 535 } 536 537 if (DRD) { 538 // Shift the address forward by one element. 539 auto SrcElementNext = CGF.Builder.CreateConstGEP1_32( 540 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 541 SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); 542 } 543 544 // Shift the address forward by one element. 545 auto DestElementNext = CGF.Builder.CreateConstGEP1_32( 546 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 547 // Check whether we've reached the end. 548 auto Done = 549 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 550 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); 551 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); 552 553 // Done. 554 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 555 } 556 557 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 558 Address SrcAddr, const VarDecl *DestVD, 559 const VarDecl *SrcVD, const Expr *Copy) { 560 if (OriginalType->isArrayType()) { 561 auto *BO = dyn_cast<BinaryOperator>(Copy); 562 if (BO && BO->getOpcode() == BO_Assign) { 563 // Perform simple memcpy for simple copying. 564 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 565 } else { 566 // For arrays with complex element types perform element by element 567 // copying. 568 EmitOMPAggregateAssign( 569 DestAddr, SrcAddr, OriginalType, 570 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 571 // Working with the single array element, so have to remap 572 // destination and source variables to corresponding array 573 // elements. 574 CodeGenFunction::OMPPrivateScope Remap(*this); 575 Remap.addPrivate(DestVD, [DestElement]() -> Address { 576 return DestElement; 577 }); 578 Remap.addPrivate( 579 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 580 (void)Remap.Privatize(); 581 EmitIgnoredExpr(Copy); 582 }); 583 } 584 } else { 585 // Remap pseudo source variable to private copy. 586 CodeGenFunction::OMPPrivateScope Remap(*this); 587 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 588 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 589 (void)Remap.Privatize(); 590 // Emit copying of the whole variable. 591 EmitIgnoredExpr(Copy); 592 } 593 } 594 595 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 596 OMPPrivateScope &PrivateScope) { 597 if (!HaveInsertPoint()) 598 return false; 599 bool FirstprivateIsLastprivate = false; 600 llvm::DenseSet<const VarDecl *> Lastprivates; 601 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 602 for (const auto *D : C->varlists()) 603 Lastprivates.insert( 604 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 605 } 606 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 607 CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt())); 608 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 609 auto IRef = C->varlist_begin(); 610 auto InitsRef = C->inits().begin(); 611 for (auto IInit : C->private_copies()) { 612 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 613 bool ThisFirstprivateIsLastprivate = 614 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 615 auto *CapFD = CapturesInfo.lookup(OrigVD); 616 auto *FD = CapturedStmtInfo->lookup(OrigVD); 617 if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) && 618 !FD->getType()->isReferenceType()) { 619 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 620 ++IRef; 621 ++InitsRef; 622 continue; 623 } 624 FirstprivateIsLastprivate = 625 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 626 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 627 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 628 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 629 bool IsRegistered; 630 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 631 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 632 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 633 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 634 QualType Type = VD->getType(); 635 if (Type->isArrayType()) { 636 // Emit VarDecl with copy init for arrays. 637 // Get the address of the original variable captured in current 638 // captured region. 639 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 640 auto Emission = EmitAutoVarAlloca(*VD); 641 auto *Init = VD->getInit(); 642 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 643 // Perform simple memcpy. 644 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 645 Type); 646 } else { 647 EmitOMPAggregateAssign( 648 Emission.getAllocatedAddress(), OriginalAddr, Type, 649 [this, VDInit, Init](Address DestElement, 650 Address SrcElement) { 651 // Clean up any temporaries needed by the initialization. 652 RunCleanupsScope InitScope(*this); 653 // Emit initialization for single element. 654 setAddrOfLocalVar(VDInit, SrcElement); 655 EmitAnyExprToMem(Init, DestElement, 656 Init->getType().getQualifiers(), 657 /*IsInitializer*/ false); 658 LocalDeclMap.erase(VDInit); 659 }); 660 } 661 EmitAutoVarCleanups(Emission); 662 return Emission.getAllocatedAddress(); 663 }); 664 } else { 665 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 666 // Emit private VarDecl with copy init. 667 // Remap temp VDInit variable to the address of the original 668 // variable 669 // (for proper handling of captured global variables). 670 setAddrOfLocalVar(VDInit, OriginalAddr); 671 EmitDecl(*VD); 672 LocalDeclMap.erase(VDInit); 673 return GetAddrOfLocalVar(VD); 674 }); 675 } 676 assert(IsRegistered && 677 "firstprivate var already registered as private"); 678 // Silence the warning about unused variable. 679 (void)IsRegistered; 680 } 681 ++IRef; 682 ++InitsRef; 683 } 684 } 685 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 686 } 687 688 void CodeGenFunction::EmitOMPPrivateClause( 689 const OMPExecutableDirective &D, 690 CodeGenFunction::OMPPrivateScope &PrivateScope) { 691 if (!HaveInsertPoint()) 692 return; 693 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 694 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 695 auto IRef = C->varlist_begin(); 696 for (auto IInit : C->private_copies()) { 697 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 698 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 699 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 700 bool IsRegistered = 701 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 702 // Emit private VarDecl with copy init. 703 EmitDecl(*VD); 704 return GetAddrOfLocalVar(VD); 705 }); 706 assert(IsRegistered && "private var already registered as private"); 707 // Silence the warning about unused variable. 708 (void)IsRegistered; 709 } 710 ++IRef; 711 } 712 } 713 } 714 715 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 716 if (!HaveInsertPoint()) 717 return false; 718 // threadprivate_var1 = master_threadprivate_var1; 719 // operator=(threadprivate_var2, master_threadprivate_var2); 720 // ... 721 // __kmpc_barrier(&loc, global_tid); 722 llvm::DenseSet<const VarDecl *> CopiedVars; 723 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 724 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 725 auto IRef = C->varlist_begin(); 726 auto ISrcRef = C->source_exprs().begin(); 727 auto IDestRef = C->destination_exprs().begin(); 728 for (auto *AssignOp : C->assignment_ops()) { 729 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 730 QualType Type = VD->getType(); 731 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 732 // Get the address of the master variable. If we are emitting code with 733 // TLS support, the address is passed from the master as field in the 734 // captured declaration. 735 Address MasterAddr = Address::invalid(); 736 if (getLangOpts().OpenMPUseTLS && 737 getContext().getTargetInfo().isTLSSupported()) { 738 assert(CapturedStmtInfo->lookup(VD) && 739 "Copyin threadprivates should have been captured!"); 740 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 741 VK_LValue, (*IRef)->getExprLoc()); 742 MasterAddr = EmitLValue(&DRE).getAddress(); 743 LocalDeclMap.erase(VD); 744 } else { 745 MasterAddr = 746 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 747 : CGM.GetAddrOfGlobal(VD), 748 getContext().getDeclAlign(VD)); 749 } 750 // Get the address of the threadprivate variable. 751 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 752 if (CopiedVars.size() == 1) { 753 // At first check if current thread is a master thread. If it is, no 754 // need to copy data. 755 CopyBegin = createBasicBlock("copyin.not.master"); 756 CopyEnd = createBasicBlock("copyin.not.master.end"); 757 Builder.CreateCondBr( 758 Builder.CreateICmpNE( 759 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 760 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 761 CopyBegin, CopyEnd); 762 EmitBlock(CopyBegin); 763 } 764 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 765 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 766 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 767 } 768 ++IRef; 769 ++ISrcRef; 770 ++IDestRef; 771 } 772 } 773 if (CopyEnd) { 774 // Exit out of copying procedure for non-master thread. 775 EmitBlock(CopyEnd, /*IsFinished=*/true); 776 return true; 777 } 778 return false; 779 } 780 781 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 782 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 783 if (!HaveInsertPoint()) 784 return false; 785 bool HasAtLeastOneLastprivate = false; 786 llvm::DenseSet<const VarDecl *> SIMDLCVs; 787 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 788 auto *LoopDirective = cast<OMPLoopDirective>(&D); 789 for (auto *C : LoopDirective->counters()) { 790 SIMDLCVs.insert( 791 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 792 } 793 } 794 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 795 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 796 HasAtLeastOneLastprivate = true; 797 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) 798 break; 799 auto IRef = C->varlist_begin(); 800 auto IDestRef = C->destination_exprs().begin(); 801 for (auto *IInit : C->private_copies()) { 802 // Keep the address of the original variable for future update at the end 803 // of the loop. 804 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 805 // Taskloops do not require additional initialization, it is done in 806 // runtime support library. 807 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 808 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 809 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 810 DeclRefExpr DRE( 811 const_cast<VarDecl *>(OrigVD), 812 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 813 OrigVD) != nullptr, 814 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 815 return EmitLValue(&DRE).getAddress(); 816 }); 817 // Check if the variable is also a firstprivate: in this case IInit is 818 // not generated. Initialization of this variable will happen in codegen 819 // for 'firstprivate' clause. 820 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 821 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 822 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 823 // Emit private VarDecl with copy init. 824 EmitDecl(*VD); 825 return GetAddrOfLocalVar(VD); 826 }); 827 assert(IsRegistered && 828 "lastprivate var already registered as private"); 829 (void)IsRegistered; 830 } 831 } 832 ++IRef; 833 ++IDestRef; 834 } 835 } 836 return HasAtLeastOneLastprivate; 837 } 838 839 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 840 const OMPExecutableDirective &D, bool NoFinals, 841 llvm::Value *IsLastIterCond) { 842 if (!HaveInsertPoint()) 843 return; 844 // Emit following code: 845 // if (<IsLastIterCond>) { 846 // orig_var1 = private_orig_var1; 847 // ... 848 // orig_varn = private_orig_varn; 849 // } 850 llvm::BasicBlock *ThenBB = nullptr; 851 llvm::BasicBlock *DoneBB = nullptr; 852 if (IsLastIterCond) { 853 ThenBB = createBasicBlock(".omp.lastprivate.then"); 854 DoneBB = createBasicBlock(".omp.lastprivate.done"); 855 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 856 EmitBlock(ThenBB); 857 } 858 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 859 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 860 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 861 auto IC = LoopDirective->counters().begin(); 862 for (auto F : LoopDirective->finals()) { 863 auto *D = 864 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 865 if (NoFinals) 866 AlreadyEmittedVars.insert(D); 867 else 868 LoopCountersAndUpdates[D] = F; 869 ++IC; 870 } 871 } 872 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 873 auto IRef = C->varlist_begin(); 874 auto ISrcRef = C->source_exprs().begin(); 875 auto IDestRef = C->destination_exprs().begin(); 876 for (auto *AssignOp : C->assignment_ops()) { 877 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 878 QualType Type = PrivateVD->getType(); 879 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 880 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 881 // If lastprivate variable is a loop control variable for loop-based 882 // directive, update its value before copyin back to original 883 // variable. 884 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 885 EmitIgnoredExpr(FinalExpr); 886 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 887 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 888 // Get the address of the original variable. 889 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 890 // Get the address of the private variable. 891 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 892 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 893 PrivateAddr = 894 Address(Builder.CreateLoad(PrivateAddr), 895 getNaturalTypeAlignment(RefTy->getPointeeType())); 896 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 897 } 898 ++IRef; 899 ++ISrcRef; 900 ++IDestRef; 901 } 902 if (auto *PostUpdate = C->getPostUpdateExpr()) 903 EmitIgnoredExpr(PostUpdate); 904 } 905 if (IsLastIterCond) 906 EmitBlock(DoneBB, /*IsFinished=*/true); 907 } 908 909 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 910 LValue BaseLV, llvm::Value *Addr) { 911 Address Tmp = Address::invalid(); 912 Address TopTmp = Address::invalid(); 913 Address MostTopTmp = Address::invalid(); 914 BaseTy = BaseTy.getNonReferenceType(); 915 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 916 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 917 Tmp = CGF.CreateMemTemp(BaseTy); 918 if (TopTmp.isValid()) 919 CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); 920 else 921 MostTopTmp = Tmp; 922 TopTmp = Tmp; 923 BaseTy = BaseTy->getPointeeType(); 924 } 925 llvm::Type *Ty = BaseLV.getPointer()->getType(); 926 if (Tmp.isValid()) 927 Ty = Tmp.getElementType(); 928 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); 929 if (Tmp.isValid()) { 930 CGF.Builder.CreateStore(Addr, Tmp); 931 return MostTopTmp; 932 } 933 return Address(Addr, BaseLV.getAlignment()); 934 } 935 936 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 937 LValue BaseLV) { 938 BaseTy = BaseTy.getNonReferenceType(); 939 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 940 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 941 if (auto *PtrTy = BaseTy->getAs<PointerType>()) 942 BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy); 943 else { 944 BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(), 945 BaseTy->castAs<ReferenceType>()); 946 } 947 BaseTy = BaseTy->getPointeeType(); 948 } 949 return CGF.MakeAddrLValue( 950 Address( 951 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 952 BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()), 953 BaseLV.getAlignment()), 954 BaseLV.getType(), BaseLV.getAlignmentSource()); 955 } 956 957 void CodeGenFunction::EmitOMPReductionClauseInit( 958 const OMPExecutableDirective &D, 959 CodeGenFunction::OMPPrivateScope &PrivateScope) { 960 if (!HaveInsertPoint()) 961 return; 962 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 963 auto ILHS = C->lhs_exprs().begin(); 964 auto IRHS = C->rhs_exprs().begin(); 965 auto IPriv = C->privates().begin(); 966 auto IRed = C->reduction_ops().begin(); 967 for (auto IRef : C->varlists()) { 968 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 969 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 970 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 971 auto *DRD = getReductionInit(*IRed); 972 if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) { 973 auto *Base = OASE->getBase()->IgnoreParenImpCasts(); 974 while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 975 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 976 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 977 Base = TempASE->getBase()->IgnoreParenImpCasts(); 978 auto *DE = cast<DeclRefExpr>(Base); 979 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 980 auto OASELValueLB = EmitOMPArraySectionExpr(OASE); 981 auto OASELValueUB = 982 EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); 983 auto OriginalBaseLValue = EmitLValue(DE); 984 LValue BaseLValue = 985 loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(), 986 OriginalBaseLValue); 987 // Store the address of the original variable associated with the LHS 988 // implicit variable. 989 PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address { 990 return OASELValueLB.getAddress(); 991 }); 992 // Emit reduction copy. 993 bool IsRegistered = PrivateScope.addPrivate( 994 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB, 995 OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address { 996 // Emit VarDecl with copy init for arrays. 997 // Get the address of the original variable captured in current 998 // captured region. 999 auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(), 1000 OASELValueLB.getPointer()); 1001 Size = Builder.CreateNUWAdd( 1002 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); 1003 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1004 *this, cast<OpaqueValueExpr>( 1005 getContext() 1006 .getAsVariableArrayType(PrivateVD->getType()) 1007 ->getSizeExpr()), 1008 RValue::get(Size)); 1009 EmitVariablyModifiedType(PrivateVD->getType()); 1010 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1011 auto Addr = Emission.getAllocatedAddress(); 1012 auto *Init = PrivateVD->getInit(); 1013 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1014 DRD ? *IRed : Init, 1015 OASELValueLB.getAddress()); 1016 EmitAutoVarCleanups(Emission); 1017 // Emit private VarDecl with reduction init. 1018 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1019 OASELValueLB.getPointer()); 1020 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1021 return castToBase(*this, OrigVD->getType(), 1022 OASELValueLB.getType(), OriginalBaseLValue, 1023 Ptr); 1024 }); 1025 assert(IsRegistered && "private var already registered as private"); 1026 // Silence the warning about unused variable. 1027 (void)IsRegistered; 1028 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1029 return GetAddrOfLocalVar(PrivateVD); 1030 }); 1031 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) { 1032 auto *Base = ASE->getBase()->IgnoreParenImpCasts(); 1033 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 1034 Base = TempASE->getBase()->IgnoreParenImpCasts(); 1035 auto *DE = cast<DeclRefExpr>(Base); 1036 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 1037 auto ASELValue = EmitLValue(ASE); 1038 auto OriginalBaseLValue = EmitLValue(DE); 1039 LValue BaseLValue = loadToBegin( 1040 *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue); 1041 // Store the address of the original variable associated with the LHS 1042 // implicit variable. 1043 PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address { 1044 return ASELValue.getAddress(); 1045 }); 1046 // Emit reduction copy. 1047 bool IsRegistered = PrivateScope.addPrivate( 1048 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue, 1049 OriginalBaseLValue, DRD, IRed]() -> Address { 1050 // Emit private VarDecl with reduction init. 1051 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1052 auto Addr = Emission.getAllocatedAddress(); 1053 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1054 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1055 ASELValue.getAddress(), 1056 ASELValue.getType()); 1057 } else 1058 EmitAutoVarInit(Emission); 1059 EmitAutoVarCleanups(Emission); 1060 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1061 ASELValue.getPointer()); 1062 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1063 return castToBase(*this, OrigVD->getType(), ASELValue.getType(), 1064 OriginalBaseLValue, Ptr); 1065 }); 1066 assert(IsRegistered && "private var already registered as private"); 1067 // Silence the warning about unused variable. 1068 (void)IsRegistered; 1069 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1070 return Builder.CreateElementBitCast( 1071 GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()), 1072 "rhs.begin"); 1073 }); 1074 } else { 1075 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 1076 QualType Type = PrivateVD->getType(); 1077 if (getContext().getAsArrayType(Type)) { 1078 // Store the address of the original variable associated with the LHS 1079 // implicit variable. 1080 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1081 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1082 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1083 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 1084 PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr, 1085 LHSVD]() -> Address { 1086 OriginalAddr = Builder.CreateElementBitCast( 1087 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1088 return OriginalAddr; 1089 }); 1090 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 1091 if (Type->isVariablyModifiedType()) { 1092 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1093 *this, cast<OpaqueValueExpr>( 1094 getContext() 1095 .getAsVariableArrayType(PrivateVD->getType()) 1096 ->getSizeExpr()), 1097 RValue::get( 1098 getTypeSize(OrigVD->getType().getNonReferenceType()))); 1099 EmitVariablyModifiedType(Type); 1100 } 1101 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1102 auto Addr = Emission.getAllocatedAddress(); 1103 auto *Init = PrivateVD->getInit(); 1104 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1105 DRD ? *IRed : Init, OriginalAddr); 1106 EmitAutoVarCleanups(Emission); 1107 return Emission.getAllocatedAddress(); 1108 }); 1109 assert(IsRegistered && "private var already registered as private"); 1110 // Silence the warning about unused variable. 1111 (void)IsRegistered; 1112 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1113 return Builder.CreateElementBitCast( 1114 GetAddrOfLocalVar(PrivateVD), 1115 ConvertTypeForMem(RHSVD->getType()), "rhs.begin"); 1116 }); 1117 } else { 1118 // Store the address of the original variable associated with the LHS 1119 // implicit variable. 1120 Address OriginalAddr = Address::invalid(); 1121 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef, 1122 &OriginalAddr]() -> Address { 1123 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1124 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1125 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1126 OriginalAddr = EmitLValue(&DRE).getAddress(); 1127 return OriginalAddr; 1128 }); 1129 // Emit reduction copy. 1130 bool IsRegistered = PrivateScope.addPrivate( 1131 OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address { 1132 // Emit private VarDecl with reduction init. 1133 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1134 auto Addr = Emission.getAllocatedAddress(); 1135 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1136 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1137 OriginalAddr, 1138 PrivateVD->getType()); 1139 } else 1140 EmitAutoVarInit(Emission); 1141 EmitAutoVarCleanups(Emission); 1142 return Addr; 1143 }); 1144 assert(IsRegistered && "private var already registered as private"); 1145 // Silence the warning about unused variable. 1146 (void)IsRegistered; 1147 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1148 return GetAddrOfLocalVar(PrivateVD); 1149 }); 1150 } 1151 } 1152 ++ILHS; 1153 ++IRHS; 1154 ++IPriv; 1155 ++IRed; 1156 } 1157 } 1158 } 1159 1160 void CodeGenFunction::EmitOMPReductionClauseFinal( 1161 const OMPExecutableDirective &D) { 1162 if (!HaveInsertPoint()) 1163 return; 1164 llvm::SmallVector<const Expr *, 8> Privates; 1165 llvm::SmallVector<const Expr *, 8> LHSExprs; 1166 llvm::SmallVector<const Expr *, 8> RHSExprs; 1167 llvm::SmallVector<const Expr *, 8> ReductionOps; 1168 bool HasAtLeastOneReduction = false; 1169 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1170 HasAtLeastOneReduction = true; 1171 Privates.append(C->privates().begin(), C->privates().end()); 1172 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1173 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1174 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1175 } 1176 if (HasAtLeastOneReduction) { 1177 // Emit nowait reduction if nowait clause is present or directive is a 1178 // parallel directive (it always has implicit barrier). 1179 CGM.getOpenMPRuntime().emitReduction( 1180 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1181 D.getSingleClause<OMPNowaitClause>() || 1182 isOpenMPParallelDirective(D.getDirectiveKind()) || 1183 D.getDirectiveKind() == OMPD_simd, 1184 D.getDirectiveKind() == OMPD_simd); 1185 } 1186 } 1187 1188 static void emitPostUpdateForReductionClause( 1189 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1190 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1191 if (!CGF.HaveInsertPoint()) 1192 return; 1193 llvm::BasicBlock *DoneBB = nullptr; 1194 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1195 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1196 if (!DoneBB) { 1197 if (auto *Cond = CondGen(CGF)) { 1198 // If the first post-update expression is found, emit conditional 1199 // block if it was requested. 1200 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1201 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1202 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1203 CGF.EmitBlock(ThenBB); 1204 } 1205 } 1206 CGF.EmitIgnoredExpr(PostUpdate); 1207 } 1208 } 1209 if (DoneBB) 1210 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1211 } 1212 1213 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 1214 const OMPExecutableDirective &S, 1215 OpenMPDirectiveKind InnermostKind, 1216 const RegionCodeGenTy &CodeGen) { 1217 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1218 auto OutlinedFn = CGF.CGM.getOpenMPRuntime(). 1219 emitParallelOrTeamsOutlinedFunction(S, 1220 *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1221 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1222 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1223 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1224 /*IgnoreResultAssign*/ true); 1225 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1226 CGF, NumThreads, NumThreadsClause->getLocStart()); 1227 } 1228 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1229 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1230 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1231 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1232 } 1233 const Expr *IfCond = nullptr; 1234 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1235 if (C->getNameModifier() == OMPD_unknown || 1236 C->getNameModifier() == OMPD_parallel) { 1237 IfCond = C->getCondition(); 1238 break; 1239 } 1240 } 1241 1242 OMPLexicalScope Scope(CGF, S); 1243 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1244 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1245 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1246 CapturedVars, IfCond); 1247 } 1248 1249 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1250 // Emit parallel region as a standalone region. 1251 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1252 OMPPrivateScope PrivateScope(CGF); 1253 bool Copyins = CGF.EmitOMPCopyinClause(S); 1254 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1255 if (Copyins) { 1256 // Emit implicit barrier to synchronize threads and avoid data races on 1257 // propagation master's thread values of threadprivate variables to local 1258 // instances of that variables of all other implicit threads. 1259 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1260 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1261 /*ForceSimpleCall=*/true); 1262 } 1263 CGF.EmitOMPPrivateClause(S, PrivateScope); 1264 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1265 (void)PrivateScope.Privatize(); 1266 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1267 CGF.EmitOMPReductionClauseFinal(S); 1268 }; 1269 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 1270 emitPostUpdateForReductionClause( 1271 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1272 } 1273 1274 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1275 JumpDest LoopExit) { 1276 RunCleanupsScope BodyScope(*this); 1277 // Update counters values on current iteration. 1278 for (auto I : D.updates()) { 1279 EmitIgnoredExpr(I); 1280 } 1281 // Update the linear variables. 1282 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1283 for (auto *U : C->updates()) 1284 EmitIgnoredExpr(U); 1285 } 1286 1287 // On a continue in the body, jump to the end. 1288 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1289 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1290 // Emit loop body. 1291 EmitStmt(D.getBody()); 1292 // The end (updates/cleanups). 1293 EmitBlock(Continue.getBlock()); 1294 BreakContinueStack.pop_back(); 1295 } 1296 1297 void CodeGenFunction::EmitOMPInnerLoop( 1298 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1299 const Expr *IncExpr, 1300 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1301 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1302 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1303 1304 // Start the loop with a block that tests the condition. 1305 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1306 EmitBlock(CondBlock); 1307 const SourceRange &R = S.getSourceRange(); 1308 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1309 SourceLocToDebugLoc(R.getEnd())); 1310 1311 // If there are any cleanups between here and the loop-exit scope, 1312 // create a block to stage a loop exit along. 1313 auto ExitBlock = LoopExit.getBlock(); 1314 if (RequiresCleanup) 1315 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1316 1317 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1318 1319 // Emit condition. 1320 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1321 if (ExitBlock != LoopExit.getBlock()) { 1322 EmitBlock(ExitBlock); 1323 EmitBranchThroughCleanup(LoopExit); 1324 } 1325 1326 EmitBlock(LoopBody); 1327 incrementProfileCounter(&S); 1328 1329 // Create a block for the increment. 1330 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1331 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1332 1333 BodyGen(*this); 1334 1335 // Emit "IV = IV + 1" and a back-edge to the condition block. 1336 EmitBlock(Continue.getBlock()); 1337 EmitIgnoredExpr(IncExpr); 1338 PostIncGen(*this); 1339 BreakContinueStack.pop_back(); 1340 EmitBranch(CondBlock); 1341 LoopStack.pop(); 1342 // Emit the fall-through block. 1343 EmitBlock(LoopExit.getBlock()); 1344 } 1345 1346 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1347 if (!HaveInsertPoint()) 1348 return; 1349 // Emit inits for the linear variables. 1350 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1351 for (auto *Init : C->inits()) { 1352 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1353 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1354 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1355 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1356 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1357 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1358 VD->getInit()->getType(), VK_LValue, 1359 VD->getInit()->getExprLoc()); 1360 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1361 VD->getType()), 1362 /*capturedByInit=*/false); 1363 EmitAutoVarCleanups(Emission); 1364 } else 1365 EmitVarDecl(*VD); 1366 } 1367 // Emit the linear steps for the linear clauses. 1368 // If a step is not constant, it is pre-calculated before the loop. 1369 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1370 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1371 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1372 // Emit calculation of the linear step. 1373 EmitIgnoredExpr(CS); 1374 } 1375 } 1376 } 1377 1378 void CodeGenFunction::EmitOMPLinearClauseFinal( 1379 const OMPLoopDirective &D, 1380 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1381 if (!HaveInsertPoint()) 1382 return; 1383 llvm::BasicBlock *DoneBB = nullptr; 1384 // Emit the final values of the linear variables. 1385 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1386 auto IC = C->varlist_begin(); 1387 for (auto *F : C->finals()) { 1388 if (!DoneBB) { 1389 if (auto *Cond = CondGen(*this)) { 1390 // If the first post-update expression is found, emit conditional 1391 // block if it was requested. 1392 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1393 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1394 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1395 EmitBlock(ThenBB); 1396 } 1397 } 1398 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1399 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1400 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1401 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1402 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1403 CodeGenFunction::OMPPrivateScope VarScope(*this); 1404 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1405 (void)VarScope.Privatize(); 1406 EmitIgnoredExpr(F); 1407 ++IC; 1408 } 1409 if (auto *PostUpdate = C->getPostUpdateExpr()) 1410 EmitIgnoredExpr(PostUpdate); 1411 } 1412 if (DoneBB) 1413 EmitBlock(DoneBB, /*IsFinished=*/true); 1414 } 1415 1416 static void emitAlignedClause(CodeGenFunction &CGF, 1417 const OMPExecutableDirective &D) { 1418 if (!CGF.HaveInsertPoint()) 1419 return; 1420 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1421 unsigned ClauseAlignment = 0; 1422 if (auto AlignmentExpr = Clause->getAlignment()) { 1423 auto AlignmentCI = 1424 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1425 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1426 } 1427 for (auto E : Clause->varlists()) { 1428 unsigned Alignment = ClauseAlignment; 1429 if (Alignment == 0) { 1430 // OpenMP [2.8.1, Description] 1431 // If no optional parameter is specified, implementation-defined default 1432 // alignments for SIMD instructions on the target platforms are assumed. 1433 Alignment = 1434 CGF.getContext() 1435 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1436 E->getType()->getPointeeType())) 1437 .getQuantity(); 1438 } 1439 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1440 "alignment is not power of 2"); 1441 if (Alignment != 0) { 1442 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1443 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1444 } 1445 } 1446 } 1447 } 1448 1449 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1450 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1451 if (!HaveInsertPoint()) 1452 return; 1453 auto I = S.private_counters().begin(); 1454 for (auto *E : S.counters()) { 1455 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1456 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1457 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1458 // Emit var without initialization. 1459 if (!LocalDeclMap.count(PrivateVD)) { 1460 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1461 EmitAutoVarCleanups(VarEmission); 1462 } 1463 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1464 /*RefersToEnclosingVariableOrCapture=*/false, 1465 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1466 return EmitLValue(&DRE).getAddress(); 1467 }); 1468 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1469 VD->hasGlobalStorage()) { 1470 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1471 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1472 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1473 E->getType(), VK_LValue, E->getExprLoc()); 1474 return EmitLValue(&DRE).getAddress(); 1475 }); 1476 } 1477 ++I; 1478 } 1479 } 1480 1481 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1482 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1483 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1484 if (!CGF.HaveInsertPoint()) 1485 return; 1486 { 1487 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1488 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1489 (void)PreCondScope.Privatize(); 1490 // Get initial values of real counters. 1491 for (auto I : S.inits()) { 1492 CGF.EmitIgnoredExpr(I); 1493 } 1494 } 1495 // Check that loop is executed at least one time. 1496 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1497 } 1498 1499 void CodeGenFunction::EmitOMPLinearClause( 1500 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1501 if (!HaveInsertPoint()) 1502 return; 1503 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1504 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1505 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1506 for (auto *C : LoopDirective->counters()) { 1507 SIMDLCVs.insert( 1508 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1509 } 1510 } 1511 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1512 auto CurPrivate = C->privates().begin(); 1513 for (auto *E : C->varlists()) { 1514 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1515 auto *PrivateVD = 1516 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1517 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1518 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1519 // Emit private VarDecl with copy init. 1520 EmitVarDecl(*PrivateVD); 1521 return GetAddrOfLocalVar(PrivateVD); 1522 }); 1523 assert(IsRegistered && "linear var already registered as private"); 1524 // Silence the warning about unused variable. 1525 (void)IsRegistered; 1526 } else 1527 EmitVarDecl(*PrivateVD); 1528 ++CurPrivate; 1529 } 1530 } 1531 } 1532 1533 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1534 const OMPExecutableDirective &D, 1535 bool IsMonotonic) { 1536 if (!CGF.HaveInsertPoint()) 1537 return; 1538 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1539 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1540 /*ignoreResult=*/true); 1541 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1542 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1543 // In presence of finite 'safelen', it may be unsafe to mark all 1544 // the memory instructions parallel, because loop-carried 1545 // dependences of 'safelen' iterations are possible. 1546 if (!IsMonotonic) 1547 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1548 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1549 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1550 /*ignoreResult=*/true); 1551 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1552 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1553 // In presence of finite 'safelen', it may be unsafe to mark all 1554 // the memory instructions parallel, because loop-carried 1555 // dependences of 'safelen' iterations are possible. 1556 CGF.LoopStack.setParallel(false); 1557 } 1558 } 1559 1560 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1561 bool IsMonotonic) { 1562 // Walk clauses and process safelen/lastprivate. 1563 LoopStack.setParallel(!IsMonotonic); 1564 LoopStack.setVectorizeEnable(true); 1565 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1566 } 1567 1568 void CodeGenFunction::EmitOMPSimdFinal( 1569 const OMPLoopDirective &D, 1570 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1571 if (!HaveInsertPoint()) 1572 return; 1573 llvm::BasicBlock *DoneBB = nullptr; 1574 auto IC = D.counters().begin(); 1575 auto IPC = D.private_counters().begin(); 1576 for (auto F : D.finals()) { 1577 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1578 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1579 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1580 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1581 OrigVD->hasGlobalStorage() || CED) { 1582 if (!DoneBB) { 1583 if (auto *Cond = CondGen(*this)) { 1584 // If the first post-update expression is found, emit conditional 1585 // block if it was requested. 1586 auto *ThenBB = createBasicBlock(".omp.final.then"); 1587 DoneBB = createBasicBlock(".omp.final.done"); 1588 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1589 EmitBlock(ThenBB); 1590 } 1591 } 1592 Address OrigAddr = Address::invalid(); 1593 if (CED) 1594 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1595 else { 1596 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1597 /*RefersToEnclosingVariableOrCapture=*/false, 1598 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1599 OrigAddr = EmitLValue(&DRE).getAddress(); 1600 } 1601 OMPPrivateScope VarScope(*this); 1602 VarScope.addPrivate(OrigVD, 1603 [OrigAddr]() -> Address { return OrigAddr; }); 1604 (void)VarScope.Privatize(); 1605 EmitIgnoredExpr(F); 1606 } 1607 ++IC; 1608 ++IPC; 1609 } 1610 if (DoneBB) 1611 EmitBlock(DoneBB, /*IsFinished=*/true); 1612 } 1613 1614 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1615 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1616 OMPLoopScope PreInitScope(CGF, S); 1617 // if (PreCond) { 1618 // for (IV in 0..LastIteration) BODY; 1619 // <Final counter/linear vars updates>; 1620 // } 1621 // 1622 1623 // Emit: if (PreCond) - begin. 1624 // If the condition constant folds and can be elided, avoid emitting the 1625 // whole loop. 1626 bool CondConstant; 1627 llvm::BasicBlock *ContBlock = nullptr; 1628 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1629 if (!CondConstant) 1630 return; 1631 } else { 1632 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1633 ContBlock = CGF.createBasicBlock("simd.if.end"); 1634 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1635 CGF.getProfileCount(&S)); 1636 CGF.EmitBlock(ThenBlock); 1637 CGF.incrementProfileCounter(&S); 1638 } 1639 1640 // Emit the loop iteration variable. 1641 const Expr *IVExpr = S.getIterationVariable(); 1642 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1643 CGF.EmitVarDecl(*IVDecl); 1644 CGF.EmitIgnoredExpr(S.getInit()); 1645 1646 // Emit the iterations count variable. 1647 // If it is not a variable, Sema decided to calculate iterations count on 1648 // each iteration (e.g., it is foldable into a constant). 1649 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1650 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1651 // Emit calculation of the iterations count. 1652 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1653 } 1654 1655 CGF.EmitOMPSimdInit(S); 1656 1657 emitAlignedClause(CGF, S); 1658 CGF.EmitOMPLinearClauseInit(S); 1659 { 1660 OMPPrivateScope LoopScope(CGF); 1661 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1662 CGF.EmitOMPLinearClause(S, LoopScope); 1663 CGF.EmitOMPPrivateClause(S, LoopScope); 1664 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1665 bool HasLastprivateClause = 1666 CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1667 (void)LoopScope.Privatize(); 1668 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1669 S.getInc(), 1670 [&S](CodeGenFunction &CGF) { 1671 CGF.EmitOMPLoopBody(S, JumpDest()); 1672 CGF.EmitStopPoint(&S); 1673 }, 1674 [](CodeGenFunction &) {}); 1675 CGF.EmitOMPSimdFinal( 1676 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1677 // Emit final copy of the lastprivate variables at the end of loops. 1678 if (HasLastprivateClause) 1679 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1680 CGF.EmitOMPReductionClauseFinal(S); 1681 emitPostUpdateForReductionClause( 1682 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1683 } 1684 CGF.EmitOMPLinearClauseFinal( 1685 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1686 // Emit: if (PreCond) - end. 1687 if (ContBlock) { 1688 CGF.EmitBranch(ContBlock); 1689 CGF.EmitBlock(ContBlock, true); 1690 } 1691 }; 1692 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1693 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1694 } 1695 1696 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 1697 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1698 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1699 auto &RT = CGM.getOpenMPRuntime(); 1700 1701 const Expr *IVExpr = S.getIterationVariable(); 1702 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1703 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1704 1705 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1706 1707 // Start the loop with a block that tests the condition. 1708 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1709 EmitBlock(CondBlock); 1710 const SourceRange &R = S.getSourceRange(); 1711 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1712 SourceLocToDebugLoc(R.getEnd())); 1713 1714 llvm::Value *BoolCondVal = nullptr; 1715 if (!DynamicOrOrdered) { 1716 // UB = min(UB, GlobalUB) 1717 EmitIgnoredExpr(S.getEnsureUpperBound()); 1718 // IV = LB 1719 EmitIgnoredExpr(S.getInit()); 1720 // IV < UB 1721 BoolCondVal = EvaluateExprAsBool(S.getCond()); 1722 } else { 1723 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL, 1724 LB, UB, ST); 1725 } 1726 1727 // If there are any cleanups between here and the loop-exit scope, 1728 // create a block to stage a loop exit along. 1729 auto ExitBlock = LoopExit.getBlock(); 1730 if (LoopScope.requiresCleanups()) 1731 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1732 1733 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1734 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1735 if (ExitBlock != LoopExit.getBlock()) { 1736 EmitBlock(ExitBlock); 1737 EmitBranchThroughCleanup(LoopExit); 1738 } 1739 EmitBlock(LoopBody); 1740 1741 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1742 // LB for loop condition and emitted it above). 1743 if (DynamicOrOrdered) 1744 EmitIgnoredExpr(S.getInit()); 1745 1746 // Create a block for the increment. 1747 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1748 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1749 1750 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1751 // with dynamic/guided scheduling and without ordered clause. 1752 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1753 LoopStack.setParallel(!IsMonotonic); 1754 else 1755 EmitOMPSimdInit(S, IsMonotonic); 1756 1757 SourceLocation Loc = S.getLocStart(); 1758 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1759 [&S, LoopExit](CodeGenFunction &CGF) { 1760 CGF.EmitOMPLoopBody(S, LoopExit); 1761 CGF.EmitStopPoint(&S); 1762 }, 1763 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1764 if (Ordered) { 1765 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1766 CGF, Loc, IVSize, IVSigned); 1767 } 1768 }); 1769 1770 EmitBlock(Continue.getBlock()); 1771 BreakContinueStack.pop_back(); 1772 if (!DynamicOrOrdered) { 1773 // Emit "LB = LB + Stride", "UB = UB + Stride". 1774 EmitIgnoredExpr(S.getNextLowerBound()); 1775 EmitIgnoredExpr(S.getNextUpperBound()); 1776 } 1777 1778 EmitBranch(CondBlock); 1779 LoopStack.pop(); 1780 // Emit the fall-through block. 1781 EmitBlock(LoopExit.getBlock()); 1782 1783 // Tell the runtime we are done. 1784 if (!DynamicOrOrdered) 1785 RT.emitForStaticFinish(*this, S.getLocEnd()); 1786 1787 } 1788 1789 void CodeGenFunction::EmitOMPForOuterLoop( 1790 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1791 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1792 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1793 auto &RT = CGM.getOpenMPRuntime(); 1794 1795 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1796 const bool DynamicOrOrdered = 1797 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1798 1799 assert((Ordered || 1800 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1801 /*Chunked=*/Chunk != nullptr)) && 1802 "static non-chunked schedule does not need outer loop"); 1803 1804 // Emit outer loop. 1805 // 1806 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1807 // When schedule(dynamic,chunk_size) is specified, the iterations are 1808 // distributed to threads in the team in chunks as the threads request them. 1809 // Each thread executes a chunk of iterations, then requests another chunk, 1810 // until no chunks remain to be distributed. Each chunk contains chunk_size 1811 // iterations, except for the last chunk to be distributed, which may have 1812 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1813 // 1814 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1815 // to threads in the team in chunks as the executing threads request them. 1816 // Each thread executes a chunk of iterations, then requests another chunk, 1817 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1818 // each chunk is proportional to the number of unassigned iterations divided 1819 // by the number of threads in the team, decreasing to 1. For a chunk_size 1820 // with value k (greater than 1), the size of each chunk is determined in the 1821 // same way, with the restriction that the chunks do not contain fewer than k 1822 // iterations (except for the last chunk to be assigned, which may have fewer 1823 // than k iterations). 1824 // 1825 // When schedule(auto) is specified, the decision regarding scheduling is 1826 // delegated to the compiler and/or runtime system. The programmer gives the 1827 // implementation the freedom to choose any possible mapping of iterations to 1828 // threads in the team. 1829 // 1830 // When schedule(runtime) is specified, the decision regarding scheduling is 1831 // deferred until run time, and the schedule and chunk size are taken from the 1832 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1833 // implementation defined 1834 // 1835 // while(__kmpc_dispatch_next(&LB, &UB)) { 1836 // idx = LB; 1837 // while (idx <= UB) { BODY; ++idx; 1838 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1839 // } // inner loop 1840 // } 1841 // 1842 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1843 // When schedule(static, chunk_size) is specified, iterations are divided into 1844 // chunks of size chunk_size, and the chunks are assigned to the threads in 1845 // the team in a round-robin fashion in the order of the thread number. 1846 // 1847 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1848 // while (idx <= UB) { BODY; ++idx; } // inner loop 1849 // LB = LB + ST; 1850 // UB = UB + ST; 1851 // } 1852 // 1853 1854 const Expr *IVExpr = S.getIterationVariable(); 1855 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1856 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1857 1858 if (DynamicOrOrdered) { 1859 llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration()); 1860 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1861 IVSigned, Ordered, UBVal, Chunk); 1862 } else { 1863 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, 1864 Ordered, IL, LB, UB, ST, Chunk); 1865 } 1866 1867 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB, 1868 ST, IL, Chunk); 1869 } 1870 1871 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1872 OpenMPDistScheduleClauseKind ScheduleKind, 1873 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 1874 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1875 1876 auto &RT = CGM.getOpenMPRuntime(); 1877 1878 // Emit outer loop. 1879 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1880 // dynamic 1881 // 1882 1883 const Expr *IVExpr = S.getIterationVariable(); 1884 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1885 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1886 1887 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 1888 IVSize, IVSigned, /* Ordered = */ false, 1889 IL, LB, UB, ST, Chunk); 1890 1891 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, 1892 S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk); 1893 } 1894 1895 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 1896 const OMPDistributeParallelForDirective &S) { 1897 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1898 CGM.getOpenMPRuntime().emitInlinedDirective( 1899 *this, OMPD_distribute_parallel_for, 1900 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1901 OMPLoopScope PreInitScope(CGF, S); 1902 CGF.EmitStmt( 1903 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1904 }); 1905 } 1906 1907 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 1908 const OMPDistributeParallelForSimdDirective &S) { 1909 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1910 CGM.getOpenMPRuntime().emitInlinedDirective( 1911 *this, OMPD_distribute_parallel_for_simd, 1912 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1913 OMPLoopScope PreInitScope(CGF, S); 1914 CGF.EmitStmt( 1915 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1916 }); 1917 } 1918 1919 void CodeGenFunction::EmitOMPDistributeSimdDirective( 1920 const OMPDistributeSimdDirective &S) { 1921 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1922 CGM.getOpenMPRuntime().emitInlinedDirective( 1923 *this, OMPD_distribute_simd, 1924 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1925 OMPLoopScope PreInitScope(CGF, S); 1926 CGF.EmitStmt( 1927 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1928 }); 1929 } 1930 1931 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 1932 const OMPTargetParallelForSimdDirective &S) { 1933 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1934 CGM.getOpenMPRuntime().emitInlinedDirective( 1935 *this, OMPD_target_parallel_for_simd, 1936 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1937 OMPLoopScope PreInitScope(CGF, S); 1938 CGF.EmitStmt( 1939 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1940 }); 1941 } 1942 1943 void CodeGenFunction::EmitOMPTargetSimdDirective( 1944 const OMPTargetSimdDirective &S) { 1945 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1946 CGM.getOpenMPRuntime().emitInlinedDirective( 1947 *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1948 OMPLoopScope PreInitScope(CGF, S); 1949 CGF.EmitStmt( 1950 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1951 }); 1952 } 1953 1954 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 1955 const OMPTeamsDistributeDirective &S) { 1956 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1957 CGM.getOpenMPRuntime().emitInlinedDirective( 1958 *this, OMPD_teams_distribute, 1959 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1960 OMPLoopScope PreInitScope(CGF, S); 1961 CGF.EmitStmt( 1962 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1963 }); 1964 } 1965 1966 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 1967 const OMPTeamsDistributeSimdDirective &S) { 1968 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1969 CGM.getOpenMPRuntime().emitInlinedDirective( 1970 *this, OMPD_teams_distribute_simd, 1971 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1972 OMPLoopScope PreInitScope(CGF, S); 1973 CGF.EmitStmt( 1974 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1975 }); 1976 } 1977 1978 1979 /// \brief Emit a helper variable and return corresponding lvalue. 1980 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1981 const DeclRefExpr *Helper) { 1982 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1983 CGF.EmitVarDecl(*VDecl); 1984 return CGF.EmitLValue(Helper); 1985 } 1986 1987 namespace { 1988 struct ScheduleKindModifiersTy { 1989 OpenMPScheduleClauseKind Kind; 1990 OpenMPScheduleClauseModifier M1; 1991 OpenMPScheduleClauseModifier M2; 1992 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 1993 OpenMPScheduleClauseModifier M1, 1994 OpenMPScheduleClauseModifier M2) 1995 : Kind(Kind), M1(M1), M2(M2) {} 1996 }; 1997 } // namespace 1998 1999 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 2000 // Emit the loop iteration variable. 2001 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2002 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2003 EmitVarDecl(*IVDecl); 2004 2005 // Emit the iterations count variable. 2006 // If it is not a variable, Sema decided to calculate iterations count on each 2007 // iteration (e.g., it is foldable into a constant). 2008 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2009 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2010 // Emit calculation of the iterations count. 2011 EmitIgnoredExpr(S.getCalcLastIteration()); 2012 } 2013 2014 auto &RT = CGM.getOpenMPRuntime(); 2015 2016 bool HasLastprivateClause; 2017 // Check pre-condition. 2018 { 2019 OMPLoopScope PreInitScope(*this, S); 2020 // Skip the entire loop if we don't meet the precondition. 2021 // If the condition constant folds and can be elided, avoid emitting the 2022 // whole loop. 2023 bool CondConstant; 2024 llvm::BasicBlock *ContBlock = nullptr; 2025 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2026 if (!CondConstant) 2027 return false; 2028 } else { 2029 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2030 ContBlock = createBasicBlock("omp.precond.end"); 2031 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2032 getProfileCount(&S)); 2033 EmitBlock(ThenBlock); 2034 incrementProfileCounter(&S); 2035 } 2036 2037 bool Ordered = false; 2038 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2039 if (OrderedClause->getNumForLoops()) 2040 RT.emitDoacrossInit(*this, S); 2041 else 2042 Ordered = true; 2043 } 2044 2045 llvm::DenseSet<const Expr *> EmittedFinals; 2046 emitAlignedClause(*this, S); 2047 EmitOMPLinearClauseInit(S); 2048 // Emit helper vars inits. 2049 LValue LB = 2050 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2051 LValue UB = 2052 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2053 LValue ST = 2054 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2055 LValue IL = 2056 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2057 2058 // Emit 'then' code. 2059 { 2060 OMPPrivateScope LoopScope(*this); 2061 if (EmitOMPFirstprivateClause(S, LoopScope)) { 2062 // Emit implicit barrier to synchronize threads and avoid data races on 2063 // initialization of firstprivate variables and post-update of 2064 // lastprivate variables. 2065 CGM.getOpenMPRuntime().emitBarrierCall( 2066 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2067 /*ForceSimpleCall=*/true); 2068 } 2069 EmitOMPPrivateClause(S, LoopScope); 2070 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2071 EmitOMPReductionClauseInit(S, LoopScope); 2072 EmitOMPPrivateLoopCounters(S, LoopScope); 2073 EmitOMPLinearClause(S, LoopScope); 2074 (void)LoopScope.Privatize(); 2075 2076 // Detect the loop schedule kind and chunk. 2077 llvm::Value *Chunk = nullptr; 2078 OpenMPScheduleTy ScheduleKind; 2079 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2080 ScheduleKind.Schedule = C->getScheduleKind(); 2081 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2082 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2083 if (const auto *Ch = C->getChunkSize()) { 2084 Chunk = EmitScalarExpr(Ch); 2085 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2086 S.getIterationVariable()->getType(), 2087 S.getLocStart()); 2088 } 2089 } 2090 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2091 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2092 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2093 // If the static schedule kind is specified or if the ordered clause is 2094 // specified, and if no monotonic modifier is specified, the effect will 2095 // be as if the monotonic modifier was specified. 2096 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2097 /* Chunked */ Chunk != nullptr) && 2098 !Ordered) { 2099 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2100 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2101 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2102 // When no chunk_size is specified, the iteration space is divided into 2103 // chunks that are approximately equal in size, and at most one chunk is 2104 // distributed to each thread. Note that the size of the chunks is 2105 // unspecified in this case. 2106 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 2107 IVSize, IVSigned, Ordered, 2108 IL.getAddress(), LB.getAddress(), 2109 UB.getAddress(), ST.getAddress()); 2110 auto LoopExit = 2111 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2112 // UB = min(UB, GlobalUB); 2113 EmitIgnoredExpr(S.getEnsureUpperBound()); 2114 // IV = LB; 2115 EmitIgnoredExpr(S.getInit()); 2116 // while (idx <= UB) { BODY; ++idx; } 2117 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2118 S.getInc(), 2119 [&S, LoopExit](CodeGenFunction &CGF) { 2120 CGF.EmitOMPLoopBody(S, LoopExit); 2121 CGF.EmitStopPoint(&S); 2122 }, 2123 [](CodeGenFunction &) {}); 2124 EmitBlock(LoopExit.getBlock()); 2125 // Tell the runtime we are done. 2126 RT.emitForStaticFinish(*this, S.getLocStart()); 2127 } else { 2128 const bool IsMonotonic = 2129 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2130 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2131 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2132 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2133 // Emit the outer loop, which requests its work chunk [LB..UB] from 2134 // runtime and runs the inner loop to process it. 2135 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2136 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2137 IL.getAddress(), Chunk); 2138 } 2139 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2140 EmitOMPSimdFinal(S, 2141 [&](CodeGenFunction &CGF) -> llvm::Value * { 2142 return CGF.Builder.CreateIsNotNull( 2143 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2144 }); 2145 } 2146 EmitOMPReductionClauseFinal(S); 2147 // Emit post-update of the reduction variables if IsLastIter != 0. 2148 emitPostUpdateForReductionClause( 2149 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2150 return CGF.Builder.CreateIsNotNull( 2151 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2152 }); 2153 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2154 if (HasLastprivateClause) 2155 EmitOMPLastprivateClauseFinal( 2156 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2157 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2158 } 2159 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2160 return CGF.Builder.CreateIsNotNull( 2161 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2162 }); 2163 // We're now done with the loop, so jump to the continuation block. 2164 if (ContBlock) { 2165 EmitBranch(ContBlock); 2166 EmitBlock(ContBlock, true); 2167 } 2168 } 2169 return HasLastprivateClause; 2170 } 2171 2172 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2173 bool HasLastprivates = false; 2174 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2175 PrePostActionTy &) { 2176 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2177 }; 2178 { 2179 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2180 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2181 S.hasCancel()); 2182 } 2183 2184 // Emit an implicit barrier at the end. 2185 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2186 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2187 } 2188 } 2189 2190 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2191 bool HasLastprivates = false; 2192 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2193 PrePostActionTy &) { 2194 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2195 }; 2196 { 2197 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2198 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2199 } 2200 2201 // Emit an implicit barrier at the end. 2202 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2203 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2204 } 2205 } 2206 2207 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2208 const Twine &Name, 2209 llvm::Value *Init = nullptr) { 2210 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2211 if (Init) 2212 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2213 return LVal; 2214 } 2215 2216 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2217 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 2218 auto *CS = dyn_cast<CompoundStmt>(Stmt); 2219 bool HasLastprivates = false; 2220 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2221 PrePostActionTy &) { 2222 auto &C = CGF.CGM.getContext(); 2223 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2224 // Emit helper vars inits. 2225 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2226 CGF.Builder.getInt32(0)); 2227 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2228 : CGF.Builder.getInt32(0); 2229 LValue UB = 2230 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2231 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2232 CGF.Builder.getInt32(1)); 2233 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2234 CGF.Builder.getInt32(0)); 2235 // Loop counter. 2236 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2237 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2238 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2239 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2240 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2241 // Generate condition for loop. 2242 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2243 OK_Ordinary, S.getLocStart(), 2244 /*fpContractable=*/false); 2245 // Increment for loop counter. 2246 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2247 S.getLocStart()); 2248 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2249 // Iterate through all sections and emit a switch construct: 2250 // switch (IV) { 2251 // case 0: 2252 // <SectionStmt[0]>; 2253 // break; 2254 // ... 2255 // case <NumSection> - 1: 2256 // <SectionStmt[<NumSection> - 1]>; 2257 // break; 2258 // } 2259 // .omp.sections.exit: 2260 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2261 auto *SwitchStmt = CGF.Builder.CreateSwitch( 2262 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 2263 CS == nullptr ? 1 : CS->size()); 2264 if (CS) { 2265 unsigned CaseNumber = 0; 2266 for (auto *SubStmt : CS->children()) { 2267 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2268 CGF.EmitBlock(CaseBB); 2269 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2270 CGF.EmitStmt(SubStmt); 2271 CGF.EmitBranch(ExitBB); 2272 ++CaseNumber; 2273 } 2274 } else { 2275 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2276 CGF.EmitBlock(CaseBB); 2277 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2278 CGF.EmitStmt(Stmt); 2279 CGF.EmitBranch(ExitBB); 2280 } 2281 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2282 }; 2283 2284 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2285 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2286 // Emit implicit barrier to synchronize threads and avoid data races on 2287 // initialization of firstprivate variables and post-update of lastprivate 2288 // variables. 2289 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2290 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2291 /*ForceSimpleCall=*/true); 2292 } 2293 CGF.EmitOMPPrivateClause(S, LoopScope); 2294 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2295 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2296 (void)LoopScope.Privatize(); 2297 2298 // Emit static non-chunked loop. 2299 OpenMPScheduleTy ScheduleKind; 2300 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2301 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2302 CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32, 2303 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(), 2304 UB.getAddress(), ST.getAddress()); 2305 // UB = min(UB, GlobalUB); 2306 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2307 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2308 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2309 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2310 // IV = LB; 2311 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2312 // while (idx <= UB) { BODY; ++idx; } 2313 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2314 [](CodeGenFunction &) {}); 2315 // Tell the runtime we are done. 2316 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart()); 2317 CGF.EmitOMPReductionClauseFinal(S); 2318 // Emit post-update of the reduction variables if IsLastIter != 0. 2319 emitPostUpdateForReductionClause( 2320 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2321 return CGF.Builder.CreateIsNotNull( 2322 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2323 }); 2324 2325 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2326 if (HasLastprivates) 2327 CGF.EmitOMPLastprivateClauseFinal( 2328 S, /*NoFinals=*/false, 2329 CGF.Builder.CreateIsNotNull( 2330 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2331 }; 2332 2333 bool HasCancel = false; 2334 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2335 HasCancel = OSD->hasCancel(); 2336 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2337 HasCancel = OPSD->hasCancel(); 2338 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2339 HasCancel); 2340 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2341 // clause. Otherwise the barrier will be generated by the codegen for the 2342 // directive. 2343 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2344 // Emit implicit barrier to synchronize threads and avoid data races on 2345 // initialization of firstprivate variables. 2346 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2347 OMPD_unknown); 2348 } 2349 } 2350 2351 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2352 { 2353 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2354 EmitSections(S); 2355 } 2356 // Emit an implicit barrier at the end. 2357 if (!S.getSingleClause<OMPNowaitClause>()) { 2358 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2359 OMPD_sections); 2360 } 2361 } 2362 2363 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2364 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2365 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2366 }; 2367 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2368 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2369 S.hasCancel()); 2370 } 2371 2372 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2373 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2374 llvm::SmallVector<const Expr *, 8> DestExprs; 2375 llvm::SmallVector<const Expr *, 8> SrcExprs; 2376 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2377 // Check if there are any 'copyprivate' clauses associated with this 2378 // 'single' construct. 2379 // Build a list of copyprivate variables along with helper expressions 2380 // (<source>, <destination>, <destination>=<source> expressions) 2381 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2382 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2383 DestExprs.append(C->destination_exprs().begin(), 2384 C->destination_exprs().end()); 2385 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2386 AssignmentOps.append(C->assignment_ops().begin(), 2387 C->assignment_ops().end()); 2388 } 2389 // Emit code for 'single' region along with 'copyprivate' clauses 2390 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2391 Action.Enter(CGF); 2392 OMPPrivateScope SingleScope(CGF); 2393 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2394 CGF.EmitOMPPrivateClause(S, SingleScope); 2395 (void)SingleScope.Privatize(); 2396 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2397 }; 2398 { 2399 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2400 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2401 CopyprivateVars, DestExprs, 2402 SrcExprs, AssignmentOps); 2403 } 2404 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2405 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2406 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2407 CGM.getOpenMPRuntime().emitBarrierCall( 2408 *this, S.getLocStart(), 2409 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2410 } 2411 } 2412 2413 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2414 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2415 Action.Enter(CGF); 2416 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2417 }; 2418 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2419 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2420 } 2421 2422 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2423 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2424 Action.Enter(CGF); 2425 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2426 }; 2427 Expr *Hint = nullptr; 2428 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2429 Hint = HintClause->getHint(); 2430 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2431 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2432 S.getDirectiveName().getAsString(), 2433 CodeGen, S.getLocStart(), Hint); 2434 } 2435 2436 void CodeGenFunction::EmitOMPParallelForDirective( 2437 const OMPParallelForDirective &S) { 2438 // Emit directive as a combined directive that consists of two implicit 2439 // directives: 'parallel' with 'for' directive. 2440 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2441 CGF.EmitOMPWorksharingLoop(S); 2442 }; 2443 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 2444 } 2445 2446 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2447 const OMPParallelForSimdDirective &S) { 2448 // Emit directive as a combined directive that consists of two implicit 2449 // directives: 'parallel' with 'for' directive. 2450 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2451 CGF.EmitOMPWorksharingLoop(S); 2452 }; 2453 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 2454 } 2455 2456 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2457 const OMPParallelSectionsDirective &S) { 2458 // Emit directive as a combined directive that consists of two implicit 2459 // directives: 'parallel' with 'sections' directive. 2460 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2461 CGF.EmitSections(S); 2462 }; 2463 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 2464 } 2465 2466 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2467 const RegionCodeGenTy &BodyGen, 2468 const TaskGenTy &TaskGen, 2469 OMPTaskDataTy &Data) { 2470 // Emit outlined function for task construct. 2471 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2472 auto *I = CS->getCapturedDecl()->param_begin(); 2473 auto *PartId = std::next(I); 2474 auto *TaskT = std::next(I, 4); 2475 // Check if the task is final 2476 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2477 // If the condition constant folds and can be elided, try to avoid emitting 2478 // the condition and the dead arm of the if/else. 2479 auto *Cond = Clause->getCondition(); 2480 bool CondConstant; 2481 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2482 Data.Final.setInt(CondConstant); 2483 else 2484 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2485 } else { 2486 // By default the task is not final. 2487 Data.Final.setInt(/*IntVal=*/false); 2488 } 2489 // Check if the task has 'priority' clause. 2490 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2491 auto *Prio = Clause->getPriority(); 2492 Data.Priority.setInt(/*IntVal=*/true); 2493 Data.Priority.setPointer(EmitScalarConversion( 2494 EmitScalarExpr(Prio), Prio->getType(), 2495 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2496 Prio->getExprLoc())); 2497 } 2498 // The first function argument for tasks is a thread id, the second one is a 2499 // part id (0 for tied tasks, >=0 for untied task). 2500 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2501 // Get list of private variables. 2502 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2503 auto IRef = C->varlist_begin(); 2504 for (auto *IInit : C->private_copies()) { 2505 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2506 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2507 Data.PrivateVars.push_back(*IRef); 2508 Data.PrivateCopies.push_back(IInit); 2509 } 2510 ++IRef; 2511 } 2512 } 2513 EmittedAsPrivate.clear(); 2514 // Get list of firstprivate variables. 2515 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2516 auto IRef = C->varlist_begin(); 2517 auto IElemInitRef = C->inits().begin(); 2518 for (auto *IInit : C->private_copies()) { 2519 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2520 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2521 Data.FirstprivateVars.push_back(*IRef); 2522 Data.FirstprivateCopies.push_back(IInit); 2523 Data.FirstprivateInits.push_back(*IElemInitRef); 2524 } 2525 ++IRef; 2526 ++IElemInitRef; 2527 } 2528 } 2529 // Get list of lastprivate variables (for taskloops). 2530 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2531 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2532 auto IRef = C->varlist_begin(); 2533 auto ID = C->destination_exprs().begin(); 2534 for (auto *IInit : C->private_copies()) { 2535 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2536 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2537 Data.LastprivateVars.push_back(*IRef); 2538 Data.LastprivateCopies.push_back(IInit); 2539 } 2540 LastprivateDstsOrigs.insert( 2541 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2542 cast<DeclRefExpr>(*IRef)}); 2543 ++IRef; 2544 ++ID; 2545 } 2546 } 2547 // Build list of dependences. 2548 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2549 for (auto *IRef : C->varlists()) 2550 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2551 auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs]( 2552 CodeGenFunction &CGF, PrePostActionTy &Action) { 2553 // Set proper addresses for generated private copies. 2554 OMPPrivateScope Scope(CGF); 2555 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2556 !Data.LastprivateVars.empty()) { 2557 auto *CopyFn = CGF.Builder.CreateLoad( 2558 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2559 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2560 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2561 // Map privates. 2562 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2563 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2564 CallArgs.push_back(PrivatesPtr); 2565 for (auto *E : Data.PrivateVars) { 2566 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2567 Address PrivatePtr = CGF.CreateMemTemp( 2568 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2569 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2570 CallArgs.push_back(PrivatePtr.getPointer()); 2571 } 2572 for (auto *E : Data.FirstprivateVars) { 2573 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2574 Address PrivatePtr = 2575 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2576 ".firstpriv.ptr.addr"); 2577 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2578 CallArgs.push_back(PrivatePtr.getPointer()); 2579 } 2580 for (auto *E : Data.LastprivateVars) { 2581 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2582 Address PrivatePtr = 2583 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2584 ".lastpriv.ptr.addr"); 2585 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2586 CallArgs.push_back(PrivatePtr.getPointer()); 2587 } 2588 CGF.EmitRuntimeCall(CopyFn, CallArgs); 2589 for (auto &&Pair : LastprivateDstsOrigs) { 2590 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2591 DeclRefExpr DRE( 2592 const_cast<VarDecl *>(OrigVD), 2593 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2594 OrigVD) != nullptr, 2595 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2596 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2597 return CGF.EmitLValue(&DRE).getAddress(); 2598 }); 2599 } 2600 for (auto &&Pair : PrivatePtrs) { 2601 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2602 CGF.getContext().getDeclAlign(Pair.first)); 2603 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2604 } 2605 } 2606 (void)Scope.Privatize(); 2607 2608 Action.Enter(CGF); 2609 BodyGen(CGF); 2610 }; 2611 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2612 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2613 Data.NumberOfParts); 2614 OMPLexicalScope Scope(*this, S); 2615 TaskGen(*this, OutlinedFn, Data); 2616 } 2617 2618 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 2619 // Emit outlined function for task construct. 2620 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2621 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 2622 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2623 const Expr *IfCond = nullptr; 2624 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2625 if (C->getNameModifier() == OMPD_unknown || 2626 C->getNameModifier() == OMPD_task) { 2627 IfCond = C->getCondition(); 2628 break; 2629 } 2630 } 2631 2632 OMPTaskDataTy Data; 2633 // Check if we should emit tied or untied task. 2634 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 2635 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 2636 CGF.EmitStmt(CS->getCapturedStmt()); 2637 }; 2638 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 2639 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 2640 const OMPTaskDataTy &Data) { 2641 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 2642 SharedsTy, CapturedStruct, IfCond, 2643 Data); 2644 }; 2645 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 2646 } 2647 2648 void CodeGenFunction::EmitOMPTaskyieldDirective( 2649 const OMPTaskyieldDirective &S) { 2650 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2651 } 2652 2653 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2654 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2655 } 2656 2657 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2658 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2659 } 2660 2661 void CodeGenFunction::EmitOMPTaskgroupDirective( 2662 const OMPTaskgroupDirective &S) { 2663 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2664 Action.Enter(CGF); 2665 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2666 }; 2667 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2668 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 2669 } 2670 2671 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 2672 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 2673 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 2674 return llvm::makeArrayRef(FlushClause->varlist_begin(), 2675 FlushClause->varlist_end()); 2676 } 2677 return llvm::None; 2678 }(), S.getLocStart()); 2679 } 2680 2681 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) { 2682 // Emit the loop iteration variable. 2683 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2684 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2685 EmitVarDecl(*IVDecl); 2686 2687 // Emit the iterations count variable. 2688 // If it is not a variable, Sema decided to calculate iterations count on each 2689 // iteration (e.g., it is foldable into a constant). 2690 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2691 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2692 // Emit calculation of the iterations count. 2693 EmitIgnoredExpr(S.getCalcLastIteration()); 2694 } 2695 2696 auto &RT = CGM.getOpenMPRuntime(); 2697 2698 // Check pre-condition. 2699 { 2700 OMPLoopScope PreInitScope(*this, S); 2701 // Skip the entire loop if we don't meet the precondition. 2702 // If the condition constant folds and can be elided, avoid emitting the 2703 // whole loop. 2704 bool CondConstant; 2705 llvm::BasicBlock *ContBlock = nullptr; 2706 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2707 if (!CondConstant) 2708 return; 2709 } else { 2710 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2711 ContBlock = createBasicBlock("omp.precond.end"); 2712 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2713 getProfileCount(&S)); 2714 EmitBlock(ThenBlock); 2715 incrementProfileCounter(&S); 2716 } 2717 2718 // Emit 'then' code. 2719 { 2720 // Emit helper vars inits. 2721 LValue LB = 2722 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2723 LValue UB = 2724 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2725 LValue ST = 2726 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2727 LValue IL = 2728 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2729 2730 OMPPrivateScope LoopScope(*this); 2731 EmitOMPPrivateLoopCounters(S, LoopScope); 2732 (void)LoopScope.Privatize(); 2733 2734 // Detect the distribute schedule kind and chunk. 2735 llvm::Value *Chunk = nullptr; 2736 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 2737 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 2738 ScheduleKind = C->getDistScheduleKind(); 2739 if (const auto *Ch = C->getChunkSize()) { 2740 Chunk = EmitScalarExpr(Ch); 2741 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2742 S.getIterationVariable()->getType(), 2743 S.getLocStart()); 2744 } 2745 } 2746 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2747 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2748 2749 // OpenMP [2.10.8, distribute Construct, Description] 2750 // If dist_schedule is specified, kind must be static. If specified, 2751 // iterations are divided into chunks of size chunk_size, chunks are 2752 // assigned to the teams of the league in a round-robin fashion in the 2753 // order of the team number. When no chunk_size is specified, the 2754 // iteration space is divided into chunks that are approximately equal 2755 // in size, and at most one chunk is distributed to each team of the 2756 // league. The size of the chunks is unspecified in this case. 2757 if (RT.isStaticNonchunked(ScheduleKind, 2758 /* Chunked */ Chunk != nullptr)) { 2759 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 2760 IVSize, IVSigned, /* Ordered = */ false, 2761 IL.getAddress(), LB.getAddress(), 2762 UB.getAddress(), ST.getAddress()); 2763 auto LoopExit = 2764 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2765 // UB = min(UB, GlobalUB); 2766 EmitIgnoredExpr(S.getEnsureUpperBound()); 2767 // IV = LB; 2768 EmitIgnoredExpr(S.getInit()); 2769 // while (idx <= UB) { BODY; ++idx; } 2770 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2771 S.getInc(), 2772 [&S, LoopExit](CodeGenFunction &CGF) { 2773 CGF.EmitOMPLoopBody(S, LoopExit); 2774 CGF.EmitStopPoint(&S); 2775 }, 2776 [](CodeGenFunction &) {}); 2777 EmitBlock(LoopExit.getBlock()); 2778 // Tell the runtime we are done. 2779 RT.emitForStaticFinish(*this, S.getLocStart()); 2780 } else { 2781 // Emit the outer loop, which requests its work chunk [LB..UB] from 2782 // runtime and runs the inner loop to process it. 2783 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, 2784 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2785 IL.getAddress(), Chunk); 2786 } 2787 } 2788 2789 // We're now done with the loop, so jump to the continuation block. 2790 if (ContBlock) { 2791 EmitBranch(ContBlock); 2792 EmitBlock(ContBlock, true); 2793 } 2794 } 2795 } 2796 2797 void CodeGenFunction::EmitOMPDistributeDirective( 2798 const OMPDistributeDirective &S) { 2799 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2800 CGF.EmitOMPDistributeLoop(S); 2801 }; 2802 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2803 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen, 2804 false); 2805 } 2806 2807 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 2808 const CapturedStmt *S) { 2809 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 2810 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 2811 CGF.CapturedStmtInfo = &CapStmtInfo; 2812 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 2813 Fn->addFnAttr(llvm::Attribute::NoInline); 2814 return Fn; 2815 } 2816 2817 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 2818 if (!S.getAssociatedStmt()) { 2819 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 2820 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 2821 return; 2822 } 2823 auto *C = S.getSingleClause<OMPSIMDClause>(); 2824 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 2825 PrePostActionTy &Action) { 2826 if (C) { 2827 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2828 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2829 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 2830 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 2831 CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars); 2832 } else { 2833 Action.Enter(CGF); 2834 CGF.EmitStmt( 2835 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2836 } 2837 }; 2838 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2839 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 2840 } 2841 2842 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 2843 QualType SrcType, QualType DestType, 2844 SourceLocation Loc) { 2845 assert(CGF.hasScalarEvaluationKind(DestType) && 2846 "DestType must have scalar evaluation kind."); 2847 assert(!Val.isAggregate() && "Must be a scalar or complex."); 2848 return Val.isScalar() 2849 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 2850 Loc) 2851 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 2852 DestType, Loc); 2853 } 2854 2855 static CodeGenFunction::ComplexPairTy 2856 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 2857 QualType DestType, SourceLocation Loc) { 2858 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 2859 "DestType must have complex evaluation kind."); 2860 CodeGenFunction::ComplexPairTy ComplexVal; 2861 if (Val.isScalar()) { 2862 // Convert the input element to the element type of the complex. 2863 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2864 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 2865 DestElementType, Loc); 2866 ComplexVal = CodeGenFunction::ComplexPairTy( 2867 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 2868 } else { 2869 assert(Val.isComplex() && "Must be a scalar or complex."); 2870 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 2871 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2872 ComplexVal.first = CGF.EmitScalarConversion( 2873 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 2874 ComplexVal.second = CGF.EmitScalarConversion( 2875 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 2876 } 2877 return ComplexVal; 2878 } 2879 2880 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 2881 LValue LVal, RValue RVal) { 2882 if (LVal.isGlobalReg()) { 2883 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 2884 } else { 2885 CGF.EmitAtomicStore(RVal, LVal, 2886 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2887 : llvm::AtomicOrdering::Monotonic, 2888 LVal.isVolatile(), /*IsInit=*/false); 2889 } 2890 } 2891 2892 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 2893 QualType RValTy, SourceLocation Loc) { 2894 switch (getEvaluationKind(LVal.getType())) { 2895 case TEK_Scalar: 2896 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 2897 *this, RVal, RValTy, LVal.getType(), Loc)), 2898 LVal); 2899 break; 2900 case TEK_Complex: 2901 EmitStoreOfComplex( 2902 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 2903 /*isInit=*/false); 2904 break; 2905 case TEK_Aggregate: 2906 llvm_unreachable("Must be a scalar or complex."); 2907 } 2908 } 2909 2910 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 2911 const Expr *X, const Expr *V, 2912 SourceLocation Loc) { 2913 // v = x; 2914 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 2915 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 2916 LValue XLValue = CGF.EmitLValue(X); 2917 LValue VLValue = CGF.EmitLValue(V); 2918 RValue Res = XLValue.isGlobalReg() 2919 ? CGF.EmitLoadOfLValue(XLValue, Loc) 2920 : CGF.EmitAtomicLoad( 2921 XLValue, Loc, 2922 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2923 : llvm::AtomicOrdering::Monotonic, 2924 XLValue.isVolatile()); 2925 // OpenMP, 2.12.6, atomic Construct 2926 // Any atomic construct with a seq_cst clause forces the atomically 2927 // performed operation to include an implicit flush operation without a 2928 // list. 2929 if (IsSeqCst) 2930 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2931 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 2932 } 2933 2934 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 2935 const Expr *X, const Expr *E, 2936 SourceLocation Loc) { 2937 // x = expr; 2938 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 2939 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 2940 // OpenMP, 2.12.6, atomic Construct 2941 // Any atomic construct with a seq_cst clause forces the atomically 2942 // performed operation to include an implicit flush operation without a 2943 // list. 2944 if (IsSeqCst) 2945 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2946 } 2947 2948 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 2949 RValue Update, 2950 BinaryOperatorKind BO, 2951 llvm::AtomicOrdering AO, 2952 bool IsXLHSInRHSPart) { 2953 auto &Context = CGF.CGM.getContext(); 2954 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 2955 // expression is simple and atomic is allowed for the given type for the 2956 // target platform. 2957 if (BO == BO_Comma || !Update.isScalar() || 2958 !Update.getScalarVal()->getType()->isIntegerTy() || 2959 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 2960 (Update.getScalarVal()->getType() != 2961 X.getAddress().getElementType())) || 2962 !X.getAddress().getElementType()->isIntegerTy() || 2963 !Context.getTargetInfo().hasBuiltinAtomic( 2964 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 2965 return std::make_pair(false, RValue::get(nullptr)); 2966 2967 llvm::AtomicRMWInst::BinOp RMWOp; 2968 switch (BO) { 2969 case BO_Add: 2970 RMWOp = llvm::AtomicRMWInst::Add; 2971 break; 2972 case BO_Sub: 2973 if (!IsXLHSInRHSPart) 2974 return std::make_pair(false, RValue::get(nullptr)); 2975 RMWOp = llvm::AtomicRMWInst::Sub; 2976 break; 2977 case BO_And: 2978 RMWOp = llvm::AtomicRMWInst::And; 2979 break; 2980 case BO_Or: 2981 RMWOp = llvm::AtomicRMWInst::Or; 2982 break; 2983 case BO_Xor: 2984 RMWOp = llvm::AtomicRMWInst::Xor; 2985 break; 2986 case BO_LT: 2987 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2988 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 2989 : llvm::AtomicRMWInst::Max) 2990 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 2991 : llvm::AtomicRMWInst::UMax); 2992 break; 2993 case BO_GT: 2994 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2995 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 2996 : llvm::AtomicRMWInst::Min) 2997 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 2998 : llvm::AtomicRMWInst::UMin); 2999 break; 3000 case BO_Assign: 3001 RMWOp = llvm::AtomicRMWInst::Xchg; 3002 break; 3003 case BO_Mul: 3004 case BO_Div: 3005 case BO_Rem: 3006 case BO_Shl: 3007 case BO_Shr: 3008 case BO_LAnd: 3009 case BO_LOr: 3010 return std::make_pair(false, RValue::get(nullptr)); 3011 case BO_PtrMemD: 3012 case BO_PtrMemI: 3013 case BO_LE: 3014 case BO_GE: 3015 case BO_EQ: 3016 case BO_NE: 3017 case BO_AddAssign: 3018 case BO_SubAssign: 3019 case BO_AndAssign: 3020 case BO_OrAssign: 3021 case BO_XorAssign: 3022 case BO_MulAssign: 3023 case BO_DivAssign: 3024 case BO_RemAssign: 3025 case BO_ShlAssign: 3026 case BO_ShrAssign: 3027 case BO_Comma: 3028 llvm_unreachable("Unsupported atomic update operation"); 3029 } 3030 auto *UpdateVal = Update.getScalarVal(); 3031 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3032 UpdateVal = CGF.Builder.CreateIntCast( 3033 IC, X.getAddress().getElementType(), 3034 X.getType()->hasSignedIntegerRepresentation()); 3035 } 3036 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3037 return std::make_pair(true, RValue::get(Res)); 3038 } 3039 3040 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3041 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3042 llvm::AtomicOrdering AO, SourceLocation Loc, 3043 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3044 // Update expressions are allowed to have the following forms: 3045 // x binop= expr; -> xrval + expr; 3046 // x++, ++x -> xrval + 1; 3047 // x--, --x -> xrval - 1; 3048 // x = x binop expr; -> xrval binop expr 3049 // x = expr Op x; - > expr binop xrval; 3050 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3051 if (!Res.first) { 3052 if (X.isGlobalReg()) { 3053 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3054 // 'xrval'. 3055 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3056 } else { 3057 // Perform compare-and-swap procedure. 3058 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3059 } 3060 } 3061 return Res; 3062 } 3063 3064 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3065 const Expr *X, const Expr *E, 3066 const Expr *UE, bool IsXLHSInRHSPart, 3067 SourceLocation Loc) { 3068 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3069 "Update expr in 'atomic update' must be a binary operator."); 3070 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3071 // Update expressions are allowed to have the following forms: 3072 // x binop= expr; -> xrval + expr; 3073 // x++, ++x -> xrval + 1; 3074 // x--, --x -> xrval - 1; 3075 // x = x binop expr; -> xrval binop expr 3076 // x = expr Op x; - > expr binop xrval; 3077 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3078 LValue XLValue = CGF.EmitLValue(X); 3079 RValue ExprRValue = CGF.EmitAnyExpr(E); 3080 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3081 : llvm::AtomicOrdering::Monotonic; 3082 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3083 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3084 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3085 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3086 auto Gen = 3087 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3088 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3089 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3090 return CGF.EmitAnyExpr(UE); 3091 }; 3092 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3093 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3094 // OpenMP, 2.12.6, atomic Construct 3095 // Any atomic construct with a seq_cst clause forces the atomically 3096 // performed operation to include an implicit flush operation without a 3097 // list. 3098 if (IsSeqCst) 3099 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3100 } 3101 3102 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3103 QualType SourceType, QualType ResType, 3104 SourceLocation Loc) { 3105 switch (CGF.getEvaluationKind(ResType)) { 3106 case TEK_Scalar: 3107 return RValue::get( 3108 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3109 case TEK_Complex: { 3110 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3111 return RValue::getComplex(Res.first, Res.second); 3112 } 3113 case TEK_Aggregate: 3114 break; 3115 } 3116 llvm_unreachable("Must be a scalar or complex."); 3117 } 3118 3119 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3120 bool IsPostfixUpdate, const Expr *V, 3121 const Expr *X, const Expr *E, 3122 const Expr *UE, bool IsXLHSInRHSPart, 3123 SourceLocation Loc) { 3124 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3125 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3126 RValue NewVVal; 3127 LValue VLValue = CGF.EmitLValue(V); 3128 LValue XLValue = CGF.EmitLValue(X); 3129 RValue ExprRValue = CGF.EmitAnyExpr(E); 3130 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3131 : llvm::AtomicOrdering::Monotonic; 3132 QualType NewVValType; 3133 if (UE) { 3134 // 'x' is updated with some additional value. 3135 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3136 "Update expr in 'atomic capture' must be a binary operator."); 3137 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3138 // Update expressions are allowed to have the following forms: 3139 // x binop= expr; -> xrval + expr; 3140 // x++, ++x -> xrval + 1; 3141 // x--, --x -> xrval - 1; 3142 // x = x binop expr; -> xrval binop expr 3143 // x = expr Op x; - > expr binop xrval; 3144 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3145 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3146 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3147 NewVValType = XRValExpr->getType(); 3148 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3149 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3150 IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue { 3151 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3152 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3153 RValue Res = CGF.EmitAnyExpr(UE); 3154 NewVVal = IsPostfixUpdate ? XRValue : Res; 3155 return Res; 3156 }; 3157 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3158 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3159 if (Res.first) { 3160 // 'atomicrmw' instruction was generated. 3161 if (IsPostfixUpdate) { 3162 // Use old value from 'atomicrmw'. 3163 NewVVal = Res.second; 3164 } else { 3165 // 'atomicrmw' does not provide new value, so evaluate it using old 3166 // value of 'x'. 3167 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3168 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3169 NewVVal = CGF.EmitAnyExpr(UE); 3170 } 3171 } 3172 } else { 3173 // 'x' is simply rewritten with some 'expr'. 3174 NewVValType = X->getType().getNonReferenceType(); 3175 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3176 X->getType().getNonReferenceType(), Loc); 3177 auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue { 3178 NewVVal = XRValue; 3179 return ExprRValue; 3180 }; 3181 // Try to perform atomicrmw xchg, otherwise simple exchange. 3182 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3183 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3184 Loc, Gen); 3185 if (Res.first) { 3186 // 'atomicrmw' instruction was generated. 3187 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3188 } 3189 } 3190 // Emit post-update store to 'v' of old/new 'x' value. 3191 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3192 // OpenMP, 2.12.6, atomic Construct 3193 // Any atomic construct with a seq_cst clause forces the atomically 3194 // performed operation to include an implicit flush operation without a 3195 // list. 3196 if (IsSeqCst) 3197 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3198 } 3199 3200 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3201 bool IsSeqCst, bool IsPostfixUpdate, 3202 const Expr *X, const Expr *V, const Expr *E, 3203 const Expr *UE, bool IsXLHSInRHSPart, 3204 SourceLocation Loc) { 3205 switch (Kind) { 3206 case OMPC_read: 3207 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3208 break; 3209 case OMPC_write: 3210 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3211 break; 3212 case OMPC_unknown: 3213 case OMPC_update: 3214 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3215 break; 3216 case OMPC_capture: 3217 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3218 IsXLHSInRHSPart, Loc); 3219 break; 3220 case OMPC_if: 3221 case OMPC_final: 3222 case OMPC_num_threads: 3223 case OMPC_private: 3224 case OMPC_firstprivate: 3225 case OMPC_lastprivate: 3226 case OMPC_reduction: 3227 case OMPC_safelen: 3228 case OMPC_simdlen: 3229 case OMPC_collapse: 3230 case OMPC_default: 3231 case OMPC_seq_cst: 3232 case OMPC_shared: 3233 case OMPC_linear: 3234 case OMPC_aligned: 3235 case OMPC_copyin: 3236 case OMPC_copyprivate: 3237 case OMPC_flush: 3238 case OMPC_proc_bind: 3239 case OMPC_schedule: 3240 case OMPC_ordered: 3241 case OMPC_nowait: 3242 case OMPC_untied: 3243 case OMPC_threadprivate: 3244 case OMPC_depend: 3245 case OMPC_mergeable: 3246 case OMPC_device: 3247 case OMPC_threads: 3248 case OMPC_simd: 3249 case OMPC_map: 3250 case OMPC_num_teams: 3251 case OMPC_thread_limit: 3252 case OMPC_priority: 3253 case OMPC_grainsize: 3254 case OMPC_nogroup: 3255 case OMPC_num_tasks: 3256 case OMPC_hint: 3257 case OMPC_dist_schedule: 3258 case OMPC_defaultmap: 3259 case OMPC_uniform: 3260 case OMPC_to: 3261 case OMPC_from: 3262 case OMPC_use_device_ptr: 3263 case OMPC_is_device_ptr: 3264 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3265 } 3266 } 3267 3268 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3269 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3270 OpenMPClauseKind Kind = OMPC_unknown; 3271 for (auto *C : S.clauses()) { 3272 // Find first clause (skip seq_cst clause, if it is first). 3273 if (C->getClauseKind() != OMPC_seq_cst) { 3274 Kind = C->getClauseKind(); 3275 break; 3276 } 3277 } 3278 3279 const auto *CS = 3280 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 3281 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3282 enterFullExpression(EWC); 3283 } 3284 // Processing for statements under 'atomic capture'. 3285 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3286 for (const auto *C : Compound->body()) { 3287 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3288 enterFullExpression(EWC); 3289 } 3290 } 3291 } 3292 3293 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3294 PrePostActionTy &) { 3295 CGF.EmitStopPoint(CS); 3296 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3297 S.getV(), S.getExpr(), S.getUpdateExpr(), 3298 S.isXLHSInRHSPart(), S.getLocStart()); 3299 }; 3300 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3301 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3302 } 3303 3304 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/> 3305 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction( 3306 CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName, 3307 bool IsOffloadEntry) { 3308 llvm::Function *OutlinedFn = nullptr; 3309 llvm::Constant *OutlinedFnID = nullptr; 3310 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3311 OMPPrivateScope PrivateScope(CGF); 3312 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3313 CGF.EmitOMPPrivateClause(S, PrivateScope); 3314 (void)PrivateScope.Privatize(); 3315 3316 Action.Enter(CGF); 3317 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3318 }; 3319 // Emit target region as a standalone region. 3320 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3321 S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); 3322 return std::make_pair(OutlinedFn, OutlinedFnID); 3323 } 3324 3325 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3326 const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt()); 3327 3328 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3329 GenerateOpenMPCapturedVars(CS, CapturedVars); 3330 3331 llvm::Function *Fn = nullptr; 3332 llvm::Constant *FnID = nullptr; 3333 3334 // Check if we have any if clause associated with the directive. 3335 const Expr *IfCond = nullptr; 3336 3337 if (auto *C = S.getSingleClause<OMPIfClause>()) { 3338 IfCond = C->getCondition(); 3339 } 3340 3341 // Check if we have any device clause associated with the directive. 3342 const Expr *Device = nullptr; 3343 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3344 Device = C->getDevice(); 3345 } 3346 3347 // Check if we have an if clause whose conditional always evaluates to false 3348 // or if we do not have any targets specified. If so the target region is not 3349 // an offload entry point. 3350 bool IsOffloadEntry = true; 3351 if (IfCond) { 3352 bool Val; 3353 if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3354 IsOffloadEntry = false; 3355 } 3356 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3357 IsOffloadEntry = false; 3358 3359 assert(CurFuncDecl && "No parent declaration for target region!"); 3360 StringRef ParentName; 3361 // In case we have Ctors/Dtors we use the complete type variant to produce 3362 // the mangling of the device outlined kernel. 3363 if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl)) 3364 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3365 else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl)) 3366 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3367 else 3368 ParentName = 3369 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl))); 3370 3371 std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction( 3372 CGM, S, ParentName, IsOffloadEntry); 3373 OMPLexicalScope Scope(*this, S); 3374 CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device, 3375 CapturedVars); 3376 } 3377 3378 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3379 const OMPExecutableDirective &S, 3380 OpenMPDirectiveKind InnermostKind, 3381 const RegionCodeGenTy &CodeGen) { 3382 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3383 auto OutlinedFn = CGF.CGM.getOpenMPRuntime(). 3384 emitParallelOrTeamsOutlinedFunction(S, 3385 *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 3386 3387 const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S); 3388 const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>(); 3389 const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>(); 3390 if (NT || TL) { 3391 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 3392 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 3393 3394 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 3395 S.getLocStart()); 3396 } 3397 3398 OMPLexicalScope Scope(CGF, S); 3399 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3400 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3401 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 3402 CapturedVars); 3403 } 3404 3405 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 3406 // Emit parallel region as a standalone region. 3407 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3408 OMPPrivateScope PrivateScope(CGF); 3409 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3410 CGF.EmitOMPPrivateClause(S, PrivateScope); 3411 (void)PrivateScope.Privatize(); 3412 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3413 }; 3414 emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen); 3415 } 3416 3417 void CodeGenFunction::EmitOMPCancellationPointDirective( 3418 const OMPCancellationPointDirective &S) { 3419 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 3420 S.getCancelRegion()); 3421 } 3422 3423 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 3424 const Expr *IfCond = nullptr; 3425 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3426 if (C->getNameModifier() == OMPD_unknown || 3427 C->getNameModifier() == OMPD_cancel) { 3428 IfCond = C->getCondition(); 3429 break; 3430 } 3431 } 3432 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 3433 S.getCancelRegion()); 3434 } 3435 3436 CodeGenFunction::JumpDest 3437 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 3438 if (Kind == OMPD_parallel || Kind == OMPD_task) 3439 return ReturnBlock; 3440 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 3441 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for); 3442 return BreakContinueStack.back().BreakBlock; 3443 } 3444 3445 void CodeGenFunction::EmitOMPUseDevicePtrClause( 3446 const OMPClause &NC, OMPPrivateScope &PrivateScope, 3447 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 3448 const auto &C = cast<OMPUseDevicePtrClause>(NC); 3449 auto OrigVarIt = C.varlist_begin(); 3450 auto InitIt = C.inits().begin(); 3451 for (auto PvtVarIt : C.private_copies()) { 3452 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 3453 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 3454 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 3455 3456 // In order to identify the right initializer we need to match the 3457 // declaration used by the mapping logic. In some cases we may get 3458 // OMPCapturedExprDecl that refers to the original declaration. 3459 const ValueDecl *MatchingVD = OrigVD; 3460 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 3461 // OMPCapturedExprDecl are used to privative fields of the current 3462 // structure. 3463 auto *ME = cast<MemberExpr>(OED->getInit()); 3464 assert(isa<CXXThisExpr>(ME->getBase()) && 3465 "Base should be the current struct!"); 3466 MatchingVD = ME->getMemberDecl(); 3467 } 3468 3469 // If we don't have information about the current list item, move on to 3470 // the next one. 3471 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 3472 if (InitAddrIt == CaptureDeviceAddrMap.end()) 3473 continue; 3474 3475 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 3476 // Initialize the temporary initialization variable with the address we 3477 // get from the runtime library. We have to cast the source address 3478 // because it is always a void *. References are materialized in the 3479 // privatization scope, so the initialization here disregards the fact 3480 // the original variable is a reference. 3481 QualType AddrQTy = 3482 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 3483 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 3484 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 3485 setAddrOfLocalVar(InitVD, InitAddr); 3486 3487 // Emit private declaration, it will be initialized by the value we 3488 // declaration we just added to the local declarations map. 3489 EmitDecl(*PvtVD); 3490 3491 // The initialization variables reached its purpose in the emission 3492 // ofthe previous declaration, so we don't need it anymore. 3493 LocalDeclMap.erase(InitVD); 3494 3495 // Return the address of the private variable. 3496 return GetAddrOfLocalVar(PvtVD); 3497 }); 3498 assert(IsRegistered && "firstprivate var already registered as private"); 3499 // Silence the warning about unused variable. 3500 (void)IsRegistered; 3501 3502 ++OrigVarIt; 3503 ++InitIt; 3504 } 3505 } 3506 3507 // Generate the instructions for '#pragma omp target data' directive. 3508 void CodeGenFunction::EmitOMPTargetDataDirective( 3509 const OMPTargetDataDirective &S) { 3510 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 3511 3512 // Create a pre/post action to signal the privatization of the device pointer. 3513 // This action can be replaced by the OpenMP runtime code generation to 3514 // deactivate privatization. 3515 bool PrivatizeDevicePointers = false; 3516 class DevicePointerPrivActionTy : public PrePostActionTy { 3517 bool &PrivatizeDevicePointers; 3518 3519 public: 3520 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 3521 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 3522 void Enter(CodeGenFunction &CGF) override { 3523 PrivatizeDevicePointers = true; 3524 } 3525 }; 3526 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 3527 3528 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 3529 CodeGenFunction &CGF, PrePostActionTy &Action) { 3530 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3531 CGF.EmitStmt( 3532 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3533 }; 3534 3535 // Codegen that selects wheather to generate the privatization code or not. 3536 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 3537 &InnermostCodeGen](CodeGenFunction &CGF, 3538 PrePostActionTy &Action) { 3539 RegionCodeGenTy RCG(InnermostCodeGen); 3540 PrivatizeDevicePointers = false; 3541 3542 // Call the pre-action to change the status of PrivatizeDevicePointers if 3543 // needed. 3544 Action.Enter(CGF); 3545 3546 if (PrivatizeDevicePointers) { 3547 OMPPrivateScope PrivateScope(CGF); 3548 // Emit all instances of the use_device_ptr clause. 3549 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 3550 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 3551 Info.CaptureDeviceAddrMap); 3552 (void)PrivateScope.Privatize(); 3553 RCG(CGF); 3554 } else 3555 RCG(CGF); 3556 }; 3557 3558 // Forward the provided action to the privatization codegen. 3559 RegionCodeGenTy PrivRCG(PrivCodeGen); 3560 PrivRCG.setAction(Action); 3561 3562 // Notwithstanding the body of the region is emitted as inlined directive, 3563 // we don't use an inline scope as changes in the references inside the 3564 // region are expected to be visible outside, so we do not privative them. 3565 OMPLexicalScope Scope(CGF, S); 3566 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 3567 PrivRCG); 3568 }; 3569 3570 RegionCodeGenTy RCG(CodeGen); 3571 3572 // If we don't have target devices, don't bother emitting the data mapping 3573 // code. 3574 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 3575 RCG(*this); 3576 return; 3577 } 3578 3579 // Check if we have any if clause associated with the directive. 3580 const Expr *IfCond = nullptr; 3581 if (auto *C = S.getSingleClause<OMPIfClause>()) 3582 IfCond = C->getCondition(); 3583 3584 // Check if we have any device clause associated with the directive. 3585 const Expr *Device = nullptr; 3586 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3587 Device = C->getDevice(); 3588 3589 // Set the action to signal privatization of device pointers. 3590 RCG.setAction(PrivAction); 3591 3592 // Emit region code. 3593 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 3594 Info); 3595 } 3596 3597 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 3598 const OMPTargetEnterDataDirective &S) { 3599 // If we don't have target devices, don't bother emitting the data mapping 3600 // code. 3601 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3602 return; 3603 3604 // Check if we have any if clause associated with the directive. 3605 const Expr *IfCond = nullptr; 3606 if (auto *C = S.getSingleClause<OMPIfClause>()) 3607 IfCond = C->getCondition(); 3608 3609 // Check if we have any device clause associated with the directive. 3610 const Expr *Device = nullptr; 3611 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3612 Device = C->getDevice(); 3613 3614 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3615 } 3616 3617 void CodeGenFunction::EmitOMPTargetExitDataDirective( 3618 const OMPTargetExitDataDirective &S) { 3619 // If we don't have target devices, don't bother emitting the data mapping 3620 // code. 3621 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3622 return; 3623 3624 // Check if we have any if clause associated with the directive. 3625 const Expr *IfCond = nullptr; 3626 if (auto *C = S.getSingleClause<OMPIfClause>()) 3627 IfCond = C->getCondition(); 3628 3629 // Check if we have any device clause associated with the directive. 3630 const Expr *Device = nullptr; 3631 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3632 Device = C->getDevice(); 3633 3634 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3635 } 3636 3637 void CodeGenFunction::EmitOMPTargetParallelDirective( 3638 const OMPTargetParallelDirective &S) { 3639 // TODO: codegen for target parallel. 3640 } 3641 3642 void CodeGenFunction::EmitOMPTargetParallelForDirective( 3643 const OMPTargetParallelForDirective &S) { 3644 // TODO: codegen for target parallel for. 3645 } 3646 3647 /// Emit a helper variable and return corresponding lvalue. 3648 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 3649 const ImplicitParamDecl *PVD, 3650 CodeGenFunction::OMPPrivateScope &Privates) { 3651 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 3652 Privates.addPrivate( 3653 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 3654 } 3655 3656 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 3657 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 3658 // Emit outlined function for task construct. 3659 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3660 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3661 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3662 const Expr *IfCond = nullptr; 3663 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3664 if (C->getNameModifier() == OMPD_unknown || 3665 C->getNameModifier() == OMPD_taskloop) { 3666 IfCond = C->getCondition(); 3667 break; 3668 } 3669 } 3670 3671 OMPTaskDataTy Data; 3672 // Check if taskloop must be emitted without taskgroup. 3673 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 3674 // TODO: Check if we should emit tied or untied task. 3675 Data.Tied = true; 3676 // Set scheduling for taskloop 3677 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 3678 // grainsize clause 3679 Data.Schedule.setInt(/*IntVal=*/false); 3680 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 3681 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 3682 // num_tasks clause 3683 Data.Schedule.setInt(/*IntVal=*/true); 3684 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 3685 } 3686 3687 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 3688 // if (PreCond) { 3689 // for (IV in 0..LastIteration) BODY; 3690 // <Final counter/linear vars updates>; 3691 // } 3692 // 3693 3694 // Emit: if (PreCond) - begin. 3695 // If the condition constant folds and can be elided, avoid emitting the 3696 // whole loop. 3697 bool CondConstant; 3698 llvm::BasicBlock *ContBlock = nullptr; 3699 OMPLoopScope PreInitScope(CGF, S); 3700 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3701 if (!CondConstant) 3702 return; 3703 } else { 3704 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 3705 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 3706 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 3707 CGF.getProfileCount(&S)); 3708 CGF.EmitBlock(ThenBlock); 3709 CGF.incrementProfileCounter(&S); 3710 } 3711 3712 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3713 CGF.EmitOMPSimdInit(S); 3714 3715 OMPPrivateScope LoopScope(CGF); 3716 // Emit helper vars inits. 3717 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 3718 auto *I = CS->getCapturedDecl()->param_begin(); 3719 auto *LBP = std::next(I, LowerBound); 3720 auto *UBP = std::next(I, UpperBound); 3721 auto *STP = std::next(I, Stride); 3722 auto *LIP = std::next(I, LastIter); 3723 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 3724 LoopScope); 3725 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 3726 LoopScope); 3727 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 3728 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 3729 LoopScope); 3730 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 3731 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3732 (void)LoopScope.Privatize(); 3733 // Emit the loop iteration variable. 3734 const Expr *IVExpr = S.getIterationVariable(); 3735 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 3736 CGF.EmitVarDecl(*IVDecl); 3737 CGF.EmitIgnoredExpr(S.getInit()); 3738 3739 // Emit the iterations count variable. 3740 // If it is not a variable, Sema decided to calculate iterations count on 3741 // each iteration (e.g., it is foldable into a constant). 3742 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3743 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3744 // Emit calculation of the iterations count. 3745 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 3746 } 3747 3748 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 3749 S.getInc(), 3750 [&S](CodeGenFunction &CGF) { 3751 CGF.EmitOMPLoopBody(S, JumpDest()); 3752 CGF.EmitStopPoint(&S); 3753 }, 3754 [](CodeGenFunction &) {}); 3755 // Emit: if (PreCond) - end. 3756 if (ContBlock) { 3757 CGF.EmitBranch(ContBlock); 3758 CGF.EmitBlock(ContBlock, true); 3759 } 3760 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3761 if (HasLastprivateClause) { 3762 CGF.EmitOMPLastprivateClauseFinal( 3763 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3764 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 3765 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 3766 (*LIP)->getType(), S.getLocStart()))); 3767 } 3768 }; 3769 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3770 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3771 const OMPTaskDataTy &Data) { 3772 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 3773 OMPLoopScope PreInitScope(CGF, S); 3774 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 3775 OutlinedFn, SharedsTy, 3776 CapturedStruct, IfCond, Data); 3777 }; 3778 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 3779 CodeGen); 3780 }; 3781 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 3782 } 3783 3784 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 3785 EmitOMPTaskLoopBasedDirective(S); 3786 } 3787 3788 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 3789 const OMPTaskLoopSimdDirective &S) { 3790 EmitOMPTaskLoopBasedDirective(S); 3791 } 3792 3793 // Generate the instructions for '#pragma omp target update' directive. 3794 void CodeGenFunction::EmitOMPTargetUpdateDirective( 3795 const OMPTargetUpdateDirective &S) { 3796 // If we don't have target devices, don't bother emitting the data mapping 3797 // code. 3798 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3799 return; 3800 3801 // Check if we have any if clause associated with the directive. 3802 const Expr *IfCond = nullptr; 3803 if (auto *C = S.getSingleClause<OMPIfClause>()) 3804 IfCond = C->getCondition(); 3805 3806 // Check if we have any device clause associated with the directive. 3807 const Expr *Device = nullptr; 3808 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3809 Device = C->getDevice(); 3810 3811 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3812 } 3813