1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/Stmt.h" 22 #include "clang/AST/StmtOpenMP.h" 23 #include "clang/Basic/PrettyStackTrace.h" 24 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 25 using namespace clang; 26 using namespace CodeGen; 27 using namespace llvm::omp; 28 29 namespace { 30 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 31 /// for captured expressions. 32 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 33 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 34 for (const auto *C : S.clauses()) { 35 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 36 if (const auto *PreInit = 37 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 38 for (const auto *I : PreInit->decls()) { 39 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 40 CGF.EmitVarDecl(cast<VarDecl>(*I)); 41 } else { 42 CodeGenFunction::AutoVarEmission Emission = 43 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 44 CGF.EmitAutoVarCleanups(Emission); 45 } 46 } 47 } 48 } 49 } 50 } 51 CodeGenFunction::OMPPrivateScope InlinedShareds; 52 53 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 54 return CGF.LambdaCaptureFields.lookup(VD) || 55 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 56 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 57 } 58 59 public: 60 OMPLexicalScope( 61 CodeGenFunction &CGF, const OMPExecutableDirective &S, 62 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 63 const bool EmitPreInitStmt = true) 64 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 65 InlinedShareds(CGF) { 66 if (EmitPreInitStmt) 67 emitPreInitStmt(CGF, S); 68 if (!CapturedRegion.hasValue()) 69 return; 70 assert(S.hasAssociatedStmt() && 71 "Expected associated statement for inlined directive."); 72 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 73 for (const auto &C : CS->captures()) { 74 if (C.capturesVariable() || C.capturesVariableByCopy()) { 75 auto *VD = C.getCapturedVar(); 76 assert(VD == VD->getCanonicalDecl() && 77 "Canonical decl must be captured."); 78 DeclRefExpr DRE( 79 CGF.getContext(), const_cast<VarDecl *>(VD), 80 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 81 InlinedShareds.isGlobalVarCaptured(VD)), 82 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 83 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 84 return CGF.EmitLValue(&DRE).getAddress(CGF); 85 }); 86 } 87 } 88 (void)InlinedShareds.Privatize(); 89 } 90 }; 91 92 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 93 /// for captured expressions. 94 class OMPParallelScope final : public OMPLexicalScope { 95 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 96 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 97 return !(isOpenMPTargetExecutionDirective(Kind) || 98 isOpenMPLoopBoundSharingDirective(Kind)) && 99 isOpenMPParallelDirective(Kind); 100 } 101 102 public: 103 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 104 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 105 EmitPreInitStmt(S)) {} 106 }; 107 108 /// Lexical scope for OpenMP teams construct, that handles correct codegen 109 /// for captured expressions. 110 class OMPTeamsScope final : public OMPLexicalScope { 111 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 112 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 113 return !isOpenMPTargetExecutionDirective(Kind) && 114 isOpenMPTeamsDirective(Kind); 115 } 116 117 public: 118 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 119 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 120 EmitPreInitStmt(S)) {} 121 }; 122 123 /// Private scope for OpenMP loop-based directives, that supports capturing 124 /// of used expression from loop statement. 125 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 126 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 127 CodeGenFunction::OMPMapVars PreCondVars; 128 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 129 for (const auto *E : S.counters()) { 130 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 131 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 132 (void)PreCondVars.setVarAddr( 133 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 134 } 135 // Mark private vars as undefs. 136 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 137 for (const Expr *IRef : C->varlists()) { 138 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 139 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 140 (void)PreCondVars.setVarAddr( 141 CGF, OrigVD, 142 Address(llvm::UndefValue::get( 143 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 144 OrigVD->getType().getNonReferenceType()))), 145 CGF.getContext().getDeclAlign(OrigVD))); 146 } 147 } 148 } 149 (void)PreCondVars.apply(CGF); 150 // Emit init, __range and __end variables for C++ range loops. 151 const Stmt *Body = 152 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 153 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 154 Body = OMPLoopDirective::tryToFindNextInnerLoop( 155 Body, /*TryImperfectlyNestedLoops=*/true); 156 if (auto *For = dyn_cast<ForStmt>(Body)) { 157 Body = For->getBody(); 158 } else { 159 assert(isa<CXXForRangeStmt>(Body) && 160 "Expected canonical for loop or range-based for loop."); 161 auto *CXXFor = cast<CXXForRangeStmt>(Body); 162 if (const Stmt *Init = CXXFor->getInit()) 163 CGF.EmitStmt(Init); 164 CGF.EmitStmt(CXXFor->getRangeStmt()); 165 CGF.EmitStmt(CXXFor->getEndStmt()); 166 Body = CXXFor->getBody(); 167 } 168 } 169 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 170 for (const auto *I : PreInits->decls()) 171 CGF.EmitVarDecl(cast<VarDecl>(*I)); 172 } 173 PreCondVars.restore(CGF); 174 } 175 176 public: 177 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 178 : CodeGenFunction::RunCleanupsScope(CGF) { 179 emitPreInitStmt(CGF, S); 180 } 181 }; 182 183 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 184 CodeGenFunction::OMPPrivateScope InlinedShareds; 185 186 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 187 return CGF.LambdaCaptureFields.lookup(VD) || 188 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 189 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 190 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 191 } 192 193 public: 194 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 195 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 196 InlinedShareds(CGF) { 197 for (const auto *C : S.clauses()) { 198 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 199 if (const auto *PreInit = 200 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 201 for (const auto *I : PreInit->decls()) { 202 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 203 CGF.EmitVarDecl(cast<VarDecl>(*I)); 204 } else { 205 CodeGenFunction::AutoVarEmission Emission = 206 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 207 CGF.EmitAutoVarCleanups(Emission); 208 } 209 } 210 } 211 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 212 for (const Expr *E : UDP->varlists()) { 213 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 214 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 215 CGF.EmitVarDecl(*OED); 216 } 217 } 218 } 219 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 220 CGF.EmitOMPPrivateClause(S, InlinedShareds); 221 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 222 if (const Expr *E = TG->getReductionRef()) 223 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 224 } 225 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 226 while (CS) { 227 for (auto &C : CS->captures()) { 228 if (C.capturesVariable() || C.capturesVariableByCopy()) { 229 auto *VD = C.getCapturedVar(); 230 assert(VD == VD->getCanonicalDecl() && 231 "Canonical decl must be captured."); 232 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 233 isCapturedVar(CGF, VD) || 234 (CGF.CapturedStmtInfo && 235 InlinedShareds.isGlobalVarCaptured(VD)), 236 VD->getType().getNonReferenceType(), VK_LValue, 237 C.getLocation()); 238 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 239 return CGF.EmitLValue(&DRE).getAddress(CGF); 240 }); 241 } 242 } 243 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 244 } 245 (void)InlinedShareds.Privatize(); 246 } 247 }; 248 249 } // namespace 250 251 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 252 const OMPExecutableDirective &S, 253 const RegionCodeGenTy &CodeGen); 254 255 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 256 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 257 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 258 OrigVD = OrigVD->getCanonicalDecl(); 259 bool IsCaptured = 260 LambdaCaptureFields.lookup(OrigVD) || 261 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 262 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 263 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 264 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 265 return EmitLValue(&DRE); 266 } 267 } 268 return EmitLValue(E); 269 } 270 271 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 272 ASTContext &C = getContext(); 273 llvm::Value *Size = nullptr; 274 auto SizeInChars = C.getTypeSizeInChars(Ty); 275 if (SizeInChars.isZero()) { 276 // getTypeSizeInChars() returns 0 for a VLA. 277 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 278 VlaSizePair VlaSize = getVLASize(VAT); 279 Ty = VlaSize.Type; 280 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 281 : VlaSize.NumElts; 282 } 283 SizeInChars = C.getTypeSizeInChars(Ty); 284 if (SizeInChars.isZero()) 285 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 286 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 287 } 288 return CGM.getSize(SizeInChars); 289 } 290 291 void CodeGenFunction::GenerateOpenMPCapturedVars( 292 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 293 const RecordDecl *RD = S.getCapturedRecordDecl(); 294 auto CurField = RD->field_begin(); 295 auto CurCap = S.captures().begin(); 296 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 297 E = S.capture_init_end(); 298 I != E; ++I, ++CurField, ++CurCap) { 299 if (CurField->hasCapturedVLAType()) { 300 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 301 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 302 CapturedVars.push_back(Val); 303 } else if (CurCap->capturesThis()) { 304 CapturedVars.push_back(CXXThisValue); 305 } else if (CurCap->capturesVariableByCopy()) { 306 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 307 308 // If the field is not a pointer, we need to save the actual value 309 // and load it as a void pointer. 310 if (!CurField->getType()->isAnyPointerType()) { 311 ASTContext &Ctx = getContext(); 312 Address DstAddr = CreateMemTemp( 313 Ctx.getUIntPtrType(), 314 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 315 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 316 317 llvm::Value *SrcAddrVal = EmitScalarConversion( 318 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 319 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 320 LValue SrcLV = 321 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 322 323 // Store the value using the source type pointer. 324 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 325 326 // Load the value using the destination type pointer. 327 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 328 } 329 CapturedVars.push_back(CV); 330 } else { 331 assert(CurCap->capturesVariable() && "Expected capture by reference."); 332 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 333 } 334 } 335 } 336 337 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 338 QualType DstType, StringRef Name, 339 LValue AddrLV) { 340 ASTContext &Ctx = CGF.getContext(); 341 342 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 343 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 344 Ctx.getPointerType(DstType), Loc); 345 Address TmpAddr = 346 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 347 .getAddress(CGF); 348 return TmpAddr; 349 } 350 351 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 352 if (T->isLValueReferenceType()) 353 return C.getLValueReferenceType( 354 getCanonicalParamType(C, T.getNonReferenceType()), 355 /*SpelledAsLValue=*/false); 356 if (T->isPointerType()) 357 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 358 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 359 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 360 return getCanonicalParamType(C, VLA->getElementType()); 361 if (!A->isVariablyModifiedType()) 362 return C.getCanonicalType(T); 363 } 364 return C.getCanonicalParamType(T); 365 } 366 367 namespace { 368 /// Contains required data for proper outlined function codegen. 369 struct FunctionOptions { 370 /// Captured statement for which the function is generated. 371 const CapturedStmt *S = nullptr; 372 /// true if cast to/from UIntPtr is required for variables captured by 373 /// value. 374 const bool UIntPtrCastRequired = true; 375 /// true if only casted arguments must be registered as local args or VLA 376 /// sizes. 377 const bool RegisterCastedArgsOnly = false; 378 /// Name of the generated function. 379 const StringRef FunctionName; 380 /// Location of the non-debug version of the outlined function. 381 SourceLocation Loc; 382 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 383 bool RegisterCastedArgsOnly, StringRef FunctionName, 384 SourceLocation Loc) 385 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 386 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 387 FunctionName(FunctionName), Loc(Loc) {} 388 }; 389 } // namespace 390 391 static llvm::Function *emitOutlinedFunctionPrologue( 392 CodeGenFunction &CGF, FunctionArgList &Args, 393 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 394 &LocalAddrs, 395 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 396 &VLASizes, 397 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 398 const CapturedDecl *CD = FO.S->getCapturedDecl(); 399 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 400 assert(CD->hasBody() && "missing CapturedDecl body"); 401 402 CXXThisValue = nullptr; 403 // Build the argument list. 404 CodeGenModule &CGM = CGF.CGM; 405 ASTContext &Ctx = CGM.getContext(); 406 FunctionArgList TargetArgs; 407 Args.append(CD->param_begin(), 408 std::next(CD->param_begin(), CD->getContextParamPosition())); 409 TargetArgs.append( 410 CD->param_begin(), 411 std::next(CD->param_begin(), CD->getContextParamPosition())); 412 auto I = FO.S->captures().begin(); 413 FunctionDecl *DebugFunctionDecl = nullptr; 414 if (!FO.UIntPtrCastRequired) { 415 FunctionProtoType::ExtProtoInfo EPI; 416 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 417 DebugFunctionDecl = FunctionDecl::Create( 418 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 419 SourceLocation(), DeclarationName(), FunctionTy, 420 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 421 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 422 } 423 for (const FieldDecl *FD : RD->fields()) { 424 QualType ArgType = FD->getType(); 425 IdentifierInfo *II = nullptr; 426 VarDecl *CapVar = nullptr; 427 428 // If this is a capture by copy and the type is not a pointer, the outlined 429 // function argument type should be uintptr and the value properly casted to 430 // uintptr. This is necessary given that the runtime library is only able to 431 // deal with pointers. We can pass in the same way the VLA type sizes to the 432 // outlined function. 433 if (FO.UIntPtrCastRequired && 434 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 435 I->capturesVariableArrayType())) 436 ArgType = Ctx.getUIntPtrType(); 437 438 if (I->capturesVariable() || I->capturesVariableByCopy()) { 439 CapVar = I->getCapturedVar(); 440 II = CapVar->getIdentifier(); 441 } else if (I->capturesThis()) { 442 II = &Ctx.Idents.get("this"); 443 } else { 444 assert(I->capturesVariableArrayType()); 445 II = &Ctx.Idents.get("vla"); 446 } 447 if (ArgType->isVariablyModifiedType()) 448 ArgType = getCanonicalParamType(Ctx, ArgType); 449 VarDecl *Arg; 450 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 451 Arg = ParmVarDecl::Create( 452 Ctx, DebugFunctionDecl, 453 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 454 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 455 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 456 } else { 457 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 458 II, ArgType, ImplicitParamDecl::Other); 459 } 460 Args.emplace_back(Arg); 461 // Do not cast arguments if we emit function with non-original types. 462 TargetArgs.emplace_back( 463 FO.UIntPtrCastRequired 464 ? Arg 465 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 466 ++I; 467 } 468 Args.append( 469 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 470 CD->param_end()); 471 TargetArgs.append( 472 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 473 CD->param_end()); 474 475 // Create the function declaration. 476 const CGFunctionInfo &FuncInfo = 477 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 478 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 479 480 auto *F = 481 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 482 FO.FunctionName, &CGM.getModule()); 483 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 484 if (CD->isNothrow()) 485 F->setDoesNotThrow(); 486 F->setDoesNotRecurse(); 487 488 // Generate the function. 489 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 490 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 491 FO.UIntPtrCastRequired ? FO.Loc 492 : CD->getBody()->getBeginLoc()); 493 unsigned Cnt = CD->getContextParamPosition(); 494 I = FO.S->captures().begin(); 495 for (const FieldDecl *FD : RD->fields()) { 496 // Do not map arguments if we emit function with non-original types. 497 Address LocalAddr(Address::invalid()); 498 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 499 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 500 TargetArgs[Cnt]); 501 } else { 502 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 503 } 504 // If we are capturing a pointer by copy we don't need to do anything, just 505 // use the value that we get from the arguments. 506 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 507 const VarDecl *CurVD = I->getCapturedVar(); 508 if (!FO.RegisterCastedArgsOnly) 509 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 510 ++Cnt; 511 ++I; 512 continue; 513 } 514 515 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 516 AlignmentSource::Decl); 517 if (FD->hasCapturedVLAType()) { 518 if (FO.UIntPtrCastRequired) { 519 ArgLVal = CGF.MakeAddrLValue( 520 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 521 Args[Cnt]->getName(), ArgLVal), 522 FD->getType(), AlignmentSource::Decl); 523 } 524 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 525 const VariableArrayType *VAT = FD->getCapturedVLAType(); 526 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 527 } else if (I->capturesVariable()) { 528 const VarDecl *Var = I->getCapturedVar(); 529 QualType VarTy = Var->getType(); 530 Address ArgAddr = ArgLVal.getAddress(CGF); 531 if (ArgLVal.getType()->isLValueReferenceType()) { 532 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 533 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 534 assert(ArgLVal.getType()->isPointerType()); 535 ArgAddr = CGF.EmitLoadOfPointer( 536 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 537 } 538 if (!FO.RegisterCastedArgsOnly) { 539 LocalAddrs.insert( 540 {Args[Cnt], 541 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 542 } 543 } else if (I->capturesVariableByCopy()) { 544 assert(!FD->getType()->isAnyPointerType() && 545 "Not expecting a captured pointer."); 546 const VarDecl *Var = I->getCapturedVar(); 547 LocalAddrs.insert({Args[Cnt], 548 {Var, FO.UIntPtrCastRequired 549 ? castValueFromUintptr( 550 CGF, I->getLocation(), FD->getType(), 551 Args[Cnt]->getName(), ArgLVal) 552 : ArgLVal.getAddress(CGF)}}); 553 } else { 554 // If 'this' is captured, load it into CXXThisValue. 555 assert(I->capturesThis()); 556 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 557 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 558 } 559 ++Cnt; 560 ++I; 561 } 562 563 return F; 564 } 565 566 llvm::Function * 567 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 568 SourceLocation Loc) { 569 assert( 570 CapturedStmtInfo && 571 "CapturedStmtInfo should be set when generating the captured function"); 572 const CapturedDecl *CD = S.getCapturedDecl(); 573 // Build the argument list. 574 bool NeedWrapperFunction = 575 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 576 FunctionArgList Args; 577 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 578 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 579 SmallString<256> Buffer; 580 llvm::raw_svector_ostream Out(Buffer); 581 Out << CapturedStmtInfo->getHelperName(); 582 if (NeedWrapperFunction) 583 Out << "_debug__"; 584 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 585 Out.str(), Loc); 586 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 587 VLASizes, CXXThisValue, FO); 588 CodeGenFunction::OMPPrivateScope LocalScope(*this); 589 for (const auto &LocalAddrPair : LocalAddrs) { 590 if (LocalAddrPair.second.first) { 591 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 592 return LocalAddrPair.second.second; 593 }); 594 } 595 } 596 (void)LocalScope.Privatize(); 597 for (const auto &VLASizePair : VLASizes) 598 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 599 PGO.assignRegionCounters(GlobalDecl(CD), F); 600 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 601 (void)LocalScope.ForceCleanup(); 602 FinishFunction(CD->getBodyRBrace()); 603 if (!NeedWrapperFunction) 604 return F; 605 606 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 607 /*RegisterCastedArgsOnly=*/true, 608 CapturedStmtInfo->getHelperName(), Loc); 609 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 610 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 611 Args.clear(); 612 LocalAddrs.clear(); 613 VLASizes.clear(); 614 llvm::Function *WrapperF = 615 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 616 WrapperCGF.CXXThisValue, WrapperFO); 617 llvm::SmallVector<llvm::Value *, 4> CallArgs; 618 for (const auto *Arg : Args) { 619 llvm::Value *CallArg; 620 auto I = LocalAddrs.find(Arg); 621 if (I != LocalAddrs.end()) { 622 LValue LV = WrapperCGF.MakeAddrLValue( 623 I->second.second, 624 I->second.first ? I->second.first->getType() : Arg->getType(), 625 AlignmentSource::Decl); 626 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 627 } else { 628 auto EI = VLASizes.find(Arg); 629 if (EI != VLASizes.end()) { 630 CallArg = EI->second.second; 631 } else { 632 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 633 Arg->getType(), 634 AlignmentSource::Decl); 635 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 636 } 637 } 638 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 639 } 640 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 641 WrapperCGF.FinishFunction(); 642 return WrapperF; 643 } 644 645 //===----------------------------------------------------------------------===// 646 // OpenMP Directive Emission 647 //===----------------------------------------------------------------------===// 648 void CodeGenFunction::EmitOMPAggregateAssign( 649 Address DestAddr, Address SrcAddr, QualType OriginalType, 650 const llvm::function_ref<void(Address, Address)> CopyGen) { 651 // Perform element-by-element initialization. 652 QualType ElementTy; 653 654 // Drill down to the base element type on both arrays. 655 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 656 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 657 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 658 659 llvm::Value *SrcBegin = SrcAddr.getPointer(); 660 llvm::Value *DestBegin = DestAddr.getPointer(); 661 // Cast from pointer to array type to pointer to single element. 662 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 663 // The basic structure here is a while-do loop. 664 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 665 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 666 llvm::Value *IsEmpty = 667 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 668 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 669 670 // Enter the loop body, making that address the current address. 671 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 672 EmitBlock(BodyBB); 673 674 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 675 676 llvm::PHINode *SrcElementPHI = 677 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 678 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 679 Address SrcElementCurrent = 680 Address(SrcElementPHI, 681 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 682 683 llvm::PHINode *DestElementPHI = 684 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 685 DestElementPHI->addIncoming(DestBegin, EntryBB); 686 Address DestElementCurrent = 687 Address(DestElementPHI, 688 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 689 690 // Emit copy. 691 CopyGen(DestElementCurrent, SrcElementCurrent); 692 693 // Shift the address forward by one element. 694 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 695 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 696 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 697 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 698 // Check whether we've reached the end. 699 llvm::Value *Done = 700 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 701 Builder.CreateCondBr(Done, DoneBB, BodyBB); 702 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 703 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 704 705 // Done. 706 EmitBlock(DoneBB, /*IsFinished=*/true); 707 } 708 709 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 710 Address SrcAddr, const VarDecl *DestVD, 711 const VarDecl *SrcVD, const Expr *Copy) { 712 if (OriginalType->isArrayType()) { 713 const auto *BO = dyn_cast<BinaryOperator>(Copy); 714 if (BO && BO->getOpcode() == BO_Assign) { 715 // Perform simple memcpy for simple copying. 716 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 717 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 718 EmitAggregateAssign(Dest, Src, OriginalType); 719 } else { 720 // For arrays with complex element types perform element by element 721 // copying. 722 EmitOMPAggregateAssign( 723 DestAddr, SrcAddr, OriginalType, 724 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 725 // Working with the single array element, so have to remap 726 // destination and source variables to corresponding array 727 // elements. 728 CodeGenFunction::OMPPrivateScope Remap(*this); 729 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 730 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 731 (void)Remap.Privatize(); 732 EmitIgnoredExpr(Copy); 733 }); 734 } 735 } else { 736 // Remap pseudo source variable to private copy. 737 CodeGenFunction::OMPPrivateScope Remap(*this); 738 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 739 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 740 (void)Remap.Privatize(); 741 // Emit copying of the whole variable. 742 EmitIgnoredExpr(Copy); 743 } 744 } 745 746 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 747 OMPPrivateScope &PrivateScope) { 748 if (!HaveInsertPoint()) 749 return false; 750 bool DeviceConstTarget = 751 getLangOpts().OpenMPIsDevice && 752 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 753 bool FirstprivateIsLastprivate = false; 754 llvm::DenseSet<const VarDecl *> Lastprivates; 755 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 756 for (const auto *D : C->varlists()) 757 Lastprivates.insert( 758 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 759 } 760 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 761 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 762 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 763 // Force emission of the firstprivate copy if the directive does not emit 764 // outlined function, like omp for, omp simd, omp distribute etc. 765 bool MustEmitFirstprivateCopy = 766 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 767 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 768 auto IRef = C->varlist_begin(); 769 auto InitsRef = C->inits().begin(); 770 for (const Expr *IInit : C->private_copies()) { 771 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 772 bool ThisFirstprivateIsLastprivate = 773 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 774 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 775 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 776 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 777 !FD->getType()->isReferenceType() && 778 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 779 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 780 ++IRef; 781 ++InitsRef; 782 continue; 783 } 784 // Do not emit copy for firstprivate constant variables in target regions, 785 // captured by reference. 786 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 787 FD && FD->getType()->isReferenceType() && 788 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 789 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 790 OrigVD); 791 ++IRef; 792 ++InitsRef; 793 continue; 794 } 795 FirstprivateIsLastprivate = 796 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 797 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 798 const auto *VDInit = 799 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 800 bool IsRegistered; 801 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 802 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 803 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 804 LValue OriginalLVal; 805 if (!FD) { 806 // Check if the firstprivate variable is just a constant value. 807 ConstantEmission CE = tryEmitAsConstant(&DRE); 808 if (CE && !CE.isReference()) { 809 // Constant value, no need to create a copy. 810 ++IRef; 811 ++InitsRef; 812 continue; 813 } 814 if (CE && CE.isReference()) { 815 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 816 } else { 817 assert(!CE && "Expected non-constant firstprivate."); 818 OriginalLVal = EmitLValue(&DRE); 819 } 820 } else { 821 OriginalLVal = EmitLValue(&DRE); 822 } 823 QualType Type = VD->getType(); 824 if (Type->isArrayType()) { 825 // Emit VarDecl with copy init for arrays. 826 // Get the address of the original variable captured in current 827 // captured region. 828 IsRegistered = PrivateScope.addPrivate( 829 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 830 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 831 const Expr *Init = VD->getInit(); 832 if (!isa<CXXConstructExpr>(Init) || 833 isTrivialInitializer(Init)) { 834 // Perform simple memcpy. 835 LValue Dest = 836 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 837 EmitAggregateAssign(Dest, OriginalLVal, Type); 838 } else { 839 EmitOMPAggregateAssign( 840 Emission.getAllocatedAddress(), 841 OriginalLVal.getAddress(*this), Type, 842 [this, VDInit, Init](Address DestElement, 843 Address SrcElement) { 844 // Clean up any temporaries needed by the 845 // initialization. 846 RunCleanupsScope InitScope(*this); 847 // Emit initialization for single element. 848 setAddrOfLocalVar(VDInit, SrcElement); 849 EmitAnyExprToMem(Init, DestElement, 850 Init->getType().getQualifiers(), 851 /*IsInitializer*/ false); 852 LocalDeclMap.erase(VDInit); 853 }); 854 } 855 EmitAutoVarCleanups(Emission); 856 return Emission.getAllocatedAddress(); 857 }); 858 } else { 859 Address OriginalAddr = OriginalLVal.getAddress(*this); 860 IsRegistered = PrivateScope.addPrivate( 861 OrigVD, [this, VDInit, OriginalAddr, VD]() { 862 // Emit private VarDecl with copy init. 863 // Remap temp VDInit variable to the address of the original 864 // variable (for proper handling of captured global variables). 865 setAddrOfLocalVar(VDInit, OriginalAddr); 866 EmitDecl(*VD); 867 LocalDeclMap.erase(VDInit); 868 return GetAddrOfLocalVar(VD); 869 }); 870 } 871 assert(IsRegistered && 872 "firstprivate var already registered as private"); 873 // Silence the warning about unused variable. 874 (void)IsRegistered; 875 } 876 ++IRef; 877 ++InitsRef; 878 } 879 } 880 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 881 } 882 883 void CodeGenFunction::EmitOMPPrivateClause( 884 const OMPExecutableDirective &D, 885 CodeGenFunction::OMPPrivateScope &PrivateScope) { 886 if (!HaveInsertPoint()) 887 return; 888 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 889 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 890 auto IRef = C->varlist_begin(); 891 for (const Expr *IInit : C->private_copies()) { 892 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 893 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 894 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 895 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 896 // Emit private VarDecl with copy init. 897 EmitDecl(*VD); 898 return GetAddrOfLocalVar(VD); 899 }); 900 assert(IsRegistered && "private var already registered as private"); 901 // Silence the warning about unused variable. 902 (void)IsRegistered; 903 } 904 ++IRef; 905 } 906 } 907 } 908 909 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 910 if (!HaveInsertPoint()) 911 return false; 912 // threadprivate_var1 = master_threadprivate_var1; 913 // operator=(threadprivate_var2, master_threadprivate_var2); 914 // ... 915 // __kmpc_barrier(&loc, global_tid); 916 llvm::DenseSet<const VarDecl *> CopiedVars; 917 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 918 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 919 auto IRef = C->varlist_begin(); 920 auto ISrcRef = C->source_exprs().begin(); 921 auto IDestRef = C->destination_exprs().begin(); 922 for (const Expr *AssignOp : C->assignment_ops()) { 923 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 924 QualType Type = VD->getType(); 925 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 926 // Get the address of the master variable. If we are emitting code with 927 // TLS support, the address is passed from the master as field in the 928 // captured declaration. 929 Address MasterAddr = Address::invalid(); 930 if (getLangOpts().OpenMPUseTLS && 931 getContext().getTargetInfo().isTLSSupported()) { 932 assert(CapturedStmtInfo->lookup(VD) && 933 "Copyin threadprivates should have been captured!"); 934 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 935 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 936 MasterAddr = EmitLValue(&DRE).getAddress(*this); 937 LocalDeclMap.erase(VD); 938 } else { 939 MasterAddr = 940 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 941 : CGM.GetAddrOfGlobal(VD), 942 getContext().getDeclAlign(VD)); 943 } 944 // Get the address of the threadprivate variable. 945 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 946 if (CopiedVars.size() == 1) { 947 // At first check if current thread is a master thread. If it is, no 948 // need to copy data. 949 CopyBegin = createBasicBlock("copyin.not.master"); 950 CopyEnd = createBasicBlock("copyin.not.master.end"); 951 Builder.CreateCondBr( 952 Builder.CreateICmpNE( 953 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 954 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 955 CGM.IntPtrTy)), 956 CopyBegin, CopyEnd); 957 EmitBlock(CopyBegin); 958 } 959 const auto *SrcVD = 960 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 961 const auto *DestVD = 962 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 963 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 964 } 965 ++IRef; 966 ++ISrcRef; 967 ++IDestRef; 968 } 969 } 970 if (CopyEnd) { 971 // Exit out of copying procedure for non-master thread. 972 EmitBlock(CopyEnd, /*IsFinished=*/true); 973 return true; 974 } 975 return false; 976 } 977 978 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 979 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 980 if (!HaveInsertPoint()) 981 return false; 982 bool HasAtLeastOneLastprivate = false; 983 llvm::DenseSet<const VarDecl *> SIMDLCVs; 984 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 985 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 986 for (const Expr *C : LoopDirective->counters()) { 987 SIMDLCVs.insert( 988 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 989 } 990 } 991 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 992 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 993 HasAtLeastOneLastprivate = true; 994 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 995 !getLangOpts().OpenMPSimd) 996 break; 997 auto IRef = C->varlist_begin(); 998 auto IDestRef = C->destination_exprs().begin(); 999 for (const Expr *IInit : C->private_copies()) { 1000 // Keep the address of the original variable for future update at the end 1001 // of the loop. 1002 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1003 // Taskloops do not require additional initialization, it is done in 1004 // runtime support library. 1005 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1006 const auto *DestVD = 1007 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1008 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1009 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1010 /*RefersToEnclosingVariableOrCapture=*/ 1011 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1012 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1013 return EmitLValue(&DRE).getAddress(*this); 1014 }); 1015 // Check if the variable is also a firstprivate: in this case IInit is 1016 // not generated. Initialization of this variable will happen in codegen 1017 // for 'firstprivate' clause. 1018 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1019 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1020 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 1021 // Emit private VarDecl with copy init. 1022 EmitDecl(*VD); 1023 return GetAddrOfLocalVar(VD); 1024 }); 1025 assert(IsRegistered && 1026 "lastprivate var already registered as private"); 1027 (void)IsRegistered; 1028 } 1029 } 1030 ++IRef; 1031 ++IDestRef; 1032 } 1033 } 1034 return HasAtLeastOneLastprivate; 1035 } 1036 1037 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1038 const OMPExecutableDirective &D, bool NoFinals, 1039 llvm::Value *IsLastIterCond) { 1040 if (!HaveInsertPoint()) 1041 return; 1042 // Emit following code: 1043 // if (<IsLastIterCond>) { 1044 // orig_var1 = private_orig_var1; 1045 // ... 1046 // orig_varn = private_orig_varn; 1047 // } 1048 llvm::BasicBlock *ThenBB = nullptr; 1049 llvm::BasicBlock *DoneBB = nullptr; 1050 if (IsLastIterCond) { 1051 // Emit implicit barrier if at least one lastprivate conditional is found 1052 // and this is not a simd mode. 1053 if (!getLangOpts().OpenMPSimd && 1054 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1055 [](const OMPLastprivateClause *C) { 1056 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1057 })) { 1058 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1059 OMPD_unknown, 1060 /*EmitChecks=*/false, 1061 /*ForceSimpleCall=*/true); 1062 } 1063 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1064 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1065 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1066 EmitBlock(ThenBB); 1067 } 1068 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1069 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1070 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1071 auto IC = LoopDirective->counters().begin(); 1072 for (const Expr *F : LoopDirective->finals()) { 1073 const auto *D = 1074 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1075 if (NoFinals) 1076 AlreadyEmittedVars.insert(D); 1077 else 1078 LoopCountersAndUpdates[D] = F; 1079 ++IC; 1080 } 1081 } 1082 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1083 auto IRef = C->varlist_begin(); 1084 auto ISrcRef = C->source_exprs().begin(); 1085 auto IDestRef = C->destination_exprs().begin(); 1086 for (const Expr *AssignOp : C->assignment_ops()) { 1087 const auto *PrivateVD = 1088 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1089 QualType Type = PrivateVD->getType(); 1090 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1091 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1092 // If lastprivate variable is a loop control variable for loop-based 1093 // directive, update its value before copyin back to original 1094 // variable. 1095 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1096 EmitIgnoredExpr(FinalExpr); 1097 const auto *SrcVD = 1098 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1099 const auto *DestVD = 1100 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1101 // Get the address of the private variable. 1102 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1103 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1104 PrivateAddr = 1105 Address(Builder.CreateLoad(PrivateAddr), 1106 getNaturalTypeAlignment(RefTy->getPointeeType())); 1107 // Store the last value to the private copy in the last iteration. 1108 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1109 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1110 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1111 (*IRef)->getExprLoc()); 1112 // Get the address of the original variable. 1113 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1114 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1115 } 1116 ++IRef; 1117 ++ISrcRef; 1118 ++IDestRef; 1119 } 1120 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1121 EmitIgnoredExpr(PostUpdate); 1122 } 1123 if (IsLastIterCond) 1124 EmitBlock(DoneBB, /*IsFinished=*/true); 1125 } 1126 1127 void CodeGenFunction::EmitOMPReductionClauseInit( 1128 const OMPExecutableDirective &D, 1129 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1130 if (!HaveInsertPoint()) 1131 return; 1132 SmallVector<const Expr *, 4> Shareds; 1133 SmallVector<const Expr *, 4> Privates; 1134 SmallVector<const Expr *, 4> ReductionOps; 1135 SmallVector<const Expr *, 4> LHSs; 1136 SmallVector<const Expr *, 4> RHSs; 1137 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1138 auto IPriv = C->privates().begin(); 1139 auto IRed = C->reduction_ops().begin(); 1140 auto ILHS = C->lhs_exprs().begin(); 1141 auto IRHS = C->rhs_exprs().begin(); 1142 for (const Expr *Ref : C->varlists()) { 1143 Shareds.emplace_back(Ref); 1144 Privates.emplace_back(*IPriv); 1145 ReductionOps.emplace_back(*IRed); 1146 LHSs.emplace_back(*ILHS); 1147 RHSs.emplace_back(*IRHS); 1148 std::advance(IPriv, 1); 1149 std::advance(IRed, 1); 1150 std::advance(ILHS, 1); 1151 std::advance(IRHS, 1); 1152 } 1153 } 1154 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1155 unsigned Count = 0; 1156 auto ILHS = LHSs.begin(); 1157 auto IRHS = RHSs.begin(); 1158 auto IPriv = Privates.begin(); 1159 for (const Expr *IRef : Shareds) { 1160 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1161 // Emit private VarDecl with reduction init. 1162 RedCG.emitSharedLValue(*this, Count); 1163 RedCG.emitAggregateType(*this, Count); 1164 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1165 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1166 RedCG.getSharedLValue(Count), 1167 [&Emission](CodeGenFunction &CGF) { 1168 CGF.EmitAutoVarInit(Emission); 1169 return true; 1170 }); 1171 EmitAutoVarCleanups(Emission); 1172 Address BaseAddr = RedCG.adjustPrivateAddress( 1173 *this, Count, Emission.getAllocatedAddress()); 1174 bool IsRegistered = PrivateScope.addPrivate( 1175 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1176 assert(IsRegistered && "private var already registered as private"); 1177 // Silence the warning about unused variable. 1178 (void)IsRegistered; 1179 1180 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1181 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1182 QualType Type = PrivateVD->getType(); 1183 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1184 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1185 // Store the address of the original variable associated with the LHS 1186 // implicit variable. 1187 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1188 return RedCG.getSharedLValue(Count).getAddress(*this); 1189 }); 1190 PrivateScope.addPrivate( 1191 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1192 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1193 isa<ArraySubscriptExpr>(IRef)) { 1194 // Store the address of the original variable associated with the LHS 1195 // implicit variable. 1196 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1197 return RedCG.getSharedLValue(Count).getAddress(*this); 1198 }); 1199 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1200 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1201 ConvertTypeForMem(RHSVD->getType()), 1202 "rhs.begin"); 1203 }); 1204 } else { 1205 QualType Type = PrivateVD->getType(); 1206 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1207 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1208 // Store the address of the original variable associated with the LHS 1209 // implicit variable. 1210 if (IsArray) { 1211 OriginalAddr = Builder.CreateElementBitCast( 1212 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1213 } 1214 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1215 PrivateScope.addPrivate( 1216 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1217 return IsArray 1218 ? Builder.CreateElementBitCast( 1219 GetAddrOfLocalVar(PrivateVD), 1220 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1221 : GetAddrOfLocalVar(PrivateVD); 1222 }); 1223 } 1224 ++ILHS; 1225 ++IRHS; 1226 ++IPriv; 1227 ++Count; 1228 } 1229 } 1230 1231 void CodeGenFunction::EmitOMPReductionClauseFinal( 1232 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1233 if (!HaveInsertPoint()) 1234 return; 1235 llvm::SmallVector<const Expr *, 8> Privates; 1236 llvm::SmallVector<const Expr *, 8> LHSExprs; 1237 llvm::SmallVector<const Expr *, 8> RHSExprs; 1238 llvm::SmallVector<const Expr *, 8> ReductionOps; 1239 bool HasAtLeastOneReduction = false; 1240 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1241 HasAtLeastOneReduction = true; 1242 Privates.append(C->privates().begin(), C->privates().end()); 1243 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1244 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1245 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1246 } 1247 if (HasAtLeastOneReduction) { 1248 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1249 isOpenMPParallelDirective(D.getDirectiveKind()) || 1250 ReductionKind == OMPD_simd; 1251 bool SimpleReduction = ReductionKind == OMPD_simd; 1252 // Emit nowait reduction if nowait clause is present or directive is a 1253 // parallel directive (it always has implicit barrier). 1254 CGM.getOpenMPRuntime().emitReduction( 1255 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1256 {WithNowait, SimpleReduction, ReductionKind}); 1257 } 1258 } 1259 1260 static void emitPostUpdateForReductionClause( 1261 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1262 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1263 if (!CGF.HaveInsertPoint()) 1264 return; 1265 llvm::BasicBlock *DoneBB = nullptr; 1266 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1267 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1268 if (!DoneBB) { 1269 if (llvm::Value *Cond = CondGen(CGF)) { 1270 // If the first post-update expression is found, emit conditional 1271 // block if it was requested. 1272 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1273 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1274 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1275 CGF.EmitBlock(ThenBB); 1276 } 1277 } 1278 CGF.EmitIgnoredExpr(PostUpdate); 1279 } 1280 } 1281 if (DoneBB) 1282 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1283 } 1284 1285 namespace { 1286 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1287 /// parallel function. This is necessary for combined constructs such as 1288 /// 'distribute parallel for' 1289 typedef llvm::function_ref<void(CodeGenFunction &, 1290 const OMPExecutableDirective &, 1291 llvm::SmallVectorImpl<llvm::Value *> &)> 1292 CodeGenBoundParametersTy; 1293 } // anonymous namespace 1294 1295 static void emitCommonOMPParallelDirective( 1296 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1297 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1298 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1299 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1300 llvm::Function *OutlinedFn = 1301 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1302 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1303 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1304 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1305 llvm::Value *NumThreads = 1306 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1307 /*IgnoreResultAssign=*/true); 1308 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1309 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1310 } 1311 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1312 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1313 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1314 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1315 } 1316 const Expr *IfCond = nullptr; 1317 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1318 if (C->getNameModifier() == OMPD_unknown || 1319 C->getNameModifier() == OMPD_parallel) { 1320 IfCond = C->getCondition(); 1321 break; 1322 } 1323 } 1324 1325 OMPParallelScope Scope(CGF, S); 1326 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1327 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1328 // lower and upper bounds with the pragma 'for' chunking mechanism. 1329 // The following lambda takes care of appending the lower and upper bound 1330 // parameters when necessary 1331 CodeGenBoundParameters(CGF, S, CapturedVars); 1332 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1333 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1334 CapturedVars, IfCond); 1335 } 1336 1337 static void emitEmptyBoundParameters(CodeGenFunction &, 1338 const OMPExecutableDirective &, 1339 llvm::SmallVectorImpl<llvm::Value *> &) {} 1340 1341 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1342 1343 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 1344 // Check if we have any if clause associated with the directive. 1345 llvm::Value *IfCond = nullptr; 1346 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1347 IfCond = EmitScalarExpr(C->getCondition(), 1348 /*IgnoreResultAssign=*/true); 1349 1350 llvm::Value *NumThreads = nullptr; 1351 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1352 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1353 /*IgnoreResultAssign=*/true); 1354 1355 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1356 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1357 ProcBind = ProcBindClause->getProcBindKind(); 1358 1359 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1360 1361 // The cleanup callback that finalizes all variabels at the given location, 1362 // thus calls destructors etc. 1363 auto FiniCB = [this](InsertPointTy IP) { 1364 CGBuilderTy::InsertPointGuard IPG(Builder); 1365 assert(IP.getBlock()->end() != IP.getPoint() && 1366 "OpenMP IR Builder should cause terminated block!"); 1367 llvm::BasicBlock *IPBB = IP.getBlock(); 1368 llvm::BasicBlock *DestBB = IPBB->splitBasicBlock(IP.getPoint()); 1369 IPBB->getTerminator()->eraseFromParent(); 1370 Builder.SetInsertPoint(IPBB); 1371 CodeGenFunction::JumpDest Dest = getJumpDestInCurrentScope(DestBB); 1372 EmitBranchThroughCleanup(Dest); 1373 }; 1374 1375 // Privatization callback that performs appropriate action for 1376 // shared/private/firstprivate/lastprivate/copyin/... variables. 1377 // 1378 // TODO: This defaults to shared right now. 1379 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1380 llvm::Value &Val, llvm::Value *&ReplVal) { 1381 // The next line is appropriate only for variables (Val) with the 1382 // data-sharing attribute "shared". 1383 ReplVal = &Val; 1384 1385 return CodeGenIP; 1386 }; 1387 1388 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1389 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1390 1391 auto BodyGenCB = [ParallelRegionBodyStmt, 1392 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1393 llvm::BasicBlock &ContinuationBB) { 1394 auto OldAllocaIP = AllocaInsertPt; 1395 AllocaInsertPt = &*AllocaIP.getPoint(); 1396 1397 auto OldReturnBlock = ReturnBlock; 1398 ReturnBlock = getJumpDestInCurrentScope(&ContinuationBB); 1399 1400 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1401 CodeGenIPBB->splitBasicBlock(CodeGenIP.getPoint()); 1402 llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator(); 1403 CodeGenIPBBTI->removeFromParent(); 1404 1405 Builder.SetInsertPoint(CodeGenIPBB); 1406 1407 EmitStmt(ParallelRegionBodyStmt); 1408 1409 Builder.Insert(CodeGenIPBBTI); 1410 1411 AllocaInsertPt = OldAllocaIP; 1412 ReturnBlock = OldReturnBlock; 1413 }; 1414 1415 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1416 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1417 Builder.restoreIP(OMPBuilder->CreateParallel(Builder, BodyGenCB, PrivCB, 1418 FiniCB, IfCond, NumThreads, 1419 ProcBind, S.hasCancel())); 1420 return; 1421 } 1422 1423 // Emit parallel region as a standalone region. 1424 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1425 Action.Enter(CGF); 1426 OMPPrivateScope PrivateScope(CGF); 1427 bool Copyins = CGF.EmitOMPCopyinClause(S); 1428 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1429 if (Copyins) { 1430 // Emit implicit barrier to synchronize threads and avoid data races on 1431 // propagation master's thread values of threadprivate variables to local 1432 // instances of that variables of all other implicit threads. 1433 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1434 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1435 /*ForceSimpleCall=*/true); 1436 } 1437 CGF.EmitOMPPrivateClause(S, PrivateScope); 1438 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1439 (void)PrivateScope.Privatize(); 1440 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1441 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1442 }; 1443 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1444 emitEmptyBoundParameters); 1445 emitPostUpdateForReductionClause(*this, S, 1446 [](CodeGenFunction &) { return nullptr; }); 1447 } 1448 1449 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1450 int MaxLevel, int Level = 0) { 1451 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1452 const Stmt *SimplifiedS = S->IgnoreContainers(); 1453 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1454 PrettyStackTraceLoc CrashInfo( 1455 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1456 "LLVM IR generation of compound statement ('{}')"); 1457 1458 // Keep track of the current cleanup stack depth, including debug scopes. 1459 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1460 for (const Stmt *CurStmt : CS->body()) 1461 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1462 return; 1463 } 1464 if (SimplifiedS == NextLoop) { 1465 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1466 S = For->getBody(); 1467 } else { 1468 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1469 "Expected canonical for loop or range-based for loop."); 1470 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1471 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1472 S = CXXFor->getBody(); 1473 } 1474 if (Level + 1 < MaxLevel) { 1475 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1476 S, /*TryImperfectlyNestedLoops=*/true); 1477 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1478 return; 1479 } 1480 } 1481 CGF.EmitStmt(S); 1482 } 1483 1484 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1485 JumpDest LoopExit) { 1486 RunCleanupsScope BodyScope(*this); 1487 // Update counters values on current iteration. 1488 for (const Expr *UE : D.updates()) 1489 EmitIgnoredExpr(UE); 1490 // Update the linear variables. 1491 // In distribute directives only loop counters may be marked as linear, no 1492 // need to generate the code for them. 1493 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1494 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1495 for (const Expr *UE : C->updates()) 1496 EmitIgnoredExpr(UE); 1497 } 1498 } 1499 1500 // On a continue in the body, jump to the end. 1501 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1502 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1503 for (const Expr *E : D.finals_conditions()) { 1504 if (!E) 1505 continue; 1506 // Check that loop counter in non-rectangular nest fits into the iteration 1507 // space. 1508 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1509 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1510 getProfileCount(D.getBody())); 1511 EmitBlock(NextBB); 1512 } 1513 // Emit loop variables for C++ range loops. 1514 const Stmt *Body = 1515 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1516 // Emit loop body. 1517 emitBody(*this, Body, 1518 OMPLoopDirective::tryToFindNextInnerLoop( 1519 Body, /*TryImperfectlyNestedLoops=*/true), 1520 D.getCollapsedNumber()); 1521 1522 // The end (updates/cleanups). 1523 EmitBlock(Continue.getBlock()); 1524 BreakContinueStack.pop_back(); 1525 } 1526 1527 void CodeGenFunction::EmitOMPInnerLoop( 1528 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1529 const Expr *IncExpr, 1530 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1531 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1532 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1533 1534 // Start the loop with a block that tests the condition. 1535 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1536 EmitBlock(CondBlock); 1537 const SourceRange R = S.getSourceRange(); 1538 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1539 SourceLocToDebugLoc(R.getEnd())); 1540 1541 // If there are any cleanups between here and the loop-exit scope, 1542 // create a block to stage a loop exit along. 1543 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1544 if (RequiresCleanup) 1545 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1546 1547 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1548 1549 // Emit condition. 1550 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1551 if (ExitBlock != LoopExit.getBlock()) { 1552 EmitBlock(ExitBlock); 1553 EmitBranchThroughCleanup(LoopExit); 1554 } 1555 1556 EmitBlock(LoopBody); 1557 incrementProfileCounter(&S); 1558 1559 // Create a block for the increment. 1560 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1561 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1562 1563 BodyGen(*this); 1564 1565 // Emit "IV = IV + 1" and a back-edge to the condition block. 1566 EmitBlock(Continue.getBlock()); 1567 EmitIgnoredExpr(IncExpr); 1568 PostIncGen(*this); 1569 BreakContinueStack.pop_back(); 1570 EmitBranch(CondBlock); 1571 LoopStack.pop(); 1572 // Emit the fall-through block. 1573 EmitBlock(LoopExit.getBlock()); 1574 } 1575 1576 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1577 if (!HaveInsertPoint()) 1578 return false; 1579 // Emit inits for the linear variables. 1580 bool HasLinears = false; 1581 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1582 for (const Expr *Init : C->inits()) { 1583 HasLinears = true; 1584 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1585 if (const auto *Ref = 1586 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1587 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1588 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1589 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1590 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1591 VD->getInit()->getType(), VK_LValue, 1592 VD->getInit()->getExprLoc()); 1593 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1594 VD->getType()), 1595 /*capturedByInit=*/false); 1596 EmitAutoVarCleanups(Emission); 1597 } else { 1598 EmitVarDecl(*VD); 1599 } 1600 } 1601 // Emit the linear steps for the linear clauses. 1602 // If a step is not constant, it is pre-calculated before the loop. 1603 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1604 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1605 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1606 // Emit calculation of the linear step. 1607 EmitIgnoredExpr(CS); 1608 } 1609 } 1610 return HasLinears; 1611 } 1612 1613 void CodeGenFunction::EmitOMPLinearClauseFinal( 1614 const OMPLoopDirective &D, 1615 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1616 if (!HaveInsertPoint()) 1617 return; 1618 llvm::BasicBlock *DoneBB = nullptr; 1619 // Emit the final values of the linear variables. 1620 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1621 auto IC = C->varlist_begin(); 1622 for (const Expr *F : C->finals()) { 1623 if (!DoneBB) { 1624 if (llvm::Value *Cond = CondGen(*this)) { 1625 // If the first post-update expression is found, emit conditional 1626 // block if it was requested. 1627 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1628 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1629 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1630 EmitBlock(ThenBB); 1631 } 1632 } 1633 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1634 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1635 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1636 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1637 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1638 CodeGenFunction::OMPPrivateScope VarScope(*this); 1639 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1640 (void)VarScope.Privatize(); 1641 EmitIgnoredExpr(F); 1642 ++IC; 1643 } 1644 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1645 EmitIgnoredExpr(PostUpdate); 1646 } 1647 if (DoneBB) 1648 EmitBlock(DoneBB, /*IsFinished=*/true); 1649 } 1650 1651 static void emitAlignedClause(CodeGenFunction &CGF, 1652 const OMPExecutableDirective &D) { 1653 if (!CGF.HaveInsertPoint()) 1654 return; 1655 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1656 llvm::APInt ClauseAlignment(64, 0); 1657 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1658 auto *AlignmentCI = 1659 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1660 ClauseAlignment = AlignmentCI->getValue(); 1661 } 1662 for (const Expr *E : Clause->varlists()) { 1663 llvm::APInt Alignment(ClauseAlignment); 1664 if (Alignment == 0) { 1665 // OpenMP [2.8.1, Description] 1666 // If no optional parameter is specified, implementation-defined default 1667 // alignments for SIMD instructions on the target platforms are assumed. 1668 Alignment = 1669 CGF.getContext() 1670 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1671 E->getType()->getPointeeType())) 1672 .getQuantity(); 1673 } 1674 assert((Alignment == 0 || Alignment.isPowerOf2()) && 1675 "alignment is not power of 2"); 1676 if (Alignment != 0) { 1677 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1678 CGF.EmitAlignmentAssumption( 1679 PtrValue, E, /*No second loc needed*/ SourceLocation(), 1680 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 1681 } 1682 } 1683 } 1684 } 1685 1686 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1687 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1688 if (!HaveInsertPoint()) 1689 return; 1690 auto I = S.private_counters().begin(); 1691 for (const Expr *E : S.counters()) { 1692 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1693 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1694 // Emit var without initialization. 1695 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1696 EmitAutoVarCleanups(VarEmission); 1697 LocalDeclMap.erase(PrivateVD); 1698 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1699 return VarEmission.getAllocatedAddress(); 1700 }); 1701 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1702 VD->hasGlobalStorage()) { 1703 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1704 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1705 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1706 E->getType(), VK_LValue, E->getExprLoc()); 1707 return EmitLValue(&DRE).getAddress(*this); 1708 }); 1709 } else { 1710 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1711 return VarEmission.getAllocatedAddress(); 1712 }); 1713 } 1714 ++I; 1715 } 1716 // Privatize extra loop counters used in loops for ordered(n) clauses. 1717 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1718 if (!C->getNumForLoops()) 1719 continue; 1720 for (unsigned I = S.getCollapsedNumber(), 1721 E = C->getLoopNumIterations().size(); 1722 I < E; ++I) { 1723 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1724 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1725 // Override only those variables that can be captured to avoid re-emission 1726 // of the variables declared within the loops. 1727 if (DRE->refersToEnclosingVariableOrCapture()) { 1728 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1729 return CreateMemTemp(DRE->getType(), VD->getName()); 1730 }); 1731 } 1732 } 1733 } 1734 } 1735 1736 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1737 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1738 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1739 if (!CGF.HaveInsertPoint()) 1740 return; 1741 { 1742 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1743 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1744 (void)PreCondScope.Privatize(); 1745 // Get initial values of real counters. 1746 for (const Expr *I : S.inits()) { 1747 CGF.EmitIgnoredExpr(I); 1748 } 1749 } 1750 // Create temp loop control variables with their init values to support 1751 // non-rectangular loops. 1752 CodeGenFunction::OMPMapVars PreCondVars; 1753 for (const Expr * E: S.dependent_counters()) { 1754 if (!E) 1755 continue; 1756 assert(!E->getType().getNonReferenceType()->isRecordType() && 1757 "dependent counter must not be an iterator."); 1758 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1759 Address CounterAddr = 1760 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 1761 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 1762 } 1763 (void)PreCondVars.apply(CGF); 1764 for (const Expr *E : S.dependent_inits()) { 1765 if (!E) 1766 continue; 1767 CGF.EmitIgnoredExpr(E); 1768 } 1769 // Check that loop is executed at least one time. 1770 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1771 PreCondVars.restore(CGF); 1772 } 1773 1774 void CodeGenFunction::EmitOMPLinearClause( 1775 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1776 if (!HaveInsertPoint()) 1777 return; 1778 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1779 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1780 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1781 for (const Expr *C : LoopDirective->counters()) { 1782 SIMDLCVs.insert( 1783 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1784 } 1785 } 1786 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1787 auto CurPrivate = C->privates().begin(); 1788 for (const Expr *E : C->varlists()) { 1789 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1790 const auto *PrivateVD = 1791 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1792 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1793 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1794 // Emit private VarDecl with copy init. 1795 EmitVarDecl(*PrivateVD); 1796 return GetAddrOfLocalVar(PrivateVD); 1797 }); 1798 assert(IsRegistered && "linear var already registered as private"); 1799 // Silence the warning about unused variable. 1800 (void)IsRegistered; 1801 } else { 1802 EmitVarDecl(*PrivateVD); 1803 } 1804 ++CurPrivate; 1805 } 1806 } 1807 } 1808 1809 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1810 const OMPExecutableDirective &D, 1811 bool IsMonotonic) { 1812 if (!CGF.HaveInsertPoint()) 1813 return; 1814 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1815 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1816 /*ignoreResult=*/true); 1817 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1818 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1819 // In presence of finite 'safelen', it may be unsafe to mark all 1820 // the memory instructions parallel, because loop-carried 1821 // dependences of 'safelen' iterations are possible. 1822 if (!IsMonotonic) 1823 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1824 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1825 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1826 /*ignoreResult=*/true); 1827 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1828 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1829 // In presence of finite 'safelen', it may be unsafe to mark all 1830 // the memory instructions parallel, because loop-carried 1831 // dependences of 'safelen' iterations are possible. 1832 CGF.LoopStack.setParallel(/*Enable=*/false); 1833 } 1834 } 1835 1836 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1837 bool IsMonotonic) { 1838 // Walk clauses and process safelen/lastprivate. 1839 LoopStack.setParallel(!IsMonotonic); 1840 LoopStack.setVectorizeEnable(); 1841 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1842 } 1843 1844 void CodeGenFunction::EmitOMPSimdFinal( 1845 const OMPLoopDirective &D, 1846 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1847 if (!HaveInsertPoint()) 1848 return; 1849 llvm::BasicBlock *DoneBB = nullptr; 1850 auto IC = D.counters().begin(); 1851 auto IPC = D.private_counters().begin(); 1852 for (const Expr *F : D.finals()) { 1853 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1854 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1855 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1856 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1857 OrigVD->hasGlobalStorage() || CED) { 1858 if (!DoneBB) { 1859 if (llvm::Value *Cond = CondGen(*this)) { 1860 // If the first post-update expression is found, emit conditional 1861 // block if it was requested. 1862 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1863 DoneBB = createBasicBlock(".omp.final.done"); 1864 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1865 EmitBlock(ThenBB); 1866 } 1867 } 1868 Address OrigAddr = Address::invalid(); 1869 if (CED) { 1870 OrigAddr = 1871 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 1872 } else { 1873 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1874 /*RefersToEnclosingVariableOrCapture=*/false, 1875 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1876 OrigAddr = EmitLValue(&DRE).getAddress(*this); 1877 } 1878 OMPPrivateScope VarScope(*this); 1879 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1880 (void)VarScope.Privatize(); 1881 EmitIgnoredExpr(F); 1882 } 1883 ++IC; 1884 ++IPC; 1885 } 1886 if (DoneBB) 1887 EmitBlock(DoneBB, /*IsFinished=*/true); 1888 } 1889 1890 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1891 const OMPLoopDirective &S, 1892 CodeGenFunction::JumpDest LoopExit) { 1893 CGF.CGM.getOpenMPRuntime().initLastprivateConditionalCounter(CGF, S); 1894 CGF.EmitOMPLoopBody(S, LoopExit); 1895 CGF.EmitStopPoint(&S); 1896 } 1897 1898 /// Emit a helper variable and return corresponding lvalue. 1899 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1900 const DeclRefExpr *Helper) { 1901 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1902 CGF.EmitVarDecl(*VDecl); 1903 return CGF.EmitLValue(Helper); 1904 } 1905 1906 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 1907 const RegionCodeGenTy &SimdInitGen, 1908 const RegionCodeGenTy &BodyCodeGen) { 1909 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 1910 PrePostActionTy &) { 1911 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 1912 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1913 SimdInitGen(CGF); 1914 1915 BodyCodeGen(CGF); 1916 }; 1917 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 1918 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1919 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 1920 1921 BodyCodeGen(CGF); 1922 }; 1923 const Expr *IfCond = nullptr; 1924 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1925 if (CGF.getLangOpts().OpenMP >= 50 && 1926 (C->getNameModifier() == OMPD_unknown || 1927 C->getNameModifier() == OMPD_simd)) { 1928 IfCond = C->getCondition(); 1929 break; 1930 } 1931 } 1932 if (IfCond) { 1933 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 1934 } else { 1935 RegionCodeGenTy ThenRCG(ThenGen); 1936 ThenRCG(CGF); 1937 } 1938 } 1939 1940 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1941 PrePostActionTy &Action) { 1942 Action.Enter(CGF); 1943 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1944 "Expected simd directive"); 1945 OMPLoopScope PreInitScope(CGF, S); 1946 // if (PreCond) { 1947 // for (IV in 0..LastIteration) BODY; 1948 // <Final counter/linear vars updates>; 1949 // } 1950 // 1951 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1952 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1953 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1954 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1955 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1956 } 1957 1958 // Emit: if (PreCond) - begin. 1959 // If the condition constant folds and can be elided, avoid emitting the 1960 // whole loop. 1961 bool CondConstant; 1962 llvm::BasicBlock *ContBlock = nullptr; 1963 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1964 if (!CondConstant) 1965 return; 1966 } else { 1967 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1968 ContBlock = CGF.createBasicBlock("simd.if.end"); 1969 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1970 CGF.getProfileCount(&S)); 1971 CGF.EmitBlock(ThenBlock); 1972 CGF.incrementProfileCounter(&S); 1973 } 1974 1975 // Emit the loop iteration variable. 1976 const Expr *IVExpr = S.getIterationVariable(); 1977 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1978 CGF.EmitVarDecl(*IVDecl); 1979 CGF.EmitIgnoredExpr(S.getInit()); 1980 1981 // Emit the iterations count variable. 1982 // If it is not a variable, Sema decided to calculate iterations count on 1983 // each iteration (e.g., it is foldable into a constant). 1984 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1985 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1986 // Emit calculation of the iterations count. 1987 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1988 } 1989 1990 emitAlignedClause(CGF, S); 1991 (void)CGF.EmitOMPLinearClauseInit(S); 1992 { 1993 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1994 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1995 CGF.EmitOMPLinearClause(S, LoopScope); 1996 CGF.EmitOMPPrivateClause(S, LoopScope); 1997 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1998 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 1999 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2000 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2001 (void)LoopScope.Privatize(); 2002 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2003 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2004 2005 emitCommonSimdLoop( 2006 CGF, S, 2007 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2008 CGF.EmitOMPSimdInit(S); 2009 }, 2010 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2011 CGF.EmitOMPInnerLoop( 2012 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2013 [&S](CodeGenFunction &CGF) { 2014 CGF.CGM.getOpenMPRuntime().initLastprivateConditionalCounter( 2015 CGF, S); 2016 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 2017 CGF.EmitStopPoint(&S); 2018 }, 2019 [](CodeGenFunction &) {}); 2020 }); 2021 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2022 // Emit final copy of the lastprivate variables at the end of loops. 2023 if (HasLastprivateClause) 2024 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2025 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2026 emitPostUpdateForReductionClause(CGF, S, 2027 [](CodeGenFunction &) { return nullptr; }); 2028 } 2029 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2030 // Emit: if (PreCond) - end. 2031 if (ContBlock) { 2032 CGF.EmitBranch(ContBlock); 2033 CGF.EmitBlock(ContBlock, true); 2034 } 2035 } 2036 2037 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2038 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2039 emitOMPSimdRegion(CGF, S, Action); 2040 }; 2041 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2042 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2043 } 2044 2045 void CodeGenFunction::EmitOMPOuterLoop( 2046 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2047 CodeGenFunction::OMPPrivateScope &LoopScope, 2048 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2049 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2050 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2051 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2052 2053 const Expr *IVExpr = S.getIterationVariable(); 2054 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2055 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2056 2057 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2058 2059 // Start the loop with a block that tests the condition. 2060 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2061 EmitBlock(CondBlock); 2062 const SourceRange R = S.getSourceRange(); 2063 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2064 SourceLocToDebugLoc(R.getEnd())); 2065 2066 llvm::Value *BoolCondVal = nullptr; 2067 if (!DynamicOrOrdered) { 2068 // UB = min(UB, GlobalUB) or 2069 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2070 // 'distribute parallel for') 2071 EmitIgnoredExpr(LoopArgs.EUB); 2072 // IV = LB 2073 EmitIgnoredExpr(LoopArgs.Init); 2074 // IV < UB 2075 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2076 } else { 2077 BoolCondVal = 2078 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2079 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2080 } 2081 2082 // If there are any cleanups between here and the loop-exit scope, 2083 // create a block to stage a loop exit along. 2084 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2085 if (LoopScope.requiresCleanups()) 2086 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2087 2088 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2089 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2090 if (ExitBlock != LoopExit.getBlock()) { 2091 EmitBlock(ExitBlock); 2092 EmitBranchThroughCleanup(LoopExit); 2093 } 2094 EmitBlock(LoopBody); 2095 2096 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2097 // LB for loop condition and emitted it above). 2098 if (DynamicOrOrdered) 2099 EmitIgnoredExpr(LoopArgs.Init); 2100 2101 // Create a block for the increment. 2102 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2103 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2104 2105 emitCommonSimdLoop( 2106 *this, S, 2107 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2108 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2109 // with dynamic/guided scheduling and without ordered clause. 2110 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 2111 CGF.LoopStack.setParallel(!IsMonotonic); 2112 else 2113 CGF.EmitOMPSimdInit(S, IsMonotonic); 2114 }, 2115 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2116 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2117 SourceLocation Loc = S.getBeginLoc(); 2118 // when 'distribute' is not combined with a 'for': 2119 // while (idx <= UB) { BODY; ++idx; } 2120 // when 'distribute' is combined with a 'for' 2121 // (e.g. 'distribute parallel for') 2122 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2123 CGF.EmitOMPInnerLoop( 2124 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2125 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2126 CodeGenLoop(CGF, S, LoopExit); 2127 }, 2128 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2129 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2130 }); 2131 }); 2132 2133 EmitBlock(Continue.getBlock()); 2134 BreakContinueStack.pop_back(); 2135 if (!DynamicOrOrdered) { 2136 // Emit "LB = LB + Stride", "UB = UB + Stride". 2137 EmitIgnoredExpr(LoopArgs.NextLB); 2138 EmitIgnoredExpr(LoopArgs.NextUB); 2139 } 2140 2141 EmitBranch(CondBlock); 2142 LoopStack.pop(); 2143 // Emit the fall-through block. 2144 EmitBlock(LoopExit.getBlock()); 2145 2146 // Tell the runtime we are done. 2147 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2148 if (!DynamicOrOrdered) 2149 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2150 S.getDirectiveKind()); 2151 }; 2152 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2153 } 2154 2155 void CodeGenFunction::EmitOMPForOuterLoop( 2156 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2157 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2158 const OMPLoopArguments &LoopArgs, 2159 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2160 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2161 2162 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2163 const bool DynamicOrOrdered = 2164 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2165 2166 assert((Ordered || 2167 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2168 LoopArgs.Chunk != nullptr)) && 2169 "static non-chunked schedule does not need outer loop"); 2170 2171 // Emit outer loop. 2172 // 2173 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2174 // When schedule(dynamic,chunk_size) is specified, the iterations are 2175 // distributed to threads in the team in chunks as the threads request them. 2176 // Each thread executes a chunk of iterations, then requests another chunk, 2177 // until no chunks remain to be distributed. Each chunk contains chunk_size 2178 // iterations, except for the last chunk to be distributed, which may have 2179 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2180 // 2181 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2182 // to threads in the team in chunks as the executing threads request them. 2183 // Each thread executes a chunk of iterations, then requests another chunk, 2184 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2185 // each chunk is proportional to the number of unassigned iterations divided 2186 // by the number of threads in the team, decreasing to 1. For a chunk_size 2187 // with value k (greater than 1), the size of each chunk is determined in the 2188 // same way, with the restriction that the chunks do not contain fewer than k 2189 // iterations (except for the last chunk to be assigned, which may have fewer 2190 // than k iterations). 2191 // 2192 // When schedule(auto) is specified, the decision regarding scheduling is 2193 // delegated to the compiler and/or runtime system. The programmer gives the 2194 // implementation the freedom to choose any possible mapping of iterations to 2195 // threads in the team. 2196 // 2197 // When schedule(runtime) is specified, the decision regarding scheduling is 2198 // deferred until run time, and the schedule and chunk size are taken from the 2199 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2200 // implementation defined 2201 // 2202 // while(__kmpc_dispatch_next(&LB, &UB)) { 2203 // idx = LB; 2204 // while (idx <= UB) { BODY; ++idx; 2205 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2206 // } // inner loop 2207 // } 2208 // 2209 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2210 // When schedule(static, chunk_size) is specified, iterations are divided into 2211 // chunks of size chunk_size, and the chunks are assigned to the threads in 2212 // the team in a round-robin fashion in the order of the thread number. 2213 // 2214 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2215 // while (idx <= UB) { BODY; ++idx; } // inner loop 2216 // LB = LB + ST; 2217 // UB = UB + ST; 2218 // } 2219 // 2220 2221 const Expr *IVExpr = S.getIterationVariable(); 2222 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2223 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2224 2225 if (DynamicOrOrdered) { 2226 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2227 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2228 llvm::Value *LBVal = DispatchBounds.first; 2229 llvm::Value *UBVal = DispatchBounds.second; 2230 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2231 LoopArgs.Chunk}; 2232 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2233 IVSigned, Ordered, DipatchRTInputValues); 2234 } else { 2235 CGOpenMPRuntime::StaticRTInput StaticInit( 2236 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2237 LoopArgs.ST, LoopArgs.Chunk); 2238 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2239 ScheduleKind, StaticInit); 2240 } 2241 2242 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2243 const unsigned IVSize, 2244 const bool IVSigned) { 2245 if (Ordered) { 2246 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2247 IVSigned); 2248 } 2249 }; 2250 2251 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2252 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2253 OuterLoopArgs.IncExpr = S.getInc(); 2254 OuterLoopArgs.Init = S.getInit(); 2255 OuterLoopArgs.Cond = S.getCond(); 2256 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2257 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2258 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2259 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2260 } 2261 2262 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2263 const unsigned IVSize, const bool IVSigned) {} 2264 2265 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2266 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2267 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2268 const CodeGenLoopTy &CodeGenLoopContent) { 2269 2270 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2271 2272 // Emit outer loop. 2273 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2274 // dynamic 2275 // 2276 2277 const Expr *IVExpr = S.getIterationVariable(); 2278 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2279 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2280 2281 CGOpenMPRuntime::StaticRTInput StaticInit( 2282 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2283 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2284 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2285 2286 // for combined 'distribute' and 'for' the increment expression of distribute 2287 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2288 Expr *IncExpr; 2289 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2290 IncExpr = S.getDistInc(); 2291 else 2292 IncExpr = S.getInc(); 2293 2294 // this routine is shared by 'omp distribute parallel for' and 2295 // 'omp distribute': select the right EUB expression depending on the 2296 // directive 2297 OMPLoopArguments OuterLoopArgs; 2298 OuterLoopArgs.LB = LoopArgs.LB; 2299 OuterLoopArgs.UB = LoopArgs.UB; 2300 OuterLoopArgs.ST = LoopArgs.ST; 2301 OuterLoopArgs.IL = LoopArgs.IL; 2302 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2303 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2304 ? S.getCombinedEnsureUpperBound() 2305 : S.getEnsureUpperBound(); 2306 OuterLoopArgs.IncExpr = IncExpr; 2307 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2308 ? S.getCombinedInit() 2309 : S.getInit(); 2310 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2311 ? S.getCombinedCond() 2312 : S.getCond(); 2313 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2314 ? S.getCombinedNextLowerBound() 2315 : S.getNextLowerBound(); 2316 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2317 ? S.getCombinedNextUpperBound() 2318 : S.getNextUpperBound(); 2319 2320 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2321 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2322 emitEmptyOrdered); 2323 } 2324 2325 static std::pair<LValue, LValue> 2326 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2327 const OMPExecutableDirective &S) { 2328 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2329 LValue LB = 2330 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2331 LValue UB = 2332 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2333 2334 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2335 // parallel for') we need to use the 'distribute' 2336 // chunk lower and upper bounds rather than the whole loop iteration 2337 // space. These are parameters to the outlined function for 'parallel' 2338 // and we copy the bounds of the previous schedule into the 2339 // the current ones. 2340 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2341 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2342 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2343 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2344 PrevLBVal = CGF.EmitScalarConversion( 2345 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2346 LS.getIterationVariable()->getType(), 2347 LS.getPrevLowerBoundVariable()->getExprLoc()); 2348 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2349 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2350 PrevUBVal = CGF.EmitScalarConversion( 2351 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2352 LS.getIterationVariable()->getType(), 2353 LS.getPrevUpperBoundVariable()->getExprLoc()); 2354 2355 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2356 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2357 2358 return {LB, UB}; 2359 } 2360 2361 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2362 /// we need to use the LB and UB expressions generated by the worksharing 2363 /// code generation support, whereas in non combined situations we would 2364 /// just emit 0 and the LastIteration expression 2365 /// This function is necessary due to the difference of the LB and UB 2366 /// types for the RT emission routines for 'for_static_init' and 2367 /// 'for_dispatch_init' 2368 static std::pair<llvm::Value *, llvm::Value *> 2369 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2370 const OMPExecutableDirective &S, 2371 Address LB, Address UB) { 2372 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2373 const Expr *IVExpr = LS.getIterationVariable(); 2374 // when implementing a dynamic schedule for a 'for' combined with a 2375 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2376 // is not normalized as each team only executes its own assigned 2377 // distribute chunk 2378 QualType IteratorTy = IVExpr->getType(); 2379 llvm::Value *LBVal = 2380 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2381 llvm::Value *UBVal = 2382 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2383 return {LBVal, UBVal}; 2384 } 2385 2386 static void emitDistributeParallelForDistributeInnerBoundParams( 2387 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2388 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2389 const auto &Dir = cast<OMPLoopDirective>(S); 2390 LValue LB = 2391 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2392 llvm::Value *LBCast = 2393 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2394 CGF.SizeTy, /*isSigned=*/false); 2395 CapturedVars.push_back(LBCast); 2396 LValue UB = 2397 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2398 2399 llvm::Value *UBCast = 2400 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2401 CGF.SizeTy, /*isSigned=*/false); 2402 CapturedVars.push_back(UBCast); 2403 } 2404 2405 static void 2406 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2407 const OMPLoopDirective &S, 2408 CodeGenFunction::JumpDest LoopExit) { 2409 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2410 PrePostActionTy &Action) { 2411 Action.Enter(CGF); 2412 bool HasCancel = false; 2413 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2414 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2415 HasCancel = D->hasCancel(); 2416 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2417 HasCancel = D->hasCancel(); 2418 else if (const auto *D = 2419 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2420 HasCancel = D->hasCancel(); 2421 } 2422 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2423 HasCancel); 2424 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2425 emitDistributeParallelForInnerBounds, 2426 emitDistributeParallelForDispatchBounds); 2427 }; 2428 2429 emitCommonOMPParallelDirective( 2430 CGF, S, 2431 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2432 CGInlinedWorksharingLoop, 2433 emitDistributeParallelForDistributeInnerBoundParams); 2434 } 2435 2436 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2437 const OMPDistributeParallelForDirective &S) { 2438 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2439 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2440 S.getDistInc()); 2441 }; 2442 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2443 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2444 } 2445 2446 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2447 const OMPDistributeParallelForSimdDirective &S) { 2448 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2449 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2450 S.getDistInc()); 2451 }; 2452 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2453 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2454 } 2455 2456 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2457 const OMPDistributeSimdDirective &S) { 2458 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2459 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2460 }; 2461 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2462 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2463 } 2464 2465 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2466 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2467 // Emit SPMD target parallel for region as a standalone region. 2468 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2469 emitOMPSimdRegion(CGF, S, Action); 2470 }; 2471 llvm::Function *Fn; 2472 llvm::Constant *Addr; 2473 // Emit target region as a standalone region. 2474 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2475 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2476 assert(Fn && Addr && "Target device function emission failed."); 2477 } 2478 2479 void CodeGenFunction::EmitOMPTargetSimdDirective( 2480 const OMPTargetSimdDirective &S) { 2481 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2482 emitOMPSimdRegion(CGF, S, Action); 2483 }; 2484 emitCommonOMPTargetDirective(*this, S, CodeGen); 2485 } 2486 2487 namespace { 2488 struct ScheduleKindModifiersTy { 2489 OpenMPScheduleClauseKind Kind; 2490 OpenMPScheduleClauseModifier M1; 2491 OpenMPScheduleClauseModifier M2; 2492 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2493 OpenMPScheduleClauseModifier M1, 2494 OpenMPScheduleClauseModifier M2) 2495 : Kind(Kind), M1(M1), M2(M2) {} 2496 }; 2497 } // namespace 2498 2499 bool CodeGenFunction::EmitOMPWorksharingLoop( 2500 const OMPLoopDirective &S, Expr *EUB, 2501 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2502 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2503 // Emit the loop iteration variable. 2504 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2505 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2506 EmitVarDecl(*IVDecl); 2507 2508 // Emit the iterations count variable. 2509 // If it is not a variable, Sema decided to calculate iterations count on each 2510 // iteration (e.g., it is foldable into a constant). 2511 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2512 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2513 // Emit calculation of the iterations count. 2514 EmitIgnoredExpr(S.getCalcLastIteration()); 2515 } 2516 2517 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2518 2519 bool HasLastprivateClause; 2520 // Check pre-condition. 2521 { 2522 OMPLoopScope PreInitScope(*this, S); 2523 // Skip the entire loop if we don't meet the precondition. 2524 // If the condition constant folds and can be elided, avoid emitting the 2525 // whole loop. 2526 bool CondConstant; 2527 llvm::BasicBlock *ContBlock = nullptr; 2528 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2529 if (!CondConstant) 2530 return false; 2531 } else { 2532 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2533 ContBlock = createBasicBlock("omp.precond.end"); 2534 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2535 getProfileCount(&S)); 2536 EmitBlock(ThenBlock); 2537 incrementProfileCounter(&S); 2538 } 2539 2540 RunCleanupsScope DoacrossCleanupScope(*this); 2541 bool Ordered = false; 2542 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2543 if (OrderedClause->getNumForLoops()) 2544 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2545 else 2546 Ordered = true; 2547 } 2548 2549 llvm::DenseSet<const Expr *> EmittedFinals; 2550 emitAlignedClause(*this, S); 2551 bool HasLinears = EmitOMPLinearClauseInit(S); 2552 // Emit helper vars inits. 2553 2554 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2555 LValue LB = Bounds.first; 2556 LValue UB = Bounds.second; 2557 LValue ST = 2558 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2559 LValue IL = 2560 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2561 2562 // Emit 'then' code. 2563 { 2564 OMPPrivateScope LoopScope(*this); 2565 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2566 // Emit implicit barrier to synchronize threads and avoid data races on 2567 // initialization of firstprivate variables and post-update of 2568 // lastprivate variables. 2569 CGM.getOpenMPRuntime().emitBarrierCall( 2570 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2571 /*ForceSimpleCall=*/true); 2572 } 2573 EmitOMPPrivateClause(S, LoopScope); 2574 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2575 *this, S, EmitLValue(S.getIterationVariable())); 2576 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2577 EmitOMPReductionClauseInit(S, LoopScope); 2578 EmitOMPPrivateLoopCounters(S, LoopScope); 2579 EmitOMPLinearClause(S, LoopScope); 2580 (void)LoopScope.Privatize(); 2581 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2582 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2583 2584 // Detect the loop schedule kind and chunk. 2585 const Expr *ChunkExpr = nullptr; 2586 OpenMPScheduleTy ScheduleKind; 2587 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2588 ScheduleKind.Schedule = C->getScheduleKind(); 2589 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2590 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2591 ChunkExpr = C->getChunkSize(); 2592 } else { 2593 // Default behaviour for schedule clause. 2594 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2595 *this, S, ScheduleKind.Schedule, ChunkExpr); 2596 } 2597 bool HasChunkSizeOne = false; 2598 llvm::Value *Chunk = nullptr; 2599 if (ChunkExpr) { 2600 Chunk = EmitScalarExpr(ChunkExpr); 2601 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2602 S.getIterationVariable()->getType(), 2603 S.getBeginLoc()); 2604 Expr::EvalResult Result; 2605 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2606 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2607 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2608 } 2609 } 2610 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2611 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2612 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2613 // If the static schedule kind is specified or if the ordered clause is 2614 // specified, and if no monotonic modifier is specified, the effect will 2615 // be as if the monotonic modifier was specified. 2616 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2617 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2618 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2619 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2620 /* Chunked */ Chunk != nullptr) || 2621 StaticChunkedOne) && 2622 !Ordered) { 2623 JumpDest LoopExit = 2624 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2625 emitCommonSimdLoop( 2626 *this, S, 2627 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2628 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2629 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2630 }, 2631 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 2632 &S, ScheduleKind, LoopExit, 2633 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2634 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2635 // When no chunk_size is specified, the iteration space is divided 2636 // into chunks that are approximately equal in size, and at most 2637 // one chunk is distributed to each thread. Note that the size of 2638 // the chunks is unspecified in this case. 2639 CGOpenMPRuntime::StaticRTInput StaticInit( 2640 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 2641 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 2642 StaticChunkedOne ? Chunk : nullptr); 2643 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2644 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 2645 StaticInit); 2646 // UB = min(UB, GlobalUB); 2647 if (!StaticChunkedOne) 2648 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 2649 // IV = LB; 2650 CGF.EmitIgnoredExpr(S.getInit()); 2651 // For unchunked static schedule generate: 2652 // 2653 // while (idx <= UB) { 2654 // BODY; 2655 // ++idx; 2656 // } 2657 // 2658 // For static schedule with chunk one: 2659 // 2660 // while (IV <= PrevUB) { 2661 // BODY; 2662 // IV += ST; 2663 // } 2664 CGF.EmitOMPInnerLoop( 2665 S, LoopScope.requiresCleanups(), 2666 StaticChunkedOne ? S.getCombinedParForInDistCond() 2667 : S.getCond(), 2668 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2669 [&S, LoopExit](CodeGenFunction &CGF) { 2670 CGF.CGM.getOpenMPRuntime() 2671 .initLastprivateConditionalCounter(CGF, S); 2672 CGF.EmitOMPLoopBody(S, LoopExit); 2673 CGF.EmitStopPoint(&S); 2674 }, 2675 [](CodeGenFunction &) {}); 2676 }); 2677 EmitBlock(LoopExit.getBlock()); 2678 // Tell the runtime we are done. 2679 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2680 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2681 S.getDirectiveKind()); 2682 }; 2683 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2684 } else { 2685 const bool IsMonotonic = 2686 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2687 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2688 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2689 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2690 // Emit the outer loop, which requests its work chunk [LB..UB] from 2691 // runtime and runs the inner loop to process it. 2692 const OMPLoopArguments LoopArguments( 2693 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 2694 IL.getAddress(*this), Chunk, EUB); 2695 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2696 LoopArguments, CGDispatchBounds); 2697 } 2698 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2699 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2700 return CGF.Builder.CreateIsNotNull( 2701 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2702 }); 2703 } 2704 EmitOMPReductionClauseFinal( 2705 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2706 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2707 : /*Parallel only*/ OMPD_parallel); 2708 // Emit post-update of the reduction variables if IsLastIter != 0. 2709 emitPostUpdateForReductionClause( 2710 *this, S, [IL, &S](CodeGenFunction &CGF) { 2711 return CGF.Builder.CreateIsNotNull( 2712 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2713 }); 2714 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2715 if (HasLastprivateClause) 2716 EmitOMPLastprivateClauseFinal( 2717 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2718 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2719 } 2720 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2721 return CGF.Builder.CreateIsNotNull( 2722 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2723 }); 2724 DoacrossCleanupScope.ForceCleanup(); 2725 // We're now done with the loop, so jump to the continuation block. 2726 if (ContBlock) { 2727 EmitBranch(ContBlock); 2728 EmitBlock(ContBlock, /*IsFinished=*/true); 2729 } 2730 } 2731 return HasLastprivateClause; 2732 } 2733 2734 /// The following two functions generate expressions for the loop lower 2735 /// and upper bounds in case of static and dynamic (dispatch) schedule 2736 /// of the associated 'for' or 'distribute' loop. 2737 static std::pair<LValue, LValue> 2738 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2739 const auto &LS = cast<OMPLoopDirective>(S); 2740 LValue LB = 2741 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2742 LValue UB = 2743 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2744 return {LB, UB}; 2745 } 2746 2747 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2748 /// consider the lower and upper bound expressions generated by the 2749 /// worksharing loop support, but we use 0 and the iteration space size as 2750 /// constants 2751 static std::pair<llvm::Value *, llvm::Value *> 2752 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2753 Address LB, Address UB) { 2754 const auto &LS = cast<OMPLoopDirective>(S); 2755 const Expr *IVExpr = LS.getIterationVariable(); 2756 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2757 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2758 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2759 return {LBVal, UBVal}; 2760 } 2761 2762 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2763 bool HasLastprivates = false; 2764 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2765 PrePostActionTy &) { 2766 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2767 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2768 emitForLoopBounds, 2769 emitDispatchForLoopBounds); 2770 }; 2771 { 2772 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2773 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2774 S.hasCancel()); 2775 } 2776 2777 // Emit an implicit barrier at the end. 2778 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2779 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2780 } 2781 2782 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2783 bool HasLastprivates = false; 2784 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2785 PrePostActionTy &) { 2786 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2787 emitForLoopBounds, 2788 emitDispatchForLoopBounds); 2789 }; 2790 { 2791 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2792 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2793 } 2794 2795 // Emit an implicit barrier at the end. 2796 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2797 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2798 } 2799 2800 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2801 const Twine &Name, 2802 llvm::Value *Init = nullptr) { 2803 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2804 if (Init) 2805 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2806 return LVal; 2807 } 2808 2809 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2810 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2811 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2812 bool HasLastprivates = false; 2813 auto &&CodeGen = [&S, CapturedStmt, CS, 2814 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2815 ASTContext &C = CGF.getContext(); 2816 QualType KmpInt32Ty = 2817 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2818 // Emit helper vars inits. 2819 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2820 CGF.Builder.getInt32(0)); 2821 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2822 ? CGF.Builder.getInt32(CS->size() - 1) 2823 : CGF.Builder.getInt32(0); 2824 LValue UB = 2825 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2826 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2827 CGF.Builder.getInt32(1)); 2828 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2829 CGF.Builder.getInt32(0)); 2830 // Loop counter. 2831 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2832 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2833 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2834 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2835 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2836 // Generate condition for loop. 2837 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2838 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2839 // Increment for loop counter. 2840 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2841 S.getBeginLoc(), true); 2842 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2843 // Iterate through all sections and emit a switch construct: 2844 // switch (IV) { 2845 // case 0: 2846 // <SectionStmt[0]>; 2847 // break; 2848 // ... 2849 // case <NumSection> - 1: 2850 // <SectionStmt[<NumSection> - 1]>; 2851 // break; 2852 // } 2853 // .omp.sections.exit: 2854 CGF.CGM.getOpenMPRuntime().initLastprivateConditionalCounter(CGF, S); 2855 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2856 llvm::SwitchInst *SwitchStmt = 2857 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2858 ExitBB, CS == nullptr ? 1 : CS->size()); 2859 if (CS) { 2860 unsigned CaseNumber = 0; 2861 for (const Stmt *SubStmt : CS->children()) { 2862 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2863 CGF.EmitBlock(CaseBB); 2864 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2865 CGF.EmitStmt(SubStmt); 2866 CGF.EmitBranch(ExitBB); 2867 ++CaseNumber; 2868 } 2869 } else { 2870 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2871 CGF.EmitBlock(CaseBB); 2872 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2873 CGF.EmitStmt(CapturedStmt); 2874 CGF.EmitBranch(ExitBB); 2875 } 2876 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2877 }; 2878 2879 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2880 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2881 // Emit implicit barrier to synchronize threads and avoid data races on 2882 // initialization of firstprivate variables and post-update of lastprivate 2883 // variables. 2884 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2885 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2886 /*ForceSimpleCall=*/true); 2887 } 2888 CGF.EmitOMPPrivateClause(S, LoopScope); 2889 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 2890 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2891 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2892 (void)LoopScope.Privatize(); 2893 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2894 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2895 2896 // Emit static non-chunked loop. 2897 OpenMPScheduleTy ScheduleKind; 2898 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2899 CGOpenMPRuntime::StaticRTInput StaticInit( 2900 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 2901 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 2902 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2903 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2904 // UB = min(UB, GlobalUB); 2905 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2906 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2907 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2908 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2909 // IV = LB; 2910 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2911 // while (idx <= UB) { BODY; ++idx; } 2912 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2913 [](CodeGenFunction &) {}); 2914 // Tell the runtime we are done. 2915 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2916 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2917 S.getDirectiveKind()); 2918 }; 2919 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2920 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2921 // Emit post-update of the reduction variables if IsLastIter != 0. 2922 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2923 return CGF.Builder.CreateIsNotNull( 2924 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2925 }); 2926 2927 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2928 if (HasLastprivates) 2929 CGF.EmitOMPLastprivateClauseFinal( 2930 S, /*NoFinals=*/false, 2931 CGF.Builder.CreateIsNotNull( 2932 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2933 }; 2934 2935 bool HasCancel = false; 2936 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2937 HasCancel = OSD->hasCancel(); 2938 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2939 HasCancel = OPSD->hasCancel(); 2940 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2941 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2942 HasCancel); 2943 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2944 // clause. Otherwise the barrier will be generated by the codegen for the 2945 // directive. 2946 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2947 // Emit implicit barrier to synchronize threads and avoid data races on 2948 // initialization of firstprivate variables. 2949 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2950 OMPD_unknown); 2951 } 2952 } 2953 2954 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2955 { 2956 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2957 EmitSections(S); 2958 } 2959 // Emit an implicit barrier at the end. 2960 if (!S.getSingleClause<OMPNowaitClause>()) { 2961 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2962 OMPD_sections); 2963 } 2964 } 2965 2966 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2967 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2968 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2969 }; 2970 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2971 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2972 S.hasCancel()); 2973 } 2974 2975 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2976 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2977 llvm::SmallVector<const Expr *, 8> DestExprs; 2978 llvm::SmallVector<const Expr *, 8> SrcExprs; 2979 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2980 // Check if there are any 'copyprivate' clauses associated with this 2981 // 'single' construct. 2982 // Build a list of copyprivate variables along with helper expressions 2983 // (<source>, <destination>, <destination>=<source> expressions) 2984 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2985 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2986 DestExprs.append(C->destination_exprs().begin(), 2987 C->destination_exprs().end()); 2988 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2989 AssignmentOps.append(C->assignment_ops().begin(), 2990 C->assignment_ops().end()); 2991 } 2992 // Emit code for 'single' region along with 'copyprivate' clauses 2993 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2994 Action.Enter(CGF); 2995 OMPPrivateScope SingleScope(CGF); 2996 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2997 CGF.EmitOMPPrivateClause(S, SingleScope); 2998 (void)SingleScope.Privatize(); 2999 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3000 }; 3001 { 3002 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3003 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3004 CopyprivateVars, DestExprs, 3005 SrcExprs, AssignmentOps); 3006 } 3007 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3008 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3009 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3010 CGM.getOpenMPRuntime().emitBarrierCall( 3011 *this, S.getBeginLoc(), 3012 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3013 } 3014 } 3015 3016 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3017 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3018 Action.Enter(CGF); 3019 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3020 }; 3021 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3022 } 3023 3024 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3025 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3026 emitMaster(*this, S); 3027 } 3028 3029 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 3030 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3031 Action.Enter(CGF); 3032 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3033 }; 3034 const Expr *Hint = nullptr; 3035 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3036 Hint = HintClause->getHint(); 3037 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3038 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 3039 S.getDirectiveName().getAsString(), 3040 CodeGen, S.getBeginLoc(), Hint); 3041 } 3042 3043 void CodeGenFunction::EmitOMPParallelForDirective( 3044 const OMPParallelForDirective &S) { 3045 // Emit directive as a combined directive that consists of two implicit 3046 // directives: 'parallel' with 'for' directive. 3047 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3048 Action.Enter(CGF); 3049 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 3050 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 3051 emitDispatchForLoopBounds); 3052 }; 3053 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 3054 emitEmptyBoundParameters); 3055 } 3056 3057 void CodeGenFunction::EmitOMPParallelForSimdDirective( 3058 const OMPParallelForSimdDirective &S) { 3059 // Emit directive as a combined directive that consists of two implicit 3060 // directives: 'parallel' with 'for' directive. 3061 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3062 Action.Enter(CGF); 3063 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 3064 emitDispatchForLoopBounds); 3065 }; 3066 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 3067 emitEmptyBoundParameters); 3068 } 3069 3070 void CodeGenFunction::EmitOMPParallelMasterDirective( 3071 const OMPParallelMasterDirective &S) { 3072 // Emit directive as a combined directive that consists of two implicit 3073 // directives: 'parallel' with 'master' directive. 3074 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3075 Action.Enter(CGF); 3076 OMPPrivateScope PrivateScope(CGF); 3077 bool Copyins = CGF.EmitOMPCopyinClause(S); 3078 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3079 if (Copyins) { 3080 // Emit implicit barrier to synchronize threads and avoid data races on 3081 // propagation master's thread values of threadprivate variables to local 3082 // instances of that variables of all other implicit threads. 3083 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3084 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3085 /*ForceSimpleCall=*/true); 3086 } 3087 CGF.EmitOMPPrivateClause(S, PrivateScope); 3088 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3089 (void)PrivateScope.Privatize(); 3090 emitMaster(CGF, S); 3091 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3092 }; 3093 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 3094 emitEmptyBoundParameters); 3095 emitPostUpdateForReductionClause(*this, S, 3096 [](CodeGenFunction &) { return nullptr; }); 3097 } 3098 3099 void CodeGenFunction::EmitOMPParallelSectionsDirective( 3100 const OMPParallelSectionsDirective &S) { 3101 // Emit directive as a combined directive that consists of two implicit 3102 // directives: 'parallel' with 'sections' directive. 3103 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3104 Action.Enter(CGF); 3105 CGF.EmitSections(S); 3106 }; 3107 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 3108 emitEmptyBoundParameters); 3109 } 3110 3111 void CodeGenFunction::EmitOMPTaskBasedDirective( 3112 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3113 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3114 OMPTaskDataTy &Data) { 3115 // Emit outlined function for task construct. 3116 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3117 auto I = CS->getCapturedDecl()->param_begin(); 3118 auto PartId = std::next(I); 3119 auto TaskT = std::next(I, 4); 3120 // Check if the task is final 3121 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3122 // If the condition constant folds and can be elided, try to avoid emitting 3123 // the condition and the dead arm of the if/else. 3124 const Expr *Cond = Clause->getCondition(); 3125 bool CondConstant; 3126 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3127 Data.Final.setInt(CondConstant); 3128 else 3129 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3130 } else { 3131 // By default the task is not final. 3132 Data.Final.setInt(/*IntVal=*/false); 3133 } 3134 // Check if the task has 'priority' clause. 3135 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3136 const Expr *Prio = Clause->getPriority(); 3137 Data.Priority.setInt(/*IntVal=*/true); 3138 Data.Priority.setPointer(EmitScalarConversion( 3139 EmitScalarExpr(Prio), Prio->getType(), 3140 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3141 Prio->getExprLoc())); 3142 } 3143 // The first function argument for tasks is a thread id, the second one is a 3144 // part id (0 for tied tasks, >=0 for untied task). 3145 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3146 // Get list of private variables. 3147 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3148 auto IRef = C->varlist_begin(); 3149 for (const Expr *IInit : C->private_copies()) { 3150 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3151 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3152 Data.PrivateVars.push_back(*IRef); 3153 Data.PrivateCopies.push_back(IInit); 3154 } 3155 ++IRef; 3156 } 3157 } 3158 EmittedAsPrivate.clear(); 3159 // Get list of firstprivate variables. 3160 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3161 auto IRef = C->varlist_begin(); 3162 auto IElemInitRef = C->inits().begin(); 3163 for (const Expr *IInit : C->private_copies()) { 3164 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3165 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3166 Data.FirstprivateVars.push_back(*IRef); 3167 Data.FirstprivateCopies.push_back(IInit); 3168 Data.FirstprivateInits.push_back(*IElemInitRef); 3169 } 3170 ++IRef; 3171 ++IElemInitRef; 3172 } 3173 } 3174 // Get list of lastprivate variables (for taskloops). 3175 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3176 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3177 auto IRef = C->varlist_begin(); 3178 auto ID = C->destination_exprs().begin(); 3179 for (const Expr *IInit : C->private_copies()) { 3180 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3181 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3182 Data.LastprivateVars.push_back(*IRef); 3183 Data.LastprivateCopies.push_back(IInit); 3184 } 3185 LastprivateDstsOrigs.insert( 3186 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3187 cast<DeclRefExpr>(*IRef)}); 3188 ++IRef; 3189 ++ID; 3190 } 3191 } 3192 SmallVector<const Expr *, 4> LHSs; 3193 SmallVector<const Expr *, 4> RHSs; 3194 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3195 auto IPriv = C->privates().begin(); 3196 auto IRed = C->reduction_ops().begin(); 3197 auto ILHS = C->lhs_exprs().begin(); 3198 auto IRHS = C->rhs_exprs().begin(); 3199 for (const Expr *Ref : C->varlists()) { 3200 Data.ReductionVars.emplace_back(Ref); 3201 Data.ReductionCopies.emplace_back(*IPriv); 3202 Data.ReductionOps.emplace_back(*IRed); 3203 LHSs.emplace_back(*ILHS); 3204 RHSs.emplace_back(*IRHS); 3205 std::advance(IPriv, 1); 3206 std::advance(IRed, 1); 3207 std::advance(ILHS, 1); 3208 std::advance(IRHS, 1); 3209 } 3210 } 3211 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3212 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3213 // Build list of dependences. 3214 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3215 for (const Expr *IRef : C->varlists()) 3216 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3217 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3218 CapturedRegion](CodeGenFunction &CGF, 3219 PrePostActionTy &Action) { 3220 // Set proper addresses for generated private copies. 3221 OMPPrivateScope Scope(CGF); 3222 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3223 !Data.LastprivateVars.empty()) { 3224 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3225 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3226 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3227 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3228 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3229 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3230 CS->getCapturedDecl()->getParam(PrivatesParam))); 3231 // Map privates. 3232 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3233 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3234 CallArgs.push_back(PrivatesPtr); 3235 for (const Expr *E : Data.PrivateVars) { 3236 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3237 Address PrivatePtr = CGF.CreateMemTemp( 3238 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3239 PrivatePtrs.emplace_back(VD, PrivatePtr); 3240 CallArgs.push_back(PrivatePtr.getPointer()); 3241 } 3242 for (const Expr *E : Data.FirstprivateVars) { 3243 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3244 Address PrivatePtr = 3245 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3246 ".firstpriv.ptr.addr"); 3247 PrivatePtrs.emplace_back(VD, PrivatePtr); 3248 CallArgs.push_back(PrivatePtr.getPointer()); 3249 } 3250 for (const Expr *E : Data.LastprivateVars) { 3251 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3252 Address PrivatePtr = 3253 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3254 ".lastpriv.ptr.addr"); 3255 PrivatePtrs.emplace_back(VD, PrivatePtr); 3256 CallArgs.push_back(PrivatePtr.getPointer()); 3257 } 3258 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3259 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3260 for (const auto &Pair : LastprivateDstsOrigs) { 3261 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3262 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3263 /*RefersToEnclosingVariableOrCapture=*/ 3264 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3265 Pair.second->getType(), VK_LValue, 3266 Pair.second->getExprLoc()); 3267 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3268 return CGF.EmitLValue(&DRE).getAddress(CGF); 3269 }); 3270 } 3271 for (const auto &Pair : PrivatePtrs) { 3272 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3273 CGF.getContext().getDeclAlign(Pair.first)); 3274 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3275 } 3276 } 3277 if (Data.Reductions) { 3278 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3279 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 3280 Data.ReductionOps); 3281 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3282 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3283 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3284 RedCG.emitSharedLValue(CGF, Cnt); 3285 RedCG.emitAggregateType(CGF, Cnt); 3286 // FIXME: This must removed once the runtime library is fixed. 3287 // Emit required threadprivate variables for 3288 // initializer/combiner/finalizer. 3289 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3290 RedCG, Cnt); 3291 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3292 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3293 Replacement = 3294 Address(CGF.EmitScalarConversion( 3295 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3296 CGF.getContext().getPointerType( 3297 Data.ReductionCopies[Cnt]->getType()), 3298 Data.ReductionCopies[Cnt]->getExprLoc()), 3299 Replacement.getAlignment()); 3300 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3301 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3302 [Replacement]() { return Replacement; }); 3303 } 3304 } 3305 // Privatize all private variables except for in_reduction items. 3306 (void)Scope.Privatize(); 3307 SmallVector<const Expr *, 4> InRedVars; 3308 SmallVector<const Expr *, 4> InRedPrivs; 3309 SmallVector<const Expr *, 4> InRedOps; 3310 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3311 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3312 auto IPriv = C->privates().begin(); 3313 auto IRed = C->reduction_ops().begin(); 3314 auto ITD = C->taskgroup_descriptors().begin(); 3315 for (const Expr *Ref : C->varlists()) { 3316 InRedVars.emplace_back(Ref); 3317 InRedPrivs.emplace_back(*IPriv); 3318 InRedOps.emplace_back(*IRed); 3319 TaskgroupDescriptors.emplace_back(*ITD); 3320 std::advance(IPriv, 1); 3321 std::advance(IRed, 1); 3322 std::advance(ITD, 1); 3323 } 3324 } 3325 // Privatize in_reduction items here, because taskgroup descriptors must be 3326 // privatized earlier. 3327 OMPPrivateScope InRedScope(CGF); 3328 if (!InRedVars.empty()) { 3329 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3330 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3331 RedCG.emitSharedLValue(CGF, Cnt); 3332 RedCG.emitAggregateType(CGF, Cnt); 3333 // The taskgroup descriptor variable is always implicit firstprivate and 3334 // privatized already during processing of the firstprivates. 3335 // FIXME: This must removed once the runtime library is fixed. 3336 // Emit required threadprivate variables for 3337 // initializer/combiner/finalizer. 3338 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3339 RedCG, Cnt); 3340 llvm::Value *ReductionsPtr = 3341 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3342 TaskgroupDescriptors[Cnt]->getExprLoc()); 3343 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3344 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3345 Replacement = Address( 3346 CGF.EmitScalarConversion( 3347 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3348 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3349 InRedPrivs[Cnt]->getExprLoc()), 3350 Replacement.getAlignment()); 3351 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3352 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3353 [Replacement]() { return Replacement; }); 3354 } 3355 } 3356 (void)InRedScope.Privatize(); 3357 3358 Action.Enter(CGF); 3359 BodyGen(CGF); 3360 }; 3361 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3362 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3363 Data.NumberOfParts); 3364 OMPLexicalScope Scope(*this, S, llvm::None, 3365 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3366 !isOpenMPSimdDirective(S.getDirectiveKind())); 3367 TaskGen(*this, OutlinedFn, Data); 3368 } 3369 3370 static ImplicitParamDecl * 3371 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3372 QualType Ty, CapturedDecl *CD, 3373 SourceLocation Loc) { 3374 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3375 ImplicitParamDecl::Other); 3376 auto *OrigRef = DeclRefExpr::Create( 3377 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3378 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3379 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3380 ImplicitParamDecl::Other); 3381 auto *PrivateRef = DeclRefExpr::Create( 3382 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3383 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3384 QualType ElemType = C.getBaseElementType(Ty); 3385 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3386 ImplicitParamDecl::Other); 3387 auto *InitRef = DeclRefExpr::Create( 3388 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3389 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3390 PrivateVD->setInitStyle(VarDecl::CInit); 3391 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3392 InitRef, /*BasePath=*/nullptr, 3393 VK_RValue)); 3394 Data.FirstprivateVars.emplace_back(OrigRef); 3395 Data.FirstprivateCopies.emplace_back(PrivateRef); 3396 Data.FirstprivateInits.emplace_back(InitRef); 3397 return OrigVD; 3398 } 3399 3400 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3401 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3402 OMPTargetDataInfo &InputInfo) { 3403 // Emit outlined function for task construct. 3404 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3405 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3406 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3407 auto I = CS->getCapturedDecl()->param_begin(); 3408 auto PartId = std::next(I); 3409 auto TaskT = std::next(I, 4); 3410 OMPTaskDataTy Data; 3411 // The task is not final. 3412 Data.Final.setInt(/*IntVal=*/false); 3413 // Get list of firstprivate variables. 3414 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3415 auto IRef = C->varlist_begin(); 3416 auto IElemInitRef = C->inits().begin(); 3417 for (auto *IInit : C->private_copies()) { 3418 Data.FirstprivateVars.push_back(*IRef); 3419 Data.FirstprivateCopies.push_back(IInit); 3420 Data.FirstprivateInits.push_back(*IElemInitRef); 3421 ++IRef; 3422 ++IElemInitRef; 3423 } 3424 } 3425 OMPPrivateScope TargetScope(*this); 3426 VarDecl *BPVD = nullptr; 3427 VarDecl *PVD = nullptr; 3428 VarDecl *SVD = nullptr; 3429 if (InputInfo.NumberOfTargetItems > 0) { 3430 auto *CD = CapturedDecl::Create( 3431 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3432 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3433 QualType BaseAndPointersType = getContext().getConstantArrayType( 3434 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 3435 /*IndexTypeQuals=*/0); 3436 BPVD = createImplicitFirstprivateForType( 3437 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3438 PVD = createImplicitFirstprivateForType( 3439 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3440 QualType SizesType = getContext().getConstantArrayType( 3441 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3442 ArrSize, nullptr, ArrayType::Normal, 3443 /*IndexTypeQuals=*/0); 3444 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3445 S.getBeginLoc()); 3446 TargetScope.addPrivate( 3447 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3448 TargetScope.addPrivate(PVD, 3449 [&InputInfo]() { return InputInfo.PointersArray; }); 3450 TargetScope.addPrivate(SVD, 3451 [&InputInfo]() { return InputInfo.SizesArray; }); 3452 } 3453 (void)TargetScope.Privatize(); 3454 // Build list of dependences. 3455 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3456 for (const Expr *IRef : C->varlists()) 3457 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3458 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3459 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3460 // Set proper addresses for generated private copies. 3461 OMPPrivateScope Scope(CGF); 3462 if (!Data.FirstprivateVars.empty()) { 3463 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3464 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3465 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3466 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3467 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3468 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3469 CS->getCapturedDecl()->getParam(PrivatesParam))); 3470 // Map privates. 3471 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3472 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3473 CallArgs.push_back(PrivatesPtr); 3474 for (const Expr *E : Data.FirstprivateVars) { 3475 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3476 Address PrivatePtr = 3477 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3478 ".firstpriv.ptr.addr"); 3479 PrivatePtrs.emplace_back(VD, PrivatePtr); 3480 CallArgs.push_back(PrivatePtr.getPointer()); 3481 } 3482 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3483 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3484 for (const auto &Pair : PrivatePtrs) { 3485 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3486 CGF.getContext().getDeclAlign(Pair.first)); 3487 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3488 } 3489 } 3490 // Privatize all private variables except for in_reduction items. 3491 (void)Scope.Privatize(); 3492 if (InputInfo.NumberOfTargetItems > 0) { 3493 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3494 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3495 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3496 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3497 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3498 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3499 } 3500 3501 Action.Enter(CGF); 3502 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3503 BodyGen(CGF); 3504 }; 3505 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3506 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3507 Data.NumberOfParts); 3508 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3509 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3510 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3511 SourceLocation()); 3512 3513 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3514 SharedsTy, CapturedStruct, &IfCond, Data); 3515 } 3516 3517 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3518 // Emit outlined function for task construct. 3519 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3520 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3521 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3522 const Expr *IfCond = nullptr; 3523 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3524 if (C->getNameModifier() == OMPD_unknown || 3525 C->getNameModifier() == OMPD_task) { 3526 IfCond = C->getCondition(); 3527 break; 3528 } 3529 } 3530 3531 OMPTaskDataTy Data; 3532 // Check if we should emit tied or untied task. 3533 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3534 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3535 CGF.EmitStmt(CS->getCapturedStmt()); 3536 }; 3537 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3538 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3539 const OMPTaskDataTy &Data) { 3540 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3541 SharedsTy, CapturedStruct, IfCond, 3542 Data); 3543 }; 3544 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3545 } 3546 3547 void CodeGenFunction::EmitOMPTaskyieldDirective( 3548 const OMPTaskyieldDirective &S) { 3549 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3550 } 3551 3552 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3553 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3554 } 3555 3556 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3557 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3558 } 3559 3560 void CodeGenFunction::EmitOMPTaskgroupDirective( 3561 const OMPTaskgroupDirective &S) { 3562 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3563 Action.Enter(CGF); 3564 if (const Expr *E = S.getReductionRef()) { 3565 SmallVector<const Expr *, 4> LHSs; 3566 SmallVector<const Expr *, 4> RHSs; 3567 OMPTaskDataTy Data; 3568 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3569 auto IPriv = C->privates().begin(); 3570 auto IRed = C->reduction_ops().begin(); 3571 auto ILHS = C->lhs_exprs().begin(); 3572 auto IRHS = C->rhs_exprs().begin(); 3573 for (const Expr *Ref : C->varlists()) { 3574 Data.ReductionVars.emplace_back(Ref); 3575 Data.ReductionCopies.emplace_back(*IPriv); 3576 Data.ReductionOps.emplace_back(*IRed); 3577 LHSs.emplace_back(*ILHS); 3578 RHSs.emplace_back(*IRHS); 3579 std::advance(IPriv, 1); 3580 std::advance(IRed, 1); 3581 std::advance(ILHS, 1); 3582 std::advance(IRHS, 1); 3583 } 3584 } 3585 llvm::Value *ReductionDesc = 3586 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3587 LHSs, RHSs, Data); 3588 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3589 CGF.EmitVarDecl(*VD); 3590 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3591 /*Volatile=*/false, E->getType()); 3592 } 3593 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3594 }; 3595 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3596 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3597 } 3598 3599 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3600 CGM.getOpenMPRuntime().emitFlush( 3601 *this, 3602 [&S]() -> ArrayRef<const Expr *> { 3603 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3604 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3605 FlushClause->varlist_end()); 3606 return llvm::None; 3607 }(), 3608 S.getBeginLoc()); 3609 } 3610 3611 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3612 const CodeGenLoopTy &CodeGenLoop, 3613 Expr *IncExpr) { 3614 // Emit the loop iteration variable. 3615 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3616 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3617 EmitVarDecl(*IVDecl); 3618 3619 // Emit the iterations count variable. 3620 // If it is not a variable, Sema decided to calculate iterations count on each 3621 // iteration (e.g., it is foldable into a constant). 3622 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3623 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3624 // Emit calculation of the iterations count. 3625 EmitIgnoredExpr(S.getCalcLastIteration()); 3626 } 3627 3628 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3629 3630 bool HasLastprivateClause = false; 3631 // Check pre-condition. 3632 { 3633 OMPLoopScope PreInitScope(*this, S); 3634 // Skip the entire loop if we don't meet the precondition. 3635 // If the condition constant folds and can be elided, avoid emitting the 3636 // whole loop. 3637 bool CondConstant; 3638 llvm::BasicBlock *ContBlock = nullptr; 3639 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3640 if (!CondConstant) 3641 return; 3642 } else { 3643 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3644 ContBlock = createBasicBlock("omp.precond.end"); 3645 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3646 getProfileCount(&S)); 3647 EmitBlock(ThenBlock); 3648 incrementProfileCounter(&S); 3649 } 3650 3651 emitAlignedClause(*this, S); 3652 // Emit 'then' code. 3653 { 3654 // Emit helper vars inits. 3655 3656 LValue LB = EmitOMPHelperVar( 3657 *this, cast<DeclRefExpr>( 3658 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3659 ? S.getCombinedLowerBoundVariable() 3660 : S.getLowerBoundVariable()))); 3661 LValue UB = EmitOMPHelperVar( 3662 *this, cast<DeclRefExpr>( 3663 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3664 ? S.getCombinedUpperBoundVariable() 3665 : S.getUpperBoundVariable()))); 3666 LValue ST = 3667 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3668 LValue IL = 3669 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3670 3671 OMPPrivateScope LoopScope(*this); 3672 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3673 // Emit implicit barrier to synchronize threads and avoid data races 3674 // on initialization of firstprivate variables and post-update of 3675 // lastprivate variables. 3676 CGM.getOpenMPRuntime().emitBarrierCall( 3677 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3678 /*ForceSimpleCall=*/true); 3679 } 3680 EmitOMPPrivateClause(S, LoopScope); 3681 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3682 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3683 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3684 EmitOMPReductionClauseInit(S, LoopScope); 3685 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3686 EmitOMPPrivateLoopCounters(S, LoopScope); 3687 (void)LoopScope.Privatize(); 3688 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3689 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3690 3691 // Detect the distribute schedule kind and chunk. 3692 llvm::Value *Chunk = nullptr; 3693 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3694 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3695 ScheduleKind = C->getDistScheduleKind(); 3696 if (const Expr *Ch = C->getChunkSize()) { 3697 Chunk = EmitScalarExpr(Ch); 3698 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3699 S.getIterationVariable()->getType(), 3700 S.getBeginLoc()); 3701 } 3702 } else { 3703 // Default behaviour for dist_schedule clause. 3704 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3705 *this, S, ScheduleKind, Chunk); 3706 } 3707 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3708 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3709 3710 // OpenMP [2.10.8, distribute Construct, Description] 3711 // If dist_schedule is specified, kind must be static. If specified, 3712 // iterations are divided into chunks of size chunk_size, chunks are 3713 // assigned to the teams of the league in a round-robin fashion in the 3714 // order of the team number. When no chunk_size is specified, the 3715 // iteration space is divided into chunks that are approximately equal 3716 // in size, and at most one chunk is distributed to each team of the 3717 // league. The size of the chunks is unspecified in this case. 3718 bool StaticChunked = RT.isStaticChunked( 3719 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3720 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3721 if (RT.isStaticNonchunked(ScheduleKind, 3722 /* Chunked */ Chunk != nullptr) || 3723 StaticChunked) { 3724 CGOpenMPRuntime::StaticRTInput StaticInit( 3725 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 3726 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3727 StaticChunked ? Chunk : nullptr); 3728 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3729 StaticInit); 3730 JumpDest LoopExit = 3731 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3732 // UB = min(UB, GlobalUB); 3733 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3734 ? S.getCombinedEnsureUpperBound() 3735 : S.getEnsureUpperBound()); 3736 // IV = LB; 3737 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3738 ? S.getCombinedInit() 3739 : S.getInit()); 3740 3741 const Expr *Cond = 3742 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3743 ? S.getCombinedCond() 3744 : S.getCond(); 3745 3746 if (StaticChunked) 3747 Cond = S.getCombinedDistCond(); 3748 3749 // For static unchunked schedules generate: 3750 // 3751 // 1. For distribute alone, codegen 3752 // while (idx <= UB) { 3753 // BODY; 3754 // ++idx; 3755 // } 3756 // 3757 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3758 // while (idx <= UB) { 3759 // <CodeGen rest of pragma>(LB, UB); 3760 // idx += ST; 3761 // } 3762 // 3763 // For static chunk one schedule generate: 3764 // 3765 // while (IV <= GlobalUB) { 3766 // <CodeGen rest of pragma>(LB, UB); 3767 // LB += ST; 3768 // UB += ST; 3769 // UB = min(UB, GlobalUB); 3770 // IV = LB; 3771 // } 3772 // 3773 emitCommonSimdLoop( 3774 *this, S, 3775 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3776 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3777 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3778 }, 3779 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 3780 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 3781 CGF.EmitOMPInnerLoop( 3782 S, LoopScope.requiresCleanups(), Cond, IncExpr, 3783 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3784 CodeGenLoop(CGF, S, LoopExit); 3785 }, 3786 [&S, StaticChunked](CodeGenFunction &CGF) { 3787 if (StaticChunked) { 3788 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3789 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3790 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3791 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3792 } 3793 }); 3794 }); 3795 EmitBlock(LoopExit.getBlock()); 3796 // Tell the runtime we are done. 3797 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 3798 } else { 3799 // Emit the outer loop, which requests its work chunk [LB..UB] from 3800 // runtime and runs the inner loop to process it. 3801 const OMPLoopArguments LoopArguments = { 3802 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3803 IL.getAddress(*this), Chunk}; 3804 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3805 CodeGenLoop); 3806 } 3807 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3808 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3809 return CGF.Builder.CreateIsNotNull( 3810 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3811 }); 3812 } 3813 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3814 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3815 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3816 EmitOMPReductionClauseFinal(S, OMPD_simd); 3817 // Emit post-update of the reduction variables if IsLastIter != 0. 3818 emitPostUpdateForReductionClause( 3819 *this, S, [IL, &S](CodeGenFunction &CGF) { 3820 return CGF.Builder.CreateIsNotNull( 3821 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3822 }); 3823 } 3824 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3825 if (HasLastprivateClause) { 3826 EmitOMPLastprivateClauseFinal( 3827 S, /*NoFinals=*/false, 3828 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3829 } 3830 } 3831 3832 // We're now done with the loop, so jump to the continuation block. 3833 if (ContBlock) { 3834 EmitBranch(ContBlock); 3835 EmitBlock(ContBlock, true); 3836 } 3837 } 3838 } 3839 3840 void CodeGenFunction::EmitOMPDistributeDirective( 3841 const OMPDistributeDirective &S) { 3842 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3843 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3844 }; 3845 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3846 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3847 } 3848 3849 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3850 const CapturedStmt *S, 3851 SourceLocation Loc) { 3852 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3853 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3854 CGF.CapturedStmtInfo = &CapStmtInfo; 3855 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 3856 Fn->setDoesNotRecurse(); 3857 return Fn; 3858 } 3859 3860 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3861 if (S.hasClausesOfKind<OMPDependClause>()) { 3862 assert(!S.getAssociatedStmt() && 3863 "No associated statement must be in ordered depend construct."); 3864 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3865 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3866 return; 3867 } 3868 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3869 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3870 PrePostActionTy &Action) { 3871 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3872 if (C) { 3873 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3874 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3875 llvm::Function *OutlinedFn = 3876 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 3877 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3878 OutlinedFn, CapturedVars); 3879 } else { 3880 Action.Enter(CGF); 3881 CGF.EmitStmt(CS->getCapturedStmt()); 3882 } 3883 }; 3884 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3885 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3886 } 3887 3888 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3889 QualType SrcType, QualType DestType, 3890 SourceLocation Loc) { 3891 assert(CGF.hasScalarEvaluationKind(DestType) && 3892 "DestType must have scalar evaluation kind."); 3893 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3894 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3895 DestType, Loc) 3896 : CGF.EmitComplexToScalarConversion( 3897 Val.getComplexVal(), SrcType, DestType, Loc); 3898 } 3899 3900 static CodeGenFunction::ComplexPairTy 3901 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3902 QualType DestType, SourceLocation Loc) { 3903 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3904 "DestType must have complex evaluation kind."); 3905 CodeGenFunction::ComplexPairTy ComplexVal; 3906 if (Val.isScalar()) { 3907 // Convert the input element to the element type of the complex. 3908 QualType DestElementType = 3909 DestType->castAs<ComplexType>()->getElementType(); 3910 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3911 Val.getScalarVal(), SrcType, DestElementType, Loc); 3912 ComplexVal = CodeGenFunction::ComplexPairTy( 3913 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3914 } else { 3915 assert(Val.isComplex() && "Must be a scalar or complex."); 3916 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3917 QualType DestElementType = 3918 DestType->castAs<ComplexType>()->getElementType(); 3919 ComplexVal.first = CGF.EmitScalarConversion( 3920 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3921 ComplexVal.second = CGF.EmitScalarConversion( 3922 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3923 } 3924 return ComplexVal; 3925 } 3926 3927 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3928 LValue LVal, RValue RVal) { 3929 if (LVal.isGlobalReg()) { 3930 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3931 } else { 3932 CGF.EmitAtomicStore(RVal, LVal, 3933 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3934 : llvm::AtomicOrdering::Monotonic, 3935 LVal.isVolatile(), /*isInit=*/false); 3936 } 3937 } 3938 3939 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3940 QualType RValTy, SourceLocation Loc) { 3941 switch (getEvaluationKind(LVal.getType())) { 3942 case TEK_Scalar: 3943 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3944 *this, RVal, RValTy, LVal.getType(), Loc)), 3945 LVal); 3946 break; 3947 case TEK_Complex: 3948 EmitStoreOfComplex( 3949 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3950 /*isInit=*/false); 3951 break; 3952 case TEK_Aggregate: 3953 llvm_unreachable("Must be a scalar or complex."); 3954 } 3955 } 3956 3957 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3958 const Expr *X, const Expr *V, 3959 SourceLocation Loc) { 3960 // v = x; 3961 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3962 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3963 LValue XLValue = CGF.EmitLValue(X); 3964 LValue VLValue = CGF.EmitLValue(V); 3965 RValue Res = XLValue.isGlobalReg() 3966 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3967 : CGF.EmitAtomicLoad( 3968 XLValue, Loc, 3969 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3970 : llvm::AtomicOrdering::Monotonic, 3971 XLValue.isVolatile()); 3972 // OpenMP, 2.12.6, atomic Construct 3973 // Any atomic construct with a seq_cst clause forces the atomically 3974 // performed operation to include an implicit flush operation without a 3975 // list. 3976 if (IsSeqCst) 3977 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3978 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3979 } 3980 3981 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3982 const Expr *X, const Expr *E, 3983 SourceLocation Loc) { 3984 // x = expr; 3985 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3986 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3987 // OpenMP, 2.12.6, atomic Construct 3988 // Any atomic construct with a seq_cst clause forces the atomically 3989 // performed operation to include an implicit flush operation without a 3990 // list. 3991 if (IsSeqCst) 3992 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3993 } 3994 3995 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3996 RValue Update, 3997 BinaryOperatorKind BO, 3998 llvm::AtomicOrdering AO, 3999 bool IsXLHSInRHSPart) { 4000 ASTContext &Context = CGF.getContext(); 4001 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 4002 // expression is simple and atomic is allowed for the given type for the 4003 // target platform. 4004 if (BO == BO_Comma || !Update.isScalar() || 4005 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 4006 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 4007 (Update.getScalarVal()->getType() != 4008 X.getAddress(CGF).getElementType())) || 4009 !X.getAddress(CGF).getElementType()->isIntegerTy() || 4010 !Context.getTargetInfo().hasBuiltinAtomic( 4011 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 4012 return std::make_pair(false, RValue::get(nullptr)); 4013 4014 llvm::AtomicRMWInst::BinOp RMWOp; 4015 switch (BO) { 4016 case BO_Add: 4017 RMWOp = llvm::AtomicRMWInst::Add; 4018 break; 4019 case BO_Sub: 4020 if (!IsXLHSInRHSPart) 4021 return std::make_pair(false, RValue::get(nullptr)); 4022 RMWOp = llvm::AtomicRMWInst::Sub; 4023 break; 4024 case BO_And: 4025 RMWOp = llvm::AtomicRMWInst::And; 4026 break; 4027 case BO_Or: 4028 RMWOp = llvm::AtomicRMWInst::Or; 4029 break; 4030 case BO_Xor: 4031 RMWOp = llvm::AtomicRMWInst::Xor; 4032 break; 4033 case BO_LT: 4034 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4035 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 4036 : llvm::AtomicRMWInst::Max) 4037 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 4038 : llvm::AtomicRMWInst::UMax); 4039 break; 4040 case BO_GT: 4041 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4042 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 4043 : llvm::AtomicRMWInst::Min) 4044 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 4045 : llvm::AtomicRMWInst::UMin); 4046 break; 4047 case BO_Assign: 4048 RMWOp = llvm::AtomicRMWInst::Xchg; 4049 break; 4050 case BO_Mul: 4051 case BO_Div: 4052 case BO_Rem: 4053 case BO_Shl: 4054 case BO_Shr: 4055 case BO_LAnd: 4056 case BO_LOr: 4057 return std::make_pair(false, RValue::get(nullptr)); 4058 case BO_PtrMemD: 4059 case BO_PtrMemI: 4060 case BO_LE: 4061 case BO_GE: 4062 case BO_EQ: 4063 case BO_NE: 4064 case BO_Cmp: 4065 case BO_AddAssign: 4066 case BO_SubAssign: 4067 case BO_AndAssign: 4068 case BO_OrAssign: 4069 case BO_XorAssign: 4070 case BO_MulAssign: 4071 case BO_DivAssign: 4072 case BO_RemAssign: 4073 case BO_ShlAssign: 4074 case BO_ShrAssign: 4075 case BO_Comma: 4076 llvm_unreachable("Unsupported atomic update operation"); 4077 } 4078 llvm::Value *UpdateVal = Update.getScalarVal(); 4079 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 4080 UpdateVal = CGF.Builder.CreateIntCast( 4081 IC, X.getAddress(CGF).getElementType(), 4082 X.getType()->hasSignedIntegerRepresentation()); 4083 } 4084 llvm::Value *Res = 4085 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 4086 return std::make_pair(true, RValue::get(Res)); 4087 } 4088 4089 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 4090 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 4091 llvm::AtomicOrdering AO, SourceLocation Loc, 4092 const llvm::function_ref<RValue(RValue)> CommonGen) { 4093 // Update expressions are allowed to have the following forms: 4094 // x binop= expr; -> xrval + expr; 4095 // x++, ++x -> xrval + 1; 4096 // x--, --x -> xrval - 1; 4097 // x = x binop expr; -> xrval binop expr 4098 // x = expr Op x; - > expr binop xrval; 4099 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 4100 if (!Res.first) { 4101 if (X.isGlobalReg()) { 4102 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 4103 // 'xrval'. 4104 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 4105 } else { 4106 // Perform compare-and-swap procedure. 4107 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 4108 } 4109 } 4110 return Res; 4111 } 4112 4113 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 4114 const Expr *X, const Expr *E, 4115 const Expr *UE, bool IsXLHSInRHSPart, 4116 SourceLocation Loc) { 4117 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4118 "Update expr in 'atomic update' must be a binary operator."); 4119 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4120 // Update expressions are allowed to have the following forms: 4121 // x binop= expr; -> xrval + expr; 4122 // x++, ++x -> xrval + 1; 4123 // x--, --x -> xrval - 1; 4124 // x = x binop expr; -> xrval binop expr 4125 // x = expr Op x; - > expr binop xrval; 4126 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 4127 LValue XLValue = CGF.EmitLValue(X); 4128 RValue ExprRValue = CGF.EmitAnyExpr(E); 4129 llvm::AtomicOrdering AO = IsSeqCst 4130 ? llvm::AtomicOrdering::SequentiallyConsistent 4131 : llvm::AtomicOrdering::Monotonic; 4132 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4133 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4134 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4135 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4136 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 4137 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4138 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4139 return CGF.EmitAnyExpr(UE); 4140 }; 4141 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 4142 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4143 // OpenMP, 2.12.6, atomic Construct 4144 // Any atomic construct with a seq_cst clause forces the atomically 4145 // performed operation to include an implicit flush operation without a 4146 // list. 4147 if (IsSeqCst) 4148 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4149 } 4150 4151 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 4152 QualType SourceType, QualType ResType, 4153 SourceLocation Loc) { 4154 switch (CGF.getEvaluationKind(ResType)) { 4155 case TEK_Scalar: 4156 return RValue::get( 4157 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 4158 case TEK_Complex: { 4159 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 4160 return RValue::getComplex(Res.first, Res.second); 4161 } 4162 case TEK_Aggregate: 4163 break; 4164 } 4165 llvm_unreachable("Must be a scalar or complex."); 4166 } 4167 4168 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 4169 bool IsPostfixUpdate, const Expr *V, 4170 const Expr *X, const Expr *E, 4171 const Expr *UE, bool IsXLHSInRHSPart, 4172 SourceLocation Loc) { 4173 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 4174 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 4175 RValue NewVVal; 4176 LValue VLValue = CGF.EmitLValue(V); 4177 LValue XLValue = CGF.EmitLValue(X); 4178 RValue ExprRValue = CGF.EmitAnyExpr(E); 4179 llvm::AtomicOrdering AO = IsSeqCst 4180 ? llvm::AtomicOrdering::SequentiallyConsistent 4181 : llvm::AtomicOrdering::Monotonic; 4182 QualType NewVValType; 4183 if (UE) { 4184 // 'x' is updated with some additional value. 4185 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4186 "Update expr in 'atomic capture' must be a binary operator."); 4187 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4188 // Update expressions are allowed to have the following forms: 4189 // x binop= expr; -> xrval + expr; 4190 // x++, ++x -> xrval + 1; 4191 // x--, --x -> xrval - 1; 4192 // x = x binop expr; -> xrval binop expr 4193 // x = expr Op x; - > expr binop xrval; 4194 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4195 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4196 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4197 NewVValType = XRValExpr->getType(); 4198 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4199 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 4200 IsPostfixUpdate](RValue XRValue) { 4201 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4202 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4203 RValue Res = CGF.EmitAnyExpr(UE); 4204 NewVVal = IsPostfixUpdate ? XRValue : Res; 4205 return Res; 4206 }; 4207 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4208 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4209 if (Res.first) { 4210 // 'atomicrmw' instruction was generated. 4211 if (IsPostfixUpdate) { 4212 // Use old value from 'atomicrmw'. 4213 NewVVal = Res.second; 4214 } else { 4215 // 'atomicrmw' does not provide new value, so evaluate it using old 4216 // value of 'x'. 4217 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4218 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 4219 NewVVal = CGF.EmitAnyExpr(UE); 4220 } 4221 } 4222 } else { 4223 // 'x' is simply rewritten with some 'expr'. 4224 NewVValType = X->getType().getNonReferenceType(); 4225 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 4226 X->getType().getNonReferenceType(), Loc); 4227 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 4228 NewVVal = XRValue; 4229 return ExprRValue; 4230 }; 4231 // Try to perform atomicrmw xchg, otherwise simple exchange. 4232 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4233 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 4234 Loc, Gen); 4235 if (Res.first) { 4236 // 'atomicrmw' instruction was generated. 4237 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 4238 } 4239 } 4240 // Emit post-update store to 'v' of old/new 'x' value. 4241 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 4242 // OpenMP, 2.12.6, atomic Construct 4243 // Any atomic construct with a seq_cst clause forces the atomically 4244 // performed operation to include an implicit flush operation without a 4245 // list. 4246 if (IsSeqCst) 4247 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4248 } 4249 4250 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 4251 bool IsSeqCst, bool IsPostfixUpdate, 4252 const Expr *X, const Expr *V, const Expr *E, 4253 const Expr *UE, bool IsXLHSInRHSPart, 4254 SourceLocation Loc) { 4255 switch (Kind) { 4256 case OMPC_read: 4257 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 4258 break; 4259 case OMPC_write: 4260 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 4261 break; 4262 case OMPC_unknown: 4263 case OMPC_update: 4264 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 4265 break; 4266 case OMPC_capture: 4267 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 4268 IsXLHSInRHSPart, Loc); 4269 break; 4270 case OMPC_if: 4271 case OMPC_final: 4272 case OMPC_num_threads: 4273 case OMPC_private: 4274 case OMPC_firstprivate: 4275 case OMPC_lastprivate: 4276 case OMPC_reduction: 4277 case OMPC_task_reduction: 4278 case OMPC_in_reduction: 4279 case OMPC_safelen: 4280 case OMPC_simdlen: 4281 case OMPC_allocator: 4282 case OMPC_allocate: 4283 case OMPC_collapse: 4284 case OMPC_default: 4285 case OMPC_seq_cst: 4286 case OMPC_shared: 4287 case OMPC_linear: 4288 case OMPC_aligned: 4289 case OMPC_copyin: 4290 case OMPC_copyprivate: 4291 case OMPC_flush: 4292 case OMPC_proc_bind: 4293 case OMPC_schedule: 4294 case OMPC_ordered: 4295 case OMPC_nowait: 4296 case OMPC_untied: 4297 case OMPC_threadprivate: 4298 case OMPC_depend: 4299 case OMPC_mergeable: 4300 case OMPC_device: 4301 case OMPC_threads: 4302 case OMPC_simd: 4303 case OMPC_map: 4304 case OMPC_num_teams: 4305 case OMPC_thread_limit: 4306 case OMPC_priority: 4307 case OMPC_grainsize: 4308 case OMPC_nogroup: 4309 case OMPC_num_tasks: 4310 case OMPC_hint: 4311 case OMPC_dist_schedule: 4312 case OMPC_defaultmap: 4313 case OMPC_uniform: 4314 case OMPC_to: 4315 case OMPC_from: 4316 case OMPC_use_device_ptr: 4317 case OMPC_is_device_ptr: 4318 case OMPC_unified_address: 4319 case OMPC_unified_shared_memory: 4320 case OMPC_reverse_offload: 4321 case OMPC_dynamic_allocators: 4322 case OMPC_atomic_default_mem_order: 4323 case OMPC_device_type: 4324 case OMPC_match: 4325 case OMPC_nontemporal: 4326 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 4327 } 4328 } 4329 4330 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4331 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4332 OpenMPClauseKind Kind = OMPC_unknown; 4333 for (const OMPClause *C : S.clauses()) { 4334 // Find first clause (skip seq_cst clause, if it is first). 4335 if (C->getClauseKind() != OMPC_seq_cst) { 4336 Kind = C->getClauseKind(); 4337 break; 4338 } 4339 } 4340 4341 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4342 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4343 enterFullExpression(FE); 4344 // Processing for statements under 'atomic capture'. 4345 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4346 for (const Stmt *C : Compound->body()) { 4347 if (const auto *FE = dyn_cast<FullExpr>(C)) 4348 enterFullExpression(FE); 4349 } 4350 } 4351 4352 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4353 PrePostActionTy &) { 4354 CGF.EmitStopPoint(CS); 4355 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4356 S.getV(), S.getExpr(), S.getUpdateExpr(), 4357 S.isXLHSInRHSPart(), S.getBeginLoc()); 4358 }; 4359 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4360 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4361 } 4362 4363 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4364 const OMPExecutableDirective &S, 4365 const RegionCodeGenTy &CodeGen) { 4366 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4367 CodeGenModule &CGM = CGF.CGM; 4368 4369 // On device emit this construct as inlined code. 4370 if (CGM.getLangOpts().OpenMPIsDevice) { 4371 OMPLexicalScope Scope(CGF, S, OMPD_target); 4372 CGM.getOpenMPRuntime().emitInlinedDirective( 4373 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4374 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4375 }); 4376 return; 4377 } 4378 4379 llvm::Function *Fn = nullptr; 4380 llvm::Constant *FnID = nullptr; 4381 4382 const Expr *IfCond = nullptr; 4383 // Check for the at most one if clause associated with the target region. 4384 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4385 if (C->getNameModifier() == OMPD_unknown || 4386 C->getNameModifier() == OMPD_target) { 4387 IfCond = C->getCondition(); 4388 break; 4389 } 4390 } 4391 4392 // Check if we have any device clause associated with the directive. 4393 const Expr *Device = nullptr; 4394 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4395 Device = C->getDevice(); 4396 4397 // Check if we have an if clause whose conditional always evaluates to false 4398 // or if we do not have any targets specified. If so the target region is not 4399 // an offload entry point. 4400 bool IsOffloadEntry = true; 4401 if (IfCond) { 4402 bool Val; 4403 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4404 IsOffloadEntry = false; 4405 } 4406 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4407 IsOffloadEntry = false; 4408 4409 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4410 StringRef ParentName; 4411 // In case we have Ctors/Dtors we use the complete type variant to produce 4412 // the mangling of the device outlined kernel. 4413 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4414 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4415 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4416 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4417 else 4418 ParentName = 4419 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4420 4421 // Emit target region as a standalone region. 4422 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4423 IsOffloadEntry, CodeGen); 4424 OMPLexicalScope Scope(CGF, S, OMPD_task); 4425 auto &&SizeEmitter = 4426 [IsOffloadEntry](CodeGenFunction &CGF, 4427 const OMPLoopDirective &D) -> llvm::Value * { 4428 if (IsOffloadEntry) { 4429 OMPLoopScope(CGF, D); 4430 // Emit calculation of the iterations count. 4431 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4432 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4433 /*isSigned=*/false); 4434 return NumIterations; 4435 } 4436 return nullptr; 4437 }; 4438 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 4439 SizeEmitter); 4440 } 4441 4442 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4443 PrePostActionTy &Action) { 4444 Action.Enter(CGF); 4445 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4446 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4447 CGF.EmitOMPPrivateClause(S, PrivateScope); 4448 (void)PrivateScope.Privatize(); 4449 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4450 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4451 4452 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4453 } 4454 4455 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4456 StringRef ParentName, 4457 const OMPTargetDirective &S) { 4458 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4459 emitTargetRegion(CGF, S, Action); 4460 }; 4461 llvm::Function *Fn; 4462 llvm::Constant *Addr; 4463 // Emit target region as a standalone region. 4464 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4465 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4466 assert(Fn && Addr && "Target device function emission failed."); 4467 } 4468 4469 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4470 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4471 emitTargetRegion(CGF, S, Action); 4472 }; 4473 emitCommonOMPTargetDirective(*this, S, CodeGen); 4474 } 4475 4476 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4477 const OMPExecutableDirective &S, 4478 OpenMPDirectiveKind InnermostKind, 4479 const RegionCodeGenTy &CodeGen) { 4480 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4481 llvm::Function *OutlinedFn = 4482 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4483 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4484 4485 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4486 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4487 if (NT || TL) { 4488 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4489 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4490 4491 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4492 S.getBeginLoc()); 4493 } 4494 4495 OMPTeamsScope Scope(CGF, S); 4496 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4497 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4498 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4499 CapturedVars); 4500 } 4501 4502 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4503 // Emit teams region as a standalone region. 4504 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4505 Action.Enter(CGF); 4506 OMPPrivateScope PrivateScope(CGF); 4507 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4508 CGF.EmitOMPPrivateClause(S, PrivateScope); 4509 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4510 (void)PrivateScope.Privatize(); 4511 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4512 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4513 }; 4514 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4515 emitPostUpdateForReductionClause(*this, S, 4516 [](CodeGenFunction &) { return nullptr; }); 4517 } 4518 4519 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4520 const OMPTargetTeamsDirective &S) { 4521 auto *CS = S.getCapturedStmt(OMPD_teams); 4522 Action.Enter(CGF); 4523 // Emit teams region as a standalone region. 4524 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4525 Action.Enter(CGF); 4526 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4527 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4528 CGF.EmitOMPPrivateClause(S, PrivateScope); 4529 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4530 (void)PrivateScope.Privatize(); 4531 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4532 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4533 CGF.EmitStmt(CS->getCapturedStmt()); 4534 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4535 }; 4536 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4537 emitPostUpdateForReductionClause(CGF, S, 4538 [](CodeGenFunction &) { return nullptr; }); 4539 } 4540 4541 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4542 CodeGenModule &CGM, StringRef ParentName, 4543 const OMPTargetTeamsDirective &S) { 4544 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4545 emitTargetTeamsRegion(CGF, Action, S); 4546 }; 4547 llvm::Function *Fn; 4548 llvm::Constant *Addr; 4549 // Emit target region as a standalone region. 4550 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4551 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4552 assert(Fn && Addr && "Target device function emission failed."); 4553 } 4554 4555 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4556 const OMPTargetTeamsDirective &S) { 4557 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4558 emitTargetTeamsRegion(CGF, Action, S); 4559 }; 4560 emitCommonOMPTargetDirective(*this, S, CodeGen); 4561 } 4562 4563 static void 4564 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4565 const OMPTargetTeamsDistributeDirective &S) { 4566 Action.Enter(CGF); 4567 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4568 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4569 }; 4570 4571 // Emit teams region as a standalone region. 4572 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4573 PrePostActionTy &Action) { 4574 Action.Enter(CGF); 4575 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4576 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4577 (void)PrivateScope.Privatize(); 4578 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4579 CodeGenDistribute); 4580 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4581 }; 4582 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4583 emitPostUpdateForReductionClause(CGF, S, 4584 [](CodeGenFunction &) { return nullptr; }); 4585 } 4586 4587 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4588 CodeGenModule &CGM, StringRef ParentName, 4589 const OMPTargetTeamsDistributeDirective &S) { 4590 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4591 emitTargetTeamsDistributeRegion(CGF, Action, S); 4592 }; 4593 llvm::Function *Fn; 4594 llvm::Constant *Addr; 4595 // Emit target region as a standalone region. 4596 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4597 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4598 assert(Fn && Addr && "Target device function emission failed."); 4599 } 4600 4601 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4602 const OMPTargetTeamsDistributeDirective &S) { 4603 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4604 emitTargetTeamsDistributeRegion(CGF, Action, S); 4605 }; 4606 emitCommonOMPTargetDirective(*this, S, CodeGen); 4607 } 4608 4609 static void emitTargetTeamsDistributeSimdRegion( 4610 CodeGenFunction &CGF, PrePostActionTy &Action, 4611 const OMPTargetTeamsDistributeSimdDirective &S) { 4612 Action.Enter(CGF); 4613 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4614 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4615 }; 4616 4617 // Emit teams region as a standalone region. 4618 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4619 PrePostActionTy &Action) { 4620 Action.Enter(CGF); 4621 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4622 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4623 (void)PrivateScope.Privatize(); 4624 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4625 CodeGenDistribute); 4626 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4627 }; 4628 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4629 emitPostUpdateForReductionClause(CGF, S, 4630 [](CodeGenFunction &) { return nullptr; }); 4631 } 4632 4633 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4634 CodeGenModule &CGM, StringRef ParentName, 4635 const OMPTargetTeamsDistributeSimdDirective &S) { 4636 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4637 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4638 }; 4639 llvm::Function *Fn; 4640 llvm::Constant *Addr; 4641 // Emit target region as a standalone region. 4642 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4643 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4644 assert(Fn && Addr && "Target device function emission failed."); 4645 } 4646 4647 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4648 const OMPTargetTeamsDistributeSimdDirective &S) { 4649 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4650 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4651 }; 4652 emitCommonOMPTargetDirective(*this, S, CodeGen); 4653 } 4654 4655 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4656 const OMPTeamsDistributeDirective &S) { 4657 4658 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4659 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4660 }; 4661 4662 // Emit teams region as a standalone region. 4663 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4664 PrePostActionTy &Action) { 4665 Action.Enter(CGF); 4666 OMPPrivateScope PrivateScope(CGF); 4667 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4668 (void)PrivateScope.Privatize(); 4669 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4670 CodeGenDistribute); 4671 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4672 }; 4673 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4674 emitPostUpdateForReductionClause(*this, S, 4675 [](CodeGenFunction &) { return nullptr; }); 4676 } 4677 4678 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4679 const OMPTeamsDistributeSimdDirective &S) { 4680 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4681 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4682 }; 4683 4684 // Emit teams region as a standalone region. 4685 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4686 PrePostActionTy &Action) { 4687 Action.Enter(CGF); 4688 OMPPrivateScope PrivateScope(CGF); 4689 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4690 (void)PrivateScope.Privatize(); 4691 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4692 CodeGenDistribute); 4693 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4694 }; 4695 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4696 emitPostUpdateForReductionClause(*this, S, 4697 [](CodeGenFunction &) { return nullptr; }); 4698 } 4699 4700 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4701 const OMPTeamsDistributeParallelForDirective &S) { 4702 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4703 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4704 S.getDistInc()); 4705 }; 4706 4707 // Emit teams region as a standalone region. 4708 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4709 PrePostActionTy &Action) { 4710 Action.Enter(CGF); 4711 OMPPrivateScope PrivateScope(CGF); 4712 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4713 (void)PrivateScope.Privatize(); 4714 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4715 CodeGenDistribute); 4716 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4717 }; 4718 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4719 emitPostUpdateForReductionClause(*this, S, 4720 [](CodeGenFunction &) { return nullptr; }); 4721 } 4722 4723 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4724 const OMPTeamsDistributeParallelForSimdDirective &S) { 4725 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4726 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4727 S.getDistInc()); 4728 }; 4729 4730 // Emit teams region as a standalone region. 4731 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4732 PrePostActionTy &Action) { 4733 Action.Enter(CGF); 4734 OMPPrivateScope PrivateScope(CGF); 4735 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4736 (void)PrivateScope.Privatize(); 4737 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4738 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4739 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4740 }; 4741 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 4742 CodeGen); 4743 emitPostUpdateForReductionClause(*this, S, 4744 [](CodeGenFunction &) { return nullptr; }); 4745 } 4746 4747 static void emitTargetTeamsDistributeParallelForRegion( 4748 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4749 PrePostActionTy &Action) { 4750 Action.Enter(CGF); 4751 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4752 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4753 S.getDistInc()); 4754 }; 4755 4756 // Emit teams region as a standalone region. 4757 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4758 PrePostActionTy &Action) { 4759 Action.Enter(CGF); 4760 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4761 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4762 (void)PrivateScope.Privatize(); 4763 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4764 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4765 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4766 }; 4767 4768 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4769 CodeGenTeams); 4770 emitPostUpdateForReductionClause(CGF, S, 4771 [](CodeGenFunction &) { return nullptr; }); 4772 } 4773 4774 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4775 CodeGenModule &CGM, StringRef ParentName, 4776 const OMPTargetTeamsDistributeParallelForDirective &S) { 4777 // Emit SPMD target teams distribute parallel for region as a standalone 4778 // region. 4779 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4780 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4781 }; 4782 llvm::Function *Fn; 4783 llvm::Constant *Addr; 4784 // Emit target region as a standalone region. 4785 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4786 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4787 assert(Fn && Addr && "Target device function emission failed."); 4788 } 4789 4790 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4791 const OMPTargetTeamsDistributeParallelForDirective &S) { 4792 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4793 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4794 }; 4795 emitCommonOMPTargetDirective(*this, S, CodeGen); 4796 } 4797 4798 static void emitTargetTeamsDistributeParallelForSimdRegion( 4799 CodeGenFunction &CGF, 4800 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4801 PrePostActionTy &Action) { 4802 Action.Enter(CGF); 4803 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4804 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4805 S.getDistInc()); 4806 }; 4807 4808 // Emit teams region as a standalone region. 4809 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4810 PrePostActionTy &Action) { 4811 Action.Enter(CGF); 4812 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4813 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4814 (void)PrivateScope.Privatize(); 4815 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4816 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4817 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4818 }; 4819 4820 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4821 CodeGenTeams); 4822 emitPostUpdateForReductionClause(CGF, S, 4823 [](CodeGenFunction &) { return nullptr; }); 4824 } 4825 4826 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4827 CodeGenModule &CGM, StringRef ParentName, 4828 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4829 // Emit SPMD target teams distribute parallel for simd region as a standalone 4830 // region. 4831 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4832 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4833 }; 4834 llvm::Function *Fn; 4835 llvm::Constant *Addr; 4836 // Emit target region as a standalone region. 4837 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4838 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4839 assert(Fn && Addr && "Target device function emission failed."); 4840 } 4841 4842 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4843 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4844 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4845 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4846 }; 4847 emitCommonOMPTargetDirective(*this, S, CodeGen); 4848 } 4849 4850 void CodeGenFunction::EmitOMPCancellationPointDirective( 4851 const OMPCancellationPointDirective &S) { 4852 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4853 S.getCancelRegion()); 4854 } 4855 4856 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4857 const Expr *IfCond = nullptr; 4858 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4859 if (C->getNameModifier() == OMPD_unknown || 4860 C->getNameModifier() == OMPD_cancel) { 4861 IfCond = C->getCondition(); 4862 break; 4863 } 4864 } 4865 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 4866 // TODO: This check is necessary as we only generate `omp parallel` through 4867 // the OpenMPIRBuilder for now. 4868 if (S.getCancelRegion() == OMPD_parallel) { 4869 llvm::Value *IfCondition = nullptr; 4870 if (IfCond) 4871 IfCondition = EmitScalarExpr(IfCond, 4872 /*IgnoreResultAssign=*/true); 4873 return Builder.restoreIP( 4874 OMPBuilder->CreateCancel(Builder, IfCondition, S.getCancelRegion())); 4875 } 4876 } 4877 4878 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4879 S.getCancelRegion()); 4880 } 4881 4882 CodeGenFunction::JumpDest 4883 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4884 if (Kind == OMPD_parallel || Kind == OMPD_task || 4885 Kind == OMPD_target_parallel) 4886 return ReturnBlock; 4887 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4888 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4889 Kind == OMPD_distribute_parallel_for || 4890 Kind == OMPD_target_parallel_for || 4891 Kind == OMPD_teams_distribute_parallel_for || 4892 Kind == OMPD_target_teams_distribute_parallel_for); 4893 return OMPCancelStack.getExitBlock(); 4894 } 4895 4896 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4897 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4898 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4899 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4900 auto OrigVarIt = C.varlist_begin(); 4901 auto InitIt = C.inits().begin(); 4902 for (const Expr *PvtVarIt : C.private_copies()) { 4903 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4904 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4905 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4906 4907 // In order to identify the right initializer we need to match the 4908 // declaration used by the mapping logic. In some cases we may get 4909 // OMPCapturedExprDecl that refers to the original declaration. 4910 const ValueDecl *MatchingVD = OrigVD; 4911 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4912 // OMPCapturedExprDecl are used to privative fields of the current 4913 // structure. 4914 const auto *ME = cast<MemberExpr>(OED->getInit()); 4915 assert(isa<CXXThisExpr>(ME->getBase()) && 4916 "Base should be the current struct!"); 4917 MatchingVD = ME->getMemberDecl(); 4918 } 4919 4920 // If we don't have information about the current list item, move on to 4921 // the next one. 4922 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4923 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4924 continue; 4925 4926 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4927 InitAddrIt, InitVD, 4928 PvtVD]() { 4929 // Initialize the temporary initialization variable with the address we 4930 // get from the runtime library. We have to cast the source address 4931 // because it is always a void *. References are materialized in the 4932 // privatization scope, so the initialization here disregards the fact 4933 // the original variable is a reference. 4934 QualType AddrQTy = 4935 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4936 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4937 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4938 setAddrOfLocalVar(InitVD, InitAddr); 4939 4940 // Emit private declaration, it will be initialized by the value we 4941 // declaration we just added to the local declarations map. 4942 EmitDecl(*PvtVD); 4943 4944 // The initialization variables reached its purpose in the emission 4945 // of the previous declaration, so we don't need it anymore. 4946 LocalDeclMap.erase(InitVD); 4947 4948 // Return the address of the private variable. 4949 return GetAddrOfLocalVar(PvtVD); 4950 }); 4951 assert(IsRegistered && "firstprivate var already registered as private"); 4952 // Silence the warning about unused variable. 4953 (void)IsRegistered; 4954 4955 ++OrigVarIt; 4956 ++InitIt; 4957 } 4958 } 4959 4960 // Generate the instructions for '#pragma omp target data' directive. 4961 void CodeGenFunction::EmitOMPTargetDataDirective( 4962 const OMPTargetDataDirective &S) { 4963 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4964 4965 // Create a pre/post action to signal the privatization of the device pointer. 4966 // This action can be replaced by the OpenMP runtime code generation to 4967 // deactivate privatization. 4968 bool PrivatizeDevicePointers = false; 4969 class DevicePointerPrivActionTy : public PrePostActionTy { 4970 bool &PrivatizeDevicePointers; 4971 4972 public: 4973 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4974 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4975 void Enter(CodeGenFunction &CGF) override { 4976 PrivatizeDevicePointers = true; 4977 } 4978 }; 4979 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4980 4981 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4982 CodeGenFunction &CGF, PrePostActionTy &Action) { 4983 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4984 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4985 }; 4986 4987 // Codegen that selects whether to generate the privatization code or not. 4988 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4989 &InnermostCodeGen](CodeGenFunction &CGF, 4990 PrePostActionTy &Action) { 4991 RegionCodeGenTy RCG(InnermostCodeGen); 4992 PrivatizeDevicePointers = false; 4993 4994 // Call the pre-action to change the status of PrivatizeDevicePointers if 4995 // needed. 4996 Action.Enter(CGF); 4997 4998 if (PrivatizeDevicePointers) { 4999 OMPPrivateScope PrivateScope(CGF); 5000 // Emit all instances of the use_device_ptr clause. 5001 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 5002 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 5003 Info.CaptureDeviceAddrMap); 5004 (void)PrivateScope.Privatize(); 5005 RCG(CGF); 5006 } else { 5007 RCG(CGF); 5008 } 5009 }; 5010 5011 // Forward the provided action to the privatization codegen. 5012 RegionCodeGenTy PrivRCG(PrivCodeGen); 5013 PrivRCG.setAction(Action); 5014 5015 // Notwithstanding the body of the region is emitted as inlined directive, 5016 // we don't use an inline scope as changes in the references inside the 5017 // region are expected to be visible outside, so we do not privative them. 5018 OMPLexicalScope Scope(CGF, S); 5019 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 5020 PrivRCG); 5021 }; 5022 5023 RegionCodeGenTy RCG(CodeGen); 5024 5025 // If we don't have target devices, don't bother emitting the data mapping 5026 // code. 5027 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 5028 RCG(*this); 5029 return; 5030 } 5031 5032 // Check if we have any if clause associated with the directive. 5033 const Expr *IfCond = nullptr; 5034 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5035 IfCond = C->getCondition(); 5036 5037 // Check if we have any device clause associated with the directive. 5038 const Expr *Device = nullptr; 5039 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5040 Device = C->getDevice(); 5041 5042 // Set the action to signal privatization of device pointers. 5043 RCG.setAction(PrivAction); 5044 5045 // Emit region code. 5046 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 5047 Info); 5048 } 5049 5050 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 5051 const OMPTargetEnterDataDirective &S) { 5052 // If we don't have target devices, don't bother emitting the data mapping 5053 // code. 5054 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5055 return; 5056 5057 // Check if we have any if clause associated with the directive. 5058 const Expr *IfCond = nullptr; 5059 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5060 IfCond = C->getCondition(); 5061 5062 // Check if we have any device clause associated with the directive. 5063 const Expr *Device = nullptr; 5064 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5065 Device = C->getDevice(); 5066 5067 OMPLexicalScope Scope(*this, S, OMPD_task); 5068 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5069 } 5070 5071 void CodeGenFunction::EmitOMPTargetExitDataDirective( 5072 const OMPTargetExitDataDirective &S) { 5073 // If we don't have target devices, don't bother emitting the data mapping 5074 // code. 5075 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5076 return; 5077 5078 // Check if we have any if clause associated with the directive. 5079 const Expr *IfCond = nullptr; 5080 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5081 IfCond = C->getCondition(); 5082 5083 // Check if we have any device clause associated with the directive. 5084 const Expr *Device = nullptr; 5085 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5086 Device = C->getDevice(); 5087 5088 OMPLexicalScope Scope(*this, S, OMPD_task); 5089 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5090 } 5091 5092 static void emitTargetParallelRegion(CodeGenFunction &CGF, 5093 const OMPTargetParallelDirective &S, 5094 PrePostActionTy &Action) { 5095 // Get the captured statement associated with the 'parallel' region. 5096 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 5097 Action.Enter(CGF); 5098 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 5099 Action.Enter(CGF); 5100 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5101 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5102 CGF.EmitOMPPrivateClause(S, PrivateScope); 5103 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5104 (void)PrivateScope.Privatize(); 5105 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5106 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5107 // TODO: Add support for clauses. 5108 CGF.EmitStmt(CS->getCapturedStmt()); 5109 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 5110 }; 5111 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 5112 emitEmptyBoundParameters); 5113 emitPostUpdateForReductionClause(CGF, S, 5114 [](CodeGenFunction &) { return nullptr; }); 5115 } 5116 5117 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 5118 CodeGenModule &CGM, StringRef ParentName, 5119 const OMPTargetParallelDirective &S) { 5120 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5121 emitTargetParallelRegion(CGF, S, Action); 5122 }; 5123 llvm::Function *Fn; 5124 llvm::Constant *Addr; 5125 // Emit target region as a standalone region. 5126 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5127 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5128 assert(Fn && Addr && "Target device function emission failed."); 5129 } 5130 5131 void CodeGenFunction::EmitOMPTargetParallelDirective( 5132 const OMPTargetParallelDirective &S) { 5133 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5134 emitTargetParallelRegion(CGF, S, Action); 5135 }; 5136 emitCommonOMPTargetDirective(*this, S, CodeGen); 5137 } 5138 5139 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 5140 const OMPTargetParallelForDirective &S, 5141 PrePostActionTy &Action) { 5142 Action.Enter(CGF); 5143 // Emit directive as a combined directive that consists of two implicit 5144 // directives: 'parallel' with 'for' directive. 5145 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5146 Action.Enter(CGF); 5147 CodeGenFunction::OMPCancelStackRAII CancelRegion( 5148 CGF, OMPD_target_parallel_for, S.hasCancel()); 5149 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5150 emitDispatchForLoopBounds); 5151 }; 5152 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 5153 emitEmptyBoundParameters); 5154 } 5155 5156 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 5157 CodeGenModule &CGM, StringRef ParentName, 5158 const OMPTargetParallelForDirective &S) { 5159 // Emit SPMD target parallel for region as a standalone region. 5160 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5161 emitTargetParallelForRegion(CGF, S, Action); 5162 }; 5163 llvm::Function *Fn; 5164 llvm::Constant *Addr; 5165 // Emit target region as a standalone region. 5166 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5167 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5168 assert(Fn && Addr && "Target device function emission failed."); 5169 } 5170 5171 void CodeGenFunction::EmitOMPTargetParallelForDirective( 5172 const OMPTargetParallelForDirective &S) { 5173 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5174 emitTargetParallelForRegion(CGF, S, Action); 5175 }; 5176 emitCommonOMPTargetDirective(*this, S, CodeGen); 5177 } 5178 5179 static void 5180 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 5181 const OMPTargetParallelForSimdDirective &S, 5182 PrePostActionTy &Action) { 5183 Action.Enter(CGF); 5184 // Emit directive as a combined directive that consists of two implicit 5185 // directives: 'parallel' with 'for' directive. 5186 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5187 Action.Enter(CGF); 5188 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5189 emitDispatchForLoopBounds); 5190 }; 5191 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 5192 emitEmptyBoundParameters); 5193 } 5194 5195 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 5196 CodeGenModule &CGM, StringRef ParentName, 5197 const OMPTargetParallelForSimdDirective &S) { 5198 // Emit SPMD target parallel for region as a standalone region. 5199 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5200 emitTargetParallelForSimdRegion(CGF, S, Action); 5201 }; 5202 llvm::Function *Fn; 5203 llvm::Constant *Addr; 5204 // Emit target region as a standalone region. 5205 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5206 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5207 assert(Fn && Addr && "Target device function emission failed."); 5208 } 5209 5210 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 5211 const OMPTargetParallelForSimdDirective &S) { 5212 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5213 emitTargetParallelForSimdRegion(CGF, S, Action); 5214 }; 5215 emitCommonOMPTargetDirective(*this, S, CodeGen); 5216 } 5217 5218 /// Emit a helper variable and return corresponding lvalue. 5219 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 5220 const ImplicitParamDecl *PVD, 5221 CodeGenFunction::OMPPrivateScope &Privates) { 5222 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 5223 Privates.addPrivate(VDecl, 5224 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 5225 } 5226 5227 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 5228 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 5229 // Emit outlined function for task construct. 5230 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 5231 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5232 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5233 const Expr *IfCond = nullptr; 5234 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5235 if (C->getNameModifier() == OMPD_unknown || 5236 C->getNameModifier() == OMPD_taskloop) { 5237 IfCond = C->getCondition(); 5238 break; 5239 } 5240 } 5241 5242 OMPTaskDataTy Data; 5243 // Check if taskloop must be emitted without taskgroup. 5244 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 5245 // TODO: Check if we should emit tied or untied task. 5246 Data.Tied = true; 5247 // Set scheduling for taskloop 5248 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 5249 // grainsize clause 5250 Data.Schedule.setInt(/*IntVal=*/false); 5251 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 5252 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 5253 // num_tasks clause 5254 Data.Schedule.setInt(/*IntVal=*/true); 5255 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 5256 } 5257 5258 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 5259 // if (PreCond) { 5260 // for (IV in 0..LastIteration) BODY; 5261 // <Final counter/linear vars updates>; 5262 // } 5263 // 5264 5265 // Emit: if (PreCond) - begin. 5266 // If the condition constant folds and can be elided, avoid emitting the 5267 // whole loop. 5268 bool CondConstant; 5269 llvm::BasicBlock *ContBlock = nullptr; 5270 OMPLoopScope PreInitScope(CGF, S); 5271 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5272 if (!CondConstant) 5273 return; 5274 } else { 5275 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 5276 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 5277 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 5278 CGF.getProfileCount(&S)); 5279 CGF.EmitBlock(ThenBlock); 5280 CGF.incrementProfileCounter(&S); 5281 } 5282 5283 (void)CGF.EmitOMPLinearClauseInit(S); 5284 5285 OMPPrivateScope LoopScope(CGF); 5286 // Emit helper vars inits. 5287 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 5288 auto *I = CS->getCapturedDecl()->param_begin(); 5289 auto *LBP = std::next(I, LowerBound); 5290 auto *UBP = std::next(I, UpperBound); 5291 auto *STP = std::next(I, Stride); 5292 auto *LIP = std::next(I, LastIter); 5293 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 5294 LoopScope); 5295 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 5296 LoopScope); 5297 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 5298 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 5299 LoopScope); 5300 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 5301 CGF.EmitOMPLinearClause(S, LoopScope); 5302 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 5303 (void)LoopScope.Privatize(); 5304 // Emit the loop iteration variable. 5305 const Expr *IVExpr = S.getIterationVariable(); 5306 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 5307 CGF.EmitVarDecl(*IVDecl); 5308 CGF.EmitIgnoredExpr(S.getInit()); 5309 5310 // Emit the iterations count variable. 5311 // If it is not a variable, Sema decided to calculate iterations count on 5312 // each iteration (e.g., it is foldable into a constant). 5313 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5314 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5315 // Emit calculation of the iterations count. 5316 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 5317 } 5318 5319 { 5320 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 5321 emitCommonSimdLoop( 5322 CGF, S, 5323 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5324 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5325 CGF.EmitOMPSimdInit(S); 5326 }, 5327 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 5328 CGF.EmitOMPInnerLoop( 5329 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 5330 [&S](CodeGenFunction &CGF) { 5331 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 5332 CGF.EmitStopPoint(&S); 5333 }, 5334 [](CodeGenFunction &) {}); 5335 }); 5336 } 5337 // Emit: if (PreCond) - end. 5338 if (ContBlock) { 5339 CGF.EmitBranch(ContBlock); 5340 CGF.EmitBlock(ContBlock, true); 5341 } 5342 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5343 if (HasLastprivateClause) { 5344 CGF.EmitOMPLastprivateClauseFinal( 5345 S, isOpenMPSimdDirective(S.getDirectiveKind()), 5346 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 5347 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5348 (*LIP)->getType(), S.getBeginLoc()))); 5349 } 5350 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 5351 return CGF.Builder.CreateIsNotNull( 5352 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5353 (*LIP)->getType(), S.getBeginLoc())); 5354 }); 5355 }; 5356 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5357 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5358 const OMPTaskDataTy &Data) { 5359 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 5360 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 5361 OMPLoopScope PreInitScope(CGF, S); 5362 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5363 OutlinedFn, SharedsTy, 5364 CapturedStruct, IfCond, Data); 5365 }; 5366 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5367 CodeGen); 5368 }; 5369 if (Data.Nogroup) { 5370 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5371 } else { 5372 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5373 *this, 5374 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5375 PrePostActionTy &Action) { 5376 Action.Enter(CGF); 5377 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5378 Data); 5379 }, 5380 S.getBeginLoc()); 5381 } 5382 } 5383 5384 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5385 EmitOMPTaskLoopBasedDirective(S); 5386 } 5387 5388 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5389 const OMPTaskLoopSimdDirective &S) { 5390 OMPLexicalScope Scope(*this, S); 5391 EmitOMPTaskLoopBasedDirective(S); 5392 } 5393 5394 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 5395 const OMPMasterTaskLoopDirective &S) { 5396 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5397 Action.Enter(CGF); 5398 EmitOMPTaskLoopBasedDirective(S); 5399 }; 5400 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5401 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5402 } 5403 5404 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 5405 const OMPMasterTaskLoopSimdDirective &S) { 5406 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5407 Action.Enter(CGF); 5408 EmitOMPTaskLoopBasedDirective(S); 5409 }; 5410 OMPLexicalScope Scope(*this, S); 5411 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5412 } 5413 5414 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 5415 const OMPParallelMasterTaskLoopDirective &S) { 5416 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5417 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5418 PrePostActionTy &Action) { 5419 Action.Enter(CGF); 5420 CGF.EmitOMPTaskLoopBasedDirective(S); 5421 }; 5422 OMPLexicalScope Scope(CGF, S, llvm::None, /*EmitPreInitStmt=*/false); 5423 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5424 S.getBeginLoc()); 5425 }; 5426 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 5427 emitEmptyBoundParameters); 5428 } 5429 5430 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 5431 const OMPParallelMasterTaskLoopSimdDirective &S) { 5432 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5433 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5434 PrePostActionTy &Action) { 5435 Action.Enter(CGF); 5436 CGF.EmitOMPTaskLoopBasedDirective(S); 5437 }; 5438 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 5439 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5440 S.getBeginLoc()); 5441 }; 5442 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 5443 emitEmptyBoundParameters); 5444 } 5445 5446 // Generate the instructions for '#pragma omp target update' directive. 5447 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5448 const OMPTargetUpdateDirective &S) { 5449 // If we don't have target devices, don't bother emitting the data mapping 5450 // code. 5451 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5452 return; 5453 5454 // Check if we have any if clause associated with the directive. 5455 const Expr *IfCond = nullptr; 5456 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5457 IfCond = C->getCondition(); 5458 5459 // Check if we have any device clause associated with the directive. 5460 const Expr *Device = nullptr; 5461 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5462 Device = C->getDevice(); 5463 5464 OMPLexicalScope Scope(*this, S, OMPD_task); 5465 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5466 } 5467 5468 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5469 const OMPExecutableDirective &D) { 5470 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5471 return; 5472 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5473 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5474 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5475 } else { 5476 OMPPrivateScope LoopGlobals(CGF); 5477 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5478 for (const Expr *E : LD->counters()) { 5479 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5480 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5481 LValue GlobLVal = CGF.EmitLValue(E); 5482 LoopGlobals.addPrivate( 5483 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 5484 } 5485 if (isa<OMPCapturedExprDecl>(VD)) { 5486 // Emit only those that were not explicitly referenced in clauses. 5487 if (!CGF.LocalDeclMap.count(VD)) 5488 CGF.EmitVarDecl(*VD); 5489 } 5490 } 5491 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5492 if (!C->getNumForLoops()) 5493 continue; 5494 for (unsigned I = LD->getCollapsedNumber(), 5495 E = C->getLoopNumIterations().size(); 5496 I < E; ++I) { 5497 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5498 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5499 // Emit only those that were not explicitly referenced in clauses. 5500 if (!CGF.LocalDeclMap.count(VD)) 5501 CGF.EmitVarDecl(*VD); 5502 } 5503 } 5504 } 5505 } 5506 LoopGlobals.Privatize(); 5507 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5508 } 5509 }; 5510 OMPSimdLexicalScope Scope(*this, D); 5511 CGM.getOpenMPRuntime().emitInlinedDirective( 5512 *this, 5513 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5514 : D.getDirectiveKind(), 5515 CodeGen); 5516 } 5517