1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (const auto *PreInit = 34 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 35 for (const auto *I : PreInit->decls()) { 36 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 37 CGF.EmitVarDecl(cast<VarDecl>(*I)); 38 } else { 39 CodeGenFunction::AutoVarEmission Emission = 40 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 41 CGF.EmitAutoVarCleanups(Emission); 42 } 43 } 44 } 45 } 46 } 47 } 48 CodeGenFunction::OMPPrivateScope InlinedShareds; 49 50 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 51 return CGF.LambdaCaptureFields.lookup(VD) || 52 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 53 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 54 } 55 56 public: 57 OMPLexicalScope( 58 CodeGenFunction &CGF, const OMPExecutableDirective &S, 59 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 60 const bool EmitPreInitStmt = true) 61 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 62 InlinedShareds(CGF) { 63 if (EmitPreInitStmt) 64 emitPreInitStmt(CGF, S); 65 if (!CapturedRegion.hasValue()) 66 return; 67 assert(S.hasAssociatedStmt() && 68 "Expected associated statement for inlined directive."); 69 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 70 for (const auto &C : CS->captures()) { 71 if (C.capturesVariable() || C.capturesVariableByCopy()) { 72 auto *VD = C.getCapturedVar(); 73 assert(VD == VD->getCanonicalDecl() && 74 "Canonical decl must be captured."); 75 DeclRefExpr DRE( 76 const_cast<VarDecl *>(VD), 77 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 78 InlinedShareds.isGlobalVarCaptured(VD)), 79 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 80 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 81 return CGF.EmitLValue(&DRE).getAddress(); 82 }); 83 } 84 } 85 (void)InlinedShareds.Privatize(); 86 } 87 }; 88 89 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 90 /// for captured expressions. 91 class OMPParallelScope final : public OMPLexicalScope { 92 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 93 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 94 return !(isOpenMPTargetExecutionDirective(Kind) || 95 isOpenMPLoopBoundSharingDirective(Kind)) && 96 isOpenMPParallelDirective(Kind); 97 } 98 99 public: 100 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 101 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 102 EmitPreInitStmt(S)) {} 103 }; 104 105 /// Lexical scope for OpenMP teams construct, that handles correct codegen 106 /// for captured expressions. 107 class OMPTeamsScope final : public OMPLexicalScope { 108 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 109 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 110 return !isOpenMPTargetExecutionDirective(Kind) && 111 isOpenMPTeamsDirective(Kind); 112 } 113 114 public: 115 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 116 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 117 EmitPreInitStmt(S)) {} 118 }; 119 120 /// Private scope for OpenMP loop-based directives, that supports capturing 121 /// of used expression from loop statement. 122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 123 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 124 CodeGenFunction::OMPMapVars PreCondVars; 125 for (const auto *E : S.counters()) { 126 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 127 (void)PreCondVars.setVarAddr( 128 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 129 } 130 (void)PreCondVars.apply(CGF); 131 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 132 for (const auto *I : PreInits->decls()) 133 CGF.EmitVarDecl(cast<VarDecl>(*I)); 134 } 135 PreCondVars.restore(CGF); 136 } 137 138 public: 139 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 140 : CodeGenFunction::RunCleanupsScope(CGF) { 141 emitPreInitStmt(CGF, S); 142 } 143 }; 144 145 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 146 CodeGenFunction::OMPPrivateScope InlinedShareds; 147 148 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 149 return CGF.LambdaCaptureFields.lookup(VD) || 150 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 151 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 152 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 153 } 154 155 public: 156 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 157 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 158 InlinedShareds(CGF) { 159 for (const auto *C : S.clauses()) { 160 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 161 if (const auto *PreInit = 162 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 163 for (const auto *I : PreInit->decls()) { 164 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 165 CGF.EmitVarDecl(cast<VarDecl>(*I)); 166 } else { 167 CodeGenFunction::AutoVarEmission Emission = 168 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 169 CGF.EmitAutoVarCleanups(Emission); 170 } 171 } 172 } 173 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 174 for (const Expr *E : UDP->varlists()) { 175 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 176 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 177 CGF.EmitVarDecl(*OED); 178 } 179 } 180 } 181 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 182 CGF.EmitOMPPrivateClause(S, InlinedShareds); 183 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 184 if (const Expr *E = TG->getReductionRef()) 185 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 186 } 187 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 188 while (CS) { 189 for (auto &C : CS->captures()) { 190 if (C.capturesVariable() || C.capturesVariableByCopy()) { 191 auto *VD = C.getCapturedVar(); 192 assert(VD == VD->getCanonicalDecl() && 193 "Canonical decl must be captured."); 194 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 195 isCapturedVar(CGF, VD) || 196 (CGF.CapturedStmtInfo && 197 InlinedShareds.isGlobalVarCaptured(VD)), 198 VD->getType().getNonReferenceType(), VK_LValue, 199 C.getLocation()); 200 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 201 return CGF.EmitLValue(&DRE).getAddress(); 202 }); 203 } 204 } 205 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 206 } 207 (void)InlinedShareds.Privatize(); 208 } 209 }; 210 211 } // namespace 212 213 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 214 const OMPExecutableDirective &S, 215 const RegionCodeGenTy &CodeGen); 216 217 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 218 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 219 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 220 OrigVD = OrigVD->getCanonicalDecl(); 221 bool IsCaptured = 222 LambdaCaptureFields.lookup(OrigVD) || 223 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 224 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 225 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured, 226 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 227 return EmitLValue(&DRE); 228 } 229 } 230 return EmitLValue(E); 231 } 232 233 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 234 ASTContext &C = getContext(); 235 llvm::Value *Size = nullptr; 236 auto SizeInChars = C.getTypeSizeInChars(Ty); 237 if (SizeInChars.isZero()) { 238 // getTypeSizeInChars() returns 0 for a VLA. 239 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 240 VlaSizePair VlaSize = getVLASize(VAT); 241 Ty = VlaSize.Type; 242 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 243 : VlaSize.NumElts; 244 } 245 SizeInChars = C.getTypeSizeInChars(Ty); 246 if (SizeInChars.isZero()) 247 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 248 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 249 } 250 return CGM.getSize(SizeInChars); 251 } 252 253 void CodeGenFunction::GenerateOpenMPCapturedVars( 254 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 255 const RecordDecl *RD = S.getCapturedRecordDecl(); 256 auto CurField = RD->field_begin(); 257 auto CurCap = S.captures().begin(); 258 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 259 E = S.capture_init_end(); 260 I != E; ++I, ++CurField, ++CurCap) { 261 if (CurField->hasCapturedVLAType()) { 262 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 263 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 264 CapturedVars.push_back(Val); 265 } else if (CurCap->capturesThis()) { 266 CapturedVars.push_back(CXXThisValue); 267 } else if (CurCap->capturesVariableByCopy()) { 268 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 269 270 // If the field is not a pointer, we need to save the actual value 271 // and load it as a void pointer. 272 if (!CurField->getType()->isAnyPointerType()) { 273 ASTContext &Ctx = getContext(); 274 Address DstAddr = CreateMemTemp( 275 Ctx.getUIntPtrType(), 276 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 277 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 278 279 llvm::Value *SrcAddrVal = EmitScalarConversion( 280 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 281 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 282 LValue SrcLV = 283 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 284 285 // Store the value using the source type pointer. 286 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 287 288 // Load the value using the destination type pointer. 289 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 290 } 291 CapturedVars.push_back(CV); 292 } else { 293 assert(CurCap->capturesVariable() && "Expected capture by reference."); 294 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 295 } 296 } 297 } 298 299 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 300 QualType DstType, StringRef Name, 301 LValue AddrLV, 302 bool isReferenceType = false) { 303 ASTContext &Ctx = CGF.getContext(); 304 305 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 306 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 307 Ctx.getPointerType(DstType), Loc); 308 Address TmpAddr = 309 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 310 .getAddress(); 311 312 // If we are dealing with references we need to return the address of the 313 // reference instead of the reference of the value. 314 if (isReferenceType) { 315 QualType RefType = Ctx.getLValueReferenceType(DstType); 316 llvm::Value *RefVal = TmpAddr.getPointer(); 317 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref")); 318 LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 319 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true); 320 } 321 322 return TmpAddr; 323 } 324 325 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 326 if (T->isLValueReferenceType()) 327 return C.getLValueReferenceType( 328 getCanonicalParamType(C, T.getNonReferenceType()), 329 /*SpelledAsLValue=*/false); 330 if (T->isPointerType()) 331 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 332 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 333 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 334 return getCanonicalParamType(C, VLA->getElementType()); 335 if (!A->isVariablyModifiedType()) 336 return C.getCanonicalType(T); 337 } 338 return C.getCanonicalParamType(T); 339 } 340 341 namespace { 342 /// Contains required data for proper outlined function codegen. 343 struct FunctionOptions { 344 /// Captured statement for which the function is generated. 345 const CapturedStmt *S = nullptr; 346 /// true if cast to/from UIntPtr is required for variables captured by 347 /// value. 348 const bool UIntPtrCastRequired = true; 349 /// true if only casted arguments must be registered as local args or VLA 350 /// sizes. 351 const bool RegisterCastedArgsOnly = false; 352 /// Name of the generated function. 353 const StringRef FunctionName; 354 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 355 bool RegisterCastedArgsOnly, 356 StringRef FunctionName) 357 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 358 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 359 FunctionName(FunctionName) {} 360 }; 361 } 362 363 static llvm::Function *emitOutlinedFunctionPrologue( 364 CodeGenFunction &CGF, FunctionArgList &Args, 365 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 366 &LocalAddrs, 367 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 368 &VLASizes, 369 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 370 const CapturedDecl *CD = FO.S->getCapturedDecl(); 371 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 372 assert(CD->hasBody() && "missing CapturedDecl body"); 373 374 CXXThisValue = nullptr; 375 // Build the argument list. 376 CodeGenModule &CGM = CGF.CGM; 377 ASTContext &Ctx = CGM.getContext(); 378 FunctionArgList TargetArgs; 379 Args.append(CD->param_begin(), 380 std::next(CD->param_begin(), CD->getContextParamPosition())); 381 TargetArgs.append( 382 CD->param_begin(), 383 std::next(CD->param_begin(), CD->getContextParamPosition())); 384 auto I = FO.S->captures().begin(); 385 FunctionDecl *DebugFunctionDecl = nullptr; 386 if (!FO.UIntPtrCastRequired) { 387 FunctionProtoType::ExtProtoInfo EPI; 388 DebugFunctionDecl = FunctionDecl::Create( 389 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 390 SourceLocation(), DeclarationName(), Ctx.VoidTy, 391 Ctx.getTrivialTypeSourceInfo( 392 Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI)), 393 SC_Static, /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 394 } 395 for (const FieldDecl *FD : RD->fields()) { 396 QualType ArgType = FD->getType(); 397 IdentifierInfo *II = nullptr; 398 VarDecl *CapVar = nullptr; 399 400 // If this is a capture by copy and the type is not a pointer, the outlined 401 // function argument type should be uintptr and the value properly casted to 402 // uintptr. This is necessary given that the runtime library is only able to 403 // deal with pointers. We can pass in the same way the VLA type sizes to the 404 // outlined function. 405 if (FO.UIntPtrCastRequired && 406 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 407 I->capturesVariableArrayType())) 408 ArgType = Ctx.getUIntPtrType(); 409 410 if (I->capturesVariable() || I->capturesVariableByCopy()) { 411 CapVar = I->getCapturedVar(); 412 II = CapVar->getIdentifier(); 413 } else if (I->capturesThis()) { 414 II = &Ctx.Idents.get("this"); 415 } else { 416 assert(I->capturesVariableArrayType()); 417 II = &Ctx.Idents.get("vla"); 418 } 419 if (ArgType->isVariablyModifiedType()) 420 ArgType = getCanonicalParamType(Ctx, ArgType); 421 VarDecl *Arg; 422 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 423 Arg = ParmVarDecl::Create( 424 Ctx, DebugFunctionDecl, 425 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 426 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 427 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 428 } else { 429 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 430 II, ArgType, ImplicitParamDecl::Other); 431 } 432 Args.emplace_back(Arg); 433 // Do not cast arguments if we emit function with non-original types. 434 TargetArgs.emplace_back( 435 FO.UIntPtrCastRequired 436 ? Arg 437 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 438 ++I; 439 } 440 Args.append( 441 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 442 CD->param_end()); 443 TargetArgs.append( 444 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 445 CD->param_end()); 446 447 // Create the function declaration. 448 const CGFunctionInfo &FuncInfo = 449 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 450 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 451 452 auto *F = 453 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 454 FO.FunctionName, &CGM.getModule()); 455 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 456 if (CD->isNothrow()) 457 F->setDoesNotThrow(); 458 F->setDoesNotRecurse(); 459 460 // Generate the function. 461 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 462 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 463 unsigned Cnt = CD->getContextParamPosition(); 464 I = FO.S->captures().begin(); 465 for (const FieldDecl *FD : RD->fields()) { 466 // Do not map arguments if we emit function with non-original types. 467 Address LocalAddr(Address::invalid()); 468 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 469 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 470 TargetArgs[Cnt]); 471 } else { 472 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 473 } 474 // If we are capturing a pointer by copy we don't need to do anything, just 475 // use the value that we get from the arguments. 476 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 477 const VarDecl *CurVD = I->getCapturedVar(); 478 // If the variable is a reference we need to materialize it here. 479 if (CurVD->getType()->isReferenceType()) { 480 Address RefAddr = CGF.CreateMemTemp( 481 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 482 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 483 /*Volatile=*/false, CurVD->getType()); 484 LocalAddr = RefAddr; 485 } 486 if (!FO.RegisterCastedArgsOnly) 487 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 488 ++Cnt; 489 ++I; 490 continue; 491 } 492 493 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 494 AlignmentSource::Decl); 495 if (FD->hasCapturedVLAType()) { 496 if (FO.UIntPtrCastRequired) { 497 ArgLVal = CGF.MakeAddrLValue( 498 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 499 Args[Cnt]->getName(), ArgLVal), 500 FD->getType(), AlignmentSource::Decl); 501 } 502 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 503 const VariableArrayType *VAT = FD->getCapturedVLAType(); 504 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 505 } else if (I->capturesVariable()) { 506 const VarDecl *Var = I->getCapturedVar(); 507 QualType VarTy = Var->getType(); 508 Address ArgAddr = ArgLVal.getAddress(); 509 if (!VarTy->isReferenceType()) { 510 if (ArgLVal.getType()->isLValueReferenceType()) { 511 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 512 } else if (!VarTy->isVariablyModifiedType() || 513 !VarTy->isPointerType()) { 514 assert(ArgLVal.getType()->isPointerType()); 515 ArgAddr = CGF.EmitLoadOfPointer( 516 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 517 } 518 } 519 if (!FO.RegisterCastedArgsOnly) { 520 LocalAddrs.insert( 521 {Args[Cnt], 522 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 523 } 524 } else if (I->capturesVariableByCopy()) { 525 assert(!FD->getType()->isAnyPointerType() && 526 "Not expecting a captured pointer."); 527 const VarDecl *Var = I->getCapturedVar(); 528 QualType VarTy = Var->getType(); 529 LocalAddrs.insert( 530 {Args[Cnt], 531 {Var, FO.UIntPtrCastRequired 532 ? castValueFromUintptr(CGF, I->getLocation(), 533 FD->getType(), Args[Cnt]->getName(), 534 ArgLVal, VarTy->isReferenceType()) 535 : ArgLVal.getAddress()}}); 536 } else { 537 // If 'this' is captured, load it into CXXThisValue. 538 assert(I->capturesThis()); 539 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 540 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 541 } 542 ++Cnt; 543 ++I; 544 } 545 546 return F; 547 } 548 549 llvm::Function * 550 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 551 assert( 552 CapturedStmtInfo && 553 "CapturedStmtInfo should be set when generating the captured function"); 554 const CapturedDecl *CD = S.getCapturedDecl(); 555 // Build the argument list. 556 bool NeedWrapperFunction = 557 getDebugInfo() && 558 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 559 FunctionArgList Args; 560 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 561 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 562 SmallString<256> Buffer; 563 llvm::raw_svector_ostream Out(Buffer); 564 Out << CapturedStmtInfo->getHelperName(); 565 if (NeedWrapperFunction) 566 Out << "_debug__"; 567 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 568 Out.str()); 569 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 570 VLASizes, CXXThisValue, FO); 571 for (const auto &LocalAddrPair : LocalAddrs) { 572 if (LocalAddrPair.second.first) { 573 setAddrOfLocalVar(LocalAddrPair.second.first, 574 LocalAddrPair.second.second); 575 } 576 } 577 for (const auto &VLASizePair : VLASizes) 578 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 579 PGO.assignRegionCounters(GlobalDecl(CD), F); 580 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 581 FinishFunction(CD->getBodyRBrace()); 582 if (!NeedWrapperFunction) 583 return F; 584 585 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 586 /*RegisterCastedArgsOnly=*/true, 587 CapturedStmtInfo->getHelperName()); 588 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 589 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 590 Args.clear(); 591 LocalAddrs.clear(); 592 VLASizes.clear(); 593 llvm::Function *WrapperF = 594 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 595 WrapperCGF.CXXThisValue, WrapperFO); 596 llvm::SmallVector<llvm::Value *, 4> CallArgs; 597 for (const auto *Arg : Args) { 598 llvm::Value *CallArg; 599 auto I = LocalAddrs.find(Arg); 600 if (I != LocalAddrs.end()) { 601 LValue LV = WrapperCGF.MakeAddrLValue( 602 I->second.second, 603 I->second.first ? I->second.first->getType() : Arg->getType(), 604 AlignmentSource::Decl); 605 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 606 } else { 607 auto EI = VLASizes.find(Arg); 608 if (EI != VLASizes.end()) { 609 CallArg = EI->second.second; 610 } else { 611 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 612 Arg->getType(), 613 AlignmentSource::Decl); 614 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 615 } 616 } 617 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 618 } 619 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 620 F, CallArgs); 621 WrapperCGF.FinishFunction(); 622 return WrapperF; 623 } 624 625 //===----------------------------------------------------------------------===// 626 // OpenMP Directive Emission 627 //===----------------------------------------------------------------------===// 628 void CodeGenFunction::EmitOMPAggregateAssign( 629 Address DestAddr, Address SrcAddr, QualType OriginalType, 630 const llvm::function_ref<void(Address, Address)> CopyGen) { 631 // Perform element-by-element initialization. 632 QualType ElementTy; 633 634 // Drill down to the base element type on both arrays. 635 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 636 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 637 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 638 639 llvm::Value *SrcBegin = SrcAddr.getPointer(); 640 llvm::Value *DestBegin = DestAddr.getPointer(); 641 // Cast from pointer to array type to pointer to single element. 642 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 643 // The basic structure here is a while-do loop. 644 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 645 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 646 llvm::Value *IsEmpty = 647 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 648 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 649 650 // Enter the loop body, making that address the current address. 651 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 652 EmitBlock(BodyBB); 653 654 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 655 656 llvm::PHINode *SrcElementPHI = 657 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 658 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 659 Address SrcElementCurrent = 660 Address(SrcElementPHI, 661 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 662 663 llvm::PHINode *DestElementPHI = 664 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 665 DestElementPHI->addIncoming(DestBegin, EntryBB); 666 Address DestElementCurrent = 667 Address(DestElementPHI, 668 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 669 670 // Emit copy. 671 CopyGen(DestElementCurrent, SrcElementCurrent); 672 673 // Shift the address forward by one element. 674 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 675 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 676 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 677 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 678 // Check whether we've reached the end. 679 llvm::Value *Done = 680 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 681 Builder.CreateCondBr(Done, DoneBB, BodyBB); 682 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 683 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 684 685 // Done. 686 EmitBlock(DoneBB, /*IsFinished=*/true); 687 } 688 689 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 690 Address SrcAddr, const VarDecl *DestVD, 691 const VarDecl *SrcVD, const Expr *Copy) { 692 if (OriginalType->isArrayType()) { 693 const auto *BO = dyn_cast<BinaryOperator>(Copy); 694 if (BO && BO->getOpcode() == BO_Assign) { 695 // Perform simple memcpy for simple copying. 696 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 697 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 698 EmitAggregateAssign(Dest, Src, OriginalType); 699 } else { 700 // For arrays with complex element types perform element by element 701 // copying. 702 EmitOMPAggregateAssign( 703 DestAddr, SrcAddr, OriginalType, 704 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 705 // Working with the single array element, so have to remap 706 // destination and source variables to corresponding array 707 // elements. 708 CodeGenFunction::OMPPrivateScope Remap(*this); 709 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 710 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 711 (void)Remap.Privatize(); 712 EmitIgnoredExpr(Copy); 713 }); 714 } 715 } else { 716 // Remap pseudo source variable to private copy. 717 CodeGenFunction::OMPPrivateScope Remap(*this); 718 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 719 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 720 (void)Remap.Privatize(); 721 // Emit copying of the whole variable. 722 EmitIgnoredExpr(Copy); 723 } 724 } 725 726 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 727 OMPPrivateScope &PrivateScope) { 728 if (!HaveInsertPoint()) 729 return false; 730 bool FirstprivateIsLastprivate = false; 731 llvm::DenseSet<const VarDecl *> Lastprivates; 732 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 733 for (const auto *D : C->varlists()) 734 Lastprivates.insert( 735 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 736 } 737 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 738 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 739 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 740 // Force emission of the firstprivate copy if the directive does not emit 741 // outlined function, like omp for, omp simd, omp distribute etc. 742 bool MustEmitFirstprivateCopy = 743 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 744 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 745 auto IRef = C->varlist_begin(); 746 auto InitsRef = C->inits().begin(); 747 for (const Expr *IInit : C->private_copies()) { 748 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 749 bool ThisFirstprivateIsLastprivate = 750 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 751 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 752 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 753 !FD->getType()->isReferenceType()) { 754 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 755 ++IRef; 756 ++InitsRef; 757 continue; 758 } 759 FirstprivateIsLastprivate = 760 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 761 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 762 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 763 const auto *VDInit = 764 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 765 bool IsRegistered; 766 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 767 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 768 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 769 LValue OriginalLVal = EmitLValue(&DRE); 770 QualType Type = VD->getType(); 771 if (Type->isArrayType()) { 772 // Emit VarDecl with copy init for arrays. 773 // Get the address of the original variable captured in current 774 // captured region. 775 IsRegistered = PrivateScope.addPrivate( 776 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 777 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 778 const Expr *Init = VD->getInit(); 779 if (!isa<CXXConstructExpr>(Init) || 780 isTrivialInitializer(Init)) { 781 // Perform simple memcpy. 782 LValue Dest = 783 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 784 EmitAggregateAssign(Dest, OriginalLVal, Type); 785 } else { 786 EmitOMPAggregateAssign( 787 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 788 Type, 789 [this, VDInit, Init](Address DestElement, 790 Address SrcElement) { 791 // Clean up any temporaries needed by the 792 // initialization. 793 RunCleanupsScope InitScope(*this); 794 // Emit initialization for single element. 795 setAddrOfLocalVar(VDInit, SrcElement); 796 EmitAnyExprToMem(Init, DestElement, 797 Init->getType().getQualifiers(), 798 /*IsInitializer*/ false); 799 LocalDeclMap.erase(VDInit); 800 }); 801 } 802 EmitAutoVarCleanups(Emission); 803 return Emission.getAllocatedAddress(); 804 }); 805 } else { 806 Address OriginalAddr = OriginalLVal.getAddress(); 807 IsRegistered = PrivateScope.addPrivate( 808 OrigVD, [this, VDInit, OriginalAddr, VD]() { 809 // Emit private VarDecl with copy init. 810 // Remap temp VDInit variable to the address of the original 811 // variable (for proper handling of captured global variables). 812 setAddrOfLocalVar(VDInit, OriginalAddr); 813 EmitDecl(*VD); 814 LocalDeclMap.erase(VDInit); 815 return GetAddrOfLocalVar(VD); 816 }); 817 } 818 assert(IsRegistered && 819 "firstprivate var already registered as private"); 820 // Silence the warning about unused variable. 821 (void)IsRegistered; 822 } 823 ++IRef; 824 ++InitsRef; 825 } 826 } 827 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 828 } 829 830 void CodeGenFunction::EmitOMPPrivateClause( 831 const OMPExecutableDirective &D, 832 CodeGenFunction::OMPPrivateScope &PrivateScope) { 833 if (!HaveInsertPoint()) 834 return; 835 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 836 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 837 auto IRef = C->varlist_begin(); 838 for (const Expr *IInit : C->private_copies()) { 839 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 840 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 841 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 842 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 843 // Emit private VarDecl with copy init. 844 EmitDecl(*VD); 845 return GetAddrOfLocalVar(VD); 846 }); 847 assert(IsRegistered && "private var already registered as private"); 848 // Silence the warning about unused variable. 849 (void)IsRegistered; 850 } 851 ++IRef; 852 } 853 } 854 } 855 856 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 857 if (!HaveInsertPoint()) 858 return false; 859 // threadprivate_var1 = master_threadprivate_var1; 860 // operator=(threadprivate_var2, master_threadprivate_var2); 861 // ... 862 // __kmpc_barrier(&loc, global_tid); 863 llvm::DenseSet<const VarDecl *> CopiedVars; 864 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 865 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 866 auto IRef = C->varlist_begin(); 867 auto ISrcRef = C->source_exprs().begin(); 868 auto IDestRef = C->destination_exprs().begin(); 869 for (const Expr *AssignOp : C->assignment_ops()) { 870 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 871 QualType Type = VD->getType(); 872 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 873 // Get the address of the master variable. If we are emitting code with 874 // TLS support, the address is passed from the master as field in the 875 // captured declaration. 876 Address MasterAddr = Address::invalid(); 877 if (getLangOpts().OpenMPUseTLS && 878 getContext().getTargetInfo().isTLSSupported()) { 879 assert(CapturedStmtInfo->lookup(VD) && 880 "Copyin threadprivates should have been captured!"); 881 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 882 VK_LValue, (*IRef)->getExprLoc()); 883 MasterAddr = EmitLValue(&DRE).getAddress(); 884 LocalDeclMap.erase(VD); 885 } else { 886 MasterAddr = 887 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 888 : CGM.GetAddrOfGlobal(VD), 889 getContext().getDeclAlign(VD)); 890 } 891 // Get the address of the threadprivate variable. 892 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 893 if (CopiedVars.size() == 1) { 894 // At first check if current thread is a master thread. If it is, no 895 // need to copy data. 896 CopyBegin = createBasicBlock("copyin.not.master"); 897 CopyEnd = createBasicBlock("copyin.not.master.end"); 898 Builder.CreateCondBr( 899 Builder.CreateICmpNE( 900 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 901 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 902 CGM.IntPtrTy)), 903 CopyBegin, CopyEnd); 904 EmitBlock(CopyBegin); 905 } 906 const auto *SrcVD = 907 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 908 const auto *DestVD = 909 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 910 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 911 } 912 ++IRef; 913 ++ISrcRef; 914 ++IDestRef; 915 } 916 } 917 if (CopyEnd) { 918 // Exit out of copying procedure for non-master thread. 919 EmitBlock(CopyEnd, /*IsFinished=*/true); 920 return true; 921 } 922 return false; 923 } 924 925 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 926 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 927 if (!HaveInsertPoint()) 928 return false; 929 bool HasAtLeastOneLastprivate = false; 930 llvm::DenseSet<const VarDecl *> SIMDLCVs; 931 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 932 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 933 for (const Expr *C : LoopDirective->counters()) { 934 SIMDLCVs.insert( 935 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 936 } 937 } 938 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 939 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 940 HasAtLeastOneLastprivate = true; 941 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 942 !getLangOpts().OpenMPSimd) 943 break; 944 auto IRef = C->varlist_begin(); 945 auto IDestRef = C->destination_exprs().begin(); 946 for (const Expr *IInit : C->private_copies()) { 947 // Keep the address of the original variable for future update at the end 948 // of the loop. 949 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 950 // Taskloops do not require additional initialization, it is done in 951 // runtime support library. 952 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 953 const auto *DestVD = 954 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 955 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 956 DeclRefExpr DRE( 957 const_cast<VarDecl *>(OrigVD), 958 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 959 OrigVD) != nullptr, 960 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 961 return EmitLValue(&DRE).getAddress(); 962 }); 963 // Check if the variable is also a firstprivate: in this case IInit is 964 // not generated. Initialization of this variable will happen in codegen 965 // for 'firstprivate' clause. 966 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 967 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 968 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 969 // Emit private VarDecl with copy init. 970 EmitDecl(*VD); 971 return GetAddrOfLocalVar(VD); 972 }); 973 assert(IsRegistered && 974 "lastprivate var already registered as private"); 975 (void)IsRegistered; 976 } 977 } 978 ++IRef; 979 ++IDestRef; 980 } 981 } 982 return HasAtLeastOneLastprivate; 983 } 984 985 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 986 const OMPExecutableDirective &D, bool NoFinals, 987 llvm::Value *IsLastIterCond) { 988 if (!HaveInsertPoint()) 989 return; 990 // Emit following code: 991 // if (<IsLastIterCond>) { 992 // orig_var1 = private_orig_var1; 993 // ... 994 // orig_varn = private_orig_varn; 995 // } 996 llvm::BasicBlock *ThenBB = nullptr; 997 llvm::BasicBlock *DoneBB = nullptr; 998 if (IsLastIterCond) { 999 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1000 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1001 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1002 EmitBlock(ThenBB); 1003 } 1004 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1005 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1006 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1007 auto IC = LoopDirective->counters().begin(); 1008 for (const Expr *F : LoopDirective->finals()) { 1009 const auto *D = 1010 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1011 if (NoFinals) 1012 AlreadyEmittedVars.insert(D); 1013 else 1014 LoopCountersAndUpdates[D] = F; 1015 ++IC; 1016 } 1017 } 1018 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1019 auto IRef = C->varlist_begin(); 1020 auto ISrcRef = C->source_exprs().begin(); 1021 auto IDestRef = C->destination_exprs().begin(); 1022 for (const Expr *AssignOp : C->assignment_ops()) { 1023 const auto *PrivateVD = 1024 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1025 QualType Type = PrivateVD->getType(); 1026 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1027 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1028 // If lastprivate variable is a loop control variable for loop-based 1029 // directive, update its value before copyin back to original 1030 // variable. 1031 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1032 EmitIgnoredExpr(FinalExpr); 1033 const auto *SrcVD = 1034 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1035 const auto *DestVD = 1036 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1037 // Get the address of the original variable. 1038 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1039 // Get the address of the private variable. 1040 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1041 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1042 PrivateAddr = 1043 Address(Builder.CreateLoad(PrivateAddr), 1044 getNaturalTypeAlignment(RefTy->getPointeeType())); 1045 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1046 } 1047 ++IRef; 1048 ++ISrcRef; 1049 ++IDestRef; 1050 } 1051 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1052 EmitIgnoredExpr(PostUpdate); 1053 } 1054 if (IsLastIterCond) 1055 EmitBlock(DoneBB, /*IsFinished=*/true); 1056 } 1057 1058 void CodeGenFunction::EmitOMPReductionClauseInit( 1059 const OMPExecutableDirective &D, 1060 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1061 if (!HaveInsertPoint()) 1062 return; 1063 SmallVector<const Expr *, 4> Shareds; 1064 SmallVector<const Expr *, 4> Privates; 1065 SmallVector<const Expr *, 4> ReductionOps; 1066 SmallVector<const Expr *, 4> LHSs; 1067 SmallVector<const Expr *, 4> RHSs; 1068 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1069 auto IPriv = C->privates().begin(); 1070 auto IRed = C->reduction_ops().begin(); 1071 auto ILHS = C->lhs_exprs().begin(); 1072 auto IRHS = C->rhs_exprs().begin(); 1073 for (const Expr *Ref : C->varlists()) { 1074 Shareds.emplace_back(Ref); 1075 Privates.emplace_back(*IPriv); 1076 ReductionOps.emplace_back(*IRed); 1077 LHSs.emplace_back(*ILHS); 1078 RHSs.emplace_back(*IRHS); 1079 std::advance(IPriv, 1); 1080 std::advance(IRed, 1); 1081 std::advance(ILHS, 1); 1082 std::advance(IRHS, 1); 1083 } 1084 } 1085 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1086 unsigned Count = 0; 1087 auto ILHS = LHSs.begin(); 1088 auto IRHS = RHSs.begin(); 1089 auto IPriv = Privates.begin(); 1090 for (const Expr *IRef : Shareds) { 1091 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1092 // Emit private VarDecl with reduction init. 1093 RedCG.emitSharedLValue(*this, Count); 1094 RedCG.emitAggregateType(*this, Count); 1095 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1096 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1097 RedCG.getSharedLValue(Count), 1098 [&Emission](CodeGenFunction &CGF) { 1099 CGF.EmitAutoVarInit(Emission); 1100 return true; 1101 }); 1102 EmitAutoVarCleanups(Emission); 1103 Address BaseAddr = RedCG.adjustPrivateAddress( 1104 *this, Count, Emission.getAllocatedAddress()); 1105 bool IsRegistered = PrivateScope.addPrivate( 1106 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1107 assert(IsRegistered && "private var already registered as private"); 1108 // Silence the warning about unused variable. 1109 (void)IsRegistered; 1110 1111 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1112 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1113 QualType Type = PrivateVD->getType(); 1114 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1115 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1116 // Store the address of the original variable associated with the LHS 1117 // implicit variable. 1118 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1119 return RedCG.getSharedLValue(Count).getAddress(); 1120 }); 1121 PrivateScope.addPrivate( 1122 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1123 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1124 isa<ArraySubscriptExpr>(IRef)) { 1125 // Store the address of the original variable associated with the LHS 1126 // implicit variable. 1127 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1128 return RedCG.getSharedLValue(Count).getAddress(); 1129 }); 1130 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1131 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1132 ConvertTypeForMem(RHSVD->getType()), 1133 "rhs.begin"); 1134 }); 1135 } else { 1136 QualType Type = PrivateVD->getType(); 1137 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1138 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1139 // Store the address of the original variable associated with the LHS 1140 // implicit variable. 1141 if (IsArray) { 1142 OriginalAddr = Builder.CreateElementBitCast( 1143 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1144 } 1145 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1146 PrivateScope.addPrivate( 1147 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1148 return IsArray 1149 ? Builder.CreateElementBitCast( 1150 GetAddrOfLocalVar(PrivateVD), 1151 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1152 : GetAddrOfLocalVar(PrivateVD); 1153 }); 1154 } 1155 ++ILHS; 1156 ++IRHS; 1157 ++IPriv; 1158 ++Count; 1159 } 1160 } 1161 1162 void CodeGenFunction::EmitOMPReductionClauseFinal( 1163 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1164 if (!HaveInsertPoint()) 1165 return; 1166 llvm::SmallVector<const Expr *, 8> Privates; 1167 llvm::SmallVector<const Expr *, 8> LHSExprs; 1168 llvm::SmallVector<const Expr *, 8> RHSExprs; 1169 llvm::SmallVector<const Expr *, 8> ReductionOps; 1170 bool HasAtLeastOneReduction = false; 1171 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1172 HasAtLeastOneReduction = true; 1173 Privates.append(C->privates().begin(), C->privates().end()); 1174 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1175 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1176 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1177 } 1178 if (HasAtLeastOneReduction) { 1179 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1180 isOpenMPParallelDirective(D.getDirectiveKind()) || 1181 ReductionKind == OMPD_simd; 1182 bool SimpleReduction = ReductionKind == OMPD_simd; 1183 // Emit nowait reduction if nowait clause is present or directive is a 1184 // parallel directive (it always has implicit barrier). 1185 CGM.getOpenMPRuntime().emitReduction( 1186 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1187 {WithNowait, SimpleReduction, ReductionKind}); 1188 } 1189 } 1190 1191 static void emitPostUpdateForReductionClause( 1192 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1193 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1194 if (!CGF.HaveInsertPoint()) 1195 return; 1196 llvm::BasicBlock *DoneBB = nullptr; 1197 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1198 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1199 if (!DoneBB) { 1200 if (llvm::Value *Cond = CondGen(CGF)) { 1201 // If the first post-update expression is found, emit conditional 1202 // block if it was requested. 1203 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1204 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1205 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1206 CGF.EmitBlock(ThenBB); 1207 } 1208 } 1209 CGF.EmitIgnoredExpr(PostUpdate); 1210 } 1211 } 1212 if (DoneBB) 1213 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1214 } 1215 1216 namespace { 1217 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1218 /// parallel function. This is necessary for combined constructs such as 1219 /// 'distribute parallel for' 1220 typedef llvm::function_ref<void(CodeGenFunction &, 1221 const OMPExecutableDirective &, 1222 llvm::SmallVectorImpl<llvm::Value *> &)> 1223 CodeGenBoundParametersTy; 1224 } // anonymous namespace 1225 1226 static void emitCommonOMPParallelDirective( 1227 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1228 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1229 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1230 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1231 llvm::Value *OutlinedFn = 1232 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1233 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1234 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1235 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1236 llvm::Value *NumThreads = 1237 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1238 /*IgnoreResultAssign=*/true); 1239 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1240 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1241 } 1242 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1243 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1244 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1245 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1246 } 1247 const Expr *IfCond = nullptr; 1248 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1249 if (C->getNameModifier() == OMPD_unknown || 1250 C->getNameModifier() == OMPD_parallel) { 1251 IfCond = C->getCondition(); 1252 break; 1253 } 1254 } 1255 1256 OMPParallelScope Scope(CGF, S); 1257 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1258 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1259 // lower and upper bounds with the pragma 'for' chunking mechanism. 1260 // The following lambda takes care of appending the lower and upper bound 1261 // parameters when necessary 1262 CodeGenBoundParameters(CGF, S, CapturedVars); 1263 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1264 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1265 CapturedVars, IfCond); 1266 } 1267 1268 static void emitEmptyBoundParameters(CodeGenFunction &, 1269 const OMPExecutableDirective &, 1270 llvm::SmallVectorImpl<llvm::Value *> &) {} 1271 1272 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1273 // Emit parallel region as a standalone region. 1274 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1275 Action.Enter(CGF); 1276 OMPPrivateScope PrivateScope(CGF); 1277 bool Copyins = CGF.EmitOMPCopyinClause(S); 1278 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1279 if (Copyins) { 1280 // Emit implicit barrier to synchronize threads and avoid data races on 1281 // propagation master's thread values of threadprivate variables to local 1282 // instances of that variables of all other implicit threads. 1283 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1284 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1285 /*ForceSimpleCall=*/true); 1286 } 1287 CGF.EmitOMPPrivateClause(S, PrivateScope); 1288 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1289 (void)PrivateScope.Privatize(); 1290 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1291 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1292 }; 1293 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1294 emitEmptyBoundParameters); 1295 emitPostUpdateForReductionClause(*this, S, 1296 [](CodeGenFunction &) { return nullptr; }); 1297 } 1298 1299 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1300 JumpDest LoopExit) { 1301 RunCleanupsScope BodyScope(*this); 1302 // Update counters values on current iteration. 1303 for (const Expr *UE : D.updates()) 1304 EmitIgnoredExpr(UE); 1305 // Update the linear variables. 1306 // In distribute directives only loop counters may be marked as linear, no 1307 // need to generate the code for them. 1308 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1309 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1310 for (const Expr *UE : C->updates()) 1311 EmitIgnoredExpr(UE); 1312 } 1313 } 1314 1315 // On a continue in the body, jump to the end. 1316 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1317 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1318 // Emit loop body. 1319 EmitStmt(D.getBody()); 1320 // The end (updates/cleanups). 1321 EmitBlock(Continue.getBlock()); 1322 BreakContinueStack.pop_back(); 1323 } 1324 1325 void CodeGenFunction::EmitOMPInnerLoop( 1326 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1327 const Expr *IncExpr, 1328 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1329 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1330 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1331 1332 // Start the loop with a block that tests the condition. 1333 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1334 EmitBlock(CondBlock); 1335 const SourceRange R = S.getSourceRange(); 1336 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1337 SourceLocToDebugLoc(R.getEnd())); 1338 1339 // If there are any cleanups between here and the loop-exit scope, 1340 // create a block to stage a loop exit along. 1341 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1342 if (RequiresCleanup) 1343 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1344 1345 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1346 1347 // Emit condition. 1348 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1349 if (ExitBlock != LoopExit.getBlock()) { 1350 EmitBlock(ExitBlock); 1351 EmitBranchThroughCleanup(LoopExit); 1352 } 1353 1354 EmitBlock(LoopBody); 1355 incrementProfileCounter(&S); 1356 1357 // Create a block for the increment. 1358 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1359 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1360 1361 BodyGen(*this); 1362 1363 // Emit "IV = IV + 1" and a back-edge to the condition block. 1364 EmitBlock(Continue.getBlock()); 1365 EmitIgnoredExpr(IncExpr); 1366 PostIncGen(*this); 1367 BreakContinueStack.pop_back(); 1368 EmitBranch(CondBlock); 1369 LoopStack.pop(); 1370 // Emit the fall-through block. 1371 EmitBlock(LoopExit.getBlock()); 1372 } 1373 1374 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1375 if (!HaveInsertPoint()) 1376 return false; 1377 // Emit inits for the linear variables. 1378 bool HasLinears = false; 1379 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1380 for (const Expr *Init : C->inits()) { 1381 HasLinears = true; 1382 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1383 if (const auto *Ref = 1384 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1385 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1386 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1387 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1388 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1389 VD->getInit()->getType(), VK_LValue, 1390 VD->getInit()->getExprLoc()); 1391 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1392 VD->getType()), 1393 /*capturedByInit=*/false); 1394 EmitAutoVarCleanups(Emission); 1395 } else { 1396 EmitVarDecl(*VD); 1397 } 1398 } 1399 // Emit the linear steps for the linear clauses. 1400 // If a step is not constant, it is pre-calculated before the loop. 1401 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1402 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1403 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1404 // Emit calculation of the linear step. 1405 EmitIgnoredExpr(CS); 1406 } 1407 } 1408 return HasLinears; 1409 } 1410 1411 void CodeGenFunction::EmitOMPLinearClauseFinal( 1412 const OMPLoopDirective &D, 1413 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1414 if (!HaveInsertPoint()) 1415 return; 1416 llvm::BasicBlock *DoneBB = nullptr; 1417 // Emit the final values of the linear variables. 1418 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1419 auto IC = C->varlist_begin(); 1420 for (const Expr *F : C->finals()) { 1421 if (!DoneBB) { 1422 if (llvm::Value *Cond = CondGen(*this)) { 1423 // If the first post-update expression is found, emit conditional 1424 // block if it was requested. 1425 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1426 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1427 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1428 EmitBlock(ThenBB); 1429 } 1430 } 1431 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1432 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1433 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1434 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1435 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1436 CodeGenFunction::OMPPrivateScope VarScope(*this); 1437 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1438 (void)VarScope.Privatize(); 1439 EmitIgnoredExpr(F); 1440 ++IC; 1441 } 1442 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1443 EmitIgnoredExpr(PostUpdate); 1444 } 1445 if (DoneBB) 1446 EmitBlock(DoneBB, /*IsFinished=*/true); 1447 } 1448 1449 static void emitAlignedClause(CodeGenFunction &CGF, 1450 const OMPExecutableDirective &D) { 1451 if (!CGF.HaveInsertPoint()) 1452 return; 1453 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1454 unsigned ClauseAlignment = 0; 1455 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1456 auto *AlignmentCI = 1457 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1458 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1459 } 1460 for (const Expr *E : Clause->varlists()) { 1461 unsigned Alignment = ClauseAlignment; 1462 if (Alignment == 0) { 1463 // OpenMP [2.8.1, Description] 1464 // If no optional parameter is specified, implementation-defined default 1465 // alignments for SIMD instructions on the target platforms are assumed. 1466 Alignment = 1467 CGF.getContext() 1468 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1469 E->getType()->getPointeeType())) 1470 .getQuantity(); 1471 } 1472 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1473 "alignment is not power of 2"); 1474 if (Alignment != 0) { 1475 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1476 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1477 } 1478 } 1479 } 1480 } 1481 1482 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1483 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1484 if (!HaveInsertPoint()) 1485 return; 1486 auto I = S.private_counters().begin(); 1487 for (const Expr *E : S.counters()) { 1488 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1489 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1490 // Emit var without initialization. 1491 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1492 EmitAutoVarCleanups(VarEmission); 1493 LocalDeclMap.erase(PrivateVD); 1494 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1495 return VarEmission.getAllocatedAddress(); 1496 }); 1497 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1498 VD->hasGlobalStorage()) { 1499 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1500 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1501 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1502 E->getType(), VK_LValue, E->getExprLoc()); 1503 return EmitLValue(&DRE).getAddress(); 1504 }); 1505 } else { 1506 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1507 return VarEmission.getAllocatedAddress(); 1508 }); 1509 } 1510 ++I; 1511 } 1512 // Privatize extra loop counters used in loops for ordered(n) clauses. 1513 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1514 if (!C->getNumForLoops()) 1515 continue; 1516 for (unsigned I = S.getCollapsedNumber(), 1517 E = C->getLoopNumIterations().size(); 1518 I < E; ++I) { 1519 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1520 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1521 // Override only those variables that are really emitted already. 1522 if (LocalDeclMap.count(VD)) { 1523 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1524 return CreateMemTemp(DRE->getType(), VD->getName()); 1525 }); 1526 } 1527 } 1528 } 1529 } 1530 1531 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1532 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1533 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1534 if (!CGF.HaveInsertPoint()) 1535 return; 1536 { 1537 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1538 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1539 (void)PreCondScope.Privatize(); 1540 // Get initial values of real counters. 1541 for (const Expr *I : S.inits()) { 1542 CGF.EmitIgnoredExpr(I); 1543 } 1544 } 1545 // Check that loop is executed at least one time. 1546 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1547 } 1548 1549 void CodeGenFunction::EmitOMPLinearClause( 1550 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1551 if (!HaveInsertPoint()) 1552 return; 1553 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1554 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1555 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1556 for (const Expr *C : LoopDirective->counters()) { 1557 SIMDLCVs.insert( 1558 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1559 } 1560 } 1561 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1562 auto CurPrivate = C->privates().begin(); 1563 for (const Expr *E : C->varlists()) { 1564 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1565 const auto *PrivateVD = 1566 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1567 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1568 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1569 // Emit private VarDecl with copy init. 1570 EmitVarDecl(*PrivateVD); 1571 return GetAddrOfLocalVar(PrivateVD); 1572 }); 1573 assert(IsRegistered && "linear var already registered as private"); 1574 // Silence the warning about unused variable. 1575 (void)IsRegistered; 1576 } else { 1577 EmitVarDecl(*PrivateVD); 1578 } 1579 ++CurPrivate; 1580 } 1581 } 1582 } 1583 1584 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1585 const OMPExecutableDirective &D, 1586 bool IsMonotonic) { 1587 if (!CGF.HaveInsertPoint()) 1588 return; 1589 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1590 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1591 /*ignoreResult=*/true); 1592 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1593 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1594 // In presence of finite 'safelen', it may be unsafe to mark all 1595 // the memory instructions parallel, because loop-carried 1596 // dependences of 'safelen' iterations are possible. 1597 if (!IsMonotonic) 1598 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1599 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1600 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1601 /*ignoreResult=*/true); 1602 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1603 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1604 // In presence of finite 'safelen', it may be unsafe to mark all 1605 // the memory instructions parallel, because loop-carried 1606 // dependences of 'safelen' iterations are possible. 1607 CGF.LoopStack.setParallel(/*Enable=*/false); 1608 } 1609 } 1610 1611 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1612 bool IsMonotonic) { 1613 // Walk clauses and process safelen/lastprivate. 1614 LoopStack.setParallel(!IsMonotonic); 1615 LoopStack.setVectorizeEnable(); 1616 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1617 } 1618 1619 void CodeGenFunction::EmitOMPSimdFinal( 1620 const OMPLoopDirective &D, 1621 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1622 if (!HaveInsertPoint()) 1623 return; 1624 llvm::BasicBlock *DoneBB = nullptr; 1625 auto IC = D.counters().begin(); 1626 auto IPC = D.private_counters().begin(); 1627 for (const Expr *F : D.finals()) { 1628 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1629 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1630 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1631 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1632 OrigVD->hasGlobalStorage() || CED) { 1633 if (!DoneBB) { 1634 if (llvm::Value *Cond = CondGen(*this)) { 1635 // If the first post-update expression is found, emit conditional 1636 // block if it was requested. 1637 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1638 DoneBB = createBasicBlock(".omp.final.done"); 1639 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1640 EmitBlock(ThenBB); 1641 } 1642 } 1643 Address OrigAddr = Address::invalid(); 1644 if (CED) { 1645 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1646 } else { 1647 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1648 /*RefersToEnclosingVariableOrCapture=*/false, 1649 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1650 OrigAddr = EmitLValue(&DRE).getAddress(); 1651 } 1652 OMPPrivateScope VarScope(*this); 1653 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1654 (void)VarScope.Privatize(); 1655 EmitIgnoredExpr(F); 1656 } 1657 ++IC; 1658 ++IPC; 1659 } 1660 if (DoneBB) 1661 EmitBlock(DoneBB, /*IsFinished=*/true); 1662 } 1663 1664 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1665 const OMPLoopDirective &S, 1666 CodeGenFunction::JumpDest LoopExit) { 1667 CGF.EmitOMPLoopBody(S, LoopExit); 1668 CGF.EmitStopPoint(&S); 1669 } 1670 1671 /// Emit a helper variable and return corresponding lvalue. 1672 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1673 const DeclRefExpr *Helper) { 1674 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1675 CGF.EmitVarDecl(*VDecl); 1676 return CGF.EmitLValue(Helper); 1677 } 1678 1679 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1680 PrePostActionTy &Action) { 1681 Action.Enter(CGF); 1682 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1683 "Expected simd directive"); 1684 OMPLoopScope PreInitScope(CGF, S); 1685 // if (PreCond) { 1686 // for (IV in 0..LastIteration) BODY; 1687 // <Final counter/linear vars updates>; 1688 // } 1689 // 1690 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1691 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1692 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1693 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1694 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1695 } 1696 1697 // Emit: if (PreCond) - begin. 1698 // If the condition constant folds and can be elided, avoid emitting the 1699 // whole loop. 1700 bool CondConstant; 1701 llvm::BasicBlock *ContBlock = nullptr; 1702 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1703 if (!CondConstant) 1704 return; 1705 } else { 1706 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1707 ContBlock = CGF.createBasicBlock("simd.if.end"); 1708 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1709 CGF.getProfileCount(&S)); 1710 CGF.EmitBlock(ThenBlock); 1711 CGF.incrementProfileCounter(&S); 1712 } 1713 1714 // Emit the loop iteration variable. 1715 const Expr *IVExpr = S.getIterationVariable(); 1716 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1717 CGF.EmitVarDecl(*IVDecl); 1718 CGF.EmitIgnoredExpr(S.getInit()); 1719 1720 // Emit the iterations count variable. 1721 // If it is not a variable, Sema decided to calculate iterations count on 1722 // each iteration (e.g., it is foldable into a constant). 1723 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1724 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1725 // Emit calculation of the iterations count. 1726 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1727 } 1728 1729 CGF.EmitOMPSimdInit(S); 1730 1731 emitAlignedClause(CGF, S); 1732 (void)CGF.EmitOMPLinearClauseInit(S); 1733 { 1734 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1735 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1736 CGF.EmitOMPLinearClause(S, LoopScope); 1737 CGF.EmitOMPPrivateClause(S, LoopScope); 1738 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1739 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1740 (void)LoopScope.Privatize(); 1741 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1742 S.getInc(), 1743 [&S](CodeGenFunction &CGF) { 1744 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1745 CGF.EmitStopPoint(&S); 1746 }, 1747 [](CodeGenFunction &) {}); 1748 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1749 // Emit final copy of the lastprivate variables at the end of loops. 1750 if (HasLastprivateClause) 1751 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1752 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1753 emitPostUpdateForReductionClause(CGF, S, 1754 [](CodeGenFunction &) { return nullptr; }); 1755 } 1756 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1757 // Emit: if (PreCond) - end. 1758 if (ContBlock) { 1759 CGF.EmitBranch(ContBlock); 1760 CGF.EmitBlock(ContBlock, true); 1761 } 1762 } 1763 1764 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1765 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1766 emitOMPSimdRegion(CGF, S, Action); 1767 }; 1768 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1769 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1770 } 1771 1772 void CodeGenFunction::EmitOMPOuterLoop( 1773 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1774 CodeGenFunction::OMPPrivateScope &LoopScope, 1775 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1776 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1777 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1778 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1779 1780 const Expr *IVExpr = S.getIterationVariable(); 1781 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1782 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1783 1784 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1785 1786 // Start the loop with a block that tests the condition. 1787 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1788 EmitBlock(CondBlock); 1789 const SourceRange R = S.getSourceRange(); 1790 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1791 SourceLocToDebugLoc(R.getEnd())); 1792 1793 llvm::Value *BoolCondVal = nullptr; 1794 if (!DynamicOrOrdered) { 1795 // UB = min(UB, GlobalUB) or 1796 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1797 // 'distribute parallel for') 1798 EmitIgnoredExpr(LoopArgs.EUB); 1799 // IV = LB 1800 EmitIgnoredExpr(LoopArgs.Init); 1801 // IV < UB 1802 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1803 } else { 1804 BoolCondVal = 1805 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1806 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1807 } 1808 1809 // If there are any cleanups between here and the loop-exit scope, 1810 // create a block to stage a loop exit along. 1811 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1812 if (LoopScope.requiresCleanups()) 1813 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1814 1815 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1816 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1817 if (ExitBlock != LoopExit.getBlock()) { 1818 EmitBlock(ExitBlock); 1819 EmitBranchThroughCleanup(LoopExit); 1820 } 1821 EmitBlock(LoopBody); 1822 1823 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1824 // LB for loop condition and emitted it above). 1825 if (DynamicOrOrdered) 1826 EmitIgnoredExpr(LoopArgs.Init); 1827 1828 // Create a block for the increment. 1829 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1830 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1831 1832 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1833 // with dynamic/guided scheduling and without ordered clause. 1834 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1835 LoopStack.setParallel(!IsMonotonic); 1836 else 1837 EmitOMPSimdInit(S, IsMonotonic); 1838 1839 SourceLocation Loc = S.getBeginLoc(); 1840 1841 // when 'distribute' is not combined with a 'for': 1842 // while (idx <= UB) { BODY; ++idx; } 1843 // when 'distribute' is combined with a 'for' 1844 // (e.g. 'distribute parallel for') 1845 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1846 EmitOMPInnerLoop( 1847 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1848 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1849 CodeGenLoop(CGF, S, LoopExit); 1850 }, 1851 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1852 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1853 }); 1854 1855 EmitBlock(Continue.getBlock()); 1856 BreakContinueStack.pop_back(); 1857 if (!DynamicOrOrdered) { 1858 // Emit "LB = LB + Stride", "UB = UB + Stride". 1859 EmitIgnoredExpr(LoopArgs.NextLB); 1860 EmitIgnoredExpr(LoopArgs.NextUB); 1861 } 1862 1863 EmitBranch(CondBlock); 1864 LoopStack.pop(); 1865 // Emit the fall-through block. 1866 EmitBlock(LoopExit.getBlock()); 1867 1868 // Tell the runtime we are done. 1869 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1870 if (!DynamicOrOrdered) 1871 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 1872 S.getDirectiveKind()); 1873 }; 1874 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1875 } 1876 1877 void CodeGenFunction::EmitOMPForOuterLoop( 1878 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1879 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1880 const OMPLoopArguments &LoopArgs, 1881 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1882 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1883 1884 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1885 const bool DynamicOrOrdered = 1886 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1887 1888 assert((Ordered || 1889 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1890 LoopArgs.Chunk != nullptr)) && 1891 "static non-chunked schedule does not need outer loop"); 1892 1893 // Emit outer loop. 1894 // 1895 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1896 // When schedule(dynamic,chunk_size) is specified, the iterations are 1897 // distributed to threads in the team in chunks as the threads request them. 1898 // Each thread executes a chunk of iterations, then requests another chunk, 1899 // until no chunks remain to be distributed. Each chunk contains chunk_size 1900 // iterations, except for the last chunk to be distributed, which may have 1901 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1902 // 1903 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1904 // to threads in the team in chunks as the executing threads request them. 1905 // Each thread executes a chunk of iterations, then requests another chunk, 1906 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1907 // each chunk is proportional to the number of unassigned iterations divided 1908 // by the number of threads in the team, decreasing to 1. For a chunk_size 1909 // with value k (greater than 1), the size of each chunk is determined in the 1910 // same way, with the restriction that the chunks do not contain fewer than k 1911 // iterations (except for the last chunk to be assigned, which may have fewer 1912 // than k iterations). 1913 // 1914 // When schedule(auto) is specified, the decision regarding scheduling is 1915 // delegated to the compiler and/or runtime system. The programmer gives the 1916 // implementation the freedom to choose any possible mapping of iterations to 1917 // threads in the team. 1918 // 1919 // When schedule(runtime) is specified, the decision regarding scheduling is 1920 // deferred until run time, and the schedule and chunk size are taken from the 1921 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1922 // implementation defined 1923 // 1924 // while(__kmpc_dispatch_next(&LB, &UB)) { 1925 // idx = LB; 1926 // while (idx <= UB) { BODY; ++idx; 1927 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1928 // } // inner loop 1929 // } 1930 // 1931 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1932 // When schedule(static, chunk_size) is specified, iterations are divided into 1933 // chunks of size chunk_size, and the chunks are assigned to the threads in 1934 // the team in a round-robin fashion in the order of the thread number. 1935 // 1936 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1937 // while (idx <= UB) { BODY; ++idx; } // inner loop 1938 // LB = LB + ST; 1939 // UB = UB + ST; 1940 // } 1941 // 1942 1943 const Expr *IVExpr = S.getIterationVariable(); 1944 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1945 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1946 1947 if (DynamicOrOrdered) { 1948 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 1949 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1950 llvm::Value *LBVal = DispatchBounds.first; 1951 llvm::Value *UBVal = DispatchBounds.second; 1952 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1953 LoopArgs.Chunk}; 1954 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 1955 IVSigned, Ordered, DipatchRTInputValues); 1956 } else { 1957 CGOpenMPRuntime::StaticRTInput StaticInit( 1958 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1959 LoopArgs.ST, LoopArgs.Chunk); 1960 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 1961 ScheduleKind, StaticInit); 1962 } 1963 1964 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1965 const unsigned IVSize, 1966 const bool IVSigned) { 1967 if (Ordered) { 1968 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1969 IVSigned); 1970 } 1971 }; 1972 1973 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1974 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1975 OuterLoopArgs.IncExpr = S.getInc(); 1976 OuterLoopArgs.Init = S.getInit(); 1977 OuterLoopArgs.Cond = S.getCond(); 1978 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1979 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1980 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1981 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1982 } 1983 1984 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1985 const unsigned IVSize, const bool IVSigned) {} 1986 1987 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1988 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1989 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1990 const CodeGenLoopTy &CodeGenLoopContent) { 1991 1992 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1993 1994 // Emit outer loop. 1995 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1996 // dynamic 1997 // 1998 1999 const Expr *IVExpr = S.getIterationVariable(); 2000 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2001 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2002 2003 CGOpenMPRuntime::StaticRTInput StaticInit( 2004 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2005 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2006 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2007 2008 // for combined 'distribute' and 'for' the increment expression of distribute 2009 // is store in DistInc. For 'distribute' alone, it is in Inc. 2010 Expr *IncExpr; 2011 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2012 IncExpr = S.getDistInc(); 2013 else 2014 IncExpr = S.getInc(); 2015 2016 // this routine is shared by 'omp distribute parallel for' and 2017 // 'omp distribute': select the right EUB expression depending on the 2018 // directive 2019 OMPLoopArguments OuterLoopArgs; 2020 OuterLoopArgs.LB = LoopArgs.LB; 2021 OuterLoopArgs.UB = LoopArgs.UB; 2022 OuterLoopArgs.ST = LoopArgs.ST; 2023 OuterLoopArgs.IL = LoopArgs.IL; 2024 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2025 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2026 ? S.getCombinedEnsureUpperBound() 2027 : S.getEnsureUpperBound(); 2028 OuterLoopArgs.IncExpr = IncExpr; 2029 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2030 ? S.getCombinedInit() 2031 : S.getInit(); 2032 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2033 ? S.getCombinedCond() 2034 : S.getCond(); 2035 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2036 ? S.getCombinedNextLowerBound() 2037 : S.getNextLowerBound(); 2038 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2039 ? S.getCombinedNextUpperBound() 2040 : S.getNextUpperBound(); 2041 2042 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2043 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2044 emitEmptyOrdered); 2045 } 2046 2047 static std::pair<LValue, LValue> 2048 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2049 const OMPExecutableDirective &S) { 2050 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2051 LValue LB = 2052 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2053 LValue UB = 2054 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2055 2056 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2057 // parallel for') we need to use the 'distribute' 2058 // chunk lower and upper bounds rather than the whole loop iteration 2059 // space. These are parameters to the outlined function for 'parallel' 2060 // and we copy the bounds of the previous schedule into the 2061 // the current ones. 2062 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2063 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2064 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2065 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2066 PrevLBVal = CGF.EmitScalarConversion( 2067 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2068 LS.getIterationVariable()->getType(), 2069 LS.getPrevLowerBoundVariable()->getExprLoc()); 2070 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2071 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2072 PrevUBVal = CGF.EmitScalarConversion( 2073 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2074 LS.getIterationVariable()->getType(), 2075 LS.getPrevUpperBoundVariable()->getExprLoc()); 2076 2077 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2078 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2079 2080 return {LB, UB}; 2081 } 2082 2083 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2084 /// we need to use the LB and UB expressions generated by the worksharing 2085 /// code generation support, whereas in non combined situations we would 2086 /// just emit 0 and the LastIteration expression 2087 /// This function is necessary due to the difference of the LB and UB 2088 /// types for the RT emission routines for 'for_static_init' and 2089 /// 'for_dispatch_init' 2090 static std::pair<llvm::Value *, llvm::Value *> 2091 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2092 const OMPExecutableDirective &S, 2093 Address LB, Address UB) { 2094 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2095 const Expr *IVExpr = LS.getIterationVariable(); 2096 // when implementing a dynamic schedule for a 'for' combined with a 2097 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2098 // is not normalized as each team only executes its own assigned 2099 // distribute chunk 2100 QualType IteratorTy = IVExpr->getType(); 2101 llvm::Value *LBVal = 2102 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2103 llvm::Value *UBVal = 2104 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2105 return {LBVal, UBVal}; 2106 } 2107 2108 static void emitDistributeParallelForDistributeInnerBoundParams( 2109 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2110 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2111 const auto &Dir = cast<OMPLoopDirective>(S); 2112 LValue LB = 2113 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2114 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2115 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2116 CapturedVars.push_back(LBCast); 2117 LValue UB = 2118 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2119 2120 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2121 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2122 CapturedVars.push_back(UBCast); 2123 } 2124 2125 static void 2126 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2127 const OMPLoopDirective &S, 2128 CodeGenFunction::JumpDest LoopExit) { 2129 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2130 PrePostActionTy &Action) { 2131 Action.Enter(CGF); 2132 bool HasCancel = false; 2133 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2134 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2135 HasCancel = D->hasCancel(); 2136 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2137 HasCancel = D->hasCancel(); 2138 else if (const auto *D = 2139 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2140 HasCancel = D->hasCancel(); 2141 } 2142 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2143 HasCancel); 2144 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2145 emitDistributeParallelForInnerBounds, 2146 emitDistributeParallelForDispatchBounds); 2147 }; 2148 2149 emitCommonOMPParallelDirective( 2150 CGF, S, 2151 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2152 CGInlinedWorksharingLoop, 2153 emitDistributeParallelForDistributeInnerBoundParams); 2154 } 2155 2156 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2157 const OMPDistributeParallelForDirective &S) { 2158 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2159 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2160 S.getDistInc()); 2161 }; 2162 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2163 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2164 } 2165 2166 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2167 const OMPDistributeParallelForSimdDirective &S) { 2168 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2169 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2170 S.getDistInc()); 2171 }; 2172 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2173 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2174 } 2175 2176 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2177 const OMPDistributeSimdDirective &S) { 2178 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2179 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2180 }; 2181 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2182 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2183 } 2184 2185 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2186 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2187 // Emit SPMD target parallel for region as a standalone region. 2188 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2189 emitOMPSimdRegion(CGF, S, Action); 2190 }; 2191 llvm::Function *Fn; 2192 llvm::Constant *Addr; 2193 // Emit target region as a standalone region. 2194 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2195 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2196 assert(Fn && Addr && "Target device function emission failed."); 2197 } 2198 2199 void CodeGenFunction::EmitOMPTargetSimdDirective( 2200 const OMPTargetSimdDirective &S) { 2201 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2202 emitOMPSimdRegion(CGF, S, Action); 2203 }; 2204 emitCommonOMPTargetDirective(*this, S, CodeGen); 2205 } 2206 2207 namespace { 2208 struct ScheduleKindModifiersTy { 2209 OpenMPScheduleClauseKind Kind; 2210 OpenMPScheduleClauseModifier M1; 2211 OpenMPScheduleClauseModifier M2; 2212 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2213 OpenMPScheduleClauseModifier M1, 2214 OpenMPScheduleClauseModifier M2) 2215 : Kind(Kind), M1(M1), M2(M2) {} 2216 }; 2217 } // namespace 2218 2219 bool CodeGenFunction::EmitOMPWorksharingLoop( 2220 const OMPLoopDirective &S, Expr *EUB, 2221 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2222 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2223 // Emit the loop iteration variable. 2224 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2225 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2226 EmitVarDecl(*IVDecl); 2227 2228 // Emit the iterations count variable. 2229 // If it is not a variable, Sema decided to calculate iterations count on each 2230 // iteration (e.g., it is foldable into a constant). 2231 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2232 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2233 // Emit calculation of the iterations count. 2234 EmitIgnoredExpr(S.getCalcLastIteration()); 2235 } 2236 2237 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2238 2239 bool HasLastprivateClause; 2240 // Check pre-condition. 2241 { 2242 OMPLoopScope PreInitScope(*this, S); 2243 // Skip the entire loop if we don't meet the precondition. 2244 // If the condition constant folds and can be elided, avoid emitting the 2245 // whole loop. 2246 bool CondConstant; 2247 llvm::BasicBlock *ContBlock = nullptr; 2248 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2249 if (!CondConstant) 2250 return false; 2251 } else { 2252 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2253 ContBlock = createBasicBlock("omp.precond.end"); 2254 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2255 getProfileCount(&S)); 2256 EmitBlock(ThenBlock); 2257 incrementProfileCounter(&S); 2258 } 2259 2260 RunCleanupsScope DoacrossCleanupScope(*this); 2261 bool Ordered = false; 2262 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2263 if (OrderedClause->getNumForLoops()) 2264 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2265 else 2266 Ordered = true; 2267 } 2268 2269 llvm::DenseSet<const Expr *> EmittedFinals; 2270 emitAlignedClause(*this, S); 2271 bool HasLinears = EmitOMPLinearClauseInit(S); 2272 // Emit helper vars inits. 2273 2274 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2275 LValue LB = Bounds.first; 2276 LValue UB = Bounds.second; 2277 LValue ST = 2278 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2279 LValue IL = 2280 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2281 2282 // Emit 'then' code. 2283 { 2284 OMPPrivateScope LoopScope(*this); 2285 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2286 // Emit implicit barrier to synchronize threads and avoid data races on 2287 // initialization of firstprivate variables and post-update of 2288 // lastprivate variables. 2289 CGM.getOpenMPRuntime().emitBarrierCall( 2290 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2291 /*ForceSimpleCall=*/true); 2292 } 2293 EmitOMPPrivateClause(S, LoopScope); 2294 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2295 EmitOMPReductionClauseInit(S, LoopScope); 2296 EmitOMPPrivateLoopCounters(S, LoopScope); 2297 EmitOMPLinearClause(S, LoopScope); 2298 (void)LoopScope.Privatize(); 2299 2300 // Detect the loop schedule kind and chunk. 2301 llvm::Value *Chunk = nullptr; 2302 OpenMPScheduleTy ScheduleKind; 2303 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2304 ScheduleKind.Schedule = C->getScheduleKind(); 2305 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2306 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2307 if (const Expr *Ch = C->getChunkSize()) { 2308 Chunk = EmitScalarExpr(Ch); 2309 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2310 S.getIterationVariable()->getType(), 2311 S.getBeginLoc()); 2312 } 2313 } 2314 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2315 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2316 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2317 // If the static schedule kind is specified or if the ordered clause is 2318 // specified, and if no monotonic modifier is specified, the effect will 2319 // be as if the monotonic modifier was specified. 2320 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2321 /* Chunked */ Chunk != nullptr) && 2322 !Ordered) { 2323 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2324 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2325 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2326 // When no chunk_size is specified, the iteration space is divided into 2327 // chunks that are approximately equal in size, and at most one chunk is 2328 // distributed to each thread. Note that the size of the chunks is 2329 // unspecified in this case. 2330 CGOpenMPRuntime::StaticRTInput StaticInit( 2331 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2332 UB.getAddress(), ST.getAddress()); 2333 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2334 ScheduleKind, StaticInit); 2335 JumpDest LoopExit = 2336 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2337 // UB = min(UB, GlobalUB); 2338 EmitIgnoredExpr(S.getEnsureUpperBound()); 2339 // IV = LB; 2340 EmitIgnoredExpr(S.getInit()); 2341 // while (idx <= UB) { BODY; ++idx; } 2342 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2343 S.getInc(), 2344 [&S, LoopExit](CodeGenFunction &CGF) { 2345 CGF.EmitOMPLoopBody(S, LoopExit); 2346 CGF.EmitStopPoint(&S); 2347 }, 2348 [](CodeGenFunction &) {}); 2349 EmitBlock(LoopExit.getBlock()); 2350 // Tell the runtime we are done. 2351 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2352 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2353 S.getDirectiveKind()); 2354 }; 2355 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2356 } else { 2357 const bool IsMonotonic = 2358 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2359 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2360 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2361 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2362 // Emit the outer loop, which requests its work chunk [LB..UB] from 2363 // runtime and runs the inner loop to process it. 2364 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2365 ST.getAddress(), IL.getAddress(), 2366 Chunk, EUB); 2367 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2368 LoopArguments, CGDispatchBounds); 2369 } 2370 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2371 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2372 return CGF.Builder.CreateIsNotNull( 2373 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2374 }); 2375 } 2376 EmitOMPReductionClauseFinal( 2377 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2378 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2379 : /*Parallel only*/ OMPD_parallel); 2380 // Emit post-update of the reduction variables if IsLastIter != 0. 2381 emitPostUpdateForReductionClause( 2382 *this, S, [IL, &S](CodeGenFunction &CGF) { 2383 return CGF.Builder.CreateIsNotNull( 2384 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2385 }); 2386 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2387 if (HasLastprivateClause) 2388 EmitOMPLastprivateClauseFinal( 2389 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2390 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2391 } 2392 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2393 return CGF.Builder.CreateIsNotNull( 2394 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2395 }); 2396 DoacrossCleanupScope.ForceCleanup(); 2397 // We're now done with the loop, so jump to the continuation block. 2398 if (ContBlock) { 2399 EmitBranch(ContBlock); 2400 EmitBlock(ContBlock, /*IsFinished=*/true); 2401 } 2402 } 2403 return HasLastprivateClause; 2404 } 2405 2406 /// The following two functions generate expressions for the loop lower 2407 /// and upper bounds in case of static and dynamic (dispatch) schedule 2408 /// of the associated 'for' or 'distribute' loop. 2409 static std::pair<LValue, LValue> 2410 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2411 const auto &LS = cast<OMPLoopDirective>(S); 2412 LValue LB = 2413 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2414 LValue UB = 2415 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2416 return {LB, UB}; 2417 } 2418 2419 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2420 /// consider the lower and upper bound expressions generated by the 2421 /// worksharing loop support, but we use 0 and the iteration space size as 2422 /// constants 2423 static std::pair<llvm::Value *, llvm::Value *> 2424 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2425 Address LB, Address UB) { 2426 const auto &LS = cast<OMPLoopDirective>(S); 2427 const Expr *IVExpr = LS.getIterationVariable(); 2428 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2429 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2430 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2431 return {LBVal, UBVal}; 2432 } 2433 2434 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2435 bool HasLastprivates = false; 2436 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2437 PrePostActionTy &) { 2438 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2439 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2440 emitForLoopBounds, 2441 emitDispatchForLoopBounds); 2442 }; 2443 { 2444 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2445 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2446 S.hasCancel()); 2447 } 2448 2449 // Emit an implicit barrier at the end. 2450 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2451 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2452 } 2453 2454 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2455 bool HasLastprivates = false; 2456 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2457 PrePostActionTy &) { 2458 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2459 emitForLoopBounds, 2460 emitDispatchForLoopBounds); 2461 }; 2462 { 2463 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2464 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2465 } 2466 2467 // Emit an implicit barrier at the end. 2468 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2469 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2470 } 2471 2472 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2473 const Twine &Name, 2474 llvm::Value *Init = nullptr) { 2475 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2476 if (Init) 2477 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2478 return LVal; 2479 } 2480 2481 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2482 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2483 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2484 bool HasLastprivates = false; 2485 auto &&CodeGen = [&S, CapturedStmt, CS, 2486 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2487 ASTContext &C = CGF.getContext(); 2488 QualType KmpInt32Ty = 2489 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2490 // Emit helper vars inits. 2491 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2492 CGF.Builder.getInt32(0)); 2493 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2494 ? CGF.Builder.getInt32(CS->size() - 1) 2495 : CGF.Builder.getInt32(0); 2496 LValue UB = 2497 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2498 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2499 CGF.Builder.getInt32(1)); 2500 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2501 CGF.Builder.getInt32(0)); 2502 // Loop counter. 2503 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2504 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2505 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2506 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2507 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2508 // Generate condition for loop. 2509 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2510 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2511 // Increment for loop counter. 2512 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2513 S.getBeginLoc(), true); 2514 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2515 // Iterate through all sections and emit a switch construct: 2516 // switch (IV) { 2517 // case 0: 2518 // <SectionStmt[0]>; 2519 // break; 2520 // ... 2521 // case <NumSection> - 1: 2522 // <SectionStmt[<NumSection> - 1]>; 2523 // break; 2524 // } 2525 // .omp.sections.exit: 2526 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2527 llvm::SwitchInst *SwitchStmt = 2528 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2529 ExitBB, CS == nullptr ? 1 : CS->size()); 2530 if (CS) { 2531 unsigned CaseNumber = 0; 2532 for (const Stmt *SubStmt : CS->children()) { 2533 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2534 CGF.EmitBlock(CaseBB); 2535 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2536 CGF.EmitStmt(SubStmt); 2537 CGF.EmitBranch(ExitBB); 2538 ++CaseNumber; 2539 } 2540 } else { 2541 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2542 CGF.EmitBlock(CaseBB); 2543 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2544 CGF.EmitStmt(CapturedStmt); 2545 CGF.EmitBranch(ExitBB); 2546 } 2547 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2548 }; 2549 2550 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2551 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2552 // Emit implicit barrier to synchronize threads and avoid data races on 2553 // initialization of firstprivate variables and post-update of lastprivate 2554 // variables. 2555 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2556 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2557 /*ForceSimpleCall=*/true); 2558 } 2559 CGF.EmitOMPPrivateClause(S, LoopScope); 2560 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2561 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2562 (void)LoopScope.Privatize(); 2563 2564 // Emit static non-chunked loop. 2565 OpenMPScheduleTy ScheduleKind; 2566 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2567 CGOpenMPRuntime::StaticRTInput StaticInit( 2568 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2569 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2570 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2571 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2572 // UB = min(UB, GlobalUB); 2573 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2574 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2575 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2576 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2577 // IV = LB; 2578 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2579 // while (idx <= UB) { BODY; ++idx; } 2580 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2581 [](CodeGenFunction &) {}); 2582 // Tell the runtime we are done. 2583 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2584 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2585 S.getDirectiveKind()); 2586 }; 2587 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2588 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2589 // Emit post-update of the reduction variables if IsLastIter != 0. 2590 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2591 return CGF.Builder.CreateIsNotNull( 2592 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2593 }); 2594 2595 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2596 if (HasLastprivates) 2597 CGF.EmitOMPLastprivateClauseFinal( 2598 S, /*NoFinals=*/false, 2599 CGF.Builder.CreateIsNotNull( 2600 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2601 }; 2602 2603 bool HasCancel = false; 2604 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2605 HasCancel = OSD->hasCancel(); 2606 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2607 HasCancel = OPSD->hasCancel(); 2608 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2609 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2610 HasCancel); 2611 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2612 // clause. Otherwise the barrier will be generated by the codegen for the 2613 // directive. 2614 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2615 // Emit implicit barrier to synchronize threads and avoid data races on 2616 // initialization of firstprivate variables. 2617 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2618 OMPD_unknown); 2619 } 2620 } 2621 2622 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2623 { 2624 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2625 EmitSections(S); 2626 } 2627 // Emit an implicit barrier at the end. 2628 if (!S.getSingleClause<OMPNowaitClause>()) { 2629 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2630 OMPD_sections); 2631 } 2632 } 2633 2634 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2635 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2636 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2637 }; 2638 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2639 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2640 S.hasCancel()); 2641 } 2642 2643 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2644 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2645 llvm::SmallVector<const Expr *, 8> DestExprs; 2646 llvm::SmallVector<const Expr *, 8> SrcExprs; 2647 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2648 // Check if there are any 'copyprivate' clauses associated with this 2649 // 'single' construct. 2650 // Build a list of copyprivate variables along with helper expressions 2651 // (<source>, <destination>, <destination>=<source> expressions) 2652 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2653 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2654 DestExprs.append(C->destination_exprs().begin(), 2655 C->destination_exprs().end()); 2656 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2657 AssignmentOps.append(C->assignment_ops().begin(), 2658 C->assignment_ops().end()); 2659 } 2660 // Emit code for 'single' region along with 'copyprivate' clauses 2661 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2662 Action.Enter(CGF); 2663 OMPPrivateScope SingleScope(CGF); 2664 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2665 CGF.EmitOMPPrivateClause(S, SingleScope); 2666 (void)SingleScope.Privatize(); 2667 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2668 }; 2669 { 2670 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2671 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2672 CopyprivateVars, DestExprs, 2673 SrcExprs, AssignmentOps); 2674 } 2675 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2676 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2677 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2678 CGM.getOpenMPRuntime().emitBarrierCall( 2679 *this, S.getBeginLoc(), 2680 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2681 } 2682 } 2683 2684 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2685 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2686 Action.Enter(CGF); 2687 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2688 }; 2689 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2690 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2691 } 2692 2693 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2694 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2695 Action.Enter(CGF); 2696 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2697 }; 2698 const Expr *Hint = nullptr; 2699 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2700 Hint = HintClause->getHint(); 2701 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2702 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2703 S.getDirectiveName().getAsString(), 2704 CodeGen, S.getBeginLoc(), Hint); 2705 } 2706 2707 void CodeGenFunction::EmitOMPParallelForDirective( 2708 const OMPParallelForDirective &S) { 2709 // Emit directive as a combined directive that consists of two implicit 2710 // directives: 'parallel' with 'for' directive. 2711 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2712 Action.Enter(CGF); 2713 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2714 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2715 emitDispatchForLoopBounds); 2716 }; 2717 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2718 emitEmptyBoundParameters); 2719 } 2720 2721 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2722 const OMPParallelForSimdDirective &S) { 2723 // Emit directive as a combined directive that consists of two implicit 2724 // directives: 'parallel' with 'for' directive. 2725 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2726 Action.Enter(CGF); 2727 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2728 emitDispatchForLoopBounds); 2729 }; 2730 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2731 emitEmptyBoundParameters); 2732 } 2733 2734 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2735 const OMPParallelSectionsDirective &S) { 2736 // Emit directive as a combined directive that consists of two implicit 2737 // directives: 'parallel' with 'sections' directive. 2738 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2739 Action.Enter(CGF); 2740 CGF.EmitSections(S); 2741 }; 2742 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2743 emitEmptyBoundParameters); 2744 } 2745 2746 void CodeGenFunction::EmitOMPTaskBasedDirective( 2747 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2748 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2749 OMPTaskDataTy &Data) { 2750 // Emit outlined function for task construct. 2751 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2752 auto I = CS->getCapturedDecl()->param_begin(); 2753 auto PartId = std::next(I); 2754 auto TaskT = std::next(I, 4); 2755 // Check if the task is final 2756 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2757 // If the condition constant folds and can be elided, try to avoid emitting 2758 // the condition and the dead arm of the if/else. 2759 const Expr *Cond = Clause->getCondition(); 2760 bool CondConstant; 2761 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2762 Data.Final.setInt(CondConstant); 2763 else 2764 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2765 } else { 2766 // By default the task is not final. 2767 Data.Final.setInt(/*IntVal=*/false); 2768 } 2769 // Check if the task has 'priority' clause. 2770 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2771 const Expr *Prio = Clause->getPriority(); 2772 Data.Priority.setInt(/*IntVal=*/true); 2773 Data.Priority.setPointer(EmitScalarConversion( 2774 EmitScalarExpr(Prio), Prio->getType(), 2775 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2776 Prio->getExprLoc())); 2777 } 2778 // The first function argument for tasks is a thread id, the second one is a 2779 // part id (0 for tied tasks, >=0 for untied task). 2780 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2781 // Get list of private variables. 2782 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2783 auto IRef = C->varlist_begin(); 2784 for (const Expr *IInit : C->private_copies()) { 2785 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2786 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2787 Data.PrivateVars.push_back(*IRef); 2788 Data.PrivateCopies.push_back(IInit); 2789 } 2790 ++IRef; 2791 } 2792 } 2793 EmittedAsPrivate.clear(); 2794 // Get list of firstprivate variables. 2795 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2796 auto IRef = C->varlist_begin(); 2797 auto IElemInitRef = C->inits().begin(); 2798 for (const Expr *IInit : C->private_copies()) { 2799 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2800 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2801 Data.FirstprivateVars.push_back(*IRef); 2802 Data.FirstprivateCopies.push_back(IInit); 2803 Data.FirstprivateInits.push_back(*IElemInitRef); 2804 } 2805 ++IRef; 2806 ++IElemInitRef; 2807 } 2808 } 2809 // Get list of lastprivate variables (for taskloops). 2810 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2811 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2812 auto IRef = C->varlist_begin(); 2813 auto ID = C->destination_exprs().begin(); 2814 for (const Expr *IInit : C->private_copies()) { 2815 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2816 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2817 Data.LastprivateVars.push_back(*IRef); 2818 Data.LastprivateCopies.push_back(IInit); 2819 } 2820 LastprivateDstsOrigs.insert( 2821 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2822 cast<DeclRefExpr>(*IRef)}); 2823 ++IRef; 2824 ++ID; 2825 } 2826 } 2827 SmallVector<const Expr *, 4> LHSs; 2828 SmallVector<const Expr *, 4> RHSs; 2829 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2830 auto IPriv = C->privates().begin(); 2831 auto IRed = C->reduction_ops().begin(); 2832 auto ILHS = C->lhs_exprs().begin(); 2833 auto IRHS = C->rhs_exprs().begin(); 2834 for (const Expr *Ref : C->varlists()) { 2835 Data.ReductionVars.emplace_back(Ref); 2836 Data.ReductionCopies.emplace_back(*IPriv); 2837 Data.ReductionOps.emplace_back(*IRed); 2838 LHSs.emplace_back(*ILHS); 2839 RHSs.emplace_back(*IRHS); 2840 std::advance(IPriv, 1); 2841 std::advance(IRed, 1); 2842 std::advance(ILHS, 1); 2843 std::advance(IRHS, 1); 2844 } 2845 } 2846 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2847 *this, S.getBeginLoc(), LHSs, RHSs, Data); 2848 // Build list of dependences. 2849 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2850 for (const Expr *IRef : C->varlists()) 2851 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 2852 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2853 CapturedRegion](CodeGenFunction &CGF, 2854 PrePostActionTy &Action) { 2855 // Set proper addresses for generated private copies. 2856 OMPPrivateScope Scope(CGF); 2857 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2858 !Data.LastprivateVars.empty()) { 2859 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2860 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 2861 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 2862 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 2863 CS->getCapturedDecl()->getParam(PrivatesParam))); 2864 // Map privates. 2865 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2866 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2867 CallArgs.push_back(PrivatesPtr); 2868 for (const Expr *E : Data.PrivateVars) { 2869 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2870 Address PrivatePtr = CGF.CreateMemTemp( 2871 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2872 PrivatePtrs.emplace_back(VD, PrivatePtr); 2873 CallArgs.push_back(PrivatePtr.getPointer()); 2874 } 2875 for (const Expr *E : Data.FirstprivateVars) { 2876 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2877 Address PrivatePtr = 2878 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2879 ".firstpriv.ptr.addr"); 2880 PrivatePtrs.emplace_back(VD, PrivatePtr); 2881 CallArgs.push_back(PrivatePtr.getPointer()); 2882 } 2883 for (const Expr *E : Data.LastprivateVars) { 2884 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2885 Address PrivatePtr = 2886 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2887 ".lastpriv.ptr.addr"); 2888 PrivatePtrs.emplace_back(VD, PrivatePtr); 2889 CallArgs.push_back(PrivatePtr.getPointer()); 2890 } 2891 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 2892 CopyFn, CallArgs); 2893 for (const auto &Pair : LastprivateDstsOrigs) { 2894 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2895 DeclRefExpr DRE( 2896 const_cast<VarDecl *>(OrigVD), 2897 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2898 OrigVD) != nullptr, 2899 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2900 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2901 return CGF.EmitLValue(&DRE).getAddress(); 2902 }); 2903 } 2904 for (const auto &Pair : PrivatePtrs) { 2905 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2906 CGF.getContext().getDeclAlign(Pair.first)); 2907 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2908 } 2909 } 2910 if (Data.Reductions) { 2911 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2912 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2913 Data.ReductionOps); 2914 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2915 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2916 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2917 RedCG.emitSharedLValue(CGF, Cnt); 2918 RedCG.emitAggregateType(CGF, Cnt); 2919 // FIXME: This must removed once the runtime library is fixed. 2920 // Emit required threadprivate variables for 2921 // initilizer/combiner/finalizer. 2922 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 2923 RedCG, Cnt); 2924 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2925 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2926 Replacement = 2927 Address(CGF.EmitScalarConversion( 2928 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2929 CGF.getContext().getPointerType( 2930 Data.ReductionCopies[Cnt]->getType()), 2931 Data.ReductionCopies[Cnt]->getExprLoc()), 2932 Replacement.getAlignment()); 2933 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2934 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2935 [Replacement]() { return Replacement; }); 2936 } 2937 } 2938 // Privatize all private variables except for in_reduction items. 2939 (void)Scope.Privatize(); 2940 SmallVector<const Expr *, 4> InRedVars; 2941 SmallVector<const Expr *, 4> InRedPrivs; 2942 SmallVector<const Expr *, 4> InRedOps; 2943 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2944 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2945 auto IPriv = C->privates().begin(); 2946 auto IRed = C->reduction_ops().begin(); 2947 auto ITD = C->taskgroup_descriptors().begin(); 2948 for (const Expr *Ref : C->varlists()) { 2949 InRedVars.emplace_back(Ref); 2950 InRedPrivs.emplace_back(*IPriv); 2951 InRedOps.emplace_back(*IRed); 2952 TaskgroupDescriptors.emplace_back(*ITD); 2953 std::advance(IPriv, 1); 2954 std::advance(IRed, 1); 2955 std::advance(ITD, 1); 2956 } 2957 } 2958 // Privatize in_reduction items here, because taskgroup descriptors must be 2959 // privatized earlier. 2960 OMPPrivateScope InRedScope(CGF); 2961 if (!InRedVars.empty()) { 2962 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 2963 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 2964 RedCG.emitSharedLValue(CGF, Cnt); 2965 RedCG.emitAggregateType(CGF, Cnt); 2966 // The taskgroup descriptor variable is always implicit firstprivate and 2967 // privatized already during procoessing of the firstprivates. 2968 // FIXME: This must removed once the runtime library is fixed. 2969 // Emit required threadprivate variables for 2970 // initilizer/combiner/finalizer. 2971 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 2972 RedCG, Cnt); 2973 llvm::Value *ReductionsPtr = 2974 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 2975 TaskgroupDescriptors[Cnt]->getExprLoc()); 2976 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2977 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2978 Replacement = Address( 2979 CGF.EmitScalarConversion( 2980 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2981 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 2982 InRedPrivs[Cnt]->getExprLoc()), 2983 Replacement.getAlignment()); 2984 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2985 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 2986 [Replacement]() { return Replacement; }); 2987 } 2988 } 2989 (void)InRedScope.Privatize(); 2990 2991 Action.Enter(CGF); 2992 BodyGen(CGF); 2993 }; 2994 llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2995 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2996 Data.NumberOfParts); 2997 OMPLexicalScope Scope(*this, S); 2998 TaskGen(*this, OutlinedFn, Data); 2999 } 3000 3001 static ImplicitParamDecl * 3002 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3003 QualType Ty, CapturedDecl *CD, 3004 SourceLocation Loc) { 3005 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3006 ImplicitParamDecl::Other); 3007 auto *OrigRef = DeclRefExpr::Create( 3008 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3009 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3010 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3011 ImplicitParamDecl::Other); 3012 auto *PrivateRef = DeclRefExpr::Create( 3013 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3014 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3015 QualType ElemType = C.getBaseElementType(Ty); 3016 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3017 ImplicitParamDecl::Other); 3018 auto *InitRef = DeclRefExpr::Create( 3019 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3020 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3021 PrivateVD->setInitStyle(VarDecl::CInit); 3022 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3023 InitRef, /*BasePath=*/nullptr, 3024 VK_RValue)); 3025 Data.FirstprivateVars.emplace_back(OrigRef); 3026 Data.FirstprivateCopies.emplace_back(PrivateRef); 3027 Data.FirstprivateInits.emplace_back(InitRef); 3028 return OrigVD; 3029 } 3030 3031 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3032 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3033 OMPTargetDataInfo &InputInfo) { 3034 // Emit outlined function for task construct. 3035 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3036 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3037 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3038 auto I = CS->getCapturedDecl()->param_begin(); 3039 auto PartId = std::next(I); 3040 auto TaskT = std::next(I, 4); 3041 OMPTaskDataTy Data; 3042 // The task is not final. 3043 Data.Final.setInt(/*IntVal=*/false); 3044 // Get list of firstprivate variables. 3045 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3046 auto IRef = C->varlist_begin(); 3047 auto IElemInitRef = C->inits().begin(); 3048 for (auto *IInit : C->private_copies()) { 3049 Data.FirstprivateVars.push_back(*IRef); 3050 Data.FirstprivateCopies.push_back(IInit); 3051 Data.FirstprivateInits.push_back(*IElemInitRef); 3052 ++IRef; 3053 ++IElemInitRef; 3054 } 3055 } 3056 OMPPrivateScope TargetScope(*this); 3057 VarDecl *BPVD = nullptr; 3058 VarDecl *PVD = nullptr; 3059 VarDecl *SVD = nullptr; 3060 if (InputInfo.NumberOfTargetItems > 0) { 3061 auto *CD = CapturedDecl::Create( 3062 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3063 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3064 QualType BaseAndPointersType = getContext().getConstantArrayType( 3065 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3066 /*IndexTypeQuals=*/0); 3067 BPVD = createImplicitFirstprivateForType( 3068 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3069 PVD = createImplicitFirstprivateForType( 3070 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3071 QualType SizesType = getContext().getConstantArrayType( 3072 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3073 /*IndexTypeQuals=*/0); 3074 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3075 S.getBeginLoc()); 3076 TargetScope.addPrivate( 3077 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3078 TargetScope.addPrivate(PVD, 3079 [&InputInfo]() { return InputInfo.PointersArray; }); 3080 TargetScope.addPrivate(SVD, 3081 [&InputInfo]() { return InputInfo.SizesArray; }); 3082 } 3083 (void)TargetScope.Privatize(); 3084 // Build list of dependences. 3085 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3086 for (const Expr *IRef : C->varlists()) 3087 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3088 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3089 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3090 // Set proper addresses for generated private copies. 3091 OMPPrivateScope Scope(CGF); 3092 if (!Data.FirstprivateVars.empty()) { 3093 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3094 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3095 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3096 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3097 CS->getCapturedDecl()->getParam(PrivatesParam))); 3098 // Map privates. 3099 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3100 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3101 CallArgs.push_back(PrivatesPtr); 3102 for (const Expr *E : Data.FirstprivateVars) { 3103 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3104 Address PrivatePtr = 3105 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3106 ".firstpriv.ptr.addr"); 3107 PrivatePtrs.emplace_back(VD, PrivatePtr); 3108 CallArgs.push_back(PrivatePtr.getPointer()); 3109 } 3110 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3111 CopyFn, CallArgs); 3112 for (const auto &Pair : PrivatePtrs) { 3113 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3114 CGF.getContext().getDeclAlign(Pair.first)); 3115 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3116 } 3117 } 3118 // Privatize all private variables except for in_reduction items. 3119 (void)Scope.Privatize(); 3120 if (InputInfo.NumberOfTargetItems > 0) { 3121 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3122 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize()); 3123 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3124 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize()); 3125 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3126 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize()); 3127 } 3128 3129 Action.Enter(CGF); 3130 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3131 BodyGen(CGF); 3132 }; 3133 llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3134 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3135 Data.NumberOfParts); 3136 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3137 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3138 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3139 SourceLocation()); 3140 3141 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3142 SharedsTy, CapturedStruct, &IfCond, Data); 3143 } 3144 3145 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3146 // Emit outlined function for task construct. 3147 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3148 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3149 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3150 const Expr *IfCond = nullptr; 3151 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3152 if (C->getNameModifier() == OMPD_unknown || 3153 C->getNameModifier() == OMPD_task) { 3154 IfCond = C->getCondition(); 3155 break; 3156 } 3157 } 3158 3159 OMPTaskDataTy Data; 3160 // Check if we should emit tied or untied task. 3161 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3162 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3163 CGF.EmitStmt(CS->getCapturedStmt()); 3164 }; 3165 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3166 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3167 const OMPTaskDataTy &Data) { 3168 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3169 SharedsTy, CapturedStruct, IfCond, 3170 Data); 3171 }; 3172 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3173 } 3174 3175 void CodeGenFunction::EmitOMPTaskyieldDirective( 3176 const OMPTaskyieldDirective &S) { 3177 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3178 } 3179 3180 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3181 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3182 } 3183 3184 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3185 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3186 } 3187 3188 void CodeGenFunction::EmitOMPTaskgroupDirective( 3189 const OMPTaskgroupDirective &S) { 3190 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3191 Action.Enter(CGF); 3192 if (const Expr *E = S.getReductionRef()) { 3193 SmallVector<const Expr *, 4> LHSs; 3194 SmallVector<const Expr *, 4> RHSs; 3195 OMPTaskDataTy Data; 3196 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3197 auto IPriv = C->privates().begin(); 3198 auto IRed = C->reduction_ops().begin(); 3199 auto ILHS = C->lhs_exprs().begin(); 3200 auto IRHS = C->rhs_exprs().begin(); 3201 for (const Expr *Ref : C->varlists()) { 3202 Data.ReductionVars.emplace_back(Ref); 3203 Data.ReductionCopies.emplace_back(*IPriv); 3204 Data.ReductionOps.emplace_back(*IRed); 3205 LHSs.emplace_back(*ILHS); 3206 RHSs.emplace_back(*IRHS); 3207 std::advance(IPriv, 1); 3208 std::advance(IRed, 1); 3209 std::advance(ILHS, 1); 3210 std::advance(IRHS, 1); 3211 } 3212 } 3213 llvm::Value *ReductionDesc = 3214 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3215 LHSs, RHSs, Data); 3216 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3217 CGF.EmitVarDecl(*VD); 3218 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3219 /*Volatile=*/false, E->getType()); 3220 } 3221 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3222 }; 3223 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3224 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3225 } 3226 3227 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3228 CGM.getOpenMPRuntime().emitFlush( 3229 *this, 3230 [&S]() -> ArrayRef<const Expr *> { 3231 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3232 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3233 FlushClause->varlist_end()); 3234 return llvm::None; 3235 }(), 3236 S.getBeginLoc()); 3237 } 3238 3239 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3240 const CodeGenLoopTy &CodeGenLoop, 3241 Expr *IncExpr) { 3242 // Emit the loop iteration variable. 3243 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3244 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3245 EmitVarDecl(*IVDecl); 3246 3247 // Emit the iterations count variable. 3248 // If it is not a variable, Sema decided to calculate iterations count on each 3249 // iteration (e.g., it is foldable into a constant). 3250 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3251 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3252 // Emit calculation of the iterations count. 3253 EmitIgnoredExpr(S.getCalcLastIteration()); 3254 } 3255 3256 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3257 3258 bool HasLastprivateClause = false; 3259 // Check pre-condition. 3260 { 3261 OMPLoopScope PreInitScope(*this, S); 3262 // Skip the entire loop if we don't meet the precondition. 3263 // If the condition constant folds and can be elided, avoid emitting the 3264 // whole loop. 3265 bool CondConstant; 3266 llvm::BasicBlock *ContBlock = nullptr; 3267 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3268 if (!CondConstant) 3269 return; 3270 } else { 3271 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3272 ContBlock = createBasicBlock("omp.precond.end"); 3273 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3274 getProfileCount(&S)); 3275 EmitBlock(ThenBlock); 3276 incrementProfileCounter(&S); 3277 } 3278 3279 emitAlignedClause(*this, S); 3280 // Emit 'then' code. 3281 { 3282 // Emit helper vars inits. 3283 3284 LValue LB = EmitOMPHelperVar( 3285 *this, cast<DeclRefExpr>( 3286 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3287 ? S.getCombinedLowerBoundVariable() 3288 : S.getLowerBoundVariable()))); 3289 LValue UB = EmitOMPHelperVar( 3290 *this, cast<DeclRefExpr>( 3291 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3292 ? S.getCombinedUpperBoundVariable() 3293 : S.getUpperBoundVariable()))); 3294 LValue ST = 3295 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3296 LValue IL = 3297 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3298 3299 OMPPrivateScope LoopScope(*this); 3300 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3301 // Emit implicit barrier to synchronize threads and avoid data races 3302 // on initialization of firstprivate variables and post-update of 3303 // lastprivate variables. 3304 CGM.getOpenMPRuntime().emitBarrierCall( 3305 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3306 /*ForceSimpleCall=*/true); 3307 } 3308 EmitOMPPrivateClause(S, LoopScope); 3309 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3310 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3311 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3312 EmitOMPReductionClauseInit(S, LoopScope); 3313 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3314 EmitOMPPrivateLoopCounters(S, LoopScope); 3315 (void)LoopScope.Privatize(); 3316 3317 // Detect the distribute schedule kind and chunk. 3318 llvm::Value *Chunk = nullptr; 3319 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3320 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3321 ScheduleKind = C->getDistScheduleKind(); 3322 if (const Expr *Ch = C->getChunkSize()) { 3323 Chunk = EmitScalarExpr(Ch); 3324 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3325 S.getIterationVariable()->getType(), 3326 S.getBeginLoc()); 3327 } 3328 } 3329 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3330 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3331 3332 // OpenMP [2.10.8, distribute Construct, Description] 3333 // If dist_schedule is specified, kind must be static. If specified, 3334 // iterations are divided into chunks of size chunk_size, chunks are 3335 // assigned to the teams of the league in a round-robin fashion in the 3336 // order of the team number. When no chunk_size is specified, the 3337 // iteration space is divided into chunks that are approximately equal 3338 // in size, and at most one chunk is distributed to each team of the 3339 // league. The size of the chunks is unspecified in this case. 3340 if (RT.isStaticNonchunked(ScheduleKind, 3341 /* Chunked */ Chunk != nullptr)) { 3342 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3343 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3344 CGOpenMPRuntime::StaticRTInput StaticInit( 3345 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3346 LB.getAddress(), UB.getAddress(), ST.getAddress()); 3347 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3348 StaticInit); 3349 JumpDest LoopExit = 3350 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3351 // UB = min(UB, GlobalUB); 3352 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3353 ? S.getCombinedEnsureUpperBound() 3354 : S.getEnsureUpperBound()); 3355 // IV = LB; 3356 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3357 ? S.getCombinedInit() 3358 : S.getInit()); 3359 3360 const Expr *Cond = 3361 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3362 ? S.getCombinedCond() 3363 : S.getCond(); 3364 3365 // for distribute alone, codegen 3366 // while (idx <= UB) { BODY; ++idx; } 3367 // when combined with 'for' (e.g. as in 'distribute parallel for') 3368 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 3369 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3370 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3371 CodeGenLoop(CGF, S, LoopExit); 3372 }, 3373 [](CodeGenFunction &) {}); 3374 EmitBlock(LoopExit.getBlock()); 3375 // Tell the runtime we are done. 3376 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3377 } else { 3378 // Emit the outer loop, which requests its work chunk [LB..UB] from 3379 // runtime and runs the inner loop to process it. 3380 const OMPLoopArguments LoopArguments = { 3381 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3382 Chunk}; 3383 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3384 CodeGenLoop); 3385 } 3386 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3387 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3388 return CGF.Builder.CreateIsNotNull( 3389 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3390 }); 3391 } 3392 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3393 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3394 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3395 OpenMPDirectiveKind ReductionKind = OMPD_unknown; 3396 if (isOpenMPParallelDirective(S.getDirectiveKind()) && 3397 isOpenMPSimdDirective(S.getDirectiveKind())) { 3398 ReductionKind = OMPD_parallel_for_simd; 3399 } else if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3400 ReductionKind = OMPD_parallel_for; 3401 } else if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3402 ReductionKind = OMPD_simd; 3403 } else if (!isOpenMPTeamsDirective(S.getDirectiveKind()) && 3404 S.hasClausesOfKind<OMPReductionClause>()) { 3405 llvm_unreachable( 3406 "No reduction clauses is allowed in distribute directive."); 3407 } 3408 EmitOMPReductionClauseFinal(S, ReductionKind); 3409 // Emit post-update of the reduction variables if IsLastIter != 0. 3410 emitPostUpdateForReductionClause( 3411 *this, S, [IL, &S](CodeGenFunction &CGF) { 3412 return CGF.Builder.CreateIsNotNull( 3413 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3414 }); 3415 } 3416 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3417 if (HasLastprivateClause) { 3418 EmitOMPLastprivateClauseFinal( 3419 S, /*NoFinals=*/false, 3420 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3421 } 3422 } 3423 3424 // We're now done with the loop, so jump to the continuation block. 3425 if (ContBlock) { 3426 EmitBranch(ContBlock); 3427 EmitBlock(ContBlock, true); 3428 } 3429 } 3430 } 3431 3432 void CodeGenFunction::EmitOMPDistributeDirective( 3433 const OMPDistributeDirective &S) { 3434 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3435 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3436 }; 3437 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3438 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3439 } 3440 3441 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3442 const CapturedStmt *S) { 3443 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3444 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3445 CGF.CapturedStmtInfo = &CapStmtInfo; 3446 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3447 Fn->setDoesNotRecurse(); 3448 return Fn; 3449 } 3450 3451 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3452 if (S.hasClausesOfKind<OMPDependClause>()) { 3453 assert(!S.getAssociatedStmt() && 3454 "No associated statement must be in ordered depend construct."); 3455 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3456 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3457 return; 3458 } 3459 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3460 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3461 PrePostActionTy &Action) { 3462 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3463 if (C) { 3464 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3465 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3466 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3467 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3468 OutlinedFn, CapturedVars); 3469 } else { 3470 Action.Enter(CGF); 3471 CGF.EmitStmt(CS->getCapturedStmt()); 3472 } 3473 }; 3474 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3475 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3476 } 3477 3478 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3479 QualType SrcType, QualType DestType, 3480 SourceLocation Loc) { 3481 assert(CGF.hasScalarEvaluationKind(DestType) && 3482 "DestType must have scalar evaluation kind."); 3483 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3484 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3485 DestType, Loc) 3486 : CGF.EmitComplexToScalarConversion( 3487 Val.getComplexVal(), SrcType, DestType, Loc); 3488 } 3489 3490 static CodeGenFunction::ComplexPairTy 3491 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3492 QualType DestType, SourceLocation Loc) { 3493 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3494 "DestType must have complex evaluation kind."); 3495 CodeGenFunction::ComplexPairTy ComplexVal; 3496 if (Val.isScalar()) { 3497 // Convert the input element to the element type of the complex. 3498 QualType DestElementType = 3499 DestType->castAs<ComplexType>()->getElementType(); 3500 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3501 Val.getScalarVal(), SrcType, DestElementType, Loc); 3502 ComplexVal = CodeGenFunction::ComplexPairTy( 3503 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3504 } else { 3505 assert(Val.isComplex() && "Must be a scalar or complex."); 3506 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3507 QualType DestElementType = 3508 DestType->castAs<ComplexType>()->getElementType(); 3509 ComplexVal.first = CGF.EmitScalarConversion( 3510 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3511 ComplexVal.second = CGF.EmitScalarConversion( 3512 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3513 } 3514 return ComplexVal; 3515 } 3516 3517 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3518 LValue LVal, RValue RVal) { 3519 if (LVal.isGlobalReg()) { 3520 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3521 } else { 3522 CGF.EmitAtomicStore(RVal, LVal, 3523 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3524 : llvm::AtomicOrdering::Monotonic, 3525 LVal.isVolatile(), /*IsInit=*/false); 3526 } 3527 } 3528 3529 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3530 QualType RValTy, SourceLocation Loc) { 3531 switch (getEvaluationKind(LVal.getType())) { 3532 case TEK_Scalar: 3533 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3534 *this, RVal, RValTy, LVal.getType(), Loc)), 3535 LVal); 3536 break; 3537 case TEK_Complex: 3538 EmitStoreOfComplex( 3539 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3540 /*isInit=*/false); 3541 break; 3542 case TEK_Aggregate: 3543 llvm_unreachable("Must be a scalar or complex."); 3544 } 3545 } 3546 3547 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3548 const Expr *X, const Expr *V, 3549 SourceLocation Loc) { 3550 // v = x; 3551 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3552 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3553 LValue XLValue = CGF.EmitLValue(X); 3554 LValue VLValue = CGF.EmitLValue(V); 3555 RValue Res = XLValue.isGlobalReg() 3556 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3557 : CGF.EmitAtomicLoad( 3558 XLValue, Loc, 3559 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3560 : llvm::AtomicOrdering::Monotonic, 3561 XLValue.isVolatile()); 3562 // OpenMP, 2.12.6, atomic Construct 3563 // Any atomic construct with a seq_cst clause forces the atomically 3564 // performed operation to include an implicit flush operation without a 3565 // list. 3566 if (IsSeqCst) 3567 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3568 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3569 } 3570 3571 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3572 const Expr *X, const Expr *E, 3573 SourceLocation Loc) { 3574 // x = expr; 3575 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3576 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3577 // OpenMP, 2.12.6, atomic Construct 3578 // Any atomic construct with a seq_cst clause forces the atomically 3579 // performed operation to include an implicit flush operation without a 3580 // list. 3581 if (IsSeqCst) 3582 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3583 } 3584 3585 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3586 RValue Update, 3587 BinaryOperatorKind BO, 3588 llvm::AtomicOrdering AO, 3589 bool IsXLHSInRHSPart) { 3590 ASTContext &Context = CGF.getContext(); 3591 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3592 // expression is simple and atomic is allowed for the given type for the 3593 // target platform. 3594 if (BO == BO_Comma || !Update.isScalar() || 3595 !Update.getScalarVal()->getType()->isIntegerTy() || 3596 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3597 (Update.getScalarVal()->getType() != 3598 X.getAddress().getElementType())) || 3599 !X.getAddress().getElementType()->isIntegerTy() || 3600 !Context.getTargetInfo().hasBuiltinAtomic( 3601 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3602 return std::make_pair(false, RValue::get(nullptr)); 3603 3604 llvm::AtomicRMWInst::BinOp RMWOp; 3605 switch (BO) { 3606 case BO_Add: 3607 RMWOp = llvm::AtomicRMWInst::Add; 3608 break; 3609 case BO_Sub: 3610 if (!IsXLHSInRHSPart) 3611 return std::make_pair(false, RValue::get(nullptr)); 3612 RMWOp = llvm::AtomicRMWInst::Sub; 3613 break; 3614 case BO_And: 3615 RMWOp = llvm::AtomicRMWInst::And; 3616 break; 3617 case BO_Or: 3618 RMWOp = llvm::AtomicRMWInst::Or; 3619 break; 3620 case BO_Xor: 3621 RMWOp = llvm::AtomicRMWInst::Xor; 3622 break; 3623 case BO_LT: 3624 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3625 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3626 : llvm::AtomicRMWInst::Max) 3627 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3628 : llvm::AtomicRMWInst::UMax); 3629 break; 3630 case BO_GT: 3631 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3632 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3633 : llvm::AtomicRMWInst::Min) 3634 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3635 : llvm::AtomicRMWInst::UMin); 3636 break; 3637 case BO_Assign: 3638 RMWOp = llvm::AtomicRMWInst::Xchg; 3639 break; 3640 case BO_Mul: 3641 case BO_Div: 3642 case BO_Rem: 3643 case BO_Shl: 3644 case BO_Shr: 3645 case BO_LAnd: 3646 case BO_LOr: 3647 return std::make_pair(false, RValue::get(nullptr)); 3648 case BO_PtrMemD: 3649 case BO_PtrMemI: 3650 case BO_LE: 3651 case BO_GE: 3652 case BO_EQ: 3653 case BO_NE: 3654 case BO_Cmp: 3655 case BO_AddAssign: 3656 case BO_SubAssign: 3657 case BO_AndAssign: 3658 case BO_OrAssign: 3659 case BO_XorAssign: 3660 case BO_MulAssign: 3661 case BO_DivAssign: 3662 case BO_RemAssign: 3663 case BO_ShlAssign: 3664 case BO_ShrAssign: 3665 case BO_Comma: 3666 llvm_unreachable("Unsupported atomic update operation"); 3667 } 3668 llvm::Value *UpdateVal = Update.getScalarVal(); 3669 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3670 UpdateVal = CGF.Builder.CreateIntCast( 3671 IC, X.getAddress().getElementType(), 3672 X.getType()->hasSignedIntegerRepresentation()); 3673 } 3674 llvm::Value *Res = 3675 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3676 return std::make_pair(true, RValue::get(Res)); 3677 } 3678 3679 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3680 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3681 llvm::AtomicOrdering AO, SourceLocation Loc, 3682 const llvm::function_ref<RValue(RValue)> CommonGen) { 3683 // Update expressions are allowed to have the following forms: 3684 // x binop= expr; -> xrval + expr; 3685 // x++, ++x -> xrval + 1; 3686 // x--, --x -> xrval - 1; 3687 // x = x binop expr; -> xrval binop expr 3688 // x = expr Op x; - > expr binop xrval; 3689 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3690 if (!Res.first) { 3691 if (X.isGlobalReg()) { 3692 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3693 // 'xrval'. 3694 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3695 } else { 3696 // Perform compare-and-swap procedure. 3697 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3698 } 3699 } 3700 return Res; 3701 } 3702 3703 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3704 const Expr *X, const Expr *E, 3705 const Expr *UE, bool IsXLHSInRHSPart, 3706 SourceLocation Loc) { 3707 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3708 "Update expr in 'atomic update' must be a binary operator."); 3709 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3710 // Update expressions are allowed to have the following forms: 3711 // x binop= expr; -> xrval + expr; 3712 // x++, ++x -> xrval + 1; 3713 // x--, --x -> xrval - 1; 3714 // x = x binop expr; -> xrval binop expr 3715 // x = expr Op x; - > expr binop xrval; 3716 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3717 LValue XLValue = CGF.EmitLValue(X); 3718 RValue ExprRValue = CGF.EmitAnyExpr(E); 3719 llvm::AtomicOrdering AO = IsSeqCst 3720 ? llvm::AtomicOrdering::SequentiallyConsistent 3721 : llvm::AtomicOrdering::Monotonic; 3722 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3723 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3724 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3725 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3726 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3727 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3728 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3729 return CGF.EmitAnyExpr(UE); 3730 }; 3731 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3732 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3733 // OpenMP, 2.12.6, atomic Construct 3734 // Any atomic construct with a seq_cst clause forces the atomically 3735 // performed operation to include an implicit flush operation without a 3736 // list. 3737 if (IsSeqCst) 3738 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3739 } 3740 3741 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3742 QualType SourceType, QualType ResType, 3743 SourceLocation Loc) { 3744 switch (CGF.getEvaluationKind(ResType)) { 3745 case TEK_Scalar: 3746 return RValue::get( 3747 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3748 case TEK_Complex: { 3749 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3750 return RValue::getComplex(Res.first, Res.second); 3751 } 3752 case TEK_Aggregate: 3753 break; 3754 } 3755 llvm_unreachable("Must be a scalar or complex."); 3756 } 3757 3758 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3759 bool IsPostfixUpdate, const Expr *V, 3760 const Expr *X, const Expr *E, 3761 const Expr *UE, bool IsXLHSInRHSPart, 3762 SourceLocation Loc) { 3763 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3764 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3765 RValue NewVVal; 3766 LValue VLValue = CGF.EmitLValue(V); 3767 LValue XLValue = CGF.EmitLValue(X); 3768 RValue ExprRValue = CGF.EmitAnyExpr(E); 3769 llvm::AtomicOrdering AO = IsSeqCst 3770 ? llvm::AtomicOrdering::SequentiallyConsistent 3771 : llvm::AtomicOrdering::Monotonic; 3772 QualType NewVValType; 3773 if (UE) { 3774 // 'x' is updated with some additional value. 3775 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3776 "Update expr in 'atomic capture' must be a binary operator."); 3777 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3778 // Update expressions are allowed to have the following forms: 3779 // x binop= expr; -> xrval + expr; 3780 // x++, ++x -> xrval + 1; 3781 // x--, --x -> xrval - 1; 3782 // x = x binop expr; -> xrval binop expr 3783 // x = expr Op x; - > expr binop xrval; 3784 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3785 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3786 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3787 NewVValType = XRValExpr->getType(); 3788 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3789 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3790 IsPostfixUpdate](RValue XRValue) { 3791 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3792 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3793 RValue Res = CGF.EmitAnyExpr(UE); 3794 NewVVal = IsPostfixUpdate ? XRValue : Res; 3795 return Res; 3796 }; 3797 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3798 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3799 if (Res.first) { 3800 // 'atomicrmw' instruction was generated. 3801 if (IsPostfixUpdate) { 3802 // Use old value from 'atomicrmw'. 3803 NewVVal = Res.second; 3804 } else { 3805 // 'atomicrmw' does not provide new value, so evaluate it using old 3806 // value of 'x'. 3807 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3808 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3809 NewVVal = CGF.EmitAnyExpr(UE); 3810 } 3811 } 3812 } else { 3813 // 'x' is simply rewritten with some 'expr'. 3814 NewVValType = X->getType().getNonReferenceType(); 3815 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3816 X->getType().getNonReferenceType(), Loc); 3817 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 3818 NewVVal = XRValue; 3819 return ExprRValue; 3820 }; 3821 // Try to perform atomicrmw xchg, otherwise simple exchange. 3822 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3823 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3824 Loc, Gen); 3825 if (Res.first) { 3826 // 'atomicrmw' instruction was generated. 3827 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3828 } 3829 } 3830 // Emit post-update store to 'v' of old/new 'x' value. 3831 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3832 // OpenMP, 2.12.6, atomic Construct 3833 // Any atomic construct with a seq_cst clause forces the atomically 3834 // performed operation to include an implicit flush operation without a 3835 // list. 3836 if (IsSeqCst) 3837 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3838 } 3839 3840 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3841 bool IsSeqCst, bool IsPostfixUpdate, 3842 const Expr *X, const Expr *V, const Expr *E, 3843 const Expr *UE, bool IsXLHSInRHSPart, 3844 SourceLocation Loc) { 3845 switch (Kind) { 3846 case OMPC_read: 3847 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3848 break; 3849 case OMPC_write: 3850 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3851 break; 3852 case OMPC_unknown: 3853 case OMPC_update: 3854 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3855 break; 3856 case OMPC_capture: 3857 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3858 IsXLHSInRHSPart, Loc); 3859 break; 3860 case OMPC_if: 3861 case OMPC_final: 3862 case OMPC_num_threads: 3863 case OMPC_private: 3864 case OMPC_firstprivate: 3865 case OMPC_lastprivate: 3866 case OMPC_reduction: 3867 case OMPC_task_reduction: 3868 case OMPC_in_reduction: 3869 case OMPC_safelen: 3870 case OMPC_simdlen: 3871 case OMPC_collapse: 3872 case OMPC_default: 3873 case OMPC_seq_cst: 3874 case OMPC_shared: 3875 case OMPC_linear: 3876 case OMPC_aligned: 3877 case OMPC_copyin: 3878 case OMPC_copyprivate: 3879 case OMPC_flush: 3880 case OMPC_proc_bind: 3881 case OMPC_schedule: 3882 case OMPC_ordered: 3883 case OMPC_nowait: 3884 case OMPC_untied: 3885 case OMPC_threadprivate: 3886 case OMPC_depend: 3887 case OMPC_mergeable: 3888 case OMPC_device: 3889 case OMPC_threads: 3890 case OMPC_simd: 3891 case OMPC_map: 3892 case OMPC_num_teams: 3893 case OMPC_thread_limit: 3894 case OMPC_priority: 3895 case OMPC_grainsize: 3896 case OMPC_nogroup: 3897 case OMPC_num_tasks: 3898 case OMPC_hint: 3899 case OMPC_dist_schedule: 3900 case OMPC_defaultmap: 3901 case OMPC_uniform: 3902 case OMPC_to: 3903 case OMPC_from: 3904 case OMPC_use_device_ptr: 3905 case OMPC_is_device_ptr: 3906 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3907 } 3908 } 3909 3910 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3911 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3912 OpenMPClauseKind Kind = OMPC_unknown; 3913 for (const OMPClause *C : S.clauses()) { 3914 // Find first clause (skip seq_cst clause, if it is first). 3915 if (C->getClauseKind() != OMPC_seq_cst) { 3916 Kind = C->getClauseKind(); 3917 break; 3918 } 3919 } 3920 3921 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 3922 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) 3923 enterFullExpression(EWC); 3924 // Processing for statements under 'atomic capture'. 3925 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3926 for (const Stmt *C : Compound->body()) { 3927 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) 3928 enterFullExpression(EWC); 3929 } 3930 } 3931 3932 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3933 PrePostActionTy &) { 3934 CGF.EmitStopPoint(CS); 3935 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3936 S.getV(), S.getExpr(), S.getUpdateExpr(), 3937 S.isXLHSInRHSPart(), S.getBeginLoc()); 3938 }; 3939 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3940 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3941 } 3942 3943 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 3944 const OMPExecutableDirective &S, 3945 const RegionCodeGenTy &CodeGen) { 3946 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 3947 CodeGenModule &CGM = CGF.CGM; 3948 3949 // On device emit this construct as inlined code. 3950 if (CGM.getLangOpts().OpenMPIsDevice) { 3951 OMPLexicalScope Scope(CGF, S, OMPD_target); 3952 CGM.getOpenMPRuntime().emitInlinedDirective( 3953 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3954 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3955 }); 3956 return; 3957 } 3958 3959 llvm::Function *Fn = nullptr; 3960 llvm::Constant *FnID = nullptr; 3961 3962 const Expr *IfCond = nullptr; 3963 // Check for the at most one if clause associated with the target region. 3964 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3965 if (C->getNameModifier() == OMPD_unknown || 3966 C->getNameModifier() == OMPD_target) { 3967 IfCond = C->getCondition(); 3968 break; 3969 } 3970 } 3971 3972 // Check if we have any device clause associated with the directive. 3973 const Expr *Device = nullptr; 3974 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3975 Device = C->getDevice(); 3976 3977 // Check if we have an if clause whose conditional always evaluates to false 3978 // or if we do not have any targets specified. If so the target region is not 3979 // an offload entry point. 3980 bool IsOffloadEntry = true; 3981 if (IfCond) { 3982 bool Val; 3983 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3984 IsOffloadEntry = false; 3985 } 3986 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3987 IsOffloadEntry = false; 3988 3989 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 3990 StringRef ParentName; 3991 // In case we have Ctors/Dtors we use the complete type variant to produce 3992 // the mangling of the device outlined kernel. 3993 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 3994 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3995 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 3996 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3997 else 3998 ParentName = 3999 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4000 4001 // Emit target region as a standalone region. 4002 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4003 IsOffloadEntry, CodeGen); 4004 OMPLexicalScope Scope(CGF, S, OMPD_task); 4005 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 4006 } 4007 4008 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4009 PrePostActionTy &Action) { 4010 Action.Enter(CGF); 4011 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4012 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4013 CGF.EmitOMPPrivateClause(S, PrivateScope); 4014 (void)PrivateScope.Privatize(); 4015 4016 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4017 } 4018 4019 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4020 StringRef ParentName, 4021 const OMPTargetDirective &S) { 4022 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4023 emitTargetRegion(CGF, S, Action); 4024 }; 4025 llvm::Function *Fn; 4026 llvm::Constant *Addr; 4027 // Emit target region as a standalone region. 4028 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4029 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4030 assert(Fn && Addr && "Target device function emission failed."); 4031 } 4032 4033 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4034 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4035 emitTargetRegion(CGF, S, Action); 4036 }; 4037 emitCommonOMPTargetDirective(*this, S, CodeGen); 4038 } 4039 4040 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4041 const OMPExecutableDirective &S, 4042 OpenMPDirectiveKind InnermostKind, 4043 const RegionCodeGenTy &CodeGen) { 4044 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4045 llvm::Value *OutlinedFn = 4046 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4047 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4048 4049 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4050 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4051 if (NT || TL) { 4052 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4053 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4054 4055 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4056 S.getBeginLoc()); 4057 } 4058 4059 OMPTeamsScope Scope(CGF, S); 4060 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4061 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4062 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4063 CapturedVars); 4064 } 4065 4066 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4067 // Emit teams region as a standalone region. 4068 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4069 Action.Enter(CGF); 4070 OMPPrivateScope PrivateScope(CGF); 4071 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4072 CGF.EmitOMPPrivateClause(S, PrivateScope); 4073 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4074 (void)PrivateScope.Privatize(); 4075 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4076 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4077 }; 4078 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4079 emitPostUpdateForReductionClause(*this, S, 4080 [](CodeGenFunction &) { return nullptr; }); 4081 } 4082 4083 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4084 const OMPTargetTeamsDirective &S) { 4085 auto *CS = S.getCapturedStmt(OMPD_teams); 4086 Action.Enter(CGF); 4087 // Emit teams region as a standalone region. 4088 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4089 Action.Enter(CGF); 4090 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4091 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4092 CGF.EmitOMPPrivateClause(S, PrivateScope); 4093 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4094 (void)PrivateScope.Privatize(); 4095 CGF.EmitStmt(CS->getCapturedStmt()); 4096 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4097 }; 4098 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4099 emitPostUpdateForReductionClause(CGF, S, 4100 [](CodeGenFunction &) { return nullptr; }); 4101 } 4102 4103 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4104 CodeGenModule &CGM, StringRef ParentName, 4105 const OMPTargetTeamsDirective &S) { 4106 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4107 emitTargetTeamsRegion(CGF, Action, S); 4108 }; 4109 llvm::Function *Fn; 4110 llvm::Constant *Addr; 4111 // Emit target region as a standalone region. 4112 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4113 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4114 assert(Fn && Addr && "Target device function emission failed."); 4115 } 4116 4117 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4118 const OMPTargetTeamsDirective &S) { 4119 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4120 emitTargetTeamsRegion(CGF, Action, S); 4121 }; 4122 emitCommonOMPTargetDirective(*this, S, CodeGen); 4123 } 4124 4125 static void 4126 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4127 const OMPTargetTeamsDistributeDirective &S) { 4128 Action.Enter(CGF); 4129 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4130 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4131 }; 4132 4133 // Emit teams region as a standalone region. 4134 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4135 PrePostActionTy &Action) { 4136 Action.Enter(CGF); 4137 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4138 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4139 (void)PrivateScope.Privatize(); 4140 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4141 CodeGenDistribute); 4142 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4143 }; 4144 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4145 emitPostUpdateForReductionClause(CGF, S, 4146 [](CodeGenFunction &) { return nullptr; }); 4147 } 4148 4149 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4150 CodeGenModule &CGM, StringRef ParentName, 4151 const OMPTargetTeamsDistributeDirective &S) { 4152 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4153 emitTargetTeamsDistributeRegion(CGF, Action, S); 4154 }; 4155 llvm::Function *Fn; 4156 llvm::Constant *Addr; 4157 // Emit target region as a standalone region. 4158 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4159 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4160 assert(Fn && Addr && "Target device function emission failed."); 4161 } 4162 4163 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4164 const OMPTargetTeamsDistributeDirective &S) { 4165 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4166 emitTargetTeamsDistributeRegion(CGF, Action, S); 4167 }; 4168 emitCommonOMPTargetDirective(*this, S, CodeGen); 4169 } 4170 4171 static void emitTargetTeamsDistributeSimdRegion( 4172 CodeGenFunction &CGF, PrePostActionTy &Action, 4173 const OMPTargetTeamsDistributeSimdDirective &S) { 4174 Action.Enter(CGF); 4175 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4176 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4177 }; 4178 4179 // Emit teams region as a standalone region. 4180 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4181 PrePostActionTy &Action) { 4182 Action.Enter(CGF); 4183 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4184 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4185 (void)PrivateScope.Privatize(); 4186 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4187 CodeGenDistribute); 4188 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4189 }; 4190 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4191 emitPostUpdateForReductionClause(CGF, S, 4192 [](CodeGenFunction &) { return nullptr; }); 4193 } 4194 4195 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4196 CodeGenModule &CGM, StringRef ParentName, 4197 const OMPTargetTeamsDistributeSimdDirective &S) { 4198 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4199 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4200 }; 4201 llvm::Function *Fn; 4202 llvm::Constant *Addr; 4203 // Emit target region as a standalone region. 4204 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4205 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4206 assert(Fn && Addr && "Target device function emission failed."); 4207 } 4208 4209 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4210 const OMPTargetTeamsDistributeSimdDirective &S) { 4211 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4212 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4213 }; 4214 emitCommonOMPTargetDirective(*this, S, CodeGen); 4215 } 4216 4217 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4218 const OMPTeamsDistributeDirective &S) { 4219 4220 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4221 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4222 }; 4223 4224 // Emit teams region as a standalone region. 4225 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4226 PrePostActionTy &Action) { 4227 Action.Enter(CGF); 4228 OMPPrivateScope PrivateScope(CGF); 4229 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4230 (void)PrivateScope.Privatize(); 4231 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4232 CodeGenDistribute); 4233 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4234 }; 4235 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4236 emitPostUpdateForReductionClause(*this, S, 4237 [](CodeGenFunction &) { return nullptr; }); 4238 } 4239 4240 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4241 const OMPTeamsDistributeSimdDirective &S) { 4242 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4243 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4244 }; 4245 4246 // Emit teams region as a standalone region. 4247 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4248 PrePostActionTy &Action) { 4249 Action.Enter(CGF); 4250 OMPPrivateScope PrivateScope(CGF); 4251 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4252 (void)PrivateScope.Privatize(); 4253 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4254 CodeGenDistribute); 4255 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4256 }; 4257 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4258 emitPostUpdateForReductionClause(*this, S, 4259 [](CodeGenFunction &) { return nullptr; }); 4260 } 4261 4262 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4263 const OMPTeamsDistributeParallelForDirective &S) { 4264 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4265 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4266 S.getDistInc()); 4267 }; 4268 4269 // Emit teams region as a standalone region. 4270 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4271 PrePostActionTy &Action) { 4272 Action.Enter(CGF); 4273 OMPPrivateScope PrivateScope(CGF); 4274 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4275 (void)PrivateScope.Privatize(); 4276 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4277 CodeGenDistribute); 4278 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4279 }; 4280 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4281 emitPostUpdateForReductionClause(*this, S, 4282 [](CodeGenFunction &) { return nullptr; }); 4283 } 4284 4285 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4286 const OMPTeamsDistributeParallelForSimdDirective &S) { 4287 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4288 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4289 S.getDistInc()); 4290 }; 4291 4292 // Emit teams region as a standalone region. 4293 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4294 PrePostActionTy &Action) { 4295 Action.Enter(CGF); 4296 OMPPrivateScope PrivateScope(CGF); 4297 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4298 (void)PrivateScope.Privatize(); 4299 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4300 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4301 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4302 }; 4303 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4304 emitPostUpdateForReductionClause(*this, S, 4305 [](CodeGenFunction &) { return nullptr; }); 4306 } 4307 4308 static void emitTargetTeamsDistributeParallelForRegion( 4309 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4310 PrePostActionTy &Action) { 4311 Action.Enter(CGF); 4312 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4313 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4314 S.getDistInc()); 4315 }; 4316 4317 // Emit teams region as a standalone region. 4318 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4319 PrePostActionTy &Action) { 4320 Action.Enter(CGF); 4321 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4322 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4323 (void)PrivateScope.Privatize(); 4324 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4325 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4326 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4327 }; 4328 4329 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4330 CodeGenTeams); 4331 emitPostUpdateForReductionClause(CGF, S, 4332 [](CodeGenFunction &) { return nullptr; }); 4333 } 4334 4335 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4336 CodeGenModule &CGM, StringRef ParentName, 4337 const OMPTargetTeamsDistributeParallelForDirective &S) { 4338 // Emit SPMD target teams distribute parallel for region as a standalone 4339 // region. 4340 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4341 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4342 }; 4343 llvm::Function *Fn; 4344 llvm::Constant *Addr; 4345 // Emit target region as a standalone region. 4346 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4347 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4348 assert(Fn && Addr && "Target device function emission failed."); 4349 } 4350 4351 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4352 const OMPTargetTeamsDistributeParallelForDirective &S) { 4353 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4354 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4355 }; 4356 emitCommonOMPTargetDirective(*this, S, CodeGen); 4357 } 4358 4359 static void emitTargetTeamsDistributeParallelForSimdRegion( 4360 CodeGenFunction &CGF, 4361 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4362 PrePostActionTy &Action) { 4363 Action.Enter(CGF); 4364 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4365 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4366 S.getDistInc()); 4367 }; 4368 4369 // Emit teams region as a standalone region. 4370 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4371 PrePostActionTy &Action) { 4372 Action.Enter(CGF); 4373 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4374 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4375 (void)PrivateScope.Privatize(); 4376 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4377 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4378 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4379 }; 4380 4381 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4382 CodeGenTeams); 4383 emitPostUpdateForReductionClause(CGF, S, 4384 [](CodeGenFunction &) { return nullptr; }); 4385 } 4386 4387 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4388 CodeGenModule &CGM, StringRef ParentName, 4389 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4390 // Emit SPMD target teams distribute parallel for simd region as a standalone 4391 // region. 4392 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4393 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4394 }; 4395 llvm::Function *Fn; 4396 llvm::Constant *Addr; 4397 // Emit target region as a standalone region. 4398 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4399 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4400 assert(Fn && Addr && "Target device function emission failed."); 4401 } 4402 4403 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4404 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4405 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4406 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4407 }; 4408 emitCommonOMPTargetDirective(*this, S, CodeGen); 4409 } 4410 4411 void CodeGenFunction::EmitOMPCancellationPointDirective( 4412 const OMPCancellationPointDirective &S) { 4413 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4414 S.getCancelRegion()); 4415 } 4416 4417 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4418 const Expr *IfCond = nullptr; 4419 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4420 if (C->getNameModifier() == OMPD_unknown || 4421 C->getNameModifier() == OMPD_cancel) { 4422 IfCond = C->getCondition(); 4423 break; 4424 } 4425 } 4426 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4427 S.getCancelRegion()); 4428 } 4429 4430 CodeGenFunction::JumpDest 4431 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4432 if (Kind == OMPD_parallel || Kind == OMPD_task || 4433 Kind == OMPD_target_parallel) 4434 return ReturnBlock; 4435 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4436 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4437 Kind == OMPD_distribute_parallel_for || 4438 Kind == OMPD_target_parallel_for || 4439 Kind == OMPD_teams_distribute_parallel_for || 4440 Kind == OMPD_target_teams_distribute_parallel_for); 4441 return OMPCancelStack.getExitBlock(); 4442 } 4443 4444 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4445 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4446 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4447 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4448 auto OrigVarIt = C.varlist_begin(); 4449 auto InitIt = C.inits().begin(); 4450 for (const Expr *PvtVarIt : C.private_copies()) { 4451 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4452 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4453 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4454 4455 // In order to identify the right initializer we need to match the 4456 // declaration used by the mapping logic. In some cases we may get 4457 // OMPCapturedExprDecl that refers to the original declaration. 4458 const ValueDecl *MatchingVD = OrigVD; 4459 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4460 // OMPCapturedExprDecl are used to privative fields of the current 4461 // structure. 4462 const auto *ME = cast<MemberExpr>(OED->getInit()); 4463 assert(isa<CXXThisExpr>(ME->getBase()) && 4464 "Base should be the current struct!"); 4465 MatchingVD = ME->getMemberDecl(); 4466 } 4467 4468 // If we don't have information about the current list item, move on to 4469 // the next one. 4470 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4471 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4472 continue; 4473 4474 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4475 InitAddrIt, InitVD, 4476 PvtVD]() { 4477 // Initialize the temporary initialization variable with the address we 4478 // get from the runtime library. We have to cast the source address 4479 // because it is always a void *. References are materialized in the 4480 // privatization scope, so the initialization here disregards the fact 4481 // the original variable is a reference. 4482 QualType AddrQTy = 4483 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4484 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4485 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4486 setAddrOfLocalVar(InitVD, InitAddr); 4487 4488 // Emit private declaration, it will be initialized by the value we 4489 // declaration we just added to the local declarations map. 4490 EmitDecl(*PvtVD); 4491 4492 // The initialization variables reached its purpose in the emission 4493 // of the previous declaration, so we don't need it anymore. 4494 LocalDeclMap.erase(InitVD); 4495 4496 // Return the address of the private variable. 4497 return GetAddrOfLocalVar(PvtVD); 4498 }); 4499 assert(IsRegistered && "firstprivate var already registered as private"); 4500 // Silence the warning about unused variable. 4501 (void)IsRegistered; 4502 4503 ++OrigVarIt; 4504 ++InitIt; 4505 } 4506 } 4507 4508 // Generate the instructions for '#pragma omp target data' directive. 4509 void CodeGenFunction::EmitOMPTargetDataDirective( 4510 const OMPTargetDataDirective &S) { 4511 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4512 4513 // Create a pre/post action to signal the privatization of the device pointer. 4514 // This action can be replaced by the OpenMP runtime code generation to 4515 // deactivate privatization. 4516 bool PrivatizeDevicePointers = false; 4517 class DevicePointerPrivActionTy : public PrePostActionTy { 4518 bool &PrivatizeDevicePointers; 4519 4520 public: 4521 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4522 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4523 void Enter(CodeGenFunction &CGF) override { 4524 PrivatizeDevicePointers = true; 4525 } 4526 }; 4527 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4528 4529 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4530 CodeGenFunction &CGF, PrePostActionTy &Action) { 4531 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4532 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4533 }; 4534 4535 // Codegen that selects whether to generate the privatization code or not. 4536 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4537 &InnermostCodeGen](CodeGenFunction &CGF, 4538 PrePostActionTy &Action) { 4539 RegionCodeGenTy RCG(InnermostCodeGen); 4540 PrivatizeDevicePointers = false; 4541 4542 // Call the pre-action to change the status of PrivatizeDevicePointers if 4543 // needed. 4544 Action.Enter(CGF); 4545 4546 if (PrivatizeDevicePointers) { 4547 OMPPrivateScope PrivateScope(CGF); 4548 // Emit all instances of the use_device_ptr clause. 4549 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4550 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4551 Info.CaptureDeviceAddrMap); 4552 (void)PrivateScope.Privatize(); 4553 RCG(CGF); 4554 } else { 4555 RCG(CGF); 4556 } 4557 }; 4558 4559 // Forward the provided action to the privatization codegen. 4560 RegionCodeGenTy PrivRCG(PrivCodeGen); 4561 PrivRCG.setAction(Action); 4562 4563 // Notwithstanding the body of the region is emitted as inlined directive, 4564 // we don't use an inline scope as changes in the references inside the 4565 // region are expected to be visible outside, so we do not privative them. 4566 OMPLexicalScope Scope(CGF, S); 4567 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4568 PrivRCG); 4569 }; 4570 4571 RegionCodeGenTy RCG(CodeGen); 4572 4573 // If we don't have target devices, don't bother emitting the data mapping 4574 // code. 4575 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4576 RCG(*this); 4577 return; 4578 } 4579 4580 // Check if we have any if clause associated with the directive. 4581 const Expr *IfCond = nullptr; 4582 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4583 IfCond = C->getCondition(); 4584 4585 // Check if we have any device clause associated with the directive. 4586 const Expr *Device = nullptr; 4587 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4588 Device = C->getDevice(); 4589 4590 // Set the action to signal privatization of device pointers. 4591 RCG.setAction(PrivAction); 4592 4593 // Emit region code. 4594 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4595 Info); 4596 } 4597 4598 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4599 const OMPTargetEnterDataDirective &S) { 4600 // If we don't have target devices, don't bother emitting the data mapping 4601 // code. 4602 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4603 return; 4604 4605 // Check if we have any if clause associated with the directive. 4606 const Expr *IfCond = nullptr; 4607 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4608 IfCond = C->getCondition(); 4609 4610 // Check if we have any device clause associated with the directive. 4611 const Expr *Device = nullptr; 4612 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4613 Device = C->getDevice(); 4614 4615 OMPLexicalScope Scope(*this, S, OMPD_task); 4616 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4617 } 4618 4619 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4620 const OMPTargetExitDataDirective &S) { 4621 // If we don't have target devices, don't bother emitting the data mapping 4622 // code. 4623 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4624 return; 4625 4626 // Check if we have any if clause associated with the directive. 4627 const Expr *IfCond = nullptr; 4628 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4629 IfCond = C->getCondition(); 4630 4631 // Check if we have any device clause associated with the directive. 4632 const Expr *Device = nullptr; 4633 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4634 Device = C->getDevice(); 4635 4636 OMPLexicalScope Scope(*this, S, OMPD_task); 4637 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4638 } 4639 4640 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4641 const OMPTargetParallelDirective &S, 4642 PrePostActionTy &Action) { 4643 // Get the captured statement associated with the 'parallel' region. 4644 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4645 Action.Enter(CGF); 4646 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4647 Action.Enter(CGF); 4648 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4649 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4650 CGF.EmitOMPPrivateClause(S, PrivateScope); 4651 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4652 (void)PrivateScope.Privatize(); 4653 // TODO: Add support for clauses. 4654 CGF.EmitStmt(CS->getCapturedStmt()); 4655 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4656 }; 4657 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4658 emitEmptyBoundParameters); 4659 emitPostUpdateForReductionClause(CGF, S, 4660 [](CodeGenFunction &) { return nullptr; }); 4661 } 4662 4663 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4664 CodeGenModule &CGM, StringRef ParentName, 4665 const OMPTargetParallelDirective &S) { 4666 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4667 emitTargetParallelRegion(CGF, S, Action); 4668 }; 4669 llvm::Function *Fn; 4670 llvm::Constant *Addr; 4671 // Emit target region as a standalone region. 4672 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4673 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4674 assert(Fn && Addr && "Target device function emission failed."); 4675 } 4676 4677 void CodeGenFunction::EmitOMPTargetParallelDirective( 4678 const OMPTargetParallelDirective &S) { 4679 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4680 emitTargetParallelRegion(CGF, S, Action); 4681 }; 4682 emitCommonOMPTargetDirective(*this, S, CodeGen); 4683 } 4684 4685 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4686 const OMPTargetParallelForDirective &S, 4687 PrePostActionTy &Action) { 4688 Action.Enter(CGF); 4689 // Emit directive as a combined directive that consists of two implicit 4690 // directives: 'parallel' with 'for' directive. 4691 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4692 Action.Enter(CGF); 4693 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4694 CGF, OMPD_target_parallel_for, S.hasCancel()); 4695 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4696 emitDispatchForLoopBounds); 4697 }; 4698 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4699 emitEmptyBoundParameters); 4700 } 4701 4702 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4703 CodeGenModule &CGM, StringRef ParentName, 4704 const OMPTargetParallelForDirective &S) { 4705 // Emit SPMD target parallel for region as a standalone region. 4706 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4707 emitTargetParallelForRegion(CGF, S, Action); 4708 }; 4709 llvm::Function *Fn; 4710 llvm::Constant *Addr; 4711 // Emit target region as a standalone region. 4712 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4713 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4714 assert(Fn && Addr && "Target device function emission failed."); 4715 } 4716 4717 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4718 const OMPTargetParallelForDirective &S) { 4719 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4720 emitTargetParallelForRegion(CGF, S, Action); 4721 }; 4722 emitCommonOMPTargetDirective(*this, S, CodeGen); 4723 } 4724 4725 static void 4726 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4727 const OMPTargetParallelForSimdDirective &S, 4728 PrePostActionTy &Action) { 4729 Action.Enter(CGF); 4730 // Emit directive as a combined directive that consists of two implicit 4731 // directives: 'parallel' with 'for' directive. 4732 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4733 Action.Enter(CGF); 4734 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4735 emitDispatchForLoopBounds); 4736 }; 4737 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4738 emitEmptyBoundParameters); 4739 } 4740 4741 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4742 CodeGenModule &CGM, StringRef ParentName, 4743 const OMPTargetParallelForSimdDirective &S) { 4744 // Emit SPMD target parallel for region as a standalone region. 4745 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4746 emitTargetParallelForSimdRegion(CGF, S, Action); 4747 }; 4748 llvm::Function *Fn; 4749 llvm::Constant *Addr; 4750 // Emit target region as a standalone region. 4751 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4752 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4753 assert(Fn && Addr && "Target device function emission failed."); 4754 } 4755 4756 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4757 const OMPTargetParallelForSimdDirective &S) { 4758 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4759 emitTargetParallelForSimdRegion(CGF, S, Action); 4760 }; 4761 emitCommonOMPTargetDirective(*this, S, CodeGen); 4762 } 4763 4764 /// Emit a helper variable and return corresponding lvalue. 4765 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4766 const ImplicitParamDecl *PVD, 4767 CodeGenFunction::OMPPrivateScope &Privates) { 4768 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4769 Privates.addPrivate(VDecl, 4770 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 4771 } 4772 4773 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4774 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4775 // Emit outlined function for task construct. 4776 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4777 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4778 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4779 const Expr *IfCond = nullptr; 4780 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4781 if (C->getNameModifier() == OMPD_unknown || 4782 C->getNameModifier() == OMPD_taskloop) { 4783 IfCond = C->getCondition(); 4784 break; 4785 } 4786 } 4787 4788 OMPTaskDataTy Data; 4789 // Check if taskloop must be emitted without taskgroup. 4790 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4791 // TODO: Check if we should emit tied or untied task. 4792 Data.Tied = true; 4793 // Set scheduling for taskloop 4794 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4795 // grainsize clause 4796 Data.Schedule.setInt(/*IntVal=*/false); 4797 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4798 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4799 // num_tasks clause 4800 Data.Schedule.setInt(/*IntVal=*/true); 4801 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4802 } 4803 4804 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4805 // if (PreCond) { 4806 // for (IV in 0..LastIteration) BODY; 4807 // <Final counter/linear vars updates>; 4808 // } 4809 // 4810 4811 // Emit: if (PreCond) - begin. 4812 // If the condition constant folds and can be elided, avoid emitting the 4813 // whole loop. 4814 bool CondConstant; 4815 llvm::BasicBlock *ContBlock = nullptr; 4816 OMPLoopScope PreInitScope(CGF, S); 4817 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4818 if (!CondConstant) 4819 return; 4820 } else { 4821 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4822 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4823 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4824 CGF.getProfileCount(&S)); 4825 CGF.EmitBlock(ThenBlock); 4826 CGF.incrementProfileCounter(&S); 4827 } 4828 4829 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4830 CGF.EmitOMPSimdInit(S); 4831 4832 OMPPrivateScope LoopScope(CGF); 4833 // Emit helper vars inits. 4834 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4835 auto *I = CS->getCapturedDecl()->param_begin(); 4836 auto *LBP = std::next(I, LowerBound); 4837 auto *UBP = std::next(I, UpperBound); 4838 auto *STP = std::next(I, Stride); 4839 auto *LIP = std::next(I, LastIter); 4840 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4841 LoopScope); 4842 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4843 LoopScope); 4844 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4845 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4846 LoopScope); 4847 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4848 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4849 (void)LoopScope.Privatize(); 4850 // Emit the loop iteration variable. 4851 const Expr *IVExpr = S.getIterationVariable(); 4852 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4853 CGF.EmitVarDecl(*IVDecl); 4854 CGF.EmitIgnoredExpr(S.getInit()); 4855 4856 // Emit the iterations count variable. 4857 // If it is not a variable, Sema decided to calculate iterations count on 4858 // each iteration (e.g., it is foldable into a constant). 4859 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4860 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4861 // Emit calculation of the iterations count. 4862 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4863 } 4864 4865 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4866 S.getInc(), 4867 [&S](CodeGenFunction &CGF) { 4868 CGF.EmitOMPLoopBody(S, JumpDest()); 4869 CGF.EmitStopPoint(&S); 4870 }, 4871 [](CodeGenFunction &) {}); 4872 // Emit: if (PreCond) - end. 4873 if (ContBlock) { 4874 CGF.EmitBranch(ContBlock); 4875 CGF.EmitBlock(ContBlock, true); 4876 } 4877 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4878 if (HasLastprivateClause) { 4879 CGF.EmitOMPLastprivateClauseFinal( 4880 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4881 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4882 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4883 (*LIP)->getType(), S.getBeginLoc()))); 4884 } 4885 }; 4886 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4887 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 4888 const OMPTaskDataTy &Data) { 4889 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 4890 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 4891 OMPLoopScope PreInitScope(CGF, S); 4892 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 4893 OutlinedFn, SharedsTy, 4894 CapturedStruct, IfCond, Data); 4895 }; 4896 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4897 CodeGen); 4898 }; 4899 if (Data.Nogroup) { 4900 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 4901 } else { 4902 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4903 *this, 4904 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4905 PrePostActionTy &Action) { 4906 Action.Enter(CGF); 4907 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 4908 Data); 4909 }, 4910 S.getBeginLoc()); 4911 } 4912 } 4913 4914 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 4915 EmitOMPTaskLoopBasedDirective(S); 4916 } 4917 4918 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 4919 const OMPTaskLoopSimdDirective &S) { 4920 EmitOMPTaskLoopBasedDirective(S); 4921 } 4922 4923 // Generate the instructions for '#pragma omp target update' directive. 4924 void CodeGenFunction::EmitOMPTargetUpdateDirective( 4925 const OMPTargetUpdateDirective &S) { 4926 // If we don't have target devices, don't bother emitting the data mapping 4927 // code. 4928 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4929 return; 4930 4931 // Check if we have any if clause associated with the directive. 4932 const Expr *IfCond = nullptr; 4933 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4934 IfCond = C->getCondition(); 4935 4936 // Check if we have any device clause associated with the directive. 4937 const Expr *Device = nullptr; 4938 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4939 Device = C->getDevice(); 4940 4941 OMPLexicalScope Scope(*this, S, OMPD_task); 4942 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4943 } 4944 4945 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 4946 const OMPExecutableDirective &D) { 4947 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 4948 return; 4949 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 4950 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 4951 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 4952 } else { 4953 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 4954 for (const Expr *E : LD->counters()) { 4955 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 4956 cast<DeclRefExpr>(E)->getDecl())) { 4957 // Emit only those that were not explicitly referenced in clauses. 4958 if (!CGF.LocalDeclMap.count(VD)) 4959 CGF.EmitVarDecl(*VD); 4960 } 4961 } 4962 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 4963 if (!C->getNumForLoops()) 4964 continue; 4965 for (unsigned I = LD->getCollapsedNumber(), 4966 E = C->getLoopNumIterations().size(); 4967 I < E; ++I) { 4968 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 4969 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 4970 // Emit only those that were not explicitly referenced in clauses. 4971 if (!CGF.LocalDeclMap.count(VD)) 4972 CGF.EmitVarDecl(*VD); 4973 } 4974 } 4975 } 4976 } 4977 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 4978 } 4979 }; 4980 OMPSimdLexicalScope Scope(*this, D); 4981 CGM.getOpenMPRuntime().emitInlinedDirective( 4982 *this, 4983 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 4984 : D.getDirectiveKind(), 4985 CodeGen); 4986 } 4987 4988