1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (const auto *PreInit =
34                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
35           for (const auto *I : PreInit->decls()) {
36             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
37               CGF.EmitVarDecl(cast<VarDecl>(*I));
38             } else {
39               CodeGenFunction::AutoVarEmission Emission =
40                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
41               CGF.EmitAutoVarCleanups(Emission);
42             }
43           }
44         }
45       }
46     }
47   }
48   CodeGenFunction::OMPPrivateScope InlinedShareds;
49 
50   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
51     return CGF.LambdaCaptureFields.lookup(VD) ||
52            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
53            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
54   }
55 
56 public:
57   OMPLexicalScope(
58       CodeGenFunction &CGF, const OMPExecutableDirective &S,
59       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
60       const bool EmitPreInitStmt = true)
61       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
62         InlinedShareds(CGF) {
63     if (EmitPreInitStmt)
64       emitPreInitStmt(CGF, S);
65     if (!CapturedRegion.hasValue())
66       return;
67     assert(S.hasAssociatedStmt() &&
68            "Expected associated statement for inlined directive.");
69     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
70     for (const auto &C : CS->captures()) {
71       if (C.capturesVariable() || C.capturesVariableByCopy()) {
72         auto *VD = C.getCapturedVar();
73         assert(VD == VD->getCanonicalDecl() &&
74                "Canonical decl must be captured.");
75         DeclRefExpr DRE(
76             const_cast<VarDecl *>(VD),
77             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
78                                        InlinedShareds.isGlobalVarCaptured(VD)),
79             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
80         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
81           return CGF.EmitLValue(&DRE).getAddress();
82         });
83       }
84     }
85     (void)InlinedShareds.Privatize();
86   }
87 };
88 
89 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
90 /// for captured expressions.
91 class OMPParallelScope final : public OMPLexicalScope {
92   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
93     OpenMPDirectiveKind Kind = S.getDirectiveKind();
94     return !(isOpenMPTargetExecutionDirective(Kind) ||
95              isOpenMPLoopBoundSharingDirective(Kind)) &&
96            isOpenMPParallelDirective(Kind);
97   }
98 
99 public:
100   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
101       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
102                         EmitPreInitStmt(S)) {}
103 };
104 
105 /// Lexical scope for OpenMP teams construct, that handles correct codegen
106 /// for captured expressions.
107 class OMPTeamsScope final : public OMPLexicalScope {
108   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
109     OpenMPDirectiveKind Kind = S.getDirectiveKind();
110     return !isOpenMPTargetExecutionDirective(Kind) &&
111            isOpenMPTeamsDirective(Kind);
112   }
113 
114 public:
115   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
116       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
117                         EmitPreInitStmt(S)) {}
118 };
119 
120 /// Private scope for OpenMP loop-based directives, that supports capturing
121 /// of used expression from loop statement.
122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
123   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
124     CodeGenFunction::OMPMapVars PreCondVars;
125     for (const auto *E : S.counters()) {
126       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
127       (void)PreCondVars.setVarAddr(
128           CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
129     }
130     (void)PreCondVars.apply(CGF);
131     if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) {
132       for (const auto *I : PreInits->decls())
133         CGF.EmitVarDecl(cast<VarDecl>(*I));
134     }
135     PreCondVars.restore(CGF);
136   }
137 
138 public:
139   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
140       : CodeGenFunction::RunCleanupsScope(CGF) {
141     emitPreInitStmt(CGF, S);
142   }
143 };
144 
145 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
146   CodeGenFunction::OMPPrivateScope InlinedShareds;
147 
148   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
149     return CGF.LambdaCaptureFields.lookup(VD) ||
150            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
151            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
152             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
153   }
154 
155 public:
156   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
157       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
158         InlinedShareds(CGF) {
159     for (const auto *C : S.clauses()) {
160       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
161         if (const auto *PreInit =
162                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
163           for (const auto *I : PreInit->decls()) {
164             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
165               CGF.EmitVarDecl(cast<VarDecl>(*I));
166             } else {
167               CodeGenFunction::AutoVarEmission Emission =
168                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
169               CGF.EmitAutoVarCleanups(Emission);
170             }
171           }
172         }
173       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
174         for (const Expr *E : UDP->varlists()) {
175           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
176           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
177             CGF.EmitVarDecl(*OED);
178         }
179       }
180     }
181     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
182       CGF.EmitOMPPrivateClause(S, InlinedShareds);
183     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
184       if (const Expr *E = TG->getReductionRef())
185         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
186     }
187     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
188     while (CS) {
189       for (auto &C : CS->captures()) {
190         if (C.capturesVariable() || C.capturesVariableByCopy()) {
191           auto *VD = C.getCapturedVar();
192           assert(VD == VD->getCanonicalDecl() &&
193                  "Canonical decl must be captured.");
194           DeclRefExpr DRE(const_cast<VarDecl *>(VD),
195                           isCapturedVar(CGF, VD) ||
196                               (CGF.CapturedStmtInfo &&
197                                InlinedShareds.isGlobalVarCaptured(VD)),
198                           VD->getType().getNonReferenceType(), VK_LValue,
199                           C.getLocation());
200           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
201             return CGF.EmitLValue(&DRE).getAddress();
202           });
203         }
204       }
205       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
206     }
207     (void)InlinedShareds.Privatize();
208   }
209 };
210 
211 } // namespace
212 
213 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
214                                          const OMPExecutableDirective &S,
215                                          const RegionCodeGenTy &CodeGen);
216 
217 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
218   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
219     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
220       OrigVD = OrigVD->getCanonicalDecl();
221       bool IsCaptured =
222           LambdaCaptureFields.lookup(OrigVD) ||
223           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
224           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
225       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured,
226                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
227       return EmitLValue(&DRE);
228     }
229   }
230   return EmitLValue(E);
231 }
232 
233 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
234   ASTContext &C = getContext();
235   llvm::Value *Size = nullptr;
236   auto SizeInChars = C.getTypeSizeInChars(Ty);
237   if (SizeInChars.isZero()) {
238     // getTypeSizeInChars() returns 0 for a VLA.
239     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
240       VlaSizePair VlaSize = getVLASize(VAT);
241       Ty = VlaSize.Type;
242       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
243                   : VlaSize.NumElts;
244     }
245     SizeInChars = C.getTypeSizeInChars(Ty);
246     if (SizeInChars.isZero())
247       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
248     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
249   }
250   return CGM.getSize(SizeInChars);
251 }
252 
253 void CodeGenFunction::GenerateOpenMPCapturedVars(
254     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
255   const RecordDecl *RD = S.getCapturedRecordDecl();
256   auto CurField = RD->field_begin();
257   auto CurCap = S.captures().begin();
258   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
259                                                  E = S.capture_init_end();
260        I != E; ++I, ++CurField, ++CurCap) {
261     if (CurField->hasCapturedVLAType()) {
262       const VariableArrayType *VAT = CurField->getCapturedVLAType();
263       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
264       CapturedVars.push_back(Val);
265     } else if (CurCap->capturesThis()) {
266       CapturedVars.push_back(CXXThisValue);
267     } else if (CurCap->capturesVariableByCopy()) {
268       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
269 
270       // If the field is not a pointer, we need to save the actual value
271       // and load it as a void pointer.
272       if (!CurField->getType()->isAnyPointerType()) {
273         ASTContext &Ctx = getContext();
274         Address DstAddr = CreateMemTemp(
275             Ctx.getUIntPtrType(),
276             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
277         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
278 
279         llvm::Value *SrcAddrVal = EmitScalarConversion(
280             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
281             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
282         LValue SrcLV =
283             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
284 
285         // Store the value using the source type pointer.
286         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
287 
288         // Load the value using the destination type pointer.
289         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
290       }
291       CapturedVars.push_back(CV);
292     } else {
293       assert(CurCap->capturesVariable() && "Expected capture by reference.");
294       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
295     }
296   }
297 }
298 
299 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
300                                     QualType DstType, StringRef Name,
301                                     LValue AddrLV,
302                                     bool isReferenceType = false) {
303   ASTContext &Ctx = CGF.getContext();
304 
305   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
306       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
307       Ctx.getPointerType(DstType), Loc);
308   Address TmpAddr =
309       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
310           .getAddress();
311 
312   // If we are dealing with references we need to return the address of the
313   // reference instead of the reference of the value.
314   if (isReferenceType) {
315     QualType RefType = Ctx.getLValueReferenceType(DstType);
316     llvm::Value *RefVal = TmpAddr.getPointer();
317     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref"));
318     LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
319     CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true);
320   }
321 
322   return TmpAddr;
323 }
324 
325 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
326   if (T->isLValueReferenceType())
327     return C.getLValueReferenceType(
328         getCanonicalParamType(C, T.getNonReferenceType()),
329         /*SpelledAsLValue=*/false);
330   if (T->isPointerType())
331     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
332   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
333     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
334       return getCanonicalParamType(C, VLA->getElementType());
335     if (!A->isVariablyModifiedType())
336       return C.getCanonicalType(T);
337   }
338   return C.getCanonicalParamType(T);
339 }
340 
341 namespace {
342   /// Contains required data for proper outlined function codegen.
343   struct FunctionOptions {
344     /// Captured statement for which the function is generated.
345     const CapturedStmt *S = nullptr;
346     /// true if cast to/from  UIntPtr is required for variables captured by
347     /// value.
348     const bool UIntPtrCastRequired = true;
349     /// true if only casted arguments must be registered as local args or VLA
350     /// sizes.
351     const bool RegisterCastedArgsOnly = false;
352     /// Name of the generated function.
353     const StringRef FunctionName;
354     explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
355                              bool RegisterCastedArgsOnly,
356                              StringRef FunctionName)
357         : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
358           RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
359           FunctionName(FunctionName) {}
360   };
361 }
362 
363 static llvm::Function *emitOutlinedFunctionPrologue(
364     CodeGenFunction &CGF, FunctionArgList &Args,
365     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
366         &LocalAddrs,
367     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
368         &VLASizes,
369     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
370   const CapturedDecl *CD = FO.S->getCapturedDecl();
371   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
372   assert(CD->hasBody() && "missing CapturedDecl body");
373 
374   CXXThisValue = nullptr;
375   // Build the argument list.
376   CodeGenModule &CGM = CGF.CGM;
377   ASTContext &Ctx = CGM.getContext();
378   FunctionArgList TargetArgs;
379   Args.append(CD->param_begin(),
380               std::next(CD->param_begin(), CD->getContextParamPosition()));
381   TargetArgs.append(
382       CD->param_begin(),
383       std::next(CD->param_begin(), CD->getContextParamPosition()));
384   auto I = FO.S->captures().begin();
385   FunctionDecl *DebugFunctionDecl = nullptr;
386   if (!FO.UIntPtrCastRequired) {
387     FunctionProtoType::ExtProtoInfo EPI;
388     DebugFunctionDecl = FunctionDecl::Create(
389         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
390         SourceLocation(), DeclarationName(), Ctx.VoidTy,
391         Ctx.getTrivialTypeSourceInfo(
392             Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI)),
393         SC_Static, /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
394   }
395   for (const FieldDecl *FD : RD->fields()) {
396     QualType ArgType = FD->getType();
397     IdentifierInfo *II = nullptr;
398     VarDecl *CapVar = nullptr;
399 
400     // If this is a capture by copy and the type is not a pointer, the outlined
401     // function argument type should be uintptr and the value properly casted to
402     // uintptr. This is necessary given that the runtime library is only able to
403     // deal with pointers. We can pass in the same way the VLA type sizes to the
404     // outlined function.
405     if (FO.UIntPtrCastRequired &&
406         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
407          I->capturesVariableArrayType()))
408       ArgType = Ctx.getUIntPtrType();
409 
410     if (I->capturesVariable() || I->capturesVariableByCopy()) {
411       CapVar = I->getCapturedVar();
412       II = CapVar->getIdentifier();
413     } else if (I->capturesThis()) {
414       II = &Ctx.Idents.get("this");
415     } else {
416       assert(I->capturesVariableArrayType());
417       II = &Ctx.Idents.get("vla");
418     }
419     if (ArgType->isVariablyModifiedType())
420       ArgType = getCanonicalParamType(Ctx, ArgType);
421     VarDecl *Arg;
422     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
423       Arg = ParmVarDecl::Create(
424           Ctx, DebugFunctionDecl,
425           CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
426           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
427           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
428     } else {
429       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
430                                       II, ArgType, ImplicitParamDecl::Other);
431     }
432     Args.emplace_back(Arg);
433     // Do not cast arguments if we emit function with non-original types.
434     TargetArgs.emplace_back(
435         FO.UIntPtrCastRequired
436             ? Arg
437             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
438     ++I;
439   }
440   Args.append(
441       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
442       CD->param_end());
443   TargetArgs.append(
444       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
445       CD->param_end());
446 
447   // Create the function declaration.
448   const CGFunctionInfo &FuncInfo =
449       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
450   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
451 
452   auto *F =
453       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
454                              FO.FunctionName, &CGM.getModule());
455   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
456   if (CD->isNothrow())
457     F->setDoesNotThrow();
458   F->setDoesNotRecurse();
459 
460   // Generate the function.
461   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
462                     FO.S->getBeginLoc(), CD->getBody()->getBeginLoc());
463   unsigned Cnt = CD->getContextParamPosition();
464   I = FO.S->captures().begin();
465   for (const FieldDecl *FD : RD->fields()) {
466     // Do not map arguments if we emit function with non-original types.
467     Address LocalAddr(Address::invalid());
468     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
469       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
470                                                              TargetArgs[Cnt]);
471     } else {
472       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
473     }
474     // If we are capturing a pointer by copy we don't need to do anything, just
475     // use the value that we get from the arguments.
476     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
477       const VarDecl *CurVD = I->getCapturedVar();
478       // If the variable is a reference we need to materialize it here.
479       if (CurVD->getType()->isReferenceType()) {
480         Address RefAddr = CGF.CreateMemTemp(
481             CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref");
482         CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr,
483                               /*Volatile=*/false, CurVD->getType());
484         LocalAddr = RefAddr;
485       }
486       if (!FO.RegisterCastedArgsOnly)
487         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
488       ++Cnt;
489       ++I;
490       continue;
491     }
492 
493     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
494                                         AlignmentSource::Decl);
495     if (FD->hasCapturedVLAType()) {
496       if (FO.UIntPtrCastRequired) {
497         ArgLVal = CGF.MakeAddrLValue(
498             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
499                                  Args[Cnt]->getName(), ArgLVal),
500             FD->getType(), AlignmentSource::Decl);
501       }
502       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
503       const VariableArrayType *VAT = FD->getCapturedVLAType();
504       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
505     } else if (I->capturesVariable()) {
506       const VarDecl *Var = I->getCapturedVar();
507       QualType VarTy = Var->getType();
508       Address ArgAddr = ArgLVal.getAddress();
509       if (!VarTy->isReferenceType()) {
510         if (ArgLVal.getType()->isLValueReferenceType()) {
511           ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
512         } else if (!VarTy->isVariablyModifiedType() ||
513                    !VarTy->isPointerType()) {
514           assert(ArgLVal.getType()->isPointerType());
515           ArgAddr = CGF.EmitLoadOfPointer(
516               ArgAddr, ArgLVal.getType()->castAs<PointerType>());
517         }
518       }
519       if (!FO.RegisterCastedArgsOnly) {
520         LocalAddrs.insert(
521             {Args[Cnt],
522              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
523       }
524     } else if (I->capturesVariableByCopy()) {
525       assert(!FD->getType()->isAnyPointerType() &&
526              "Not expecting a captured pointer.");
527       const VarDecl *Var = I->getCapturedVar();
528       QualType VarTy = Var->getType();
529       LocalAddrs.insert(
530           {Args[Cnt],
531            {Var, FO.UIntPtrCastRequired
532                      ? castValueFromUintptr(CGF, I->getLocation(),
533                                             FD->getType(), Args[Cnt]->getName(),
534                                             ArgLVal, VarTy->isReferenceType())
535                      : ArgLVal.getAddress()}});
536     } else {
537       // If 'this' is captured, load it into CXXThisValue.
538       assert(I->capturesThis());
539       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
540       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}});
541     }
542     ++Cnt;
543     ++I;
544   }
545 
546   return F;
547 }
548 
549 llvm::Function *
550 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
551   assert(
552       CapturedStmtInfo &&
553       "CapturedStmtInfo should be set when generating the captured function");
554   const CapturedDecl *CD = S.getCapturedDecl();
555   // Build the argument list.
556   bool NeedWrapperFunction =
557       getDebugInfo() &&
558       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo;
559   FunctionArgList Args;
560   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
561   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
562   SmallString<256> Buffer;
563   llvm::raw_svector_ostream Out(Buffer);
564   Out << CapturedStmtInfo->getHelperName();
565   if (NeedWrapperFunction)
566     Out << "_debug__";
567   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
568                      Out.str());
569   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
570                                                    VLASizes, CXXThisValue, FO);
571   for (const auto &LocalAddrPair : LocalAddrs) {
572     if (LocalAddrPair.second.first) {
573       setAddrOfLocalVar(LocalAddrPair.second.first,
574                         LocalAddrPair.second.second);
575     }
576   }
577   for (const auto &VLASizePair : VLASizes)
578     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
579   PGO.assignRegionCounters(GlobalDecl(CD), F);
580   CapturedStmtInfo->EmitBody(*this, CD->getBody());
581   FinishFunction(CD->getBodyRBrace());
582   if (!NeedWrapperFunction)
583     return F;
584 
585   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
586                             /*RegisterCastedArgsOnly=*/true,
587                             CapturedStmtInfo->getHelperName());
588   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
589   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
590   Args.clear();
591   LocalAddrs.clear();
592   VLASizes.clear();
593   llvm::Function *WrapperF =
594       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
595                                    WrapperCGF.CXXThisValue, WrapperFO);
596   llvm::SmallVector<llvm::Value *, 4> CallArgs;
597   for (const auto *Arg : Args) {
598     llvm::Value *CallArg;
599     auto I = LocalAddrs.find(Arg);
600     if (I != LocalAddrs.end()) {
601       LValue LV = WrapperCGF.MakeAddrLValue(
602           I->second.second,
603           I->second.first ? I->second.first->getType() : Arg->getType(),
604           AlignmentSource::Decl);
605       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
606     } else {
607       auto EI = VLASizes.find(Arg);
608       if (EI != VLASizes.end()) {
609         CallArg = EI->second.second;
610       } else {
611         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
612                                               Arg->getType(),
613                                               AlignmentSource::Decl);
614         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
615       }
616     }
617     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
618   }
619   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(),
620                                                   F, CallArgs);
621   WrapperCGF.FinishFunction();
622   return WrapperF;
623 }
624 
625 //===----------------------------------------------------------------------===//
626 //                              OpenMP Directive Emission
627 //===----------------------------------------------------------------------===//
628 void CodeGenFunction::EmitOMPAggregateAssign(
629     Address DestAddr, Address SrcAddr, QualType OriginalType,
630     const llvm::function_ref<void(Address, Address)> CopyGen) {
631   // Perform element-by-element initialization.
632   QualType ElementTy;
633 
634   // Drill down to the base element type on both arrays.
635   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
636   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
637   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
638 
639   llvm::Value *SrcBegin = SrcAddr.getPointer();
640   llvm::Value *DestBegin = DestAddr.getPointer();
641   // Cast from pointer to array type to pointer to single element.
642   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
643   // The basic structure here is a while-do loop.
644   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
645   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
646   llvm::Value *IsEmpty =
647       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
648   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
649 
650   // Enter the loop body, making that address the current address.
651   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
652   EmitBlock(BodyBB);
653 
654   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
655 
656   llvm::PHINode *SrcElementPHI =
657     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
658   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
659   Address SrcElementCurrent =
660       Address(SrcElementPHI,
661               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
662 
663   llvm::PHINode *DestElementPHI =
664     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
665   DestElementPHI->addIncoming(DestBegin, EntryBB);
666   Address DestElementCurrent =
667     Address(DestElementPHI,
668             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
669 
670   // Emit copy.
671   CopyGen(DestElementCurrent, SrcElementCurrent);
672 
673   // Shift the address forward by one element.
674   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
675       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
676   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
677       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
678   // Check whether we've reached the end.
679   llvm::Value *Done =
680       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
681   Builder.CreateCondBr(Done, DoneBB, BodyBB);
682   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
683   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
684 
685   // Done.
686   EmitBlock(DoneBB, /*IsFinished=*/true);
687 }
688 
689 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
690                                   Address SrcAddr, const VarDecl *DestVD,
691                                   const VarDecl *SrcVD, const Expr *Copy) {
692   if (OriginalType->isArrayType()) {
693     const auto *BO = dyn_cast<BinaryOperator>(Copy);
694     if (BO && BO->getOpcode() == BO_Assign) {
695       // Perform simple memcpy for simple copying.
696       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
697       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
698       EmitAggregateAssign(Dest, Src, OriginalType);
699     } else {
700       // For arrays with complex element types perform element by element
701       // copying.
702       EmitOMPAggregateAssign(
703           DestAddr, SrcAddr, OriginalType,
704           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
705             // Working with the single array element, so have to remap
706             // destination and source variables to corresponding array
707             // elements.
708             CodeGenFunction::OMPPrivateScope Remap(*this);
709             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
710             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
711             (void)Remap.Privatize();
712             EmitIgnoredExpr(Copy);
713           });
714     }
715   } else {
716     // Remap pseudo source variable to private copy.
717     CodeGenFunction::OMPPrivateScope Remap(*this);
718     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
719     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
720     (void)Remap.Privatize();
721     // Emit copying of the whole variable.
722     EmitIgnoredExpr(Copy);
723   }
724 }
725 
726 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
727                                                 OMPPrivateScope &PrivateScope) {
728   if (!HaveInsertPoint())
729     return false;
730   bool FirstprivateIsLastprivate = false;
731   llvm::DenseSet<const VarDecl *> Lastprivates;
732   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
733     for (const auto *D : C->varlists())
734       Lastprivates.insert(
735           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
736   }
737   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
738   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
739   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
740   // Force emission of the firstprivate copy if the directive does not emit
741   // outlined function, like omp for, omp simd, omp distribute etc.
742   bool MustEmitFirstprivateCopy =
743       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
744   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
745     auto IRef = C->varlist_begin();
746     auto InitsRef = C->inits().begin();
747     for (const Expr *IInit : C->private_copies()) {
748       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
749       bool ThisFirstprivateIsLastprivate =
750           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
751       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
752       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
753           !FD->getType()->isReferenceType()) {
754         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
755         ++IRef;
756         ++InitsRef;
757         continue;
758       }
759       FirstprivateIsLastprivate =
760           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
761       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
762         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
763         const auto *VDInit =
764             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
765         bool IsRegistered;
766         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
767                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
768                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
769         LValue OriginalLVal = EmitLValue(&DRE);
770         QualType Type = VD->getType();
771         if (Type->isArrayType()) {
772           // Emit VarDecl with copy init for arrays.
773           // Get the address of the original variable captured in current
774           // captured region.
775           IsRegistered = PrivateScope.addPrivate(
776               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
777                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
778                 const Expr *Init = VD->getInit();
779                 if (!isa<CXXConstructExpr>(Init) ||
780                     isTrivialInitializer(Init)) {
781                   // Perform simple memcpy.
782                   LValue Dest =
783                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
784                   EmitAggregateAssign(Dest, OriginalLVal, Type);
785                 } else {
786                   EmitOMPAggregateAssign(
787                       Emission.getAllocatedAddress(), OriginalLVal.getAddress(),
788                       Type,
789                       [this, VDInit, Init](Address DestElement,
790                                            Address SrcElement) {
791                         // Clean up any temporaries needed by the
792                         // initialization.
793                         RunCleanupsScope InitScope(*this);
794                         // Emit initialization for single element.
795                         setAddrOfLocalVar(VDInit, SrcElement);
796                         EmitAnyExprToMem(Init, DestElement,
797                                          Init->getType().getQualifiers(),
798                                          /*IsInitializer*/ false);
799                         LocalDeclMap.erase(VDInit);
800                       });
801                 }
802                 EmitAutoVarCleanups(Emission);
803                 return Emission.getAllocatedAddress();
804               });
805         } else {
806           Address OriginalAddr = OriginalLVal.getAddress();
807           IsRegistered = PrivateScope.addPrivate(
808               OrigVD, [this, VDInit, OriginalAddr, VD]() {
809                 // Emit private VarDecl with copy init.
810                 // Remap temp VDInit variable to the address of the original
811                 // variable (for proper handling of captured global variables).
812                 setAddrOfLocalVar(VDInit, OriginalAddr);
813                 EmitDecl(*VD);
814                 LocalDeclMap.erase(VDInit);
815                 return GetAddrOfLocalVar(VD);
816               });
817         }
818         assert(IsRegistered &&
819                "firstprivate var already registered as private");
820         // Silence the warning about unused variable.
821         (void)IsRegistered;
822       }
823       ++IRef;
824       ++InitsRef;
825     }
826   }
827   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
828 }
829 
830 void CodeGenFunction::EmitOMPPrivateClause(
831     const OMPExecutableDirective &D,
832     CodeGenFunction::OMPPrivateScope &PrivateScope) {
833   if (!HaveInsertPoint())
834     return;
835   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
836   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
837     auto IRef = C->varlist_begin();
838     for (const Expr *IInit : C->private_copies()) {
839       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
840       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
841         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
842         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
843           // Emit private VarDecl with copy init.
844           EmitDecl(*VD);
845           return GetAddrOfLocalVar(VD);
846         });
847         assert(IsRegistered && "private var already registered as private");
848         // Silence the warning about unused variable.
849         (void)IsRegistered;
850       }
851       ++IRef;
852     }
853   }
854 }
855 
856 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
857   if (!HaveInsertPoint())
858     return false;
859   // threadprivate_var1 = master_threadprivate_var1;
860   // operator=(threadprivate_var2, master_threadprivate_var2);
861   // ...
862   // __kmpc_barrier(&loc, global_tid);
863   llvm::DenseSet<const VarDecl *> CopiedVars;
864   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
865   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
866     auto IRef = C->varlist_begin();
867     auto ISrcRef = C->source_exprs().begin();
868     auto IDestRef = C->destination_exprs().begin();
869     for (const Expr *AssignOp : C->assignment_ops()) {
870       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
871       QualType Type = VD->getType();
872       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
873         // Get the address of the master variable. If we are emitting code with
874         // TLS support, the address is passed from the master as field in the
875         // captured declaration.
876         Address MasterAddr = Address::invalid();
877         if (getLangOpts().OpenMPUseTLS &&
878             getContext().getTargetInfo().isTLSSupported()) {
879           assert(CapturedStmtInfo->lookup(VD) &&
880                  "Copyin threadprivates should have been captured!");
881           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
882                           VK_LValue, (*IRef)->getExprLoc());
883           MasterAddr = EmitLValue(&DRE).getAddress();
884           LocalDeclMap.erase(VD);
885         } else {
886           MasterAddr =
887             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
888                                         : CGM.GetAddrOfGlobal(VD),
889                     getContext().getDeclAlign(VD));
890         }
891         // Get the address of the threadprivate variable.
892         Address PrivateAddr = EmitLValue(*IRef).getAddress();
893         if (CopiedVars.size() == 1) {
894           // At first check if current thread is a master thread. If it is, no
895           // need to copy data.
896           CopyBegin = createBasicBlock("copyin.not.master");
897           CopyEnd = createBasicBlock("copyin.not.master.end");
898           Builder.CreateCondBr(
899               Builder.CreateICmpNE(
900                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
901                   Builder.CreatePtrToInt(PrivateAddr.getPointer(),
902                                          CGM.IntPtrTy)),
903               CopyBegin, CopyEnd);
904           EmitBlock(CopyBegin);
905         }
906         const auto *SrcVD =
907             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
908         const auto *DestVD =
909             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
910         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
911       }
912       ++IRef;
913       ++ISrcRef;
914       ++IDestRef;
915     }
916   }
917   if (CopyEnd) {
918     // Exit out of copying procedure for non-master thread.
919     EmitBlock(CopyEnd, /*IsFinished=*/true);
920     return true;
921   }
922   return false;
923 }
924 
925 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
926     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
927   if (!HaveInsertPoint())
928     return false;
929   bool HasAtLeastOneLastprivate = false;
930   llvm::DenseSet<const VarDecl *> SIMDLCVs;
931   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
932     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
933     for (const Expr *C : LoopDirective->counters()) {
934       SIMDLCVs.insert(
935           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
936     }
937   }
938   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
939   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
940     HasAtLeastOneLastprivate = true;
941     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
942         !getLangOpts().OpenMPSimd)
943       break;
944     auto IRef = C->varlist_begin();
945     auto IDestRef = C->destination_exprs().begin();
946     for (const Expr *IInit : C->private_copies()) {
947       // Keep the address of the original variable for future update at the end
948       // of the loop.
949       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
950       // Taskloops do not require additional initialization, it is done in
951       // runtime support library.
952       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
953         const auto *DestVD =
954             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
955         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
956           DeclRefExpr DRE(
957               const_cast<VarDecl *>(OrigVD),
958               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
959                   OrigVD) != nullptr,
960               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
961           return EmitLValue(&DRE).getAddress();
962         });
963         // Check if the variable is also a firstprivate: in this case IInit is
964         // not generated. Initialization of this variable will happen in codegen
965         // for 'firstprivate' clause.
966         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
967           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
968           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
969             // Emit private VarDecl with copy init.
970             EmitDecl(*VD);
971             return GetAddrOfLocalVar(VD);
972           });
973           assert(IsRegistered &&
974                  "lastprivate var already registered as private");
975           (void)IsRegistered;
976         }
977       }
978       ++IRef;
979       ++IDestRef;
980     }
981   }
982   return HasAtLeastOneLastprivate;
983 }
984 
985 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
986     const OMPExecutableDirective &D, bool NoFinals,
987     llvm::Value *IsLastIterCond) {
988   if (!HaveInsertPoint())
989     return;
990   // Emit following code:
991   // if (<IsLastIterCond>) {
992   //   orig_var1 = private_orig_var1;
993   //   ...
994   //   orig_varn = private_orig_varn;
995   // }
996   llvm::BasicBlock *ThenBB = nullptr;
997   llvm::BasicBlock *DoneBB = nullptr;
998   if (IsLastIterCond) {
999     ThenBB = createBasicBlock(".omp.lastprivate.then");
1000     DoneBB = createBasicBlock(".omp.lastprivate.done");
1001     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1002     EmitBlock(ThenBB);
1003   }
1004   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1005   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1006   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1007     auto IC = LoopDirective->counters().begin();
1008     for (const Expr *F : LoopDirective->finals()) {
1009       const auto *D =
1010           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1011       if (NoFinals)
1012         AlreadyEmittedVars.insert(D);
1013       else
1014         LoopCountersAndUpdates[D] = F;
1015       ++IC;
1016     }
1017   }
1018   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1019     auto IRef = C->varlist_begin();
1020     auto ISrcRef = C->source_exprs().begin();
1021     auto IDestRef = C->destination_exprs().begin();
1022     for (const Expr *AssignOp : C->assignment_ops()) {
1023       const auto *PrivateVD =
1024           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1025       QualType Type = PrivateVD->getType();
1026       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1027       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1028         // If lastprivate variable is a loop control variable for loop-based
1029         // directive, update its value before copyin back to original
1030         // variable.
1031         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1032           EmitIgnoredExpr(FinalExpr);
1033         const auto *SrcVD =
1034             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1035         const auto *DestVD =
1036             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1037         // Get the address of the original variable.
1038         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1039         // Get the address of the private variable.
1040         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1041         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1042           PrivateAddr =
1043               Address(Builder.CreateLoad(PrivateAddr),
1044                       getNaturalTypeAlignment(RefTy->getPointeeType()));
1045         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1046       }
1047       ++IRef;
1048       ++ISrcRef;
1049       ++IDestRef;
1050     }
1051     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1052       EmitIgnoredExpr(PostUpdate);
1053   }
1054   if (IsLastIterCond)
1055     EmitBlock(DoneBB, /*IsFinished=*/true);
1056 }
1057 
1058 void CodeGenFunction::EmitOMPReductionClauseInit(
1059     const OMPExecutableDirective &D,
1060     CodeGenFunction::OMPPrivateScope &PrivateScope) {
1061   if (!HaveInsertPoint())
1062     return;
1063   SmallVector<const Expr *, 4> Shareds;
1064   SmallVector<const Expr *, 4> Privates;
1065   SmallVector<const Expr *, 4> ReductionOps;
1066   SmallVector<const Expr *, 4> LHSs;
1067   SmallVector<const Expr *, 4> RHSs;
1068   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1069     auto IPriv = C->privates().begin();
1070     auto IRed = C->reduction_ops().begin();
1071     auto ILHS = C->lhs_exprs().begin();
1072     auto IRHS = C->rhs_exprs().begin();
1073     for (const Expr *Ref : C->varlists()) {
1074       Shareds.emplace_back(Ref);
1075       Privates.emplace_back(*IPriv);
1076       ReductionOps.emplace_back(*IRed);
1077       LHSs.emplace_back(*ILHS);
1078       RHSs.emplace_back(*IRHS);
1079       std::advance(IPriv, 1);
1080       std::advance(IRed, 1);
1081       std::advance(ILHS, 1);
1082       std::advance(IRHS, 1);
1083     }
1084   }
1085   ReductionCodeGen RedCG(Shareds, Privates, ReductionOps);
1086   unsigned Count = 0;
1087   auto ILHS = LHSs.begin();
1088   auto IRHS = RHSs.begin();
1089   auto IPriv = Privates.begin();
1090   for (const Expr *IRef : Shareds) {
1091     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1092     // Emit private VarDecl with reduction init.
1093     RedCG.emitSharedLValue(*this, Count);
1094     RedCG.emitAggregateType(*this, Count);
1095     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1096     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1097                              RedCG.getSharedLValue(Count),
1098                              [&Emission](CodeGenFunction &CGF) {
1099                                CGF.EmitAutoVarInit(Emission);
1100                                return true;
1101                              });
1102     EmitAutoVarCleanups(Emission);
1103     Address BaseAddr = RedCG.adjustPrivateAddress(
1104         *this, Count, Emission.getAllocatedAddress());
1105     bool IsRegistered = PrivateScope.addPrivate(
1106         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1107     assert(IsRegistered && "private var already registered as private");
1108     // Silence the warning about unused variable.
1109     (void)IsRegistered;
1110 
1111     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1112     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1113     QualType Type = PrivateVD->getType();
1114     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1115     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1116       // Store the address of the original variable associated with the LHS
1117       // implicit variable.
1118       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1119         return RedCG.getSharedLValue(Count).getAddress();
1120       });
1121       PrivateScope.addPrivate(
1122           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1123     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1124                isa<ArraySubscriptExpr>(IRef)) {
1125       // Store the address of the original variable associated with the LHS
1126       // implicit variable.
1127       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1128         return RedCG.getSharedLValue(Count).getAddress();
1129       });
1130       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1131         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1132                                             ConvertTypeForMem(RHSVD->getType()),
1133                                             "rhs.begin");
1134       });
1135     } else {
1136       QualType Type = PrivateVD->getType();
1137       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1138       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress();
1139       // Store the address of the original variable associated with the LHS
1140       // implicit variable.
1141       if (IsArray) {
1142         OriginalAddr = Builder.CreateElementBitCast(
1143             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1144       }
1145       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1146       PrivateScope.addPrivate(
1147           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1148             return IsArray
1149                        ? Builder.CreateElementBitCast(
1150                              GetAddrOfLocalVar(PrivateVD),
1151                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1152                        : GetAddrOfLocalVar(PrivateVD);
1153           });
1154     }
1155     ++ILHS;
1156     ++IRHS;
1157     ++IPriv;
1158     ++Count;
1159   }
1160 }
1161 
1162 void CodeGenFunction::EmitOMPReductionClauseFinal(
1163     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1164   if (!HaveInsertPoint())
1165     return;
1166   llvm::SmallVector<const Expr *, 8> Privates;
1167   llvm::SmallVector<const Expr *, 8> LHSExprs;
1168   llvm::SmallVector<const Expr *, 8> RHSExprs;
1169   llvm::SmallVector<const Expr *, 8> ReductionOps;
1170   bool HasAtLeastOneReduction = false;
1171   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1172     HasAtLeastOneReduction = true;
1173     Privates.append(C->privates().begin(), C->privates().end());
1174     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1175     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1176     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1177   }
1178   if (HasAtLeastOneReduction) {
1179     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1180                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1181                       ReductionKind == OMPD_simd;
1182     bool SimpleReduction = ReductionKind == OMPD_simd;
1183     // Emit nowait reduction if nowait clause is present or directive is a
1184     // parallel directive (it always has implicit barrier).
1185     CGM.getOpenMPRuntime().emitReduction(
1186         *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
1187         {WithNowait, SimpleReduction, ReductionKind});
1188   }
1189 }
1190 
1191 static void emitPostUpdateForReductionClause(
1192     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1193     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1194   if (!CGF.HaveInsertPoint())
1195     return;
1196   llvm::BasicBlock *DoneBB = nullptr;
1197   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1198     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1199       if (!DoneBB) {
1200         if (llvm::Value *Cond = CondGen(CGF)) {
1201           // If the first post-update expression is found, emit conditional
1202           // block if it was requested.
1203           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1204           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1205           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1206           CGF.EmitBlock(ThenBB);
1207         }
1208       }
1209       CGF.EmitIgnoredExpr(PostUpdate);
1210     }
1211   }
1212   if (DoneBB)
1213     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1214 }
1215 
1216 namespace {
1217 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1218 /// parallel function. This is necessary for combined constructs such as
1219 /// 'distribute parallel for'
1220 typedef llvm::function_ref<void(CodeGenFunction &,
1221                                 const OMPExecutableDirective &,
1222                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1223     CodeGenBoundParametersTy;
1224 } // anonymous namespace
1225 
1226 static void emitCommonOMPParallelDirective(
1227     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1228     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1229     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1230   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1231   llvm::Value *OutlinedFn =
1232       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1233           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1234   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1235     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1236     llvm::Value *NumThreads =
1237         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1238                            /*IgnoreResultAssign=*/true);
1239     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1240         CGF, NumThreads, NumThreadsClause->getBeginLoc());
1241   }
1242   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1243     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1244     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1245         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
1246   }
1247   const Expr *IfCond = nullptr;
1248   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1249     if (C->getNameModifier() == OMPD_unknown ||
1250         C->getNameModifier() == OMPD_parallel) {
1251       IfCond = C->getCondition();
1252       break;
1253     }
1254   }
1255 
1256   OMPParallelScope Scope(CGF, S);
1257   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1258   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1259   // lower and upper bounds with the pragma 'for' chunking mechanism.
1260   // The following lambda takes care of appending the lower and upper bound
1261   // parameters when necessary
1262   CodeGenBoundParameters(CGF, S, CapturedVars);
1263   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1264   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
1265                                               CapturedVars, IfCond);
1266 }
1267 
1268 static void emitEmptyBoundParameters(CodeGenFunction &,
1269                                      const OMPExecutableDirective &,
1270                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1271 
1272 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1273   // Emit parallel region as a standalone region.
1274   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1275     Action.Enter(CGF);
1276     OMPPrivateScope PrivateScope(CGF);
1277     bool Copyins = CGF.EmitOMPCopyinClause(S);
1278     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1279     if (Copyins) {
1280       // Emit implicit barrier to synchronize threads and avoid data races on
1281       // propagation master's thread values of threadprivate variables to local
1282       // instances of that variables of all other implicit threads.
1283       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1284           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
1285           /*ForceSimpleCall=*/true);
1286     }
1287     CGF.EmitOMPPrivateClause(S, PrivateScope);
1288     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1289     (void)PrivateScope.Privatize();
1290     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1291     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1292   };
1293   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1294                                  emitEmptyBoundParameters);
1295   emitPostUpdateForReductionClause(*this, S,
1296                                    [](CodeGenFunction &) { return nullptr; });
1297 }
1298 
1299 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1300                                       JumpDest LoopExit) {
1301   RunCleanupsScope BodyScope(*this);
1302   // Update counters values on current iteration.
1303   for (const Expr *UE : D.updates())
1304     EmitIgnoredExpr(UE);
1305   // Update the linear variables.
1306   // In distribute directives only loop counters may be marked as linear, no
1307   // need to generate the code for them.
1308   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1309     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1310       for (const Expr *UE : C->updates())
1311         EmitIgnoredExpr(UE);
1312     }
1313   }
1314 
1315   // On a continue in the body, jump to the end.
1316   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1317   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1318   // Emit loop body.
1319   EmitStmt(D.getBody());
1320   // The end (updates/cleanups).
1321   EmitBlock(Continue.getBlock());
1322   BreakContinueStack.pop_back();
1323 }
1324 
1325 void CodeGenFunction::EmitOMPInnerLoop(
1326     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1327     const Expr *IncExpr,
1328     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
1329     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
1330   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1331 
1332   // Start the loop with a block that tests the condition.
1333   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1334   EmitBlock(CondBlock);
1335   const SourceRange R = S.getSourceRange();
1336   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1337                  SourceLocToDebugLoc(R.getEnd()));
1338 
1339   // If there are any cleanups between here and the loop-exit scope,
1340   // create a block to stage a loop exit along.
1341   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1342   if (RequiresCleanup)
1343     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1344 
1345   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
1346 
1347   // Emit condition.
1348   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1349   if (ExitBlock != LoopExit.getBlock()) {
1350     EmitBlock(ExitBlock);
1351     EmitBranchThroughCleanup(LoopExit);
1352   }
1353 
1354   EmitBlock(LoopBody);
1355   incrementProfileCounter(&S);
1356 
1357   // Create a block for the increment.
1358   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1359   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1360 
1361   BodyGen(*this);
1362 
1363   // Emit "IV = IV + 1" and a back-edge to the condition block.
1364   EmitBlock(Continue.getBlock());
1365   EmitIgnoredExpr(IncExpr);
1366   PostIncGen(*this);
1367   BreakContinueStack.pop_back();
1368   EmitBranch(CondBlock);
1369   LoopStack.pop();
1370   // Emit the fall-through block.
1371   EmitBlock(LoopExit.getBlock());
1372 }
1373 
1374 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1375   if (!HaveInsertPoint())
1376     return false;
1377   // Emit inits for the linear variables.
1378   bool HasLinears = false;
1379   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1380     for (const Expr *Init : C->inits()) {
1381       HasLinears = true;
1382       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1383       if (const auto *Ref =
1384               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1385         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1386         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1387         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1388                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1389                         VD->getInit()->getType(), VK_LValue,
1390                         VD->getInit()->getExprLoc());
1391         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1392                                                 VD->getType()),
1393                        /*capturedByInit=*/false);
1394         EmitAutoVarCleanups(Emission);
1395       } else {
1396         EmitVarDecl(*VD);
1397       }
1398     }
1399     // Emit the linear steps for the linear clauses.
1400     // If a step is not constant, it is pre-calculated before the loop.
1401     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1402       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1403         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1404         // Emit calculation of the linear step.
1405         EmitIgnoredExpr(CS);
1406       }
1407   }
1408   return HasLinears;
1409 }
1410 
1411 void CodeGenFunction::EmitOMPLinearClauseFinal(
1412     const OMPLoopDirective &D,
1413     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1414   if (!HaveInsertPoint())
1415     return;
1416   llvm::BasicBlock *DoneBB = nullptr;
1417   // Emit the final values of the linear variables.
1418   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1419     auto IC = C->varlist_begin();
1420     for (const Expr *F : C->finals()) {
1421       if (!DoneBB) {
1422         if (llvm::Value *Cond = CondGen(*this)) {
1423           // If the first post-update expression is found, emit conditional
1424           // block if it was requested.
1425           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
1426           DoneBB = createBasicBlock(".omp.linear.pu.done");
1427           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1428           EmitBlock(ThenBB);
1429         }
1430       }
1431       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1432       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1433                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1434                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1435       Address OrigAddr = EmitLValue(&DRE).getAddress();
1436       CodeGenFunction::OMPPrivateScope VarScope(*this);
1437       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1438       (void)VarScope.Privatize();
1439       EmitIgnoredExpr(F);
1440       ++IC;
1441     }
1442     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1443       EmitIgnoredExpr(PostUpdate);
1444   }
1445   if (DoneBB)
1446     EmitBlock(DoneBB, /*IsFinished=*/true);
1447 }
1448 
1449 static void emitAlignedClause(CodeGenFunction &CGF,
1450                               const OMPExecutableDirective &D) {
1451   if (!CGF.HaveInsertPoint())
1452     return;
1453   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1454     unsigned ClauseAlignment = 0;
1455     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
1456       auto *AlignmentCI =
1457           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1458       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1459     }
1460     for (const Expr *E : Clause->varlists()) {
1461       unsigned Alignment = ClauseAlignment;
1462       if (Alignment == 0) {
1463         // OpenMP [2.8.1, Description]
1464         // If no optional parameter is specified, implementation-defined default
1465         // alignments for SIMD instructions on the target platforms are assumed.
1466         Alignment =
1467             CGF.getContext()
1468                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1469                     E->getType()->getPointeeType()))
1470                 .getQuantity();
1471       }
1472       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1473              "alignment is not power of 2");
1474       if (Alignment != 0) {
1475         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1476         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1477       }
1478     }
1479   }
1480 }
1481 
1482 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1483     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1484   if (!HaveInsertPoint())
1485     return;
1486   auto I = S.private_counters().begin();
1487   for (const Expr *E : S.counters()) {
1488     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1489     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1490     // Emit var without initialization.
1491     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
1492     EmitAutoVarCleanups(VarEmission);
1493     LocalDeclMap.erase(PrivateVD);
1494     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
1495       return VarEmission.getAllocatedAddress();
1496     });
1497     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1498         VD->hasGlobalStorage()) {
1499       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
1500         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1501                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1502                         E->getType(), VK_LValue, E->getExprLoc());
1503         return EmitLValue(&DRE).getAddress();
1504       });
1505     } else {
1506       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
1507         return VarEmission.getAllocatedAddress();
1508       });
1509     }
1510     ++I;
1511   }
1512   // Privatize extra loop counters used in loops for ordered(n) clauses.
1513   for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
1514     if (!C->getNumForLoops())
1515       continue;
1516     for (unsigned I = S.getCollapsedNumber(),
1517                   E = C->getLoopNumIterations().size();
1518          I < E; ++I) {
1519       const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
1520       const auto *VD = cast<VarDecl>(DRE->getDecl());
1521       // Override only those variables that are really emitted already.
1522       if (LocalDeclMap.count(VD)) {
1523         (void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
1524           return CreateMemTemp(DRE->getType(), VD->getName());
1525         });
1526       }
1527     }
1528   }
1529 }
1530 
1531 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1532                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1533                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1534   if (!CGF.HaveInsertPoint())
1535     return;
1536   {
1537     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1538     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1539     (void)PreCondScope.Privatize();
1540     // Get initial values of real counters.
1541     for (const Expr *I : S.inits()) {
1542       CGF.EmitIgnoredExpr(I);
1543     }
1544   }
1545   // Check that loop is executed at least one time.
1546   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1547 }
1548 
1549 void CodeGenFunction::EmitOMPLinearClause(
1550     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1551   if (!HaveInsertPoint())
1552     return;
1553   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1554   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1555     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1556     for (const Expr *C : LoopDirective->counters()) {
1557       SIMDLCVs.insert(
1558           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1559     }
1560   }
1561   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1562     auto CurPrivate = C->privates().begin();
1563     for (const Expr *E : C->varlists()) {
1564       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1565       const auto *PrivateVD =
1566           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1567       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1568         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
1569           // Emit private VarDecl with copy init.
1570           EmitVarDecl(*PrivateVD);
1571           return GetAddrOfLocalVar(PrivateVD);
1572         });
1573         assert(IsRegistered && "linear var already registered as private");
1574         // Silence the warning about unused variable.
1575         (void)IsRegistered;
1576       } else {
1577         EmitVarDecl(*PrivateVD);
1578       }
1579       ++CurPrivate;
1580     }
1581   }
1582 }
1583 
1584 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1585                                      const OMPExecutableDirective &D,
1586                                      bool IsMonotonic) {
1587   if (!CGF.HaveInsertPoint())
1588     return;
1589   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1590     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1591                                  /*ignoreResult=*/true);
1592     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1593     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1594     // In presence of finite 'safelen', it may be unsafe to mark all
1595     // the memory instructions parallel, because loop-carried
1596     // dependences of 'safelen' iterations are possible.
1597     if (!IsMonotonic)
1598       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1599   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1600     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1601                                  /*ignoreResult=*/true);
1602     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1603     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1604     // In presence of finite 'safelen', it may be unsafe to mark all
1605     // the memory instructions parallel, because loop-carried
1606     // dependences of 'safelen' iterations are possible.
1607     CGF.LoopStack.setParallel(/*Enable=*/false);
1608   }
1609 }
1610 
1611 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1612                                       bool IsMonotonic) {
1613   // Walk clauses and process safelen/lastprivate.
1614   LoopStack.setParallel(!IsMonotonic);
1615   LoopStack.setVectorizeEnable();
1616   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1617 }
1618 
1619 void CodeGenFunction::EmitOMPSimdFinal(
1620     const OMPLoopDirective &D,
1621     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1622   if (!HaveInsertPoint())
1623     return;
1624   llvm::BasicBlock *DoneBB = nullptr;
1625   auto IC = D.counters().begin();
1626   auto IPC = D.private_counters().begin();
1627   for (const Expr *F : D.finals()) {
1628     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1629     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1630     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1631     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1632         OrigVD->hasGlobalStorage() || CED) {
1633       if (!DoneBB) {
1634         if (llvm::Value *Cond = CondGen(*this)) {
1635           // If the first post-update expression is found, emit conditional
1636           // block if it was requested.
1637           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
1638           DoneBB = createBasicBlock(".omp.final.done");
1639           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1640           EmitBlock(ThenBB);
1641         }
1642       }
1643       Address OrigAddr = Address::invalid();
1644       if (CED) {
1645         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1646       } else {
1647         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1648                         /*RefersToEnclosingVariableOrCapture=*/false,
1649                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1650         OrigAddr = EmitLValue(&DRE).getAddress();
1651       }
1652       OMPPrivateScope VarScope(*this);
1653       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1654       (void)VarScope.Privatize();
1655       EmitIgnoredExpr(F);
1656     }
1657     ++IC;
1658     ++IPC;
1659   }
1660   if (DoneBB)
1661     EmitBlock(DoneBB, /*IsFinished=*/true);
1662 }
1663 
1664 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
1665                                          const OMPLoopDirective &S,
1666                                          CodeGenFunction::JumpDest LoopExit) {
1667   CGF.EmitOMPLoopBody(S, LoopExit);
1668   CGF.EmitStopPoint(&S);
1669 }
1670 
1671 /// Emit a helper variable and return corresponding lvalue.
1672 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1673                                const DeclRefExpr *Helper) {
1674   auto VDecl = cast<VarDecl>(Helper->getDecl());
1675   CGF.EmitVarDecl(*VDecl);
1676   return CGF.EmitLValue(Helper);
1677 }
1678 
1679 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
1680                               PrePostActionTy &Action) {
1681   Action.Enter(CGF);
1682   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
1683          "Expected simd directive");
1684   OMPLoopScope PreInitScope(CGF, S);
1685   // if (PreCond) {
1686   //   for (IV in 0..LastIteration) BODY;
1687   //   <Final counter/linear vars updates>;
1688   // }
1689   //
1690   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
1691       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
1692       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
1693     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1694     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
1695   }
1696 
1697   // Emit: if (PreCond) - begin.
1698   // If the condition constant folds and can be elided, avoid emitting the
1699   // whole loop.
1700   bool CondConstant;
1701   llvm::BasicBlock *ContBlock = nullptr;
1702   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1703     if (!CondConstant)
1704       return;
1705   } else {
1706     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
1707     ContBlock = CGF.createBasicBlock("simd.if.end");
1708     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1709                 CGF.getProfileCount(&S));
1710     CGF.EmitBlock(ThenBlock);
1711     CGF.incrementProfileCounter(&S);
1712   }
1713 
1714   // Emit the loop iteration variable.
1715   const Expr *IVExpr = S.getIterationVariable();
1716   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1717   CGF.EmitVarDecl(*IVDecl);
1718   CGF.EmitIgnoredExpr(S.getInit());
1719 
1720   // Emit the iterations count variable.
1721   // If it is not a variable, Sema decided to calculate iterations count on
1722   // each iteration (e.g., it is foldable into a constant).
1723   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1724     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1725     // Emit calculation of the iterations count.
1726     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1727   }
1728 
1729   CGF.EmitOMPSimdInit(S);
1730 
1731   emitAlignedClause(CGF, S);
1732   (void)CGF.EmitOMPLinearClauseInit(S);
1733   {
1734     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
1735     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1736     CGF.EmitOMPLinearClause(S, LoopScope);
1737     CGF.EmitOMPPrivateClause(S, LoopScope);
1738     CGF.EmitOMPReductionClauseInit(S, LoopScope);
1739     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1740     (void)LoopScope.Privatize();
1741     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1742                          S.getInc(),
1743                          [&S](CodeGenFunction &CGF) {
1744                            CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest());
1745                            CGF.EmitStopPoint(&S);
1746                          },
1747                          [](CodeGenFunction &) {});
1748     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
1749     // Emit final copy of the lastprivate variables at the end of loops.
1750     if (HasLastprivateClause)
1751       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1752     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
1753     emitPostUpdateForReductionClause(CGF, S,
1754                                      [](CodeGenFunction &) { return nullptr; });
1755   }
1756   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
1757   // Emit: if (PreCond) - end.
1758   if (ContBlock) {
1759     CGF.EmitBranch(ContBlock);
1760     CGF.EmitBlock(ContBlock, true);
1761   }
1762 }
1763 
1764 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1765   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1766     emitOMPSimdRegion(CGF, S, Action);
1767   };
1768   OMPLexicalScope Scope(*this, S, OMPD_unknown);
1769   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1770 }
1771 
1772 void CodeGenFunction::EmitOMPOuterLoop(
1773     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
1774     CodeGenFunction::OMPPrivateScope &LoopScope,
1775     const CodeGenFunction::OMPLoopArguments &LoopArgs,
1776     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
1777     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
1778   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1779 
1780   const Expr *IVExpr = S.getIterationVariable();
1781   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1782   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1783 
1784   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1785 
1786   // Start the loop with a block that tests the condition.
1787   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
1788   EmitBlock(CondBlock);
1789   const SourceRange R = S.getSourceRange();
1790   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1791                  SourceLocToDebugLoc(R.getEnd()));
1792 
1793   llvm::Value *BoolCondVal = nullptr;
1794   if (!DynamicOrOrdered) {
1795     // UB = min(UB, GlobalUB) or
1796     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
1797     // 'distribute parallel for')
1798     EmitIgnoredExpr(LoopArgs.EUB);
1799     // IV = LB
1800     EmitIgnoredExpr(LoopArgs.Init);
1801     // IV < UB
1802     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
1803   } else {
1804     BoolCondVal =
1805         RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
1806                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
1807   }
1808 
1809   // If there are any cleanups between here and the loop-exit scope,
1810   // create a block to stage a loop exit along.
1811   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1812   if (LoopScope.requiresCleanups())
1813     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1814 
1815   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
1816   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1817   if (ExitBlock != LoopExit.getBlock()) {
1818     EmitBlock(ExitBlock);
1819     EmitBranchThroughCleanup(LoopExit);
1820   }
1821   EmitBlock(LoopBody);
1822 
1823   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1824   // LB for loop condition and emitted it above).
1825   if (DynamicOrOrdered)
1826     EmitIgnoredExpr(LoopArgs.Init);
1827 
1828   // Create a block for the increment.
1829   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1830   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1831 
1832   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1833   // with dynamic/guided scheduling and without ordered clause.
1834   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1835     LoopStack.setParallel(!IsMonotonic);
1836   else
1837     EmitOMPSimdInit(S, IsMonotonic);
1838 
1839   SourceLocation Loc = S.getBeginLoc();
1840 
1841   // when 'distribute' is not combined with a 'for':
1842   // while (idx <= UB) { BODY; ++idx; }
1843   // when 'distribute' is combined with a 'for'
1844   // (e.g. 'distribute parallel for')
1845   // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
1846   EmitOMPInnerLoop(
1847       S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
1848       [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
1849         CodeGenLoop(CGF, S, LoopExit);
1850       },
1851       [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
1852         CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
1853       });
1854 
1855   EmitBlock(Continue.getBlock());
1856   BreakContinueStack.pop_back();
1857   if (!DynamicOrOrdered) {
1858     // Emit "LB = LB + Stride", "UB = UB + Stride".
1859     EmitIgnoredExpr(LoopArgs.NextLB);
1860     EmitIgnoredExpr(LoopArgs.NextUB);
1861   }
1862 
1863   EmitBranch(CondBlock);
1864   LoopStack.pop();
1865   // Emit the fall-through block.
1866   EmitBlock(LoopExit.getBlock());
1867 
1868   // Tell the runtime we are done.
1869   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
1870     if (!DynamicOrOrdered)
1871       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
1872                                                      S.getDirectiveKind());
1873   };
1874   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
1875 }
1876 
1877 void CodeGenFunction::EmitOMPForOuterLoop(
1878     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1879     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1880     const OMPLoopArguments &LoopArgs,
1881     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
1882   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1883 
1884   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1885   const bool DynamicOrOrdered =
1886       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1887 
1888   assert((Ordered ||
1889           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1890                                  LoopArgs.Chunk != nullptr)) &&
1891          "static non-chunked schedule does not need outer loop");
1892 
1893   // Emit outer loop.
1894   //
1895   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1896   // When schedule(dynamic,chunk_size) is specified, the iterations are
1897   // distributed to threads in the team in chunks as the threads request them.
1898   // Each thread executes a chunk of iterations, then requests another chunk,
1899   // until no chunks remain to be distributed. Each chunk contains chunk_size
1900   // iterations, except for the last chunk to be distributed, which may have
1901   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1902   //
1903   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1904   // to threads in the team in chunks as the executing threads request them.
1905   // Each thread executes a chunk of iterations, then requests another chunk,
1906   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1907   // each chunk is proportional to the number of unassigned iterations divided
1908   // by the number of threads in the team, decreasing to 1. For a chunk_size
1909   // with value k (greater than 1), the size of each chunk is determined in the
1910   // same way, with the restriction that the chunks do not contain fewer than k
1911   // iterations (except for the last chunk to be assigned, which may have fewer
1912   // than k iterations).
1913   //
1914   // When schedule(auto) is specified, the decision regarding scheduling is
1915   // delegated to the compiler and/or runtime system. The programmer gives the
1916   // implementation the freedom to choose any possible mapping of iterations to
1917   // threads in the team.
1918   //
1919   // When schedule(runtime) is specified, the decision regarding scheduling is
1920   // deferred until run time, and the schedule and chunk size are taken from the
1921   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1922   // implementation defined
1923   //
1924   // while(__kmpc_dispatch_next(&LB, &UB)) {
1925   //   idx = LB;
1926   //   while (idx <= UB) { BODY; ++idx;
1927   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1928   //   } // inner loop
1929   // }
1930   //
1931   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1932   // When schedule(static, chunk_size) is specified, iterations are divided into
1933   // chunks of size chunk_size, and the chunks are assigned to the threads in
1934   // the team in a round-robin fashion in the order of the thread number.
1935   //
1936   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1937   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1938   //   LB = LB + ST;
1939   //   UB = UB + ST;
1940   // }
1941   //
1942 
1943   const Expr *IVExpr = S.getIterationVariable();
1944   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1945   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1946 
1947   if (DynamicOrOrdered) {
1948     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
1949         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
1950     llvm::Value *LBVal = DispatchBounds.first;
1951     llvm::Value *UBVal = DispatchBounds.second;
1952     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
1953                                                              LoopArgs.Chunk};
1954     RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
1955                            IVSigned, Ordered, DipatchRTInputValues);
1956   } else {
1957     CGOpenMPRuntime::StaticRTInput StaticInit(
1958         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
1959         LoopArgs.ST, LoopArgs.Chunk);
1960     RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
1961                          ScheduleKind, StaticInit);
1962   }
1963 
1964   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
1965                                     const unsigned IVSize,
1966                                     const bool IVSigned) {
1967     if (Ordered) {
1968       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
1969                                                             IVSigned);
1970     }
1971   };
1972 
1973   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
1974                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
1975   OuterLoopArgs.IncExpr = S.getInc();
1976   OuterLoopArgs.Init = S.getInit();
1977   OuterLoopArgs.Cond = S.getCond();
1978   OuterLoopArgs.NextLB = S.getNextLowerBound();
1979   OuterLoopArgs.NextUB = S.getNextUpperBound();
1980   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
1981                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
1982 }
1983 
1984 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
1985                              const unsigned IVSize, const bool IVSigned) {}
1986 
1987 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1988     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
1989     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
1990     const CodeGenLoopTy &CodeGenLoopContent) {
1991 
1992   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1993 
1994   // Emit outer loop.
1995   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1996   // dynamic
1997   //
1998 
1999   const Expr *IVExpr = S.getIterationVariable();
2000   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2001   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2002 
2003   CGOpenMPRuntime::StaticRTInput StaticInit(
2004       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
2005       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
2006   RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
2007 
2008   // for combined 'distribute' and 'for' the increment expression of distribute
2009   // is store in DistInc. For 'distribute' alone, it is in Inc.
2010   Expr *IncExpr;
2011   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
2012     IncExpr = S.getDistInc();
2013   else
2014     IncExpr = S.getInc();
2015 
2016   // this routine is shared by 'omp distribute parallel for' and
2017   // 'omp distribute': select the right EUB expression depending on the
2018   // directive
2019   OMPLoopArguments OuterLoopArgs;
2020   OuterLoopArgs.LB = LoopArgs.LB;
2021   OuterLoopArgs.UB = LoopArgs.UB;
2022   OuterLoopArgs.ST = LoopArgs.ST;
2023   OuterLoopArgs.IL = LoopArgs.IL;
2024   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2025   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2026                           ? S.getCombinedEnsureUpperBound()
2027                           : S.getEnsureUpperBound();
2028   OuterLoopArgs.IncExpr = IncExpr;
2029   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2030                            ? S.getCombinedInit()
2031                            : S.getInit();
2032   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2033                            ? S.getCombinedCond()
2034                            : S.getCond();
2035   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2036                              ? S.getCombinedNextLowerBound()
2037                              : S.getNextLowerBound();
2038   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2039                              ? S.getCombinedNextUpperBound()
2040                              : S.getNextUpperBound();
2041 
2042   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2043                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2044                    emitEmptyOrdered);
2045 }
2046 
2047 static std::pair<LValue, LValue>
2048 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2049                                      const OMPExecutableDirective &S) {
2050   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2051   LValue LB =
2052       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2053   LValue UB =
2054       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2055 
2056   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2057   // parallel for') we need to use the 'distribute'
2058   // chunk lower and upper bounds rather than the whole loop iteration
2059   // space. These are parameters to the outlined function for 'parallel'
2060   // and we copy the bounds of the previous schedule into the
2061   // the current ones.
2062   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2063   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2064   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2065       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2066   PrevLBVal = CGF.EmitScalarConversion(
2067       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2068       LS.getIterationVariable()->getType(),
2069       LS.getPrevLowerBoundVariable()->getExprLoc());
2070   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2071       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2072   PrevUBVal = CGF.EmitScalarConversion(
2073       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2074       LS.getIterationVariable()->getType(),
2075       LS.getPrevUpperBoundVariable()->getExprLoc());
2076 
2077   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2078   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2079 
2080   return {LB, UB};
2081 }
2082 
2083 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2084 /// we need to use the LB and UB expressions generated by the worksharing
2085 /// code generation support, whereas in non combined situations we would
2086 /// just emit 0 and the LastIteration expression
2087 /// This function is necessary due to the difference of the LB and UB
2088 /// types for the RT emission routines for 'for_static_init' and
2089 /// 'for_dispatch_init'
2090 static std::pair<llvm::Value *, llvm::Value *>
2091 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2092                                         const OMPExecutableDirective &S,
2093                                         Address LB, Address UB) {
2094   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2095   const Expr *IVExpr = LS.getIterationVariable();
2096   // when implementing a dynamic schedule for a 'for' combined with a
2097   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2098   // is not normalized as each team only executes its own assigned
2099   // distribute chunk
2100   QualType IteratorTy = IVExpr->getType();
2101   llvm::Value *LBVal =
2102       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2103   llvm::Value *UBVal =
2104       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2105   return {LBVal, UBVal};
2106 }
2107 
2108 static void emitDistributeParallelForDistributeInnerBoundParams(
2109     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2110     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2111   const auto &Dir = cast<OMPLoopDirective>(S);
2112   LValue LB =
2113       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2114   llvm::Value *LBCast = CGF.Builder.CreateIntCast(
2115       CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2116   CapturedVars.push_back(LBCast);
2117   LValue UB =
2118       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2119 
2120   llvm::Value *UBCast = CGF.Builder.CreateIntCast(
2121       CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2122   CapturedVars.push_back(UBCast);
2123 }
2124 
2125 static void
2126 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2127                                  const OMPLoopDirective &S,
2128                                  CodeGenFunction::JumpDest LoopExit) {
2129   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2130                                          PrePostActionTy &Action) {
2131     Action.Enter(CGF);
2132     bool HasCancel = false;
2133     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2134       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2135         HasCancel = D->hasCancel();
2136       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2137         HasCancel = D->hasCancel();
2138       else if (const auto *D =
2139                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2140         HasCancel = D->hasCancel();
2141     }
2142     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2143                                                      HasCancel);
2144     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2145                                emitDistributeParallelForInnerBounds,
2146                                emitDistributeParallelForDispatchBounds);
2147   };
2148 
2149   emitCommonOMPParallelDirective(
2150       CGF, S,
2151       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2152       CGInlinedWorksharingLoop,
2153       emitDistributeParallelForDistributeInnerBoundParams);
2154 }
2155 
2156 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2157     const OMPDistributeParallelForDirective &S) {
2158   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2159     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2160                               S.getDistInc());
2161   };
2162   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2163   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2164 }
2165 
2166 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2167     const OMPDistributeParallelForSimdDirective &S) {
2168   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2169     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2170                               S.getDistInc());
2171   };
2172   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2173   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2174 }
2175 
2176 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2177     const OMPDistributeSimdDirective &S) {
2178   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2179     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
2180   };
2181   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2182   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2183 }
2184 
2185 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
2186     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
2187   // Emit SPMD target parallel for region as a standalone region.
2188   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2189     emitOMPSimdRegion(CGF, S, Action);
2190   };
2191   llvm::Function *Fn;
2192   llvm::Constant *Addr;
2193   // Emit target region as a standalone region.
2194   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
2195       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
2196   assert(Fn && Addr && "Target device function emission failed.");
2197 }
2198 
2199 void CodeGenFunction::EmitOMPTargetSimdDirective(
2200     const OMPTargetSimdDirective &S) {
2201   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2202     emitOMPSimdRegion(CGF, S, Action);
2203   };
2204   emitCommonOMPTargetDirective(*this, S, CodeGen);
2205 }
2206 
2207 namespace {
2208   struct ScheduleKindModifiersTy {
2209     OpenMPScheduleClauseKind Kind;
2210     OpenMPScheduleClauseModifier M1;
2211     OpenMPScheduleClauseModifier M2;
2212     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
2213                             OpenMPScheduleClauseModifier M1,
2214                             OpenMPScheduleClauseModifier M2)
2215         : Kind(Kind), M1(M1), M2(M2) {}
2216   };
2217 } // namespace
2218 
2219 bool CodeGenFunction::EmitOMPWorksharingLoop(
2220     const OMPLoopDirective &S, Expr *EUB,
2221     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2222     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2223   // Emit the loop iteration variable.
2224   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2225   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
2226   EmitVarDecl(*IVDecl);
2227 
2228   // Emit the iterations count variable.
2229   // If it is not a variable, Sema decided to calculate iterations count on each
2230   // iteration (e.g., it is foldable into a constant).
2231   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2232     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2233     // Emit calculation of the iterations count.
2234     EmitIgnoredExpr(S.getCalcLastIteration());
2235   }
2236 
2237   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2238 
2239   bool HasLastprivateClause;
2240   // Check pre-condition.
2241   {
2242     OMPLoopScope PreInitScope(*this, S);
2243     // Skip the entire loop if we don't meet the precondition.
2244     // If the condition constant folds and can be elided, avoid emitting the
2245     // whole loop.
2246     bool CondConstant;
2247     llvm::BasicBlock *ContBlock = nullptr;
2248     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2249       if (!CondConstant)
2250         return false;
2251     } else {
2252       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
2253       ContBlock = createBasicBlock("omp.precond.end");
2254       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2255                   getProfileCount(&S));
2256       EmitBlock(ThenBlock);
2257       incrementProfileCounter(&S);
2258     }
2259 
2260     RunCleanupsScope DoacrossCleanupScope(*this);
2261     bool Ordered = false;
2262     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2263       if (OrderedClause->getNumForLoops())
2264         RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
2265       else
2266         Ordered = true;
2267     }
2268 
2269     llvm::DenseSet<const Expr *> EmittedFinals;
2270     emitAlignedClause(*this, S);
2271     bool HasLinears = EmitOMPLinearClauseInit(S);
2272     // Emit helper vars inits.
2273 
2274     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
2275     LValue LB = Bounds.first;
2276     LValue UB = Bounds.second;
2277     LValue ST =
2278         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2279     LValue IL =
2280         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2281 
2282     // Emit 'then' code.
2283     {
2284       OMPPrivateScope LoopScope(*this);
2285       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
2286         // Emit implicit barrier to synchronize threads and avoid data races on
2287         // initialization of firstprivate variables and post-update of
2288         // lastprivate variables.
2289         CGM.getOpenMPRuntime().emitBarrierCall(
2290             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2291             /*ForceSimpleCall=*/true);
2292       }
2293       EmitOMPPrivateClause(S, LoopScope);
2294       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2295       EmitOMPReductionClauseInit(S, LoopScope);
2296       EmitOMPPrivateLoopCounters(S, LoopScope);
2297       EmitOMPLinearClause(S, LoopScope);
2298       (void)LoopScope.Privatize();
2299 
2300       // Detect the loop schedule kind and chunk.
2301       llvm::Value *Chunk = nullptr;
2302       OpenMPScheduleTy ScheduleKind;
2303       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
2304         ScheduleKind.Schedule = C->getScheduleKind();
2305         ScheduleKind.M1 = C->getFirstScheduleModifier();
2306         ScheduleKind.M2 = C->getSecondScheduleModifier();
2307         if (const Expr *Ch = C->getChunkSize()) {
2308           Chunk = EmitScalarExpr(Ch);
2309           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2310                                        S.getIterationVariable()->getType(),
2311                                        S.getBeginLoc());
2312         }
2313       }
2314       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2315       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2316       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2317       // If the static schedule kind is specified or if the ordered clause is
2318       // specified, and if no monotonic modifier is specified, the effect will
2319       // be as if the monotonic modifier was specified.
2320       if (RT.isStaticNonchunked(ScheduleKind.Schedule,
2321                                 /* Chunked */ Chunk != nullptr) &&
2322           !Ordered) {
2323         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2324           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2325         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2326         // When no chunk_size is specified, the iteration space is divided into
2327         // chunks that are approximately equal in size, and at most one chunk is
2328         // distributed to each thread. Note that the size of the chunks is
2329         // unspecified in this case.
2330         CGOpenMPRuntime::StaticRTInput StaticInit(
2331             IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(),
2332             UB.getAddress(), ST.getAddress());
2333         RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2334                              ScheduleKind, StaticInit);
2335         JumpDest LoopExit =
2336             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2337         // UB = min(UB, GlobalUB);
2338         EmitIgnoredExpr(S.getEnsureUpperBound());
2339         // IV = LB;
2340         EmitIgnoredExpr(S.getInit());
2341         // while (idx <= UB) { BODY; ++idx; }
2342         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2343                          S.getInc(),
2344                          [&S, LoopExit](CodeGenFunction &CGF) {
2345                            CGF.EmitOMPLoopBody(S, LoopExit);
2346                            CGF.EmitStopPoint(&S);
2347                          },
2348                          [](CodeGenFunction &) {});
2349         EmitBlock(LoopExit.getBlock());
2350         // Tell the runtime we are done.
2351         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2352           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2353                                                          S.getDirectiveKind());
2354         };
2355         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2356       } else {
2357         const bool IsMonotonic =
2358             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2359             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2360             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2361             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2362         // Emit the outer loop, which requests its work chunk [LB..UB] from
2363         // runtime and runs the inner loop to process it.
2364         const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(),
2365                                              ST.getAddress(), IL.getAddress(),
2366                                              Chunk, EUB);
2367         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2368                             LoopArguments, CGDispatchBounds);
2369       }
2370       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2371         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
2372           return CGF.Builder.CreateIsNotNull(
2373               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2374         });
2375       }
2376       EmitOMPReductionClauseFinal(
2377           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
2378                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
2379                  : /*Parallel only*/ OMPD_parallel);
2380       // Emit post-update of the reduction variables if IsLastIter != 0.
2381       emitPostUpdateForReductionClause(
2382           *this, S, [IL, &S](CodeGenFunction &CGF) {
2383             return CGF.Builder.CreateIsNotNull(
2384                 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2385           });
2386       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2387       if (HasLastprivateClause)
2388         EmitOMPLastprivateClauseFinal(
2389             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2390             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
2391     }
2392     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
2393       return CGF.Builder.CreateIsNotNull(
2394           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2395     });
2396     DoacrossCleanupScope.ForceCleanup();
2397     // We're now done with the loop, so jump to the continuation block.
2398     if (ContBlock) {
2399       EmitBranch(ContBlock);
2400       EmitBlock(ContBlock, /*IsFinished=*/true);
2401     }
2402   }
2403   return HasLastprivateClause;
2404 }
2405 
2406 /// The following two functions generate expressions for the loop lower
2407 /// and upper bounds in case of static and dynamic (dispatch) schedule
2408 /// of the associated 'for' or 'distribute' loop.
2409 static std::pair<LValue, LValue>
2410 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
2411   const auto &LS = cast<OMPLoopDirective>(S);
2412   LValue LB =
2413       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2414   LValue UB =
2415       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2416   return {LB, UB};
2417 }
2418 
2419 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
2420 /// consider the lower and upper bound expressions generated by the
2421 /// worksharing loop support, but we use 0 and the iteration space size as
2422 /// constants
2423 static std::pair<llvm::Value *, llvm::Value *>
2424 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
2425                           Address LB, Address UB) {
2426   const auto &LS = cast<OMPLoopDirective>(S);
2427   const Expr *IVExpr = LS.getIterationVariable();
2428   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
2429   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
2430   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
2431   return {LBVal, UBVal};
2432 }
2433 
2434 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2435   bool HasLastprivates = false;
2436   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2437                                           PrePostActionTy &) {
2438     OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel());
2439     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2440                                                  emitForLoopBounds,
2441                                                  emitDispatchForLoopBounds);
2442   };
2443   {
2444     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2445     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2446                                                 S.hasCancel());
2447   }
2448 
2449   // Emit an implicit barrier at the end.
2450   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2451     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2452 }
2453 
2454 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2455   bool HasLastprivates = false;
2456   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2457                                           PrePostActionTy &) {
2458     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2459                                                  emitForLoopBounds,
2460                                                  emitDispatchForLoopBounds);
2461   };
2462   {
2463     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2464     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2465   }
2466 
2467   // Emit an implicit barrier at the end.
2468   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2469     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2470 }
2471 
2472 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2473                                 const Twine &Name,
2474                                 llvm::Value *Init = nullptr) {
2475   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2476   if (Init)
2477     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2478   return LVal;
2479 }
2480 
2481 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2482   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
2483   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
2484   bool HasLastprivates = false;
2485   auto &&CodeGen = [&S, CapturedStmt, CS,
2486                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
2487     ASTContext &C = CGF.getContext();
2488     QualType KmpInt32Ty =
2489         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2490     // Emit helper vars inits.
2491     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2492                                   CGF.Builder.getInt32(0));
2493     llvm::ConstantInt *GlobalUBVal = CS != nullptr
2494                                          ? CGF.Builder.getInt32(CS->size() - 1)
2495                                          : CGF.Builder.getInt32(0);
2496     LValue UB =
2497         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2498     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2499                                   CGF.Builder.getInt32(1));
2500     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2501                                   CGF.Builder.getInt32(0));
2502     // Loop counter.
2503     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2504     OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2505     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2506     OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2507     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2508     // Generate condition for loop.
2509     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2510                         OK_Ordinary, S.getBeginLoc(), FPOptions());
2511     // Increment for loop counter.
2512     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2513                       S.getBeginLoc(), true);
2514     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
2515       // Iterate through all sections and emit a switch construct:
2516       // switch (IV) {
2517       //   case 0:
2518       //     <SectionStmt[0]>;
2519       //     break;
2520       // ...
2521       //   case <NumSection> - 1:
2522       //     <SectionStmt[<NumSection> - 1]>;
2523       //     break;
2524       // }
2525       // .omp.sections.exit:
2526       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2527       llvm::SwitchInst *SwitchStmt =
2528           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
2529                                    ExitBB, CS == nullptr ? 1 : CS->size());
2530       if (CS) {
2531         unsigned CaseNumber = 0;
2532         for (const Stmt *SubStmt : CS->children()) {
2533           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2534           CGF.EmitBlock(CaseBB);
2535           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2536           CGF.EmitStmt(SubStmt);
2537           CGF.EmitBranch(ExitBB);
2538           ++CaseNumber;
2539         }
2540       } else {
2541         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
2542         CGF.EmitBlock(CaseBB);
2543         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2544         CGF.EmitStmt(CapturedStmt);
2545         CGF.EmitBranch(ExitBB);
2546       }
2547       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2548     };
2549 
2550     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2551     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2552       // Emit implicit barrier to synchronize threads and avoid data races on
2553       // initialization of firstprivate variables and post-update of lastprivate
2554       // variables.
2555       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2556           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2557           /*ForceSimpleCall=*/true);
2558     }
2559     CGF.EmitOMPPrivateClause(S, LoopScope);
2560     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2561     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2562     (void)LoopScope.Privatize();
2563 
2564     // Emit static non-chunked loop.
2565     OpenMPScheduleTy ScheduleKind;
2566     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2567     CGOpenMPRuntime::StaticRTInput StaticInit(
2568         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
2569         LB.getAddress(), UB.getAddress(), ST.getAddress());
2570     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2571         CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
2572     // UB = min(UB, GlobalUB);
2573     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
2574     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
2575         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2576     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2577     // IV = LB;
2578     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
2579     // while (idx <= UB) { BODY; ++idx; }
2580     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2581                          [](CodeGenFunction &) {});
2582     // Tell the runtime we are done.
2583     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2584       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2585                                                      S.getDirectiveKind());
2586     };
2587     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
2588     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
2589     // Emit post-update of the reduction variables if IsLastIter != 0.
2590     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
2591       return CGF.Builder.CreateIsNotNull(
2592           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2593     });
2594 
2595     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2596     if (HasLastprivates)
2597       CGF.EmitOMPLastprivateClauseFinal(
2598           S, /*NoFinals=*/false,
2599           CGF.Builder.CreateIsNotNull(
2600               CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
2601   };
2602 
2603   bool HasCancel = false;
2604   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2605     HasCancel = OSD->hasCancel();
2606   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2607     HasCancel = OPSD->hasCancel();
2608   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
2609   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2610                                               HasCancel);
2611   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2612   // clause. Otherwise the barrier will be generated by the codegen for the
2613   // directive.
2614   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2615     // Emit implicit barrier to synchronize threads and avoid data races on
2616     // initialization of firstprivate variables.
2617     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
2618                                            OMPD_unknown);
2619   }
2620 }
2621 
2622 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2623   {
2624     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2625     EmitSections(S);
2626   }
2627   // Emit an implicit barrier at the end.
2628   if (!S.getSingleClause<OMPNowaitClause>()) {
2629     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
2630                                            OMPD_sections);
2631   }
2632 }
2633 
2634 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2635   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2636     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2637   };
2638   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2639   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2640                                               S.hasCancel());
2641 }
2642 
2643 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2644   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2645   llvm::SmallVector<const Expr *, 8> DestExprs;
2646   llvm::SmallVector<const Expr *, 8> SrcExprs;
2647   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2648   // Check if there are any 'copyprivate' clauses associated with this
2649   // 'single' construct.
2650   // Build a list of copyprivate variables along with helper expressions
2651   // (<source>, <destination>, <destination>=<source> expressions)
2652   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2653     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2654     DestExprs.append(C->destination_exprs().begin(),
2655                      C->destination_exprs().end());
2656     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2657     AssignmentOps.append(C->assignment_ops().begin(),
2658                          C->assignment_ops().end());
2659   }
2660   // Emit code for 'single' region along with 'copyprivate' clauses
2661   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2662     Action.Enter(CGF);
2663     OMPPrivateScope SingleScope(CGF);
2664     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2665     CGF.EmitOMPPrivateClause(S, SingleScope);
2666     (void)SingleScope.Privatize();
2667     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2668   };
2669   {
2670     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2671     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
2672                                             CopyprivateVars, DestExprs,
2673                                             SrcExprs, AssignmentOps);
2674   }
2675   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2676   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2677   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2678     CGM.getOpenMPRuntime().emitBarrierCall(
2679         *this, S.getBeginLoc(),
2680         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2681   }
2682 }
2683 
2684 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2685   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2686     Action.Enter(CGF);
2687     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2688   };
2689   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2690   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
2691 }
2692 
2693 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2694   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2695     Action.Enter(CGF);
2696     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2697   };
2698   const Expr *Hint = nullptr;
2699   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
2700     Hint = HintClause->getHint();
2701   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2702   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2703                                             S.getDirectiveName().getAsString(),
2704                                             CodeGen, S.getBeginLoc(), Hint);
2705 }
2706 
2707 void CodeGenFunction::EmitOMPParallelForDirective(
2708     const OMPParallelForDirective &S) {
2709   // Emit directive as a combined directive that consists of two implicit
2710   // directives: 'parallel' with 'for' directive.
2711   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2712     Action.Enter(CGF);
2713     OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel());
2714     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2715                                emitDispatchForLoopBounds);
2716   };
2717   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
2718                                  emitEmptyBoundParameters);
2719 }
2720 
2721 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2722     const OMPParallelForSimdDirective &S) {
2723   // Emit directive as a combined directive that consists of two implicit
2724   // directives: 'parallel' with 'for' directive.
2725   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2726     Action.Enter(CGF);
2727     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2728                                emitDispatchForLoopBounds);
2729   };
2730   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen,
2731                                  emitEmptyBoundParameters);
2732 }
2733 
2734 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2735     const OMPParallelSectionsDirective &S) {
2736   // Emit directive as a combined directive that consists of two implicit
2737   // directives: 'parallel' with 'sections' directive.
2738   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2739     Action.Enter(CGF);
2740     CGF.EmitSections(S);
2741   };
2742   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
2743                                  emitEmptyBoundParameters);
2744 }
2745 
2746 void CodeGenFunction::EmitOMPTaskBasedDirective(
2747     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
2748     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
2749     OMPTaskDataTy &Data) {
2750   // Emit outlined function for task construct.
2751   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
2752   auto I = CS->getCapturedDecl()->param_begin();
2753   auto PartId = std::next(I);
2754   auto TaskT = std::next(I, 4);
2755   // Check if the task is final
2756   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2757     // If the condition constant folds and can be elided, try to avoid emitting
2758     // the condition and the dead arm of the if/else.
2759     const Expr *Cond = Clause->getCondition();
2760     bool CondConstant;
2761     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2762       Data.Final.setInt(CondConstant);
2763     else
2764       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2765   } else {
2766     // By default the task is not final.
2767     Data.Final.setInt(/*IntVal=*/false);
2768   }
2769   // Check if the task has 'priority' clause.
2770   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2771     const Expr *Prio = Clause->getPriority();
2772     Data.Priority.setInt(/*IntVal=*/true);
2773     Data.Priority.setPointer(EmitScalarConversion(
2774         EmitScalarExpr(Prio), Prio->getType(),
2775         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2776         Prio->getExprLoc()));
2777   }
2778   // The first function argument for tasks is a thread id, the second one is a
2779   // part id (0 for tied tasks, >=0 for untied task).
2780   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2781   // Get list of private variables.
2782   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2783     auto IRef = C->varlist_begin();
2784     for (const Expr *IInit : C->private_copies()) {
2785       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2786       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2787         Data.PrivateVars.push_back(*IRef);
2788         Data.PrivateCopies.push_back(IInit);
2789       }
2790       ++IRef;
2791     }
2792   }
2793   EmittedAsPrivate.clear();
2794   // Get list of firstprivate variables.
2795   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2796     auto IRef = C->varlist_begin();
2797     auto IElemInitRef = C->inits().begin();
2798     for (const Expr *IInit : C->private_copies()) {
2799       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2800       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2801         Data.FirstprivateVars.push_back(*IRef);
2802         Data.FirstprivateCopies.push_back(IInit);
2803         Data.FirstprivateInits.push_back(*IElemInitRef);
2804       }
2805       ++IRef;
2806       ++IElemInitRef;
2807     }
2808   }
2809   // Get list of lastprivate variables (for taskloops).
2810   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2811   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2812     auto IRef = C->varlist_begin();
2813     auto ID = C->destination_exprs().begin();
2814     for (const Expr *IInit : C->private_copies()) {
2815       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2816       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2817         Data.LastprivateVars.push_back(*IRef);
2818         Data.LastprivateCopies.push_back(IInit);
2819       }
2820       LastprivateDstsOrigs.insert(
2821           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2822            cast<DeclRefExpr>(*IRef)});
2823       ++IRef;
2824       ++ID;
2825     }
2826   }
2827   SmallVector<const Expr *, 4> LHSs;
2828   SmallVector<const Expr *, 4> RHSs;
2829   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
2830     auto IPriv = C->privates().begin();
2831     auto IRed = C->reduction_ops().begin();
2832     auto ILHS = C->lhs_exprs().begin();
2833     auto IRHS = C->rhs_exprs().begin();
2834     for (const Expr *Ref : C->varlists()) {
2835       Data.ReductionVars.emplace_back(Ref);
2836       Data.ReductionCopies.emplace_back(*IPriv);
2837       Data.ReductionOps.emplace_back(*IRed);
2838       LHSs.emplace_back(*ILHS);
2839       RHSs.emplace_back(*IRHS);
2840       std::advance(IPriv, 1);
2841       std::advance(IRed, 1);
2842       std::advance(ILHS, 1);
2843       std::advance(IRHS, 1);
2844     }
2845   }
2846   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
2847       *this, S.getBeginLoc(), LHSs, RHSs, Data);
2848   // Build list of dependences.
2849   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2850     for (const Expr *IRef : C->varlists())
2851       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
2852   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
2853                     CapturedRegion](CodeGenFunction &CGF,
2854                                     PrePostActionTy &Action) {
2855     // Set proper addresses for generated private copies.
2856     OMPPrivateScope Scope(CGF);
2857     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2858         !Data.LastprivateVars.empty()) {
2859       enum { PrivatesParam = 2, CopyFnParam = 3 };
2860       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
2861           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
2862       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
2863           CS->getCapturedDecl()->getParam(PrivatesParam)));
2864       // Map privates.
2865       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2866       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2867       CallArgs.push_back(PrivatesPtr);
2868       for (const Expr *E : Data.PrivateVars) {
2869         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2870         Address PrivatePtr = CGF.CreateMemTemp(
2871             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2872         PrivatePtrs.emplace_back(VD, PrivatePtr);
2873         CallArgs.push_back(PrivatePtr.getPointer());
2874       }
2875       for (const Expr *E : Data.FirstprivateVars) {
2876         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2877         Address PrivatePtr =
2878             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2879                               ".firstpriv.ptr.addr");
2880         PrivatePtrs.emplace_back(VD, PrivatePtr);
2881         CallArgs.push_back(PrivatePtr.getPointer());
2882       }
2883       for (const Expr *E : Data.LastprivateVars) {
2884         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2885         Address PrivatePtr =
2886             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2887                               ".lastpriv.ptr.addr");
2888         PrivatePtrs.emplace_back(VD, PrivatePtr);
2889         CallArgs.push_back(PrivatePtr.getPointer());
2890       }
2891       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
2892                                                           CopyFn, CallArgs);
2893       for (const auto &Pair : LastprivateDstsOrigs) {
2894         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2895         DeclRefExpr DRE(
2896             const_cast<VarDecl *>(OrigVD),
2897             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2898                 OrigVD) != nullptr,
2899             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2900         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2901           return CGF.EmitLValue(&DRE).getAddress();
2902         });
2903       }
2904       for (const auto &Pair : PrivatePtrs) {
2905         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2906                             CGF.getContext().getDeclAlign(Pair.first));
2907         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2908       }
2909     }
2910     if (Data.Reductions) {
2911       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
2912       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies,
2913                              Data.ReductionOps);
2914       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
2915           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
2916       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
2917         RedCG.emitSharedLValue(CGF, Cnt);
2918         RedCG.emitAggregateType(CGF, Cnt);
2919         // FIXME: This must removed once the runtime library is fixed.
2920         // Emit required threadprivate variables for
2921         // initilizer/combiner/finalizer.
2922         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
2923                                                            RedCG, Cnt);
2924         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
2925             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
2926         Replacement =
2927             Address(CGF.EmitScalarConversion(
2928                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
2929                         CGF.getContext().getPointerType(
2930                             Data.ReductionCopies[Cnt]->getType()),
2931                         Data.ReductionCopies[Cnt]->getExprLoc()),
2932                     Replacement.getAlignment());
2933         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
2934         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
2935                          [Replacement]() { return Replacement; });
2936       }
2937     }
2938     // Privatize all private variables except for in_reduction items.
2939     (void)Scope.Privatize();
2940     SmallVector<const Expr *, 4> InRedVars;
2941     SmallVector<const Expr *, 4> InRedPrivs;
2942     SmallVector<const Expr *, 4> InRedOps;
2943     SmallVector<const Expr *, 4> TaskgroupDescriptors;
2944     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
2945       auto IPriv = C->privates().begin();
2946       auto IRed = C->reduction_ops().begin();
2947       auto ITD = C->taskgroup_descriptors().begin();
2948       for (const Expr *Ref : C->varlists()) {
2949         InRedVars.emplace_back(Ref);
2950         InRedPrivs.emplace_back(*IPriv);
2951         InRedOps.emplace_back(*IRed);
2952         TaskgroupDescriptors.emplace_back(*ITD);
2953         std::advance(IPriv, 1);
2954         std::advance(IRed, 1);
2955         std::advance(ITD, 1);
2956       }
2957     }
2958     // Privatize in_reduction items here, because taskgroup descriptors must be
2959     // privatized earlier.
2960     OMPPrivateScope InRedScope(CGF);
2961     if (!InRedVars.empty()) {
2962       ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps);
2963       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
2964         RedCG.emitSharedLValue(CGF, Cnt);
2965         RedCG.emitAggregateType(CGF, Cnt);
2966         // The taskgroup descriptor variable is always implicit firstprivate and
2967         // privatized already during procoessing of the firstprivates.
2968         // FIXME: This must removed once the runtime library is fixed.
2969         // Emit required threadprivate variables for
2970         // initilizer/combiner/finalizer.
2971         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
2972                                                            RedCG, Cnt);
2973         llvm::Value *ReductionsPtr =
2974             CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]),
2975                                  TaskgroupDescriptors[Cnt]->getExprLoc());
2976         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
2977             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
2978         Replacement = Address(
2979             CGF.EmitScalarConversion(
2980                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
2981                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
2982                 InRedPrivs[Cnt]->getExprLoc()),
2983             Replacement.getAlignment());
2984         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
2985         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
2986                               [Replacement]() { return Replacement; });
2987       }
2988     }
2989     (void)InRedScope.Privatize();
2990 
2991     Action.Enter(CGF);
2992     BodyGen(CGF);
2993   };
2994   llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
2995       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
2996       Data.NumberOfParts);
2997   OMPLexicalScope Scope(*this, S);
2998   TaskGen(*this, OutlinedFn, Data);
2999 }
3000 
3001 static ImplicitParamDecl *
3002 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
3003                                   QualType Ty, CapturedDecl *CD,
3004                                   SourceLocation Loc) {
3005   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3006                                            ImplicitParamDecl::Other);
3007   auto *OrigRef = DeclRefExpr::Create(
3008       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
3009       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3010   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3011                                               ImplicitParamDecl::Other);
3012   auto *PrivateRef = DeclRefExpr::Create(
3013       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
3014       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3015   QualType ElemType = C.getBaseElementType(Ty);
3016   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
3017                                            ImplicitParamDecl::Other);
3018   auto *InitRef = DeclRefExpr::Create(
3019       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
3020       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
3021   PrivateVD->setInitStyle(VarDecl::CInit);
3022   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
3023                                               InitRef, /*BasePath=*/nullptr,
3024                                               VK_RValue));
3025   Data.FirstprivateVars.emplace_back(OrigRef);
3026   Data.FirstprivateCopies.emplace_back(PrivateRef);
3027   Data.FirstprivateInits.emplace_back(InitRef);
3028   return OrigVD;
3029 }
3030 
3031 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
3032     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
3033     OMPTargetDataInfo &InputInfo) {
3034   // Emit outlined function for task construct.
3035   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3036   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3037   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3038   auto I = CS->getCapturedDecl()->param_begin();
3039   auto PartId = std::next(I);
3040   auto TaskT = std::next(I, 4);
3041   OMPTaskDataTy Data;
3042   // The task is not final.
3043   Data.Final.setInt(/*IntVal=*/false);
3044   // Get list of firstprivate variables.
3045   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
3046     auto IRef = C->varlist_begin();
3047     auto IElemInitRef = C->inits().begin();
3048     for (auto *IInit : C->private_copies()) {
3049       Data.FirstprivateVars.push_back(*IRef);
3050       Data.FirstprivateCopies.push_back(IInit);
3051       Data.FirstprivateInits.push_back(*IElemInitRef);
3052       ++IRef;
3053       ++IElemInitRef;
3054     }
3055   }
3056   OMPPrivateScope TargetScope(*this);
3057   VarDecl *BPVD = nullptr;
3058   VarDecl *PVD = nullptr;
3059   VarDecl *SVD = nullptr;
3060   if (InputInfo.NumberOfTargetItems > 0) {
3061     auto *CD = CapturedDecl::Create(
3062         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
3063     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
3064     QualType BaseAndPointersType = getContext().getConstantArrayType(
3065         getContext().VoidPtrTy, ArrSize, ArrayType::Normal,
3066         /*IndexTypeQuals=*/0);
3067     BPVD = createImplicitFirstprivateForType(
3068         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3069     PVD = createImplicitFirstprivateForType(
3070         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3071     QualType SizesType = getContext().getConstantArrayType(
3072         getContext().getSizeType(), ArrSize, ArrayType::Normal,
3073         /*IndexTypeQuals=*/0);
3074     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
3075                                             S.getBeginLoc());
3076     TargetScope.addPrivate(
3077         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
3078     TargetScope.addPrivate(PVD,
3079                            [&InputInfo]() { return InputInfo.PointersArray; });
3080     TargetScope.addPrivate(SVD,
3081                            [&InputInfo]() { return InputInfo.SizesArray; });
3082   }
3083   (void)TargetScope.Privatize();
3084   // Build list of dependences.
3085   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
3086     for (const Expr *IRef : C->varlists())
3087       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
3088   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD,
3089                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
3090     // Set proper addresses for generated private copies.
3091     OMPPrivateScope Scope(CGF);
3092     if (!Data.FirstprivateVars.empty()) {
3093       enum { PrivatesParam = 2, CopyFnParam = 3 };
3094       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
3095           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
3096       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
3097           CS->getCapturedDecl()->getParam(PrivatesParam)));
3098       // Map privates.
3099       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
3100       llvm::SmallVector<llvm::Value *, 16> CallArgs;
3101       CallArgs.push_back(PrivatesPtr);
3102       for (const Expr *E : Data.FirstprivateVars) {
3103         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3104         Address PrivatePtr =
3105             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3106                               ".firstpriv.ptr.addr");
3107         PrivatePtrs.emplace_back(VD, PrivatePtr);
3108         CallArgs.push_back(PrivatePtr.getPointer());
3109       }
3110       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
3111                                                           CopyFn, CallArgs);
3112       for (const auto &Pair : PrivatePtrs) {
3113         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
3114                             CGF.getContext().getDeclAlign(Pair.first));
3115         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
3116       }
3117     }
3118     // Privatize all private variables except for in_reduction items.
3119     (void)Scope.Privatize();
3120     if (InputInfo.NumberOfTargetItems > 0) {
3121       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
3122           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize());
3123       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
3124           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize());
3125       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
3126           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize());
3127     }
3128 
3129     Action.Enter(CGF);
3130     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
3131     BodyGen(CGF);
3132   };
3133   llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3134       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
3135       Data.NumberOfParts);
3136   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
3137   IntegerLiteral IfCond(getContext(), TrueOrFalse,
3138                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3139                         SourceLocation());
3140 
3141   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
3142                                       SharedsTy, CapturedStruct, &IfCond, Data);
3143 }
3144 
3145 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
3146   // Emit outlined function for task construct.
3147   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3148   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3149   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3150   const Expr *IfCond = nullptr;
3151   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3152     if (C->getNameModifier() == OMPD_unknown ||
3153         C->getNameModifier() == OMPD_task) {
3154       IfCond = C->getCondition();
3155       break;
3156     }
3157   }
3158 
3159   OMPTaskDataTy Data;
3160   // Check if we should emit tied or untied task.
3161   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
3162   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
3163     CGF.EmitStmt(CS->getCapturedStmt());
3164   };
3165   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3166                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
3167                             const OMPTaskDataTy &Data) {
3168     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
3169                                             SharedsTy, CapturedStruct, IfCond,
3170                                             Data);
3171   };
3172   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
3173 }
3174 
3175 void CodeGenFunction::EmitOMPTaskyieldDirective(
3176     const OMPTaskyieldDirective &S) {
3177   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
3178 }
3179 
3180 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
3181   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
3182 }
3183 
3184 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
3185   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
3186 }
3187 
3188 void CodeGenFunction::EmitOMPTaskgroupDirective(
3189     const OMPTaskgroupDirective &S) {
3190   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3191     Action.Enter(CGF);
3192     if (const Expr *E = S.getReductionRef()) {
3193       SmallVector<const Expr *, 4> LHSs;
3194       SmallVector<const Expr *, 4> RHSs;
3195       OMPTaskDataTy Data;
3196       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
3197         auto IPriv = C->privates().begin();
3198         auto IRed = C->reduction_ops().begin();
3199         auto ILHS = C->lhs_exprs().begin();
3200         auto IRHS = C->rhs_exprs().begin();
3201         for (const Expr *Ref : C->varlists()) {
3202           Data.ReductionVars.emplace_back(Ref);
3203           Data.ReductionCopies.emplace_back(*IPriv);
3204           Data.ReductionOps.emplace_back(*IRed);
3205           LHSs.emplace_back(*ILHS);
3206           RHSs.emplace_back(*IRHS);
3207           std::advance(IPriv, 1);
3208           std::advance(IRed, 1);
3209           std::advance(ILHS, 1);
3210           std::advance(IRHS, 1);
3211         }
3212       }
3213       llvm::Value *ReductionDesc =
3214           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
3215                                                            LHSs, RHSs, Data);
3216       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3217       CGF.EmitVarDecl(*VD);
3218       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
3219                             /*Volatile=*/false, E->getType());
3220     }
3221     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3222   };
3223   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3224   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
3225 }
3226 
3227 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
3228   CGM.getOpenMPRuntime().emitFlush(
3229       *this,
3230       [&S]() -> ArrayRef<const Expr *> {
3231         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
3232           return llvm::makeArrayRef(FlushClause->varlist_begin(),
3233                                     FlushClause->varlist_end());
3234         return llvm::None;
3235       }(),
3236       S.getBeginLoc());
3237 }
3238 
3239 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
3240                                             const CodeGenLoopTy &CodeGenLoop,
3241                                             Expr *IncExpr) {
3242   // Emit the loop iteration variable.
3243   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3244   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3245   EmitVarDecl(*IVDecl);
3246 
3247   // Emit the iterations count variable.
3248   // If it is not a variable, Sema decided to calculate iterations count on each
3249   // iteration (e.g., it is foldable into a constant).
3250   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3251     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3252     // Emit calculation of the iterations count.
3253     EmitIgnoredExpr(S.getCalcLastIteration());
3254   }
3255 
3256   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3257 
3258   bool HasLastprivateClause = false;
3259   // Check pre-condition.
3260   {
3261     OMPLoopScope PreInitScope(*this, S);
3262     // Skip the entire loop if we don't meet the precondition.
3263     // If the condition constant folds and can be elided, avoid emitting the
3264     // whole loop.
3265     bool CondConstant;
3266     llvm::BasicBlock *ContBlock = nullptr;
3267     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3268       if (!CondConstant)
3269         return;
3270     } else {
3271       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3272       ContBlock = createBasicBlock("omp.precond.end");
3273       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3274                   getProfileCount(&S));
3275       EmitBlock(ThenBlock);
3276       incrementProfileCounter(&S);
3277     }
3278 
3279     emitAlignedClause(*this, S);
3280     // Emit 'then' code.
3281     {
3282       // Emit helper vars inits.
3283 
3284       LValue LB = EmitOMPHelperVar(
3285           *this, cast<DeclRefExpr>(
3286                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3287                           ? S.getCombinedLowerBoundVariable()
3288                           : S.getLowerBoundVariable())));
3289       LValue UB = EmitOMPHelperVar(
3290           *this, cast<DeclRefExpr>(
3291                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3292                           ? S.getCombinedUpperBoundVariable()
3293                           : S.getUpperBoundVariable())));
3294       LValue ST =
3295           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3296       LValue IL =
3297           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3298 
3299       OMPPrivateScope LoopScope(*this);
3300       if (EmitOMPFirstprivateClause(S, LoopScope)) {
3301         // Emit implicit barrier to synchronize threads and avoid data races
3302         // on initialization of firstprivate variables and post-update of
3303         // lastprivate variables.
3304         CGM.getOpenMPRuntime().emitBarrierCall(
3305             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3306             /*ForceSimpleCall=*/true);
3307       }
3308       EmitOMPPrivateClause(S, LoopScope);
3309       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3310           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3311           !isOpenMPTeamsDirective(S.getDirectiveKind()))
3312         EmitOMPReductionClauseInit(S, LoopScope);
3313       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3314       EmitOMPPrivateLoopCounters(S, LoopScope);
3315       (void)LoopScope.Privatize();
3316 
3317       // Detect the distribute schedule kind and chunk.
3318       llvm::Value *Chunk = nullptr;
3319       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
3320       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
3321         ScheduleKind = C->getDistScheduleKind();
3322         if (const Expr *Ch = C->getChunkSize()) {
3323           Chunk = EmitScalarExpr(Ch);
3324           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
3325                                        S.getIterationVariable()->getType(),
3326                                        S.getBeginLoc());
3327         }
3328       }
3329       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3330       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3331 
3332       // OpenMP [2.10.8, distribute Construct, Description]
3333       // If dist_schedule is specified, kind must be static. If specified,
3334       // iterations are divided into chunks of size chunk_size, chunks are
3335       // assigned to the teams of the league in a round-robin fashion in the
3336       // order of the team number. When no chunk_size is specified, the
3337       // iteration space is divided into chunks that are approximately equal
3338       // in size, and at most one chunk is distributed to each team of the
3339       // league. The size of the chunks is unspecified in this case.
3340       if (RT.isStaticNonchunked(ScheduleKind,
3341                                 /* Chunked */ Chunk != nullptr)) {
3342         if (isOpenMPSimdDirective(S.getDirectiveKind()))
3343           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
3344         CGOpenMPRuntime::StaticRTInput StaticInit(
3345             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(),
3346             LB.getAddress(), UB.getAddress(), ST.getAddress());
3347         RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
3348                                     StaticInit);
3349         JumpDest LoopExit =
3350             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3351         // UB = min(UB, GlobalUB);
3352         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3353                             ? S.getCombinedEnsureUpperBound()
3354                             : S.getEnsureUpperBound());
3355         // IV = LB;
3356         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3357                             ? S.getCombinedInit()
3358                             : S.getInit());
3359 
3360         const Expr *Cond =
3361             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3362                 ? S.getCombinedCond()
3363                 : S.getCond();
3364 
3365         // for distribute alone,  codegen
3366         // while (idx <= UB) { BODY; ++idx; }
3367         // when combined with 'for' (e.g. as in 'distribute parallel for')
3368         // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
3369         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr,
3370                          [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
3371                            CodeGenLoop(CGF, S, LoopExit);
3372                          },
3373                          [](CodeGenFunction &) {});
3374         EmitBlock(LoopExit.getBlock());
3375         // Tell the runtime we are done.
3376         RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind());
3377       } else {
3378         // Emit the outer loop, which requests its work chunk [LB..UB] from
3379         // runtime and runs the inner loop to process it.
3380         const OMPLoopArguments LoopArguments = {
3381             LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(),
3382             Chunk};
3383         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
3384                                    CodeGenLoop);
3385       }
3386       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3387         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3388           return CGF.Builder.CreateIsNotNull(
3389               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3390         });
3391       }
3392       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3393           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3394           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
3395         OpenMPDirectiveKind ReductionKind = OMPD_unknown;
3396         if (isOpenMPParallelDirective(S.getDirectiveKind()) &&
3397             isOpenMPSimdDirective(S.getDirectiveKind())) {
3398           ReductionKind = OMPD_parallel_for_simd;
3399         } else if (isOpenMPParallelDirective(S.getDirectiveKind())) {
3400           ReductionKind = OMPD_parallel_for;
3401         } else if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3402           ReductionKind = OMPD_simd;
3403         } else if (!isOpenMPTeamsDirective(S.getDirectiveKind()) &&
3404                    S.hasClausesOfKind<OMPReductionClause>()) {
3405           llvm_unreachable(
3406               "No reduction clauses is allowed in distribute directive.");
3407         }
3408         EmitOMPReductionClauseFinal(S, ReductionKind);
3409         // Emit post-update of the reduction variables if IsLastIter != 0.
3410         emitPostUpdateForReductionClause(
3411             *this, S, [IL, &S](CodeGenFunction &CGF) {
3412               return CGF.Builder.CreateIsNotNull(
3413                   CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3414             });
3415       }
3416       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3417       if (HasLastprivateClause) {
3418         EmitOMPLastprivateClauseFinal(
3419             S, /*NoFinals=*/false,
3420             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
3421       }
3422     }
3423 
3424     // We're now done with the loop, so jump to the continuation block.
3425     if (ContBlock) {
3426       EmitBranch(ContBlock);
3427       EmitBlock(ContBlock, true);
3428     }
3429   }
3430 }
3431 
3432 void CodeGenFunction::EmitOMPDistributeDirective(
3433     const OMPDistributeDirective &S) {
3434   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3435     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
3436   };
3437   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3438   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
3439 }
3440 
3441 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
3442                                                    const CapturedStmt *S) {
3443   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3444   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
3445   CGF.CapturedStmtInfo = &CapStmtInfo;
3446   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
3447   Fn->setDoesNotRecurse();
3448   return Fn;
3449 }
3450 
3451 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
3452   if (S.hasClausesOfKind<OMPDependClause>()) {
3453     assert(!S.getAssociatedStmt() &&
3454            "No associated statement must be in ordered depend construct.");
3455     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
3456       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
3457     return;
3458   }
3459   const auto *C = S.getSingleClause<OMPSIMDClause>();
3460   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
3461                                  PrePostActionTy &Action) {
3462     const CapturedStmt *CS = S.getInnermostCapturedStmt();
3463     if (C) {
3464       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3465       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3466       llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
3467       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
3468                                                       OutlinedFn, CapturedVars);
3469     } else {
3470       Action.Enter(CGF);
3471       CGF.EmitStmt(CS->getCapturedStmt());
3472     }
3473   };
3474   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3475   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
3476 }
3477 
3478 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
3479                                          QualType SrcType, QualType DestType,
3480                                          SourceLocation Loc) {
3481   assert(CGF.hasScalarEvaluationKind(DestType) &&
3482          "DestType must have scalar evaluation kind.");
3483   assert(!Val.isAggregate() && "Must be a scalar or complex.");
3484   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
3485                                                    DestType, Loc)
3486                         : CGF.EmitComplexToScalarConversion(
3487                               Val.getComplexVal(), SrcType, DestType, Loc);
3488 }
3489 
3490 static CodeGenFunction::ComplexPairTy
3491 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
3492                       QualType DestType, SourceLocation Loc) {
3493   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
3494          "DestType must have complex evaluation kind.");
3495   CodeGenFunction::ComplexPairTy ComplexVal;
3496   if (Val.isScalar()) {
3497     // Convert the input element to the element type of the complex.
3498     QualType DestElementType =
3499         DestType->castAs<ComplexType>()->getElementType();
3500     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
3501         Val.getScalarVal(), SrcType, DestElementType, Loc);
3502     ComplexVal = CodeGenFunction::ComplexPairTy(
3503         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
3504   } else {
3505     assert(Val.isComplex() && "Must be a scalar or complex.");
3506     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
3507     QualType DestElementType =
3508         DestType->castAs<ComplexType>()->getElementType();
3509     ComplexVal.first = CGF.EmitScalarConversion(
3510         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
3511     ComplexVal.second = CGF.EmitScalarConversion(
3512         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
3513   }
3514   return ComplexVal;
3515 }
3516 
3517 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
3518                                   LValue LVal, RValue RVal) {
3519   if (LVal.isGlobalReg()) {
3520     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
3521   } else {
3522     CGF.EmitAtomicStore(RVal, LVal,
3523                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3524                                  : llvm::AtomicOrdering::Monotonic,
3525                         LVal.isVolatile(), /*IsInit=*/false);
3526   }
3527 }
3528 
3529 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
3530                                          QualType RValTy, SourceLocation Loc) {
3531   switch (getEvaluationKind(LVal.getType())) {
3532   case TEK_Scalar:
3533     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
3534                                *this, RVal, RValTy, LVal.getType(), Loc)),
3535                            LVal);
3536     break;
3537   case TEK_Complex:
3538     EmitStoreOfComplex(
3539         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
3540         /*isInit=*/false);
3541     break;
3542   case TEK_Aggregate:
3543     llvm_unreachable("Must be a scalar or complex.");
3544   }
3545 }
3546 
3547 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
3548                                   const Expr *X, const Expr *V,
3549                                   SourceLocation Loc) {
3550   // v = x;
3551   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
3552   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
3553   LValue XLValue = CGF.EmitLValue(X);
3554   LValue VLValue = CGF.EmitLValue(V);
3555   RValue Res = XLValue.isGlobalReg()
3556                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
3557                    : CGF.EmitAtomicLoad(
3558                          XLValue, Loc,
3559                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3560                                   : llvm::AtomicOrdering::Monotonic,
3561                          XLValue.isVolatile());
3562   // OpenMP, 2.12.6, atomic Construct
3563   // Any atomic construct with a seq_cst clause forces the atomically
3564   // performed operation to include an implicit flush operation without a
3565   // list.
3566   if (IsSeqCst)
3567     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3568   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
3569 }
3570 
3571 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
3572                                    const Expr *X, const Expr *E,
3573                                    SourceLocation Loc) {
3574   // x = expr;
3575   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
3576   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
3577   // OpenMP, 2.12.6, atomic Construct
3578   // Any atomic construct with a seq_cst clause forces the atomically
3579   // performed operation to include an implicit flush operation without a
3580   // list.
3581   if (IsSeqCst)
3582     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3583 }
3584 
3585 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
3586                                                 RValue Update,
3587                                                 BinaryOperatorKind BO,
3588                                                 llvm::AtomicOrdering AO,
3589                                                 bool IsXLHSInRHSPart) {
3590   ASTContext &Context = CGF.getContext();
3591   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
3592   // expression is simple and atomic is allowed for the given type for the
3593   // target platform.
3594   if (BO == BO_Comma || !Update.isScalar() ||
3595       !Update.getScalarVal()->getType()->isIntegerTy() ||
3596       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
3597                         (Update.getScalarVal()->getType() !=
3598                          X.getAddress().getElementType())) ||
3599       !X.getAddress().getElementType()->isIntegerTy() ||
3600       !Context.getTargetInfo().hasBuiltinAtomic(
3601           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
3602     return std::make_pair(false, RValue::get(nullptr));
3603 
3604   llvm::AtomicRMWInst::BinOp RMWOp;
3605   switch (BO) {
3606   case BO_Add:
3607     RMWOp = llvm::AtomicRMWInst::Add;
3608     break;
3609   case BO_Sub:
3610     if (!IsXLHSInRHSPart)
3611       return std::make_pair(false, RValue::get(nullptr));
3612     RMWOp = llvm::AtomicRMWInst::Sub;
3613     break;
3614   case BO_And:
3615     RMWOp = llvm::AtomicRMWInst::And;
3616     break;
3617   case BO_Or:
3618     RMWOp = llvm::AtomicRMWInst::Or;
3619     break;
3620   case BO_Xor:
3621     RMWOp = llvm::AtomicRMWInst::Xor;
3622     break;
3623   case BO_LT:
3624     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3625                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
3626                                    : llvm::AtomicRMWInst::Max)
3627                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
3628                                    : llvm::AtomicRMWInst::UMax);
3629     break;
3630   case BO_GT:
3631     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3632                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
3633                                    : llvm::AtomicRMWInst::Min)
3634                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
3635                                    : llvm::AtomicRMWInst::UMin);
3636     break;
3637   case BO_Assign:
3638     RMWOp = llvm::AtomicRMWInst::Xchg;
3639     break;
3640   case BO_Mul:
3641   case BO_Div:
3642   case BO_Rem:
3643   case BO_Shl:
3644   case BO_Shr:
3645   case BO_LAnd:
3646   case BO_LOr:
3647     return std::make_pair(false, RValue::get(nullptr));
3648   case BO_PtrMemD:
3649   case BO_PtrMemI:
3650   case BO_LE:
3651   case BO_GE:
3652   case BO_EQ:
3653   case BO_NE:
3654   case BO_Cmp:
3655   case BO_AddAssign:
3656   case BO_SubAssign:
3657   case BO_AndAssign:
3658   case BO_OrAssign:
3659   case BO_XorAssign:
3660   case BO_MulAssign:
3661   case BO_DivAssign:
3662   case BO_RemAssign:
3663   case BO_ShlAssign:
3664   case BO_ShrAssign:
3665   case BO_Comma:
3666     llvm_unreachable("Unsupported atomic update operation");
3667   }
3668   llvm::Value *UpdateVal = Update.getScalarVal();
3669   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3670     UpdateVal = CGF.Builder.CreateIntCast(
3671         IC, X.getAddress().getElementType(),
3672         X.getType()->hasSignedIntegerRepresentation());
3673   }
3674   llvm::Value *Res =
3675       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3676   return std::make_pair(true, RValue::get(Res));
3677 }
3678 
3679 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3680     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3681     llvm::AtomicOrdering AO, SourceLocation Loc,
3682     const llvm::function_ref<RValue(RValue)> CommonGen) {
3683   // Update expressions are allowed to have the following forms:
3684   // x binop= expr; -> xrval + expr;
3685   // x++, ++x -> xrval + 1;
3686   // x--, --x -> xrval - 1;
3687   // x = x binop expr; -> xrval binop expr
3688   // x = expr Op x; - > expr binop xrval;
3689   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3690   if (!Res.first) {
3691     if (X.isGlobalReg()) {
3692       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3693       // 'xrval'.
3694       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3695     } else {
3696       // Perform compare-and-swap procedure.
3697       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3698     }
3699   }
3700   return Res;
3701 }
3702 
3703 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3704                                     const Expr *X, const Expr *E,
3705                                     const Expr *UE, bool IsXLHSInRHSPart,
3706                                     SourceLocation Loc) {
3707   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3708          "Update expr in 'atomic update' must be a binary operator.");
3709   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3710   // Update expressions are allowed to have the following forms:
3711   // x binop= expr; -> xrval + expr;
3712   // x++, ++x -> xrval + 1;
3713   // x--, --x -> xrval - 1;
3714   // x = x binop expr; -> xrval binop expr
3715   // x = expr Op x; - > expr binop xrval;
3716   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3717   LValue XLValue = CGF.EmitLValue(X);
3718   RValue ExprRValue = CGF.EmitAnyExpr(E);
3719   llvm::AtomicOrdering AO = IsSeqCst
3720                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3721                                 : llvm::AtomicOrdering::Monotonic;
3722   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3723   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3724   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3725   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3726   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
3727     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3728     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3729     return CGF.EmitAnyExpr(UE);
3730   };
3731   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3732       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3733   // OpenMP, 2.12.6, atomic Construct
3734   // Any atomic construct with a seq_cst clause forces the atomically
3735   // performed operation to include an implicit flush operation without a
3736   // list.
3737   if (IsSeqCst)
3738     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3739 }
3740 
3741 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3742                             QualType SourceType, QualType ResType,
3743                             SourceLocation Loc) {
3744   switch (CGF.getEvaluationKind(ResType)) {
3745   case TEK_Scalar:
3746     return RValue::get(
3747         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3748   case TEK_Complex: {
3749     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3750     return RValue::getComplex(Res.first, Res.second);
3751   }
3752   case TEK_Aggregate:
3753     break;
3754   }
3755   llvm_unreachable("Must be a scalar or complex.");
3756 }
3757 
3758 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3759                                      bool IsPostfixUpdate, const Expr *V,
3760                                      const Expr *X, const Expr *E,
3761                                      const Expr *UE, bool IsXLHSInRHSPart,
3762                                      SourceLocation Loc) {
3763   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3764   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3765   RValue NewVVal;
3766   LValue VLValue = CGF.EmitLValue(V);
3767   LValue XLValue = CGF.EmitLValue(X);
3768   RValue ExprRValue = CGF.EmitAnyExpr(E);
3769   llvm::AtomicOrdering AO = IsSeqCst
3770                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3771                                 : llvm::AtomicOrdering::Monotonic;
3772   QualType NewVValType;
3773   if (UE) {
3774     // 'x' is updated with some additional value.
3775     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3776            "Update expr in 'atomic capture' must be a binary operator.");
3777     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3778     // Update expressions are allowed to have the following forms:
3779     // x binop= expr; -> xrval + expr;
3780     // x++, ++x -> xrval + 1;
3781     // x--, --x -> xrval - 1;
3782     // x = x binop expr; -> xrval binop expr
3783     // x = expr Op x; - > expr binop xrval;
3784     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3785     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3786     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3787     NewVValType = XRValExpr->getType();
3788     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3789     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3790                   IsPostfixUpdate](RValue XRValue) {
3791       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3792       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3793       RValue Res = CGF.EmitAnyExpr(UE);
3794       NewVVal = IsPostfixUpdate ? XRValue : Res;
3795       return Res;
3796     };
3797     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3798         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3799     if (Res.first) {
3800       // 'atomicrmw' instruction was generated.
3801       if (IsPostfixUpdate) {
3802         // Use old value from 'atomicrmw'.
3803         NewVVal = Res.second;
3804       } else {
3805         // 'atomicrmw' does not provide new value, so evaluate it using old
3806         // value of 'x'.
3807         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3808         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3809         NewVVal = CGF.EmitAnyExpr(UE);
3810       }
3811     }
3812   } else {
3813     // 'x' is simply rewritten with some 'expr'.
3814     NewVValType = X->getType().getNonReferenceType();
3815     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3816                                X->getType().getNonReferenceType(), Loc);
3817     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
3818       NewVVal = XRValue;
3819       return ExprRValue;
3820     };
3821     // Try to perform atomicrmw xchg, otherwise simple exchange.
3822     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3823         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3824         Loc, Gen);
3825     if (Res.first) {
3826       // 'atomicrmw' instruction was generated.
3827       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3828     }
3829   }
3830   // Emit post-update store to 'v' of old/new 'x' value.
3831   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3832   // OpenMP, 2.12.6, atomic Construct
3833   // Any atomic construct with a seq_cst clause forces the atomically
3834   // performed operation to include an implicit flush operation without a
3835   // list.
3836   if (IsSeqCst)
3837     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3838 }
3839 
3840 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3841                               bool IsSeqCst, bool IsPostfixUpdate,
3842                               const Expr *X, const Expr *V, const Expr *E,
3843                               const Expr *UE, bool IsXLHSInRHSPart,
3844                               SourceLocation Loc) {
3845   switch (Kind) {
3846   case OMPC_read:
3847     emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3848     break;
3849   case OMPC_write:
3850     emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3851     break;
3852   case OMPC_unknown:
3853   case OMPC_update:
3854     emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3855     break;
3856   case OMPC_capture:
3857     emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3858                              IsXLHSInRHSPart, Loc);
3859     break;
3860   case OMPC_if:
3861   case OMPC_final:
3862   case OMPC_num_threads:
3863   case OMPC_private:
3864   case OMPC_firstprivate:
3865   case OMPC_lastprivate:
3866   case OMPC_reduction:
3867   case OMPC_task_reduction:
3868   case OMPC_in_reduction:
3869   case OMPC_safelen:
3870   case OMPC_simdlen:
3871   case OMPC_collapse:
3872   case OMPC_default:
3873   case OMPC_seq_cst:
3874   case OMPC_shared:
3875   case OMPC_linear:
3876   case OMPC_aligned:
3877   case OMPC_copyin:
3878   case OMPC_copyprivate:
3879   case OMPC_flush:
3880   case OMPC_proc_bind:
3881   case OMPC_schedule:
3882   case OMPC_ordered:
3883   case OMPC_nowait:
3884   case OMPC_untied:
3885   case OMPC_threadprivate:
3886   case OMPC_depend:
3887   case OMPC_mergeable:
3888   case OMPC_device:
3889   case OMPC_threads:
3890   case OMPC_simd:
3891   case OMPC_map:
3892   case OMPC_num_teams:
3893   case OMPC_thread_limit:
3894   case OMPC_priority:
3895   case OMPC_grainsize:
3896   case OMPC_nogroup:
3897   case OMPC_num_tasks:
3898   case OMPC_hint:
3899   case OMPC_dist_schedule:
3900   case OMPC_defaultmap:
3901   case OMPC_uniform:
3902   case OMPC_to:
3903   case OMPC_from:
3904   case OMPC_use_device_ptr:
3905   case OMPC_is_device_ptr:
3906     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3907   }
3908 }
3909 
3910 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3911   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3912   OpenMPClauseKind Kind = OMPC_unknown;
3913   for (const OMPClause *C : S.clauses()) {
3914     // Find first clause (skip seq_cst clause, if it is first).
3915     if (C->getClauseKind() != OMPC_seq_cst) {
3916       Kind = C->getClauseKind();
3917       break;
3918     }
3919   }
3920 
3921   const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers();
3922   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS))
3923     enterFullExpression(EWC);
3924   // Processing for statements under 'atomic capture'.
3925   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3926     for (const Stmt *C : Compound->body()) {
3927       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C))
3928         enterFullExpression(EWC);
3929     }
3930   }
3931 
3932   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
3933                                             PrePostActionTy &) {
3934     CGF.EmitStopPoint(CS);
3935     emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
3936                       S.getV(), S.getExpr(), S.getUpdateExpr(),
3937                       S.isXLHSInRHSPart(), S.getBeginLoc());
3938   };
3939   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3940   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
3941 }
3942 
3943 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
3944                                          const OMPExecutableDirective &S,
3945                                          const RegionCodeGenTy &CodeGen) {
3946   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
3947   CodeGenModule &CGM = CGF.CGM;
3948 
3949   // On device emit this construct as inlined code.
3950   if (CGM.getLangOpts().OpenMPIsDevice) {
3951     OMPLexicalScope Scope(CGF, S, OMPD_target);
3952     CGM.getOpenMPRuntime().emitInlinedDirective(
3953         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3954           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3955         });
3956     return;
3957   }
3958 
3959   llvm::Function *Fn = nullptr;
3960   llvm::Constant *FnID = nullptr;
3961 
3962   const Expr *IfCond = nullptr;
3963   // Check for the at most one if clause associated with the target region.
3964   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3965     if (C->getNameModifier() == OMPD_unknown ||
3966         C->getNameModifier() == OMPD_target) {
3967       IfCond = C->getCondition();
3968       break;
3969     }
3970   }
3971 
3972   // Check if we have any device clause associated with the directive.
3973   const Expr *Device = nullptr;
3974   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3975     Device = C->getDevice();
3976 
3977   // Check if we have an if clause whose conditional always evaluates to false
3978   // or if we do not have any targets specified. If so the target region is not
3979   // an offload entry point.
3980   bool IsOffloadEntry = true;
3981   if (IfCond) {
3982     bool Val;
3983     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
3984       IsOffloadEntry = false;
3985   }
3986   if (CGM.getLangOpts().OMPTargetTriples.empty())
3987     IsOffloadEntry = false;
3988 
3989   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
3990   StringRef ParentName;
3991   // In case we have Ctors/Dtors we use the complete type variant to produce
3992   // the mangling of the device outlined kernel.
3993   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
3994     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
3995   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
3996     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
3997   else
3998     ParentName =
3999         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
4000 
4001   // Emit target region as a standalone region.
4002   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
4003                                                     IsOffloadEntry, CodeGen);
4004   OMPLexicalScope Scope(CGF, S, OMPD_task);
4005   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device);
4006 }
4007 
4008 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
4009                              PrePostActionTy &Action) {
4010   Action.Enter(CGF);
4011   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4012   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4013   CGF.EmitOMPPrivateClause(S, PrivateScope);
4014   (void)PrivateScope.Privatize();
4015 
4016   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
4017 }
4018 
4019 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
4020                                                   StringRef ParentName,
4021                                                   const OMPTargetDirective &S) {
4022   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4023     emitTargetRegion(CGF, S, Action);
4024   };
4025   llvm::Function *Fn;
4026   llvm::Constant *Addr;
4027   // Emit target region as a standalone region.
4028   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4029       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4030   assert(Fn && Addr && "Target device function emission failed.");
4031 }
4032 
4033 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
4034   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4035     emitTargetRegion(CGF, S, Action);
4036   };
4037   emitCommonOMPTargetDirective(*this, S, CodeGen);
4038 }
4039 
4040 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
4041                                         const OMPExecutableDirective &S,
4042                                         OpenMPDirectiveKind InnermostKind,
4043                                         const RegionCodeGenTy &CodeGen) {
4044   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
4045   llvm::Value *OutlinedFn =
4046       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
4047           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
4048 
4049   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
4050   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
4051   if (NT || TL) {
4052     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
4053     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
4054 
4055     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
4056                                                   S.getBeginLoc());
4057   }
4058 
4059   OMPTeamsScope Scope(CGF, S);
4060   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
4061   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
4062   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
4063                                            CapturedVars);
4064 }
4065 
4066 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
4067   // Emit teams region as a standalone region.
4068   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4069     Action.Enter(CGF);
4070     OMPPrivateScope PrivateScope(CGF);
4071     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4072     CGF.EmitOMPPrivateClause(S, PrivateScope);
4073     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4074     (void)PrivateScope.Privatize();
4075     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
4076     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4077   };
4078   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4079   emitPostUpdateForReductionClause(*this, S,
4080                                    [](CodeGenFunction &) { return nullptr; });
4081 }
4082 
4083 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4084                                   const OMPTargetTeamsDirective &S) {
4085   auto *CS = S.getCapturedStmt(OMPD_teams);
4086   Action.Enter(CGF);
4087   // Emit teams region as a standalone region.
4088   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4089     Action.Enter(CGF);
4090     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4091     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4092     CGF.EmitOMPPrivateClause(S, PrivateScope);
4093     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4094     (void)PrivateScope.Privatize();
4095     CGF.EmitStmt(CS->getCapturedStmt());
4096     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4097   };
4098   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
4099   emitPostUpdateForReductionClause(CGF, S,
4100                                    [](CodeGenFunction &) { return nullptr; });
4101 }
4102 
4103 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
4104     CodeGenModule &CGM, StringRef ParentName,
4105     const OMPTargetTeamsDirective &S) {
4106   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4107     emitTargetTeamsRegion(CGF, Action, S);
4108   };
4109   llvm::Function *Fn;
4110   llvm::Constant *Addr;
4111   // Emit target region as a standalone region.
4112   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4113       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4114   assert(Fn && Addr && "Target device function emission failed.");
4115 }
4116 
4117 void CodeGenFunction::EmitOMPTargetTeamsDirective(
4118     const OMPTargetTeamsDirective &S) {
4119   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4120     emitTargetTeamsRegion(CGF, Action, S);
4121   };
4122   emitCommonOMPTargetDirective(*this, S, CodeGen);
4123 }
4124 
4125 static void
4126 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4127                                 const OMPTargetTeamsDistributeDirective &S) {
4128   Action.Enter(CGF);
4129   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4130     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4131   };
4132 
4133   // Emit teams region as a standalone region.
4134   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4135                                             PrePostActionTy &Action) {
4136     Action.Enter(CGF);
4137     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4138     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4139     (void)PrivateScope.Privatize();
4140     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4141                                                     CodeGenDistribute);
4142     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4143   };
4144   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
4145   emitPostUpdateForReductionClause(CGF, S,
4146                                    [](CodeGenFunction &) { return nullptr; });
4147 }
4148 
4149 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
4150     CodeGenModule &CGM, StringRef ParentName,
4151     const OMPTargetTeamsDistributeDirective &S) {
4152   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4153     emitTargetTeamsDistributeRegion(CGF, Action, S);
4154   };
4155   llvm::Function *Fn;
4156   llvm::Constant *Addr;
4157   // Emit target region as a standalone region.
4158   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4159       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4160   assert(Fn && Addr && "Target device function emission failed.");
4161 }
4162 
4163 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
4164     const OMPTargetTeamsDistributeDirective &S) {
4165   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4166     emitTargetTeamsDistributeRegion(CGF, Action, S);
4167   };
4168   emitCommonOMPTargetDirective(*this, S, CodeGen);
4169 }
4170 
4171 static void emitTargetTeamsDistributeSimdRegion(
4172     CodeGenFunction &CGF, PrePostActionTy &Action,
4173     const OMPTargetTeamsDistributeSimdDirective &S) {
4174   Action.Enter(CGF);
4175   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4176     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4177   };
4178 
4179   // Emit teams region as a standalone region.
4180   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4181                                             PrePostActionTy &Action) {
4182     Action.Enter(CGF);
4183     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4184     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4185     (void)PrivateScope.Privatize();
4186     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4187                                                     CodeGenDistribute);
4188     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4189   };
4190   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
4191   emitPostUpdateForReductionClause(CGF, S,
4192                                    [](CodeGenFunction &) { return nullptr; });
4193 }
4194 
4195 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
4196     CodeGenModule &CGM, StringRef ParentName,
4197     const OMPTargetTeamsDistributeSimdDirective &S) {
4198   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4199     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4200   };
4201   llvm::Function *Fn;
4202   llvm::Constant *Addr;
4203   // Emit target region as a standalone region.
4204   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4205       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4206   assert(Fn && Addr && "Target device function emission failed.");
4207 }
4208 
4209 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
4210     const OMPTargetTeamsDistributeSimdDirective &S) {
4211   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4212     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4213   };
4214   emitCommonOMPTargetDirective(*this, S, CodeGen);
4215 }
4216 
4217 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
4218     const OMPTeamsDistributeDirective &S) {
4219 
4220   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4221     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4222   };
4223 
4224   // Emit teams region as a standalone region.
4225   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4226                                             PrePostActionTy &Action) {
4227     Action.Enter(CGF);
4228     OMPPrivateScope PrivateScope(CGF);
4229     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4230     (void)PrivateScope.Privatize();
4231     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4232                                                     CodeGenDistribute);
4233     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4234   };
4235   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4236   emitPostUpdateForReductionClause(*this, S,
4237                                    [](CodeGenFunction &) { return nullptr; });
4238 }
4239 
4240 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
4241     const OMPTeamsDistributeSimdDirective &S) {
4242   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4243     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4244   };
4245 
4246   // Emit teams region as a standalone region.
4247   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4248                                             PrePostActionTy &Action) {
4249     Action.Enter(CGF);
4250     OMPPrivateScope PrivateScope(CGF);
4251     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4252     (void)PrivateScope.Privatize();
4253     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
4254                                                     CodeGenDistribute);
4255     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4256   };
4257   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
4258   emitPostUpdateForReductionClause(*this, S,
4259                                    [](CodeGenFunction &) { return nullptr; });
4260 }
4261 
4262 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
4263     const OMPTeamsDistributeParallelForDirective &S) {
4264   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4265     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4266                               S.getDistInc());
4267   };
4268 
4269   // Emit teams region as a standalone region.
4270   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4271                                             PrePostActionTy &Action) {
4272     Action.Enter(CGF);
4273     OMPPrivateScope PrivateScope(CGF);
4274     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4275     (void)PrivateScope.Privatize();
4276     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4277                                                     CodeGenDistribute);
4278     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4279   };
4280   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4281   emitPostUpdateForReductionClause(*this, S,
4282                                    [](CodeGenFunction &) { return nullptr; });
4283 }
4284 
4285 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
4286     const OMPTeamsDistributeParallelForSimdDirective &S) {
4287   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4288     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4289                               S.getDistInc());
4290   };
4291 
4292   // Emit teams region as a standalone region.
4293   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4294                                             PrePostActionTy &Action) {
4295     Action.Enter(CGF);
4296     OMPPrivateScope PrivateScope(CGF);
4297     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4298     (void)PrivateScope.Privatize();
4299     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4300         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4301     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4302   };
4303   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4304   emitPostUpdateForReductionClause(*this, S,
4305                                    [](CodeGenFunction &) { return nullptr; });
4306 }
4307 
4308 static void emitTargetTeamsDistributeParallelForRegion(
4309     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
4310     PrePostActionTy &Action) {
4311   Action.Enter(CGF);
4312   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4313     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4314                               S.getDistInc());
4315   };
4316 
4317   // Emit teams region as a standalone region.
4318   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4319                                                  PrePostActionTy &Action) {
4320     Action.Enter(CGF);
4321     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4322     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4323     (void)PrivateScope.Privatize();
4324     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4325         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4326     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4327   };
4328 
4329   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
4330                               CodeGenTeams);
4331   emitPostUpdateForReductionClause(CGF, S,
4332                                    [](CodeGenFunction &) { return nullptr; });
4333 }
4334 
4335 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
4336     CodeGenModule &CGM, StringRef ParentName,
4337     const OMPTargetTeamsDistributeParallelForDirective &S) {
4338   // Emit SPMD target teams distribute parallel for region as a standalone
4339   // region.
4340   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4341     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4342   };
4343   llvm::Function *Fn;
4344   llvm::Constant *Addr;
4345   // Emit target region as a standalone region.
4346   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4347       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4348   assert(Fn && Addr && "Target device function emission failed.");
4349 }
4350 
4351 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
4352     const OMPTargetTeamsDistributeParallelForDirective &S) {
4353   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4354     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4355   };
4356   emitCommonOMPTargetDirective(*this, S, CodeGen);
4357 }
4358 
4359 static void emitTargetTeamsDistributeParallelForSimdRegion(
4360     CodeGenFunction &CGF,
4361     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
4362     PrePostActionTy &Action) {
4363   Action.Enter(CGF);
4364   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4365     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4366                               S.getDistInc());
4367   };
4368 
4369   // Emit teams region as a standalone region.
4370   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4371                                                  PrePostActionTy &Action) {
4372     Action.Enter(CGF);
4373     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4374     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4375     (void)PrivateScope.Privatize();
4376     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4377         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4378     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4379   };
4380 
4381   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
4382                               CodeGenTeams);
4383   emitPostUpdateForReductionClause(CGF, S,
4384                                    [](CodeGenFunction &) { return nullptr; });
4385 }
4386 
4387 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
4388     CodeGenModule &CGM, StringRef ParentName,
4389     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4390   // Emit SPMD target teams distribute parallel for simd region as a standalone
4391   // region.
4392   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4393     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4394   };
4395   llvm::Function *Fn;
4396   llvm::Constant *Addr;
4397   // Emit target region as a standalone region.
4398   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4399       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4400   assert(Fn && Addr && "Target device function emission failed.");
4401 }
4402 
4403 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
4404     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4405   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4406     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4407   };
4408   emitCommonOMPTargetDirective(*this, S, CodeGen);
4409 }
4410 
4411 void CodeGenFunction::EmitOMPCancellationPointDirective(
4412     const OMPCancellationPointDirective &S) {
4413   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
4414                                                    S.getCancelRegion());
4415 }
4416 
4417 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
4418   const Expr *IfCond = nullptr;
4419   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4420     if (C->getNameModifier() == OMPD_unknown ||
4421         C->getNameModifier() == OMPD_cancel) {
4422       IfCond = C->getCondition();
4423       break;
4424     }
4425   }
4426   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
4427                                         S.getCancelRegion());
4428 }
4429 
4430 CodeGenFunction::JumpDest
4431 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
4432   if (Kind == OMPD_parallel || Kind == OMPD_task ||
4433       Kind == OMPD_target_parallel)
4434     return ReturnBlock;
4435   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
4436          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
4437          Kind == OMPD_distribute_parallel_for ||
4438          Kind == OMPD_target_parallel_for ||
4439          Kind == OMPD_teams_distribute_parallel_for ||
4440          Kind == OMPD_target_teams_distribute_parallel_for);
4441   return OMPCancelStack.getExitBlock();
4442 }
4443 
4444 void CodeGenFunction::EmitOMPUseDevicePtrClause(
4445     const OMPClause &NC, OMPPrivateScope &PrivateScope,
4446     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
4447   const auto &C = cast<OMPUseDevicePtrClause>(NC);
4448   auto OrigVarIt = C.varlist_begin();
4449   auto InitIt = C.inits().begin();
4450   for (const Expr *PvtVarIt : C.private_copies()) {
4451     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
4452     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
4453     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
4454 
4455     // In order to identify the right initializer we need to match the
4456     // declaration used by the mapping logic. In some cases we may get
4457     // OMPCapturedExprDecl that refers to the original declaration.
4458     const ValueDecl *MatchingVD = OrigVD;
4459     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
4460       // OMPCapturedExprDecl are used to privative fields of the current
4461       // structure.
4462       const auto *ME = cast<MemberExpr>(OED->getInit());
4463       assert(isa<CXXThisExpr>(ME->getBase()) &&
4464              "Base should be the current struct!");
4465       MatchingVD = ME->getMemberDecl();
4466     }
4467 
4468     // If we don't have information about the current list item, move on to
4469     // the next one.
4470     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
4471     if (InitAddrIt == CaptureDeviceAddrMap.end())
4472       continue;
4473 
4474     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
4475                                                          InitAddrIt, InitVD,
4476                                                          PvtVD]() {
4477       // Initialize the temporary initialization variable with the address we
4478       // get from the runtime library. We have to cast the source address
4479       // because it is always a void *. References are materialized in the
4480       // privatization scope, so the initialization here disregards the fact
4481       // the original variable is a reference.
4482       QualType AddrQTy =
4483           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
4484       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
4485       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
4486       setAddrOfLocalVar(InitVD, InitAddr);
4487 
4488       // Emit private declaration, it will be initialized by the value we
4489       // declaration we just added to the local declarations map.
4490       EmitDecl(*PvtVD);
4491 
4492       // The initialization variables reached its purpose in the emission
4493       // of the previous declaration, so we don't need it anymore.
4494       LocalDeclMap.erase(InitVD);
4495 
4496       // Return the address of the private variable.
4497       return GetAddrOfLocalVar(PvtVD);
4498     });
4499     assert(IsRegistered && "firstprivate var already registered as private");
4500     // Silence the warning about unused variable.
4501     (void)IsRegistered;
4502 
4503     ++OrigVarIt;
4504     ++InitIt;
4505   }
4506 }
4507 
4508 // Generate the instructions for '#pragma omp target data' directive.
4509 void CodeGenFunction::EmitOMPTargetDataDirective(
4510     const OMPTargetDataDirective &S) {
4511   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
4512 
4513   // Create a pre/post action to signal the privatization of the device pointer.
4514   // This action can be replaced by the OpenMP runtime code generation to
4515   // deactivate privatization.
4516   bool PrivatizeDevicePointers = false;
4517   class DevicePointerPrivActionTy : public PrePostActionTy {
4518     bool &PrivatizeDevicePointers;
4519 
4520   public:
4521     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
4522         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
4523     void Enter(CodeGenFunction &CGF) override {
4524       PrivatizeDevicePointers = true;
4525     }
4526   };
4527   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
4528 
4529   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
4530                        CodeGenFunction &CGF, PrePostActionTy &Action) {
4531     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4532       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4533     };
4534 
4535     // Codegen that selects whether to generate the privatization code or not.
4536     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
4537                           &InnermostCodeGen](CodeGenFunction &CGF,
4538                                              PrePostActionTy &Action) {
4539       RegionCodeGenTy RCG(InnermostCodeGen);
4540       PrivatizeDevicePointers = false;
4541 
4542       // Call the pre-action to change the status of PrivatizeDevicePointers if
4543       // needed.
4544       Action.Enter(CGF);
4545 
4546       if (PrivatizeDevicePointers) {
4547         OMPPrivateScope PrivateScope(CGF);
4548         // Emit all instances of the use_device_ptr clause.
4549         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
4550           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
4551                                         Info.CaptureDeviceAddrMap);
4552         (void)PrivateScope.Privatize();
4553         RCG(CGF);
4554       } else {
4555         RCG(CGF);
4556       }
4557     };
4558 
4559     // Forward the provided action to the privatization codegen.
4560     RegionCodeGenTy PrivRCG(PrivCodeGen);
4561     PrivRCG.setAction(Action);
4562 
4563     // Notwithstanding the body of the region is emitted as inlined directive,
4564     // we don't use an inline scope as changes in the references inside the
4565     // region are expected to be visible outside, so we do not privative them.
4566     OMPLexicalScope Scope(CGF, S);
4567     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
4568                                                     PrivRCG);
4569   };
4570 
4571   RegionCodeGenTy RCG(CodeGen);
4572 
4573   // If we don't have target devices, don't bother emitting the data mapping
4574   // code.
4575   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
4576     RCG(*this);
4577     return;
4578   }
4579 
4580   // Check if we have any if clause associated with the directive.
4581   const Expr *IfCond = nullptr;
4582   if (const auto *C = S.getSingleClause<OMPIfClause>())
4583     IfCond = C->getCondition();
4584 
4585   // Check if we have any device clause associated with the directive.
4586   const Expr *Device = nullptr;
4587   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4588     Device = C->getDevice();
4589 
4590   // Set the action to signal privatization of device pointers.
4591   RCG.setAction(PrivAction);
4592 
4593   // Emit region code.
4594   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
4595                                              Info);
4596 }
4597 
4598 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
4599     const OMPTargetEnterDataDirective &S) {
4600   // If we don't have target devices, don't bother emitting the data mapping
4601   // code.
4602   if (CGM.getLangOpts().OMPTargetTriples.empty())
4603     return;
4604 
4605   // Check if we have any if clause associated with the directive.
4606   const Expr *IfCond = nullptr;
4607   if (const auto *C = S.getSingleClause<OMPIfClause>())
4608     IfCond = C->getCondition();
4609 
4610   // Check if we have any device clause associated with the directive.
4611   const Expr *Device = nullptr;
4612   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4613     Device = C->getDevice();
4614 
4615   OMPLexicalScope Scope(*this, S, OMPD_task);
4616   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4617 }
4618 
4619 void CodeGenFunction::EmitOMPTargetExitDataDirective(
4620     const OMPTargetExitDataDirective &S) {
4621   // If we don't have target devices, don't bother emitting the data mapping
4622   // code.
4623   if (CGM.getLangOpts().OMPTargetTriples.empty())
4624     return;
4625 
4626   // Check if we have any if clause associated with the directive.
4627   const Expr *IfCond = nullptr;
4628   if (const auto *C = S.getSingleClause<OMPIfClause>())
4629     IfCond = C->getCondition();
4630 
4631   // Check if we have any device clause associated with the directive.
4632   const Expr *Device = nullptr;
4633   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4634     Device = C->getDevice();
4635 
4636   OMPLexicalScope Scope(*this, S, OMPD_task);
4637   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4638 }
4639 
4640 static void emitTargetParallelRegion(CodeGenFunction &CGF,
4641                                      const OMPTargetParallelDirective &S,
4642                                      PrePostActionTy &Action) {
4643   // Get the captured statement associated with the 'parallel' region.
4644   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
4645   Action.Enter(CGF);
4646   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4647     Action.Enter(CGF);
4648     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4649     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4650     CGF.EmitOMPPrivateClause(S, PrivateScope);
4651     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4652     (void)PrivateScope.Privatize();
4653     // TODO: Add support for clauses.
4654     CGF.EmitStmt(CS->getCapturedStmt());
4655     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
4656   };
4657   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
4658                                  emitEmptyBoundParameters);
4659   emitPostUpdateForReductionClause(CGF, S,
4660                                    [](CodeGenFunction &) { return nullptr; });
4661 }
4662 
4663 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
4664     CodeGenModule &CGM, StringRef ParentName,
4665     const OMPTargetParallelDirective &S) {
4666   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4667     emitTargetParallelRegion(CGF, S, Action);
4668   };
4669   llvm::Function *Fn;
4670   llvm::Constant *Addr;
4671   // Emit target region as a standalone region.
4672   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4673       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4674   assert(Fn && Addr && "Target device function emission failed.");
4675 }
4676 
4677 void CodeGenFunction::EmitOMPTargetParallelDirective(
4678     const OMPTargetParallelDirective &S) {
4679   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4680     emitTargetParallelRegion(CGF, S, Action);
4681   };
4682   emitCommonOMPTargetDirective(*this, S, CodeGen);
4683 }
4684 
4685 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
4686                                         const OMPTargetParallelForDirective &S,
4687                                         PrePostActionTy &Action) {
4688   Action.Enter(CGF);
4689   // Emit directive as a combined directive that consists of two implicit
4690   // directives: 'parallel' with 'for' directive.
4691   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4692     Action.Enter(CGF);
4693     CodeGenFunction::OMPCancelStackRAII CancelRegion(
4694         CGF, OMPD_target_parallel_for, S.hasCancel());
4695     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4696                                emitDispatchForLoopBounds);
4697   };
4698   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
4699                                  emitEmptyBoundParameters);
4700 }
4701 
4702 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
4703     CodeGenModule &CGM, StringRef ParentName,
4704     const OMPTargetParallelForDirective &S) {
4705   // Emit SPMD target parallel for region as a standalone region.
4706   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4707     emitTargetParallelForRegion(CGF, S, Action);
4708   };
4709   llvm::Function *Fn;
4710   llvm::Constant *Addr;
4711   // Emit target region as a standalone region.
4712   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4713       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4714   assert(Fn && Addr && "Target device function emission failed.");
4715 }
4716 
4717 void CodeGenFunction::EmitOMPTargetParallelForDirective(
4718     const OMPTargetParallelForDirective &S) {
4719   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4720     emitTargetParallelForRegion(CGF, S, Action);
4721   };
4722   emitCommonOMPTargetDirective(*this, S, CodeGen);
4723 }
4724 
4725 static void
4726 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
4727                                 const OMPTargetParallelForSimdDirective &S,
4728                                 PrePostActionTy &Action) {
4729   Action.Enter(CGF);
4730   // Emit directive as a combined directive that consists of two implicit
4731   // directives: 'parallel' with 'for' directive.
4732   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4733     Action.Enter(CGF);
4734     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4735                                emitDispatchForLoopBounds);
4736   };
4737   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
4738                                  emitEmptyBoundParameters);
4739 }
4740 
4741 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
4742     CodeGenModule &CGM, StringRef ParentName,
4743     const OMPTargetParallelForSimdDirective &S) {
4744   // Emit SPMD target parallel for region as a standalone region.
4745   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4746     emitTargetParallelForSimdRegion(CGF, S, Action);
4747   };
4748   llvm::Function *Fn;
4749   llvm::Constant *Addr;
4750   // Emit target region as a standalone region.
4751   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4752       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4753   assert(Fn && Addr && "Target device function emission failed.");
4754 }
4755 
4756 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
4757     const OMPTargetParallelForSimdDirective &S) {
4758   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4759     emitTargetParallelForSimdRegion(CGF, S, Action);
4760   };
4761   emitCommonOMPTargetDirective(*this, S, CodeGen);
4762 }
4763 
4764 /// Emit a helper variable and return corresponding lvalue.
4765 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
4766                      const ImplicitParamDecl *PVD,
4767                      CodeGenFunction::OMPPrivateScope &Privates) {
4768   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
4769   Privates.addPrivate(VDecl,
4770                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
4771 }
4772 
4773 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
4774   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
4775   // Emit outlined function for task construct.
4776   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
4777   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4778   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4779   const Expr *IfCond = nullptr;
4780   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4781     if (C->getNameModifier() == OMPD_unknown ||
4782         C->getNameModifier() == OMPD_taskloop) {
4783       IfCond = C->getCondition();
4784       break;
4785     }
4786   }
4787 
4788   OMPTaskDataTy Data;
4789   // Check if taskloop must be emitted without taskgroup.
4790   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
4791   // TODO: Check if we should emit tied or untied task.
4792   Data.Tied = true;
4793   // Set scheduling for taskloop
4794   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
4795     // grainsize clause
4796     Data.Schedule.setInt(/*IntVal=*/false);
4797     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
4798   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
4799     // num_tasks clause
4800     Data.Schedule.setInt(/*IntVal=*/true);
4801     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
4802   }
4803 
4804   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
4805     // if (PreCond) {
4806     //   for (IV in 0..LastIteration) BODY;
4807     //   <Final counter/linear vars updates>;
4808     // }
4809     //
4810 
4811     // Emit: if (PreCond) - begin.
4812     // If the condition constant folds and can be elided, avoid emitting the
4813     // whole loop.
4814     bool CondConstant;
4815     llvm::BasicBlock *ContBlock = nullptr;
4816     OMPLoopScope PreInitScope(CGF, S);
4817     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
4818       if (!CondConstant)
4819         return;
4820     } else {
4821       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
4822       ContBlock = CGF.createBasicBlock("taskloop.if.end");
4823       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
4824                   CGF.getProfileCount(&S));
4825       CGF.EmitBlock(ThenBlock);
4826       CGF.incrementProfileCounter(&S);
4827     }
4828 
4829     if (isOpenMPSimdDirective(S.getDirectiveKind()))
4830       CGF.EmitOMPSimdInit(S);
4831 
4832     OMPPrivateScope LoopScope(CGF);
4833     // Emit helper vars inits.
4834     enum { LowerBound = 5, UpperBound, Stride, LastIter };
4835     auto *I = CS->getCapturedDecl()->param_begin();
4836     auto *LBP = std::next(I, LowerBound);
4837     auto *UBP = std::next(I, UpperBound);
4838     auto *STP = std::next(I, Stride);
4839     auto *LIP = std::next(I, LastIter);
4840     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
4841              LoopScope);
4842     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
4843              LoopScope);
4844     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
4845     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
4846              LoopScope);
4847     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
4848     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
4849     (void)LoopScope.Privatize();
4850     // Emit the loop iteration variable.
4851     const Expr *IVExpr = S.getIterationVariable();
4852     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
4853     CGF.EmitVarDecl(*IVDecl);
4854     CGF.EmitIgnoredExpr(S.getInit());
4855 
4856     // Emit the iterations count variable.
4857     // If it is not a variable, Sema decided to calculate iterations count on
4858     // each iteration (e.g., it is foldable into a constant).
4859     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
4860       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
4861       // Emit calculation of the iterations count.
4862       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
4863     }
4864 
4865     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
4866                          S.getInc(),
4867                          [&S](CodeGenFunction &CGF) {
4868                            CGF.EmitOMPLoopBody(S, JumpDest());
4869                            CGF.EmitStopPoint(&S);
4870                          },
4871                          [](CodeGenFunction &) {});
4872     // Emit: if (PreCond) - end.
4873     if (ContBlock) {
4874       CGF.EmitBranch(ContBlock);
4875       CGF.EmitBlock(ContBlock, true);
4876     }
4877     // Emit final copy of the lastprivate variables if IsLastIter != 0.
4878     if (HasLastprivateClause) {
4879       CGF.EmitOMPLastprivateClauseFinal(
4880           S, isOpenMPSimdDirective(S.getDirectiveKind()),
4881           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
4882               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
4883               (*LIP)->getType(), S.getBeginLoc())));
4884     }
4885   };
4886   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
4887                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
4888                             const OMPTaskDataTy &Data) {
4889     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
4890                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
4891       OMPLoopScope PreInitScope(CGF, S);
4892       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
4893                                                   OutlinedFn, SharedsTy,
4894                                                   CapturedStruct, IfCond, Data);
4895     };
4896     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
4897                                                     CodeGen);
4898   };
4899   if (Data.Nogroup) {
4900     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
4901   } else {
4902     CGM.getOpenMPRuntime().emitTaskgroupRegion(
4903         *this,
4904         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
4905                                         PrePostActionTy &Action) {
4906           Action.Enter(CGF);
4907           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
4908                                         Data);
4909         },
4910         S.getBeginLoc());
4911   }
4912 }
4913 
4914 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
4915   EmitOMPTaskLoopBasedDirective(S);
4916 }
4917 
4918 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
4919     const OMPTaskLoopSimdDirective &S) {
4920   EmitOMPTaskLoopBasedDirective(S);
4921 }
4922 
4923 // Generate the instructions for '#pragma omp target update' directive.
4924 void CodeGenFunction::EmitOMPTargetUpdateDirective(
4925     const OMPTargetUpdateDirective &S) {
4926   // If we don't have target devices, don't bother emitting the data mapping
4927   // code.
4928   if (CGM.getLangOpts().OMPTargetTriples.empty())
4929     return;
4930 
4931   // Check if we have any if clause associated with the directive.
4932   const Expr *IfCond = nullptr;
4933   if (const auto *C = S.getSingleClause<OMPIfClause>())
4934     IfCond = C->getCondition();
4935 
4936   // Check if we have any device clause associated with the directive.
4937   const Expr *Device = nullptr;
4938   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4939     Device = C->getDevice();
4940 
4941   OMPLexicalScope Scope(*this, S, OMPD_task);
4942   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4943 }
4944 
4945 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
4946     const OMPExecutableDirective &D) {
4947   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
4948     return;
4949   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
4950     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
4951       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
4952     } else {
4953       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
4954         for (const Expr *E : LD->counters()) {
4955           if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
4956                   cast<DeclRefExpr>(E)->getDecl())) {
4957             // Emit only those that were not explicitly referenced in clauses.
4958             if (!CGF.LocalDeclMap.count(VD))
4959               CGF.EmitVarDecl(*VD);
4960           }
4961         }
4962         for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
4963           if (!C->getNumForLoops())
4964             continue;
4965           for (unsigned I = LD->getCollapsedNumber(),
4966                         E = C->getLoopNumIterations().size();
4967                I < E; ++I) {
4968             if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
4969                     cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
4970               // Emit only those that were not explicitly referenced in clauses.
4971               if (!CGF.LocalDeclMap.count(VD))
4972                 CGF.EmitVarDecl(*VD);
4973             }
4974           }
4975         }
4976       }
4977       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
4978     }
4979   };
4980   OMPSimdLexicalScope Scope(*this, D);
4981   CGM.getOpenMPRuntime().emitInlinedDirective(
4982       *this,
4983       isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
4984                                                   : D.getDirectiveKind(),
4985       CodeGen);
4986 }
4987 
4988