1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/Basic/OpenMPKinds.h" 25 #include "clang/Basic/PrettyStackTrace.h" 26 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 using namespace clang; 29 using namespace CodeGen; 30 using namespace llvm::omp; 31 32 namespace { 33 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 34 /// for captured expressions. 35 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 36 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 37 for (const auto *C : S.clauses()) { 38 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 39 if (const auto *PreInit = 40 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 41 for (const auto *I : PreInit->decls()) { 42 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 43 CGF.EmitVarDecl(cast<VarDecl>(*I)); 44 } else { 45 CodeGenFunction::AutoVarEmission Emission = 46 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 47 CGF.EmitAutoVarCleanups(Emission); 48 } 49 } 50 } 51 } 52 } 53 } 54 CodeGenFunction::OMPPrivateScope InlinedShareds; 55 56 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 57 return CGF.LambdaCaptureFields.lookup(VD) || 58 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 59 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 60 } 61 62 public: 63 OMPLexicalScope( 64 CodeGenFunction &CGF, const OMPExecutableDirective &S, 65 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 66 const bool EmitPreInitStmt = true) 67 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 68 InlinedShareds(CGF) { 69 if (EmitPreInitStmt) 70 emitPreInitStmt(CGF, S); 71 if (!CapturedRegion.hasValue()) 72 return; 73 assert(S.hasAssociatedStmt() && 74 "Expected associated statement for inlined directive."); 75 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 76 for (const auto &C : CS->captures()) { 77 if (C.capturesVariable() || C.capturesVariableByCopy()) { 78 auto *VD = C.getCapturedVar(); 79 assert(VD == VD->getCanonicalDecl() && 80 "Canonical decl must be captured."); 81 DeclRefExpr DRE( 82 CGF.getContext(), const_cast<VarDecl *>(VD), 83 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 84 InlinedShareds.isGlobalVarCaptured(VD)), 85 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 86 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 87 return CGF.EmitLValue(&DRE).getAddress(CGF); 88 }); 89 } 90 } 91 (void)InlinedShareds.Privatize(); 92 } 93 }; 94 95 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 96 /// for captured expressions. 97 class OMPParallelScope final : public OMPLexicalScope { 98 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 99 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 100 return !(isOpenMPTargetExecutionDirective(Kind) || 101 isOpenMPLoopBoundSharingDirective(Kind)) && 102 isOpenMPParallelDirective(Kind); 103 } 104 105 public: 106 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 107 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 108 EmitPreInitStmt(S)) {} 109 }; 110 111 /// Lexical scope for OpenMP teams construct, that handles correct codegen 112 /// for captured expressions. 113 class OMPTeamsScope final : public OMPLexicalScope { 114 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 115 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 116 return !isOpenMPTargetExecutionDirective(Kind) && 117 isOpenMPTeamsDirective(Kind); 118 } 119 120 public: 121 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 122 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 123 EmitPreInitStmt(S)) {} 124 }; 125 126 /// Private scope for OpenMP loop-based directives, that supports capturing 127 /// of used expression from loop statement. 128 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 129 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 130 CodeGenFunction::OMPMapVars PreCondVars; 131 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 132 for (const auto *E : S.counters()) { 133 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 134 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 135 (void)PreCondVars.setVarAddr( 136 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 137 } 138 // Mark private vars as undefs. 139 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 140 for (const Expr *IRef : C->varlists()) { 141 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 142 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 143 (void)PreCondVars.setVarAddr( 144 CGF, OrigVD, 145 Address(llvm::UndefValue::get( 146 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 147 OrigVD->getType().getNonReferenceType()))), 148 CGF.getContext().getDeclAlign(OrigVD))); 149 } 150 } 151 } 152 (void)PreCondVars.apply(CGF); 153 // Emit init, __range and __end variables for C++ range loops. 154 const Stmt *Body = 155 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 156 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 157 Body = OMPLoopDirective::tryToFindNextInnerLoop( 158 Body, /*TryImperfectlyNestedLoops=*/true); 159 if (auto *For = dyn_cast<ForStmt>(Body)) { 160 Body = For->getBody(); 161 } else { 162 assert(isa<CXXForRangeStmt>(Body) && 163 "Expected canonical for loop or range-based for loop."); 164 auto *CXXFor = cast<CXXForRangeStmt>(Body); 165 if (const Stmt *Init = CXXFor->getInit()) 166 CGF.EmitStmt(Init); 167 CGF.EmitStmt(CXXFor->getRangeStmt()); 168 CGF.EmitStmt(CXXFor->getEndStmt()); 169 Body = CXXFor->getBody(); 170 } 171 } 172 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 173 for (const auto *I : PreInits->decls()) 174 CGF.EmitVarDecl(cast<VarDecl>(*I)); 175 } 176 PreCondVars.restore(CGF); 177 } 178 179 public: 180 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 181 : CodeGenFunction::RunCleanupsScope(CGF) { 182 emitPreInitStmt(CGF, S); 183 } 184 }; 185 186 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 187 CodeGenFunction::OMPPrivateScope InlinedShareds; 188 189 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 190 return CGF.LambdaCaptureFields.lookup(VD) || 191 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 192 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 193 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 194 } 195 196 public: 197 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 198 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 199 InlinedShareds(CGF) { 200 for (const auto *C : S.clauses()) { 201 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 202 if (const auto *PreInit = 203 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 204 for (const auto *I : PreInit->decls()) { 205 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 206 CGF.EmitVarDecl(cast<VarDecl>(*I)); 207 } else { 208 CodeGenFunction::AutoVarEmission Emission = 209 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 210 CGF.EmitAutoVarCleanups(Emission); 211 } 212 } 213 } 214 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 215 for (const Expr *E : UDP->varlists()) { 216 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 217 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 218 CGF.EmitVarDecl(*OED); 219 } 220 } 221 } 222 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 223 CGF.EmitOMPPrivateClause(S, InlinedShareds); 224 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 225 if (const Expr *E = TG->getReductionRef()) 226 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 227 } 228 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 229 while (CS) { 230 for (auto &C : CS->captures()) { 231 if (C.capturesVariable() || C.capturesVariableByCopy()) { 232 auto *VD = C.getCapturedVar(); 233 assert(VD == VD->getCanonicalDecl() && 234 "Canonical decl must be captured."); 235 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 236 isCapturedVar(CGF, VD) || 237 (CGF.CapturedStmtInfo && 238 InlinedShareds.isGlobalVarCaptured(VD)), 239 VD->getType().getNonReferenceType(), VK_LValue, 240 C.getLocation()); 241 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 242 return CGF.EmitLValue(&DRE).getAddress(CGF); 243 }); 244 } 245 } 246 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 247 } 248 (void)InlinedShareds.Privatize(); 249 } 250 }; 251 252 } // namespace 253 254 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 255 const OMPExecutableDirective &S, 256 const RegionCodeGenTy &CodeGen); 257 258 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 259 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 260 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 261 OrigVD = OrigVD->getCanonicalDecl(); 262 bool IsCaptured = 263 LambdaCaptureFields.lookup(OrigVD) || 264 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 265 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 266 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 267 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 268 return EmitLValue(&DRE); 269 } 270 } 271 return EmitLValue(E); 272 } 273 274 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 275 ASTContext &C = getContext(); 276 llvm::Value *Size = nullptr; 277 auto SizeInChars = C.getTypeSizeInChars(Ty); 278 if (SizeInChars.isZero()) { 279 // getTypeSizeInChars() returns 0 for a VLA. 280 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 281 VlaSizePair VlaSize = getVLASize(VAT); 282 Ty = VlaSize.Type; 283 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 284 : VlaSize.NumElts; 285 } 286 SizeInChars = C.getTypeSizeInChars(Ty); 287 if (SizeInChars.isZero()) 288 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 289 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 290 } 291 return CGM.getSize(SizeInChars); 292 } 293 294 void CodeGenFunction::GenerateOpenMPCapturedVars( 295 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 296 const RecordDecl *RD = S.getCapturedRecordDecl(); 297 auto CurField = RD->field_begin(); 298 auto CurCap = S.captures().begin(); 299 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 300 E = S.capture_init_end(); 301 I != E; ++I, ++CurField, ++CurCap) { 302 if (CurField->hasCapturedVLAType()) { 303 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 304 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 305 CapturedVars.push_back(Val); 306 } else if (CurCap->capturesThis()) { 307 CapturedVars.push_back(CXXThisValue); 308 } else if (CurCap->capturesVariableByCopy()) { 309 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 310 311 // If the field is not a pointer, we need to save the actual value 312 // and load it as a void pointer. 313 if (!CurField->getType()->isAnyPointerType()) { 314 ASTContext &Ctx = getContext(); 315 Address DstAddr = CreateMemTemp( 316 Ctx.getUIntPtrType(), 317 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 318 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 319 320 llvm::Value *SrcAddrVal = EmitScalarConversion( 321 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 322 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 323 LValue SrcLV = 324 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 325 326 // Store the value using the source type pointer. 327 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 328 329 // Load the value using the destination type pointer. 330 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 331 } 332 CapturedVars.push_back(CV); 333 } else { 334 assert(CurCap->capturesVariable() && "Expected capture by reference."); 335 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 336 } 337 } 338 } 339 340 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 341 QualType DstType, StringRef Name, 342 LValue AddrLV) { 343 ASTContext &Ctx = CGF.getContext(); 344 345 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 346 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 347 Ctx.getPointerType(DstType), Loc); 348 Address TmpAddr = 349 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 350 .getAddress(CGF); 351 return TmpAddr; 352 } 353 354 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 355 if (T->isLValueReferenceType()) 356 return C.getLValueReferenceType( 357 getCanonicalParamType(C, T.getNonReferenceType()), 358 /*SpelledAsLValue=*/false); 359 if (T->isPointerType()) 360 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 361 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 362 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 363 return getCanonicalParamType(C, VLA->getElementType()); 364 if (!A->isVariablyModifiedType()) 365 return C.getCanonicalType(T); 366 } 367 return C.getCanonicalParamType(T); 368 } 369 370 namespace { 371 /// Contains required data for proper outlined function codegen. 372 struct FunctionOptions { 373 /// Captured statement for which the function is generated. 374 const CapturedStmt *S = nullptr; 375 /// true if cast to/from UIntPtr is required for variables captured by 376 /// value. 377 const bool UIntPtrCastRequired = true; 378 /// true if only casted arguments must be registered as local args or VLA 379 /// sizes. 380 const bool RegisterCastedArgsOnly = false; 381 /// Name of the generated function. 382 const StringRef FunctionName; 383 /// Location of the non-debug version of the outlined function. 384 SourceLocation Loc; 385 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 386 bool RegisterCastedArgsOnly, StringRef FunctionName, 387 SourceLocation Loc) 388 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 389 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 390 FunctionName(FunctionName), Loc(Loc) {} 391 }; 392 } // namespace 393 394 static llvm::Function *emitOutlinedFunctionPrologue( 395 CodeGenFunction &CGF, FunctionArgList &Args, 396 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 397 &LocalAddrs, 398 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 399 &VLASizes, 400 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 401 const CapturedDecl *CD = FO.S->getCapturedDecl(); 402 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 403 assert(CD->hasBody() && "missing CapturedDecl body"); 404 405 CXXThisValue = nullptr; 406 // Build the argument list. 407 CodeGenModule &CGM = CGF.CGM; 408 ASTContext &Ctx = CGM.getContext(); 409 FunctionArgList TargetArgs; 410 Args.append(CD->param_begin(), 411 std::next(CD->param_begin(), CD->getContextParamPosition())); 412 TargetArgs.append( 413 CD->param_begin(), 414 std::next(CD->param_begin(), CD->getContextParamPosition())); 415 auto I = FO.S->captures().begin(); 416 FunctionDecl *DebugFunctionDecl = nullptr; 417 if (!FO.UIntPtrCastRequired) { 418 FunctionProtoType::ExtProtoInfo EPI; 419 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 420 DebugFunctionDecl = FunctionDecl::Create( 421 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 422 SourceLocation(), DeclarationName(), FunctionTy, 423 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 424 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 425 } 426 for (const FieldDecl *FD : RD->fields()) { 427 QualType ArgType = FD->getType(); 428 IdentifierInfo *II = nullptr; 429 VarDecl *CapVar = nullptr; 430 431 // If this is a capture by copy and the type is not a pointer, the outlined 432 // function argument type should be uintptr and the value properly casted to 433 // uintptr. This is necessary given that the runtime library is only able to 434 // deal with pointers. We can pass in the same way the VLA type sizes to the 435 // outlined function. 436 if (FO.UIntPtrCastRequired && 437 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 438 I->capturesVariableArrayType())) 439 ArgType = Ctx.getUIntPtrType(); 440 441 if (I->capturesVariable() || I->capturesVariableByCopy()) { 442 CapVar = I->getCapturedVar(); 443 II = CapVar->getIdentifier(); 444 } else if (I->capturesThis()) { 445 II = &Ctx.Idents.get("this"); 446 } else { 447 assert(I->capturesVariableArrayType()); 448 II = &Ctx.Idents.get("vla"); 449 } 450 if (ArgType->isVariablyModifiedType()) 451 ArgType = getCanonicalParamType(Ctx, ArgType); 452 VarDecl *Arg; 453 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 454 Arg = ParmVarDecl::Create( 455 Ctx, DebugFunctionDecl, 456 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 457 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 458 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 459 } else { 460 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 461 II, ArgType, ImplicitParamDecl::Other); 462 } 463 Args.emplace_back(Arg); 464 // Do not cast arguments if we emit function with non-original types. 465 TargetArgs.emplace_back( 466 FO.UIntPtrCastRequired 467 ? Arg 468 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 469 ++I; 470 } 471 Args.append( 472 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 473 CD->param_end()); 474 TargetArgs.append( 475 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 476 CD->param_end()); 477 478 // Create the function declaration. 479 const CGFunctionInfo &FuncInfo = 480 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 481 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 482 483 auto *F = 484 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 485 FO.FunctionName, &CGM.getModule()); 486 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 487 if (CD->isNothrow()) 488 F->setDoesNotThrow(); 489 F->setDoesNotRecurse(); 490 491 // Generate the function. 492 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 493 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 494 FO.UIntPtrCastRequired ? FO.Loc 495 : CD->getBody()->getBeginLoc()); 496 unsigned Cnt = CD->getContextParamPosition(); 497 I = FO.S->captures().begin(); 498 for (const FieldDecl *FD : RD->fields()) { 499 // Do not map arguments if we emit function with non-original types. 500 Address LocalAddr(Address::invalid()); 501 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 502 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 503 TargetArgs[Cnt]); 504 } else { 505 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 506 } 507 // If we are capturing a pointer by copy we don't need to do anything, just 508 // use the value that we get from the arguments. 509 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 510 const VarDecl *CurVD = I->getCapturedVar(); 511 if (!FO.RegisterCastedArgsOnly) 512 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 513 ++Cnt; 514 ++I; 515 continue; 516 } 517 518 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 519 AlignmentSource::Decl); 520 if (FD->hasCapturedVLAType()) { 521 if (FO.UIntPtrCastRequired) { 522 ArgLVal = CGF.MakeAddrLValue( 523 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 524 Args[Cnt]->getName(), ArgLVal), 525 FD->getType(), AlignmentSource::Decl); 526 } 527 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 528 const VariableArrayType *VAT = FD->getCapturedVLAType(); 529 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 530 } else if (I->capturesVariable()) { 531 const VarDecl *Var = I->getCapturedVar(); 532 QualType VarTy = Var->getType(); 533 Address ArgAddr = ArgLVal.getAddress(CGF); 534 if (ArgLVal.getType()->isLValueReferenceType()) { 535 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 536 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 537 assert(ArgLVal.getType()->isPointerType()); 538 ArgAddr = CGF.EmitLoadOfPointer( 539 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 540 } 541 if (!FO.RegisterCastedArgsOnly) { 542 LocalAddrs.insert( 543 {Args[Cnt], 544 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 545 } 546 } else if (I->capturesVariableByCopy()) { 547 assert(!FD->getType()->isAnyPointerType() && 548 "Not expecting a captured pointer."); 549 const VarDecl *Var = I->getCapturedVar(); 550 LocalAddrs.insert({Args[Cnt], 551 {Var, FO.UIntPtrCastRequired 552 ? castValueFromUintptr( 553 CGF, I->getLocation(), FD->getType(), 554 Args[Cnt]->getName(), ArgLVal) 555 : ArgLVal.getAddress(CGF)}}); 556 } else { 557 // If 'this' is captured, load it into CXXThisValue. 558 assert(I->capturesThis()); 559 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 560 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 561 } 562 ++Cnt; 563 ++I; 564 } 565 566 return F; 567 } 568 569 llvm::Function * 570 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 571 SourceLocation Loc) { 572 assert( 573 CapturedStmtInfo && 574 "CapturedStmtInfo should be set when generating the captured function"); 575 const CapturedDecl *CD = S.getCapturedDecl(); 576 // Build the argument list. 577 bool NeedWrapperFunction = 578 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 579 FunctionArgList Args; 580 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 581 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 582 SmallString<256> Buffer; 583 llvm::raw_svector_ostream Out(Buffer); 584 Out << CapturedStmtInfo->getHelperName(); 585 if (NeedWrapperFunction) 586 Out << "_debug__"; 587 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 588 Out.str(), Loc); 589 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 590 VLASizes, CXXThisValue, FO); 591 CodeGenFunction::OMPPrivateScope LocalScope(*this); 592 for (const auto &LocalAddrPair : LocalAddrs) { 593 if (LocalAddrPair.second.first) { 594 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 595 return LocalAddrPair.second.second; 596 }); 597 } 598 } 599 (void)LocalScope.Privatize(); 600 for (const auto &VLASizePair : VLASizes) 601 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 602 PGO.assignRegionCounters(GlobalDecl(CD), F); 603 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 604 (void)LocalScope.ForceCleanup(); 605 FinishFunction(CD->getBodyRBrace()); 606 if (!NeedWrapperFunction) 607 return F; 608 609 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 610 /*RegisterCastedArgsOnly=*/true, 611 CapturedStmtInfo->getHelperName(), Loc); 612 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 613 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 614 Args.clear(); 615 LocalAddrs.clear(); 616 VLASizes.clear(); 617 llvm::Function *WrapperF = 618 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 619 WrapperCGF.CXXThisValue, WrapperFO); 620 llvm::SmallVector<llvm::Value *, 4> CallArgs; 621 for (const auto *Arg : Args) { 622 llvm::Value *CallArg; 623 auto I = LocalAddrs.find(Arg); 624 if (I != LocalAddrs.end()) { 625 LValue LV = WrapperCGF.MakeAddrLValue( 626 I->second.second, 627 I->second.first ? I->second.first->getType() : Arg->getType(), 628 AlignmentSource::Decl); 629 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 630 } else { 631 auto EI = VLASizes.find(Arg); 632 if (EI != VLASizes.end()) { 633 CallArg = EI->second.second; 634 } else { 635 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 636 Arg->getType(), 637 AlignmentSource::Decl); 638 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 639 } 640 } 641 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 642 } 643 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 644 WrapperCGF.FinishFunction(); 645 return WrapperF; 646 } 647 648 //===----------------------------------------------------------------------===// 649 // OpenMP Directive Emission 650 //===----------------------------------------------------------------------===// 651 void CodeGenFunction::EmitOMPAggregateAssign( 652 Address DestAddr, Address SrcAddr, QualType OriginalType, 653 const llvm::function_ref<void(Address, Address)> CopyGen) { 654 // Perform element-by-element initialization. 655 QualType ElementTy; 656 657 // Drill down to the base element type on both arrays. 658 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 659 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 660 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 661 662 llvm::Value *SrcBegin = SrcAddr.getPointer(); 663 llvm::Value *DestBegin = DestAddr.getPointer(); 664 // Cast from pointer to array type to pointer to single element. 665 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 666 // The basic structure here is a while-do loop. 667 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 668 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 669 llvm::Value *IsEmpty = 670 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 671 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 672 673 // Enter the loop body, making that address the current address. 674 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 675 EmitBlock(BodyBB); 676 677 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 678 679 llvm::PHINode *SrcElementPHI = 680 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 681 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 682 Address SrcElementCurrent = 683 Address(SrcElementPHI, 684 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 685 686 llvm::PHINode *DestElementPHI = 687 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 688 DestElementPHI->addIncoming(DestBegin, EntryBB); 689 Address DestElementCurrent = 690 Address(DestElementPHI, 691 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 692 693 // Emit copy. 694 CopyGen(DestElementCurrent, SrcElementCurrent); 695 696 // Shift the address forward by one element. 697 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 698 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 699 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 700 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 701 // Check whether we've reached the end. 702 llvm::Value *Done = 703 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 704 Builder.CreateCondBr(Done, DoneBB, BodyBB); 705 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 706 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 707 708 // Done. 709 EmitBlock(DoneBB, /*IsFinished=*/true); 710 } 711 712 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 713 Address SrcAddr, const VarDecl *DestVD, 714 const VarDecl *SrcVD, const Expr *Copy) { 715 if (OriginalType->isArrayType()) { 716 const auto *BO = dyn_cast<BinaryOperator>(Copy); 717 if (BO && BO->getOpcode() == BO_Assign) { 718 // Perform simple memcpy for simple copying. 719 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 720 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 721 EmitAggregateAssign(Dest, Src, OriginalType); 722 } else { 723 // For arrays with complex element types perform element by element 724 // copying. 725 EmitOMPAggregateAssign( 726 DestAddr, SrcAddr, OriginalType, 727 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 728 // Working with the single array element, so have to remap 729 // destination and source variables to corresponding array 730 // elements. 731 CodeGenFunction::OMPPrivateScope Remap(*this); 732 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 733 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 734 (void)Remap.Privatize(); 735 EmitIgnoredExpr(Copy); 736 }); 737 } 738 } else { 739 // Remap pseudo source variable to private copy. 740 CodeGenFunction::OMPPrivateScope Remap(*this); 741 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 742 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 743 (void)Remap.Privatize(); 744 // Emit copying of the whole variable. 745 EmitIgnoredExpr(Copy); 746 } 747 } 748 749 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 750 OMPPrivateScope &PrivateScope) { 751 if (!HaveInsertPoint()) 752 return false; 753 bool DeviceConstTarget = 754 getLangOpts().OpenMPIsDevice && 755 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 756 bool FirstprivateIsLastprivate = false; 757 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 758 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 759 for (const auto *D : C->varlists()) 760 Lastprivates.try_emplace( 761 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 762 C->getKind()); 763 } 764 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 765 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 766 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 767 // Force emission of the firstprivate copy if the directive does not emit 768 // outlined function, like omp for, omp simd, omp distribute etc. 769 bool MustEmitFirstprivateCopy = 770 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 771 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 772 const auto *IRef = C->varlist_begin(); 773 const auto *InitsRef = C->inits().begin(); 774 for (const Expr *IInit : C->private_copies()) { 775 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 776 bool ThisFirstprivateIsLastprivate = 777 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 778 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 779 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 780 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 781 !FD->getType()->isReferenceType() && 782 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 783 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 784 ++IRef; 785 ++InitsRef; 786 continue; 787 } 788 // Do not emit copy for firstprivate constant variables in target regions, 789 // captured by reference. 790 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 791 FD && FD->getType()->isReferenceType() && 792 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 793 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 794 OrigVD); 795 ++IRef; 796 ++InitsRef; 797 continue; 798 } 799 FirstprivateIsLastprivate = 800 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 801 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 802 const auto *VDInit = 803 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 804 bool IsRegistered; 805 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 806 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 807 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 808 LValue OriginalLVal; 809 if (!FD) { 810 // Check if the firstprivate variable is just a constant value. 811 ConstantEmission CE = tryEmitAsConstant(&DRE); 812 if (CE && !CE.isReference()) { 813 // Constant value, no need to create a copy. 814 ++IRef; 815 ++InitsRef; 816 continue; 817 } 818 if (CE && CE.isReference()) { 819 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 820 } else { 821 assert(!CE && "Expected non-constant firstprivate."); 822 OriginalLVal = EmitLValue(&DRE); 823 } 824 } else { 825 OriginalLVal = EmitLValue(&DRE); 826 } 827 QualType Type = VD->getType(); 828 if (Type->isArrayType()) { 829 // Emit VarDecl with copy init for arrays. 830 // Get the address of the original variable captured in current 831 // captured region. 832 IsRegistered = PrivateScope.addPrivate( 833 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 834 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 835 const Expr *Init = VD->getInit(); 836 if (!isa<CXXConstructExpr>(Init) || 837 isTrivialInitializer(Init)) { 838 // Perform simple memcpy. 839 LValue Dest = 840 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 841 EmitAggregateAssign(Dest, OriginalLVal, Type); 842 } else { 843 EmitOMPAggregateAssign( 844 Emission.getAllocatedAddress(), 845 OriginalLVal.getAddress(*this), Type, 846 [this, VDInit, Init](Address DestElement, 847 Address SrcElement) { 848 // Clean up any temporaries needed by the 849 // initialization. 850 RunCleanupsScope InitScope(*this); 851 // Emit initialization for single element. 852 setAddrOfLocalVar(VDInit, SrcElement); 853 EmitAnyExprToMem(Init, DestElement, 854 Init->getType().getQualifiers(), 855 /*IsInitializer*/ false); 856 LocalDeclMap.erase(VDInit); 857 }); 858 } 859 EmitAutoVarCleanups(Emission); 860 return Emission.getAllocatedAddress(); 861 }); 862 } else { 863 Address OriginalAddr = OriginalLVal.getAddress(*this); 864 IsRegistered = 865 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 866 ThisFirstprivateIsLastprivate, 867 OrigVD, &Lastprivates, IRef]() { 868 // Emit private VarDecl with copy init. 869 // Remap temp VDInit variable to the address of the original 870 // variable (for proper handling of captured global variables). 871 setAddrOfLocalVar(VDInit, OriginalAddr); 872 EmitDecl(*VD); 873 LocalDeclMap.erase(VDInit); 874 if (ThisFirstprivateIsLastprivate && 875 Lastprivates[OrigVD->getCanonicalDecl()] == 876 OMPC_LASTPRIVATE_conditional) { 877 // Create/init special variable for lastprivate conditionals. 878 Address VDAddr = 879 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 880 *this, OrigVD); 881 llvm::Value *V = EmitLoadOfScalar( 882 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 883 AlignmentSource::Decl), 884 (*IRef)->getExprLoc()); 885 EmitStoreOfScalar(V, 886 MakeAddrLValue(VDAddr, (*IRef)->getType(), 887 AlignmentSource::Decl)); 888 LocalDeclMap.erase(VD); 889 setAddrOfLocalVar(VD, VDAddr); 890 return VDAddr; 891 } 892 return GetAddrOfLocalVar(VD); 893 }); 894 } 895 assert(IsRegistered && 896 "firstprivate var already registered as private"); 897 // Silence the warning about unused variable. 898 (void)IsRegistered; 899 } 900 ++IRef; 901 ++InitsRef; 902 } 903 } 904 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 905 } 906 907 void CodeGenFunction::EmitOMPPrivateClause( 908 const OMPExecutableDirective &D, 909 CodeGenFunction::OMPPrivateScope &PrivateScope) { 910 if (!HaveInsertPoint()) 911 return; 912 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 913 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 914 auto IRef = C->varlist_begin(); 915 for (const Expr *IInit : C->private_copies()) { 916 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 917 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 918 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 919 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 920 // Emit private VarDecl with copy init. 921 EmitDecl(*VD); 922 return GetAddrOfLocalVar(VD); 923 }); 924 assert(IsRegistered && "private var already registered as private"); 925 // Silence the warning about unused variable. 926 (void)IsRegistered; 927 } 928 ++IRef; 929 } 930 } 931 } 932 933 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 934 if (!HaveInsertPoint()) 935 return false; 936 // threadprivate_var1 = master_threadprivate_var1; 937 // operator=(threadprivate_var2, master_threadprivate_var2); 938 // ... 939 // __kmpc_barrier(&loc, global_tid); 940 llvm::DenseSet<const VarDecl *> CopiedVars; 941 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 942 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 943 auto IRef = C->varlist_begin(); 944 auto ISrcRef = C->source_exprs().begin(); 945 auto IDestRef = C->destination_exprs().begin(); 946 for (const Expr *AssignOp : C->assignment_ops()) { 947 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 948 QualType Type = VD->getType(); 949 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 950 // Get the address of the master variable. If we are emitting code with 951 // TLS support, the address is passed from the master as field in the 952 // captured declaration. 953 Address MasterAddr = Address::invalid(); 954 if (getLangOpts().OpenMPUseTLS && 955 getContext().getTargetInfo().isTLSSupported()) { 956 assert(CapturedStmtInfo->lookup(VD) && 957 "Copyin threadprivates should have been captured!"); 958 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 959 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 960 MasterAddr = EmitLValue(&DRE).getAddress(*this); 961 LocalDeclMap.erase(VD); 962 } else { 963 MasterAddr = 964 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 965 : CGM.GetAddrOfGlobal(VD), 966 getContext().getDeclAlign(VD)); 967 } 968 // Get the address of the threadprivate variable. 969 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 970 if (CopiedVars.size() == 1) { 971 // At first check if current thread is a master thread. If it is, no 972 // need to copy data. 973 CopyBegin = createBasicBlock("copyin.not.master"); 974 CopyEnd = createBasicBlock("copyin.not.master.end"); 975 Builder.CreateCondBr( 976 Builder.CreateICmpNE( 977 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 978 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 979 CGM.IntPtrTy)), 980 CopyBegin, CopyEnd); 981 EmitBlock(CopyBegin); 982 } 983 const auto *SrcVD = 984 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 985 const auto *DestVD = 986 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 987 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 988 } 989 ++IRef; 990 ++ISrcRef; 991 ++IDestRef; 992 } 993 } 994 if (CopyEnd) { 995 // Exit out of copying procedure for non-master thread. 996 EmitBlock(CopyEnd, /*IsFinished=*/true); 997 return true; 998 } 999 return false; 1000 } 1001 1002 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1003 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1004 if (!HaveInsertPoint()) 1005 return false; 1006 bool HasAtLeastOneLastprivate = false; 1007 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1008 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1009 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1010 for (const Expr *C : LoopDirective->counters()) { 1011 SIMDLCVs.insert( 1012 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1013 } 1014 } 1015 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1016 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1017 HasAtLeastOneLastprivate = true; 1018 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1019 !getLangOpts().OpenMPSimd) 1020 break; 1021 const auto *IRef = C->varlist_begin(); 1022 const auto *IDestRef = C->destination_exprs().begin(); 1023 for (const Expr *IInit : C->private_copies()) { 1024 // Keep the address of the original variable for future update at the end 1025 // of the loop. 1026 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1027 // Taskloops do not require additional initialization, it is done in 1028 // runtime support library. 1029 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1030 const auto *DestVD = 1031 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1032 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1033 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1034 /*RefersToEnclosingVariableOrCapture=*/ 1035 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1036 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1037 return EmitLValue(&DRE).getAddress(*this); 1038 }); 1039 // Check if the variable is also a firstprivate: in this case IInit is 1040 // not generated. Initialization of this variable will happen in codegen 1041 // for 'firstprivate' clause. 1042 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1043 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1044 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1045 OrigVD]() { 1046 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1047 Address VDAddr = 1048 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1049 OrigVD); 1050 setAddrOfLocalVar(VD, VDAddr); 1051 return VDAddr; 1052 } 1053 // Emit private VarDecl with copy init. 1054 EmitDecl(*VD); 1055 return GetAddrOfLocalVar(VD); 1056 }); 1057 assert(IsRegistered && 1058 "lastprivate var already registered as private"); 1059 (void)IsRegistered; 1060 } 1061 } 1062 ++IRef; 1063 ++IDestRef; 1064 } 1065 } 1066 return HasAtLeastOneLastprivate; 1067 } 1068 1069 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1070 const OMPExecutableDirective &D, bool NoFinals, 1071 llvm::Value *IsLastIterCond) { 1072 if (!HaveInsertPoint()) 1073 return; 1074 // Emit following code: 1075 // if (<IsLastIterCond>) { 1076 // orig_var1 = private_orig_var1; 1077 // ... 1078 // orig_varn = private_orig_varn; 1079 // } 1080 llvm::BasicBlock *ThenBB = nullptr; 1081 llvm::BasicBlock *DoneBB = nullptr; 1082 if (IsLastIterCond) { 1083 // Emit implicit barrier if at least one lastprivate conditional is found 1084 // and this is not a simd mode. 1085 if (!getLangOpts().OpenMPSimd && 1086 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1087 [](const OMPLastprivateClause *C) { 1088 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1089 })) { 1090 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1091 OMPD_unknown, 1092 /*EmitChecks=*/false, 1093 /*ForceSimpleCall=*/true); 1094 } 1095 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1096 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1097 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1098 EmitBlock(ThenBB); 1099 } 1100 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1101 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1102 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1103 auto IC = LoopDirective->counters().begin(); 1104 for (const Expr *F : LoopDirective->finals()) { 1105 const auto *D = 1106 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1107 if (NoFinals) 1108 AlreadyEmittedVars.insert(D); 1109 else 1110 LoopCountersAndUpdates[D] = F; 1111 ++IC; 1112 } 1113 } 1114 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1115 auto IRef = C->varlist_begin(); 1116 auto ISrcRef = C->source_exprs().begin(); 1117 auto IDestRef = C->destination_exprs().begin(); 1118 for (const Expr *AssignOp : C->assignment_ops()) { 1119 const auto *PrivateVD = 1120 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1121 QualType Type = PrivateVD->getType(); 1122 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1123 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1124 // If lastprivate variable is a loop control variable for loop-based 1125 // directive, update its value before copyin back to original 1126 // variable. 1127 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1128 EmitIgnoredExpr(FinalExpr); 1129 const auto *SrcVD = 1130 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1131 const auto *DestVD = 1132 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1133 // Get the address of the private variable. 1134 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1135 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1136 PrivateAddr = 1137 Address(Builder.CreateLoad(PrivateAddr), 1138 getNaturalTypeAlignment(RefTy->getPointeeType())); 1139 // Store the last value to the private copy in the last iteration. 1140 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1141 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1142 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1143 (*IRef)->getExprLoc()); 1144 // Get the address of the original variable. 1145 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1146 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1147 } 1148 ++IRef; 1149 ++ISrcRef; 1150 ++IDestRef; 1151 } 1152 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1153 EmitIgnoredExpr(PostUpdate); 1154 } 1155 if (IsLastIterCond) 1156 EmitBlock(DoneBB, /*IsFinished=*/true); 1157 } 1158 1159 void CodeGenFunction::EmitOMPReductionClauseInit( 1160 const OMPExecutableDirective &D, 1161 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1162 if (!HaveInsertPoint()) 1163 return; 1164 SmallVector<const Expr *, 4> Shareds; 1165 SmallVector<const Expr *, 4> Privates; 1166 SmallVector<const Expr *, 4> ReductionOps; 1167 SmallVector<const Expr *, 4> LHSs; 1168 SmallVector<const Expr *, 4> RHSs; 1169 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1170 auto IPriv = C->privates().begin(); 1171 auto IRed = C->reduction_ops().begin(); 1172 auto ILHS = C->lhs_exprs().begin(); 1173 auto IRHS = C->rhs_exprs().begin(); 1174 for (const Expr *Ref : C->varlists()) { 1175 Shareds.emplace_back(Ref); 1176 Privates.emplace_back(*IPriv); 1177 ReductionOps.emplace_back(*IRed); 1178 LHSs.emplace_back(*ILHS); 1179 RHSs.emplace_back(*IRHS); 1180 std::advance(IPriv, 1); 1181 std::advance(IRed, 1); 1182 std::advance(ILHS, 1); 1183 std::advance(IRHS, 1); 1184 } 1185 } 1186 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1187 unsigned Count = 0; 1188 auto ILHS = LHSs.begin(); 1189 auto IRHS = RHSs.begin(); 1190 auto IPriv = Privates.begin(); 1191 for (const Expr *IRef : Shareds) { 1192 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1193 // Emit private VarDecl with reduction init. 1194 RedCG.emitSharedLValue(*this, Count); 1195 RedCG.emitAggregateType(*this, Count); 1196 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1197 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1198 RedCG.getSharedLValue(Count), 1199 [&Emission](CodeGenFunction &CGF) { 1200 CGF.EmitAutoVarInit(Emission); 1201 return true; 1202 }); 1203 EmitAutoVarCleanups(Emission); 1204 Address BaseAddr = RedCG.adjustPrivateAddress( 1205 *this, Count, Emission.getAllocatedAddress()); 1206 bool IsRegistered = PrivateScope.addPrivate( 1207 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1208 assert(IsRegistered && "private var already registered as private"); 1209 // Silence the warning about unused variable. 1210 (void)IsRegistered; 1211 1212 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1213 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1214 QualType Type = PrivateVD->getType(); 1215 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1216 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1217 // Store the address of the original variable associated with the LHS 1218 // implicit variable. 1219 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1220 return RedCG.getSharedLValue(Count).getAddress(*this); 1221 }); 1222 PrivateScope.addPrivate( 1223 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1224 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1225 isa<ArraySubscriptExpr>(IRef)) { 1226 // Store the address of the original variable associated with the LHS 1227 // implicit variable. 1228 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1229 return RedCG.getSharedLValue(Count).getAddress(*this); 1230 }); 1231 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1232 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1233 ConvertTypeForMem(RHSVD->getType()), 1234 "rhs.begin"); 1235 }); 1236 } else { 1237 QualType Type = PrivateVD->getType(); 1238 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1239 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1240 // Store the address of the original variable associated with the LHS 1241 // implicit variable. 1242 if (IsArray) { 1243 OriginalAddr = Builder.CreateElementBitCast( 1244 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1245 } 1246 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1247 PrivateScope.addPrivate( 1248 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1249 return IsArray 1250 ? Builder.CreateElementBitCast( 1251 GetAddrOfLocalVar(PrivateVD), 1252 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1253 : GetAddrOfLocalVar(PrivateVD); 1254 }); 1255 } 1256 ++ILHS; 1257 ++IRHS; 1258 ++IPriv; 1259 ++Count; 1260 } 1261 } 1262 1263 void CodeGenFunction::EmitOMPReductionClauseFinal( 1264 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1265 if (!HaveInsertPoint()) 1266 return; 1267 llvm::SmallVector<const Expr *, 8> Privates; 1268 llvm::SmallVector<const Expr *, 8> LHSExprs; 1269 llvm::SmallVector<const Expr *, 8> RHSExprs; 1270 llvm::SmallVector<const Expr *, 8> ReductionOps; 1271 bool HasAtLeastOneReduction = false; 1272 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1273 HasAtLeastOneReduction = true; 1274 Privates.append(C->privates().begin(), C->privates().end()); 1275 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1276 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1277 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1278 } 1279 if (HasAtLeastOneReduction) { 1280 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1281 isOpenMPParallelDirective(D.getDirectiveKind()) || 1282 ReductionKind == OMPD_simd; 1283 bool SimpleReduction = ReductionKind == OMPD_simd; 1284 // Emit nowait reduction if nowait clause is present or directive is a 1285 // parallel directive (it always has implicit barrier). 1286 CGM.getOpenMPRuntime().emitReduction( 1287 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1288 {WithNowait, SimpleReduction, ReductionKind}); 1289 } 1290 } 1291 1292 static void emitPostUpdateForReductionClause( 1293 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1294 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1295 if (!CGF.HaveInsertPoint()) 1296 return; 1297 llvm::BasicBlock *DoneBB = nullptr; 1298 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1299 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1300 if (!DoneBB) { 1301 if (llvm::Value *Cond = CondGen(CGF)) { 1302 // If the first post-update expression is found, emit conditional 1303 // block if it was requested. 1304 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1305 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1306 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1307 CGF.EmitBlock(ThenBB); 1308 } 1309 } 1310 CGF.EmitIgnoredExpr(PostUpdate); 1311 } 1312 } 1313 if (DoneBB) 1314 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1315 } 1316 1317 namespace { 1318 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1319 /// parallel function. This is necessary for combined constructs such as 1320 /// 'distribute parallel for' 1321 typedef llvm::function_ref<void(CodeGenFunction &, 1322 const OMPExecutableDirective &, 1323 llvm::SmallVectorImpl<llvm::Value *> &)> 1324 CodeGenBoundParametersTy; 1325 } // anonymous namespace 1326 1327 static void 1328 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1329 const OMPExecutableDirective &S) { 1330 if (CGF.getLangOpts().OpenMP < 50) 1331 return; 1332 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1333 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1334 for (const Expr *Ref : C->varlists()) { 1335 if (!Ref->getType()->isScalarType()) 1336 continue; 1337 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1338 if (!DRE) 1339 continue; 1340 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1341 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1342 } 1343 } 1344 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1345 for (const Expr *Ref : C->varlists()) { 1346 if (!Ref->getType()->isScalarType()) 1347 continue; 1348 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1349 if (!DRE) 1350 continue; 1351 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1352 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1353 } 1354 } 1355 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1356 for (const Expr *Ref : C->varlists()) { 1357 if (!Ref->getType()->isScalarType()) 1358 continue; 1359 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1360 if (!DRE) 1361 continue; 1362 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1363 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1364 } 1365 } 1366 // Privates should ne analyzed since they are not captured at all. 1367 // Task reductions may be skipped - tasks are ignored. 1368 // Firstprivates do not return value but may be passed by reference - no need 1369 // to check for updated lastprivate conditional. 1370 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1371 for (const Expr *Ref : C->varlists()) { 1372 if (!Ref->getType()->isScalarType()) 1373 continue; 1374 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1375 if (!DRE) 1376 continue; 1377 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1378 } 1379 } 1380 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1381 CGF, S, PrivateDecls); 1382 } 1383 1384 static void emitCommonOMPParallelDirective( 1385 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1386 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1387 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1388 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1389 llvm::Function *OutlinedFn = 1390 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1391 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1392 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1393 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1394 llvm::Value *NumThreads = 1395 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1396 /*IgnoreResultAssign=*/true); 1397 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1398 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1399 } 1400 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1401 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1402 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1403 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1404 } 1405 const Expr *IfCond = nullptr; 1406 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1407 if (C->getNameModifier() == OMPD_unknown || 1408 C->getNameModifier() == OMPD_parallel) { 1409 IfCond = C->getCondition(); 1410 break; 1411 } 1412 } 1413 1414 OMPParallelScope Scope(CGF, S); 1415 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1416 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1417 // lower and upper bounds with the pragma 'for' chunking mechanism. 1418 // The following lambda takes care of appending the lower and upper bound 1419 // parameters when necessary 1420 CodeGenBoundParameters(CGF, S, CapturedVars); 1421 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1422 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1423 CapturedVars, IfCond); 1424 } 1425 1426 static void emitEmptyBoundParameters(CodeGenFunction &, 1427 const OMPExecutableDirective &, 1428 llvm::SmallVectorImpl<llvm::Value *> &) {} 1429 1430 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1431 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 1432 // Check if we have any if clause associated with the directive. 1433 llvm::Value *IfCond = nullptr; 1434 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1435 IfCond = EmitScalarExpr(C->getCondition(), 1436 /*IgnoreResultAssign=*/true); 1437 1438 llvm::Value *NumThreads = nullptr; 1439 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1440 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1441 /*IgnoreResultAssign=*/true); 1442 1443 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1444 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1445 ProcBind = ProcBindClause->getProcBindKind(); 1446 1447 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1448 1449 // The cleanup callback that finalizes all variabels at the given location, 1450 // thus calls destructors etc. 1451 auto FiniCB = [this](InsertPointTy IP) { 1452 CGBuilderTy::InsertPointGuard IPG(Builder); 1453 assert(IP.getBlock()->end() != IP.getPoint() && 1454 "OpenMP IR Builder should cause terminated block!"); 1455 llvm::BasicBlock *IPBB = IP.getBlock(); 1456 llvm::BasicBlock *DestBB = IPBB->splitBasicBlock(IP.getPoint()); 1457 IPBB->getTerminator()->eraseFromParent(); 1458 Builder.SetInsertPoint(IPBB); 1459 CodeGenFunction::JumpDest Dest = getJumpDestInCurrentScope(DestBB); 1460 EmitBranchThroughCleanup(Dest); 1461 }; 1462 1463 // Privatization callback that performs appropriate action for 1464 // shared/private/firstprivate/lastprivate/copyin/... variables. 1465 // 1466 // TODO: This defaults to shared right now. 1467 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1468 llvm::Value &Val, llvm::Value *&ReplVal) { 1469 // The next line is appropriate only for variables (Val) with the 1470 // data-sharing attribute "shared". 1471 ReplVal = &Val; 1472 1473 return CodeGenIP; 1474 }; 1475 1476 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1477 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1478 1479 auto BodyGenCB = [ParallelRegionBodyStmt, 1480 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1481 llvm::BasicBlock &ContinuationBB) { 1482 auto OldAllocaIP = AllocaInsertPt; 1483 AllocaInsertPt = &*AllocaIP.getPoint(); 1484 1485 auto OldReturnBlock = ReturnBlock; 1486 ReturnBlock = getJumpDestInCurrentScope(&ContinuationBB); 1487 1488 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1489 CodeGenIPBB->splitBasicBlock(CodeGenIP.getPoint()); 1490 llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator(); 1491 CodeGenIPBBTI->removeFromParent(); 1492 1493 Builder.SetInsertPoint(CodeGenIPBB); 1494 1495 EmitStmt(ParallelRegionBodyStmt); 1496 1497 Builder.Insert(CodeGenIPBBTI); 1498 1499 AllocaInsertPt = OldAllocaIP; 1500 ReturnBlock = OldReturnBlock; 1501 }; 1502 1503 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1504 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1505 Builder.restoreIP(OMPBuilder->CreateParallel(Builder, BodyGenCB, PrivCB, 1506 FiniCB, IfCond, NumThreads, 1507 ProcBind, S.hasCancel())); 1508 return; 1509 } 1510 1511 // Emit parallel region as a standalone region. 1512 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1513 Action.Enter(CGF); 1514 OMPPrivateScope PrivateScope(CGF); 1515 bool Copyins = CGF.EmitOMPCopyinClause(S); 1516 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1517 if (Copyins) { 1518 // Emit implicit barrier to synchronize threads and avoid data races on 1519 // propagation master's thread values of threadprivate variables to local 1520 // instances of that variables of all other implicit threads. 1521 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1522 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1523 /*ForceSimpleCall=*/true); 1524 } 1525 CGF.EmitOMPPrivateClause(S, PrivateScope); 1526 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1527 (void)PrivateScope.Privatize(); 1528 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1529 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1530 }; 1531 { 1532 auto LPCRegion = 1533 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1534 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1535 emitEmptyBoundParameters); 1536 emitPostUpdateForReductionClause(*this, S, 1537 [](CodeGenFunction &) { return nullptr; }); 1538 } 1539 // Check for outer lastprivate conditional update. 1540 checkForLastprivateConditionalUpdate(*this, S); 1541 } 1542 1543 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1544 int MaxLevel, int Level = 0) { 1545 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1546 const Stmt *SimplifiedS = S->IgnoreContainers(); 1547 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1548 PrettyStackTraceLoc CrashInfo( 1549 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1550 "LLVM IR generation of compound statement ('{}')"); 1551 1552 // Keep track of the current cleanup stack depth, including debug scopes. 1553 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1554 for (const Stmt *CurStmt : CS->body()) 1555 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1556 return; 1557 } 1558 if (SimplifiedS == NextLoop) { 1559 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1560 S = For->getBody(); 1561 } else { 1562 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1563 "Expected canonical for loop or range-based for loop."); 1564 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1565 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1566 S = CXXFor->getBody(); 1567 } 1568 if (Level + 1 < MaxLevel) { 1569 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1570 S, /*TryImperfectlyNestedLoops=*/true); 1571 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1572 return; 1573 } 1574 } 1575 CGF.EmitStmt(S); 1576 } 1577 1578 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1579 JumpDest LoopExit) { 1580 RunCleanupsScope BodyScope(*this); 1581 // Update counters values on current iteration. 1582 for (const Expr *UE : D.updates()) 1583 EmitIgnoredExpr(UE); 1584 // Update the linear variables. 1585 // In distribute directives only loop counters may be marked as linear, no 1586 // need to generate the code for them. 1587 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1588 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1589 for (const Expr *UE : C->updates()) 1590 EmitIgnoredExpr(UE); 1591 } 1592 } 1593 1594 // On a continue in the body, jump to the end. 1595 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1596 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1597 for (const Expr *E : D.finals_conditions()) { 1598 if (!E) 1599 continue; 1600 // Check that loop counter in non-rectangular nest fits into the iteration 1601 // space. 1602 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1603 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1604 getProfileCount(D.getBody())); 1605 EmitBlock(NextBB); 1606 } 1607 // Emit loop variables for C++ range loops. 1608 const Stmt *Body = 1609 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1610 // Emit loop body. 1611 emitBody(*this, Body, 1612 OMPLoopDirective::tryToFindNextInnerLoop( 1613 Body, /*TryImperfectlyNestedLoops=*/true), 1614 D.getCollapsedNumber()); 1615 1616 // The end (updates/cleanups). 1617 EmitBlock(Continue.getBlock()); 1618 BreakContinueStack.pop_back(); 1619 } 1620 1621 void CodeGenFunction::EmitOMPInnerLoop( 1622 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1623 const Expr *IncExpr, 1624 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1625 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1626 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1627 1628 // Start the loop with a block that tests the condition. 1629 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1630 EmitBlock(CondBlock); 1631 const SourceRange R = S.getSourceRange(); 1632 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1633 SourceLocToDebugLoc(R.getEnd())); 1634 1635 // If there are any cleanups between here and the loop-exit scope, 1636 // create a block to stage a loop exit along. 1637 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1638 if (RequiresCleanup) 1639 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1640 1641 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1642 1643 // Emit condition. 1644 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1645 if (ExitBlock != LoopExit.getBlock()) { 1646 EmitBlock(ExitBlock); 1647 EmitBranchThroughCleanup(LoopExit); 1648 } 1649 1650 EmitBlock(LoopBody); 1651 incrementProfileCounter(&S); 1652 1653 // Create a block for the increment. 1654 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1655 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1656 1657 BodyGen(*this); 1658 1659 // Emit "IV = IV + 1" and a back-edge to the condition block. 1660 EmitBlock(Continue.getBlock()); 1661 EmitIgnoredExpr(IncExpr); 1662 PostIncGen(*this); 1663 BreakContinueStack.pop_back(); 1664 EmitBranch(CondBlock); 1665 LoopStack.pop(); 1666 // Emit the fall-through block. 1667 EmitBlock(LoopExit.getBlock()); 1668 } 1669 1670 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1671 if (!HaveInsertPoint()) 1672 return false; 1673 // Emit inits for the linear variables. 1674 bool HasLinears = false; 1675 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1676 for (const Expr *Init : C->inits()) { 1677 HasLinears = true; 1678 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1679 if (const auto *Ref = 1680 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1681 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1682 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1683 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1684 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1685 VD->getInit()->getType(), VK_LValue, 1686 VD->getInit()->getExprLoc()); 1687 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1688 VD->getType()), 1689 /*capturedByInit=*/false); 1690 EmitAutoVarCleanups(Emission); 1691 } else { 1692 EmitVarDecl(*VD); 1693 } 1694 } 1695 // Emit the linear steps for the linear clauses. 1696 // If a step is not constant, it is pre-calculated before the loop. 1697 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1698 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1699 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1700 // Emit calculation of the linear step. 1701 EmitIgnoredExpr(CS); 1702 } 1703 } 1704 return HasLinears; 1705 } 1706 1707 void CodeGenFunction::EmitOMPLinearClauseFinal( 1708 const OMPLoopDirective &D, 1709 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1710 if (!HaveInsertPoint()) 1711 return; 1712 llvm::BasicBlock *DoneBB = nullptr; 1713 // Emit the final values of the linear variables. 1714 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1715 auto IC = C->varlist_begin(); 1716 for (const Expr *F : C->finals()) { 1717 if (!DoneBB) { 1718 if (llvm::Value *Cond = CondGen(*this)) { 1719 // If the first post-update expression is found, emit conditional 1720 // block if it was requested. 1721 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1722 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1723 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1724 EmitBlock(ThenBB); 1725 } 1726 } 1727 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1728 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1729 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1730 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1731 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1732 CodeGenFunction::OMPPrivateScope VarScope(*this); 1733 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1734 (void)VarScope.Privatize(); 1735 EmitIgnoredExpr(F); 1736 ++IC; 1737 } 1738 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1739 EmitIgnoredExpr(PostUpdate); 1740 } 1741 if (DoneBB) 1742 EmitBlock(DoneBB, /*IsFinished=*/true); 1743 } 1744 1745 static void emitAlignedClause(CodeGenFunction &CGF, 1746 const OMPExecutableDirective &D) { 1747 if (!CGF.HaveInsertPoint()) 1748 return; 1749 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1750 llvm::APInt ClauseAlignment(64, 0); 1751 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1752 auto *AlignmentCI = 1753 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1754 ClauseAlignment = AlignmentCI->getValue(); 1755 } 1756 for (const Expr *E : Clause->varlists()) { 1757 llvm::APInt Alignment(ClauseAlignment); 1758 if (Alignment == 0) { 1759 // OpenMP [2.8.1, Description] 1760 // If no optional parameter is specified, implementation-defined default 1761 // alignments for SIMD instructions on the target platforms are assumed. 1762 Alignment = 1763 CGF.getContext() 1764 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1765 E->getType()->getPointeeType())) 1766 .getQuantity(); 1767 } 1768 assert((Alignment == 0 || Alignment.isPowerOf2()) && 1769 "alignment is not power of 2"); 1770 if (Alignment != 0) { 1771 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1772 CGF.EmitAlignmentAssumption( 1773 PtrValue, E, /*No second loc needed*/ SourceLocation(), 1774 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 1775 } 1776 } 1777 } 1778 } 1779 1780 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1781 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1782 if (!HaveInsertPoint()) 1783 return; 1784 auto I = S.private_counters().begin(); 1785 for (const Expr *E : S.counters()) { 1786 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1787 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1788 // Emit var without initialization. 1789 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1790 EmitAutoVarCleanups(VarEmission); 1791 LocalDeclMap.erase(PrivateVD); 1792 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1793 return VarEmission.getAllocatedAddress(); 1794 }); 1795 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1796 VD->hasGlobalStorage()) { 1797 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1798 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1799 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1800 E->getType(), VK_LValue, E->getExprLoc()); 1801 return EmitLValue(&DRE).getAddress(*this); 1802 }); 1803 } else { 1804 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1805 return VarEmission.getAllocatedAddress(); 1806 }); 1807 } 1808 ++I; 1809 } 1810 // Privatize extra loop counters used in loops for ordered(n) clauses. 1811 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1812 if (!C->getNumForLoops()) 1813 continue; 1814 for (unsigned I = S.getCollapsedNumber(), 1815 E = C->getLoopNumIterations().size(); 1816 I < E; ++I) { 1817 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1818 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1819 // Override only those variables that can be captured to avoid re-emission 1820 // of the variables declared within the loops. 1821 if (DRE->refersToEnclosingVariableOrCapture()) { 1822 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1823 return CreateMemTemp(DRE->getType(), VD->getName()); 1824 }); 1825 } 1826 } 1827 } 1828 } 1829 1830 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1831 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1832 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1833 if (!CGF.HaveInsertPoint()) 1834 return; 1835 { 1836 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1837 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1838 (void)PreCondScope.Privatize(); 1839 // Get initial values of real counters. 1840 for (const Expr *I : S.inits()) { 1841 CGF.EmitIgnoredExpr(I); 1842 } 1843 } 1844 // Create temp loop control variables with their init values to support 1845 // non-rectangular loops. 1846 CodeGenFunction::OMPMapVars PreCondVars; 1847 for (const Expr * E: S.dependent_counters()) { 1848 if (!E) 1849 continue; 1850 assert(!E->getType().getNonReferenceType()->isRecordType() && 1851 "dependent counter must not be an iterator."); 1852 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1853 Address CounterAddr = 1854 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 1855 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 1856 } 1857 (void)PreCondVars.apply(CGF); 1858 for (const Expr *E : S.dependent_inits()) { 1859 if (!E) 1860 continue; 1861 CGF.EmitIgnoredExpr(E); 1862 } 1863 // Check that loop is executed at least one time. 1864 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1865 PreCondVars.restore(CGF); 1866 } 1867 1868 void CodeGenFunction::EmitOMPLinearClause( 1869 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1870 if (!HaveInsertPoint()) 1871 return; 1872 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1873 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1874 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1875 for (const Expr *C : LoopDirective->counters()) { 1876 SIMDLCVs.insert( 1877 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1878 } 1879 } 1880 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1881 auto CurPrivate = C->privates().begin(); 1882 for (const Expr *E : C->varlists()) { 1883 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1884 const auto *PrivateVD = 1885 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1886 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1887 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1888 // Emit private VarDecl with copy init. 1889 EmitVarDecl(*PrivateVD); 1890 return GetAddrOfLocalVar(PrivateVD); 1891 }); 1892 assert(IsRegistered && "linear var already registered as private"); 1893 // Silence the warning about unused variable. 1894 (void)IsRegistered; 1895 } else { 1896 EmitVarDecl(*PrivateVD); 1897 } 1898 ++CurPrivate; 1899 } 1900 } 1901 } 1902 1903 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1904 const OMPExecutableDirective &D, 1905 bool IsMonotonic) { 1906 if (!CGF.HaveInsertPoint()) 1907 return; 1908 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1909 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1910 /*ignoreResult=*/true); 1911 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1912 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1913 // In presence of finite 'safelen', it may be unsafe to mark all 1914 // the memory instructions parallel, because loop-carried 1915 // dependences of 'safelen' iterations are possible. 1916 if (!IsMonotonic) 1917 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1918 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1919 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1920 /*ignoreResult=*/true); 1921 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1922 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1923 // In presence of finite 'safelen', it may be unsafe to mark all 1924 // the memory instructions parallel, because loop-carried 1925 // dependences of 'safelen' iterations are possible. 1926 CGF.LoopStack.setParallel(/*Enable=*/false); 1927 } 1928 } 1929 1930 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1931 bool IsMonotonic) { 1932 // Walk clauses and process safelen/lastprivate. 1933 LoopStack.setParallel(!IsMonotonic); 1934 LoopStack.setVectorizeEnable(); 1935 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1936 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 1937 if (C->getKind() == OMPC_ORDER_concurrent) 1938 LoopStack.setParallel(/*Enable=*/true); 1939 } 1940 1941 void CodeGenFunction::EmitOMPSimdFinal( 1942 const OMPLoopDirective &D, 1943 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1944 if (!HaveInsertPoint()) 1945 return; 1946 llvm::BasicBlock *DoneBB = nullptr; 1947 auto IC = D.counters().begin(); 1948 auto IPC = D.private_counters().begin(); 1949 for (const Expr *F : D.finals()) { 1950 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1951 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1952 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1953 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1954 OrigVD->hasGlobalStorage() || CED) { 1955 if (!DoneBB) { 1956 if (llvm::Value *Cond = CondGen(*this)) { 1957 // If the first post-update expression is found, emit conditional 1958 // block if it was requested. 1959 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1960 DoneBB = createBasicBlock(".omp.final.done"); 1961 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1962 EmitBlock(ThenBB); 1963 } 1964 } 1965 Address OrigAddr = Address::invalid(); 1966 if (CED) { 1967 OrigAddr = 1968 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 1969 } else { 1970 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1971 /*RefersToEnclosingVariableOrCapture=*/false, 1972 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1973 OrigAddr = EmitLValue(&DRE).getAddress(*this); 1974 } 1975 OMPPrivateScope VarScope(*this); 1976 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1977 (void)VarScope.Privatize(); 1978 EmitIgnoredExpr(F); 1979 } 1980 ++IC; 1981 ++IPC; 1982 } 1983 if (DoneBB) 1984 EmitBlock(DoneBB, /*IsFinished=*/true); 1985 } 1986 1987 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1988 const OMPLoopDirective &S, 1989 CodeGenFunction::JumpDest LoopExit) { 1990 CGF.EmitOMPLoopBody(S, LoopExit); 1991 CGF.EmitStopPoint(&S); 1992 } 1993 1994 /// Emit a helper variable and return corresponding lvalue. 1995 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1996 const DeclRefExpr *Helper) { 1997 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1998 CGF.EmitVarDecl(*VDecl); 1999 return CGF.EmitLValue(Helper); 2000 } 2001 2002 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2003 const RegionCodeGenTy &SimdInitGen, 2004 const RegionCodeGenTy &BodyCodeGen) { 2005 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2006 PrePostActionTy &) { 2007 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2008 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2009 SimdInitGen(CGF); 2010 2011 BodyCodeGen(CGF); 2012 }; 2013 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2014 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2015 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2016 2017 BodyCodeGen(CGF); 2018 }; 2019 const Expr *IfCond = nullptr; 2020 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2021 if (CGF.getLangOpts().OpenMP >= 50 && 2022 (C->getNameModifier() == OMPD_unknown || 2023 C->getNameModifier() == OMPD_simd)) { 2024 IfCond = C->getCondition(); 2025 break; 2026 } 2027 } 2028 if (IfCond) { 2029 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2030 } else { 2031 RegionCodeGenTy ThenRCG(ThenGen); 2032 ThenRCG(CGF); 2033 } 2034 } 2035 2036 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2037 PrePostActionTy &Action) { 2038 Action.Enter(CGF); 2039 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2040 "Expected simd directive"); 2041 OMPLoopScope PreInitScope(CGF, S); 2042 // if (PreCond) { 2043 // for (IV in 0..LastIteration) BODY; 2044 // <Final counter/linear vars updates>; 2045 // } 2046 // 2047 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2048 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2049 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2050 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2051 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2052 } 2053 2054 // Emit: if (PreCond) - begin. 2055 // If the condition constant folds and can be elided, avoid emitting the 2056 // whole loop. 2057 bool CondConstant; 2058 llvm::BasicBlock *ContBlock = nullptr; 2059 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2060 if (!CondConstant) 2061 return; 2062 } else { 2063 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2064 ContBlock = CGF.createBasicBlock("simd.if.end"); 2065 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2066 CGF.getProfileCount(&S)); 2067 CGF.EmitBlock(ThenBlock); 2068 CGF.incrementProfileCounter(&S); 2069 } 2070 2071 // Emit the loop iteration variable. 2072 const Expr *IVExpr = S.getIterationVariable(); 2073 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2074 CGF.EmitVarDecl(*IVDecl); 2075 CGF.EmitIgnoredExpr(S.getInit()); 2076 2077 // Emit the iterations count variable. 2078 // If it is not a variable, Sema decided to calculate iterations count on 2079 // each iteration (e.g., it is foldable into a constant). 2080 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2081 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2082 // Emit calculation of the iterations count. 2083 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2084 } 2085 2086 emitAlignedClause(CGF, S); 2087 (void)CGF.EmitOMPLinearClauseInit(S); 2088 { 2089 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2090 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2091 CGF.EmitOMPLinearClause(S, LoopScope); 2092 CGF.EmitOMPPrivateClause(S, LoopScope); 2093 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2094 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2095 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2096 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2097 (void)LoopScope.Privatize(); 2098 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2099 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2100 2101 emitCommonSimdLoop( 2102 CGF, S, 2103 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2104 CGF.EmitOMPSimdInit(S); 2105 }, 2106 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2107 CGF.EmitOMPInnerLoop( 2108 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2109 [&S](CodeGenFunction &CGF) { 2110 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 2111 CGF.EmitStopPoint(&S); 2112 }, 2113 [](CodeGenFunction &) {}); 2114 }); 2115 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2116 // Emit final copy of the lastprivate variables at the end of loops. 2117 if (HasLastprivateClause) 2118 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2119 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2120 emitPostUpdateForReductionClause(CGF, S, 2121 [](CodeGenFunction &) { return nullptr; }); 2122 } 2123 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2124 // Emit: if (PreCond) - end. 2125 if (ContBlock) { 2126 CGF.EmitBranch(ContBlock); 2127 CGF.EmitBlock(ContBlock, true); 2128 } 2129 } 2130 2131 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2132 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2133 emitOMPSimdRegion(CGF, S, Action); 2134 }; 2135 { 2136 auto LPCRegion = 2137 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2138 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2139 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2140 } 2141 // Check for outer lastprivate conditional update. 2142 checkForLastprivateConditionalUpdate(*this, S); 2143 } 2144 2145 void CodeGenFunction::EmitOMPOuterLoop( 2146 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2147 CodeGenFunction::OMPPrivateScope &LoopScope, 2148 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2149 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2150 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2151 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2152 2153 const Expr *IVExpr = S.getIterationVariable(); 2154 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2155 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2156 2157 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2158 2159 // Start the loop with a block that tests the condition. 2160 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2161 EmitBlock(CondBlock); 2162 const SourceRange R = S.getSourceRange(); 2163 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2164 SourceLocToDebugLoc(R.getEnd())); 2165 2166 llvm::Value *BoolCondVal = nullptr; 2167 if (!DynamicOrOrdered) { 2168 // UB = min(UB, GlobalUB) or 2169 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2170 // 'distribute parallel for') 2171 EmitIgnoredExpr(LoopArgs.EUB); 2172 // IV = LB 2173 EmitIgnoredExpr(LoopArgs.Init); 2174 // IV < UB 2175 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2176 } else { 2177 BoolCondVal = 2178 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2179 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2180 } 2181 2182 // If there are any cleanups between here and the loop-exit scope, 2183 // create a block to stage a loop exit along. 2184 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2185 if (LoopScope.requiresCleanups()) 2186 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2187 2188 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2189 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2190 if (ExitBlock != LoopExit.getBlock()) { 2191 EmitBlock(ExitBlock); 2192 EmitBranchThroughCleanup(LoopExit); 2193 } 2194 EmitBlock(LoopBody); 2195 2196 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2197 // LB for loop condition and emitted it above). 2198 if (DynamicOrOrdered) 2199 EmitIgnoredExpr(LoopArgs.Init); 2200 2201 // Create a block for the increment. 2202 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2203 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2204 2205 emitCommonSimdLoop( 2206 *this, S, 2207 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2208 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2209 // with dynamic/guided scheduling and without ordered clause. 2210 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2211 CGF.LoopStack.setParallel(!IsMonotonic); 2212 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2213 if (C->getKind() == OMPC_ORDER_concurrent) 2214 CGF.LoopStack.setParallel(/*Enable=*/true); 2215 } else { 2216 CGF.EmitOMPSimdInit(S, IsMonotonic); 2217 } 2218 }, 2219 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2220 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2221 SourceLocation Loc = S.getBeginLoc(); 2222 // when 'distribute' is not combined with a 'for': 2223 // while (idx <= UB) { BODY; ++idx; } 2224 // when 'distribute' is combined with a 'for' 2225 // (e.g. 'distribute parallel for') 2226 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2227 CGF.EmitOMPInnerLoop( 2228 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2229 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2230 CodeGenLoop(CGF, S, LoopExit); 2231 }, 2232 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2233 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2234 }); 2235 }); 2236 2237 EmitBlock(Continue.getBlock()); 2238 BreakContinueStack.pop_back(); 2239 if (!DynamicOrOrdered) { 2240 // Emit "LB = LB + Stride", "UB = UB + Stride". 2241 EmitIgnoredExpr(LoopArgs.NextLB); 2242 EmitIgnoredExpr(LoopArgs.NextUB); 2243 } 2244 2245 EmitBranch(CondBlock); 2246 LoopStack.pop(); 2247 // Emit the fall-through block. 2248 EmitBlock(LoopExit.getBlock()); 2249 2250 // Tell the runtime we are done. 2251 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2252 if (!DynamicOrOrdered) 2253 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2254 S.getDirectiveKind()); 2255 }; 2256 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2257 } 2258 2259 void CodeGenFunction::EmitOMPForOuterLoop( 2260 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2261 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2262 const OMPLoopArguments &LoopArgs, 2263 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2264 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2265 2266 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2267 const bool DynamicOrOrdered = 2268 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2269 2270 assert((Ordered || 2271 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2272 LoopArgs.Chunk != nullptr)) && 2273 "static non-chunked schedule does not need outer loop"); 2274 2275 // Emit outer loop. 2276 // 2277 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2278 // When schedule(dynamic,chunk_size) is specified, the iterations are 2279 // distributed to threads in the team in chunks as the threads request them. 2280 // Each thread executes a chunk of iterations, then requests another chunk, 2281 // until no chunks remain to be distributed. Each chunk contains chunk_size 2282 // iterations, except for the last chunk to be distributed, which may have 2283 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2284 // 2285 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2286 // to threads in the team in chunks as the executing threads request them. 2287 // Each thread executes a chunk of iterations, then requests another chunk, 2288 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2289 // each chunk is proportional to the number of unassigned iterations divided 2290 // by the number of threads in the team, decreasing to 1. For a chunk_size 2291 // with value k (greater than 1), the size of each chunk is determined in the 2292 // same way, with the restriction that the chunks do not contain fewer than k 2293 // iterations (except for the last chunk to be assigned, which may have fewer 2294 // than k iterations). 2295 // 2296 // When schedule(auto) is specified, the decision regarding scheduling is 2297 // delegated to the compiler and/or runtime system. The programmer gives the 2298 // implementation the freedom to choose any possible mapping of iterations to 2299 // threads in the team. 2300 // 2301 // When schedule(runtime) is specified, the decision regarding scheduling is 2302 // deferred until run time, and the schedule and chunk size are taken from the 2303 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2304 // implementation defined 2305 // 2306 // while(__kmpc_dispatch_next(&LB, &UB)) { 2307 // idx = LB; 2308 // while (idx <= UB) { BODY; ++idx; 2309 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2310 // } // inner loop 2311 // } 2312 // 2313 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2314 // When schedule(static, chunk_size) is specified, iterations are divided into 2315 // chunks of size chunk_size, and the chunks are assigned to the threads in 2316 // the team in a round-robin fashion in the order of the thread number. 2317 // 2318 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2319 // while (idx <= UB) { BODY; ++idx; } // inner loop 2320 // LB = LB + ST; 2321 // UB = UB + ST; 2322 // } 2323 // 2324 2325 const Expr *IVExpr = S.getIterationVariable(); 2326 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2327 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2328 2329 if (DynamicOrOrdered) { 2330 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2331 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2332 llvm::Value *LBVal = DispatchBounds.first; 2333 llvm::Value *UBVal = DispatchBounds.second; 2334 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2335 LoopArgs.Chunk}; 2336 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2337 IVSigned, Ordered, DipatchRTInputValues); 2338 } else { 2339 CGOpenMPRuntime::StaticRTInput StaticInit( 2340 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2341 LoopArgs.ST, LoopArgs.Chunk); 2342 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2343 ScheduleKind, StaticInit); 2344 } 2345 2346 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2347 const unsigned IVSize, 2348 const bool IVSigned) { 2349 if (Ordered) { 2350 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2351 IVSigned); 2352 } 2353 }; 2354 2355 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2356 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2357 OuterLoopArgs.IncExpr = S.getInc(); 2358 OuterLoopArgs.Init = S.getInit(); 2359 OuterLoopArgs.Cond = S.getCond(); 2360 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2361 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2362 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2363 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2364 } 2365 2366 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2367 const unsigned IVSize, const bool IVSigned) {} 2368 2369 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2370 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2371 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2372 const CodeGenLoopTy &CodeGenLoopContent) { 2373 2374 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2375 2376 // Emit outer loop. 2377 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2378 // dynamic 2379 // 2380 2381 const Expr *IVExpr = S.getIterationVariable(); 2382 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2383 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2384 2385 CGOpenMPRuntime::StaticRTInput StaticInit( 2386 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2387 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2388 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2389 2390 // for combined 'distribute' and 'for' the increment expression of distribute 2391 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2392 Expr *IncExpr; 2393 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2394 IncExpr = S.getDistInc(); 2395 else 2396 IncExpr = S.getInc(); 2397 2398 // this routine is shared by 'omp distribute parallel for' and 2399 // 'omp distribute': select the right EUB expression depending on the 2400 // directive 2401 OMPLoopArguments OuterLoopArgs; 2402 OuterLoopArgs.LB = LoopArgs.LB; 2403 OuterLoopArgs.UB = LoopArgs.UB; 2404 OuterLoopArgs.ST = LoopArgs.ST; 2405 OuterLoopArgs.IL = LoopArgs.IL; 2406 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2407 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2408 ? S.getCombinedEnsureUpperBound() 2409 : S.getEnsureUpperBound(); 2410 OuterLoopArgs.IncExpr = IncExpr; 2411 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2412 ? S.getCombinedInit() 2413 : S.getInit(); 2414 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2415 ? S.getCombinedCond() 2416 : S.getCond(); 2417 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2418 ? S.getCombinedNextLowerBound() 2419 : S.getNextLowerBound(); 2420 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2421 ? S.getCombinedNextUpperBound() 2422 : S.getNextUpperBound(); 2423 2424 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2425 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2426 emitEmptyOrdered); 2427 } 2428 2429 static std::pair<LValue, LValue> 2430 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2431 const OMPExecutableDirective &S) { 2432 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2433 LValue LB = 2434 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2435 LValue UB = 2436 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2437 2438 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2439 // parallel for') we need to use the 'distribute' 2440 // chunk lower and upper bounds rather than the whole loop iteration 2441 // space. These are parameters to the outlined function for 'parallel' 2442 // and we copy the bounds of the previous schedule into the 2443 // the current ones. 2444 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2445 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2446 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2447 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2448 PrevLBVal = CGF.EmitScalarConversion( 2449 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2450 LS.getIterationVariable()->getType(), 2451 LS.getPrevLowerBoundVariable()->getExprLoc()); 2452 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2453 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2454 PrevUBVal = CGF.EmitScalarConversion( 2455 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2456 LS.getIterationVariable()->getType(), 2457 LS.getPrevUpperBoundVariable()->getExprLoc()); 2458 2459 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2460 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2461 2462 return {LB, UB}; 2463 } 2464 2465 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2466 /// we need to use the LB and UB expressions generated by the worksharing 2467 /// code generation support, whereas in non combined situations we would 2468 /// just emit 0 and the LastIteration expression 2469 /// This function is necessary due to the difference of the LB and UB 2470 /// types for the RT emission routines for 'for_static_init' and 2471 /// 'for_dispatch_init' 2472 static std::pair<llvm::Value *, llvm::Value *> 2473 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2474 const OMPExecutableDirective &S, 2475 Address LB, Address UB) { 2476 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2477 const Expr *IVExpr = LS.getIterationVariable(); 2478 // when implementing a dynamic schedule for a 'for' combined with a 2479 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2480 // is not normalized as each team only executes its own assigned 2481 // distribute chunk 2482 QualType IteratorTy = IVExpr->getType(); 2483 llvm::Value *LBVal = 2484 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2485 llvm::Value *UBVal = 2486 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2487 return {LBVal, UBVal}; 2488 } 2489 2490 static void emitDistributeParallelForDistributeInnerBoundParams( 2491 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2492 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2493 const auto &Dir = cast<OMPLoopDirective>(S); 2494 LValue LB = 2495 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2496 llvm::Value *LBCast = 2497 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2498 CGF.SizeTy, /*isSigned=*/false); 2499 CapturedVars.push_back(LBCast); 2500 LValue UB = 2501 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2502 2503 llvm::Value *UBCast = 2504 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2505 CGF.SizeTy, /*isSigned=*/false); 2506 CapturedVars.push_back(UBCast); 2507 } 2508 2509 static void 2510 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2511 const OMPLoopDirective &S, 2512 CodeGenFunction::JumpDest LoopExit) { 2513 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2514 PrePostActionTy &Action) { 2515 Action.Enter(CGF); 2516 bool HasCancel = false; 2517 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2518 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2519 HasCancel = D->hasCancel(); 2520 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2521 HasCancel = D->hasCancel(); 2522 else if (const auto *D = 2523 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2524 HasCancel = D->hasCancel(); 2525 } 2526 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2527 HasCancel); 2528 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2529 emitDistributeParallelForInnerBounds, 2530 emitDistributeParallelForDispatchBounds); 2531 }; 2532 2533 emitCommonOMPParallelDirective( 2534 CGF, S, 2535 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2536 CGInlinedWorksharingLoop, 2537 emitDistributeParallelForDistributeInnerBoundParams); 2538 } 2539 2540 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2541 const OMPDistributeParallelForDirective &S) { 2542 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2543 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2544 S.getDistInc()); 2545 }; 2546 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2547 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2548 } 2549 2550 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2551 const OMPDistributeParallelForSimdDirective &S) { 2552 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2553 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2554 S.getDistInc()); 2555 }; 2556 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2557 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2558 } 2559 2560 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2561 const OMPDistributeSimdDirective &S) { 2562 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2563 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2564 }; 2565 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2566 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2567 } 2568 2569 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2570 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2571 // Emit SPMD target parallel for region as a standalone region. 2572 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2573 emitOMPSimdRegion(CGF, S, Action); 2574 }; 2575 llvm::Function *Fn; 2576 llvm::Constant *Addr; 2577 // Emit target region as a standalone region. 2578 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2579 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2580 assert(Fn && Addr && "Target device function emission failed."); 2581 } 2582 2583 void CodeGenFunction::EmitOMPTargetSimdDirective( 2584 const OMPTargetSimdDirective &S) { 2585 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2586 emitOMPSimdRegion(CGF, S, Action); 2587 }; 2588 emitCommonOMPTargetDirective(*this, S, CodeGen); 2589 } 2590 2591 namespace { 2592 struct ScheduleKindModifiersTy { 2593 OpenMPScheduleClauseKind Kind; 2594 OpenMPScheduleClauseModifier M1; 2595 OpenMPScheduleClauseModifier M2; 2596 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2597 OpenMPScheduleClauseModifier M1, 2598 OpenMPScheduleClauseModifier M2) 2599 : Kind(Kind), M1(M1), M2(M2) {} 2600 }; 2601 } // namespace 2602 2603 bool CodeGenFunction::EmitOMPWorksharingLoop( 2604 const OMPLoopDirective &S, Expr *EUB, 2605 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2606 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2607 // Emit the loop iteration variable. 2608 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2609 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2610 EmitVarDecl(*IVDecl); 2611 2612 // Emit the iterations count variable. 2613 // If it is not a variable, Sema decided to calculate iterations count on each 2614 // iteration (e.g., it is foldable into a constant). 2615 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2616 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2617 // Emit calculation of the iterations count. 2618 EmitIgnoredExpr(S.getCalcLastIteration()); 2619 } 2620 2621 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2622 2623 bool HasLastprivateClause; 2624 // Check pre-condition. 2625 { 2626 OMPLoopScope PreInitScope(*this, S); 2627 // Skip the entire loop if we don't meet the precondition. 2628 // If the condition constant folds and can be elided, avoid emitting the 2629 // whole loop. 2630 bool CondConstant; 2631 llvm::BasicBlock *ContBlock = nullptr; 2632 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2633 if (!CondConstant) 2634 return false; 2635 } else { 2636 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2637 ContBlock = createBasicBlock("omp.precond.end"); 2638 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2639 getProfileCount(&S)); 2640 EmitBlock(ThenBlock); 2641 incrementProfileCounter(&S); 2642 } 2643 2644 RunCleanupsScope DoacrossCleanupScope(*this); 2645 bool Ordered = false; 2646 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2647 if (OrderedClause->getNumForLoops()) 2648 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2649 else 2650 Ordered = true; 2651 } 2652 2653 llvm::DenseSet<const Expr *> EmittedFinals; 2654 emitAlignedClause(*this, S); 2655 bool HasLinears = EmitOMPLinearClauseInit(S); 2656 // Emit helper vars inits. 2657 2658 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2659 LValue LB = Bounds.first; 2660 LValue UB = Bounds.second; 2661 LValue ST = 2662 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2663 LValue IL = 2664 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2665 2666 // Emit 'then' code. 2667 { 2668 OMPPrivateScope LoopScope(*this); 2669 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2670 // Emit implicit barrier to synchronize threads and avoid data races on 2671 // initialization of firstprivate variables and post-update of 2672 // lastprivate variables. 2673 CGM.getOpenMPRuntime().emitBarrierCall( 2674 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2675 /*ForceSimpleCall=*/true); 2676 } 2677 EmitOMPPrivateClause(S, LoopScope); 2678 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2679 *this, S, EmitLValue(S.getIterationVariable())); 2680 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2681 EmitOMPReductionClauseInit(S, LoopScope); 2682 EmitOMPPrivateLoopCounters(S, LoopScope); 2683 EmitOMPLinearClause(S, LoopScope); 2684 (void)LoopScope.Privatize(); 2685 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2686 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2687 2688 // Detect the loop schedule kind and chunk. 2689 const Expr *ChunkExpr = nullptr; 2690 OpenMPScheduleTy ScheduleKind; 2691 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2692 ScheduleKind.Schedule = C->getScheduleKind(); 2693 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2694 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2695 ChunkExpr = C->getChunkSize(); 2696 } else { 2697 // Default behaviour for schedule clause. 2698 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2699 *this, S, ScheduleKind.Schedule, ChunkExpr); 2700 } 2701 bool HasChunkSizeOne = false; 2702 llvm::Value *Chunk = nullptr; 2703 if (ChunkExpr) { 2704 Chunk = EmitScalarExpr(ChunkExpr); 2705 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2706 S.getIterationVariable()->getType(), 2707 S.getBeginLoc()); 2708 Expr::EvalResult Result; 2709 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2710 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2711 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2712 } 2713 } 2714 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2715 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2716 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2717 // If the static schedule kind is specified or if the ordered clause is 2718 // specified, and if no monotonic modifier is specified, the effect will 2719 // be as if the monotonic modifier was specified. 2720 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2721 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2722 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2723 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2724 /* Chunked */ Chunk != nullptr) || 2725 StaticChunkedOne) && 2726 !Ordered) { 2727 JumpDest LoopExit = 2728 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2729 emitCommonSimdLoop( 2730 *this, S, 2731 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2732 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2733 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2734 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 2735 if (C->getKind() == OMPC_ORDER_concurrent) 2736 CGF.LoopStack.setParallel(/*Enable=*/true); 2737 } 2738 }, 2739 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 2740 &S, ScheduleKind, LoopExit, 2741 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2742 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2743 // When no chunk_size is specified, the iteration space is divided 2744 // into chunks that are approximately equal in size, and at most 2745 // one chunk is distributed to each thread. Note that the size of 2746 // the chunks is unspecified in this case. 2747 CGOpenMPRuntime::StaticRTInput StaticInit( 2748 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 2749 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 2750 StaticChunkedOne ? Chunk : nullptr); 2751 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2752 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 2753 StaticInit); 2754 // UB = min(UB, GlobalUB); 2755 if (!StaticChunkedOne) 2756 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 2757 // IV = LB; 2758 CGF.EmitIgnoredExpr(S.getInit()); 2759 // For unchunked static schedule generate: 2760 // 2761 // while (idx <= UB) { 2762 // BODY; 2763 // ++idx; 2764 // } 2765 // 2766 // For static schedule with chunk one: 2767 // 2768 // while (IV <= PrevUB) { 2769 // BODY; 2770 // IV += ST; 2771 // } 2772 CGF.EmitOMPInnerLoop( 2773 S, LoopScope.requiresCleanups(), 2774 StaticChunkedOne ? S.getCombinedParForInDistCond() 2775 : S.getCond(), 2776 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2777 [&S, LoopExit](CodeGenFunction &CGF) { 2778 CGF.EmitOMPLoopBody(S, LoopExit); 2779 CGF.EmitStopPoint(&S); 2780 }, 2781 [](CodeGenFunction &) {}); 2782 }); 2783 EmitBlock(LoopExit.getBlock()); 2784 // Tell the runtime we are done. 2785 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2786 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2787 S.getDirectiveKind()); 2788 }; 2789 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2790 } else { 2791 const bool IsMonotonic = 2792 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2793 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2794 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2795 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2796 // Emit the outer loop, which requests its work chunk [LB..UB] from 2797 // runtime and runs the inner loop to process it. 2798 const OMPLoopArguments LoopArguments( 2799 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 2800 IL.getAddress(*this), Chunk, EUB); 2801 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2802 LoopArguments, CGDispatchBounds); 2803 } 2804 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2805 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2806 return CGF.Builder.CreateIsNotNull( 2807 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2808 }); 2809 } 2810 EmitOMPReductionClauseFinal( 2811 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2812 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2813 : /*Parallel only*/ OMPD_parallel); 2814 // Emit post-update of the reduction variables if IsLastIter != 0. 2815 emitPostUpdateForReductionClause( 2816 *this, S, [IL, &S](CodeGenFunction &CGF) { 2817 return CGF.Builder.CreateIsNotNull( 2818 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2819 }); 2820 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2821 if (HasLastprivateClause) 2822 EmitOMPLastprivateClauseFinal( 2823 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2824 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2825 } 2826 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2827 return CGF.Builder.CreateIsNotNull( 2828 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2829 }); 2830 DoacrossCleanupScope.ForceCleanup(); 2831 // We're now done with the loop, so jump to the continuation block. 2832 if (ContBlock) { 2833 EmitBranch(ContBlock); 2834 EmitBlock(ContBlock, /*IsFinished=*/true); 2835 } 2836 } 2837 return HasLastprivateClause; 2838 } 2839 2840 /// The following two functions generate expressions for the loop lower 2841 /// and upper bounds in case of static and dynamic (dispatch) schedule 2842 /// of the associated 'for' or 'distribute' loop. 2843 static std::pair<LValue, LValue> 2844 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2845 const auto &LS = cast<OMPLoopDirective>(S); 2846 LValue LB = 2847 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2848 LValue UB = 2849 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2850 return {LB, UB}; 2851 } 2852 2853 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2854 /// consider the lower and upper bound expressions generated by the 2855 /// worksharing loop support, but we use 0 and the iteration space size as 2856 /// constants 2857 static std::pair<llvm::Value *, llvm::Value *> 2858 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2859 Address LB, Address UB) { 2860 const auto &LS = cast<OMPLoopDirective>(S); 2861 const Expr *IVExpr = LS.getIterationVariable(); 2862 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2863 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2864 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2865 return {LBVal, UBVal}; 2866 } 2867 2868 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2869 bool HasLastprivates = false; 2870 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2871 PrePostActionTy &) { 2872 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2873 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2874 emitForLoopBounds, 2875 emitDispatchForLoopBounds); 2876 }; 2877 { 2878 auto LPCRegion = 2879 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2880 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2881 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2882 S.hasCancel()); 2883 } 2884 2885 // Emit an implicit barrier at the end. 2886 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2887 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2888 // Check for outer lastprivate conditional update. 2889 checkForLastprivateConditionalUpdate(*this, S); 2890 } 2891 2892 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2893 bool HasLastprivates = false; 2894 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2895 PrePostActionTy &) { 2896 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2897 emitForLoopBounds, 2898 emitDispatchForLoopBounds); 2899 }; 2900 { 2901 auto LPCRegion = 2902 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2903 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2904 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2905 } 2906 2907 // Emit an implicit barrier at the end. 2908 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2909 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2910 // Check for outer lastprivate conditional update. 2911 checkForLastprivateConditionalUpdate(*this, S); 2912 } 2913 2914 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2915 const Twine &Name, 2916 llvm::Value *Init = nullptr) { 2917 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2918 if (Init) 2919 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2920 return LVal; 2921 } 2922 2923 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2924 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2925 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2926 bool HasLastprivates = false; 2927 auto &&CodeGen = [&S, CapturedStmt, CS, 2928 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2929 ASTContext &C = CGF.getContext(); 2930 QualType KmpInt32Ty = 2931 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2932 // Emit helper vars inits. 2933 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2934 CGF.Builder.getInt32(0)); 2935 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2936 ? CGF.Builder.getInt32(CS->size() - 1) 2937 : CGF.Builder.getInt32(0); 2938 LValue UB = 2939 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2940 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2941 CGF.Builder.getInt32(1)); 2942 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2943 CGF.Builder.getInt32(0)); 2944 // Loop counter. 2945 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2946 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2947 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2948 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2949 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2950 // Generate condition for loop. 2951 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2952 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2953 // Increment for loop counter. 2954 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2955 S.getBeginLoc(), true); 2956 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2957 // Iterate through all sections and emit a switch construct: 2958 // switch (IV) { 2959 // case 0: 2960 // <SectionStmt[0]>; 2961 // break; 2962 // ... 2963 // case <NumSection> - 1: 2964 // <SectionStmt[<NumSection> - 1]>; 2965 // break; 2966 // } 2967 // .omp.sections.exit: 2968 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2969 llvm::SwitchInst *SwitchStmt = 2970 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2971 ExitBB, CS == nullptr ? 1 : CS->size()); 2972 if (CS) { 2973 unsigned CaseNumber = 0; 2974 for (const Stmt *SubStmt : CS->children()) { 2975 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2976 CGF.EmitBlock(CaseBB); 2977 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2978 CGF.EmitStmt(SubStmt); 2979 CGF.EmitBranch(ExitBB); 2980 ++CaseNumber; 2981 } 2982 } else { 2983 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2984 CGF.EmitBlock(CaseBB); 2985 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2986 CGF.EmitStmt(CapturedStmt); 2987 CGF.EmitBranch(ExitBB); 2988 } 2989 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2990 }; 2991 2992 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2993 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2994 // Emit implicit barrier to synchronize threads and avoid data races on 2995 // initialization of firstprivate variables and post-update of lastprivate 2996 // variables. 2997 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2998 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2999 /*ForceSimpleCall=*/true); 3000 } 3001 CGF.EmitOMPPrivateClause(S, LoopScope); 3002 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3003 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3004 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3005 (void)LoopScope.Privatize(); 3006 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3007 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3008 3009 // Emit static non-chunked loop. 3010 OpenMPScheduleTy ScheduleKind; 3011 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3012 CGOpenMPRuntime::StaticRTInput StaticInit( 3013 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3014 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3015 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3016 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3017 // UB = min(UB, GlobalUB); 3018 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3019 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3020 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3021 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3022 // IV = LB; 3023 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3024 // while (idx <= UB) { BODY; ++idx; } 3025 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 3026 [](CodeGenFunction &) {}); 3027 // Tell the runtime we are done. 3028 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3029 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3030 S.getDirectiveKind()); 3031 }; 3032 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3033 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3034 // Emit post-update of the reduction variables if IsLastIter != 0. 3035 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3036 return CGF.Builder.CreateIsNotNull( 3037 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3038 }); 3039 3040 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3041 if (HasLastprivates) 3042 CGF.EmitOMPLastprivateClauseFinal( 3043 S, /*NoFinals=*/false, 3044 CGF.Builder.CreateIsNotNull( 3045 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3046 }; 3047 3048 bool HasCancel = false; 3049 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3050 HasCancel = OSD->hasCancel(); 3051 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3052 HasCancel = OPSD->hasCancel(); 3053 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3054 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3055 HasCancel); 3056 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3057 // clause. Otherwise the barrier will be generated by the codegen for the 3058 // directive. 3059 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3060 // Emit implicit barrier to synchronize threads and avoid data races on 3061 // initialization of firstprivate variables. 3062 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3063 OMPD_unknown); 3064 } 3065 } 3066 3067 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3068 { 3069 auto LPCRegion = 3070 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3071 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3072 EmitSections(S); 3073 } 3074 // Emit an implicit barrier at the end. 3075 if (!S.getSingleClause<OMPNowaitClause>()) { 3076 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3077 OMPD_sections); 3078 } 3079 // Check for outer lastprivate conditional update. 3080 checkForLastprivateConditionalUpdate(*this, S); 3081 } 3082 3083 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3084 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3085 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3086 }; 3087 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3088 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 3089 S.hasCancel()); 3090 } 3091 3092 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3093 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3094 llvm::SmallVector<const Expr *, 8> DestExprs; 3095 llvm::SmallVector<const Expr *, 8> SrcExprs; 3096 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3097 // Check if there are any 'copyprivate' clauses associated with this 3098 // 'single' construct. 3099 // Build a list of copyprivate variables along with helper expressions 3100 // (<source>, <destination>, <destination>=<source> expressions) 3101 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3102 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3103 DestExprs.append(C->destination_exprs().begin(), 3104 C->destination_exprs().end()); 3105 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3106 AssignmentOps.append(C->assignment_ops().begin(), 3107 C->assignment_ops().end()); 3108 } 3109 // Emit code for 'single' region along with 'copyprivate' clauses 3110 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3111 Action.Enter(CGF); 3112 OMPPrivateScope SingleScope(CGF); 3113 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3114 CGF.EmitOMPPrivateClause(S, SingleScope); 3115 (void)SingleScope.Privatize(); 3116 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3117 }; 3118 { 3119 auto LPCRegion = 3120 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3121 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3122 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3123 CopyprivateVars, DestExprs, 3124 SrcExprs, AssignmentOps); 3125 } 3126 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3127 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3128 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3129 CGM.getOpenMPRuntime().emitBarrierCall( 3130 *this, S.getBeginLoc(), 3131 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3132 } 3133 // Check for outer lastprivate conditional update. 3134 checkForLastprivateConditionalUpdate(*this, S); 3135 } 3136 3137 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3138 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3139 Action.Enter(CGF); 3140 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3141 }; 3142 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3143 } 3144 3145 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3146 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3147 emitMaster(*this, S); 3148 } 3149 3150 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 3151 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3152 Action.Enter(CGF); 3153 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3154 }; 3155 const Expr *Hint = nullptr; 3156 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3157 Hint = HintClause->getHint(); 3158 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3159 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 3160 S.getDirectiveName().getAsString(), 3161 CodeGen, S.getBeginLoc(), Hint); 3162 } 3163 3164 void CodeGenFunction::EmitOMPParallelForDirective( 3165 const OMPParallelForDirective &S) { 3166 // Emit directive as a combined directive that consists of two implicit 3167 // directives: 'parallel' with 'for' directive. 3168 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3169 Action.Enter(CGF); 3170 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 3171 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 3172 emitDispatchForLoopBounds); 3173 }; 3174 { 3175 auto LPCRegion = 3176 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3177 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 3178 emitEmptyBoundParameters); 3179 } 3180 // Check for outer lastprivate conditional update. 3181 checkForLastprivateConditionalUpdate(*this, S); 3182 } 3183 3184 void CodeGenFunction::EmitOMPParallelForSimdDirective( 3185 const OMPParallelForSimdDirective &S) { 3186 // Emit directive as a combined directive that consists of two implicit 3187 // directives: 'parallel' with 'for' directive. 3188 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3189 Action.Enter(CGF); 3190 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 3191 emitDispatchForLoopBounds); 3192 }; 3193 { 3194 auto LPCRegion = 3195 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3196 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 3197 emitEmptyBoundParameters); 3198 } 3199 // Check for outer lastprivate conditional update. 3200 checkForLastprivateConditionalUpdate(*this, S); 3201 } 3202 3203 void CodeGenFunction::EmitOMPParallelMasterDirective( 3204 const OMPParallelMasterDirective &S) { 3205 // Emit directive as a combined directive that consists of two implicit 3206 // directives: 'parallel' with 'master' directive. 3207 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3208 Action.Enter(CGF); 3209 OMPPrivateScope PrivateScope(CGF); 3210 bool Copyins = CGF.EmitOMPCopyinClause(S); 3211 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3212 if (Copyins) { 3213 // Emit implicit barrier to synchronize threads and avoid data races on 3214 // propagation master's thread values of threadprivate variables to local 3215 // instances of that variables of all other implicit threads. 3216 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3217 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3218 /*ForceSimpleCall=*/true); 3219 } 3220 CGF.EmitOMPPrivateClause(S, PrivateScope); 3221 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3222 (void)PrivateScope.Privatize(); 3223 emitMaster(CGF, S); 3224 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3225 }; 3226 { 3227 auto LPCRegion = 3228 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3229 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 3230 emitEmptyBoundParameters); 3231 emitPostUpdateForReductionClause(*this, S, 3232 [](CodeGenFunction &) { return nullptr; }); 3233 } 3234 // Check for outer lastprivate conditional update. 3235 checkForLastprivateConditionalUpdate(*this, S); 3236 } 3237 3238 void CodeGenFunction::EmitOMPParallelSectionsDirective( 3239 const OMPParallelSectionsDirective &S) { 3240 // Emit directive as a combined directive that consists of two implicit 3241 // directives: 'parallel' with 'sections' directive. 3242 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3243 Action.Enter(CGF); 3244 CGF.EmitSections(S); 3245 }; 3246 { 3247 auto LPCRegion = 3248 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3249 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 3250 emitEmptyBoundParameters); 3251 } 3252 // Check for outer lastprivate conditional update. 3253 checkForLastprivateConditionalUpdate(*this, S); 3254 } 3255 3256 void CodeGenFunction::EmitOMPTaskBasedDirective( 3257 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3258 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3259 OMPTaskDataTy &Data) { 3260 // Emit outlined function for task construct. 3261 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3262 auto I = CS->getCapturedDecl()->param_begin(); 3263 auto PartId = std::next(I); 3264 auto TaskT = std::next(I, 4); 3265 // Check if the task is final 3266 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3267 // If the condition constant folds and can be elided, try to avoid emitting 3268 // the condition and the dead arm of the if/else. 3269 const Expr *Cond = Clause->getCondition(); 3270 bool CondConstant; 3271 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3272 Data.Final.setInt(CondConstant); 3273 else 3274 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3275 } else { 3276 // By default the task is not final. 3277 Data.Final.setInt(/*IntVal=*/false); 3278 } 3279 // Check if the task has 'priority' clause. 3280 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3281 const Expr *Prio = Clause->getPriority(); 3282 Data.Priority.setInt(/*IntVal=*/true); 3283 Data.Priority.setPointer(EmitScalarConversion( 3284 EmitScalarExpr(Prio), Prio->getType(), 3285 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3286 Prio->getExprLoc())); 3287 } 3288 // The first function argument for tasks is a thread id, the second one is a 3289 // part id (0 for tied tasks, >=0 for untied task). 3290 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3291 // Get list of private variables. 3292 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3293 auto IRef = C->varlist_begin(); 3294 for (const Expr *IInit : C->private_copies()) { 3295 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3296 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3297 Data.PrivateVars.push_back(*IRef); 3298 Data.PrivateCopies.push_back(IInit); 3299 } 3300 ++IRef; 3301 } 3302 } 3303 EmittedAsPrivate.clear(); 3304 // Get list of firstprivate variables. 3305 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3306 auto IRef = C->varlist_begin(); 3307 auto IElemInitRef = C->inits().begin(); 3308 for (const Expr *IInit : C->private_copies()) { 3309 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3310 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3311 Data.FirstprivateVars.push_back(*IRef); 3312 Data.FirstprivateCopies.push_back(IInit); 3313 Data.FirstprivateInits.push_back(*IElemInitRef); 3314 } 3315 ++IRef; 3316 ++IElemInitRef; 3317 } 3318 } 3319 // Get list of lastprivate variables (for taskloops). 3320 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3321 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3322 auto IRef = C->varlist_begin(); 3323 auto ID = C->destination_exprs().begin(); 3324 for (const Expr *IInit : C->private_copies()) { 3325 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3326 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3327 Data.LastprivateVars.push_back(*IRef); 3328 Data.LastprivateCopies.push_back(IInit); 3329 } 3330 LastprivateDstsOrigs.insert( 3331 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3332 cast<DeclRefExpr>(*IRef)}); 3333 ++IRef; 3334 ++ID; 3335 } 3336 } 3337 SmallVector<const Expr *, 4> LHSs; 3338 SmallVector<const Expr *, 4> RHSs; 3339 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3340 auto IPriv = C->privates().begin(); 3341 auto IRed = C->reduction_ops().begin(); 3342 auto ILHS = C->lhs_exprs().begin(); 3343 auto IRHS = C->rhs_exprs().begin(); 3344 for (const Expr *Ref : C->varlists()) { 3345 Data.ReductionVars.emplace_back(Ref); 3346 Data.ReductionCopies.emplace_back(*IPriv); 3347 Data.ReductionOps.emplace_back(*IRed); 3348 LHSs.emplace_back(*ILHS); 3349 RHSs.emplace_back(*IRHS); 3350 std::advance(IPriv, 1); 3351 std::advance(IRed, 1); 3352 std::advance(ILHS, 1); 3353 std::advance(IRHS, 1); 3354 } 3355 } 3356 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3357 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3358 // Build list of dependences. 3359 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3360 for (const Expr *IRef : C->varlists()) 3361 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3362 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3363 CapturedRegion](CodeGenFunction &CGF, 3364 PrePostActionTy &Action) { 3365 // Set proper addresses for generated private copies. 3366 OMPPrivateScope Scope(CGF); 3367 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3368 !Data.LastprivateVars.empty()) { 3369 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3370 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3371 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3372 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3373 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3374 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3375 CS->getCapturedDecl()->getParam(PrivatesParam))); 3376 // Map privates. 3377 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3378 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3379 CallArgs.push_back(PrivatesPtr); 3380 for (const Expr *E : Data.PrivateVars) { 3381 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3382 Address PrivatePtr = CGF.CreateMemTemp( 3383 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3384 PrivatePtrs.emplace_back(VD, PrivatePtr); 3385 CallArgs.push_back(PrivatePtr.getPointer()); 3386 } 3387 for (const Expr *E : Data.FirstprivateVars) { 3388 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3389 Address PrivatePtr = 3390 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3391 ".firstpriv.ptr.addr"); 3392 PrivatePtrs.emplace_back(VD, PrivatePtr); 3393 CallArgs.push_back(PrivatePtr.getPointer()); 3394 } 3395 for (const Expr *E : Data.LastprivateVars) { 3396 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3397 Address PrivatePtr = 3398 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3399 ".lastpriv.ptr.addr"); 3400 PrivatePtrs.emplace_back(VD, PrivatePtr); 3401 CallArgs.push_back(PrivatePtr.getPointer()); 3402 } 3403 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3404 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3405 for (const auto &Pair : LastprivateDstsOrigs) { 3406 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3407 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3408 /*RefersToEnclosingVariableOrCapture=*/ 3409 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3410 Pair.second->getType(), VK_LValue, 3411 Pair.second->getExprLoc()); 3412 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3413 return CGF.EmitLValue(&DRE).getAddress(CGF); 3414 }); 3415 } 3416 for (const auto &Pair : PrivatePtrs) { 3417 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3418 CGF.getContext().getDeclAlign(Pair.first)); 3419 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3420 } 3421 } 3422 if (Data.Reductions) { 3423 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3424 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 3425 Data.ReductionOps); 3426 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3427 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3428 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3429 RedCG.emitSharedLValue(CGF, Cnt); 3430 RedCG.emitAggregateType(CGF, Cnt); 3431 // FIXME: This must removed once the runtime library is fixed. 3432 // Emit required threadprivate variables for 3433 // initializer/combiner/finalizer. 3434 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3435 RedCG, Cnt); 3436 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3437 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3438 Replacement = 3439 Address(CGF.EmitScalarConversion( 3440 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3441 CGF.getContext().getPointerType( 3442 Data.ReductionCopies[Cnt]->getType()), 3443 Data.ReductionCopies[Cnt]->getExprLoc()), 3444 Replacement.getAlignment()); 3445 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3446 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3447 [Replacement]() { return Replacement; }); 3448 } 3449 } 3450 // Privatize all private variables except for in_reduction items. 3451 (void)Scope.Privatize(); 3452 SmallVector<const Expr *, 4> InRedVars; 3453 SmallVector<const Expr *, 4> InRedPrivs; 3454 SmallVector<const Expr *, 4> InRedOps; 3455 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3456 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3457 auto IPriv = C->privates().begin(); 3458 auto IRed = C->reduction_ops().begin(); 3459 auto ITD = C->taskgroup_descriptors().begin(); 3460 for (const Expr *Ref : C->varlists()) { 3461 InRedVars.emplace_back(Ref); 3462 InRedPrivs.emplace_back(*IPriv); 3463 InRedOps.emplace_back(*IRed); 3464 TaskgroupDescriptors.emplace_back(*ITD); 3465 std::advance(IPriv, 1); 3466 std::advance(IRed, 1); 3467 std::advance(ITD, 1); 3468 } 3469 } 3470 // Privatize in_reduction items here, because taskgroup descriptors must be 3471 // privatized earlier. 3472 OMPPrivateScope InRedScope(CGF); 3473 if (!InRedVars.empty()) { 3474 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3475 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3476 RedCG.emitSharedLValue(CGF, Cnt); 3477 RedCG.emitAggregateType(CGF, Cnt); 3478 // The taskgroup descriptor variable is always implicit firstprivate and 3479 // privatized already during processing of the firstprivates. 3480 // FIXME: This must removed once the runtime library is fixed. 3481 // Emit required threadprivate variables for 3482 // initializer/combiner/finalizer. 3483 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3484 RedCG, Cnt); 3485 llvm::Value *ReductionsPtr = 3486 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3487 TaskgroupDescriptors[Cnt]->getExprLoc()); 3488 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3489 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3490 Replacement = Address( 3491 CGF.EmitScalarConversion( 3492 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3493 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3494 InRedPrivs[Cnt]->getExprLoc()), 3495 Replacement.getAlignment()); 3496 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3497 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3498 [Replacement]() { return Replacement; }); 3499 } 3500 } 3501 (void)InRedScope.Privatize(); 3502 3503 Action.Enter(CGF); 3504 BodyGen(CGF); 3505 }; 3506 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3507 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3508 Data.NumberOfParts); 3509 OMPLexicalScope Scope(*this, S, llvm::None, 3510 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3511 !isOpenMPSimdDirective(S.getDirectiveKind())); 3512 TaskGen(*this, OutlinedFn, Data); 3513 } 3514 3515 static ImplicitParamDecl * 3516 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3517 QualType Ty, CapturedDecl *CD, 3518 SourceLocation Loc) { 3519 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3520 ImplicitParamDecl::Other); 3521 auto *OrigRef = DeclRefExpr::Create( 3522 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3523 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3524 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3525 ImplicitParamDecl::Other); 3526 auto *PrivateRef = DeclRefExpr::Create( 3527 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3528 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3529 QualType ElemType = C.getBaseElementType(Ty); 3530 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3531 ImplicitParamDecl::Other); 3532 auto *InitRef = DeclRefExpr::Create( 3533 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3534 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3535 PrivateVD->setInitStyle(VarDecl::CInit); 3536 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3537 InitRef, /*BasePath=*/nullptr, 3538 VK_RValue)); 3539 Data.FirstprivateVars.emplace_back(OrigRef); 3540 Data.FirstprivateCopies.emplace_back(PrivateRef); 3541 Data.FirstprivateInits.emplace_back(InitRef); 3542 return OrigVD; 3543 } 3544 3545 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3546 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3547 OMPTargetDataInfo &InputInfo) { 3548 // Emit outlined function for task construct. 3549 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3550 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3551 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3552 auto I = CS->getCapturedDecl()->param_begin(); 3553 auto PartId = std::next(I); 3554 auto TaskT = std::next(I, 4); 3555 OMPTaskDataTy Data; 3556 // The task is not final. 3557 Data.Final.setInt(/*IntVal=*/false); 3558 // Get list of firstprivate variables. 3559 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3560 auto IRef = C->varlist_begin(); 3561 auto IElemInitRef = C->inits().begin(); 3562 for (auto *IInit : C->private_copies()) { 3563 Data.FirstprivateVars.push_back(*IRef); 3564 Data.FirstprivateCopies.push_back(IInit); 3565 Data.FirstprivateInits.push_back(*IElemInitRef); 3566 ++IRef; 3567 ++IElemInitRef; 3568 } 3569 } 3570 OMPPrivateScope TargetScope(*this); 3571 VarDecl *BPVD = nullptr; 3572 VarDecl *PVD = nullptr; 3573 VarDecl *SVD = nullptr; 3574 if (InputInfo.NumberOfTargetItems > 0) { 3575 auto *CD = CapturedDecl::Create( 3576 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3577 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3578 QualType BaseAndPointersType = getContext().getConstantArrayType( 3579 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 3580 /*IndexTypeQuals=*/0); 3581 BPVD = createImplicitFirstprivateForType( 3582 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3583 PVD = createImplicitFirstprivateForType( 3584 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3585 QualType SizesType = getContext().getConstantArrayType( 3586 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3587 ArrSize, nullptr, ArrayType::Normal, 3588 /*IndexTypeQuals=*/0); 3589 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3590 S.getBeginLoc()); 3591 TargetScope.addPrivate( 3592 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3593 TargetScope.addPrivate(PVD, 3594 [&InputInfo]() { return InputInfo.PointersArray; }); 3595 TargetScope.addPrivate(SVD, 3596 [&InputInfo]() { return InputInfo.SizesArray; }); 3597 } 3598 (void)TargetScope.Privatize(); 3599 // Build list of dependences. 3600 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3601 for (const Expr *IRef : C->varlists()) 3602 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3603 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3604 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3605 // Set proper addresses for generated private copies. 3606 OMPPrivateScope Scope(CGF); 3607 if (!Data.FirstprivateVars.empty()) { 3608 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3609 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3610 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3611 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3612 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3613 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3614 CS->getCapturedDecl()->getParam(PrivatesParam))); 3615 // Map privates. 3616 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3617 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3618 CallArgs.push_back(PrivatesPtr); 3619 for (const Expr *E : Data.FirstprivateVars) { 3620 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3621 Address PrivatePtr = 3622 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3623 ".firstpriv.ptr.addr"); 3624 PrivatePtrs.emplace_back(VD, PrivatePtr); 3625 CallArgs.push_back(PrivatePtr.getPointer()); 3626 } 3627 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3628 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3629 for (const auto &Pair : PrivatePtrs) { 3630 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3631 CGF.getContext().getDeclAlign(Pair.first)); 3632 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3633 } 3634 } 3635 // Privatize all private variables except for in_reduction items. 3636 (void)Scope.Privatize(); 3637 if (InputInfo.NumberOfTargetItems > 0) { 3638 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3639 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3640 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3641 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3642 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3643 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3644 } 3645 3646 Action.Enter(CGF); 3647 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3648 BodyGen(CGF); 3649 }; 3650 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3651 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3652 Data.NumberOfParts); 3653 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3654 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3655 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3656 SourceLocation()); 3657 3658 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3659 SharedsTy, CapturedStruct, &IfCond, Data); 3660 } 3661 3662 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3663 // Emit outlined function for task construct. 3664 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3665 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3666 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3667 const Expr *IfCond = nullptr; 3668 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3669 if (C->getNameModifier() == OMPD_unknown || 3670 C->getNameModifier() == OMPD_task) { 3671 IfCond = C->getCondition(); 3672 break; 3673 } 3674 } 3675 3676 OMPTaskDataTy Data; 3677 // Check if we should emit tied or untied task. 3678 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3679 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3680 CGF.EmitStmt(CS->getCapturedStmt()); 3681 }; 3682 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3683 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3684 const OMPTaskDataTy &Data) { 3685 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3686 SharedsTy, CapturedStruct, IfCond, 3687 Data); 3688 }; 3689 auto LPCRegion = 3690 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3691 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3692 } 3693 3694 void CodeGenFunction::EmitOMPTaskyieldDirective( 3695 const OMPTaskyieldDirective &S) { 3696 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3697 } 3698 3699 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3700 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3701 } 3702 3703 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3704 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3705 } 3706 3707 void CodeGenFunction::EmitOMPTaskgroupDirective( 3708 const OMPTaskgroupDirective &S) { 3709 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3710 Action.Enter(CGF); 3711 if (const Expr *E = S.getReductionRef()) { 3712 SmallVector<const Expr *, 4> LHSs; 3713 SmallVector<const Expr *, 4> RHSs; 3714 OMPTaskDataTy Data; 3715 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3716 auto IPriv = C->privates().begin(); 3717 auto IRed = C->reduction_ops().begin(); 3718 auto ILHS = C->lhs_exprs().begin(); 3719 auto IRHS = C->rhs_exprs().begin(); 3720 for (const Expr *Ref : C->varlists()) { 3721 Data.ReductionVars.emplace_back(Ref); 3722 Data.ReductionCopies.emplace_back(*IPriv); 3723 Data.ReductionOps.emplace_back(*IRed); 3724 LHSs.emplace_back(*ILHS); 3725 RHSs.emplace_back(*IRHS); 3726 std::advance(IPriv, 1); 3727 std::advance(IRed, 1); 3728 std::advance(ILHS, 1); 3729 std::advance(IRHS, 1); 3730 } 3731 } 3732 llvm::Value *ReductionDesc = 3733 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3734 LHSs, RHSs, Data); 3735 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3736 CGF.EmitVarDecl(*VD); 3737 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3738 /*Volatile=*/false, E->getType()); 3739 } 3740 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3741 }; 3742 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3743 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3744 } 3745 3746 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3747 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 3748 ? llvm::AtomicOrdering::NotAtomic 3749 : llvm::AtomicOrdering::AcquireRelease; 3750 CGM.getOpenMPRuntime().emitFlush( 3751 *this, 3752 [&S]() -> ArrayRef<const Expr *> { 3753 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3754 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3755 FlushClause->varlist_end()); 3756 return llvm::None; 3757 }(), 3758 S.getBeginLoc(), AO); 3759 } 3760 3761 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3762 const CodeGenLoopTy &CodeGenLoop, 3763 Expr *IncExpr) { 3764 // Emit the loop iteration variable. 3765 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3766 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3767 EmitVarDecl(*IVDecl); 3768 3769 // Emit the iterations count variable. 3770 // If it is not a variable, Sema decided to calculate iterations count on each 3771 // iteration (e.g., it is foldable into a constant). 3772 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3773 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3774 // Emit calculation of the iterations count. 3775 EmitIgnoredExpr(S.getCalcLastIteration()); 3776 } 3777 3778 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3779 3780 bool HasLastprivateClause = false; 3781 // Check pre-condition. 3782 { 3783 OMPLoopScope PreInitScope(*this, S); 3784 // Skip the entire loop if we don't meet the precondition. 3785 // If the condition constant folds and can be elided, avoid emitting the 3786 // whole loop. 3787 bool CondConstant; 3788 llvm::BasicBlock *ContBlock = nullptr; 3789 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3790 if (!CondConstant) 3791 return; 3792 } else { 3793 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3794 ContBlock = createBasicBlock("omp.precond.end"); 3795 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3796 getProfileCount(&S)); 3797 EmitBlock(ThenBlock); 3798 incrementProfileCounter(&S); 3799 } 3800 3801 emitAlignedClause(*this, S); 3802 // Emit 'then' code. 3803 { 3804 // Emit helper vars inits. 3805 3806 LValue LB = EmitOMPHelperVar( 3807 *this, cast<DeclRefExpr>( 3808 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3809 ? S.getCombinedLowerBoundVariable() 3810 : S.getLowerBoundVariable()))); 3811 LValue UB = EmitOMPHelperVar( 3812 *this, cast<DeclRefExpr>( 3813 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3814 ? S.getCombinedUpperBoundVariable() 3815 : S.getUpperBoundVariable()))); 3816 LValue ST = 3817 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3818 LValue IL = 3819 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3820 3821 OMPPrivateScope LoopScope(*this); 3822 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3823 // Emit implicit barrier to synchronize threads and avoid data races 3824 // on initialization of firstprivate variables and post-update of 3825 // lastprivate variables. 3826 CGM.getOpenMPRuntime().emitBarrierCall( 3827 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3828 /*ForceSimpleCall=*/true); 3829 } 3830 EmitOMPPrivateClause(S, LoopScope); 3831 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3832 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3833 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3834 EmitOMPReductionClauseInit(S, LoopScope); 3835 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3836 EmitOMPPrivateLoopCounters(S, LoopScope); 3837 (void)LoopScope.Privatize(); 3838 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3839 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3840 3841 // Detect the distribute schedule kind and chunk. 3842 llvm::Value *Chunk = nullptr; 3843 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3844 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3845 ScheduleKind = C->getDistScheduleKind(); 3846 if (const Expr *Ch = C->getChunkSize()) { 3847 Chunk = EmitScalarExpr(Ch); 3848 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3849 S.getIterationVariable()->getType(), 3850 S.getBeginLoc()); 3851 } 3852 } else { 3853 // Default behaviour for dist_schedule clause. 3854 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3855 *this, S, ScheduleKind, Chunk); 3856 } 3857 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3858 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3859 3860 // OpenMP [2.10.8, distribute Construct, Description] 3861 // If dist_schedule is specified, kind must be static. If specified, 3862 // iterations are divided into chunks of size chunk_size, chunks are 3863 // assigned to the teams of the league in a round-robin fashion in the 3864 // order of the team number. When no chunk_size is specified, the 3865 // iteration space is divided into chunks that are approximately equal 3866 // in size, and at most one chunk is distributed to each team of the 3867 // league. The size of the chunks is unspecified in this case. 3868 bool StaticChunked = RT.isStaticChunked( 3869 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3870 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3871 if (RT.isStaticNonchunked(ScheduleKind, 3872 /* Chunked */ Chunk != nullptr) || 3873 StaticChunked) { 3874 CGOpenMPRuntime::StaticRTInput StaticInit( 3875 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 3876 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3877 StaticChunked ? Chunk : nullptr); 3878 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3879 StaticInit); 3880 JumpDest LoopExit = 3881 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3882 // UB = min(UB, GlobalUB); 3883 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3884 ? S.getCombinedEnsureUpperBound() 3885 : S.getEnsureUpperBound()); 3886 // IV = LB; 3887 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3888 ? S.getCombinedInit() 3889 : S.getInit()); 3890 3891 const Expr *Cond = 3892 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3893 ? S.getCombinedCond() 3894 : S.getCond(); 3895 3896 if (StaticChunked) 3897 Cond = S.getCombinedDistCond(); 3898 3899 // For static unchunked schedules generate: 3900 // 3901 // 1. For distribute alone, codegen 3902 // while (idx <= UB) { 3903 // BODY; 3904 // ++idx; 3905 // } 3906 // 3907 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3908 // while (idx <= UB) { 3909 // <CodeGen rest of pragma>(LB, UB); 3910 // idx += ST; 3911 // } 3912 // 3913 // For static chunk one schedule generate: 3914 // 3915 // while (IV <= GlobalUB) { 3916 // <CodeGen rest of pragma>(LB, UB); 3917 // LB += ST; 3918 // UB += ST; 3919 // UB = min(UB, GlobalUB); 3920 // IV = LB; 3921 // } 3922 // 3923 emitCommonSimdLoop( 3924 *this, S, 3925 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3926 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3927 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3928 }, 3929 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 3930 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 3931 CGF.EmitOMPInnerLoop( 3932 S, LoopScope.requiresCleanups(), Cond, IncExpr, 3933 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3934 CodeGenLoop(CGF, S, LoopExit); 3935 }, 3936 [&S, StaticChunked](CodeGenFunction &CGF) { 3937 if (StaticChunked) { 3938 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3939 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3940 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3941 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3942 } 3943 }); 3944 }); 3945 EmitBlock(LoopExit.getBlock()); 3946 // Tell the runtime we are done. 3947 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 3948 } else { 3949 // Emit the outer loop, which requests its work chunk [LB..UB] from 3950 // runtime and runs the inner loop to process it. 3951 const OMPLoopArguments LoopArguments = { 3952 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3953 IL.getAddress(*this), Chunk}; 3954 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3955 CodeGenLoop); 3956 } 3957 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3958 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3959 return CGF.Builder.CreateIsNotNull( 3960 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3961 }); 3962 } 3963 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3964 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3965 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3966 EmitOMPReductionClauseFinal(S, OMPD_simd); 3967 // Emit post-update of the reduction variables if IsLastIter != 0. 3968 emitPostUpdateForReductionClause( 3969 *this, S, [IL, &S](CodeGenFunction &CGF) { 3970 return CGF.Builder.CreateIsNotNull( 3971 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3972 }); 3973 } 3974 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3975 if (HasLastprivateClause) { 3976 EmitOMPLastprivateClauseFinal( 3977 S, /*NoFinals=*/false, 3978 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3979 } 3980 } 3981 3982 // We're now done with the loop, so jump to the continuation block. 3983 if (ContBlock) { 3984 EmitBranch(ContBlock); 3985 EmitBlock(ContBlock, true); 3986 } 3987 } 3988 } 3989 3990 void CodeGenFunction::EmitOMPDistributeDirective( 3991 const OMPDistributeDirective &S) { 3992 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3993 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3994 }; 3995 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3996 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3997 } 3998 3999 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 4000 const CapturedStmt *S, 4001 SourceLocation Loc) { 4002 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 4003 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 4004 CGF.CapturedStmtInfo = &CapStmtInfo; 4005 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 4006 Fn->setDoesNotRecurse(); 4007 return Fn; 4008 } 4009 4010 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 4011 if (S.hasClausesOfKind<OMPDependClause>()) { 4012 assert(!S.getAssociatedStmt() && 4013 "No associated statement must be in ordered depend construct."); 4014 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 4015 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 4016 return; 4017 } 4018 const auto *C = S.getSingleClause<OMPSIMDClause>(); 4019 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 4020 PrePostActionTy &Action) { 4021 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 4022 if (C) { 4023 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4024 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4025 llvm::Function *OutlinedFn = 4026 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 4027 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 4028 OutlinedFn, CapturedVars); 4029 } else { 4030 Action.Enter(CGF); 4031 CGF.EmitStmt(CS->getCapturedStmt()); 4032 } 4033 }; 4034 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4035 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 4036 } 4037 4038 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 4039 QualType SrcType, QualType DestType, 4040 SourceLocation Loc) { 4041 assert(CGF.hasScalarEvaluationKind(DestType) && 4042 "DestType must have scalar evaluation kind."); 4043 assert(!Val.isAggregate() && "Must be a scalar or complex."); 4044 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 4045 DestType, Loc) 4046 : CGF.EmitComplexToScalarConversion( 4047 Val.getComplexVal(), SrcType, DestType, Loc); 4048 } 4049 4050 static CodeGenFunction::ComplexPairTy 4051 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 4052 QualType DestType, SourceLocation Loc) { 4053 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 4054 "DestType must have complex evaluation kind."); 4055 CodeGenFunction::ComplexPairTy ComplexVal; 4056 if (Val.isScalar()) { 4057 // Convert the input element to the element type of the complex. 4058 QualType DestElementType = 4059 DestType->castAs<ComplexType>()->getElementType(); 4060 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 4061 Val.getScalarVal(), SrcType, DestElementType, Loc); 4062 ComplexVal = CodeGenFunction::ComplexPairTy( 4063 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 4064 } else { 4065 assert(Val.isComplex() && "Must be a scalar or complex."); 4066 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 4067 QualType DestElementType = 4068 DestType->castAs<ComplexType>()->getElementType(); 4069 ComplexVal.first = CGF.EmitScalarConversion( 4070 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 4071 ComplexVal.second = CGF.EmitScalarConversion( 4072 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 4073 } 4074 return ComplexVal; 4075 } 4076 4077 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4078 LValue LVal, RValue RVal) { 4079 if (LVal.isGlobalReg()) 4080 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 4081 else 4082 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 4083 } 4084 4085 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 4086 llvm::AtomicOrdering AO, LValue LVal, 4087 SourceLocation Loc) { 4088 if (LVal.isGlobalReg()) 4089 return CGF.EmitLoadOfLValue(LVal, Loc); 4090 return CGF.EmitAtomicLoad( 4091 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 4092 LVal.isVolatile()); 4093 } 4094 4095 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 4096 QualType RValTy, SourceLocation Loc) { 4097 switch (getEvaluationKind(LVal.getType())) { 4098 case TEK_Scalar: 4099 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 4100 *this, RVal, RValTy, LVal.getType(), Loc)), 4101 LVal); 4102 break; 4103 case TEK_Complex: 4104 EmitStoreOfComplex( 4105 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 4106 /*isInit=*/false); 4107 break; 4108 case TEK_Aggregate: 4109 llvm_unreachable("Must be a scalar or complex."); 4110 } 4111 } 4112 4113 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4114 const Expr *X, const Expr *V, 4115 SourceLocation Loc) { 4116 // v = x; 4117 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 4118 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 4119 LValue XLValue = CGF.EmitLValue(X); 4120 LValue VLValue = CGF.EmitLValue(V); 4121 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 4122 // OpenMP, 2.17.7, atomic Construct 4123 // If the read or capture clause is specified and the acquire, acq_rel, or 4124 // seq_cst clause is specified then the strong flush on exit from the atomic 4125 // operation is also an acquire flush. 4126 switch (AO) { 4127 case llvm::AtomicOrdering::Acquire: 4128 case llvm::AtomicOrdering::AcquireRelease: 4129 case llvm::AtomicOrdering::SequentiallyConsistent: 4130 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4131 llvm::AtomicOrdering::Acquire); 4132 break; 4133 case llvm::AtomicOrdering::Monotonic: 4134 case llvm::AtomicOrdering::Release: 4135 break; 4136 case llvm::AtomicOrdering::NotAtomic: 4137 case llvm::AtomicOrdering::Unordered: 4138 llvm_unreachable("Unexpected ordering."); 4139 } 4140 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 4141 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 4142 } 4143 4144 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 4145 llvm::AtomicOrdering AO, const Expr *X, 4146 const Expr *E, SourceLocation Loc) { 4147 // x = expr; 4148 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 4149 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 4150 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4151 // OpenMP, 2.17.7, atomic Construct 4152 // If the write, update, or capture clause is specified and the release, 4153 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 4154 // the atomic operation is also a release flush. 4155 switch (AO) { 4156 case llvm::AtomicOrdering::Release: 4157 case llvm::AtomicOrdering::AcquireRelease: 4158 case llvm::AtomicOrdering::SequentiallyConsistent: 4159 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4160 llvm::AtomicOrdering::Release); 4161 break; 4162 case llvm::AtomicOrdering::Acquire: 4163 case llvm::AtomicOrdering::Monotonic: 4164 break; 4165 case llvm::AtomicOrdering::NotAtomic: 4166 case llvm::AtomicOrdering::Unordered: 4167 llvm_unreachable("Unexpected ordering."); 4168 } 4169 } 4170 4171 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 4172 RValue Update, 4173 BinaryOperatorKind BO, 4174 llvm::AtomicOrdering AO, 4175 bool IsXLHSInRHSPart) { 4176 ASTContext &Context = CGF.getContext(); 4177 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 4178 // expression is simple and atomic is allowed for the given type for the 4179 // target platform. 4180 if (BO == BO_Comma || !Update.isScalar() || 4181 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 4182 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 4183 (Update.getScalarVal()->getType() != 4184 X.getAddress(CGF).getElementType())) || 4185 !X.getAddress(CGF).getElementType()->isIntegerTy() || 4186 !Context.getTargetInfo().hasBuiltinAtomic( 4187 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 4188 return std::make_pair(false, RValue::get(nullptr)); 4189 4190 llvm::AtomicRMWInst::BinOp RMWOp; 4191 switch (BO) { 4192 case BO_Add: 4193 RMWOp = llvm::AtomicRMWInst::Add; 4194 break; 4195 case BO_Sub: 4196 if (!IsXLHSInRHSPart) 4197 return std::make_pair(false, RValue::get(nullptr)); 4198 RMWOp = llvm::AtomicRMWInst::Sub; 4199 break; 4200 case BO_And: 4201 RMWOp = llvm::AtomicRMWInst::And; 4202 break; 4203 case BO_Or: 4204 RMWOp = llvm::AtomicRMWInst::Or; 4205 break; 4206 case BO_Xor: 4207 RMWOp = llvm::AtomicRMWInst::Xor; 4208 break; 4209 case BO_LT: 4210 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4211 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 4212 : llvm::AtomicRMWInst::Max) 4213 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 4214 : llvm::AtomicRMWInst::UMax); 4215 break; 4216 case BO_GT: 4217 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4218 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 4219 : llvm::AtomicRMWInst::Min) 4220 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 4221 : llvm::AtomicRMWInst::UMin); 4222 break; 4223 case BO_Assign: 4224 RMWOp = llvm::AtomicRMWInst::Xchg; 4225 break; 4226 case BO_Mul: 4227 case BO_Div: 4228 case BO_Rem: 4229 case BO_Shl: 4230 case BO_Shr: 4231 case BO_LAnd: 4232 case BO_LOr: 4233 return std::make_pair(false, RValue::get(nullptr)); 4234 case BO_PtrMemD: 4235 case BO_PtrMemI: 4236 case BO_LE: 4237 case BO_GE: 4238 case BO_EQ: 4239 case BO_NE: 4240 case BO_Cmp: 4241 case BO_AddAssign: 4242 case BO_SubAssign: 4243 case BO_AndAssign: 4244 case BO_OrAssign: 4245 case BO_XorAssign: 4246 case BO_MulAssign: 4247 case BO_DivAssign: 4248 case BO_RemAssign: 4249 case BO_ShlAssign: 4250 case BO_ShrAssign: 4251 case BO_Comma: 4252 llvm_unreachable("Unsupported atomic update operation"); 4253 } 4254 llvm::Value *UpdateVal = Update.getScalarVal(); 4255 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 4256 UpdateVal = CGF.Builder.CreateIntCast( 4257 IC, X.getAddress(CGF).getElementType(), 4258 X.getType()->hasSignedIntegerRepresentation()); 4259 } 4260 llvm::Value *Res = 4261 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 4262 return std::make_pair(true, RValue::get(Res)); 4263 } 4264 4265 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 4266 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 4267 llvm::AtomicOrdering AO, SourceLocation Loc, 4268 const llvm::function_ref<RValue(RValue)> CommonGen) { 4269 // Update expressions are allowed to have the following forms: 4270 // x binop= expr; -> xrval + expr; 4271 // x++, ++x -> xrval + 1; 4272 // x--, --x -> xrval - 1; 4273 // x = x binop expr; -> xrval binop expr 4274 // x = expr Op x; - > expr binop xrval; 4275 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 4276 if (!Res.first) { 4277 if (X.isGlobalReg()) { 4278 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 4279 // 'xrval'. 4280 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 4281 } else { 4282 // Perform compare-and-swap procedure. 4283 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 4284 } 4285 } 4286 return Res; 4287 } 4288 4289 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 4290 llvm::AtomicOrdering AO, const Expr *X, 4291 const Expr *E, const Expr *UE, 4292 bool IsXLHSInRHSPart, SourceLocation Loc) { 4293 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4294 "Update expr in 'atomic update' must be a binary operator."); 4295 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4296 // Update expressions are allowed to have the following forms: 4297 // x binop= expr; -> xrval + expr; 4298 // x++, ++x -> xrval + 1; 4299 // x--, --x -> xrval - 1; 4300 // x = x binop expr; -> xrval binop expr 4301 // x = expr Op x; - > expr binop xrval; 4302 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 4303 LValue XLValue = CGF.EmitLValue(X); 4304 RValue ExprRValue = CGF.EmitAnyExpr(E); 4305 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4306 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4307 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4308 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4309 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 4310 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4311 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4312 return CGF.EmitAnyExpr(UE); 4313 }; 4314 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 4315 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4316 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4317 // OpenMP, 2.17.7, atomic Construct 4318 // If the write, update, or capture clause is specified and the release, 4319 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 4320 // the atomic operation is also a release flush. 4321 switch (AO) { 4322 case llvm::AtomicOrdering::Release: 4323 case llvm::AtomicOrdering::AcquireRelease: 4324 case llvm::AtomicOrdering::SequentiallyConsistent: 4325 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4326 llvm::AtomicOrdering::Release); 4327 break; 4328 case llvm::AtomicOrdering::Acquire: 4329 case llvm::AtomicOrdering::Monotonic: 4330 break; 4331 case llvm::AtomicOrdering::NotAtomic: 4332 case llvm::AtomicOrdering::Unordered: 4333 llvm_unreachable("Unexpected ordering."); 4334 } 4335 } 4336 4337 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 4338 QualType SourceType, QualType ResType, 4339 SourceLocation Loc) { 4340 switch (CGF.getEvaluationKind(ResType)) { 4341 case TEK_Scalar: 4342 return RValue::get( 4343 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 4344 case TEK_Complex: { 4345 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 4346 return RValue::getComplex(Res.first, Res.second); 4347 } 4348 case TEK_Aggregate: 4349 break; 4350 } 4351 llvm_unreachable("Must be a scalar or complex."); 4352 } 4353 4354 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 4355 llvm::AtomicOrdering AO, 4356 bool IsPostfixUpdate, const Expr *V, 4357 const Expr *X, const Expr *E, 4358 const Expr *UE, bool IsXLHSInRHSPart, 4359 SourceLocation Loc) { 4360 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 4361 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 4362 RValue NewVVal; 4363 LValue VLValue = CGF.EmitLValue(V); 4364 LValue XLValue = CGF.EmitLValue(X); 4365 RValue ExprRValue = CGF.EmitAnyExpr(E); 4366 QualType NewVValType; 4367 if (UE) { 4368 // 'x' is updated with some additional value. 4369 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4370 "Update expr in 'atomic capture' must be a binary operator."); 4371 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4372 // Update expressions are allowed to have the following forms: 4373 // x binop= expr; -> xrval + expr; 4374 // x++, ++x -> xrval + 1; 4375 // x--, --x -> xrval - 1; 4376 // x = x binop expr; -> xrval binop expr 4377 // x = expr Op x; - > expr binop xrval; 4378 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4379 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4380 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4381 NewVValType = XRValExpr->getType(); 4382 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4383 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 4384 IsPostfixUpdate](RValue XRValue) { 4385 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4386 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4387 RValue Res = CGF.EmitAnyExpr(UE); 4388 NewVVal = IsPostfixUpdate ? XRValue : Res; 4389 return Res; 4390 }; 4391 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4392 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4393 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4394 if (Res.first) { 4395 // 'atomicrmw' instruction was generated. 4396 if (IsPostfixUpdate) { 4397 // Use old value from 'atomicrmw'. 4398 NewVVal = Res.second; 4399 } else { 4400 // 'atomicrmw' does not provide new value, so evaluate it using old 4401 // value of 'x'. 4402 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4403 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 4404 NewVVal = CGF.EmitAnyExpr(UE); 4405 } 4406 } 4407 } else { 4408 // 'x' is simply rewritten with some 'expr'. 4409 NewVValType = X->getType().getNonReferenceType(); 4410 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 4411 X->getType().getNonReferenceType(), Loc); 4412 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 4413 NewVVal = XRValue; 4414 return ExprRValue; 4415 }; 4416 // Try to perform atomicrmw xchg, otherwise simple exchange. 4417 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4418 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 4419 Loc, Gen); 4420 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4421 if (Res.first) { 4422 // 'atomicrmw' instruction was generated. 4423 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 4424 } 4425 } 4426 // Emit post-update store to 'v' of old/new 'x' value. 4427 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 4428 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 4429 // OpenMP, 2.17.7, atomic Construct 4430 // If the write, update, or capture clause is specified and the release, 4431 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 4432 // the atomic operation is also a release flush. 4433 // If the read or capture clause is specified and the acquire, acq_rel, or 4434 // seq_cst clause is specified then the strong flush on exit from the atomic 4435 // operation is also an acquire flush. 4436 switch (AO) { 4437 case llvm::AtomicOrdering::Release: 4438 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4439 llvm::AtomicOrdering::Release); 4440 break; 4441 case llvm::AtomicOrdering::Acquire: 4442 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4443 llvm::AtomicOrdering::Acquire); 4444 break; 4445 case llvm::AtomicOrdering::AcquireRelease: 4446 case llvm::AtomicOrdering::SequentiallyConsistent: 4447 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4448 llvm::AtomicOrdering::AcquireRelease); 4449 break; 4450 case llvm::AtomicOrdering::Monotonic: 4451 break; 4452 case llvm::AtomicOrdering::NotAtomic: 4453 case llvm::AtomicOrdering::Unordered: 4454 llvm_unreachable("Unexpected ordering."); 4455 } 4456 } 4457 4458 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 4459 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 4460 const Expr *X, const Expr *V, const Expr *E, 4461 const Expr *UE, bool IsXLHSInRHSPart, 4462 SourceLocation Loc) { 4463 switch (Kind) { 4464 case OMPC_read: 4465 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 4466 break; 4467 case OMPC_write: 4468 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 4469 break; 4470 case OMPC_unknown: 4471 case OMPC_update: 4472 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 4473 break; 4474 case OMPC_capture: 4475 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 4476 IsXLHSInRHSPart, Loc); 4477 break; 4478 case OMPC_if: 4479 case OMPC_final: 4480 case OMPC_num_threads: 4481 case OMPC_private: 4482 case OMPC_firstprivate: 4483 case OMPC_lastprivate: 4484 case OMPC_reduction: 4485 case OMPC_task_reduction: 4486 case OMPC_in_reduction: 4487 case OMPC_safelen: 4488 case OMPC_simdlen: 4489 case OMPC_allocator: 4490 case OMPC_allocate: 4491 case OMPC_collapse: 4492 case OMPC_default: 4493 case OMPC_seq_cst: 4494 case OMPC_acq_rel: 4495 case OMPC_acquire: 4496 case OMPC_release: 4497 case OMPC_shared: 4498 case OMPC_linear: 4499 case OMPC_aligned: 4500 case OMPC_copyin: 4501 case OMPC_copyprivate: 4502 case OMPC_flush: 4503 case OMPC_proc_bind: 4504 case OMPC_schedule: 4505 case OMPC_ordered: 4506 case OMPC_nowait: 4507 case OMPC_untied: 4508 case OMPC_threadprivate: 4509 case OMPC_depend: 4510 case OMPC_mergeable: 4511 case OMPC_device: 4512 case OMPC_threads: 4513 case OMPC_simd: 4514 case OMPC_map: 4515 case OMPC_num_teams: 4516 case OMPC_thread_limit: 4517 case OMPC_priority: 4518 case OMPC_grainsize: 4519 case OMPC_nogroup: 4520 case OMPC_num_tasks: 4521 case OMPC_hint: 4522 case OMPC_dist_schedule: 4523 case OMPC_defaultmap: 4524 case OMPC_uniform: 4525 case OMPC_to: 4526 case OMPC_from: 4527 case OMPC_use_device_ptr: 4528 case OMPC_is_device_ptr: 4529 case OMPC_unified_address: 4530 case OMPC_unified_shared_memory: 4531 case OMPC_reverse_offload: 4532 case OMPC_dynamic_allocators: 4533 case OMPC_atomic_default_mem_order: 4534 case OMPC_device_type: 4535 case OMPC_match: 4536 case OMPC_nontemporal: 4537 case OMPC_order: 4538 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 4539 } 4540 } 4541 4542 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4543 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 4544 if (S.getSingleClause<OMPSeqCstClause>()) 4545 AO = llvm::AtomicOrdering::SequentiallyConsistent; 4546 else if (S.getSingleClause<OMPAcqRelClause>()) 4547 AO = llvm::AtomicOrdering::AcquireRelease; 4548 else if (S.getSingleClause<OMPAcquireClause>()) 4549 AO = llvm::AtomicOrdering::Acquire; 4550 else if (S.getSingleClause<OMPReleaseClause>()) 4551 AO = llvm::AtomicOrdering::Release; 4552 OpenMPClauseKind Kind = OMPC_unknown; 4553 for (const OMPClause *C : S.clauses()) { 4554 // Find first clause (skip seq_cst|acq_rel|aqcuire|release clause, if it is 4555 // first). 4556 if (C->getClauseKind() != OMPC_seq_cst && 4557 C->getClauseKind() != OMPC_acq_rel && 4558 C->getClauseKind() != OMPC_acquire && 4559 C->getClauseKind() != OMPC_release) { 4560 Kind = C->getClauseKind(); 4561 break; 4562 } 4563 } 4564 4565 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4566 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4567 enterFullExpression(FE); 4568 // Processing for statements under 'atomic capture'. 4569 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4570 for (const Stmt *C : Compound->body()) { 4571 if (const auto *FE = dyn_cast<FullExpr>(C)) 4572 enterFullExpression(FE); 4573 } 4574 } 4575 4576 auto &&CodeGen = [&S, Kind, AO, CS](CodeGenFunction &CGF, 4577 PrePostActionTy &) { 4578 CGF.EmitStopPoint(CS); 4579 emitOMPAtomicExpr(CGF, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 4580 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 4581 S.getBeginLoc()); 4582 }; 4583 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4584 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4585 } 4586 4587 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4588 const OMPExecutableDirective &S, 4589 const RegionCodeGenTy &CodeGen) { 4590 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4591 CodeGenModule &CGM = CGF.CGM; 4592 4593 // On device emit this construct as inlined code. 4594 if (CGM.getLangOpts().OpenMPIsDevice) { 4595 OMPLexicalScope Scope(CGF, S, OMPD_target); 4596 CGM.getOpenMPRuntime().emitInlinedDirective( 4597 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4598 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4599 }); 4600 return; 4601 } 4602 4603 auto LPCRegion = 4604 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 4605 llvm::Function *Fn = nullptr; 4606 llvm::Constant *FnID = nullptr; 4607 4608 const Expr *IfCond = nullptr; 4609 // Check for the at most one if clause associated with the target region. 4610 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4611 if (C->getNameModifier() == OMPD_unknown || 4612 C->getNameModifier() == OMPD_target) { 4613 IfCond = C->getCondition(); 4614 break; 4615 } 4616 } 4617 4618 // Check if we have any device clause associated with the directive. 4619 const Expr *Device = nullptr; 4620 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4621 Device = C->getDevice(); 4622 4623 // Check if we have an if clause whose conditional always evaluates to false 4624 // or if we do not have any targets specified. If so the target region is not 4625 // an offload entry point. 4626 bool IsOffloadEntry = true; 4627 if (IfCond) { 4628 bool Val; 4629 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4630 IsOffloadEntry = false; 4631 } 4632 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4633 IsOffloadEntry = false; 4634 4635 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4636 StringRef ParentName; 4637 // In case we have Ctors/Dtors we use the complete type variant to produce 4638 // the mangling of the device outlined kernel. 4639 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4640 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4641 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4642 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4643 else 4644 ParentName = 4645 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4646 4647 // Emit target region as a standalone region. 4648 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4649 IsOffloadEntry, CodeGen); 4650 OMPLexicalScope Scope(CGF, S, OMPD_task); 4651 auto &&SizeEmitter = 4652 [IsOffloadEntry](CodeGenFunction &CGF, 4653 const OMPLoopDirective &D) -> llvm::Value * { 4654 if (IsOffloadEntry) { 4655 OMPLoopScope(CGF, D); 4656 // Emit calculation of the iterations count. 4657 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4658 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4659 /*isSigned=*/false); 4660 return NumIterations; 4661 } 4662 return nullptr; 4663 }; 4664 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 4665 SizeEmitter); 4666 } 4667 4668 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4669 PrePostActionTy &Action) { 4670 Action.Enter(CGF); 4671 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4672 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4673 CGF.EmitOMPPrivateClause(S, PrivateScope); 4674 (void)PrivateScope.Privatize(); 4675 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4676 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4677 4678 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4679 } 4680 4681 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4682 StringRef ParentName, 4683 const OMPTargetDirective &S) { 4684 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4685 emitTargetRegion(CGF, S, Action); 4686 }; 4687 llvm::Function *Fn; 4688 llvm::Constant *Addr; 4689 // Emit target region as a standalone region. 4690 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4691 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4692 assert(Fn && Addr && "Target device function emission failed."); 4693 } 4694 4695 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4696 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4697 emitTargetRegion(CGF, S, Action); 4698 }; 4699 emitCommonOMPTargetDirective(*this, S, CodeGen); 4700 } 4701 4702 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4703 const OMPExecutableDirective &S, 4704 OpenMPDirectiveKind InnermostKind, 4705 const RegionCodeGenTy &CodeGen) { 4706 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4707 llvm::Function *OutlinedFn = 4708 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4709 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4710 4711 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4712 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4713 if (NT || TL) { 4714 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4715 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4716 4717 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4718 S.getBeginLoc()); 4719 } 4720 4721 OMPTeamsScope Scope(CGF, S); 4722 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4723 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4724 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4725 CapturedVars); 4726 } 4727 4728 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4729 // Emit teams region as a standalone region. 4730 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4731 Action.Enter(CGF); 4732 OMPPrivateScope PrivateScope(CGF); 4733 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4734 CGF.EmitOMPPrivateClause(S, PrivateScope); 4735 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4736 (void)PrivateScope.Privatize(); 4737 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4738 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4739 }; 4740 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4741 emitPostUpdateForReductionClause(*this, S, 4742 [](CodeGenFunction &) { return nullptr; }); 4743 } 4744 4745 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4746 const OMPTargetTeamsDirective &S) { 4747 auto *CS = S.getCapturedStmt(OMPD_teams); 4748 Action.Enter(CGF); 4749 // Emit teams region as a standalone region. 4750 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4751 Action.Enter(CGF); 4752 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4753 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4754 CGF.EmitOMPPrivateClause(S, PrivateScope); 4755 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4756 (void)PrivateScope.Privatize(); 4757 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4758 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4759 CGF.EmitStmt(CS->getCapturedStmt()); 4760 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4761 }; 4762 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4763 emitPostUpdateForReductionClause(CGF, S, 4764 [](CodeGenFunction &) { return nullptr; }); 4765 } 4766 4767 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4768 CodeGenModule &CGM, StringRef ParentName, 4769 const OMPTargetTeamsDirective &S) { 4770 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4771 emitTargetTeamsRegion(CGF, Action, S); 4772 }; 4773 llvm::Function *Fn; 4774 llvm::Constant *Addr; 4775 // Emit target region as a standalone region. 4776 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4777 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4778 assert(Fn && Addr && "Target device function emission failed."); 4779 } 4780 4781 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4782 const OMPTargetTeamsDirective &S) { 4783 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4784 emitTargetTeamsRegion(CGF, Action, S); 4785 }; 4786 emitCommonOMPTargetDirective(*this, S, CodeGen); 4787 } 4788 4789 static void 4790 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4791 const OMPTargetTeamsDistributeDirective &S) { 4792 Action.Enter(CGF); 4793 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4794 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4795 }; 4796 4797 // Emit teams region as a standalone region. 4798 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4799 PrePostActionTy &Action) { 4800 Action.Enter(CGF); 4801 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4802 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4803 (void)PrivateScope.Privatize(); 4804 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4805 CodeGenDistribute); 4806 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4807 }; 4808 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4809 emitPostUpdateForReductionClause(CGF, S, 4810 [](CodeGenFunction &) { return nullptr; }); 4811 } 4812 4813 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4814 CodeGenModule &CGM, StringRef ParentName, 4815 const OMPTargetTeamsDistributeDirective &S) { 4816 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4817 emitTargetTeamsDistributeRegion(CGF, Action, S); 4818 }; 4819 llvm::Function *Fn; 4820 llvm::Constant *Addr; 4821 // Emit target region as a standalone region. 4822 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4823 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4824 assert(Fn && Addr && "Target device function emission failed."); 4825 } 4826 4827 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4828 const OMPTargetTeamsDistributeDirective &S) { 4829 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4830 emitTargetTeamsDistributeRegion(CGF, Action, S); 4831 }; 4832 emitCommonOMPTargetDirective(*this, S, CodeGen); 4833 } 4834 4835 static void emitTargetTeamsDistributeSimdRegion( 4836 CodeGenFunction &CGF, PrePostActionTy &Action, 4837 const OMPTargetTeamsDistributeSimdDirective &S) { 4838 Action.Enter(CGF); 4839 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4840 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4841 }; 4842 4843 // Emit teams region as a standalone region. 4844 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4845 PrePostActionTy &Action) { 4846 Action.Enter(CGF); 4847 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4848 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4849 (void)PrivateScope.Privatize(); 4850 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4851 CodeGenDistribute); 4852 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4853 }; 4854 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4855 emitPostUpdateForReductionClause(CGF, S, 4856 [](CodeGenFunction &) { return nullptr; }); 4857 } 4858 4859 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4860 CodeGenModule &CGM, StringRef ParentName, 4861 const OMPTargetTeamsDistributeSimdDirective &S) { 4862 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4863 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4864 }; 4865 llvm::Function *Fn; 4866 llvm::Constant *Addr; 4867 // Emit target region as a standalone region. 4868 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4869 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4870 assert(Fn && Addr && "Target device function emission failed."); 4871 } 4872 4873 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4874 const OMPTargetTeamsDistributeSimdDirective &S) { 4875 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4876 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4877 }; 4878 emitCommonOMPTargetDirective(*this, S, CodeGen); 4879 } 4880 4881 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4882 const OMPTeamsDistributeDirective &S) { 4883 4884 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4885 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4886 }; 4887 4888 // Emit teams region as a standalone region. 4889 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4890 PrePostActionTy &Action) { 4891 Action.Enter(CGF); 4892 OMPPrivateScope PrivateScope(CGF); 4893 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4894 (void)PrivateScope.Privatize(); 4895 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4896 CodeGenDistribute); 4897 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4898 }; 4899 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4900 emitPostUpdateForReductionClause(*this, S, 4901 [](CodeGenFunction &) { return nullptr; }); 4902 } 4903 4904 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4905 const OMPTeamsDistributeSimdDirective &S) { 4906 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4907 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4908 }; 4909 4910 // Emit teams region as a standalone region. 4911 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4912 PrePostActionTy &Action) { 4913 Action.Enter(CGF); 4914 OMPPrivateScope PrivateScope(CGF); 4915 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4916 (void)PrivateScope.Privatize(); 4917 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4918 CodeGenDistribute); 4919 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4920 }; 4921 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4922 emitPostUpdateForReductionClause(*this, S, 4923 [](CodeGenFunction &) { return nullptr; }); 4924 } 4925 4926 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4927 const OMPTeamsDistributeParallelForDirective &S) { 4928 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4929 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4930 S.getDistInc()); 4931 }; 4932 4933 // Emit teams region as a standalone region. 4934 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4935 PrePostActionTy &Action) { 4936 Action.Enter(CGF); 4937 OMPPrivateScope PrivateScope(CGF); 4938 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4939 (void)PrivateScope.Privatize(); 4940 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4941 CodeGenDistribute); 4942 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4943 }; 4944 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4945 emitPostUpdateForReductionClause(*this, S, 4946 [](CodeGenFunction &) { return nullptr; }); 4947 } 4948 4949 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4950 const OMPTeamsDistributeParallelForSimdDirective &S) { 4951 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4952 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4953 S.getDistInc()); 4954 }; 4955 4956 // Emit teams region as a standalone region. 4957 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4958 PrePostActionTy &Action) { 4959 Action.Enter(CGF); 4960 OMPPrivateScope PrivateScope(CGF); 4961 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4962 (void)PrivateScope.Privatize(); 4963 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4964 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4965 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4966 }; 4967 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 4968 CodeGen); 4969 emitPostUpdateForReductionClause(*this, S, 4970 [](CodeGenFunction &) { return nullptr; }); 4971 } 4972 4973 static void emitTargetTeamsDistributeParallelForRegion( 4974 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4975 PrePostActionTy &Action) { 4976 Action.Enter(CGF); 4977 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4978 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4979 S.getDistInc()); 4980 }; 4981 4982 // Emit teams region as a standalone region. 4983 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4984 PrePostActionTy &Action) { 4985 Action.Enter(CGF); 4986 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4987 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4988 (void)PrivateScope.Privatize(); 4989 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4990 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4991 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4992 }; 4993 4994 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4995 CodeGenTeams); 4996 emitPostUpdateForReductionClause(CGF, S, 4997 [](CodeGenFunction &) { return nullptr; }); 4998 } 4999 5000 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 5001 CodeGenModule &CGM, StringRef ParentName, 5002 const OMPTargetTeamsDistributeParallelForDirective &S) { 5003 // Emit SPMD target teams distribute parallel for region as a standalone 5004 // region. 5005 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5006 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5007 }; 5008 llvm::Function *Fn; 5009 llvm::Constant *Addr; 5010 // Emit target region as a standalone region. 5011 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5012 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5013 assert(Fn && Addr && "Target device function emission failed."); 5014 } 5015 5016 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 5017 const OMPTargetTeamsDistributeParallelForDirective &S) { 5018 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5019 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5020 }; 5021 emitCommonOMPTargetDirective(*this, S, CodeGen); 5022 } 5023 5024 static void emitTargetTeamsDistributeParallelForSimdRegion( 5025 CodeGenFunction &CGF, 5026 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 5027 PrePostActionTy &Action) { 5028 Action.Enter(CGF); 5029 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5030 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5031 S.getDistInc()); 5032 }; 5033 5034 // Emit teams region as a standalone region. 5035 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5036 PrePostActionTy &Action) { 5037 Action.Enter(CGF); 5038 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5039 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5040 (void)PrivateScope.Privatize(); 5041 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5042 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5043 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5044 }; 5045 5046 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 5047 CodeGenTeams); 5048 emitPostUpdateForReductionClause(CGF, S, 5049 [](CodeGenFunction &) { return nullptr; }); 5050 } 5051 5052 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 5053 CodeGenModule &CGM, StringRef ParentName, 5054 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5055 // Emit SPMD target teams distribute parallel for simd region as a standalone 5056 // region. 5057 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5058 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5059 }; 5060 llvm::Function *Fn; 5061 llvm::Constant *Addr; 5062 // Emit target region as a standalone region. 5063 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5064 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5065 assert(Fn && Addr && "Target device function emission failed."); 5066 } 5067 5068 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 5069 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5070 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5071 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5072 }; 5073 emitCommonOMPTargetDirective(*this, S, CodeGen); 5074 } 5075 5076 void CodeGenFunction::EmitOMPCancellationPointDirective( 5077 const OMPCancellationPointDirective &S) { 5078 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 5079 S.getCancelRegion()); 5080 } 5081 5082 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 5083 const Expr *IfCond = nullptr; 5084 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5085 if (C->getNameModifier() == OMPD_unknown || 5086 C->getNameModifier() == OMPD_cancel) { 5087 IfCond = C->getCondition(); 5088 break; 5089 } 5090 } 5091 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 5092 // TODO: This check is necessary as we only generate `omp parallel` through 5093 // the OpenMPIRBuilder for now. 5094 if (S.getCancelRegion() == OMPD_parallel) { 5095 llvm::Value *IfCondition = nullptr; 5096 if (IfCond) 5097 IfCondition = EmitScalarExpr(IfCond, 5098 /*IgnoreResultAssign=*/true); 5099 return Builder.restoreIP( 5100 OMPBuilder->CreateCancel(Builder, IfCondition, S.getCancelRegion())); 5101 } 5102 } 5103 5104 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 5105 S.getCancelRegion()); 5106 } 5107 5108 CodeGenFunction::JumpDest 5109 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 5110 if (Kind == OMPD_parallel || Kind == OMPD_task || 5111 Kind == OMPD_target_parallel) 5112 return ReturnBlock; 5113 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 5114 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 5115 Kind == OMPD_distribute_parallel_for || 5116 Kind == OMPD_target_parallel_for || 5117 Kind == OMPD_teams_distribute_parallel_for || 5118 Kind == OMPD_target_teams_distribute_parallel_for); 5119 return OMPCancelStack.getExitBlock(); 5120 } 5121 5122 void CodeGenFunction::EmitOMPUseDevicePtrClause( 5123 const OMPClause &NC, OMPPrivateScope &PrivateScope, 5124 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 5125 const auto &C = cast<OMPUseDevicePtrClause>(NC); 5126 auto OrigVarIt = C.varlist_begin(); 5127 auto InitIt = C.inits().begin(); 5128 for (const Expr *PvtVarIt : C.private_copies()) { 5129 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 5130 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 5131 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 5132 5133 // In order to identify the right initializer we need to match the 5134 // declaration used by the mapping logic. In some cases we may get 5135 // OMPCapturedExprDecl that refers to the original declaration. 5136 const ValueDecl *MatchingVD = OrigVD; 5137 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 5138 // OMPCapturedExprDecl are used to privative fields of the current 5139 // structure. 5140 const auto *ME = cast<MemberExpr>(OED->getInit()); 5141 assert(isa<CXXThisExpr>(ME->getBase()) && 5142 "Base should be the current struct!"); 5143 MatchingVD = ME->getMemberDecl(); 5144 } 5145 5146 // If we don't have information about the current list item, move on to 5147 // the next one. 5148 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 5149 if (InitAddrIt == CaptureDeviceAddrMap.end()) 5150 continue; 5151 5152 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 5153 InitAddrIt, InitVD, 5154 PvtVD]() { 5155 // Initialize the temporary initialization variable with the address we 5156 // get from the runtime library. We have to cast the source address 5157 // because it is always a void *. References are materialized in the 5158 // privatization scope, so the initialization here disregards the fact 5159 // the original variable is a reference. 5160 QualType AddrQTy = 5161 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 5162 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 5163 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 5164 setAddrOfLocalVar(InitVD, InitAddr); 5165 5166 // Emit private declaration, it will be initialized by the value we 5167 // declaration we just added to the local declarations map. 5168 EmitDecl(*PvtVD); 5169 5170 // The initialization variables reached its purpose in the emission 5171 // of the previous declaration, so we don't need it anymore. 5172 LocalDeclMap.erase(InitVD); 5173 5174 // Return the address of the private variable. 5175 return GetAddrOfLocalVar(PvtVD); 5176 }); 5177 assert(IsRegistered && "firstprivate var already registered as private"); 5178 // Silence the warning about unused variable. 5179 (void)IsRegistered; 5180 5181 ++OrigVarIt; 5182 ++InitIt; 5183 } 5184 } 5185 5186 // Generate the instructions for '#pragma omp target data' directive. 5187 void CodeGenFunction::EmitOMPTargetDataDirective( 5188 const OMPTargetDataDirective &S) { 5189 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 5190 5191 // Create a pre/post action to signal the privatization of the device pointer. 5192 // This action can be replaced by the OpenMP runtime code generation to 5193 // deactivate privatization. 5194 bool PrivatizeDevicePointers = false; 5195 class DevicePointerPrivActionTy : public PrePostActionTy { 5196 bool &PrivatizeDevicePointers; 5197 5198 public: 5199 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 5200 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 5201 void Enter(CodeGenFunction &CGF) override { 5202 PrivatizeDevicePointers = true; 5203 } 5204 }; 5205 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 5206 5207 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 5208 CodeGenFunction &CGF, PrePostActionTy &Action) { 5209 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5210 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5211 }; 5212 5213 // Codegen that selects whether to generate the privatization code or not. 5214 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 5215 &InnermostCodeGen](CodeGenFunction &CGF, 5216 PrePostActionTy &Action) { 5217 RegionCodeGenTy RCG(InnermostCodeGen); 5218 PrivatizeDevicePointers = false; 5219 5220 // Call the pre-action to change the status of PrivatizeDevicePointers if 5221 // needed. 5222 Action.Enter(CGF); 5223 5224 if (PrivatizeDevicePointers) { 5225 OMPPrivateScope PrivateScope(CGF); 5226 // Emit all instances of the use_device_ptr clause. 5227 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 5228 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 5229 Info.CaptureDeviceAddrMap); 5230 (void)PrivateScope.Privatize(); 5231 RCG(CGF); 5232 } else { 5233 RCG(CGF); 5234 } 5235 }; 5236 5237 // Forward the provided action to the privatization codegen. 5238 RegionCodeGenTy PrivRCG(PrivCodeGen); 5239 PrivRCG.setAction(Action); 5240 5241 // Notwithstanding the body of the region is emitted as inlined directive, 5242 // we don't use an inline scope as changes in the references inside the 5243 // region are expected to be visible outside, so we do not privative them. 5244 OMPLexicalScope Scope(CGF, S); 5245 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 5246 PrivRCG); 5247 }; 5248 5249 RegionCodeGenTy RCG(CodeGen); 5250 5251 // If we don't have target devices, don't bother emitting the data mapping 5252 // code. 5253 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 5254 RCG(*this); 5255 return; 5256 } 5257 5258 // Check if we have any if clause associated with the directive. 5259 const Expr *IfCond = nullptr; 5260 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5261 IfCond = C->getCondition(); 5262 5263 // Check if we have any device clause associated with the directive. 5264 const Expr *Device = nullptr; 5265 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5266 Device = C->getDevice(); 5267 5268 // Set the action to signal privatization of device pointers. 5269 RCG.setAction(PrivAction); 5270 5271 // Emit region code. 5272 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 5273 Info); 5274 } 5275 5276 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 5277 const OMPTargetEnterDataDirective &S) { 5278 // If we don't have target devices, don't bother emitting the data mapping 5279 // code. 5280 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5281 return; 5282 5283 // Check if we have any if clause associated with the directive. 5284 const Expr *IfCond = nullptr; 5285 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5286 IfCond = C->getCondition(); 5287 5288 // Check if we have any device clause associated with the directive. 5289 const Expr *Device = nullptr; 5290 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5291 Device = C->getDevice(); 5292 5293 OMPLexicalScope Scope(*this, S, OMPD_task); 5294 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5295 } 5296 5297 void CodeGenFunction::EmitOMPTargetExitDataDirective( 5298 const OMPTargetExitDataDirective &S) { 5299 // If we don't have target devices, don't bother emitting the data mapping 5300 // code. 5301 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5302 return; 5303 5304 // Check if we have any if clause associated with the directive. 5305 const Expr *IfCond = nullptr; 5306 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5307 IfCond = C->getCondition(); 5308 5309 // Check if we have any device clause associated with the directive. 5310 const Expr *Device = nullptr; 5311 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5312 Device = C->getDevice(); 5313 5314 OMPLexicalScope Scope(*this, S, OMPD_task); 5315 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5316 } 5317 5318 static void emitTargetParallelRegion(CodeGenFunction &CGF, 5319 const OMPTargetParallelDirective &S, 5320 PrePostActionTy &Action) { 5321 // Get the captured statement associated with the 'parallel' region. 5322 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 5323 Action.Enter(CGF); 5324 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 5325 Action.Enter(CGF); 5326 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5327 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5328 CGF.EmitOMPPrivateClause(S, PrivateScope); 5329 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5330 (void)PrivateScope.Privatize(); 5331 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5332 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5333 // TODO: Add support for clauses. 5334 CGF.EmitStmt(CS->getCapturedStmt()); 5335 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 5336 }; 5337 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 5338 emitEmptyBoundParameters); 5339 emitPostUpdateForReductionClause(CGF, S, 5340 [](CodeGenFunction &) { return nullptr; }); 5341 } 5342 5343 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 5344 CodeGenModule &CGM, StringRef ParentName, 5345 const OMPTargetParallelDirective &S) { 5346 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5347 emitTargetParallelRegion(CGF, S, Action); 5348 }; 5349 llvm::Function *Fn; 5350 llvm::Constant *Addr; 5351 // Emit target region as a standalone region. 5352 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5353 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5354 assert(Fn && Addr && "Target device function emission failed."); 5355 } 5356 5357 void CodeGenFunction::EmitOMPTargetParallelDirective( 5358 const OMPTargetParallelDirective &S) { 5359 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5360 emitTargetParallelRegion(CGF, S, Action); 5361 }; 5362 emitCommonOMPTargetDirective(*this, S, CodeGen); 5363 } 5364 5365 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 5366 const OMPTargetParallelForDirective &S, 5367 PrePostActionTy &Action) { 5368 Action.Enter(CGF); 5369 // Emit directive as a combined directive that consists of two implicit 5370 // directives: 'parallel' with 'for' directive. 5371 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5372 Action.Enter(CGF); 5373 CodeGenFunction::OMPCancelStackRAII CancelRegion( 5374 CGF, OMPD_target_parallel_for, S.hasCancel()); 5375 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5376 emitDispatchForLoopBounds); 5377 }; 5378 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 5379 emitEmptyBoundParameters); 5380 } 5381 5382 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 5383 CodeGenModule &CGM, StringRef ParentName, 5384 const OMPTargetParallelForDirective &S) { 5385 // Emit SPMD target parallel for region as a standalone region. 5386 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5387 emitTargetParallelForRegion(CGF, S, Action); 5388 }; 5389 llvm::Function *Fn; 5390 llvm::Constant *Addr; 5391 // Emit target region as a standalone region. 5392 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5393 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5394 assert(Fn && Addr && "Target device function emission failed."); 5395 } 5396 5397 void CodeGenFunction::EmitOMPTargetParallelForDirective( 5398 const OMPTargetParallelForDirective &S) { 5399 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5400 emitTargetParallelForRegion(CGF, S, Action); 5401 }; 5402 emitCommonOMPTargetDirective(*this, S, CodeGen); 5403 } 5404 5405 static void 5406 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 5407 const OMPTargetParallelForSimdDirective &S, 5408 PrePostActionTy &Action) { 5409 Action.Enter(CGF); 5410 // Emit directive as a combined directive that consists of two implicit 5411 // directives: 'parallel' with 'for' directive. 5412 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5413 Action.Enter(CGF); 5414 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5415 emitDispatchForLoopBounds); 5416 }; 5417 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 5418 emitEmptyBoundParameters); 5419 } 5420 5421 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 5422 CodeGenModule &CGM, StringRef ParentName, 5423 const OMPTargetParallelForSimdDirective &S) { 5424 // Emit SPMD target parallel for region as a standalone region. 5425 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5426 emitTargetParallelForSimdRegion(CGF, S, Action); 5427 }; 5428 llvm::Function *Fn; 5429 llvm::Constant *Addr; 5430 // Emit target region as a standalone region. 5431 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5432 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5433 assert(Fn && Addr && "Target device function emission failed."); 5434 } 5435 5436 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 5437 const OMPTargetParallelForSimdDirective &S) { 5438 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5439 emitTargetParallelForSimdRegion(CGF, S, Action); 5440 }; 5441 emitCommonOMPTargetDirective(*this, S, CodeGen); 5442 } 5443 5444 /// Emit a helper variable and return corresponding lvalue. 5445 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 5446 const ImplicitParamDecl *PVD, 5447 CodeGenFunction::OMPPrivateScope &Privates) { 5448 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 5449 Privates.addPrivate(VDecl, 5450 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 5451 } 5452 5453 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 5454 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 5455 // Emit outlined function for task construct. 5456 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 5457 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5458 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5459 const Expr *IfCond = nullptr; 5460 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5461 if (C->getNameModifier() == OMPD_unknown || 5462 C->getNameModifier() == OMPD_taskloop) { 5463 IfCond = C->getCondition(); 5464 break; 5465 } 5466 } 5467 5468 OMPTaskDataTy Data; 5469 // Check if taskloop must be emitted without taskgroup. 5470 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 5471 // TODO: Check if we should emit tied or untied task. 5472 Data.Tied = true; 5473 // Set scheduling for taskloop 5474 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 5475 // grainsize clause 5476 Data.Schedule.setInt(/*IntVal=*/false); 5477 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 5478 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 5479 // num_tasks clause 5480 Data.Schedule.setInt(/*IntVal=*/true); 5481 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 5482 } 5483 5484 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 5485 // if (PreCond) { 5486 // for (IV in 0..LastIteration) BODY; 5487 // <Final counter/linear vars updates>; 5488 // } 5489 // 5490 5491 // Emit: if (PreCond) - begin. 5492 // If the condition constant folds and can be elided, avoid emitting the 5493 // whole loop. 5494 bool CondConstant; 5495 llvm::BasicBlock *ContBlock = nullptr; 5496 OMPLoopScope PreInitScope(CGF, S); 5497 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5498 if (!CondConstant) 5499 return; 5500 } else { 5501 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 5502 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 5503 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 5504 CGF.getProfileCount(&S)); 5505 CGF.EmitBlock(ThenBlock); 5506 CGF.incrementProfileCounter(&S); 5507 } 5508 5509 (void)CGF.EmitOMPLinearClauseInit(S); 5510 5511 OMPPrivateScope LoopScope(CGF); 5512 // Emit helper vars inits. 5513 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 5514 auto *I = CS->getCapturedDecl()->param_begin(); 5515 auto *LBP = std::next(I, LowerBound); 5516 auto *UBP = std::next(I, UpperBound); 5517 auto *STP = std::next(I, Stride); 5518 auto *LIP = std::next(I, LastIter); 5519 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 5520 LoopScope); 5521 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 5522 LoopScope); 5523 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 5524 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 5525 LoopScope); 5526 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 5527 CGF.EmitOMPLinearClause(S, LoopScope); 5528 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 5529 (void)LoopScope.Privatize(); 5530 // Emit the loop iteration variable. 5531 const Expr *IVExpr = S.getIterationVariable(); 5532 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 5533 CGF.EmitVarDecl(*IVDecl); 5534 CGF.EmitIgnoredExpr(S.getInit()); 5535 5536 // Emit the iterations count variable. 5537 // If it is not a variable, Sema decided to calculate iterations count on 5538 // each iteration (e.g., it is foldable into a constant). 5539 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5540 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5541 // Emit calculation of the iterations count. 5542 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 5543 } 5544 5545 { 5546 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 5547 emitCommonSimdLoop( 5548 CGF, S, 5549 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5550 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5551 CGF.EmitOMPSimdInit(S); 5552 }, 5553 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 5554 CGF.EmitOMPInnerLoop( 5555 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 5556 [&S](CodeGenFunction &CGF) { 5557 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 5558 CGF.EmitStopPoint(&S); 5559 }, 5560 [](CodeGenFunction &) {}); 5561 }); 5562 } 5563 // Emit: if (PreCond) - end. 5564 if (ContBlock) { 5565 CGF.EmitBranch(ContBlock); 5566 CGF.EmitBlock(ContBlock, true); 5567 } 5568 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5569 if (HasLastprivateClause) { 5570 CGF.EmitOMPLastprivateClauseFinal( 5571 S, isOpenMPSimdDirective(S.getDirectiveKind()), 5572 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 5573 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5574 (*LIP)->getType(), S.getBeginLoc()))); 5575 } 5576 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 5577 return CGF.Builder.CreateIsNotNull( 5578 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5579 (*LIP)->getType(), S.getBeginLoc())); 5580 }); 5581 }; 5582 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5583 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5584 const OMPTaskDataTy &Data) { 5585 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 5586 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 5587 OMPLoopScope PreInitScope(CGF, S); 5588 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5589 OutlinedFn, SharedsTy, 5590 CapturedStruct, IfCond, Data); 5591 }; 5592 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5593 CodeGen); 5594 }; 5595 if (Data.Nogroup) { 5596 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5597 } else { 5598 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5599 *this, 5600 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5601 PrePostActionTy &Action) { 5602 Action.Enter(CGF); 5603 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5604 Data); 5605 }, 5606 S.getBeginLoc()); 5607 } 5608 } 5609 5610 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5611 auto LPCRegion = 5612 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5613 EmitOMPTaskLoopBasedDirective(S); 5614 } 5615 5616 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5617 const OMPTaskLoopSimdDirective &S) { 5618 auto LPCRegion = 5619 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5620 OMPLexicalScope Scope(*this, S); 5621 EmitOMPTaskLoopBasedDirective(S); 5622 } 5623 5624 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 5625 const OMPMasterTaskLoopDirective &S) { 5626 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5627 Action.Enter(CGF); 5628 EmitOMPTaskLoopBasedDirective(S); 5629 }; 5630 auto LPCRegion = 5631 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5632 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5633 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5634 } 5635 5636 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 5637 const OMPMasterTaskLoopSimdDirective &S) { 5638 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5639 Action.Enter(CGF); 5640 EmitOMPTaskLoopBasedDirective(S); 5641 }; 5642 auto LPCRegion = 5643 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5644 OMPLexicalScope Scope(*this, S); 5645 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5646 } 5647 5648 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 5649 const OMPParallelMasterTaskLoopDirective &S) { 5650 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5651 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5652 PrePostActionTy &Action) { 5653 Action.Enter(CGF); 5654 CGF.EmitOMPTaskLoopBasedDirective(S); 5655 }; 5656 OMPLexicalScope Scope(CGF, S, llvm::None, /*EmitPreInitStmt=*/false); 5657 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5658 S.getBeginLoc()); 5659 }; 5660 auto LPCRegion = 5661 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5662 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 5663 emitEmptyBoundParameters); 5664 } 5665 5666 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 5667 const OMPParallelMasterTaskLoopSimdDirective &S) { 5668 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5669 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5670 PrePostActionTy &Action) { 5671 Action.Enter(CGF); 5672 CGF.EmitOMPTaskLoopBasedDirective(S); 5673 }; 5674 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 5675 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5676 S.getBeginLoc()); 5677 }; 5678 auto LPCRegion = 5679 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5680 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 5681 emitEmptyBoundParameters); 5682 } 5683 5684 // Generate the instructions for '#pragma omp target update' directive. 5685 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5686 const OMPTargetUpdateDirective &S) { 5687 // If we don't have target devices, don't bother emitting the data mapping 5688 // code. 5689 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5690 return; 5691 5692 // Check if we have any if clause associated with the directive. 5693 const Expr *IfCond = nullptr; 5694 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5695 IfCond = C->getCondition(); 5696 5697 // Check if we have any device clause associated with the directive. 5698 const Expr *Device = nullptr; 5699 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5700 Device = C->getDevice(); 5701 5702 OMPLexicalScope Scope(*this, S, OMPD_task); 5703 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5704 } 5705 5706 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5707 const OMPExecutableDirective &D) { 5708 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5709 return; 5710 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5711 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5712 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5713 } else { 5714 OMPPrivateScope LoopGlobals(CGF); 5715 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5716 for (const Expr *E : LD->counters()) { 5717 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5718 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5719 LValue GlobLVal = CGF.EmitLValue(E); 5720 LoopGlobals.addPrivate( 5721 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 5722 } 5723 if (isa<OMPCapturedExprDecl>(VD)) { 5724 // Emit only those that were not explicitly referenced in clauses. 5725 if (!CGF.LocalDeclMap.count(VD)) 5726 CGF.EmitVarDecl(*VD); 5727 } 5728 } 5729 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5730 if (!C->getNumForLoops()) 5731 continue; 5732 for (unsigned I = LD->getCollapsedNumber(), 5733 E = C->getLoopNumIterations().size(); 5734 I < E; ++I) { 5735 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5736 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5737 // Emit only those that were not explicitly referenced in clauses. 5738 if (!CGF.LocalDeclMap.count(VD)) 5739 CGF.EmitVarDecl(*VD); 5740 } 5741 } 5742 } 5743 } 5744 LoopGlobals.Privatize(); 5745 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5746 } 5747 }; 5748 { 5749 auto LPCRegion = 5750 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 5751 OMPSimdLexicalScope Scope(*this, D); 5752 CGM.getOpenMPRuntime().emitInlinedDirective( 5753 *this, 5754 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5755 : D.getDirectiveKind(), 5756 CodeGen); 5757 } 5758 // Check for outer lastprivate conditional update. 5759 checkForLastprivateConditionalUpdate(*this, D); 5760 } 5761