1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit OpenMP nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCleanup.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/DeclOpenMP.h"
21 #include "clang/AST/OpenMPClause.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/StmtOpenMP.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/OpenMPKinds.h"
26 #include "clang/Basic/PrettyStackTrace.h"
27 #include "llvm/Frontend/OpenMP/OMPConstants.h"
28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/Support/AtomicOrdering.h"
32 using namespace clang;
33 using namespace CodeGen;
34 using namespace llvm::omp;
35 
36 static const VarDecl *getBaseDecl(const Expr *Ref);
37 
38 namespace {
39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
40 /// for captured expressions.
41 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
42   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
43     for (const auto *C : S.clauses()) {
44       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
45         if (const auto *PreInit =
46                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
47           for (const auto *I : PreInit->decls()) {
48             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
49               CGF.EmitVarDecl(cast<VarDecl>(*I));
50             } else {
51               CodeGenFunction::AutoVarEmission Emission =
52                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
53               CGF.EmitAutoVarCleanups(Emission);
54             }
55           }
56         }
57       }
58     }
59   }
60   CodeGenFunction::OMPPrivateScope InlinedShareds;
61 
62   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
63     return CGF.LambdaCaptureFields.lookup(VD) ||
64            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
65            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
66             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
67   }
68 
69 public:
70   OMPLexicalScope(
71       CodeGenFunction &CGF, const OMPExecutableDirective &S,
72       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
73       const bool EmitPreInitStmt = true)
74       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
75         InlinedShareds(CGF) {
76     if (EmitPreInitStmt)
77       emitPreInitStmt(CGF, S);
78     if (!CapturedRegion.hasValue())
79       return;
80     assert(S.hasAssociatedStmt() &&
81            "Expected associated statement for inlined directive.");
82     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
83     for (const auto &C : CS->captures()) {
84       if (C.capturesVariable() || C.capturesVariableByCopy()) {
85         auto *VD = C.getCapturedVar();
86         assert(VD == VD->getCanonicalDecl() &&
87                "Canonical decl must be captured.");
88         DeclRefExpr DRE(
89             CGF.getContext(), const_cast<VarDecl *>(VD),
90             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
91                                        InlinedShareds.isGlobalVarCaptured(VD)),
92             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
93         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
94           return CGF.EmitLValue(&DRE).getAddress(CGF);
95         });
96       }
97     }
98     (void)InlinedShareds.Privatize();
99   }
100 };
101 
102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
103 /// for captured expressions.
104 class OMPParallelScope final : public OMPLexicalScope {
105   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
106     OpenMPDirectiveKind Kind = S.getDirectiveKind();
107     return !(isOpenMPTargetExecutionDirective(Kind) ||
108              isOpenMPLoopBoundSharingDirective(Kind)) &&
109            isOpenMPParallelDirective(Kind);
110   }
111 
112 public:
113   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
114       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
115                         EmitPreInitStmt(S)) {}
116 };
117 
118 /// Lexical scope for OpenMP teams construct, that handles correct codegen
119 /// for captured expressions.
120 class OMPTeamsScope final : public OMPLexicalScope {
121   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
122     OpenMPDirectiveKind Kind = S.getDirectiveKind();
123     return !isOpenMPTargetExecutionDirective(Kind) &&
124            isOpenMPTeamsDirective(Kind);
125   }
126 
127 public:
128   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
129       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
130                         EmitPreInitStmt(S)) {}
131 };
132 
133 /// Private scope for OpenMP loop-based directives, that supports capturing
134 /// of used expression from loop statement.
135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
136   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) {
137     const DeclStmt *PreInits;
138     CodeGenFunction::OMPMapVars PreCondVars;
139     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
140       llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
141       for (const auto *E : LD->counters()) {
142         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
143         EmittedAsPrivate.insert(VD->getCanonicalDecl());
144         (void)PreCondVars.setVarAddr(
145             CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
146       }
147       // Mark private vars as undefs.
148       for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) {
149         for (const Expr *IRef : C->varlists()) {
150           const auto *OrigVD =
151               cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
152           if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
153             (void)PreCondVars.setVarAddr(
154                 CGF, OrigVD,
155                 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem(
156                             CGF.getContext().getPointerType(
157                                 OrigVD->getType().getNonReferenceType()))),
158                         CGF.getContext().getDeclAlign(OrigVD)));
159           }
160         }
161       }
162       (void)PreCondVars.apply(CGF);
163       // Emit init, __range and __end variables for C++ range loops.
164       (void)OMPLoopBasedDirective::doForAllLoops(
165           LD->getInnermostCapturedStmt()->getCapturedStmt(),
166           /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(),
167           [&CGF](unsigned Cnt, const Stmt *CurStmt) {
168             if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) {
169               if (const Stmt *Init = CXXFor->getInit())
170                 CGF.EmitStmt(Init);
171               CGF.EmitStmt(CXXFor->getRangeStmt());
172               CGF.EmitStmt(CXXFor->getEndStmt());
173             }
174             return false;
175           });
176       PreInits = cast_or_null<DeclStmt>(LD->getPreInits());
177     } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) {
178       PreInits = cast_or_null<DeclStmt>(Tile->getPreInits());
179     } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) {
180       PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits());
181     } else {
182       llvm_unreachable("Unknown loop-based directive kind.");
183     }
184     if (PreInits) {
185       for (const auto *I : PreInits->decls())
186         CGF.EmitVarDecl(cast<VarDecl>(*I));
187     }
188     PreCondVars.restore(CGF);
189   }
190 
191 public:
192   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S)
193       : CodeGenFunction::RunCleanupsScope(CGF) {
194     emitPreInitStmt(CGF, S);
195   }
196 };
197 
198 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
199   CodeGenFunction::OMPPrivateScope InlinedShareds;
200 
201   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
202     return CGF.LambdaCaptureFields.lookup(VD) ||
203            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
204            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
205             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
206   }
207 
208 public:
209   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
210       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
211         InlinedShareds(CGF) {
212     for (const auto *C : S.clauses()) {
213       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
214         if (const auto *PreInit =
215                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
216           for (const auto *I : PreInit->decls()) {
217             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
218               CGF.EmitVarDecl(cast<VarDecl>(*I));
219             } else {
220               CodeGenFunction::AutoVarEmission Emission =
221                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
222               CGF.EmitAutoVarCleanups(Emission);
223             }
224           }
225         }
226       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
227         for (const Expr *E : UDP->varlists()) {
228           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
229           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
230             CGF.EmitVarDecl(*OED);
231         }
232       } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) {
233         for (const Expr *E : UDP->varlists()) {
234           const Decl *D = getBaseDecl(E);
235           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
236             CGF.EmitVarDecl(*OED);
237         }
238       }
239     }
240     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
241       CGF.EmitOMPPrivateClause(S, InlinedShareds);
242     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
243       if (const Expr *E = TG->getReductionRef())
244         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
245     }
246     // Temp copy arrays for inscan reductions should not be emitted as they are
247     // not used in simd only mode.
248     llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps;
249     for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
250       if (C->getModifier() != OMPC_REDUCTION_inscan)
251         continue;
252       for (const Expr *E : C->copy_array_temps())
253         CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl());
254     }
255     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
256     while (CS) {
257       for (auto &C : CS->captures()) {
258         if (C.capturesVariable() || C.capturesVariableByCopy()) {
259           auto *VD = C.getCapturedVar();
260           if (CopyArrayTemps.contains(VD))
261             continue;
262           assert(VD == VD->getCanonicalDecl() &&
263                  "Canonical decl must be captured.");
264           DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
265                           isCapturedVar(CGF, VD) ||
266                               (CGF.CapturedStmtInfo &&
267                                InlinedShareds.isGlobalVarCaptured(VD)),
268                           VD->getType().getNonReferenceType(), VK_LValue,
269                           C.getLocation());
270           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
271             return CGF.EmitLValue(&DRE).getAddress(CGF);
272           });
273         }
274       }
275       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
276     }
277     (void)InlinedShareds.Privatize();
278   }
279 };
280 
281 } // namespace
282 
283 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
284                                          const OMPExecutableDirective &S,
285                                          const RegionCodeGenTy &CodeGen);
286 
287 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
288   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
289     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
290       OrigVD = OrigVD->getCanonicalDecl();
291       bool IsCaptured =
292           LambdaCaptureFields.lookup(OrigVD) ||
293           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
294           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
295       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured,
296                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
297       return EmitLValue(&DRE);
298     }
299   }
300   return EmitLValue(E);
301 }
302 
303 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
304   ASTContext &C = getContext();
305   llvm::Value *Size = nullptr;
306   auto SizeInChars = C.getTypeSizeInChars(Ty);
307   if (SizeInChars.isZero()) {
308     // getTypeSizeInChars() returns 0 for a VLA.
309     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
310       VlaSizePair VlaSize = getVLASize(VAT);
311       Ty = VlaSize.Type;
312       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
313                   : VlaSize.NumElts;
314     }
315     SizeInChars = C.getTypeSizeInChars(Ty);
316     if (SizeInChars.isZero())
317       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
318     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
319   }
320   return CGM.getSize(SizeInChars);
321 }
322 
323 void CodeGenFunction::GenerateOpenMPCapturedVars(
324     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
325   const RecordDecl *RD = S.getCapturedRecordDecl();
326   auto CurField = RD->field_begin();
327   auto CurCap = S.captures().begin();
328   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
329                                                  E = S.capture_init_end();
330        I != E; ++I, ++CurField, ++CurCap) {
331     if (CurField->hasCapturedVLAType()) {
332       const VariableArrayType *VAT = CurField->getCapturedVLAType();
333       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
334       CapturedVars.push_back(Val);
335     } else if (CurCap->capturesThis()) {
336       CapturedVars.push_back(CXXThisValue);
337     } else if (CurCap->capturesVariableByCopy()) {
338       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
339 
340       // If the field is not a pointer, we need to save the actual value
341       // and load it as a void pointer.
342       if (!CurField->getType()->isAnyPointerType()) {
343         ASTContext &Ctx = getContext();
344         Address DstAddr = CreateMemTemp(
345             Ctx.getUIntPtrType(),
346             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
347         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
348 
349         llvm::Value *SrcAddrVal = EmitScalarConversion(
350             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
351             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
352         LValue SrcLV =
353             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
354 
355         // Store the value using the source type pointer.
356         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
357 
358         // Load the value using the destination type pointer.
359         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
360       }
361       CapturedVars.push_back(CV);
362     } else {
363       assert(CurCap->capturesVariable() && "Expected capture by reference.");
364       CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer());
365     }
366   }
367 }
368 
369 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
370                                     QualType DstType, StringRef Name,
371                                     LValue AddrLV) {
372   ASTContext &Ctx = CGF.getContext();
373 
374   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
375       AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(),
376       Ctx.getPointerType(DstType), Loc);
377   Address TmpAddr =
378       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
379           .getAddress(CGF);
380   return TmpAddr;
381 }
382 
383 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
384   if (T->isLValueReferenceType())
385     return C.getLValueReferenceType(
386         getCanonicalParamType(C, T.getNonReferenceType()),
387         /*SpelledAsLValue=*/false);
388   if (T->isPointerType())
389     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
390   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
391     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
392       return getCanonicalParamType(C, VLA->getElementType());
393     if (!A->isVariablyModifiedType())
394       return C.getCanonicalType(T);
395   }
396   return C.getCanonicalParamType(T);
397 }
398 
399 namespace {
400 /// Contains required data for proper outlined function codegen.
401 struct FunctionOptions {
402   /// Captured statement for which the function is generated.
403   const CapturedStmt *S = nullptr;
404   /// true if cast to/from  UIntPtr is required for variables captured by
405   /// value.
406   const bool UIntPtrCastRequired = true;
407   /// true if only casted arguments must be registered as local args or VLA
408   /// sizes.
409   const bool RegisterCastedArgsOnly = false;
410   /// Name of the generated function.
411   const StringRef FunctionName;
412   /// Location of the non-debug version of the outlined function.
413   SourceLocation Loc;
414   explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
415                            bool RegisterCastedArgsOnly, StringRef FunctionName,
416                            SourceLocation Loc)
417       : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
418         RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
419         FunctionName(FunctionName), Loc(Loc) {}
420 };
421 } // namespace
422 
423 static llvm::Function *emitOutlinedFunctionPrologue(
424     CodeGenFunction &CGF, FunctionArgList &Args,
425     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
426         &LocalAddrs,
427     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
428         &VLASizes,
429     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
430   const CapturedDecl *CD = FO.S->getCapturedDecl();
431   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
432   assert(CD->hasBody() && "missing CapturedDecl body");
433 
434   CXXThisValue = nullptr;
435   // Build the argument list.
436   CodeGenModule &CGM = CGF.CGM;
437   ASTContext &Ctx = CGM.getContext();
438   FunctionArgList TargetArgs;
439   Args.append(CD->param_begin(),
440               std::next(CD->param_begin(), CD->getContextParamPosition()));
441   TargetArgs.append(
442       CD->param_begin(),
443       std::next(CD->param_begin(), CD->getContextParamPosition()));
444   auto I = FO.S->captures().begin();
445   FunctionDecl *DebugFunctionDecl = nullptr;
446   if (!FO.UIntPtrCastRequired) {
447     FunctionProtoType::ExtProtoInfo EPI;
448     QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI);
449     DebugFunctionDecl = FunctionDecl::Create(
450         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
451         SourceLocation(), DeclarationName(), FunctionTy,
452         Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static,
453         /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
454   }
455   for (const FieldDecl *FD : RD->fields()) {
456     QualType ArgType = FD->getType();
457     IdentifierInfo *II = nullptr;
458     VarDecl *CapVar = nullptr;
459 
460     // If this is a capture by copy and the type is not a pointer, the outlined
461     // function argument type should be uintptr and the value properly casted to
462     // uintptr. This is necessary given that the runtime library is only able to
463     // deal with pointers. We can pass in the same way the VLA type sizes to the
464     // outlined function.
465     if (FO.UIntPtrCastRequired &&
466         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
467          I->capturesVariableArrayType()))
468       ArgType = Ctx.getUIntPtrType();
469 
470     if (I->capturesVariable() || I->capturesVariableByCopy()) {
471       CapVar = I->getCapturedVar();
472       II = CapVar->getIdentifier();
473     } else if (I->capturesThis()) {
474       II = &Ctx.Idents.get("this");
475     } else {
476       assert(I->capturesVariableArrayType());
477       II = &Ctx.Idents.get("vla");
478     }
479     if (ArgType->isVariablyModifiedType())
480       ArgType = getCanonicalParamType(Ctx, ArgType);
481     VarDecl *Arg;
482     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
483       Arg = ParmVarDecl::Create(
484           Ctx, DebugFunctionDecl,
485           CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
486           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
487           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
488     } else {
489       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
490                                       II, ArgType, ImplicitParamDecl::Other);
491     }
492     Args.emplace_back(Arg);
493     // Do not cast arguments if we emit function with non-original types.
494     TargetArgs.emplace_back(
495         FO.UIntPtrCastRequired
496             ? Arg
497             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
498     ++I;
499   }
500   Args.append(
501       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
502       CD->param_end());
503   TargetArgs.append(
504       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
505       CD->param_end());
506 
507   // Create the function declaration.
508   const CGFunctionInfo &FuncInfo =
509       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
510   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
511 
512   auto *F =
513       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
514                              FO.FunctionName, &CGM.getModule());
515   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
516   if (CD->isNothrow())
517     F->setDoesNotThrow();
518   F->setDoesNotRecurse();
519 
520   // Generate the function.
521   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
522                     FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(),
523                     FO.UIntPtrCastRequired ? FO.Loc
524                                            : CD->getBody()->getBeginLoc());
525   unsigned Cnt = CD->getContextParamPosition();
526   I = FO.S->captures().begin();
527   for (const FieldDecl *FD : RD->fields()) {
528     // Do not map arguments if we emit function with non-original types.
529     Address LocalAddr(Address::invalid());
530     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
531       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
532                                                              TargetArgs[Cnt]);
533     } else {
534       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
535     }
536     // If we are capturing a pointer by copy we don't need to do anything, just
537     // use the value that we get from the arguments.
538     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
539       const VarDecl *CurVD = I->getCapturedVar();
540       if (!FO.RegisterCastedArgsOnly)
541         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
542       ++Cnt;
543       ++I;
544       continue;
545     }
546 
547     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
548                                         AlignmentSource::Decl);
549     if (FD->hasCapturedVLAType()) {
550       if (FO.UIntPtrCastRequired) {
551         ArgLVal = CGF.MakeAddrLValue(
552             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
553                                  Args[Cnt]->getName(), ArgLVal),
554             FD->getType(), AlignmentSource::Decl);
555       }
556       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
557       const VariableArrayType *VAT = FD->getCapturedVLAType();
558       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
559     } else if (I->capturesVariable()) {
560       const VarDecl *Var = I->getCapturedVar();
561       QualType VarTy = Var->getType();
562       Address ArgAddr = ArgLVal.getAddress(CGF);
563       if (ArgLVal.getType()->isLValueReferenceType()) {
564         ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
565       } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
566         assert(ArgLVal.getType()->isPointerType());
567         ArgAddr = CGF.EmitLoadOfPointer(
568             ArgAddr, ArgLVal.getType()->castAs<PointerType>());
569       }
570       if (!FO.RegisterCastedArgsOnly) {
571         LocalAddrs.insert(
572             {Args[Cnt],
573              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
574       }
575     } else if (I->capturesVariableByCopy()) {
576       assert(!FD->getType()->isAnyPointerType() &&
577              "Not expecting a captured pointer.");
578       const VarDecl *Var = I->getCapturedVar();
579       LocalAddrs.insert({Args[Cnt],
580                          {Var, FO.UIntPtrCastRequired
581                                    ? castValueFromUintptr(
582                                          CGF, I->getLocation(), FD->getType(),
583                                          Args[Cnt]->getName(), ArgLVal)
584                                    : ArgLVal.getAddress(CGF)}});
585     } else {
586       // If 'this' is captured, load it into CXXThisValue.
587       assert(I->capturesThis());
588       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
589       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}});
590     }
591     ++Cnt;
592     ++I;
593   }
594 
595   return F;
596 }
597 
598 llvm::Function *
599 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
600                                                     SourceLocation Loc) {
601   assert(
602       CapturedStmtInfo &&
603       "CapturedStmtInfo should be set when generating the captured function");
604   const CapturedDecl *CD = S.getCapturedDecl();
605   // Build the argument list.
606   bool NeedWrapperFunction =
607       getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo();
608   FunctionArgList Args;
609   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
610   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
611   SmallString<256> Buffer;
612   llvm::raw_svector_ostream Out(Buffer);
613   Out << CapturedStmtInfo->getHelperName();
614   if (NeedWrapperFunction)
615     Out << "_debug__";
616   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
617                      Out.str(), Loc);
618   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
619                                                    VLASizes, CXXThisValue, FO);
620   CodeGenFunction::OMPPrivateScope LocalScope(*this);
621   for (const auto &LocalAddrPair : LocalAddrs) {
622     if (LocalAddrPair.second.first) {
623       LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() {
624         return LocalAddrPair.second.second;
625       });
626     }
627   }
628   (void)LocalScope.Privatize();
629   for (const auto &VLASizePair : VLASizes)
630     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
631   PGO.assignRegionCounters(GlobalDecl(CD), F);
632   CapturedStmtInfo->EmitBody(*this, CD->getBody());
633   (void)LocalScope.ForceCleanup();
634   FinishFunction(CD->getBodyRBrace());
635   if (!NeedWrapperFunction)
636     return F;
637 
638   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
639                             /*RegisterCastedArgsOnly=*/true,
640                             CapturedStmtInfo->getHelperName(), Loc);
641   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
642   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
643   Args.clear();
644   LocalAddrs.clear();
645   VLASizes.clear();
646   llvm::Function *WrapperF =
647       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
648                                    WrapperCGF.CXXThisValue, WrapperFO);
649   llvm::SmallVector<llvm::Value *, 4> CallArgs;
650   auto *PI = F->arg_begin();
651   for (const auto *Arg : Args) {
652     llvm::Value *CallArg;
653     auto I = LocalAddrs.find(Arg);
654     if (I != LocalAddrs.end()) {
655       LValue LV = WrapperCGF.MakeAddrLValue(
656           I->second.second,
657           I->second.first ? I->second.first->getType() : Arg->getType(),
658           AlignmentSource::Decl);
659       if (LV.getType()->isAnyComplexType())
660         LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
661             LV.getAddress(WrapperCGF),
662             PI->getType()->getPointerTo(
663                 LV.getAddress(WrapperCGF).getAddressSpace())));
664       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
665     } else {
666       auto EI = VLASizes.find(Arg);
667       if (EI != VLASizes.end()) {
668         CallArg = EI->second.second;
669       } else {
670         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
671                                               Arg->getType(),
672                                               AlignmentSource::Decl);
673         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
674       }
675     }
676     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
677     ++PI;
678   }
679   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs);
680   WrapperCGF.FinishFunction();
681   return WrapperF;
682 }
683 
684 //===----------------------------------------------------------------------===//
685 //                              OpenMP Directive Emission
686 //===----------------------------------------------------------------------===//
687 void CodeGenFunction::EmitOMPAggregateAssign(
688     Address DestAddr, Address SrcAddr, QualType OriginalType,
689     const llvm::function_ref<void(Address, Address)> CopyGen) {
690   // Perform element-by-element initialization.
691   QualType ElementTy;
692 
693   // Drill down to the base element type on both arrays.
694   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
695   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
696   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
697 
698   llvm::Value *SrcBegin = SrcAddr.getPointer();
699   llvm::Value *DestBegin = DestAddr.getPointer();
700   // Cast from pointer to array type to pointer to single element.
701   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
702   // The basic structure here is a while-do loop.
703   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
704   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
705   llvm::Value *IsEmpty =
706       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
707   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
708 
709   // Enter the loop body, making that address the current address.
710   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
711   EmitBlock(BodyBB);
712 
713   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
714 
715   llvm::PHINode *SrcElementPHI =
716     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
717   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
718   Address SrcElementCurrent =
719       Address(SrcElementPHI,
720               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
721 
722   llvm::PHINode *DestElementPHI =
723     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
724   DestElementPHI->addIncoming(DestBegin, EntryBB);
725   Address DestElementCurrent =
726     Address(DestElementPHI,
727             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
728 
729   // Emit copy.
730   CopyGen(DestElementCurrent, SrcElementCurrent);
731 
732   // Shift the address forward by one element.
733   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
734       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
735   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
736       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
737   // Check whether we've reached the end.
738   llvm::Value *Done =
739       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
740   Builder.CreateCondBr(Done, DoneBB, BodyBB);
741   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
742   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
743 
744   // Done.
745   EmitBlock(DoneBB, /*IsFinished=*/true);
746 }
747 
748 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
749                                   Address SrcAddr, const VarDecl *DestVD,
750                                   const VarDecl *SrcVD, const Expr *Copy) {
751   if (OriginalType->isArrayType()) {
752     const auto *BO = dyn_cast<BinaryOperator>(Copy);
753     if (BO && BO->getOpcode() == BO_Assign) {
754       // Perform simple memcpy for simple copying.
755       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
756       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
757       EmitAggregateAssign(Dest, Src, OriginalType);
758     } else {
759       // For arrays with complex element types perform element by element
760       // copying.
761       EmitOMPAggregateAssign(
762           DestAddr, SrcAddr, OriginalType,
763           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
764             // Working with the single array element, so have to remap
765             // destination and source variables to corresponding array
766             // elements.
767             CodeGenFunction::OMPPrivateScope Remap(*this);
768             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
769             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
770             (void)Remap.Privatize();
771             EmitIgnoredExpr(Copy);
772           });
773     }
774   } else {
775     // Remap pseudo source variable to private copy.
776     CodeGenFunction::OMPPrivateScope Remap(*this);
777     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
778     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
779     (void)Remap.Privatize();
780     // Emit copying of the whole variable.
781     EmitIgnoredExpr(Copy);
782   }
783 }
784 
785 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
786                                                 OMPPrivateScope &PrivateScope) {
787   if (!HaveInsertPoint())
788     return false;
789   bool FirstprivateIsLastprivate = false;
790   llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates;
791   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
792     for (const auto *D : C->varlists())
793       Lastprivates.try_emplace(
794           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(),
795           C->getKind());
796   }
797   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
798   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
799   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
800   // Force emission of the firstprivate copy if the directive does not emit
801   // outlined function, like omp for, omp simd, omp distribute etc.
802   bool MustEmitFirstprivateCopy =
803       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
804   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
805     const auto *IRef = C->varlist_begin();
806     const auto *InitsRef = C->inits().begin();
807     for (const Expr *IInit : C->private_copies()) {
808       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
809       bool ThisFirstprivateIsLastprivate =
810           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
811       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
812       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
813       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
814           !FD->getType()->isReferenceType() &&
815           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
816         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
817         ++IRef;
818         ++InitsRef;
819         continue;
820       }
821       FirstprivateIsLastprivate =
822           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
823       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
824         const auto *VDInit =
825             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
826         bool IsRegistered;
827         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
828                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
829                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
830         LValue OriginalLVal;
831         if (!FD) {
832           // Check if the firstprivate variable is just a constant value.
833           ConstantEmission CE = tryEmitAsConstant(&DRE);
834           if (CE && !CE.isReference()) {
835             // Constant value, no need to create a copy.
836             ++IRef;
837             ++InitsRef;
838             continue;
839           }
840           if (CE && CE.isReference()) {
841             OriginalLVal = CE.getReferenceLValue(*this, &DRE);
842           } else {
843             assert(!CE && "Expected non-constant firstprivate.");
844             OriginalLVal = EmitLValue(&DRE);
845           }
846         } else {
847           OriginalLVal = EmitLValue(&DRE);
848         }
849         QualType Type = VD->getType();
850         if (Type->isArrayType()) {
851           // Emit VarDecl with copy init for arrays.
852           // Get the address of the original variable captured in current
853           // captured region.
854           IsRegistered = PrivateScope.addPrivate(
855               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
856                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
857                 const Expr *Init = VD->getInit();
858                 if (!isa<CXXConstructExpr>(Init) ||
859                     isTrivialInitializer(Init)) {
860                   // Perform simple memcpy.
861                   LValue Dest =
862                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
863                   EmitAggregateAssign(Dest, OriginalLVal, Type);
864                 } else {
865                   EmitOMPAggregateAssign(
866                       Emission.getAllocatedAddress(),
867                       OriginalLVal.getAddress(*this), Type,
868                       [this, VDInit, Init](Address DestElement,
869                                            Address SrcElement) {
870                         // Clean up any temporaries needed by the
871                         // initialization.
872                         RunCleanupsScope InitScope(*this);
873                         // Emit initialization for single element.
874                         setAddrOfLocalVar(VDInit, SrcElement);
875                         EmitAnyExprToMem(Init, DestElement,
876                                          Init->getType().getQualifiers(),
877                                          /*IsInitializer*/ false);
878                         LocalDeclMap.erase(VDInit);
879                       });
880                 }
881                 EmitAutoVarCleanups(Emission);
882                 return Emission.getAllocatedAddress();
883               });
884         } else {
885           Address OriginalAddr = OriginalLVal.getAddress(*this);
886           IsRegistered =
887               PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD,
888                                                ThisFirstprivateIsLastprivate,
889                                                OrigVD, &Lastprivates, IRef]() {
890                 // Emit private VarDecl with copy init.
891                 // Remap temp VDInit variable to the address of the original
892                 // variable (for proper handling of captured global variables).
893                 setAddrOfLocalVar(VDInit, OriginalAddr);
894                 EmitDecl(*VD);
895                 LocalDeclMap.erase(VDInit);
896                 if (ThisFirstprivateIsLastprivate &&
897                     Lastprivates[OrigVD->getCanonicalDecl()] ==
898                         OMPC_LASTPRIVATE_conditional) {
899                   // Create/init special variable for lastprivate conditionals.
900                   Address VDAddr =
901                       CGM.getOpenMPRuntime().emitLastprivateConditionalInit(
902                           *this, OrigVD);
903                   llvm::Value *V = EmitLoadOfScalar(
904                       MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(),
905                                      AlignmentSource::Decl),
906                       (*IRef)->getExprLoc());
907                   EmitStoreOfScalar(V,
908                                     MakeAddrLValue(VDAddr, (*IRef)->getType(),
909                                                    AlignmentSource::Decl));
910                   LocalDeclMap.erase(VD);
911                   setAddrOfLocalVar(VD, VDAddr);
912                   return VDAddr;
913                 }
914                 return GetAddrOfLocalVar(VD);
915               });
916         }
917         assert(IsRegistered &&
918                "firstprivate var already registered as private");
919         // Silence the warning about unused variable.
920         (void)IsRegistered;
921       }
922       ++IRef;
923       ++InitsRef;
924     }
925   }
926   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
927 }
928 
929 void CodeGenFunction::EmitOMPPrivateClause(
930     const OMPExecutableDirective &D,
931     CodeGenFunction::OMPPrivateScope &PrivateScope) {
932   if (!HaveInsertPoint())
933     return;
934   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
935   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
936     auto IRef = C->varlist_begin();
937     for (const Expr *IInit : C->private_copies()) {
938       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
939       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
940         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
941         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
942           // Emit private VarDecl with copy init.
943           EmitDecl(*VD);
944           return GetAddrOfLocalVar(VD);
945         });
946         assert(IsRegistered && "private var already registered as private");
947         // Silence the warning about unused variable.
948         (void)IsRegistered;
949       }
950       ++IRef;
951     }
952   }
953 }
954 
955 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
956   if (!HaveInsertPoint())
957     return false;
958   // threadprivate_var1 = master_threadprivate_var1;
959   // operator=(threadprivate_var2, master_threadprivate_var2);
960   // ...
961   // __kmpc_barrier(&loc, global_tid);
962   llvm::DenseSet<const VarDecl *> CopiedVars;
963   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
964   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
965     auto IRef = C->varlist_begin();
966     auto ISrcRef = C->source_exprs().begin();
967     auto IDestRef = C->destination_exprs().begin();
968     for (const Expr *AssignOp : C->assignment_ops()) {
969       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
970       QualType Type = VD->getType();
971       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
972         // Get the address of the master variable. If we are emitting code with
973         // TLS support, the address is passed from the master as field in the
974         // captured declaration.
975         Address MasterAddr = Address::invalid();
976         if (getLangOpts().OpenMPUseTLS &&
977             getContext().getTargetInfo().isTLSSupported()) {
978           assert(CapturedStmtInfo->lookup(VD) &&
979                  "Copyin threadprivates should have been captured!");
980           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true,
981                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
982           MasterAddr = EmitLValue(&DRE).getAddress(*this);
983           LocalDeclMap.erase(VD);
984         } else {
985           MasterAddr =
986             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
987                                         : CGM.GetAddrOfGlobal(VD),
988                     getContext().getDeclAlign(VD));
989         }
990         // Get the address of the threadprivate variable.
991         Address PrivateAddr = EmitLValue(*IRef).getAddress(*this);
992         if (CopiedVars.size() == 1) {
993           // At first check if current thread is a master thread. If it is, no
994           // need to copy data.
995           CopyBegin = createBasicBlock("copyin.not.master");
996           CopyEnd = createBasicBlock("copyin.not.master.end");
997           // TODO: Avoid ptrtoint conversion.
998           auto *MasterAddrInt =
999               Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy);
1000           auto *PrivateAddrInt =
1001               Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy);
1002           Builder.CreateCondBr(
1003               Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin,
1004               CopyEnd);
1005           EmitBlock(CopyBegin);
1006         }
1007         const auto *SrcVD =
1008             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1009         const auto *DestVD =
1010             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1011         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
1012       }
1013       ++IRef;
1014       ++ISrcRef;
1015       ++IDestRef;
1016     }
1017   }
1018   if (CopyEnd) {
1019     // Exit out of copying procedure for non-master thread.
1020     EmitBlock(CopyEnd, /*IsFinished=*/true);
1021     return true;
1022   }
1023   return false;
1024 }
1025 
1026 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
1027     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
1028   if (!HaveInsertPoint())
1029     return false;
1030   bool HasAtLeastOneLastprivate = false;
1031   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1032   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1033     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1034     for (const Expr *C : LoopDirective->counters()) {
1035       SIMDLCVs.insert(
1036           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1037     }
1038   }
1039   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1040   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1041     HasAtLeastOneLastprivate = true;
1042     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
1043         !getLangOpts().OpenMPSimd)
1044       break;
1045     const auto *IRef = C->varlist_begin();
1046     const auto *IDestRef = C->destination_exprs().begin();
1047     for (const Expr *IInit : C->private_copies()) {
1048       // Keep the address of the original variable for future update at the end
1049       // of the loop.
1050       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1051       // Taskloops do not require additional initialization, it is done in
1052       // runtime support library.
1053       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
1054         const auto *DestVD =
1055             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1056         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
1057           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1058                           /*RefersToEnclosingVariableOrCapture=*/
1059                               CapturedStmtInfo->lookup(OrigVD) != nullptr,
1060                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
1061           return EmitLValue(&DRE).getAddress(*this);
1062         });
1063         // Check if the variable is also a firstprivate: in this case IInit is
1064         // not generated. Initialization of this variable will happen in codegen
1065         // for 'firstprivate' clause.
1066         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
1067           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
1068           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C,
1069                                                                OrigVD]() {
1070             if (C->getKind() == OMPC_LASTPRIVATE_conditional) {
1071               Address VDAddr =
1072                   CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this,
1073                                                                         OrigVD);
1074               setAddrOfLocalVar(VD, VDAddr);
1075               return VDAddr;
1076             }
1077             // Emit private VarDecl with copy init.
1078             EmitDecl(*VD);
1079             return GetAddrOfLocalVar(VD);
1080           });
1081           assert(IsRegistered &&
1082                  "lastprivate var already registered as private");
1083           (void)IsRegistered;
1084         }
1085       }
1086       ++IRef;
1087       ++IDestRef;
1088     }
1089   }
1090   return HasAtLeastOneLastprivate;
1091 }
1092 
1093 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
1094     const OMPExecutableDirective &D, bool NoFinals,
1095     llvm::Value *IsLastIterCond) {
1096   if (!HaveInsertPoint())
1097     return;
1098   // Emit following code:
1099   // if (<IsLastIterCond>) {
1100   //   orig_var1 = private_orig_var1;
1101   //   ...
1102   //   orig_varn = private_orig_varn;
1103   // }
1104   llvm::BasicBlock *ThenBB = nullptr;
1105   llvm::BasicBlock *DoneBB = nullptr;
1106   if (IsLastIterCond) {
1107     // Emit implicit barrier if at least one lastprivate conditional is found
1108     // and this is not a simd mode.
1109     if (!getLangOpts().OpenMPSimd &&
1110         llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(),
1111                      [](const OMPLastprivateClause *C) {
1112                        return C->getKind() == OMPC_LASTPRIVATE_conditional;
1113                      })) {
1114       CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(),
1115                                              OMPD_unknown,
1116                                              /*EmitChecks=*/false,
1117                                              /*ForceSimpleCall=*/true);
1118     }
1119     ThenBB = createBasicBlock(".omp.lastprivate.then");
1120     DoneBB = createBasicBlock(".omp.lastprivate.done");
1121     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1122     EmitBlock(ThenBB);
1123   }
1124   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1125   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1126   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1127     auto IC = LoopDirective->counters().begin();
1128     for (const Expr *F : LoopDirective->finals()) {
1129       const auto *D =
1130           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1131       if (NoFinals)
1132         AlreadyEmittedVars.insert(D);
1133       else
1134         LoopCountersAndUpdates[D] = F;
1135       ++IC;
1136     }
1137   }
1138   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1139     auto IRef = C->varlist_begin();
1140     auto ISrcRef = C->source_exprs().begin();
1141     auto IDestRef = C->destination_exprs().begin();
1142     for (const Expr *AssignOp : C->assignment_ops()) {
1143       const auto *PrivateVD =
1144           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1145       QualType Type = PrivateVD->getType();
1146       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1147       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1148         // If lastprivate variable is a loop control variable for loop-based
1149         // directive, update its value before copyin back to original
1150         // variable.
1151         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1152           EmitIgnoredExpr(FinalExpr);
1153         const auto *SrcVD =
1154             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1155         const auto *DestVD =
1156             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1157         // Get the address of the private variable.
1158         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1159         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1160           PrivateAddr =
1161               Address(Builder.CreateLoad(PrivateAddr),
1162                       CGM.getNaturalTypeAlignment(RefTy->getPointeeType()));
1163         // Store the last value to the private copy in the last iteration.
1164         if (C->getKind() == OMPC_LASTPRIVATE_conditional)
1165           CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate(
1166               *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD,
1167               (*IRef)->getExprLoc());
1168         // Get the address of the original variable.
1169         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1170         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1171       }
1172       ++IRef;
1173       ++ISrcRef;
1174       ++IDestRef;
1175     }
1176     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1177       EmitIgnoredExpr(PostUpdate);
1178   }
1179   if (IsLastIterCond)
1180     EmitBlock(DoneBB, /*IsFinished=*/true);
1181 }
1182 
1183 void CodeGenFunction::EmitOMPReductionClauseInit(
1184     const OMPExecutableDirective &D,
1185     CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) {
1186   if (!HaveInsertPoint())
1187     return;
1188   SmallVector<const Expr *, 4> Shareds;
1189   SmallVector<const Expr *, 4> Privates;
1190   SmallVector<const Expr *, 4> ReductionOps;
1191   SmallVector<const Expr *, 4> LHSs;
1192   SmallVector<const Expr *, 4> RHSs;
1193   OMPTaskDataTy Data;
1194   SmallVector<const Expr *, 4> TaskLHSs;
1195   SmallVector<const Expr *, 4> TaskRHSs;
1196   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1197     if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan))
1198       continue;
1199     Shareds.append(C->varlist_begin(), C->varlist_end());
1200     Privates.append(C->privates().begin(), C->privates().end());
1201     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1202     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1203     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1204     if (C->getModifier() == OMPC_REDUCTION_task) {
1205       Data.ReductionVars.append(C->privates().begin(), C->privates().end());
1206       Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
1207       Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
1208       Data.ReductionOps.append(C->reduction_ops().begin(),
1209                                C->reduction_ops().end());
1210       TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1211       TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1212     }
1213   }
1214   ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps);
1215   unsigned Count = 0;
1216   auto *ILHS = LHSs.begin();
1217   auto *IRHS = RHSs.begin();
1218   auto *IPriv = Privates.begin();
1219   for (const Expr *IRef : Shareds) {
1220     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1221     // Emit private VarDecl with reduction init.
1222     RedCG.emitSharedOrigLValue(*this, Count);
1223     RedCG.emitAggregateType(*this, Count);
1224     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1225     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1226                              RedCG.getSharedLValue(Count),
1227                              [&Emission](CodeGenFunction &CGF) {
1228                                CGF.EmitAutoVarInit(Emission);
1229                                return true;
1230                              });
1231     EmitAutoVarCleanups(Emission);
1232     Address BaseAddr = RedCG.adjustPrivateAddress(
1233         *this, Count, Emission.getAllocatedAddress());
1234     bool IsRegistered = PrivateScope.addPrivate(
1235         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1236     assert(IsRegistered && "private var already registered as private");
1237     // Silence the warning about unused variable.
1238     (void)IsRegistered;
1239 
1240     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1241     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1242     QualType Type = PrivateVD->getType();
1243     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1244     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1245       // Store the address of the original variable associated with the LHS
1246       // implicit variable.
1247       PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
1248         return RedCG.getSharedLValue(Count).getAddress(*this);
1249       });
1250       PrivateScope.addPrivate(
1251           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1252     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1253                isa<ArraySubscriptExpr>(IRef)) {
1254       // Store the address of the original variable associated with the LHS
1255       // implicit variable.
1256       PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
1257         return RedCG.getSharedLValue(Count).getAddress(*this);
1258       });
1259       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1260         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1261                                             ConvertTypeForMem(RHSVD->getType()),
1262                                             "rhs.begin");
1263       });
1264     } else {
1265       QualType Type = PrivateVD->getType();
1266       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1267       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this);
1268       // Store the address of the original variable associated with the LHS
1269       // implicit variable.
1270       if (IsArray) {
1271         OriginalAddr = Builder.CreateElementBitCast(
1272             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1273       }
1274       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1275       PrivateScope.addPrivate(
1276           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1277             return IsArray
1278                        ? Builder.CreateElementBitCast(
1279                              GetAddrOfLocalVar(PrivateVD),
1280                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1281                        : GetAddrOfLocalVar(PrivateVD);
1282           });
1283     }
1284     ++ILHS;
1285     ++IRHS;
1286     ++IPriv;
1287     ++Count;
1288   }
1289   if (!Data.ReductionVars.empty()) {
1290     Data.IsReductionWithTaskMod = true;
1291     Data.IsWorksharingReduction =
1292         isOpenMPWorksharingDirective(D.getDirectiveKind());
1293     llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit(
1294         *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data);
1295     const Expr *TaskRedRef = nullptr;
1296     switch (D.getDirectiveKind()) {
1297     case OMPD_parallel:
1298       TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr();
1299       break;
1300     case OMPD_for:
1301       TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr();
1302       break;
1303     case OMPD_sections:
1304       TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr();
1305       break;
1306     case OMPD_parallel_for:
1307       TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr();
1308       break;
1309     case OMPD_parallel_master:
1310       TaskRedRef =
1311           cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr();
1312       break;
1313     case OMPD_parallel_sections:
1314       TaskRedRef =
1315           cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr();
1316       break;
1317     case OMPD_target_parallel:
1318       TaskRedRef =
1319           cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr();
1320       break;
1321     case OMPD_target_parallel_for:
1322       TaskRedRef =
1323           cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr();
1324       break;
1325     case OMPD_distribute_parallel_for:
1326       TaskRedRef =
1327           cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr();
1328       break;
1329     case OMPD_teams_distribute_parallel_for:
1330       TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D)
1331                        .getTaskReductionRefExpr();
1332       break;
1333     case OMPD_target_teams_distribute_parallel_for:
1334       TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D)
1335                        .getTaskReductionRefExpr();
1336       break;
1337     case OMPD_simd:
1338     case OMPD_for_simd:
1339     case OMPD_section:
1340     case OMPD_single:
1341     case OMPD_master:
1342     case OMPD_critical:
1343     case OMPD_parallel_for_simd:
1344     case OMPD_task:
1345     case OMPD_taskyield:
1346     case OMPD_barrier:
1347     case OMPD_taskwait:
1348     case OMPD_taskgroup:
1349     case OMPD_flush:
1350     case OMPD_depobj:
1351     case OMPD_scan:
1352     case OMPD_ordered:
1353     case OMPD_atomic:
1354     case OMPD_teams:
1355     case OMPD_target:
1356     case OMPD_cancellation_point:
1357     case OMPD_cancel:
1358     case OMPD_target_data:
1359     case OMPD_target_enter_data:
1360     case OMPD_target_exit_data:
1361     case OMPD_taskloop:
1362     case OMPD_taskloop_simd:
1363     case OMPD_master_taskloop:
1364     case OMPD_master_taskloop_simd:
1365     case OMPD_parallel_master_taskloop:
1366     case OMPD_parallel_master_taskloop_simd:
1367     case OMPD_distribute:
1368     case OMPD_target_update:
1369     case OMPD_distribute_parallel_for_simd:
1370     case OMPD_distribute_simd:
1371     case OMPD_target_parallel_for_simd:
1372     case OMPD_target_simd:
1373     case OMPD_teams_distribute:
1374     case OMPD_teams_distribute_simd:
1375     case OMPD_teams_distribute_parallel_for_simd:
1376     case OMPD_target_teams:
1377     case OMPD_target_teams_distribute:
1378     case OMPD_target_teams_distribute_parallel_for_simd:
1379     case OMPD_target_teams_distribute_simd:
1380     case OMPD_declare_target:
1381     case OMPD_end_declare_target:
1382     case OMPD_threadprivate:
1383     case OMPD_allocate:
1384     case OMPD_declare_reduction:
1385     case OMPD_declare_mapper:
1386     case OMPD_declare_simd:
1387     case OMPD_requires:
1388     case OMPD_declare_variant:
1389     case OMPD_begin_declare_variant:
1390     case OMPD_end_declare_variant:
1391     case OMPD_unknown:
1392     default:
1393       llvm_unreachable("Enexpected directive with task reductions.");
1394     }
1395 
1396     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl());
1397     EmitVarDecl(*VD);
1398     EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD),
1399                       /*Volatile=*/false, TaskRedRef->getType());
1400   }
1401 }
1402 
1403 void CodeGenFunction::EmitOMPReductionClauseFinal(
1404     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1405   if (!HaveInsertPoint())
1406     return;
1407   llvm::SmallVector<const Expr *, 8> Privates;
1408   llvm::SmallVector<const Expr *, 8> LHSExprs;
1409   llvm::SmallVector<const Expr *, 8> RHSExprs;
1410   llvm::SmallVector<const Expr *, 8> ReductionOps;
1411   bool HasAtLeastOneReduction = false;
1412   bool IsReductionWithTaskMod = false;
1413   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1414     // Do not emit for inscan reductions.
1415     if (C->getModifier() == OMPC_REDUCTION_inscan)
1416       continue;
1417     HasAtLeastOneReduction = true;
1418     Privates.append(C->privates().begin(), C->privates().end());
1419     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1420     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1421     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1422     IsReductionWithTaskMod =
1423         IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task;
1424   }
1425   if (HasAtLeastOneReduction) {
1426     if (IsReductionWithTaskMod) {
1427       CGM.getOpenMPRuntime().emitTaskReductionFini(
1428           *this, D.getBeginLoc(),
1429           isOpenMPWorksharingDirective(D.getDirectiveKind()));
1430     }
1431     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1432                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1433                       ReductionKind == OMPD_simd;
1434     bool SimpleReduction = ReductionKind == OMPD_simd;
1435     // Emit nowait reduction if nowait clause is present or directive is a
1436     // parallel directive (it always has implicit barrier).
1437     CGM.getOpenMPRuntime().emitReduction(
1438         *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
1439         {WithNowait, SimpleReduction, ReductionKind});
1440   }
1441 }
1442 
1443 static void emitPostUpdateForReductionClause(
1444     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1445     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1446   if (!CGF.HaveInsertPoint())
1447     return;
1448   llvm::BasicBlock *DoneBB = nullptr;
1449   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1450     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1451       if (!DoneBB) {
1452         if (llvm::Value *Cond = CondGen(CGF)) {
1453           // If the first post-update expression is found, emit conditional
1454           // block if it was requested.
1455           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1456           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1457           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1458           CGF.EmitBlock(ThenBB);
1459         }
1460       }
1461       CGF.EmitIgnoredExpr(PostUpdate);
1462     }
1463   }
1464   if (DoneBB)
1465     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1466 }
1467 
1468 namespace {
1469 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1470 /// parallel function. This is necessary for combined constructs such as
1471 /// 'distribute parallel for'
1472 typedef llvm::function_ref<void(CodeGenFunction &,
1473                                 const OMPExecutableDirective &,
1474                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1475     CodeGenBoundParametersTy;
1476 } // anonymous namespace
1477 
1478 static void
1479 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF,
1480                                      const OMPExecutableDirective &S) {
1481   if (CGF.getLangOpts().OpenMP < 50)
1482     return;
1483   llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls;
1484   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
1485     for (const Expr *Ref : C->varlists()) {
1486       if (!Ref->getType()->isScalarType())
1487         continue;
1488       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1489       if (!DRE)
1490         continue;
1491       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1492       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1493     }
1494   }
1495   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
1496     for (const Expr *Ref : C->varlists()) {
1497       if (!Ref->getType()->isScalarType())
1498         continue;
1499       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1500       if (!DRE)
1501         continue;
1502       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1503       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1504     }
1505   }
1506   for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
1507     for (const Expr *Ref : C->varlists()) {
1508       if (!Ref->getType()->isScalarType())
1509         continue;
1510       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1511       if (!DRE)
1512         continue;
1513       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1514       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1515     }
1516   }
1517   // Privates should ne analyzed since they are not captured at all.
1518   // Task reductions may be skipped - tasks are ignored.
1519   // Firstprivates do not return value but may be passed by reference - no need
1520   // to check for updated lastprivate conditional.
1521   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
1522     for (const Expr *Ref : C->varlists()) {
1523       if (!Ref->getType()->isScalarType())
1524         continue;
1525       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1526       if (!DRE)
1527         continue;
1528       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1529     }
1530   }
1531   CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional(
1532       CGF, S, PrivateDecls);
1533 }
1534 
1535 static void emitCommonOMPParallelDirective(
1536     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1537     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1538     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1539   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1540   llvm::Function *OutlinedFn =
1541       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1542           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1543   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1544     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1545     llvm::Value *NumThreads =
1546         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1547                            /*IgnoreResultAssign=*/true);
1548     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1549         CGF, NumThreads, NumThreadsClause->getBeginLoc());
1550   }
1551   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1552     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1553     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1554         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
1555   }
1556   const Expr *IfCond = nullptr;
1557   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1558     if (C->getNameModifier() == OMPD_unknown ||
1559         C->getNameModifier() == OMPD_parallel) {
1560       IfCond = C->getCondition();
1561       break;
1562     }
1563   }
1564 
1565   OMPParallelScope Scope(CGF, S);
1566   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1567   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1568   // lower and upper bounds with the pragma 'for' chunking mechanism.
1569   // The following lambda takes care of appending the lower and upper bound
1570   // parameters when necessary
1571   CodeGenBoundParameters(CGF, S, CapturedVars);
1572   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1573   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
1574                                               CapturedVars, IfCond);
1575 }
1576 
1577 static bool isAllocatableDecl(const VarDecl *VD) {
1578   const VarDecl *CVD = VD->getCanonicalDecl();
1579   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
1580     return false;
1581   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
1582   // Use the default allocation.
1583   return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc ||
1584             AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) &&
1585            !AA->getAllocator());
1586 }
1587 
1588 static void emitEmptyBoundParameters(CodeGenFunction &,
1589                                      const OMPExecutableDirective &,
1590                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1591 
1592 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable(
1593     CodeGenFunction &CGF, const VarDecl *VD) {
1594   CodeGenModule &CGM = CGF.CGM;
1595   auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1596 
1597   if (!VD)
1598     return Address::invalid();
1599   const VarDecl *CVD = VD->getCanonicalDecl();
1600   if (!isAllocatableDecl(CVD))
1601     return Address::invalid();
1602   llvm::Value *Size;
1603   CharUnits Align = CGM.getContext().getDeclAlign(CVD);
1604   if (CVD->getType()->isVariablyModifiedType()) {
1605     Size = CGF.getTypeSize(CVD->getType());
1606     // Align the size: ((size + align - 1) / align) * align
1607     Size = CGF.Builder.CreateNUWAdd(
1608         Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
1609     Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
1610     Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
1611   } else {
1612     CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
1613     Size = CGM.getSize(Sz.alignTo(Align));
1614   }
1615 
1616   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
1617   assert(AA->getAllocator() &&
1618          "Expected allocator expression for non-default allocator.");
1619   llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
1620   // According to the standard, the original allocator type is a enum (integer).
1621   // Convert to pointer type, if required.
1622   if (Allocator->getType()->isIntegerTy())
1623     Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
1624   else if (Allocator->getType()->isPointerTy())
1625     Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
1626                                                                 CGM.VoidPtrTy);
1627 
1628   llvm::Value *Addr = OMPBuilder.createOMPAlloc(
1629       CGF.Builder, Size, Allocator,
1630       getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", "."));
1631   llvm::CallInst *FreeCI =
1632       OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator);
1633 
1634   CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI);
1635   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1636       Addr,
1637       CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
1638       getNameWithSeparators({CVD->getName(), ".addr"}, ".", "."));
1639   return Address(Addr, Align);
1640 }
1641 
1642 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
1643     CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr,
1644     SourceLocation Loc) {
1645   CodeGenModule &CGM = CGF.CGM;
1646   if (CGM.getLangOpts().OpenMPUseTLS &&
1647       CGM.getContext().getTargetInfo().isTLSSupported())
1648     return VDAddr;
1649 
1650   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1651 
1652   llvm::Type *VarTy = VDAddr.getElementType();
1653   llvm::Value *Data =
1654       CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy);
1655   llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy));
1656   std::string Suffix = getNameWithSeparators({"cache", ""});
1657   llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix);
1658 
1659   llvm::CallInst *ThreadPrivateCacheCall =
1660       OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName);
1661 
1662   return Address(ThreadPrivateCacheCall, VDAddr.getAlignment());
1663 }
1664 
1665 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators(
1666     ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) {
1667   SmallString<128> Buffer;
1668   llvm::raw_svector_ostream OS(Buffer);
1669   StringRef Sep = FirstSeparator;
1670   for (StringRef Part : Parts) {
1671     OS << Sep << Part;
1672     Sep = Separator;
1673   }
1674   return OS.str().str();
1675 }
1676 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1677   if (CGM.getLangOpts().OpenMPIRBuilder) {
1678     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1679     // Check if we have any if clause associated with the directive.
1680     llvm::Value *IfCond = nullptr;
1681     if (const auto *C = S.getSingleClause<OMPIfClause>())
1682       IfCond = EmitScalarExpr(C->getCondition(),
1683                               /*IgnoreResultAssign=*/true);
1684 
1685     llvm::Value *NumThreads = nullptr;
1686     if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>())
1687       NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(),
1688                                   /*IgnoreResultAssign=*/true);
1689 
1690     ProcBindKind ProcBind = OMP_PROC_BIND_default;
1691     if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>())
1692       ProcBind = ProcBindClause->getProcBindKind();
1693 
1694     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1695 
1696     // The cleanup callback that finalizes all variabels at the given location,
1697     // thus calls destructors etc.
1698     auto FiniCB = [this](InsertPointTy IP) {
1699       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
1700     };
1701 
1702     // Privatization callback that performs appropriate action for
1703     // shared/private/firstprivate/lastprivate/copyin/... variables.
1704     //
1705     // TODO: This defaults to shared right now.
1706     auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
1707                      llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) {
1708       // The next line is appropriate only for variables (Val) with the
1709       // data-sharing attribute "shared".
1710       ReplVal = &Val;
1711 
1712       return CodeGenIP;
1713     };
1714 
1715     const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1716     const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt();
1717 
1718     auto BodyGenCB = [ParallelRegionBodyStmt,
1719                       this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
1720                             llvm::BasicBlock &ContinuationBB) {
1721       OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP,
1722                                                       ContinuationBB);
1723       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt,
1724                                              CodeGenIP, ContinuationBB);
1725     };
1726 
1727     CGCapturedStmtInfo CGSI(*CS, CR_OpenMP);
1728     CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI);
1729     llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
1730         AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
1731     Builder.restoreIP(
1732         OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB,
1733                                   IfCond, NumThreads, ProcBind, S.hasCancel()));
1734     return;
1735   }
1736 
1737   // Emit parallel region as a standalone region.
1738   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1739     Action.Enter(CGF);
1740     OMPPrivateScope PrivateScope(CGF);
1741     bool Copyins = CGF.EmitOMPCopyinClause(S);
1742     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1743     if (Copyins) {
1744       // Emit implicit barrier to synchronize threads and avoid data races on
1745       // propagation master's thread values of threadprivate variables to local
1746       // instances of that variables of all other implicit threads.
1747       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1748           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
1749           /*ForceSimpleCall=*/true);
1750     }
1751     CGF.EmitOMPPrivateClause(S, PrivateScope);
1752     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1753     (void)PrivateScope.Privatize();
1754     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1755     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1756   };
1757   {
1758     auto LPCRegion =
1759         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
1760     emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1761                                    emitEmptyBoundParameters);
1762     emitPostUpdateForReductionClause(*this, S,
1763                                      [](CodeGenFunction &) { return nullptr; });
1764   }
1765   // Check for outer lastprivate conditional update.
1766   checkForLastprivateConditionalUpdate(*this, S);
1767 }
1768 
1769 namespace {
1770 /// RAII to handle scopes for loop transformation directives.
1771 class OMPTransformDirectiveScopeRAII {
1772   OMPLoopScope *Scope = nullptr;
1773   CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr;
1774   CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr;
1775 
1776 public:
1777   OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) {
1778     if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) {
1779       Scope = new OMPLoopScope(CGF, *Dir);
1780       CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP);
1781       CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI);
1782     }
1783   }
1784   ~OMPTransformDirectiveScopeRAII() {
1785     if (!Scope)
1786       return;
1787     delete CapInfoRAII;
1788     delete CGSI;
1789     delete Scope;
1790   }
1791 };
1792 } // namespace
1793 
1794 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop,
1795                      int MaxLevel, int Level = 0) {
1796   assert(Level < MaxLevel && "Too deep lookup during loop body codegen.");
1797   const Stmt *SimplifiedS = S->IgnoreContainers();
1798   if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) {
1799     PrettyStackTraceLoc CrashInfo(
1800         CGF.getContext().getSourceManager(), CS->getLBracLoc(),
1801         "LLVM IR generation of compound statement ('{}')");
1802 
1803     // Keep track of the current cleanup stack depth, including debug scopes.
1804     CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange());
1805     for (const Stmt *CurStmt : CS->body())
1806       emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level);
1807     return;
1808   }
1809   if (SimplifiedS == NextLoop) {
1810     if (auto *Dir = dyn_cast<OMPTileDirective>(SimplifiedS))
1811       SimplifiedS = Dir->getTransformedStmt();
1812     if (auto *Dir = dyn_cast<OMPUnrollDirective>(SimplifiedS))
1813       SimplifiedS = Dir->getTransformedStmt();
1814     if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS))
1815       SimplifiedS = CanonLoop->getLoopStmt();
1816     if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) {
1817       S = For->getBody();
1818     } else {
1819       assert(isa<CXXForRangeStmt>(SimplifiedS) &&
1820              "Expected canonical for loop or range-based for loop.");
1821       const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS);
1822       CGF.EmitStmt(CXXFor->getLoopVarStmt());
1823       S = CXXFor->getBody();
1824     }
1825     if (Level + 1 < MaxLevel) {
1826       NextLoop = OMPLoopDirective::tryToFindNextInnerLoop(
1827           S, /*TryImperfectlyNestedLoops=*/true);
1828       emitBody(CGF, S, NextLoop, MaxLevel, Level + 1);
1829       return;
1830     }
1831   }
1832   CGF.EmitStmt(S);
1833 }
1834 
1835 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1836                                       JumpDest LoopExit) {
1837   RunCleanupsScope BodyScope(*this);
1838   // Update counters values on current iteration.
1839   for (const Expr *UE : D.updates())
1840     EmitIgnoredExpr(UE);
1841   // Update the linear variables.
1842   // In distribute directives only loop counters may be marked as linear, no
1843   // need to generate the code for them.
1844   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1845     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1846       for (const Expr *UE : C->updates())
1847         EmitIgnoredExpr(UE);
1848     }
1849   }
1850 
1851   // On a continue in the body, jump to the end.
1852   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1853   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1854   for (const Expr *E : D.finals_conditions()) {
1855     if (!E)
1856       continue;
1857     // Check that loop counter in non-rectangular nest fits into the iteration
1858     // space.
1859     llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next");
1860     EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(),
1861                          getProfileCount(D.getBody()));
1862     EmitBlock(NextBB);
1863   }
1864 
1865   OMPPrivateScope InscanScope(*this);
1866   EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true);
1867   bool IsInscanRegion = InscanScope.Privatize();
1868   if (IsInscanRegion) {
1869     // Need to remember the block before and after scan directive
1870     // to dispatch them correctly depending on the clause used in
1871     // this directive, inclusive or exclusive. For inclusive scan the natural
1872     // order of the blocks is used, for exclusive clause the blocks must be
1873     // executed in reverse order.
1874     OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb");
1875     OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb");
1876     // No need to allocate inscan exit block, in simd mode it is selected in the
1877     // codegen for the scan directive.
1878     if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd)
1879       OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb");
1880     OMPScanDispatch = createBasicBlock("omp.inscan.dispatch");
1881     EmitBranch(OMPScanDispatch);
1882     EmitBlock(OMPBeforeScanBlock);
1883   }
1884 
1885   // Emit loop variables for C++ range loops.
1886   const Stmt *Body =
1887       D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
1888   // Emit loop body.
1889   emitBody(*this, Body,
1890            OMPLoopBasedDirective::tryToFindNextInnerLoop(
1891                Body, /*TryImperfectlyNestedLoops=*/true),
1892            D.getLoopsNumber());
1893 
1894   // Jump to the dispatcher at the end of the loop body.
1895   if (IsInscanRegion)
1896     EmitBranch(OMPScanExitBlock);
1897 
1898   // The end (updates/cleanups).
1899   EmitBlock(Continue.getBlock());
1900   BreakContinueStack.pop_back();
1901 }
1902 
1903 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>;
1904 
1905 /// Emit a captured statement and return the function as well as its captured
1906 /// closure context.
1907 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF,
1908                                              const CapturedStmt *S) {
1909   LValue CapStruct = ParentCGF.InitCapturedStruct(*S);
1910   CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true);
1911   std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI =
1912       std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S);
1913   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get());
1914   llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S);
1915 
1916   return {F, CapStruct.getPointer(ParentCGF)};
1917 }
1918 
1919 /// Emit a call to a previously captured closure.
1920 static llvm::CallInst *
1921 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap,
1922                      llvm::ArrayRef<llvm::Value *> Args) {
1923   // Append the closure context to the argument.
1924   SmallVector<llvm::Value *> EffectiveArgs;
1925   EffectiveArgs.reserve(Args.size() + 1);
1926   llvm::append_range(EffectiveArgs, Args);
1927   EffectiveArgs.push_back(Cap.second);
1928 
1929   return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs);
1930 }
1931 
1932 llvm::CanonicalLoopInfo *
1933 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) {
1934   assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented");
1935 
1936   EmitStmt(S);
1937   assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops");
1938 
1939   // The last added loop is the outermost one.
1940   return OMPLoopNestStack.back();
1941 }
1942 
1943 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) {
1944   const Stmt *SyntacticalLoop = S->getLoopStmt();
1945   if (!getLangOpts().OpenMPIRBuilder) {
1946     // Ignore if OpenMPIRBuilder is not enabled.
1947     EmitStmt(SyntacticalLoop);
1948     return;
1949   }
1950 
1951   LexicalScope ForScope(*this, S->getSourceRange());
1952 
1953   // Emit init statements. The Distance/LoopVar funcs may reference variable
1954   // declarations they contain.
1955   const Stmt *BodyStmt;
1956   if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) {
1957     if (const Stmt *InitStmt = For->getInit())
1958       EmitStmt(InitStmt);
1959     BodyStmt = For->getBody();
1960   } else if (const auto *RangeFor =
1961                  dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) {
1962     if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt())
1963       EmitStmt(RangeStmt);
1964     if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt())
1965       EmitStmt(BeginStmt);
1966     if (const DeclStmt *EndStmt = RangeFor->getEndStmt())
1967       EmitStmt(EndStmt);
1968     if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt())
1969       EmitStmt(LoopVarStmt);
1970     BodyStmt = RangeFor->getBody();
1971   } else
1972     llvm_unreachable("Expected for-stmt or range-based for-stmt");
1973 
1974   // Emit closure for later use. By-value captures will be captured here.
1975   const CapturedStmt *DistanceFunc = S->getDistanceFunc();
1976   EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc);
1977   const CapturedStmt *LoopVarFunc = S->getLoopVarFunc();
1978   EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc);
1979 
1980   // Call the distance function to get the number of iterations of the loop to
1981   // come.
1982   QualType LogicalTy = DistanceFunc->getCapturedDecl()
1983                            ->getParam(0)
1984                            ->getType()
1985                            .getNonReferenceType();
1986   Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr");
1987   emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()});
1988   llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count");
1989 
1990   // Emit the loop structure.
1991   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1992   auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP,
1993                            llvm::Value *IndVar) {
1994     Builder.restoreIP(CodeGenIP);
1995 
1996     // Emit the loop body: Convert the logical iteration number to the loop
1997     // variable and emit the body.
1998     const DeclRefExpr *LoopVarRef = S->getLoopVarRef();
1999     LValue LCVal = EmitLValue(LoopVarRef);
2000     Address LoopVarAddress = LCVal.getAddress(*this);
2001     emitCapturedStmtCall(*this, LoopVarClosure,
2002                          {LoopVarAddress.getPointer(), IndVar});
2003 
2004     RunCleanupsScope BodyScope(*this);
2005     EmitStmt(BodyStmt);
2006   };
2007   llvm::CanonicalLoopInfo *CL =
2008       OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal);
2009 
2010   // Finish up the loop.
2011   Builder.restoreIP(CL->getAfterIP());
2012   ForScope.ForceCleanup();
2013 
2014   // Remember the CanonicalLoopInfo for parent AST nodes consuming it.
2015   OMPLoopNestStack.push_back(CL);
2016 }
2017 
2018 void CodeGenFunction::EmitOMPInnerLoop(
2019     const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond,
2020     const Expr *IncExpr,
2021     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
2022     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
2023   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
2024 
2025   // Start the loop with a block that tests the condition.
2026   auto CondBlock = createBasicBlock("omp.inner.for.cond");
2027   EmitBlock(CondBlock);
2028   const SourceRange R = S.getSourceRange();
2029 
2030   // If attributes are attached, push to the basic block with them.
2031   const auto &OMPED = cast<OMPExecutableDirective>(S);
2032   const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt();
2033   const Stmt *SS = ICS->getCapturedStmt();
2034   const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS);
2035   OMPLoopNestStack.clear();
2036   if (AS)
2037     LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(),
2038                    AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()),
2039                    SourceLocToDebugLoc(R.getEnd()));
2040   else
2041     LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
2042                    SourceLocToDebugLoc(R.getEnd()));
2043 
2044   // If there are any cleanups between here and the loop-exit scope,
2045   // create a block to stage a loop exit along.
2046   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
2047   if (RequiresCleanup)
2048     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
2049 
2050   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
2051 
2052   // Emit condition.
2053   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
2054   if (ExitBlock != LoopExit.getBlock()) {
2055     EmitBlock(ExitBlock);
2056     EmitBranchThroughCleanup(LoopExit);
2057   }
2058 
2059   EmitBlock(LoopBody);
2060   incrementProfileCounter(&S);
2061 
2062   // Create a block for the increment.
2063   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
2064   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
2065 
2066   BodyGen(*this);
2067 
2068   // Emit "IV = IV + 1" and a back-edge to the condition block.
2069   EmitBlock(Continue.getBlock());
2070   EmitIgnoredExpr(IncExpr);
2071   PostIncGen(*this);
2072   BreakContinueStack.pop_back();
2073   EmitBranch(CondBlock);
2074   LoopStack.pop();
2075   // Emit the fall-through block.
2076   EmitBlock(LoopExit.getBlock());
2077 }
2078 
2079 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
2080   if (!HaveInsertPoint())
2081     return false;
2082   // Emit inits for the linear variables.
2083   bool HasLinears = false;
2084   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2085     for (const Expr *Init : C->inits()) {
2086       HasLinears = true;
2087       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
2088       if (const auto *Ref =
2089               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
2090         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
2091         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
2092         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
2093                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
2094                         VD->getInit()->getType(), VK_LValue,
2095                         VD->getInit()->getExprLoc());
2096         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
2097                                                 VD->getType()),
2098                        /*capturedByInit=*/false);
2099         EmitAutoVarCleanups(Emission);
2100       } else {
2101         EmitVarDecl(*VD);
2102       }
2103     }
2104     // Emit the linear steps for the linear clauses.
2105     // If a step is not constant, it is pre-calculated before the loop.
2106     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
2107       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
2108         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
2109         // Emit calculation of the linear step.
2110         EmitIgnoredExpr(CS);
2111       }
2112   }
2113   return HasLinears;
2114 }
2115 
2116 void CodeGenFunction::EmitOMPLinearClauseFinal(
2117     const OMPLoopDirective &D,
2118     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
2119   if (!HaveInsertPoint())
2120     return;
2121   llvm::BasicBlock *DoneBB = nullptr;
2122   // Emit the final values of the linear variables.
2123   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2124     auto IC = C->varlist_begin();
2125     for (const Expr *F : C->finals()) {
2126       if (!DoneBB) {
2127         if (llvm::Value *Cond = CondGen(*this)) {
2128           // If the first post-update expression is found, emit conditional
2129           // block if it was requested.
2130           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
2131           DoneBB = createBasicBlock(".omp.linear.pu.done");
2132           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
2133           EmitBlock(ThenBB);
2134         }
2135       }
2136       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
2137       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
2138                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
2139                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
2140       Address OrigAddr = EmitLValue(&DRE).getAddress(*this);
2141       CodeGenFunction::OMPPrivateScope VarScope(*this);
2142       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
2143       (void)VarScope.Privatize();
2144       EmitIgnoredExpr(F);
2145       ++IC;
2146     }
2147     if (const Expr *PostUpdate = C->getPostUpdateExpr())
2148       EmitIgnoredExpr(PostUpdate);
2149   }
2150   if (DoneBB)
2151     EmitBlock(DoneBB, /*IsFinished=*/true);
2152 }
2153 
2154 static void emitAlignedClause(CodeGenFunction &CGF,
2155                               const OMPExecutableDirective &D) {
2156   if (!CGF.HaveInsertPoint())
2157     return;
2158   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
2159     llvm::APInt ClauseAlignment(64, 0);
2160     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
2161       auto *AlignmentCI =
2162           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
2163       ClauseAlignment = AlignmentCI->getValue();
2164     }
2165     for (const Expr *E : Clause->varlists()) {
2166       llvm::APInt Alignment(ClauseAlignment);
2167       if (Alignment == 0) {
2168         // OpenMP [2.8.1, Description]
2169         // If no optional parameter is specified, implementation-defined default
2170         // alignments for SIMD instructions on the target platforms are assumed.
2171         Alignment =
2172             CGF.getContext()
2173                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2174                     E->getType()->getPointeeType()))
2175                 .getQuantity();
2176       }
2177       assert((Alignment == 0 || Alignment.isPowerOf2()) &&
2178              "alignment is not power of 2");
2179       if (Alignment != 0) {
2180         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
2181         CGF.emitAlignmentAssumption(
2182             PtrValue, E, /*No second loc needed*/ SourceLocation(),
2183             llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment));
2184       }
2185     }
2186   }
2187 }
2188 
2189 void CodeGenFunction::EmitOMPPrivateLoopCounters(
2190     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
2191   if (!HaveInsertPoint())
2192     return;
2193   auto I = S.private_counters().begin();
2194   for (const Expr *E : S.counters()) {
2195     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2196     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
2197     // Emit var without initialization.
2198     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
2199     EmitAutoVarCleanups(VarEmission);
2200     LocalDeclMap.erase(PrivateVD);
2201     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
2202       return VarEmission.getAllocatedAddress();
2203     });
2204     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
2205         VD->hasGlobalStorage()) {
2206       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
2207         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD),
2208                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
2209                         E->getType(), VK_LValue, E->getExprLoc());
2210         return EmitLValue(&DRE).getAddress(*this);
2211       });
2212     } else {
2213       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
2214         return VarEmission.getAllocatedAddress();
2215       });
2216     }
2217     ++I;
2218   }
2219   // Privatize extra loop counters used in loops for ordered(n) clauses.
2220   for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
2221     if (!C->getNumForLoops())
2222       continue;
2223     for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size();
2224          I < E; ++I) {
2225       const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
2226       const auto *VD = cast<VarDecl>(DRE->getDecl());
2227       // Override only those variables that can be captured to avoid re-emission
2228       // of the variables declared within the loops.
2229       if (DRE->refersToEnclosingVariableOrCapture()) {
2230         (void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
2231           return CreateMemTemp(DRE->getType(), VD->getName());
2232         });
2233       }
2234     }
2235   }
2236 }
2237 
2238 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
2239                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
2240                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
2241   if (!CGF.HaveInsertPoint())
2242     return;
2243   {
2244     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
2245     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
2246     (void)PreCondScope.Privatize();
2247     // Get initial values of real counters.
2248     for (const Expr *I : S.inits()) {
2249       CGF.EmitIgnoredExpr(I);
2250     }
2251   }
2252   // Create temp loop control variables with their init values to support
2253   // non-rectangular loops.
2254   CodeGenFunction::OMPMapVars PreCondVars;
2255   for (const Expr * E: S.dependent_counters()) {
2256     if (!E)
2257       continue;
2258     assert(!E->getType().getNonReferenceType()->isRecordType() &&
2259            "dependent counter must not be an iterator.");
2260     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2261     Address CounterAddr =
2262         CGF.CreateMemTemp(VD->getType().getNonReferenceType());
2263     (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr);
2264   }
2265   (void)PreCondVars.apply(CGF);
2266   for (const Expr *E : S.dependent_inits()) {
2267     if (!E)
2268       continue;
2269     CGF.EmitIgnoredExpr(E);
2270   }
2271   // Check that loop is executed at least one time.
2272   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
2273   PreCondVars.restore(CGF);
2274 }
2275 
2276 void CodeGenFunction::EmitOMPLinearClause(
2277     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
2278   if (!HaveInsertPoint())
2279     return;
2280   llvm::DenseSet<const VarDecl *> SIMDLCVs;
2281   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
2282     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
2283     for (const Expr *C : LoopDirective->counters()) {
2284       SIMDLCVs.insert(
2285           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
2286     }
2287   }
2288   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2289     auto CurPrivate = C->privates().begin();
2290     for (const Expr *E : C->varlists()) {
2291       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2292       const auto *PrivateVD =
2293           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
2294       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
2295         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
2296           // Emit private VarDecl with copy init.
2297           EmitVarDecl(*PrivateVD);
2298           return GetAddrOfLocalVar(PrivateVD);
2299         });
2300         assert(IsRegistered && "linear var already registered as private");
2301         // Silence the warning about unused variable.
2302         (void)IsRegistered;
2303       } else {
2304         EmitVarDecl(*PrivateVD);
2305       }
2306       ++CurPrivate;
2307     }
2308   }
2309 }
2310 
2311 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
2312                                      const OMPExecutableDirective &D) {
2313   if (!CGF.HaveInsertPoint())
2314     return;
2315   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
2316     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
2317                                  /*ignoreResult=*/true);
2318     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
2319     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
2320     // In presence of finite 'safelen', it may be unsafe to mark all
2321     // the memory instructions parallel, because loop-carried
2322     // dependences of 'safelen' iterations are possible.
2323     CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
2324   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
2325     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
2326                                  /*ignoreResult=*/true);
2327     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
2328     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
2329     // In presence of finite 'safelen', it may be unsafe to mark all
2330     // the memory instructions parallel, because loop-carried
2331     // dependences of 'safelen' iterations are possible.
2332     CGF.LoopStack.setParallel(/*Enable=*/false);
2333   }
2334 }
2335 
2336 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) {
2337   // Walk clauses and process safelen/lastprivate.
2338   LoopStack.setParallel(/*Enable=*/true);
2339   LoopStack.setVectorizeEnable();
2340   emitSimdlenSafelenClause(*this, D);
2341   if (const auto *C = D.getSingleClause<OMPOrderClause>())
2342     if (C->getKind() == OMPC_ORDER_concurrent)
2343       LoopStack.setParallel(/*Enable=*/true);
2344   if ((D.getDirectiveKind() == OMPD_simd ||
2345        (getLangOpts().OpenMPSimd &&
2346         isOpenMPSimdDirective(D.getDirectiveKind()))) &&
2347       llvm::any_of(D.getClausesOfKind<OMPReductionClause>(),
2348                    [](const OMPReductionClause *C) {
2349                      return C->getModifier() == OMPC_REDUCTION_inscan;
2350                    }))
2351     // Disable parallel access in case of prefix sum.
2352     LoopStack.setParallel(/*Enable=*/false);
2353 }
2354 
2355 void CodeGenFunction::EmitOMPSimdFinal(
2356     const OMPLoopDirective &D,
2357     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
2358   if (!HaveInsertPoint())
2359     return;
2360   llvm::BasicBlock *DoneBB = nullptr;
2361   auto IC = D.counters().begin();
2362   auto IPC = D.private_counters().begin();
2363   for (const Expr *F : D.finals()) {
2364     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
2365     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
2366     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
2367     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
2368         OrigVD->hasGlobalStorage() || CED) {
2369       if (!DoneBB) {
2370         if (llvm::Value *Cond = CondGen(*this)) {
2371           // If the first post-update expression is found, emit conditional
2372           // block if it was requested.
2373           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
2374           DoneBB = createBasicBlock(".omp.final.done");
2375           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
2376           EmitBlock(ThenBB);
2377         }
2378       }
2379       Address OrigAddr = Address::invalid();
2380       if (CED) {
2381         OrigAddr =
2382             EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this);
2383       } else {
2384         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD),
2385                         /*RefersToEnclosingVariableOrCapture=*/false,
2386                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
2387         OrigAddr = EmitLValue(&DRE).getAddress(*this);
2388       }
2389       OMPPrivateScope VarScope(*this);
2390       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
2391       (void)VarScope.Privatize();
2392       EmitIgnoredExpr(F);
2393     }
2394     ++IC;
2395     ++IPC;
2396   }
2397   if (DoneBB)
2398     EmitBlock(DoneBB, /*IsFinished=*/true);
2399 }
2400 
2401 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
2402                                          const OMPLoopDirective &S,
2403                                          CodeGenFunction::JumpDest LoopExit) {
2404   CGF.EmitOMPLoopBody(S, LoopExit);
2405   CGF.EmitStopPoint(&S);
2406 }
2407 
2408 /// Emit a helper variable and return corresponding lvalue.
2409 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
2410                                const DeclRefExpr *Helper) {
2411   auto VDecl = cast<VarDecl>(Helper->getDecl());
2412   CGF.EmitVarDecl(*VDecl);
2413   return CGF.EmitLValue(Helper);
2414 }
2415 
2416 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S,
2417                                const RegionCodeGenTy &SimdInitGen,
2418                                const RegionCodeGenTy &BodyCodeGen) {
2419   auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF,
2420                                                     PrePostActionTy &) {
2421     CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S);
2422     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
2423     SimdInitGen(CGF);
2424 
2425     BodyCodeGen(CGF);
2426   };
2427   auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
2428     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
2429     CGF.LoopStack.setVectorizeEnable(/*Enable=*/false);
2430 
2431     BodyCodeGen(CGF);
2432   };
2433   const Expr *IfCond = nullptr;
2434   if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2435     for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2436       if (CGF.getLangOpts().OpenMP >= 50 &&
2437           (C->getNameModifier() == OMPD_unknown ||
2438            C->getNameModifier() == OMPD_simd)) {
2439         IfCond = C->getCondition();
2440         break;
2441       }
2442     }
2443   }
2444   if (IfCond) {
2445     CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2446   } else {
2447     RegionCodeGenTy ThenRCG(ThenGen);
2448     ThenRCG(CGF);
2449   }
2450 }
2451 
2452 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
2453                               PrePostActionTy &Action) {
2454   Action.Enter(CGF);
2455   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
2456          "Expected simd directive");
2457   OMPLoopScope PreInitScope(CGF, S);
2458   // if (PreCond) {
2459   //   for (IV in 0..LastIteration) BODY;
2460   //   <Final counter/linear vars updates>;
2461   // }
2462   //
2463   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
2464       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
2465       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
2466     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2467     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2468   }
2469 
2470   // Emit: if (PreCond) - begin.
2471   // If the condition constant folds and can be elided, avoid emitting the
2472   // whole loop.
2473   bool CondConstant;
2474   llvm::BasicBlock *ContBlock = nullptr;
2475   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2476     if (!CondConstant)
2477       return;
2478   } else {
2479     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
2480     ContBlock = CGF.createBasicBlock("simd.if.end");
2481     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
2482                 CGF.getProfileCount(&S));
2483     CGF.EmitBlock(ThenBlock);
2484     CGF.incrementProfileCounter(&S);
2485   }
2486 
2487   // Emit the loop iteration variable.
2488   const Expr *IVExpr = S.getIterationVariable();
2489   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
2490   CGF.EmitVarDecl(*IVDecl);
2491   CGF.EmitIgnoredExpr(S.getInit());
2492 
2493   // Emit the iterations count variable.
2494   // If it is not a variable, Sema decided to calculate iterations count on
2495   // each iteration (e.g., it is foldable into a constant).
2496   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2497     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2498     // Emit calculation of the iterations count.
2499     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
2500   }
2501 
2502   emitAlignedClause(CGF, S);
2503   (void)CGF.EmitOMPLinearClauseInit(S);
2504   {
2505     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2506     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
2507     CGF.EmitOMPLinearClause(S, LoopScope);
2508     CGF.EmitOMPPrivateClause(S, LoopScope);
2509     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2510     CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
2511         CGF, S, CGF.EmitLValue(S.getIterationVariable()));
2512     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2513     (void)LoopScope.Privatize();
2514     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2515       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
2516 
2517     emitCommonSimdLoop(
2518         CGF, S,
2519         [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2520           CGF.EmitOMPSimdInit(S);
2521         },
2522         [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2523           CGF.EmitOMPInnerLoop(
2524               S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
2525               [&S](CodeGenFunction &CGF) {
2526                 emitOMPLoopBodyWithStopPoint(CGF, S,
2527                                              CodeGenFunction::JumpDest());
2528               },
2529               [](CodeGenFunction &) {});
2530         });
2531     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
2532     // Emit final copy of the lastprivate variables at the end of loops.
2533     if (HasLastprivateClause)
2534       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
2535     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
2536     emitPostUpdateForReductionClause(CGF, S,
2537                                      [](CodeGenFunction &) { return nullptr; });
2538   }
2539   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
2540   // Emit: if (PreCond) - end.
2541   if (ContBlock) {
2542     CGF.EmitBranch(ContBlock);
2543     CGF.EmitBlock(ContBlock, true);
2544   }
2545 }
2546 
2547 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
2548   ParentLoopDirectiveForScanRegion ScanRegion(*this, S);
2549   OMPFirstScanLoop = true;
2550   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2551     emitOMPSimdRegion(CGF, S, Action);
2552   };
2553   {
2554     auto LPCRegion =
2555         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
2556     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2557     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2558   }
2559   // Check for outer lastprivate conditional update.
2560   checkForLastprivateConditionalUpdate(*this, S);
2561 }
2562 
2563 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) {
2564   // Emit the de-sugared statement.
2565   OMPTransformDirectiveScopeRAII TileScope(*this, &S);
2566   EmitStmt(S.getTransformedStmt());
2567 }
2568 
2569 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) {
2570   // This function is only called if the unrolled loop is not consumed by any
2571   // other loop-associated construct. Such a loop-associated construct will have
2572   // used the transformed AST.
2573 
2574   // Set the unroll metadata for the next emitted loop.
2575   LoopStack.setUnrollState(LoopAttributes::Enable);
2576 
2577   if (S.hasClausesOfKind<OMPFullClause>()) {
2578     LoopStack.setUnrollState(LoopAttributes::Full);
2579   } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) {
2580     if (Expr *FactorExpr = PartialClause->getFactor()) {
2581       uint64_t Factor =
2582           FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue();
2583       assert(Factor >= 1 && "Only positive factors are valid");
2584       LoopStack.setUnrollCount(Factor);
2585     }
2586   }
2587 
2588   EmitStmt(S.getAssociatedStmt());
2589 }
2590 
2591 void CodeGenFunction::EmitOMPOuterLoop(
2592     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
2593     CodeGenFunction::OMPPrivateScope &LoopScope,
2594     const CodeGenFunction::OMPLoopArguments &LoopArgs,
2595     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
2596     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
2597   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2598 
2599   const Expr *IVExpr = S.getIterationVariable();
2600   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2601   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2602 
2603   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
2604 
2605   // Start the loop with a block that tests the condition.
2606   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
2607   EmitBlock(CondBlock);
2608   const SourceRange R = S.getSourceRange();
2609   OMPLoopNestStack.clear();
2610   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
2611                  SourceLocToDebugLoc(R.getEnd()));
2612 
2613   llvm::Value *BoolCondVal = nullptr;
2614   if (!DynamicOrOrdered) {
2615     // UB = min(UB, GlobalUB) or
2616     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
2617     // 'distribute parallel for')
2618     EmitIgnoredExpr(LoopArgs.EUB);
2619     // IV = LB
2620     EmitIgnoredExpr(LoopArgs.Init);
2621     // IV < UB
2622     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
2623   } else {
2624     BoolCondVal =
2625         RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
2626                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
2627   }
2628 
2629   // If there are any cleanups between here and the loop-exit scope,
2630   // create a block to stage a loop exit along.
2631   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
2632   if (LoopScope.requiresCleanups())
2633     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
2634 
2635   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
2636   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
2637   if (ExitBlock != LoopExit.getBlock()) {
2638     EmitBlock(ExitBlock);
2639     EmitBranchThroughCleanup(LoopExit);
2640   }
2641   EmitBlock(LoopBody);
2642 
2643   // Emit "IV = LB" (in case of static schedule, we have already calculated new
2644   // LB for loop condition and emitted it above).
2645   if (DynamicOrOrdered)
2646     EmitIgnoredExpr(LoopArgs.Init);
2647 
2648   // Create a block for the increment.
2649   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
2650   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
2651 
2652   emitCommonSimdLoop(
2653       *this, S,
2654       [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) {
2655         // Generate !llvm.loop.parallel metadata for loads and stores for loops
2656         // with dynamic/guided scheduling and without ordered clause.
2657         if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2658           CGF.LoopStack.setParallel(!IsMonotonic);
2659           if (const auto *C = S.getSingleClause<OMPOrderClause>())
2660             if (C->getKind() == OMPC_ORDER_concurrent)
2661               CGF.LoopStack.setParallel(/*Enable=*/true);
2662         } else {
2663           CGF.EmitOMPSimdInit(S);
2664         }
2665       },
2666       [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered,
2667        &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2668         SourceLocation Loc = S.getBeginLoc();
2669         // when 'distribute' is not combined with a 'for':
2670         // while (idx <= UB) { BODY; ++idx; }
2671         // when 'distribute' is combined with a 'for'
2672         // (e.g. 'distribute parallel for')
2673         // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
2674         CGF.EmitOMPInnerLoop(
2675             S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
2676             [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
2677               CodeGenLoop(CGF, S, LoopExit);
2678             },
2679             [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
2680               CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
2681             });
2682       });
2683 
2684   EmitBlock(Continue.getBlock());
2685   BreakContinueStack.pop_back();
2686   if (!DynamicOrOrdered) {
2687     // Emit "LB = LB + Stride", "UB = UB + Stride".
2688     EmitIgnoredExpr(LoopArgs.NextLB);
2689     EmitIgnoredExpr(LoopArgs.NextUB);
2690   }
2691 
2692   EmitBranch(CondBlock);
2693   OMPLoopNestStack.clear();
2694   LoopStack.pop();
2695   // Emit the fall-through block.
2696   EmitBlock(LoopExit.getBlock());
2697 
2698   // Tell the runtime we are done.
2699   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
2700     if (!DynamicOrOrdered)
2701       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2702                                                      S.getDirectiveKind());
2703   };
2704   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2705 }
2706 
2707 void CodeGenFunction::EmitOMPForOuterLoop(
2708     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
2709     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2710     const OMPLoopArguments &LoopArgs,
2711     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2712   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2713 
2714   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
2715   const bool DynamicOrOrdered =
2716       Ordered || RT.isDynamic(ScheduleKind.Schedule);
2717 
2718   assert((Ordered ||
2719           !RT.isStaticNonchunked(ScheduleKind.Schedule,
2720                                  LoopArgs.Chunk != nullptr)) &&
2721          "static non-chunked schedule does not need outer loop");
2722 
2723   // Emit outer loop.
2724   //
2725   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2726   // When schedule(dynamic,chunk_size) is specified, the iterations are
2727   // distributed to threads in the team in chunks as the threads request them.
2728   // Each thread executes a chunk of iterations, then requests another chunk,
2729   // until no chunks remain to be distributed. Each chunk contains chunk_size
2730   // iterations, except for the last chunk to be distributed, which may have
2731   // fewer iterations. When no chunk_size is specified, it defaults to 1.
2732   //
2733   // When schedule(guided,chunk_size) is specified, the iterations are assigned
2734   // to threads in the team in chunks as the executing threads request them.
2735   // Each thread executes a chunk of iterations, then requests another chunk,
2736   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
2737   // each chunk is proportional to the number of unassigned iterations divided
2738   // by the number of threads in the team, decreasing to 1. For a chunk_size
2739   // with value k (greater than 1), the size of each chunk is determined in the
2740   // same way, with the restriction that the chunks do not contain fewer than k
2741   // iterations (except for the last chunk to be assigned, which may have fewer
2742   // than k iterations).
2743   //
2744   // When schedule(auto) is specified, the decision regarding scheduling is
2745   // delegated to the compiler and/or runtime system. The programmer gives the
2746   // implementation the freedom to choose any possible mapping of iterations to
2747   // threads in the team.
2748   //
2749   // When schedule(runtime) is specified, the decision regarding scheduling is
2750   // deferred until run time, and the schedule and chunk size are taken from the
2751   // run-sched-var ICV. If the ICV is set to auto, the schedule is
2752   // implementation defined
2753   //
2754   // while(__kmpc_dispatch_next(&LB, &UB)) {
2755   //   idx = LB;
2756   //   while (idx <= UB) { BODY; ++idx;
2757   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
2758   //   } // inner loop
2759   // }
2760   //
2761   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2762   // When schedule(static, chunk_size) is specified, iterations are divided into
2763   // chunks of size chunk_size, and the chunks are assigned to the threads in
2764   // the team in a round-robin fashion in the order of the thread number.
2765   //
2766   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
2767   //   while (idx <= UB) { BODY; ++idx; } // inner loop
2768   //   LB = LB + ST;
2769   //   UB = UB + ST;
2770   // }
2771   //
2772 
2773   const Expr *IVExpr = S.getIterationVariable();
2774   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2775   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2776 
2777   if (DynamicOrOrdered) {
2778     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
2779         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
2780     llvm::Value *LBVal = DispatchBounds.first;
2781     llvm::Value *UBVal = DispatchBounds.second;
2782     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
2783                                                              LoopArgs.Chunk};
2784     RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
2785                            IVSigned, Ordered, DipatchRTInputValues);
2786   } else {
2787     CGOpenMPRuntime::StaticRTInput StaticInit(
2788         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
2789         LoopArgs.ST, LoopArgs.Chunk);
2790     RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2791                          ScheduleKind, StaticInit);
2792   }
2793 
2794   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
2795                                     const unsigned IVSize,
2796                                     const bool IVSigned) {
2797     if (Ordered) {
2798       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
2799                                                             IVSigned);
2800     }
2801   };
2802 
2803   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
2804                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
2805   OuterLoopArgs.IncExpr = S.getInc();
2806   OuterLoopArgs.Init = S.getInit();
2807   OuterLoopArgs.Cond = S.getCond();
2808   OuterLoopArgs.NextLB = S.getNextLowerBound();
2809   OuterLoopArgs.NextUB = S.getNextUpperBound();
2810   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
2811                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
2812 }
2813 
2814 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
2815                              const unsigned IVSize, const bool IVSigned) {}
2816 
2817 void CodeGenFunction::EmitOMPDistributeOuterLoop(
2818     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
2819     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
2820     const CodeGenLoopTy &CodeGenLoopContent) {
2821 
2822   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2823 
2824   // Emit outer loop.
2825   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
2826   // dynamic
2827   //
2828 
2829   const Expr *IVExpr = S.getIterationVariable();
2830   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2831   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2832 
2833   CGOpenMPRuntime::StaticRTInput StaticInit(
2834       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
2835       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
2836   RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
2837 
2838   // for combined 'distribute' and 'for' the increment expression of distribute
2839   // is stored in DistInc. For 'distribute' alone, it is in Inc.
2840   Expr *IncExpr;
2841   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
2842     IncExpr = S.getDistInc();
2843   else
2844     IncExpr = S.getInc();
2845 
2846   // this routine is shared by 'omp distribute parallel for' and
2847   // 'omp distribute': select the right EUB expression depending on the
2848   // directive
2849   OMPLoopArguments OuterLoopArgs;
2850   OuterLoopArgs.LB = LoopArgs.LB;
2851   OuterLoopArgs.UB = LoopArgs.UB;
2852   OuterLoopArgs.ST = LoopArgs.ST;
2853   OuterLoopArgs.IL = LoopArgs.IL;
2854   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2855   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2856                           ? S.getCombinedEnsureUpperBound()
2857                           : S.getEnsureUpperBound();
2858   OuterLoopArgs.IncExpr = IncExpr;
2859   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2860                            ? S.getCombinedInit()
2861                            : S.getInit();
2862   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2863                            ? S.getCombinedCond()
2864                            : S.getCond();
2865   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2866                              ? S.getCombinedNextLowerBound()
2867                              : S.getNextLowerBound();
2868   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2869                              ? S.getCombinedNextUpperBound()
2870                              : S.getNextUpperBound();
2871 
2872   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2873                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2874                    emitEmptyOrdered);
2875 }
2876 
2877 static std::pair<LValue, LValue>
2878 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2879                                      const OMPExecutableDirective &S) {
2880   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2881   LValue LB =
2882       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2883   LValue UB =
2884       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2885 
2886   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2887   // parallel for') we need to use the 'distribute'
2888   // chunk lower and upper bounds rather than the whole loop iteration
2889   // space. These are parameters to the outlined function for 'parallel'
2890   // and we copy the bounds of the previous schedule into the
2891   // the current ones.
2892   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2893   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2894   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2895       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2896   PrevLBVal = CGF.EmitScalarConversion(
2897       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2898       LS.getIterationVariable()->getType(),
2899       LS.getPrevLowerBoundVariable()->getExprLoc());
2900   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2901       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2902   PrevUBVal = CGF.EmitScalarConversion(
2903       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2904       LS.getIterationVariable()->getType(),
2905       LS.getPrevUpperBoundVariable()->getExprLoc());
2906 
2907   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2908   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2909 
2910   return {LB, UB};
2911 }
2912 
2913 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2914 /// we need to use the LB and UB expressions generated by the worksharing
2915 /// code generation support, whereas in non combined situations we would
2916 /// just emit 0 and the LastIteration expression
2917 /// This function is necessary due to the difference of the LB and UB
2918 /// types for the RT emission routines for 'for_static_init' and
2919 /// 'for_dispatch_init'
2920 static std::pair<llvm::Value *, llvm::Value *>
2921 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2922                                         const OMPExecutableDirective &S,
2923                                         Address LB, Address UB) {
2924   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2925   const Expr *IVExpr = LS.getIterationVariable();
2926   // when implementing a dynamic schedule for a 'for' combined with a
2927   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2928   // is not normalized as each team only executes its own assigned
2929   // distribute chunk
2930   QualType IteratorTy = IVExpr->getType();
2931   llvm::Value *LBVal =
2932       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2933   llvm::Value *UBVal =
2934       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2935   return {LBVal, UBVal};
2936 }
2937 
2938 static void emitDistributeParallelForDistributeInnerBoundParams(
2939     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2940     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2941   const auto &Dir = cast<OMPLoopDirective>(S);
2942   LValue LB =
2943       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2944   llvm::Value *LBCast =
2945       CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)),
2946                                 CGF.SizeTy, /*isSigned=*/false);
2947   CapturedVars.push_back(LBCast);
2948   LValue UB =
2949       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2950 
2951   llvm::Value *UBCast =
2952       CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)),
2953                                 CGF.SizeTy, /*isSigned=*/false);
2954   CapturedVars.push_back(UBCast);
2955 }
2956 
2957 static void
2958 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2959                                  const OMPLoopDirective &S,
2960                                  CodeGenFunction::JumpDest LoopExit) {
2961   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2962                                          PrePostActionTy &Action) {
2963     Action.Enter(CGF);
2964     bool HasCancel = false;
2965     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2966       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2967         HasCancel = D->hasCancel();
2968       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2969         HasCancel = D->hasCancel();
2970       else if (const auto *D =
2971                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2972         HasCancel = D->hasCancel();
2973     }
2974     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2975                                                      HasCancel);
2976     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2977                                emitDistributeParallelForInnerBounds,
2978                                emitDistributeParallelForDispatchBounds);
2979   };
2980 
2981   emitCommonOMPParallelDirective(
2982       CGF, S,
2983       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2984       CGInlinedWorksharingLoop,
2985       emitDistributeParallelForDistributeInnerBoundParams);
2986 }
2987 
2988 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2989     const OMPDistributeParallelForDirective &S) {
2990   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2991     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2992                               S.getDistInc());
2993   };
2994   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2995   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2996 }
2997 
2998 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2999     const OMPDistributeParallelForSimdDirective &S) {
3000   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3001     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
3002                               S.getDistInc());
3003   };
3004   OMPLexicalScope Scope(*this, S, OMPD_parallel);
3005   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
3006 }
3007 
3008 void CodeGenFunction::EmitOMPDistributeSimdDirective(
3009     const OMPDistributeSimdDirective &S) {
3010   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3011     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
3012   };
3013   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3014   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
3015 }
3016 
3017 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
3018     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
3019   // Emit SPMD target parallel for region as a standalone region.
3020   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3021     emitOMPSimdRegion(CGF, S, Action);
3022   };
3023   llvm::Function *Fn;
3024   llvm::Constant *Addr;
3025   // Emit target region as a standalone region.
3026   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3027       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
3028   assert(Fn && Addr && "Target device function emission failed.");
3029 }
3030 
3031 void CodeGenFunction::EmitOMPTargetSimdDirective(
3032     const OMPTargetSimdDirective &S) {
3033   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3034     emitOMPSimdRegion(CGF, S, Action);
3035   };
3036   emitCommonOMPTargetDirective(*this, S, CodeGen);
3037 }
3038 
3039 namespace {
3040   struct ScheduleKindModifiersTy {
3041     OpenMPScheduleClauseKind Kind;
3042     OpenMPScheduleClauseModifier M1;
3043     OpenMPScheduleClauseModifier M2;
3044     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
3045                             OpenMPScheduleClauseModifier M1,
3046                             OpenMPScheduleClauseModifier M2)
3047         : Kind(Kind), M1(M1), M2(M2) {}
3048   };
3049 } // namespace
3050 
3051 bool CodeGenFunction::EmitOMPWorksharingLoop(
3052     const OMPLoopDirective &S, Expr *EUB,
3053     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3054     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
3055   // Emit the loop iteration variable.
3056   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3057   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3058   EmitVarDecl(*IVDecl);
3059 
3060   // Emit the iterations count variable.
3061   // If it is not a variable, Sema decided to calculate iterations count on each
3062   // iteration (e.g., it is foldable into a constant).
3063   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3064     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3065     // Emit calculation of the iterations count.
3066     EmitIgnoredExpr(S.getCalcLastIteration());
3067   }
3068 
3069   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3070 
3071   bool HasLastprivateClause;
3072   // Check pre-condition.
3073   {
3074     OMPLoopScope PreInitScope(*this, S);
3075     // Skip the entire loop if we don't meet the precondition.
3076     // If the condition constant folds and can be elided, avoid emitting the
3077     // whole loop.
3078     bool CondConstant;
3079     llvm::BasicBlock *ContBlock = nullptr;
3080     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3081       if (!CondConstant)
3082         return false;
3083     } else {
3084       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3085       ContBlock = createBasicBlock("omp.precond.end");
3086       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3087                   getProfileCount(&S));
3088       EmitBlock(ThenBlock);
3089       incrementProfileCounter(&S);
3090     }
3091 
3092     RunCleanupsScope DoacrossCleanupScope(*this);
3093     bool Ordered = false;
3094     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
3095       if (OrderedClause->getNumForLoops())
3096         RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
3097       else
3098         Ordered = true;
3099     }
3100 
3101     llvm::DenseSet<const Expr *> EmittedFinals;
3102     emitAlignedClause(*this, S);
3103     bool HasLinears = EmitOMPLinearClauseInit(S);
3104     // Emit helper vars inits.
3105 
3106     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
3107     LValue LB = Bounds.first;
3108     LValue UB = Bounds.second;
3109     LValue ST =
3110         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3111     LValue IL =
3112         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3113 
3114     // Emit 'then' code.
3115     {
3116       OMPPrivateScope LoopScope(*this);
3117       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
3118         // Emit implicit barrier to synchronize threads and avoid data races on
3119         // initialization of firstprivate variables and post-update of
3120         // lastprivate variables.
3121         CGM.getOpenMPRuntime().emitBarrierCall(
3122             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3123             /*ForceSimpleCall=*/true);
3124       }
3125       EmitOMPPrivateClause(S, LoopScope);
3126       CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
3127           *this, S, EmitLValue(S.getIterationVariable()));
3128       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3129       EmitOMPReductionClauseInit(S, LoopScope);
3130       EmitOMPPrivateLoopCounters(S, LoopScope);
3131       EmitOMPLinearClause(S, LoopScope);
3132       (void)LoopScope.Privatize();
3133       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3134         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
3135 
3136       // Detect the loop schedule kind and chunk.
3137       const Expr *ChunkExpr = nullptr;
3138       OpenMPScheduleTy ScheduleKind;
3139       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
3140         ScheduleKind.Schedule = C->getScheduleKind();
3141         ScheduleKind.M1 = C->getFirstScheduleModifier();
3142         ScheduleKind.M2 = C->getSecondScheduleModifier();
3143         ChunkExpr = C->getChunkSize();
3144       } else {
3145         // Default behaviour for schedule clause.
3146         CGM.getOpenMPRuntime().getDefaultScheduleAndChunk(
3147             *this, S, ScheduleKind.Schedule, ChunkExpr);
3148       }
3149       bool HasChunkSizeOne = false;
3150       llvm::Value *Chunk = nullptr;
3151       if (ChunkExpr) {
3152         Chunk = EmitScalarExpr(ChunkExpr);
3153         Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(),
3154                                      S.getIterationVariable()->getType(),
3155                                      S.getBeginLoc());
3156         Expr::EvalResult Result;
3157         if (ChunkExpr->EvaluateAsInt(Result, getContext())) {
3158           llvm::APSInt EvaluatedChunk = Result.Val.getInt();
3159           HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1);
3160         }
3161       }
3162       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3163       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3164       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
3165       // If the static schedule kind is specified or if the ordered clause is
3166       // specified, and if no monotonic modifier is specified, the effect will
3167       // be as if the monotonic modifier was specified.
3168       bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule,
3169           /* Chunked */ Chunk != nullptr) && HasChunkSizeOne &&
3170           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
3171       bool IsMonotonic =
3172           Ordered ||
3173           (ScheduleKind.Schedule == OMPC_SCHEDULE_static &&
3174            !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic ||
3175              ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) ||
3176           ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
3177           ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
3178       if ((RT.isStaticNonchunked(ScheduleKind.Schedule,
3179                                  /* Chunked */ Chunk != nullptr) ||
3180            StaticChunkedOne) &&
3181           !Ordered) {
3182         JumpDest LoopExit =
3183             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3184         emitCommonSimdLoop(
3185             *this, S,
3186             [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3187               if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3188                 CGF.EmitOMPSimdInit(S);
3189               } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) {
3190                 if (C->getKind() == OMPC_ORDER_concurrent)
3191                   CGF.LoopStack.setParallel(/*Enable=*/true);
3192               }
3193             },
3194             [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk,
3195              &S, ScheduleKind, LoopExit,
3196              &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
3197               // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
3198               // When no chunk_size is specified, the iteration space is divided
3199               // into chunks that are approximately equal in size, and at most
3200               // one chunk is distributed to each thread. Note that the size of
3201               // the chunks is unspecified in this case.
3202               CGOpenMPRuntime::StaticRTInput StaticInit(
3203                   IVSize, IVSigned, Ordered, IL.getAddress(CGF),
3204                   LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF),
3205                   StaticChunkedOne ? Chunk : nullptr);
3206               CGF.CGM.getOpenMPRuntime().emitForStaticInit(
3207                   CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind,
3208                   StaticInit);
3209               // UB = min(UB, GlobalUB);
3210               if (!StaticChunkedOne)
3211                 CGF.EmitIgnoredExpr(S.getEnsureUpperBound());
3212               // IV = LB;
3213               CGF.EmitIgnoredExpr(S.getInit());
3214               // For unchunked static schedule generate:
3215               //
3216               // while (idx <= UB) {
3217               //   BODY;
3218               //   ++idx;
3219               // }
3220               //
3221               // For static schedule with chunk one:
3222               //
3223               // while (IV <= PrevUB) {
3224               //   BODY;
3225               //   IV += ST;
3226               // }
3227               CGF.EmitOMPInnerLoop(
3228                   S, LoopScope.requiresCleanups(),
3229                   StaticChunkedOne ? S.getCombinedParForInDistCond()
3230                                    : S.getCond(),
3231                   StaticChunkedOne ? S.getDistInc() : S.getInc(),
3232                   [&S, LoopExit](CodeGenFunction &CGF) {
3233                     emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit);
3234                   },
3235                   [](CodeGenFunction &) {});
3236             });
3237         EmitBlock(LoopExit.getBlock());
3238         // Tell the runtime we are done.
3239         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
3240           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
3241                                                          S.getDirectiveKind());
3242         };
3243         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
3244       } else {
3245         // Emit the outer loop, which requests its work chunk [LB..UB] from
3246         // runtime and runs the inner loop to process it.
3247         const OMPLoopArguments LoopArguments(
3248             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
3249             IL.getAddress(*this), Chunk, EUB);
3250         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
3251                             LoopArguments, CGDispatchBounds);
3252       }
3253       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3254         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3255           return CGF.Builder.CreateIsNotNull(
3256               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3257         });
3258       }
3259       EmitOMPReductionClauseFinal(
3260           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
3261                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
3262                  : /*Parallel only*/ OMPD_parallel);
3263       // Emit post-update of the reduction variables if IsLastIter != 0.
3264       emitPostUpdateForReductionClause(
3265           *this, S, [IL, &S](CodeGenFunction &CGF) {
3266             return CGF.Builder.CreateIsNotNull(
3267                 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3268           });
3269       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3270       if (HasLastprivateClause)
3271         EmitOMPLastprivateClauseFinal(
3272             S, isOpenMPSimdDirective(S.getDirectiveKind()),
3273             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
3274     }
3275     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
3276       return CGF.Builder.CreateIsNotNull(
3277           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3278     });
3279     DoacrossCleanupScope.ForceCleanup();
3280     // We're now done with the loop, so jump to the continuation block.
3281     if (ContBlock) {
3282       EmitBranch(ContBlock);
3283       EmitBlock(ContBlock, /*IsFinished=*/true);
3284     }
3285   }
3286   return HasLastprivateClause;
3287 }
3288 
3289 /// The following two functions generate expressions for the loop lower
3290 /// and upper bounds in case of static and dynamic (dispatch) schedule
3291 /// of the associated 'for' or 'distribute' loop.
3292 static std::pair<LValue, LValue>
3293 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3294   const auto &LS = cast<OMPLoopDirective>(S);
3295   LValue LB =
3296       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
3297   LValue UB =
3298       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
3299   return {LB, UB};
3300 }
3301 
3302 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
3303 /// consider the lower and upper bound expressions generated by the
3304 /// worksharing loop support, but we use 0 and the iteration space size as
3305 /// constants
3306 static std::pair<llvm::Value *, llvm::Value *>
3307 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
3308                           Address LB, Address UB) {
3309   const auto &LS = cast<OMPLoopDirective>(S);
3310   const Expr *IVExpr = LS.getIterationVariable();
3311   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
3312   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
3313   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
3314   return {LBVal, UBVal};
3315 }
3316 
3317 /// Emits internal temp array declarations for the directive with inscan
3318 /// reductions.
3319 /// The code is the following:
3320 /// \code
3321 /// size num_iters = <num_iters>;
3322 /// <type> buffer[num_iters];
3323 /// \endcode
3324 static void emitScanBasedDirectiveDecls(
3325     CodeGenFunction &CGF, const OMPLoopDirective &S,
3326     llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) {
3327   llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast(
3328       NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false);
3329   SmallVector<const Expr *, 4> Shareds;
3330   SmallVector<const Expr *, 4> Privates;
3331   SmallVector<const Expr *, 4> ReductionOps;
3332   SmallVector<const Expr *, 4> CopyArrayTemps;
3333   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
3334     assert(C->getModifier() == OMPC_REDUCTION_inscan &&
3335            "Only inscan reductions are expected.");
3336     Shareds.append(C->varlist_begin(), C->varlist_end());
3337     Privates.append(C->privates().begin(), C->privates().end());
3338     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
3339     CopyArrayTemps.append(C->copy_array_temps().begin(),
3340                           C->copy_array_temps().end());
3341   }
3342   {
3343     // Emit buffers for each reduction variables.
3344     // ReductionCodeGen is required to emit correctly the code for array
3345     // reductions.
3346     ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps);
3347     unsigned Count = 0;
3348     auto *ITA = CopyArrayTemps.begin();
3349     for (const Expr *IRef : Privates) {
3350       const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
3351       // Emit variably modified arrays, used for arrays/array sections
3352       // reductions.
3353       if (PrivateVD->getType()->isVariablyModifiedType()) {
3354         RedCG.emitSharedOrigLValue(CGF, Count);
3355         RedCG.emitAggregateType(CGF, Count);
3356       }
3357       CodeGenFunction::OpaqueValueMapping DimMapping(
3358           CGF,
3359           cast<OpaqueValueExpr>(
3360               cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe())
3361                   ->getSizeExpr()),
3362           RValue::get(OMPScanNumIterations));
3363       // Emit temp buffer.
3364       CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl()));
3365       ++ITA;
3366       ++Count;
3367     }
3368   }
3369 }
3370 
3371 /// Emits the code for the directive with inscan reductions.
3372 /// The code is the following:
3373 /// \code
3374 /// #pragma omp ...
3375 /// for (i: 0..<num_iters>) {
3376 ///   <input phase>;
3377 ///   buffer[i] = red;
3378 /// }
3379 /// #pragma omp master // in parallel region
3380 /// for (int k = 0; k != ceil(log2(num_iters)); ++k)
3381 /// for (size cnt = last_iter; cnt >= pow(2, k); --k)
3382 ///   buffer[i] op= buffer[i-pow(2,k)];
3383 /// #pragma omp barrier // in parallel region
3384 /// #pragma omp ...
3385 /// for (0..<num_iters>) {
3386 ///   red = InclusiveScan ? buffer[i] : buffer[i-1];
3387 ///   <scan phase>;
3388 /// }
3389 /// \endcode
3390 static void emitScanBasedDirective(
3391     CodeGenFunction &CGF, const OMPLoopDirective &S,
3392     llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen,
3393     llvm::function_ref<void(CodeGenFunction &)> FirstGen,
3394     llvm::function_ref<void(CodeGenFunction &)> SecondGen) {
3395   llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast(
3396       NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false);
3397   SmallVector<const Expr *, 4> Privates;
3398   SmallVector<const Expr *, 4> ReductionOps;
3399   SmallVector<const Expr *, 4> LHSs;
3400   SmallVector<const Expr *, 4> RHSs;
3401   SmallVector<const Expr *, 4> CopyArrayElems;
3402   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
3403     assert(C->getModifier() == OMPC_REDUCTION_inscan &&
3404            "Only inscan reductions are expected.");
3405     Privates.append(C->privates().begin(), C->privates().end());
3406     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
3407     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
3408     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
3409     CopyArrayElems.append(C->copy_array_elems().begin(),
3410                           C->copy_array_elems().end());
3411   }
3412   CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S);
3413   {
3414     // Emit loop with input phase:
3415     // #pragma omp ...
3416     // for (i: 0..<num_iters>) {
3417     //   <input phase>;
3418     //   buffer[i] = red;
3419     // }
3420     CGF.OMPFirstScanLoop = true;
3421     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
3422     FirstGen(CGF);
3423   }
3424   // #pragma omp barrier // in parallel region
3425   auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems,
3426                     &ReductionOps,
3427                     &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) {
3428     Action.Enter(CGF);
3429     // Emit prefix reduction:
3430     // #pragma omp master // in parallel region
3431     // for (int k = 0; k <= ceil(log2(n)); ++k)
3432     llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock();
3433     llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body");
3434     llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit");
3435     llvm::Function *F =
3436         CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy);
3437     llvm::Value *Arg =
3438         CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy);
3439     llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg);
3440     F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy);
3441     LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal);
3442     LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy);
3443     llvm::Value *NMin1 = CGF.Builder.CreateNUWSub(
3444         OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1));
3445     auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc());
3446     CGF.EmitBlock(LoopBB);
3447     auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2);
3448     // size pow2k = 1;
3449     auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2);
3450     Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB);
3451     Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB);
3452     // for (size i = n - 1; i >= 2 ^ k; --i)
3453     //   tmp[i] op= tmp[i-pow2k];
3454     llvm::BasicBlock *InnerLoopBB =
3455         CGF.createBasicBlock("omp.inner.log.scan.body");
3456     llvm::BasicBlock *InnerExitBB =
3457         CGF.createBasicBlock("omp.inner.log.scan.exit");
3458     llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K);
3459     CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB);
3460     CGF.EmitBlock(InnerLoopBB);
3461     auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2);
3462     IVal->addIncoming(NMin1, LoopBB);
3463     {
3464       CodeGenFunction::OMPPrivateScope PrivScope(CGF);
3465       auto *ILHS = LHSs.begin();
3466       auto *IRHS = RHSs.begin();
3467       for (const Expr *CopyArrayElem : CopyArrayElems) {
3468         const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
3469         const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
3470         Address LHSAddr = Address::invalid();
3471         {
3472           CodeGenFunction::OpaqueValueMapping IdxMapping(
3473               CGF,
3474               cast<OpaqueValueExpr>(
3475                   cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
3476               RValue::get(IVal));
3477           LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF);
3478         }
3479         PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; });
3480         Address RHSAddr = Address::invalid();
3481         {
3482           llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K);
3483           CodeGenFunction::OpaqueValueMapping IdxMapping(
3484               CGF,
3485               cast<OpaqueValueExpr>(
3486                   cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
3487               RValue::get(OffsetIVal));
3488           RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF);
3489         }
3490         PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; });
3491         ++ILHS;
3492         ++IRHS;
3493       }
3494       PrivScope.Privatize();
3495       CGF.CGM.getOpenMPRuntime().emitReduction(
3496           CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps,
3497           {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown});
3498     }
3499     llvm::Value *NextIVal =
3500         CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1));
3501     IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock());
3502     CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K);
3503     CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB);
3504     CGF.EmitBlock(InnerExitBB);
3505     llvm::Value *Next =
3506         CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1));
3507     Counter->addIncoming(Next, CGF.Builder.GetInsertBlock());
3508     // pow2k <<= 1;
3509     llvm::Value *NextPow2K =
3510         CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true);
3511     Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock());
3512     llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal);
3513     CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB);
3514     auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc());
3515     CGF.EmitBlock(ExitBB);
3516   };
3517   if (isOpenMPParallelDirective(S.getDirectiveKind())) {
3518     CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc());
3519     CGF.CGM.getOpenMPRuntime().emitBarrierCall(
3520         CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3521         /*ForceSimpleCall=*/true);
3522   } else {
3523     RegionCodeGenTy RCG(CodeGen);
3524     RCG(CGF);
3525   }
3526 
3527   CGF.OMPFirstScanLoop = false;
3528   SecondGen(CGF);
3529 }
3530 
3531 static bool emitWorksharingDirective(CodeGenFunction &CGF,
3532                                      const OMPLoopDirective &S,
3533                                      bool HasCancel) {
3534   bool HasLastprivates;
3535   if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(),
3536                    [](const OMPReductionClause *C) {
3537                      return C->getModifier() == OMPC_REDUCTION_inscan;
3538                    })) {
3539     const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) {
3540       CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
3541       OMPLoopScope LoopScope(CGF, S);
3542       return CGF.EmitScalarExpr(S.getNumIterations());
3543     };
3544     const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) {
3545       CodeGenFunction::OMPCancelStackRAII CancelRegion(
3546           CGF, S.getDirectiveKind(), HasCancel);
3547       (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3548                                        emitForLoopBounds,
3549                                        emitDispatchForLoopBounds);
3550       // Emit an implicit barrier at the end.
3551       CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(),
3552                                                  OMPD_for);
3553     };
3554     const auto &&SecondGen = [&S, HasCancel,
3555                               &HasLastprivates](CodeGenFunction &CGF) {
3556       CodeGenFunction::OMPCancelStackRAII CancelRegion(
3557           CGF, S.getDirectiveKind(), HasCancel);
3558       HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3559                                                    emitForLoopBounds,
3560                                                    emitDispatchForLoopBounds);
3561     };
3562     if (!isOpenMPParallelDirective(S.getDirectiveKind()))
3563       emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen);
3564     emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen);
3565   } else {
3566     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
3567                                                      HasCancel);
3568     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3569                                                  emitForLoopBounds,
3570                                                  emitDispatchForLoopBounds);
3571   }
3572   return HasLastprivates;
3573 }
3574 
3575 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) {
3576   if (S.hasCancel())
3577     return false;
3578   for (OMPClause *C : S.clauses())
3579     if (!isa<OMPNowaitClause>(C))
3580       return false;
3581 
3582   return true;
3583 }
3584 
3585 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
3586   bool HasLastprivates = false;
3587   bool UseOMPIRBuilder =
3588       CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S);
3589   auto &&CodeGen = [this, &S, &HasLastprivates,
3590                     UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) {
3591     // Use the OpenMPIRBuilder if enabled.
3592     if (UseOMPIRBuilder) {
3593       // Emit the associated statement and get its loop representation.
3594       const Stmt *Inner = S.getRawStmt();
3595       llvm::CanonicalLoopInfo *CLI =
3596           EmitOMPCollapsedCanonicalLoopNest(Inner, 1);
3597 
3598       bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>();
3599       llvm::OpenMPIRBuilder &OMPBuilder =
3600           CGM.getOpenMPRuntime().getOMPBuilder();
3601       llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
3602           AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
3603       OMPBuilder.createWorkshareLoop(Builder, CLI, AllocaIP, NeedsBarrier);
3604       return;
3605     }
3606 
3607     HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel());
3608   };
3609   {
3610     auto LPCRegion =
3611         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3612     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3613     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
3614                                                 S.hasCancel());
3615   }
3616 
3617   if (!UseOMPIRBuilder) {
3618     // Emit an implicit barrier at the end.
3619     if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
3620       CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
3621   }
3622   // Check for outer lastprivate conditional update.
3623   checkForLastprivateConditionalUpdate(*this, S);
3624 }
3625 
3626 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
3627   bool HasLastprivates = false;
3628   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
3629                                           PrePostActionTy &) {
3630     HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false);
3631   };
3632   {
3633     auto LPCRegion =
3634         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3635     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3636     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
3637   }
3638 
3639   // Emit an implicit barrier at the end.
3640   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
3641     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
3642   // Check for outer lastprivate conditional update.
3643   checkForLastprivateConditionalUpdate(*this, S);
3644 }
3645 
3646 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
3647                                 const Twine &Name,
3648                                 llvm::Value *Init = nullptr) {
3649   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
3650   if (Init)
3651     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
3652   return LVal;
3653 }
3654 
3655 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
3656   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
3657   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
3658   bool HasLastprivates = false;
3659   auto &&CodeGen = [&S, CapturedStmt, CS,
3660                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
3661     const ASTContext &C = CGF.getContext();
3662     QualType KmpInt32Ty =
3663         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
3664     // Emit helper vars inits.
3665     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
3666                                   CGF.Builder.getInt32(0));
3667     llvm::ConstantInt *GlobalUBVal = CS != nullptr
3668                                          ? CGF.Builder.getInt32(CS->size() - 1)
3669                                          : CGF.Builder.getInt32(0);
3670     LValue UB =
3671         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
3672     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
3673                                   CGF.Builder.getInt32(1));
3674     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
3675                                   CGF.Builder.getInt32(0));
3676     // Loop counter.
3677     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
3678     OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
3679     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
3680     OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
3681     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
3682     // Generate condition for loop.
3683     BinaryOperator *Cond = BinaryOperator::Create(
3684         C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary,
3685         S.getBeginLoc(), FPOptionsOverride());
3686     // Increment for loop counter.
3687     UnaryOperator *Inc = UnaryOperator::Create(
3688         C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary,
3689         S.getBeginLoc(), true, FPOptionsOverride());
3690     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
3691       // Iterate through all sections and emit a switch construct:
3692       // switch (IV) {
3693       //   case 0:
3694       //     <SectionStmt[0]>;
3695       //     break;
3696       // ...
3697       //   case <NumSection> - 1:
3698       //     <SectionStmt[<NumSection> - 1]>;
3699       //     break;
3700       // }
3701       // .omp.sections.exit:
3702       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
3703       llvm::SwitchInst *SwitchStmt =
3704           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
3705                                    ExitBB, CS == nullptr ? 1 : CS->size());
3706       if (CS) {
3707         unsigned CaseNumber = 0;
3708         for (const Stmt *SubStmt : CS->children()) {
3709           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
3710           CGF.EmitBlock(CaseBB);
3711           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
3712           CGF.EmitStmt(SubStmt);
3713           CGF.EmitBranch(ExitBB);
3714           ++CaseNumber;
3715         }
3716       } else {
3717         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
3718         CGF.EmitBlock(CaseBB);
3719         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
3720         CGF.EmitStmt(CapturedStmt);
3721         CGF.EmitBranch(ExitBB);
3722       }
3723       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3724     };
3725 
3726     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
3727     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
3728       // Emit implicit barrier to synchronize threads and avoid data races on
3729       // initialization of firstprivate variables and post-update of lastprivate
3730       // variables.
3731       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
3732           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3733           /*ForceSimpleCall=*/true);
3734     }
3735     CGF.EmitOMPPrivateClause(S, LoopScope);
3736     CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV);
3737     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3738     CGF.EmitOMPReductionClauseInit(S, LoopScope);
3739     (void)LoopScope.Privatize();
3740     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3741       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
3742 
3743     // Emit static non-chunked loop.
3744     OpenMPScheduleTy ScheduleKind;
3745     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
3746     CGOpenMPRuntime::StaticRTInput StaticInit(
3747         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF),
3748         LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF));
3749     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
3750         CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
3751     // UB = min(UB, GlobalUB);
3752     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
3753     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
3754         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
3755     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
3756     // IV = LB;
3757     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
3758     // while (idx <= UB) { BODY; ++idx; }
3759     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen,
3760                          [](CodeGenFunction &) {});
3761     // Tell the runtime we are done.
3762     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
3763       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
3764                                                      S.getDirectiveKind());
3765     };
3766     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
3767     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
3768     // Emit post-update of the reduction variables if IsLastIter != 0.
3769     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
3770       return CGF.Builder.CreateIsNotNull(
3771           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3772     });
3773 
3774     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3775     if (HasLastprivates)
3776       CGF.EmitOMPLastprivateClauseFinal(
3777           S, /*NoFinals=*/false,
3778           CGF.Builder.CreateIsNotNull(
3779               CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
3780   };
3781 
3782   bool HasCancel = false;
3783   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
3784     HasCancel = OSD->hasCancel();
3785   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
3786     HasCancel = OPSD->hasCancel();
3787   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
3788   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
3789                                               HasCancel);
3790   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
3791   // clause. Otherwise the barrier will be generated by the codegen for the
3792   // directive.
3793   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
3794     // Emit implicit barrier to synchronize threads and avoid data races on
3795     // initialization of firstprivate variables.
3796     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
3797                                            OMPD_unknown);
3798   }
3799 }
3800 
3801 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
3802   if (CGM.getLangOpts().OpenMPIRBuilder) {
3803     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
3804     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
3805     using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy;
3806 
3807     auto FiniCB = [this](InsertPointTy IP) {
3808       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
3809     };
3810 
3811     const CapturedStmt *ICS = S.getInnermostCapturedStmt();
3812     const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
3813     const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
3814     llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector;
3815     if (CS) {
3816       for (const Stmt *SubStmt : CS->children()) {
3817         auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP,
3818                                          InsertPointTy CodeGenIP,
3819                                          llvm::BasicBlock &FiniBB) {
3820           OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP,
3821                                                          FiniBB);
3822           OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP,
3823                                                  FiniBB);
3824         };
3825         SectionCBVector.push_back(SectionCB);
3826       }
3827     } else {
3828       auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP,
3829                                             InsertPointTy CodeGenIP,
3830                                             llvm::BasicBlock &FiniBB) {
3831         OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
3832         OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP,
3833                                                FiniBB);
3834       };
3835       SectionCBVector.push_back(SectionCB);
3836     }
3837 
3838     // Privatization callback that performs appropriate action for
3839     // shared/private/firstprivate/lastprivate/copyin/... variables.
3840     //
3841     // TODO: This defaults to shared right now.
3842     auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
3843                      llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) {
3844       // The next line is appropriate only for variables (Val) with the
3845       // data-sharing attribute "shared".
3846       ReplVal = &Val;
3847 
3848       return CodeGenIP;
3849     };
3850 
3851     CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP);
3852     CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI);
3853     llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
3854         AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
3855     Builder.restoreIP(OMPBuilder.createSections(
3856         Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(),
3857         S.getSingleClause<OMPNowaitClause>()));
3858     return;
3859   }
3860   {
3861     auto LPCRegion =
3862         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3863     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3864     EmitSections(S);
3865   }
3866   // Emit an implicit barrier at the end.
3867   if (!S.getSingleClause<OMPNowaitClause>()) {
3868     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
3869                                            OMPD_sections);
3870   }
3871   // Check for outer lastprivate conditional update.
3872   checkForLastprivateConditionalUpdate(*this, S);
3873 }
3874 
3875 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
3876   if (CGM.getLangOpts().OpenMPIRBuilder) {
3877     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
3878     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
3879 
3880     const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt();
3881     auto FiniCB = [this](InsertPointTy IP) {
3882       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
3883     };
3884 
3885     auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP,
3886                                                    InsertPointTy CodeGenIP,
3887                                                    llvm::BasicBlock &FiniBB) {
3888       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
3889       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt,
3890                                              CodeGenIP, FiniBB);
3891     };
3892 
3893     LexicalScope Scope(*this, S.getSourceRange());
3894     EmitStopPoint(&S);
3895     Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB));
3896 
3897     return;
3898   }
3899   LexicalScope Scope(*this, S.getSourceRange());
3900   EmitStopPoint(&S);
3901   EmitStmt(S.getAssociatedStmt());
3902 }
3903 
3904 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
3905   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
3906   llvm::SmallVector<const Expr *, 8> DestExprs;
3907   llvm::SmallVector<const Expr *, 8> SrcExprs;
3908   llvm::SmallVector<const Expr *, 8> AssignmentOps;
3909   // Check if there are any 'copyprivate' clauses associated with this
3910   // 'single' construct.
3911   // Build a list of copyprivate variables along with helper expressions
3912   // (<source>, <destination>, <destination>=<source> expressions)
3913   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
3914     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
3915     DestExprs.append(C->destination_exprs().begin(),
3916                      C->destination_exprs().end());
3917     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
3918     AssignmentOps.append(C->assignment_ops().begin(),
3919                          C->assignment_ops().end());
3920   }
3921   // Emit code for 'single' region along with 'copyprivate' clauses
3922   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3923     Action.Enter(CGF);
3924     OMPPrivateScope SingleScope(CGF);
3925     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
3926     CGF.EmitOMPPrivateClause(S, SingleScope);
3927     (void)SingleScope.Privatize();
3928     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3929   };
3930   {
3931     auto LPCRegion =
3932         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3933     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3934     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
3935                                             CopyprivateVars, DestExprs,
3936                                             SrcExprs, AssignmentOps);
3937   }
3938   // Emit an implicit barrier at the end (to avoid data race on firstprivate
3939   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
3940   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
3941     CGM.getOpenMPRuntime().emitBarrierCall(
3942         *this, S.getBeginLoc(),
3943         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
3944   }
3945   // Check for outer lastprivate conditional update.
3946   checkForLastprivateConditionalUpdate(*this, S);
3947 }
3948 
3949 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3950   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3951     Action.Enter(CGF);
3952     CGF.EmitStmt(S.getRawStmt());
3953   };
3954   CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc());
3955 }
3956 
3957 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
3958   if (CGM.getLangOpts().OpenMPIRBuilder) {
3959     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
3960     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
3961 
3962     const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt();
3963 
3964     auto FiniCB = [this](InsertPointTy IP) {
3965       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
3966     };
3967 
3968     auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP,
3969                                                   InsertPointTy CodeGenIP,
3970                                                   llvm::BasicBlock &FiniBB) {
3971       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
3972       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt,
3973                                              CodeGenIP, FiniBB);
3974     };
3975 
3976     LexicalScope Scope(*this, S.getSourceRange());
3977     EmitStopPoint(&S);
3978     Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB));
3979 
3980     return;
3981   }
3982   LexicalScope Scope(*this, S.getSourceRange());
3983   EmitStopPoint(&S);
3984   emitMaster(*this, S);
3985 }
3986 
3987 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3988   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3989     Action.Enter(CGF);
3990     CGF.EmitStmt(S.getRawStmt());
3991   };
3992   Expr *Filter = nullptr;
3993   if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>())
3994     Filter = FilterClause->getThreadID();
3995   CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(),
3996                                               Filter);
3997 }
3998 
3999 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) {
4000   if (CGM.getLangOpts().OpenMPIRBuilder) {
4001     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
4002     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
4003 
4004     const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt();
4005     const Expr *Filter = nullptr;
4006     if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>())
4007       Filter = FilterClause->getThreadID();
4008     llvm::Value *FilterVal = Filter
4009                                  ? EmitScalarExpr(Filter, CGM.Int32Ty)
4010                                  : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0);
4011 
4012     auto FiniCB = [this](InsertPointTy IP) {
4013       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
4014     };
4015 
4016     auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP,
4017                                                   InsertPointTy CodeGenIP,
4018                                                   llvm::BasicBlock &FiniBB) {
4019       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
4020       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt,
4021                                              CodeGenIP, FiniBB);
4022     };
4023 
4024     LexicalScope Scope(*this, S.getSourceRange());
4025     EmitStopPoint(&S);
4026     Builder.restoreIP(
4027         OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal));
4028 
4029     return;
4030   }
4031   LexicalScope Scope(*this, S.getSourceRange());
4032   EmitStopPoint(&S);
4033   emitMasked(*this, S);
4034 }
4035 
4036 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
4037   if (CGM.getLangOpts().OpenMPIRBuilder) {
4038     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
4039     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
4040 
4041     const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt();
4042     const Expr *Hint = nullptr;
4043     if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
4044       Hint = HintClause->getHint();
4045 
4046     // TODO: This is slightly different from what's currently being done in
4047     // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything
4048     // about typing is final.
4049     llvm::Value *HintInst = nullptr;
4050     if (Hint)
4051       HintInst =
4052           Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false);
4053 
4054     auto FiniCB = [this](InsertPointTy IP) {
4055       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
4056     };
4057 
4058     auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP,
4059                                                     InsertPointTy CodeGenIP,
4060                                                     llvm::BasicBlock &FiniBB) {
4061       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
4062       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt,
4063                                              CodeGenIP, FiniBB);
4064     };
4065 
4066     LexicalScope Scope(*this, S.getSourceRange());
4067     EmitStopPoint(&S);
4068     Builder.restoreIP(OMPBuilder.createCritical(
4069         Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(),
4070         HintInst));
4071 
4072     return;
4073   }
4074 
4075   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4076     Action.Enter(CGF);
4077     CGF.EmitStmt(S.getAssociatedStmt());
4078   };
4079   const Expr *Hint = nullptr;
4080   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
4081     Hint = HintClause->getHint();
4082   LexicalScope Scope(*this, S.getSourceRange());
4083   EmitStopPoint(&S);
4084   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
4085                                             S.getDirectiveName().getAsString(),
4086                                             CodeGen, S.getBeginLoc(), Hint);
4087 }
4088 
4089 void CodeGenFunction::EmitOMPParallelForDirective(
4090     const OMPParallelForDirective &S) {
4091   // Emit directive as a combined directive that consists of two implicit
4092   // directives: 'parallel' with 'for' directive.
4093   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4094     Action.Enter(CGF);
4095     (void)emitWorksharingDirective(CGF, S, S.hasCancel());
4096   };
4097   {
4098     if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(),
4099                      [](const OMPReductionClause *C) {
4100                        return C->getModifier() == OMPC_REDUCTION_inscan;
4101                      })) {
4102       const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) {
4103         CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
4104         CGCapturedStmtInfo CGSI(CR_OpenMP);
4105         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI);
4106         OMPLoopScope LoopScope(CGF, S);
4107         return CGF.EmitScalarExpr(S.getNumIterations());
4108       };
4109       emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen);
4110     }
4111     auto LPCRegion =
4112         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
4113     emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
4114                                    emitEmptyBoundParameters);
4115   }
4116   // Check for outer lastprivate conditional update.
4117   checkForLastprivateConditionalUpdate(*this, S);
4118 }
4119 
4120 void CodeGenFunction::EmitOMPParallelForSimdDirective(
4121     const OMPParallelForSimdDirective &S) {
4122   // Emit directive as a combined directive that consists of two implicit
4123   // directives: 'parallel' with 'for' directive.
4124   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4125     Action.Enter(CGF);
4126     (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false);
4127   };
4128   {
4129     if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(),
4130                      [](const OMPReductionClause *C) {
4131                        return C->getModifier() == OMPC_REDUCTION_inscan;
4132                      })) {
4133       const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) {
4134         CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
4135         CGCapturedStmtInfo CGSI(CR_OpenMP);
4136         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI);
4137         OMPLoopScope LoopScope(CGF, S);
4138         return CGF.EmitScalarExpr(S.getNumIterations());
4139       };
4140       emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen);
4141     }
4142     auto LPCRegion =
4143         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
4144     emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen,
4145                                    emitEmptyBoundParameters);
4146   }
4147   // Check for outer lastprivate conditional update.
4148   checkForLastprivateConditionalUpdate(*this, S);
4149 }
4150 
4151 void CodeGenFunction::EmitOMPParallelMasterDirective(
4152     const OMPParallelMasterDirective &S) {
4153   // Emit directive as a combined directive that consists of two implicit
4154   // directives: 'parallel' with 'master' directive.
4155   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4156     Action.Enter(CGF);
4157     OMPPrivateScope PrivateScope(CGF);
4158     bool Copyins = CGF.EmitOMPCopyinClause(S);
4159     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4160     if (Copyins) {
4161       // Emit implicit barrier to synchronize threads and avoid data races on
4162       // propagation master's thread values of threadprivate variables to local
4163       // instances of that variables of all other implicit threads.
4164       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
4165           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
4166           /*ForceSimpleCall=*/true);
4167     }
4168     CGF.EmitOMPPrivateClause(S, PrivateScope);
4169     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4170     (void)PrivateScope.Privatize();
4171     emitMaster(CGF, S);
4172     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
4173   };
4174   {
4175     auto LPCRegion =
4176         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
4177     emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen,
4178                                    emitEmptyBoundParameters);
4179     emitPostUpdateForReductionClause(*this, S,
4180                                      [](CodeGenFunction &) { return nullptr; });
4181   }
4182   // Check for outer lastprivate conditional update.
4183   checkForLastprivateConditionalUpdate(*this, S);
4184 }
4185 
4186 void CodeGenFunction::EmitOMPParallelSectionsDirective(
4187     const OMPParallelSectionsDirective &S) {
4188   // Emit directive as a combined directive that consists of two implicit
4189   // directives: 'parallel' with 'sections' directive.
4190   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4191     Action.Enter(CGF);
4192     CGF.EmitSections(S);
4193   };
4194   {
4195     auto LPCRegion =
4196         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
4197     emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
4198                                    emitEmptyBoundParameters);
4199   }
4200   // Check for outer lastprivate conditional update.
4201   checkForLastprivateConditionalUpdate(*this, S);
4202 }
4203 
4204 namespace {
4205 /// Get the list of variables declared in the context of the untied tasks.
4206 class CheckVarsEscapingUntiedTaskDeclContext final
4207     : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> {
4208   llvm::SmallVector<const VarDecl *, 4> PrivateDecls;
4209 
4210 public:
4211   explicit CheckVarsEscapingUntiedTaskDeclContext() = default;
4212   virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default;
4213   void VisitDeclStmt(const DeclStmt *S) {
4214     if (!S)
4215       return;
4216     // Need to privatize only local vars, static locals can be processed as is.
4217     for (const Decl *D : S->decls()) {
4218       if (const auto *VD = dyn_cast_or_null<VarDecl>(D))
4219         if (VD->hasLocalStorage())
4220           PrivateDecls.push_back(VD);
4221     }
4222   }
4223   void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; }
4224   void VisitCapturedStmt(const CapturedStmt *) { return; }
4225   void VisitLambdaExpr(const LambdaExpr *) { return; }
4226   void VisitBlockExpr(const BlockExpr *) { return; }
4227   void VisitStmt(const Stmt *S) {
4228     if (!S)
4229       return;
4230     for (const Stmt *Child : S->children())
4231       if (Child)
4232         Visit(Child);
4233   }
4234 
4235   /// Swaps list of vars with the provided one.
4236   ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; }
4237 };
4238 } // anonymous namespace
4239 
4240 void CodeGenFunction::EmitOMPTaskBasedDirective(
4241     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
4242     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
4243     OMPTaskDataTy &Data) {
4244   // Emit outlined function for task construct.
4245   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
4246   auto I = CS->getCapturedDecl()->param_begin();
4247   auto PartId = std::next(I);
4248   auto TaskT = std::next(I, 4);
4249   // Check if the task is final
4250   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
4251     // If the condition constant folds and can be elided, try to avoid emitting
4252     // the condition and the dead arm of the if/else.
4253     const Expr *Cond = Clause->getCondition();
4254     bool CondConstant;
4255     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
4256       Data.Final.setInt(CondConstant);
4257     else
4258       Data.Final.setPointer(EvaluateExprAsBool(Cond));
4259   } else {
4260     // By default the task is not final.
4261     Data.Final.setInt(/*IntVal=*/false);
4262   }
4263   // Check if the task has 'priority' clause.
4264   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
4265     const Expr *Prio = Clause->getPriority();
4266     Data.Priority.setInt(/*IntVal=*/true);
4267     Data.Priority.setPointer(EmitScalarConversion(
4268         EmitScalarExpr(Prio), Prio->getType(),
4269         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
4270         Prio->getExprLoc()));
4271   }
4272   // The first function argument for tasks is a thread id, the second one is a
4273   // part id (0 for tied tasks, >=0 for untied task).
4274   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
4275   // Get list of private variables.
4276   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
4277     auto IRef = C->varlist_begin();
4278     for (const Expr *IInit : C->private_copies()) {
4279       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4280       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4281         Data.PrivateVars.push_back(*IRef);
4282         Data.PrivateCopies.push_back(IInit);
4283       }
4284       ++IRef;
4285     }
4286   }
4287   EmittedAsPrivate.clear();
4288   // Get list of firstprivate variables.
4289   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
4290     auto IRef = C->varlist_begin();
4291     auto IElemInitRef = C->inits().begin();
4292     for (const Expr *IInit : C->private_copies()) {
4293       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4294       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4295         Data.FirstprivateVars.push_back(*IRef);
4296         Data.FirstprivateCopies.push_back(IInit);
4297         Data.FirstprivateInits.push_back(*IElemInitRef);
4298       }
4299       ++IRef;
4300       ++IElemInitRef;
4301     }
4302   }
4303   // Get list of lastprivate variables (for taskloops).
4304   llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
4305   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
4306     auto IRef = C->varlist_begin();
4307     auto ID = C->destination_exprs().begin();
4308     for (const Expr *IInit : C->private_copies()) {
4309       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4310       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4311         Data.LastprivateVars.push_back(*IRef);
4312         Data.LastprivateCopies.push_back(IInit);
4313       }
4314       LastprivateDstsOrigs.insert(
4315           std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
4316                          cast<DeclRefExpr>(*IRef)));
4317       ++IRef;
4318       ++ID;
4319     }
4320   }
4321   SmallVector<const Expr *, 4> LHSs;
4322   SmallVector<const Expr *, 4> RHSs;
4323   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
4324     Data.ReductionVars.append(C->varlist_begin(), C->varlist_end());
4325     Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
4326     Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
4327     Data.ReductionOps.append(C->reduction_ops().begin(),
4328                              C->reduction_ops().end());
4329     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4330     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4331   }
4332   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
4333       *this, S.getBeginLoc(), LHSs, RHSs, Data);
4334   // Build list of dependences.
4335   for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
4336     OMPTaskDataTy::DependData &DD =
4337         Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier());
4338     DD.DepExprs.append(C->varlist_begin(), C->varlist_end());
4339   }
4340   // Get list of local vars for untied tasks.
4341   if (!Data.Tied) {
4342     CheckVarsEscapingUntiedTaskDeclContext Checker;
4343     Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt());
4344     Data.PrivateLocals.append(Checker.getPrivateDecls().begin(),
4345                               Checker.getPrivateDecls().end());
4346   }
4347   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
4348                     CapturedRegion](CodeGenFunction &CGF,
4349                                     PrePostActionTy &Action) {
4350     llvm::MapVector<CanonicalDeclPtr<const VarDecl>,
4351                     std::pair<Address, Address>>
4352         UntiedLocalVars;
4353     // Set proper addresses for generated private copies.
4354     OMPPrivateScope Scope(CGF);
4355     llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs;
4356     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
4357         !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) {
4358       enum { PrivatesParam = 2, CopyFnParam = 3 };
4359       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
4360           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
4361       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
4362           CS->getCapturedDecl()->getParam(PrivatesParam)));
4363       // Map privates.
4364       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
4365       llvm::SmallVector<llvm::Value *, 16> CallArgs;
4366       llvm::SmallVector<llvm::Type *, 4> ParamTypes;
4367       CallArgs.push_back(PrivatesPtr);
4368       ParamTypes.push_back(PrivatesPtr->getType());
4369       for (const Expr *E : Data.PrivateVars) {
4370         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4371         Address PrivatePtr = CGF.CreateMemTemp(
4372             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
4373         PrivatePtrs.emplace_back(VD, PrivatePtr);
4374         CallArgs.push_back(PrivatePtr.getPointer());
4375         ParamTypes.push_back(PrivatePtr.getType());
4376       }
4377       for (const Expr *E : Data.FirstprivateVars) {
4378         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4379         Address PrivatePtr =
4380             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4381                               ".firstpriv.ptr.addr");
4382         PrivatePtrs.emplace_back(VD, PrivatePtr);
4383         FirstprivatePtrs.emplace_back(VD, PrivatePtr);
4384         CallArgs.push_back(PrivatePtr.getPointer());
4385         ParamTypes.push_back(PrivatePtr.getType());
4386       }
4387       for (const Expr *E : Data.LastprivateVars) {
4388         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4389         Address PrivatePtr =
4390             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4391                               ".lastpriv.ptr.addr");
4392         PrivatePtrs.emplace_back(VD, PrivatePtr);
4393         CallArgs.push_back(PrivatePtr.getPointer());
4394         ParamTypes.push_back(PrivatePtr.getType());
4395       }
4396       for (const VarDecl *VD : Data.PrivateLocals) {
4397         QualType Ty = VD->getType().getNonReferenceType();
4398         if (VD->getType()->isLValueReferenceType())
4399           Ty = CGF.getContext().getPointerType(Ty);
4400         if (isAllocatableDecl(VD))
4401           Ty = CGF.getContext().getPointerType(Ty);
4402         Address PrivatePtr = CGF.CreateMemTemp(
4403             CGF.getContext().getPointerType(Ty), ".local.ptr.addr");
4404         auto Result = UntiedLocalVars.insert(
4405             std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid())));
4406         // If key exists update in place.
4407         if (Result.second == false)
4408           *Result.first = std::make_pair(
4409               VD, std::make_pair(PrivatePtr, Address::invalid()));
4410         CallArgs.push_back(PrivatePtr.getPointer());
4411         ParamTypes.push_back(PrivatePtr.getType());
4412       }
4413       auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(),
4414                                                ParamTypes, /*isVarArg=*/false);
4415       CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4416           CopyFn, CopyFnTy->getPointerTo());
4417       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
4418           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
4419       for (const auto &Pair : LastprivateDstsOrigs) {
4420         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
4421         DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD),
4422                         /*RefersToEnclosingVariableOrCapture=*/
4423                             CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
4424                         Pair.second->getType(), VK_LValue,
4425                         Pair.second->getExprLoc());
4426         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
4427           return CGF.EmitLValue(&DRE).getAddress(CGF);
4428         });
4429       }
4430       for (const auto &Pair : PrivatePtrs) {
4431         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4432                             CGF.getContext().getDeclAlign(Pair.first));
4433         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
4434       }
4435       // Adjust mapping for internal locals by mapping actual memory instead of
4436       // a pointer to this memory.
4437       for (auto &Pair : UntiedLocalVars) {
4438         if (isAllocatableDecl(Pair.first)) {
4439           llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first);
4440           Address Replacement(Ptr, CGF.getPointerAlign());
4441           Pair.second.first = Replacement;
4442           Ptr = CGF.Builder.CreateLoad(Replacement);
4443           Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first));
4444           Pair.second.second = Replacement;
4445         } else {
4446           llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first);
4447           Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first));
4448           Pair.second.first = Replacement;
4449         }
4450       }
4451     }
4452     if (Data.Reductions) {
4453       OMPPrivateScope FirstprivateScope(CGF);
4454       for (const auto &Pair : FirstprivatePtrs) {
4455         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4456                             CGF.getContext().getDeclAlign(Pair.first));
4457         FirstprivateScope.addPrivate(Pair.first,
4458                                      [Replacement]() { return Replacement; });
4459       }
4460       (void)FirstprivateScope.Privatize();
4461       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
4462       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars,
4463                              Data.ReductionCopies, Data.ReductionOps);
4464       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
4465           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
4466       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
4467         RedCG.emitSharedOrigLValue(CGF, Cnt);
4468         RedCG.emitAggregateType(CGF, Cnt);
4469         // FIXME: This must removed once the runtime library is fixed.
4470         // Emit required threadprivate variables for
4471         // initializer/combiner/finalizer.
4472         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
4473                                                            RedCG, Cnt);
4474         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
4475             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
4476         Replacement =
4477             Address(CGF.EmitScalarConversion(
4478                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
4479                         CGF.getContext().getPointerType(
4480                             Data.ReductionCopies[Cnt]->getType()),
4481                         Data.ReductionCopies[Cnt]->getExprLoc()),
4482                     Replacement.getAlignment());
4483         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
4484         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
4485                          [Replacement]() { return Replacement; });
4486       }
4487     }
4488     // Privatize all private variables except for in_reduction items.
4489     (void)Scope.Privatize();
4490     SmallVector<const Expr *, 4> InRedVars;
4491     SmallVector<const Expr *, 4> InRedPrivs;
4492     SmallVector<const Expr *, 4> InRedOps;
4493     SmallVector<const Expr *, 4> TaskgroupDescriptors;
4494     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
4495       auto IPriv = C->privates().begin();
4496       auto IRed = C->reduction_ops().begin();
4497       auto ITD = C->taskgroup_descriptors().begin();
4498       for (const Expr *Ref : C->varlists()) {
4499         InRedVars.emplace_back(Ref);
4500         InRedPrivs.emplace_back(*IPriv);
4501         InRedOps.emplace_back(*IRed);
4502         TaskgroupDescriptors.emplace_back(*ITD);
4503         std::advance(IPriv, 1);
4504         std::advance(IRed, 1);
4505         std::advance(ITD, 1);
4506       }
4507     }
4508     // Privatize in_reduction items here, because taskgroup descriptors must be
4509     // privatized earlier.
4510     OMPPrivateScope InRedScope(CGF);
4511     if (!InRedVars.empty()) {
4512       ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps);
4513       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
4514         RedCG.emitSharedOrigLValue(CGF, Cnt);
4515         RedCG.emitAggregateType(CGF, Cnt);
4516         // The taskgroup descriptor variable is always implicit firstprivate and
4517         // privatized already during processing of the firstprivates.
4518         // FIXME: This must removed once the runtime library is fixed.
4519         // Emit required threadprivate variables for
4520         // initializer/combiner/finalizer.
4521         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
4522                                                            RedCG, Cnt);
4523         llvm::Value *ReductionsPtr;
4524         if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) {
4525           ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr),
4526                                                TRExpr->getExprLoc());
4527         } else {
4528           ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4529         }
4530         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
4531             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
4532         Replacement = Address(
4533             CGF.EmitScalarConversion(
4534                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
4535                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
4536                 InRedPrivs[Cnt]->getExprLoc()),
4537             Replacement.getAlignment());
4538         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
4539         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
4540                               [Replacement]() { return Replacement; });
4541       }
4542     }
4543     (void)InRedScope.Privatize();
4544 
4545     CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF,
4546                                                              UntiedLocalVars);
4547     Action.Enter(CGF);
4548     BodyGen(CGF);
4549   };
4550   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
4551       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
4552       Data.NumberOfParts);
4553   OMPLexicalScope Scope(*this, S, llvm::None,
4554                         !isOpenMPParallelDirective(S.getDirectiveKind()) &&
4555                             !isOpenMPSimdDirective(S.getDirectiveKind()));
4556   TaskGen(*this, OutlinedFn, Data);
4557 }
4558 
4559 static ImplicitParamDecl *
4560 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
4561                                   QualType Ty, CapturedDecl *CD,
4562                                   SourceLocation Loc) {
4563   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
4564                                            ImplicitParamDecl::Other);
4565   auto *OrigRef = DeclRefExpr::Create(
4566       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
4567       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
4568   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
4569                                               ImplicitParamDecl::Other);
4570   auto *PrivateRef = DeclRefExpr::Create(
4571       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
4572       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
4573   QualType ElemType = C.getBaseElementType(Ty);
4574   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
4575                                            ImplicitParamDecl::Other);
4576   auto *InitRef = DeclRefExpr::Create(
4577       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
4578       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
4579   PrivateVD->setInitStyle(VarDecl::CInit);
4580   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
4581                                               InitRef, /*BasePath=*/nullptr,
4582                                               VK_PRValue, FPOptionsOverride()));
4583   Data.FirstprivateVars.emplace_back(OrigRef);
4584   Data.FirstprivateCopies.emplace_back(PrivateRef);
4585   Data.FirstprivateInits.emplace_back(InitRef);
4586   return OrigVD;
4587 }
4588 
4589 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
4590     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
4591     OMPTargetDataInfo &InputInfo) {
4592   // Emit outlined function for task construct.
4593   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
4594   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4595   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4596   auto I = CS->getCapturedDecl()->param_begin();
4597   auto PartId = std::next(I);
4598   auto TaskT = std::next(I, 4);
4599   OMPTaskDataTy Data;
4600   // The task is not final.
4601   Data.Final.setInt(/*IntVal=*/false);
4602   // Get list of firstprivate variables.
4603   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
4604     auto IRef = C->varlist_begin();
4605     auto IElemInitRef = C->inits().begin();
4606     for (auto *IInit : C->private_copies()) {
4607       Data.FirstprivateVars.push_back(*IRef);
4608       Data.FirstprivateCopies.push_back(IInit);
4609       Data.FirstprivateInits.push_back(*IElemInitRef);
4610       ++IRef;
4611       ++IElemInitRef;
4612     }
4613   }
4614   OMPPrivateScope TargetScope(*this);
4615   VarDecl *BPVD = nullptr;
4616   VarDecl *PVD = nullptr;
4617   VarDecl *SVD = nullptr;
4618   VarDecl *MVD = nullptr;
4619   if (InputInfo.NumberOfTargetItems > 0) {
4620     auto *CD = CapturedDecl::Create(
4621         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
4622     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
4623     QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType(
4624         getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal,
4625         /*IndexTypeQuals=*/0);
4626     BPVD = createImplicitFirstprivateForType(
4627         getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4628     PVD = createImplicitFirstprivateForType(
4629         getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4630     QualType SizesType = getContext().getConstantArrayType(
4631         getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1),
4632         ArrSize, nullptr, ArrayType::Normal,
4633         /*IndexTypeQuals=*/0);
4634     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
4635                                             S.getBeginLoc());
4636     TargetScope.addPrivate(
4637         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
4638     TargetScope.addPrivate(PVD,
4639                            [&InputInfo]() { return InputInfo.PointersArray; });
4640     TargetScope.addPrivate(SVD,
4641                            [&InputInfo]() { return InputInfo.SizesArray; });
4642     // If there is no user-defined mapper, the mapper array will be nullptr. In
4643     // this case, we don't need to privatize it.
4644     if (!dyn_cast_or_null<llvm::ConstantPointerNull>(
4645             InputInfo.MappersArray.getPointer())) {
4646       MVD = createImplicitFirstprivateForType(
4647           getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4648       TargetScope.addPrivate(MVD,
4649                              [&InputInfo]() { return InputInfo.MappersArray; });
4650     }
4651   }
4652   (void)TargetScope.Privatize();
4653   // Build list of dependences.
4654   for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
4655     OMPTaskDataTy::DependData &DD =
4656         Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier());
4657     DD.DepExprs.append(C->varlist_begin(), C->varlist_end());
4658   }
4659   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD,
4660                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
4661     // Set proper addresses for generated private copies.
4662     OMPPrivateScope Scope(CGF);
4663     if (!Data.FirstprivateVars.empty()) {
4664       enum { PrivatesParam = 2, CopyFnParam = 3 };
4665       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
4666           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
4667       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
4668           CS->getCapturedDecl()->getParam(PrivatesParam)));
4669       // Map privates.
4670       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
4671       llvm::SmallVector<llvm::Value *, 16> CallArgs;
4672       llvm::SmallVector<llvm::Type *, 4> ParamTypes;
4673       CallArgs.push_back(PrivatesPtr);
4674       ParamTypes.push_back(PrivatesPtr->getType());
4675       for (const Expr *E : Data.FirstprivateVars) {
4676         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4677         Address PrivatePtr =
4678             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4679                               ".firstpriv.ptr.addr");
4680         PrivatePtrs.emplace_back(VD, PrivatePtr);
4681         CallArgs.push_back(PrivatePtr.getPointer());
4682         ParamTypes.push_back(PrivatePtr.getType());
4683       }
4684       auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(),
4685                                                ParamTypes, /*isVarArg=*/false);
4686       CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4687           CopyFn, CopyFnTy->getPointerTo());
4688       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
4689           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
4690       for (const auto &Pair : PrivatePtrs) {
4691         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4692                             CGF.getContext().getDeclAlign(Pair.first));
4693         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
4694       }
4695     }
4696     // Privatize all private variables except for in_reduction items.
4697     (void)Scope.Privatize();
4698     if (InputInfo.NumberOfTargetItems > 0) {
4699       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
4700           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0);
4701       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
4702           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0);
4703       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
4704           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0);
4705       // If MVD is nullptr, the mapper array is not privatized
4706       if (MVD)
4707         InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP(
4708             CGF.GetAddrOfLocalVar(MVD), /*Index=*/0);
4709     }
4710 
4711     Action.Enter(CGF);
4712     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
4713     BodyGen(CGF);
4714   };
4715   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
4716       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
4717       Data.NumberOfParts);
4718   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
4719   IntegerLiteral IfCond(getContext(), TrueOrFalse,
4720                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
4721                         SourceLocation());
4722 
4723   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
4724                                       SharedsTy, CapturedStruct, &IfCond, Data);
4725 }
4726 
4727 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
4728   // Emit outlined function for task construct.
4729   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
4730   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4731   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4732   const Expr *IfCond = nullptr;
4733   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4734     if (C->getNameModifier() == OMPD_unknown ||
4735         C->getNameModifier() == OMPD_task) {
4736       IfCond = C->getCondition();
4737       break;
4738     }
4739   }
4740 
4741   OMPTaskDataTy Data;
4742   // Check if we should emit tied or untied task.
4743   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
4744   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
4745     CGF.EmitStmt(CS->getCapturedStmt());
4746   };
4747   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
4748                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
4749                             const OMPTaskDataTy &Data) {
4750     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
4751                                             SharedsTy, CapturedStruct, IfCond,
4752                                             Data);
4753   };
4754   auto LPCRegion =
4755       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
4756   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
4757 }
4758 
4759 void CodeGenFunction::EmitOMPTaskyieldDirective(
4760     const OMPTaskyieldDirective &S) {
4761   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
4762 }
4763 
4764 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
4765   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
4766 }
4767 
4768 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
4769   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
4770 }
4771 
4772 void CodeGenFunction::EmitOMPTaskgroupDirective(
4773     const OMPTaskgroupDirective &S) {
4774   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4775     Action.Enter(CGF);
4776     if (const Expr *E = S.getReductionRef()) {
4777       SmallVector<const Expr *, 4> LHSs;
4778       SmallVector<const Expr *, 4> RHSs;
4779       OMPTaskDataTy Data;
4780       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
4781         Data.ReductionVars.append(C->varlist_begin(), C->varlist_end());
4782         Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
4783         Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
4784         Data.ReductionOps.append(C->reduction_ops().begin(),
4785                                  C->reduction_ops().end());
4786         LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4787         RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4788       }
4789       llvm::Value *ReductionDesc =
4790           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
4791                                                            LHSs, RHSs, Data);
4792       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4793       CGF.EmitVarDecl(*VD);
4794       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
4795                             /*Volatile=*/false, E->getType());
4796     }
4797     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4798   };
4799   OMPLexicalScope Scope(*this, S, OMPD_unknown);
4800   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
4801 }
4802 
4803 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
4804   llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>()
4805                                 ? llvm::AtomicOrdering::NotAtomic
4806                                 : llvm::AtomicOrdering::AcquireRelease;
4807   CGM.getOpenMPRuntime().emitFlush(
4808       *this,
4809       [&S]() -> ArrayRef<const Expr *> {
4810         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
4811           return llvm::makeArrayRef(FlushClause->varlist_begin(),
4812                                     FlushClause->varlist_end());
4813         return llvm::None;
4814       }(),
4815       S.getBeginLoc(), AO);
4816 }
4817 
4818 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) {
4819   const auto *DO = S.getSingleClause<OMPDepobjClause>();
4820   LValue DOLVal = EmitLValue(DO->getDepobj());
4821   if (const auto *DC = S.getSingleClause<OMPDependClause>()) {
4822     OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(),
4823                                            DC->getModifier());
4824     Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end());
4825     Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause(
4826         *this, Dependencies, DC->getBeginLoc());
4827     EmitStoreOfScalar(DepAddr.getPointer(), DOLVal);
4828     return;
4829   }
4830   if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) {
4831     CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc());
4832     return;
4833   }
4834   if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) {
4835     CGM.getOpenMPRuntime().emitUpdateClause(
4836         *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc());
4837     return;
4838   }
4839 }
4840 
4841 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) {
4842   if (!OMPParentLoopDirectiveForScan)
4843     return;
4844   const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan;
4845   bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>();
4846   SmallVector<const Expr *, 4> Shareds;
4847   SmallVector<const Expr *, 4> Privates;
4848   SmallVector<const Expr *, 4> LHSs;
4849   SmallVector<const Expr *, 4> RHSs;
4850   SmallVector<const Expr *, 4> ReductionOps;
4851   SmallVector<const Expr *, 4> CopyOps;
4852   SmallVector<const Expr *, 4> CopyArrayTemps;
4853   SmallVector<const Expr *, 4> CopyArrayElems;
4854   for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) {
4855     if (C->getModifier() != OMPC_REDUCTION_inscan)
4856       continue;
4857     Shareds.append(C->varlist_begin(), C->varlist_end());
4858     Privates.append(C->privates().begin(), C->privates().end());
4859     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4860     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4861     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
4862     CopyOps.append(C->copy_ops().begin(), C->copy_ops().end());
4863     CopyArrayTemps.append(C->copy_array_temps().begin(),
4864                           C->copy_array_temps().end());
4865     CopyArrayElems.append(C->copy_array_elems().begin(),
4866                           C->copy_array_elems().end());
4867   }
4868   if (ParentDir.getDirectiveKind() == OMPD_simd ||
4869       (getLangOpts().OpenMPSimd &&
4870        isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) {
4871     // For simd directive and simd-based directives in simd only mode, use the
4872     // following codegen:
4873     // int x = 0;
4874     // #pragma omp simd reduction(inscan, +: x)
4875     // for (..) {
4876     //   <first part>
4877     //   #pragma omp scan inclusive(x)
4878     //   <second part>
4879     //  }
4880     // is transformed to:
4881     // int x = 0;
4882     // for (..) {
4883     //   int x_priv = 0;
4884     //   <first part>
4885     //   x = x_priv + x;
4886     //   x_priv = x;
4887     //   <second part>
4888     // }
4889     // and
4890     // int x = 0;
4891     // #pragma omp simd reduction(inscan, +: x)
4892     // for (..) {
4893     //   <first part>
4894     //   #pragma omp scan exclusive(x)
4895     //   <second part>
4896     // }
4897     // to
4898     // int x = 0;
4899     // for (..) {
4900     //   int x_priv = 0;
4901     //   <second part>
4902     //   int temp = x;
4903     //   x = x_priv + x;
4904     //   x_priv = temp;
4905     //   <first part>
4906     // }
4907     llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce");
4908     EmitBranch(IsInclusive
4909                    ? OMPScanReduce
4910                    : BreakContinueStack.back().ContinueBlock.getBlock());
4911     EmitBlock(OMPScanDispatch);
4912     {
4913       // New scope for correct construction/destruction of temp variables for
4914       // exclusive scan.
4915       LexicalScope Scope(*this, S.getSourceRange());
4916       EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock);
4917       EmitBlock(OMPScanReduce);
4918       if (!IsInclusive) {
4919         // Create temp var and copy LHS value to this temp value.
4920         // TMP = LHS;
4921         for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4922           const Expr *PrivateExpr = Privates[I];
4923           const Expr *TempExpr = CopyArrayTemps[I];
4924           EmitAutoVarDecl(
4925               *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl()));
4926           LValue DestLVal = EmitLValue(TempExpr);
4927           LValue SrcLVal = EmitLValue(LHSs[I]);
4928           EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4929                       SrcLVal.getAddress(*this),
4930                       cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4931                       cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4932                       CopyOps[I]);
4933         }
4934       }
4935       CGM.getOpenMPRuntime().emitReduction(
4936           *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps,
4937           {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd});
4938       for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4939         const Expr *PrivateExpr = Privates[I];
4940         LValue DestLVal;
4941         LValue SrcLVal;
4942         if (IsInclusive) {
4943           DestLVal = EmitLValue(RHSs[I]);
4944           SrcLVal = EmitLValue(LHSs[I]);
4945         } else {
4946           const Expr *TempExpr = CopyArrayTemps[I];
4947           DestLVal = EmitLValue(RHSs[I]);
4948           SrcLVal = EmitLValue(TempExpr);
4949         }
4950         EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4951                     SrcLVal.getAddress(*this),
4952                     cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4953                     cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4954                     CopyOps[I]);
4955       }
4956     }
4957     EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock);
4958     OMPScanExitBlock = IsInclusive
4959                            ? BreakContinueStack.back().ContinueBlock.getBlock()
4960                            : OMPScanReduce;
4961     EmitBlock(OMPAfterScanBlock);
4962     return;
4963   }
4964   if (!IsInclusive) {
4965     EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4966     EmitBlock(OMPScanExitBlock);
4967   }
4968   if (OMPFirstScanLoop) {
4969     // Emit buffer[i] = red; at the end of the input phase.
4970     const auto *IVExpr = cast<OMPLoopDirective>(ParentDir)
4971                              .getIterationVariable()
4972                              ->IgnoreParenImpCasts();
4973     LValue IdxLVal = EmitLValue(IVExpr);
4974     llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc());
4975     IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false);
4976     for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4977       const Expr *PrivateExpr = Privates[I];
4978       const Expr *OrigExpr = Shareds[I];
4979       const Expr *CopyArrayElem = CopyArrayElems[I];
4980       OpaqueValueMapping IdxMapping(
4981           *this,
4982           cast<OpaqueValueExpr>(
4983               cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
4984           RValue::get(IdxVal));
4985       LValue DestLVal = EmitLValue(CopyArrayElem);
4986       LValue SrcLVal = EmitLValue(OrigExpr);
4987       EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4988                   SrcLVal.getAddress(*this),
4989                   cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4990                   cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4991                   CopyOps[I]);
4992     }
4993   }
4994   EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4995   if (IsInclusive) {
4996     EmitBlock(OMPScanExitBlock);
4997     EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4998   }
4999   EmitBlock(OMPScanDispatch);
5000   if (!OMPFirstScanLoop) {
5001     // Emit red = buffer[i]; at the entrance to the scan phase.
5002     const auto *IVExpr = cast<OMPLoopDirective>(ParentDir)
5003                              .getIterationVariable()
5004                              ->IgnoreParenImpCasts();
5005     LValue IdxLVal = EmitLValue(IVExpr);
5006     llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc());
5007     IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false);
5008     llvm::BasicBlock *ExclusiveExitBB = nullptr;
5009     if (!IsInclusive) {
5010       llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec");
5011       ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit");
5012       llvm::Value *Cmp = Builder.CreateIsNull(IdxVal);
5013       Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB);
5014       EmitBlock(ContBB);
5015       // Use idx - 1 iteration for exclusive scan.
5016       IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1));
5017     }
5018     for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
5019       const Expr *PrivateExpr = Privates[I];
5020       const Expr *OrigExpr = Shareds[I];
5021       const Expr *CopyArrayElem = CopyArrayElems[I];
5022       OpaqueValueMapping IdxMapping(
5023           *this,
5024           cast<OpaqueValueExpr>(
5025               cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
5026           RValue::get(IdxVal));
5027       LValue SrcLVal = EmitLValue(CopyArrayElem);
5028       LValue DestLVal = EmitLValue(OrigExpr);
5029       EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
5030                   SrcLVal.getAddress(*this),
5031                   cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
5032                   cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
5033                   CopyOps[I]);
5034     }
5035     if (!IsInclusive) {
5036       EmitBlock(ExclusiveExitBB);
5037     }
5038   }
5039   EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock
5040                                                : OMPAfterScanBlock);
5041   EmitBlock(OMPAfterScanBlock);
5042 }
5043 
5044 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
5045                                             const CodeGenLoopTy &CodeGenLoop,
5046                                             Expr *IncExpr) {
5047   // Emit the loop iteration variable.
5048   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
5049   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
5050   EmitVarDecl(*IVDecl);
5051 
5052   // Emit the iterations count variable.
5053   // If it is not a variable, Sema decided to calculate iterations count on each
5054   // iteration (e.g., it is foldable into a constant).
5055   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
5056     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
5057     // Emit calculation of the iterations count.
5058     EmitIgnoredExpr(S.getCalcLastIteration());
5059   }
5060 
5061   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
5062 
5063   bool HasLastprivateClause = false;
5064   // Check pre-condition.
5065   {
5066     OMPLoopScope PreInitScope(*this, S);
5067     // Skip the entire loop if we don't meet the precondition.
5068     // If the condition constant folds and can be elided, avoid emitting the
5069     // whole loop.
5070     bool CondConstant;
5071     llvm::BasicBlock *ContBlock = nullptr;
5072     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
5073       if (!CondConstant)
5074         return;
5075     } else {
5076       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
5077       ContBlock = createBasicBlock("omp.precond.end");
5078       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
5079                   getProfileCount(&S));
5080       EmitBlock(ThenBlock);
5081       incrementProfileCounter(&S);
5082     }
5083 
5084     emitAlignedClause(*this, S);
5085     // Emit 'then' code.
5086     {
5087       // Emit helper vars inits.
5088 
5089       LValue LB = EmitOMPHelperVar(
5090           *this, cast<DeclRefExpr>(
5091                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
5092                           ? S.getCombinedLowerBoundVariable()
5093                           : S.getLowerBoundVariable())));
5094       LValue UB = EmitOMPHelperVar(
5095           *this, cast<DeclRefExpr>(
5096                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
5097                           ? S.getCombinedUpperBoundVariable()
5098                           : S.getUpperBoundVariable())));
5099       LValue ST =
5100           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
5101       LValue IL =
5102           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
5103 
5104       OMPPrivateScope LoopScope(*this);
5105       if (EmitOMPFirstprivateClause(S, LoopScope)) {
5106         // Emit implicit barrier to synchronize threads and avoid data races
5107         // on initialization of firstprivate variables and post-update of
5108         // lastprivate variables.
5109         CGM.getOpenMPRuntime().emitBarrierCall(
5110             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
5111             /*ForceSimpleCall=*/true);
5112       }
5113       EmitOMPPrivateClause(S, LoopScope);
5114       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
5115           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
5116           !isOpenMPTeamsDirective(S.getDirectiveKind()))
5117         EmitOMPReductionClauseInit(S, LoopScope);
5118       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
5119       EmitOMPPrivateLoopCounters(S, LoopScope);
5120       (void)LoopScope.Privatize();
5121       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
5122         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
5123 
5124       // Detect the distribute schedule kind and chunk.
5125       llvm::Value *Chunk = nullptr;
5126       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
5127       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
5128         ScheduleKind = C->getDistScheduleKind();
5129         if (const Expr *Ch = C->getChunkSize()) {
5130           Chunk = EmitScalarExpr(Ch);
5131           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
5132                                        S.getIterationVariable()->getType(),
5133                                        S.getBeginLoc());
5134         }
5135       } else {
5136         // Default behaviour for dist_schedule clause.
5137         CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk(
5138             *this, S, ScheduleKind, Chunk);
5139       }
5140       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
5141       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
5142 
5143       // OpenMP [2.10.8, distribute Construct, Description]
5144       // If dist_schedule is specified, kind must be static. If specified,
5145       // iterations are divided into chunks of size chunk_size, chunks are
5146       // assigned to the teams of the league in a round-robin fashion in the
5147       // order of the team number. When no chunk_size is specified, the
5148       // iteration space is divided into chunks that are approximately equal
5149       // in size, and at most one chunk is distributed to each team of the
5150       // league. The size of the chunks is unspecified in this case.
5151       bool StaticChunked = RT.isStaticChunked(
5152           ScheduleKind, /* Chunked */ Chunk != nullptr) &&
5153           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
5154       if (RT.isStaticNonchunked(ScheduleKind,
5155                                 /* Chunked */ Chunk != nullptr) ||
5156           StaticChunked) {
5157         CGOpenMPRuntime::StaticRTInput StaticInit(
5158             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this),
5159             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
5160             StaticChunked ? Chunk : nullptr);
5161         RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
5162                                     StaticInit);
5163         JumpDest LoopExit =
5164             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
5165         // UB = min(UB, GlobalUB);
5166         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
5167                             ? S.getCombinedEnsureUpperBound()
5168                             : S.getEnsureUpperBound());
5169         // IV = LB;
5170         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
5171                             ? S.getCombinedInit()
5172                             : S.getInit());
5173 
5174         const Expr *Cond =
5175             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
5176                 ? S.getCombinedCond()
5177                 : S.getCond();
5178 
5179         if (StaticChunked)
5180           Cond = S.getCombinedDistCond();
5181 
5182         // For static unchunked schedules generate:
5183         //
5184         //  1. For distribute alone, codegen
5185         //    while (idx <= UB) {
5186         //      BODY;
5187         //      ++idx;
5188         //    }
5189         //
5190         //  2. When combined with 'for' (e.g. as in 'distribute parallel for')
5191         //    while (idx <= UB) {
5192         //      <CodeGen rest of pragma>(LB, UB);
5193         //      idx += ST;
5194         //    }
5195         //
5196         // For static chunk one schedule generate:
5197         //
5198         // while (IV <= GlobalUB) {
5199         //   <CodeGen rest of pragma>(LB, UB);
5200         //   LB += ST;
5201         //   UB += ST;
5202         //   UB = min(UB, GlobalUB);
5203         //   IV = LB;
5204         // }
5205         //
5206         emitCommonSimdLoop(
5207             *this, S,
5208             [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5209               if (isOpenMPSimdDirective(S.getDirectiveKind()))
5210                 CGF.EmitOMPSimdInit(S);
5211             },
5212             [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop,
5213              StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) {
5214               CGF.EmitOMPInnerLoop(
5215                   S, LoopScope.requiresCleanups(), Cond, IncExpr,
5216                   [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
5217                     CodeGenLoop(CGF, S, LoopExit);
5218                   },
5219                   [&S, StaticChunked](CodeGenFunction &CGF) {
5220                     if (StaticChunked) {
5221                       CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound());
5222                       CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound());
5223                       CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound());
5224                       CGF.EmitIgnoredExpr(S.getCombinedInit());
5225                     }
5226                   });
5227             });
5228         EmitBlock(LoopExit.getBlock());
5229         // Tell the runtime we are done.
5230         RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind());
5231       } else {
5232         // Emit the outer loop, which requests its work chunk [LB..UB] from
5233         // runtime and runs the inner loop to process it.
5234         const OMPLoopArguments LoopArguments = {
5235             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
5236             IL.getAddress(*this), Chunk};
5237         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
5238                                    CodeGenLoop);
5239       }
5240       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
5241         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
5242           return CGF.Builder.CreateIsNotNull(
5243               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
5244         });
5245       }
5246       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
5247           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
5248           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
5249         EmitOMPReductionClauseFinal(S, OMPD_simd);
5250         // Emit post-update of the reduction variables if IsLastIter != 0.
5251         emitPostUpdateForReductionClause(
5252             *this, S, [IL, &S](CodeGenFunction &CGF) {
5253               return CGF.Builder.CreateIsNotNull(
5254                   CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
5255             });
5256       }
5257       // Emit final copy of the lastprivate variables if IsLastIter != 0.
5258       if (HasLastprivateClause) {
5259         EmitOMPLastprivateClauseFinal(
5260             S, /*NoFinals=*/false,
5261             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
5262       }
5263     }
5264 
5265     // We're now done with the loop, so jump to the continuation block.
5266     if (ContBlock) {
5267       EmitBranch(ContBlock);
5268       EmitBlock(ContBlock, true);
5269     }
5270   }
5271 }
5272 
5273 void CodeGenFunction::EmitOMPDistributeDirective(
5274     const OMPDistributeDirective &S) {
5275   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5276     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5277   };
5278   OMPLexicalScope Scope(*this, S, OMPD_unknown);
5279   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
5280 }
5281 
5282 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
5283                                                    const CapturedStmt *S,
5284                                                    SourceLocation Loc) {
5285   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
5286   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
5287   CGF.CapturedStmtInfo = &CapStmtInfo;
5288   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc);
5289   Fn->setDoesNotRecurse();
5290   return Fn;
5291 }
5292 
5293 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
5294   if (S.hasClausesOfKind<OMPDependClause>()) {
5295     assert(!S.hasAssociatedStmt() &&
5296            "No associated statement must be in ordered depend construct.");
5297     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
5298       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
5299     return;
5300   }
5301   const auto *C = S.getSingleClause<OMPSIMDClause>();
5302   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
5303                                  PrePostActionTy &Action) {
5304     const CapturedStmt *CS = S.getInnermostCapturedStmt();
5305     if (C) {
5306       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
5307       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
5308       llvm::Function *OutlinedFn =
5309           emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc());
5310       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
5311                                                       OutlinedFn, CapturedVars);
5312     } else {
5313       Action.Enter(CGF);
5314       CGF.EmitStmt(CS->getCapturedStmt());
5315     }
5316   };
5317   OMPLexicalScope Scope(*this, S, OMPD_unknown);
5318   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
5319 }
5320 
5321 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
5322                                          QualType SrcType, QualType DestType,
5323                                          SourceLocation Loc) {
5324   assert(CGF.hasScalarEvaluationKind(DestType) &&
5325          "DestType must have scalar evaluation kind.");
5326   assert(!Val.isAggregate() && "Must be a scalar or complex.");
5327   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
5328                                                    DestType, Loc)
5329                         : CGF.EmitComplexToScalarConversion(
5330                               Val.getComplexVal(), SrcType, DestType, Loc);
5331 }
5332 
5333 static CodeGenFunction::ComplexPairTy
5334 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
5335                       QualType DestType, SourceLocation Loc) {
5336   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
5337          "DestType must have complex evaluation kind.");
5338   CodeGenFunction::ComplexPairTy ComplexVal;
5339   if (Val.isScalar()) {
5340     // Convert the input element to the element type of the complex.
5341     QualType DestElementType =
5342         DestType->castAs<ComplexType>()->getElementType();
5343     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
5344         Val.getScalarVal(), SrcType, DestElementType, Loc);
5345     ComplexVal = CodeGenFunction::ComplexPairTy(
5346         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
5347   } else {
5348     assert(Val.isComplex() && "Must be a scalar or complex.");
5349     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
5350     QualType DestElementType =
5351         DestType->castAs<ComplexType>()->getElementType();
5352     ComplexVal.first = CGF.EmitScalarConversion(
5353         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
5354     ComplexVal.second = CGF.EmitScalarConversion(
5355         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
5356   }
5357   return ComplexVal;
5358 }
5359 
5360 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
5361                                   LValue LVal, RValue RVal) {
5362   if (LVal.isGlobalReg())
5363     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
5364   else
5365     CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false);
5366 }
5367 
5368 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF,
5369                                    llvm::AtomicOrdering AO, LValue LVal,
5370                                    SourceLocation Loc) {
5371   if (LVal.isGlobalReg())
5372     return CGF.EmitLoadOfLValue(LVal, Loc);
5373   return CGF.EmitAtomicLoad(
5374       LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO),
5375       LVal.isVolatile());
5376 }
5377 
5378 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
5379                                          QualType RValTy, SourceLocation Loc) {
5380   switch (getEvaluationKind(LVal.getType())) {
5381   case TEK_Scalar:
5382     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
5383                                *this, RVal, RValTy, LVal.getType(), Loc)),
5384                            LVal);
5385     break;
5386   case TEK_Complex:
5387     EmitStoreOfComplex(
5388         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
5389         /*isInit=*/false);
5390     break;
5391   case TEK_Aggregate:
5392     llvm_unreachable("Must be a scalar or complex.");
5393   }
5394 }
5395 
5396 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
5397                                   const Expr *X, const Expr *V,
5398                                   SourceLocation Loc) {
5399   // v = x;
5400   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
5401   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
5402   LValue XLValue = CGF.EmitLValue(X);
5403   LValue VLValue = CGF.EmitLValue(V);
5404   RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc);
5405   // OpenMP, 2.17.7, atomic Construct
5406   // If the read or capture clause is specified and the acquire, acq_rel, or
5407   // seq_cst clause is specified then the strong flush on exit from the atomic
5408   // operation is also an acquire flush.
5409   switch (AO) {
5410   case llvm::AtomicOrdering::Acquire:
5411   case llvm::AtomicOrdering::AcquireRelease:
5412   case llvm::AtomicOrdering::SequentiallyConsistent:
5413     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5414                                          llvm::AtomicOrdering::Acquire);
5415     break;
5416   case llvm::AtomicOrdering::Monotonic:
5417   case llvm::AtomicOrdering::Release:
5418     break;
5419   case llvm::AtomicOrdering::NotAtomic:
5420   case llvm::AtomicOrdering::Unordered:
5421     llvm_unreachable("Unexpected ordering.");
5422   }
5423   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
5424   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
5425 }
5426 
5427 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF,
5428                                    llvm::AtomicOrdering AO, const Expr *X,
5429                                    const Expr *E, SourceLocation Loc) {
5430   // x = expr;
5431   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
5432   emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
5433   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5434   // OpenMP, 2.17.7, atomic Construct
5435   // If the write, update, or capture clause is specified and the release,
5436   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5437   // the atomic operation is also a release flush.
5438   switch (AO) {
5439   case llvm::AtomicOrdering::Release:
5440   case llvm::AtomicOrdering::AcquireRelease:
5441   case llvm::AtomicOrdering::SequentiallyConsistent:
5442     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5443                                          llvm::AtomicOrdering::Release);
5444     break;
5445   case llvm::AtomicOrdering::Acquire:
5446   case llvm::AtomicOrdering::Monotonic:
5447     break;
5448   case llvm::AtomicOrdering::NotAtomic:
5449   case llvm::AtomicOrdering::Unordered:
5450     llvm_unreachable("Unexpected ordering.");
5451   }
5452 }
5453 
5454 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
5455                                                 RValue Update,
5456                                                 BinaryOperatorKind BO,
5457                                                 llvm::AtomicOrdering AO,
5458                                                 bool IsXLHSInRHSPart) {
5459   ASTContext &Context = CGF.getContext();
5460   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
5461   // expression is simple and atomic is allowed for the given type for the
5462   // target platform.
5463   if (BO == BO_Comma || !Update.isScalar() ||
5464       !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() ||
5465       (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
5466        (Update.getScalarVal()->getType() !=
5467         X.getAddress(CGF).getElementType())) ||
5468       !X.getAddress(CGF).getElementType()->isIntegerTy() ||
5469       !Context.getTargetInfo().hasBuiltinAtomic(
5470           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
5471     return std::make_pair(false, RValue::get(nullptr));
5472 
5473   llvm::AtomicRMWInst::BinOp RMWOp;
5474   switch (BO) {
5475   case BO_Add:
5476     RMWOp = llvm::AtomicRMWInst::Add;
5477     break;
5478   case BO_Sub:
5479     if (!IsXLHSInRHSPart)
5480       return std::make_pair(false, RValue::get(nullptr));
5481     RMWOp = llvm::AtomicRMWInst::Sub;
5482     break;
5483   case BO_And:
5484     RMWOp = llvm::AtomicRMWInst::And;
5485     break;
5486   case BO_Or:
5487     RMWOp = llvm::AtomicRMWInst::Or;
5488     break;
5489   case BO_Xor:
5490     RMWOp = llvm::AtomicRMWInst::Xor;
5491     break;
5492   case BO_LT:
5493     RMWOp = X.getType()->hasSignedIntegerRepresentation()
5494                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
5495                                    : llvm::AtomicRMWInst::Max)
5496                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
5497                                    : llvm::AtomicRMWInst::UMax);
5498     break;
5499   case BO_GT:
5500     RMWOp = X.getType()->hasSignedIntegerRepresentation()
5501                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
5502                                    : llvm::AtomicRMWInst::Min)
5503                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
5504                                    : llvm::AtomicRMWInst::UMin);
5505     break;
5506   case BO_Assign:
5507     RMWOp = llvm::AtomicRMWInst::Xchg;
5508     break;
5509   case BO_Mul:
5510   case BO_Div:
5511   case BO_Rem:
5512   case BO_Shl:
5513   case BO_Shr:
5514   case BO_LAnd:
5515   case BO_LOr:
5516     return std::make_pair(false, RValue::get(nullptr));
5517   case BO_PtrMemD:
5518   case BO_PtrMemI:
5519   case BO_LE:
5520   case BO_GE:
5521   case BO_EQ:
5522   case BO_NE:
5523   case BO_Cmp:
5524   case BO_AddAssign:
5525   case BO_SubAssign:
5526   case BO_AndAssign:
5527   case BO_OrAssign:
5528   case BO_XorAssign:
5529   case BO_MulAssign:
5530   case BO_DivAssign:
5531   case BO_RemAssign:
5532   case BO_ShlAssign:
5533   case BO_ShrAssign:
5534   case BO_Comma:
5535     llvm_unreachable("Unsupported atomic update operation");
5536   }
5537   llvm::Value *UpdateVal = Update.getScalarVal();
5538   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
5539     UpdateVal = CGF.Builder.CreateIntCast(
5540         IC, X.getAddress(CGF).getElementType(),
5541         X.getType()->hasSignedIntegerRepresentation());
5542   }
5543   llvm::Value *Res =
5544       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO);
5545   return std::make_pair(true, RValue::get(Res));
5546 }
5547 
5548 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
5549     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
5550     llvm::AtomicOrdering AO, SourceLocation Loc,
5551     const llvm::function_ref<RValue(RValue)> CommonGen) {
5552   // Update expressions are allowed to have the following forms:
5553   // x binop= expr; -> xrval + expr;
5554   // x++, ++x -> xrval + 1;
5555   // x--, --x -> xrval - 1;
5556   // x = x binop expr; -> xrval binop expr
5557   // x = expr Op x; - > expr binop xrval;
5558   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
5559   if (!Res.first) {
5560     if (X.isGlobalReg()) {
5561       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
5562       // 'xrval'.
5563       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
5564     } else {
5565       // Perform compare-and-swap procedure.
5566       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
5567     }
5568   }
5569   return Res;
5570 }
5571 
5572 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF,
5573                                     llvm::AtomicOrdering AO, const Expr *X,
5574                                     const Expr *E, const Expr *UE,
5575                                     bool IsXLHSInRHSPart, SourceLocation Loc) {
5576   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
5577          "Update expr in 'atomic update' must be a binary operator.");
5578   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
5579   // Update expressions are allowed to have the following forms:
5580   // x binop= expr; -> xrval + expr;
5581   // x++, ++x -> xrval + 1;
5582   // x--, --x -> xrval - 1;
5583   // x = x binop expr; -> xrval binop expr
5584   // x = expr Op x; - > expr binop xrval;
5585   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
5586   LValue XLValue = CGF.EmitLValue(X);
5587   RValue ExprRValue = CGF.EmitAnyExpr(E);
5588   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
5589   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
5590   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
5591   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
5592   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
5593     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5594     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
5595     return CGF.EmitAnyExpr(UE);
5596   };
5597   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
5598       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
5599   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5600   // OpenMP, 2.17.7, atomic Construct
5601   // If the write, update, or capture clause is specified and the release,
5602   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5603   // the atomic operation is also a release flush.
5604   switch (AO) {
5605   case llvm::AtomicOrdering::Release:
5606   case llvm::AtomicOrdering::AcquireRelease:
5607   case llvm::AtomicOrdering::SequentiallyConsistent:
5608     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5609                                          llvm::AtomicOrdering::Release);
5610     break;
5611   case llvm::AtomicOrdering::Acquire:
5612   case llvm::AtomicOrdering::Monotonic:
5613     break;
5614   case llvm::AtomicOrdering::NotAtomic:
5615   case llvm::AtomicOrdering::Unordered:
5616     llvm_unreachable("Unexpected ordering.");
5617   }
5618 }
5619 
5620 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
5621                             QualType SourceType, QualType ResType,
5622                             SourceLocation Loc) {
5623   switch (CGF.getEvaluationKind(ResType)) {
5624   case TEK_Scalar:
5625     return RValue::get(
5626         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
5627   case TEK_Complex: {
5628     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
5629     return RValue::getComplex(Res.first, Res.second);
5630   }
5631   case TEK_Aggregate:
5632     break;
5633   }
5634   llvm_unreachable("Must be a scalar or complex.");
5635 }
5636 
5637 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF,
5638                                      llvm::AtomicOrdering AO,
5639                                      bool IsPostfixUpdate, const Expr *V,
5640                                      const Expr *X, const Expr *E,
5641                                      const Expr *UE, bool IsXLHSInRHSPart,
5642                                      SourceLocation Loc) {
5643   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
5644   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
5645   RValue NewVVal;
5646   LValue VLValue = CGF.EmitLValue(V);
5647   LValue XLValue = CGF.EmitLValue(X);
5648   RValue ExprRValue = CGF.EmitAnyExpr(E);
5649   QualType NewVValType;
5650   if (UE) {
5651     // 'x' is updated with some additional value.
5652     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
5653            "Update expr in 'atomic capture' must be a binary operator.");
5654     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
5655     // Update expressions are allowed to have the following forms:
5656     // x binop= expr; -> xrval + expr;
5657     // x++, ++x -> xrval + 1;
5658     // x--, --x -> xrval - 1;
5659     // x = x binop expr; -> xrval binop expr
5660     // x = expr Op x; - > expr binop xrval;
5661     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
5662     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
5663     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
5664     NewVValType = XRValExpr->getType();
5665     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
5666     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
5667                   IsPostfixUpdate](RValue XRValue) {
5668       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5669       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
5670       RValue Res = CGF.EmitAnyExpr(UE);
5671       NewVVal = IsPostfixUpdate ? XRValue : Res;
5672       return Res;
5673     };
5674     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
5675         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
5676     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5677     if (Res.first) {
5678       // 'atomicrmw' instruction was generated.
5679       if (IsPostfixUpdate) {
5680         // Use old value from 'atomicrmw'.
5681         NewVVal = Res.second;
5682       } else {
5683         // 'atomicrmw' does not provide new value, so evaluate it using old
5684         // value of 'x'.
5685         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5686         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
5687         NewVVal = CGF.EmitAnyExpr(UE);
5688       }
5689     }
5690   } else {
5691     // 'x' is simply rewritten with some 'expr'.
5692     NewVValType = X->getType().getNonReferenceType();
5693     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
5694                                X->getType().getNonReferenceType(), Loc);
5695     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
5696       NewVVal = XRValue;
5697       return ExprRValue;
5698     };
5699     // Try to perform atomicrmw xchg, otherwise simple exchange.
5700     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
5701         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
5702         Loc, Gen);
5703     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5704     if (Res.first) {
5705       // 'atomicrmw' instruction was generated.
5706       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
5707     }
5708   }
5709   // Emit post-update store to 'v' of old/new 'x' value.
5710   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
5711   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
5712   // OpenMP, 2.17.7, atomic Construct
5713   // If the write, update, or capture clause is specified and the release,
5714   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5715   // the atomic operation is also a release flush.
5716   // If the read or capture clause is specified and the acquire, acq_rel, or
5717   // seq_cst clause is specified then the strong flush on exit from the atomic
5718   // operation is also an acquire flush.
5719   switch (AO) {
5720   case llvm::AtomicOrdering::Release:
5721     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5722                                          llvm::AtomicOrdering::Release);
5723     break;
5724   case llvm::AtomicOrdering::Acquire:
5725     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5726                                          llvm::AtomicOrdering::Acquire);
5727     break;
5728   case llvm::AtomicOrdering::AcquireRelease:
5729   case llvm::AtomicOrdering::SequentiallyConsistent:
5730     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5731                                          llvm::AtomicOrdering::AcquireRelease);
5732     break;
5733   case llvm::AtomicOrdering::Monotonic:
5734     break;
5735   case llvm::AtomicOrdering::NotAtomic:
5736   case llvm::AtomicOrdering::Unordered:
5737     llvm_unreachable("Unexpected ordering.");
5738   }
5739 }
5740 
5741 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
5742                               llvm::AtomicOrdering AO, bool IsPostfixUpdate,
5743                               const Expr *X, const Expr *V, const Expr *E,
5744                               const Expr *UE, bool IsXLHSInRHSPart,
5745                               SourceLocation Loc) {
5746   switch (Kind) {
5747   case OMPC_read:
5748     emitOMPAtomicReadExpr(CGF, AO, X, V, Loc);
5749     break;
5750   case OMPC_write:
5751     emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc);
5752     break;
5753   case OMPC_unknown:
5754   case OMPC_update:
5755     emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc);
5756     break;
5757   case OMPC_capture:
5758     emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE,
5759                              IsXLHSInRHSPart, Loc);
5760     break;
5761   case OMPC_if:
5762   case OMPC_final:
5763   case OMPC_num_threads:
5764   case OMPC_private:
5765   case OMPC_firstprivate:
5766   case OMPC_lastprivate:
5767   case OMPC_reduction:
5768   case OMPC_task_reduction:
5769   case OMPC_in_reduction:
5770   case OMPC_safelen:
5771   case OMPC_simdlen:
5772   case OMPC_sizes:
5773   case OMPC_full:
5774   case OMPC_partial:
5775   case OMPC_allocator:
5776   case OMPC_allocate:
5777   case OMPC_collapse:
5778   case OMPC_default:
5779   case OMPC_seq_cst:
5780   case OMPC_acq_rel:
5781   case OMPC_acquire:
5782   case OMPC_release:
5783   case OMPC_relaxed:
5784   case OMPC_shared:
5785   case OMPC_linear:
5786   case OMPC_aligned:
5787   case OMPC_copyin:
5788   case OMPC_copyprivate:
5789   case OMPC_flush:
5790   case OMPC_depobj:
5791   case OMPC_proc_bind:
5792   case OMPC_schedule:
5793   case OMPC_ordered:
5794   case OMPC_nowait:
5795   case OMPC_untied:
5796   case OMPC_threadprivate:
5797   case OMPC_depend:
5798   case OMPC_mergeable:
5799   case OMPC_device:
5800   case OMPC_threads:
5801   case OMPC_simd:
5802   case OMPC_map:
5803   case OMPC_num_teams:
5804   case OMPC_thread_limit:
5805   case OMPC_priority:
5806   case OMPC_grainsize:
5807   case OMPC_nogroup:
5808   case OMPC_num_tasks:
5809   case OMPC_hint:
5810   case OMPC_dist_schedule:
5811   case OMPC_defaultmap:
5812   case OMPC_uniform:
5813   case OMPC_to:
5814   case OMPC_from:
5815   case OMPC_use_device_ptr:
5816   case OMPC_use_device_addr:
5817   case OMPC_is_device_ptr:
5818   case OMPC_unified_address:
5819   case OMPC_unified_shared_memory:
5820   case OMPC_reverse_offload:
5821   case OMPC_dynamic_allocators:
5822   case OMPC_atomic_default_mem_order:
5823   case OMPC_device_type:
5824   case OMPC_match:
5825   case OMPC_nontemporal:
5826   case OMPC_order:
5827   case OMPC_destroy:
5828   case OMPC_detach:
5829   case OMPC_inclusive:
5830   case OMPC_exclusive:
5831   case OMPC_uses_allocators:
5832   case OMPC_affinity:
5833   case OMPC_init:
5834   case OMPC_inbranch:
5835   case OMPC_notinbranch:
5836   case OMPC_link:
5837   case OMPC_use:
5838   case OMPC_novariants:
5839   case OMPC_nocontext:
5840   case OMPC_filter:
5841     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
5842   }
5843 }
5844 
5845 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
5846   llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic;
5847   bool MemOrderingSpecified = false;
5848   if (S.getSingleClause<OMPSeqCstClause>()) {
5849     AO = llvm::AtomicOrdering::SequentiallyConsistent;
5850     MemOrderingSpecified = true;
5851   } else if (S.getSingleClause<OMPAcqRelClause>()) {
5852     AO = llvm::AtomicOrdering::AcquireRelease;
5853     MemOrderingSpecified = true;
5854   } else if (S.getSingleClause<OMPAcquireClause>()) {
5855     AO = llvm::AtomicOrdering::Acquire;
5856     MemOrderingSpecified = true;
5857   } else if (S.getSingleClause<OMPReleaseClause>()) {
5858     AO = llvm::AtomicOrdering::Release;
5859     MemOrderingSpecified = true;
5860   } else if (S.getSingleClause<OMPRelaxedClause>()) {
5861     AO = llvm::AtomicOrdering::Monotonic;
5862     MemOrderingSpecified = true;
5863   }
5864   OpenMPClauseKind Kind = OMPC_unknown;
5865   for (const OMPClause *C : S.clauses()) {
5866     // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause,
5867     // if it is first).
5868     if (C->getClauseKind() != OMPC_seq_cst &&
5869         C->getClauseKind() != OMPC_acq_rel &&
5870         C->getClauseKind() != OMPC_acquire &&
5871         C->getClauseKind() != OMPC_release &&
5872         C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) {
5873       Kind = C->getClauseKind();
5874       break;
5875     }
5876   }
5877   if (!MemOrderingSpecified) {
5878     llvm::AtomicOrdering DefaultOrder =
5879         CGM.getOpenMPRuntime().getDefaultMemoryOrdering();
5880     if (DefaultOrder == llvm::AtomicOrdering::Monotonic ||
5881         DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent ||
5882         (DefaultOrder == llvm::AtomicOrdering::AcquireRelease &&
5883          Kind == OMPC_capture)) {
5884       AO = DefaultOrder;
5885     } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) {
5886       if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) {
5887         AO = llvm::AtomicOrdering::Release;
5888       } else if (Kind == OMPC_read) {
5889         assert(Kind == OMPC_read && "Unexpected atomic kind.");
5890         AO = llvm::AtomicOrdering::Acquire;
5891       }
5892     }
5893   }
5894 
5895   LexicalScope Scope(*this, S.getSourceRange());
5896   EmitStopPoint(S.getAssociatedStmt());
5897   emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(),
5898                     S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(),
5899                     S.getBeginLoc());
5900 }
5901 
5902 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
5903                                          const OMPExecutableDirective &S,
5904                                          const RegionCodeGenTy &CodeGen) {
5905   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
5906   CodeGenModule &CGM = CGF.CGM;
5907 
5908   // On device emit this construct as inlined code.
5909   if (CGM.getLangOpts().OpenMPIsDevice) {
5910     OMPLexicalScope Scope(CGF, S, OMPD_target);
5911     CGM.getOpenMPRuntime().emitInlinedDirective(
5912         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5913           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
5914         });
5915     return;
5916   }
5917 
5918   auto LPCRegion =
5919       CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S);
5920   llvm::Function *Fn = nullptr;
5921   llvm::Constant *FnID = nullptr;
5922 
5923   const Expr *IfCond = nullptr;
5924   // Check for the at most one if clause associated with the target region.
5925   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
5926     if (C->getNameModifier() == OMPD_unknown ||
5927         C->getNameModifier() == OMPD_target) {
5928       IfCond = C->getCondition();
5929       break;
5930     }
5931   }
5932 
5933   // Check if we have any device clause associated with the directive.
5934   llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device(
5935       nullptr, OMPC_DEVICE_unknown);
5936   if (auto *C = S.getSingleClause<OMPDeviceClause>())
5937     Device.setPointerAndInt(C->getDevice(), C->getModifier());
5938 
5939   // Check if we have an if clause whose conditional always evaluates to false
5940   // or if we do not have any targets specified. If so the target region is not
5941   // an offload entry point.
5942   bool IsOffloadEntry = true;
5943   if (IfCond) {
5944     bool Val;
5945     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
5946       IsOffloadEntry = false;
5947   }
5948   if (CGM.getLangOpts().OMPTargetTriples.empty())
5949     IsOffloadEntry = false;
5950 
5951   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
5952   StringRef ParentName;
5953   // In case we have Ctors/Dtors we use the complete type variant to produce
5954   // the mangling of the device outlined kernel.
5955   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
5956     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
5957   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
5958     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
5959   else
5960     ParentName =
5961         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
5962 
5963   // Emit target region as a standalone region.
5964   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
5965                                                     IsOffloadEntry, CodeGen);
5966   OMPLexicalScope Scope(CGF, S, OMPD_task);
5967   auto &&SizeEmitter =
5968       [IsOffloadEntry](CodeGenFunction &CGF,
5969                        const OMPLoopDirective &D) -> llvm::Value * {
5970     if (IsOffloadEntry) {
5971       OMPLoopScope(CGF, D);
5972       // Emit calculation of the iterations count.
5973       llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations());
5974       NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty,
5975                                                 /*isSigned=*/false);
5976       return NumIterations;
5977     }
5978     return nullptr;
5979   };
5980   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device,
5981                                         SizeEmitter);
5982 }
5983 
5984 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
5985                              PrePostActionTy &Action) {
5986   Action.Enter(CGF);
5987   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5988   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5989   CGF.EmitOMPPrivateClause(S, PrivateScope);
5990   (void)PrivateScope.Privatize();
5991   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
5992     CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
5993 
5994   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
5995   CGF.EnsureInsertPoint();
5996 }
5997 
5998 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
5999                                                   StringRef ParentName,
6000                                                   const OMPTargetDirective &S) {
6001   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6002     emitTargetRegion(CGF, S, Action);
6003   };
6004   llvm::Function *Fn;
6005   llvm::Constant *Addr;
6006   // Emit target region as a standalone region.
6007   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6008       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6009   assert(Fn && Addr && "Target device function emission failed.");
6010 }
6011 
6012 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
6013   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6014     emitTargetRegion(CGF, S, Action);
6015   };
6016   emitCommonOMPTargetDirective(*this, S, CodeGen);
6017 }
6018 
6019 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
6020                                         const OMPExecutableDirective &S,
6021                                         OpenMPDirectiveKind InnermostKind,
6022                                         const RegionCodeGenTy &CodeGen) {
6023   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
6024   llvm::Function *OutlinedFn =
6025       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
6026           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
6027 
6028   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
6029   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
6030   if (NT || TL) {
6031     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
6032     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
6033 
6034     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
6035                                                   S.getBeginLoc());
6036   }
6037 
6038   OMPTeamsScope Scope(CGF, S);
6039   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
6040   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
6041   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
6042                                            CapturedVars);
6043 }
6044 
6045 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
6046   // Emit teams region as a standalone region.
6047   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6048     Action.Enter(CGF);
6049     OMPPrivateScope PrivateScope(CGF);
6050     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
6051     CGF.EmitOMPPrivateClause(S, PrivateScope);
6052     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6053     (void)PrivateScope.Privatize();
6054     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
6055     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6056   };
6057   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
6058   emitPostUpdateForReductionClause(*this, S,
6059                                    [](CodeGenFunction &) { return nullptr; });
6060 }
6061 
6062 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
6063                                   const OMPTargetTeamsDirective &S) {
6064   auto *CS = S.getCapturedStmt(OMPD_teams);
6065   Action.Enter(CGF);
6066   // Emit teams region as a standalone region.
6067   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
6068     Action.Enter(CGF);
6069     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6070     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
6071     CGF.EmitOMPPrivateClause(S, PrivateScope);
6072     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6073     (void)PrivateScope.Privatize();
6074     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
6075       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
6076     CGF.EmitStmt(CS->getCapturedStmt());
6077     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6078   };
6079   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
6080   emitPostUpdateForReductionClause(CGF, S,
6081                                    [](CodeGenFunction &) { return nullptr; });
6082 }
6083 
6084 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
6085     CodeGenModule &CGM, StringRef ParentName,
6086     const OMPTargetTeamsDirective &S) {
6087   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6088     emitTargetTeamsRegion(CGF, Action, S);
6089   };
6090   llvm::Function *Fn;
6091   llvm::Constant *Addr;
6092   // Emit target region as a standalone region.
6093   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6094       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6095   assert(Fn && Addr && "Target device function emission failed.");
6096 }
6097 
6098 void CodeGenFunction::EmitOMPTargetTeamsDirective(
6099     const OMPTargetTeamsDirective &S) {
6100   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6101     emitTargetTeamsRegion(CGF, Action, S);
6102   };
6103   emitCommonOMPTargetDirective(*this, S, CodeGen);
6104 }
6105 
6106 static void
6107 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
6108                                 const OMPTargetTeamsDistributeDirective &S) {
6109   Action.Enter(CGF);
6110   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6111     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
6112   };
6113 
6114   // Emit teams region as a standalone region.
6115   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6116                                             PrePostActionTy &Action) {
6117     Action.Enter(CGF);
6118     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6119     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6120     (void)PrivateScope.Privatize();
6121     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
6122                                                     CodeGenDistribute);
6123     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6124   };
6125   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
6126   emitPostUpdateForReductionClause(CGF, S,
6127                                    [](CodeGenFunction &) { return nullptr; });
6128 }
6129 
6130 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
6131     CodeGenModule &CGM, StringRef ParentName,
6132     const OMPTargetTeamsDistributeDirective &S) {
6133   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6134     emitTargetTeamsDistributeRegion(CGF, Action, S);
6135   };
6136   llvm::Function *Fn;
6137   llvm::Constant *Addr;
6138   // Emit target region as a standalone region.
6139   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6140       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6141   assert(Fn && Addr && "Target device function emission failed.");
6142 }
6143 
6144 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
6145     const OMPTargetTeamsDistributeDirective &S) {
6146   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6147     emitTargetTeamsDistributeRegion(CGF, Action, S);
6148   };
6149   emitCommonOMPTargetDirective(*this, S, CodeGen);
6150 }
6151 
6152 static void emitTargetTeamsDistributeSimdRegion(
6153     CodeGenFunction &CGF, PrePostActionTy &Action,
6154     const OMPTargetTeamsDistributeSimdDirective &S) {
6155   Action.Enter(CGF);
6156   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6157     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
6158   };
6159 
6160   // Emit teams region as a standalone region.
6161   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6162                                             PrePostActionTy &Action) {
6163     Action.Enter(CGF);
6164     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6165     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6166     (void)PrivateScope.Privatize();
6167     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
6168                                                     CodeGenDistribute);
6169     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6170   };
6171   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
6172   emitPostUpdateForReductionClause(CGF, S,
6173                                    [](CodeGenFunction &) { return nullptr; });
6174 }
6175 
6176 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
6177     CodeGenModule &CGM, StringRef ParentName,
6178     const OMPTargetTeamsDistributeSimdDirective &S) {
6179   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6180     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
6181   };
6182   llvm::Function *Fn;
6183   llvm::Constant *Addr;
6184   // Emit target region as a standalone region.
6185   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6186       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6187   assert(Fn && Addr && "Target device function emission failed.");
6188 }
6189 
6190 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
6191     const OMPTargetTeamsDistributeSimdDirective &S) {
6192   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6193     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
6194   };
6195   emitCommonOMPTargetDirective(*this, S, CodeGen);
6196 }
6197 
6198 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
6199     const OMPTeamsDistributeDirective &S) {
6200 
6201   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6202     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
6203   };
6204 
6205   // Emit teams region as a standalone region.
6206   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6207                                             PrePostActionTy &Action) {
6208     Action.Enter(CGF);
6209     OMPPrivateScope PrivateScope(CGF);
6210     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6211     (void)PrivateScope.Privatize();
6212     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
6213                                                     CodeGenDistribute);
6214     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6215   };
6216   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
6217   emitPostUpdateForReductionClause(*this, S,
6218                                    [](CodeGenFunction &) { return nullptr; });
6219 }
6220 
6221 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
6222     const OMPTeamsDistributeSimdDirective &S) {
6223   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6224     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
6225   };
6226 
6227   // Emit teams region as a standalone region.
6228   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6229                                             PrePostActionTy &Action) {
6230     Action.Enter(CGF);
6231     OMPPrivateScope PrivateScope(CGF);
6232     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6233     (void)PrivateScope.Privatize();
6234     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
6235                                                     CodeGenDistribute);
6236     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6237   };
6238   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
6239   emitPostUpdateForReductionClause(*this, S,
6240                                    [](CodeGenFunction &) { return nullptr; });
6241 }
6242 
6243 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
6244     const OMPTeamsDistributeParallelForDirective &S) {
6245   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6246     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6247                               S.getDistInc());
6248   };
6249 
6250   // Emit teams region as a standalone region.
6251   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6252                                             PrePostActionTy &Action) {
6253     Action.Enter(CGF);
6254     OMPPrivateScope PrivateScope(CGF);
6255     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6256     (void)PrivateScope.Privatize();
6257     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
6258                                                     CodeGenDistribute);
6259     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6260   };
6261   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
6262   emitPostUpdateForReductionClause(*this, S,
6263                                    [](CodeGenFunction &) { return nullptr; });
6264 }
6265 
6266 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
6267     const OMPTeamsDistributeParallelForSimdDirective &S) {
6268   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6269     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6270                               S.getDistInc());
6271   };
6272 
6273   // Emit teams region as a standalone region.
6274   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6275                                             PrePostActionTy &Action) {
6276     Action.Enter(CGF);
6277     OMPPrivateScope PrivateScope(CGF);
6278     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6279     (void)PrivateScope.Privatize();
6280     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6281         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6282     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6283   };
6284   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd,
6285                               CodeGen);
6286   emitPostUpdateForReductionClause(*this, S,
6287                                    [](CodeGenFunction &) { return nullptr; });
6288 }
6289 
6290 static void emitTargetTeamsDistributeParallelForRegion(
6291     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
6292     PrePostActionTy &Action) {
6293   Action.Enter(CGF);
6294   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6295     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6296                               S.getDistInc());
6297   };
6298 
6299   // Emit teams region as a standalone region.
6300   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6301                                                  PrePostActionTy &Action) {
6302     Action.Enter(CGF);
6303     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6304     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6305     (void)PrivateScope.Privatize();
6306     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6307         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6308     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6309   };
6310 
6311   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
6312                               CodeGenTeams);
6313   emitPostUpdateForReductionClause(CGF, S,
6314                                    [](CodeGenFunction &) { return nullptr; });
6315 }
6316 
6317 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
6318     CodeGenModule &CGM, StringRef ParentName,
6319     const OMPTargetTeamsDistributeParallelForDirective &S) {
6320   // Emit SPMD target teams distribute parallel for region as a standalone
6321   // region.
6322   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6323     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
6324   };
6325   llvm::Function *Fn;
6326   llvm::Constant *Addr;
6327   // Emit target region as a standalone region.
6328   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6329       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6330   assert(Fn && Addr && "Target device function emission failed.");
6331 }
6332 
6333 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
6334     const OMPTargetTeamsDistributeParallelForDirective &S) {
6335   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6336     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
6337   };
6338   emitCommonOMPTargetDirective(*this, S, CodeGen);
6339 }
6340 
6341 static void emitTargetTeamsDistributeParallelForSimdRegion(
6342     CodeGenFunction &CGF,
6343     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
6344     PrePostActionTy &Action) {
6345   Action.Enter(CGF);
6346   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6347     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6348                               S.getDistInc());
6349   };
6350 
6351   // Emit teams region as a standalone region.
6352   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6353                                                  PrePostActionTy &Action) {
6354     Action.Enter(CGF);
6355     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6356     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6357     (void)PrivateScope.Privatize();
6358     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6359         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6360     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6361   };
6362 
6363   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
6364                               CodeGenTeams);
6365   emitPostUpdateForReductionClause(CGF, S,
6366                                    [](CodeGenFunction &) { return nullptr; });
6367 }
6368 
6369 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
6370     CodeGenModule &CGM, StringRef ParentName,
6371     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
6372   // Emit SPMD target teams distribute parallel for simd region as a standalone
6373   // region.
6374   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6375     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
6376   };
6377   llvm::Function *Fn;
6378   llvm::Constant *Addr;
6379   // Emit target region as a standalone region.
6380   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6381       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6382   assert(Fn && Addr && "Target device function emission failed.");
6383 }
6384 
6385 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
6386     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
6387   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6388     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
6389   };
6390   emitCommonOMPTargetDirective(*this, S, CodeGen);
6391 }
6392 
6393 void CodeGenFunction::EmitOMPCancellationPointDirective(
6394     const OMPCancellationPointDirective &S) {
6395   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
6396                                                    S.getCancelRegion());
6397 }
6398 
6399 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
6400   const Expr *IfCond = nullptr;
6401   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
6402     if (C->getNameModifier() == OMPD_unknown ||
6403         C->getNameModifier() == OMPD_cancel) {
6404       IfCond = C->getCondition();
6405       break;
6406     }
6407   }
6408   if (CGM.getLangOpts().OpenMPIRBuilder) {
6409     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
6410     // TODO: This check is necessary as we only generate `omp parallel` through
6411     // the OpenMPIRBuilder for now.
6412     if (S.getCancelRegion() == OMPD_parallel ||
6413         S.getCancelRegion() == OMPD_sections ||
6414         S.getCancelRegion() == OMPD_section) {
6415       llvm::Value *IfCondition = nullptr;
6416       if (IfCond)
6417         IfCondition = EmitScalarExpr(IfCond,
6418                                      /*IgnoreResultAssign=*/true);
6419       return Builder.restoreIP(
6420           OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion()));
6421     }
6422   }
6423 
6424   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
6425                                         S.getCancelRegion());
6426 }
6427 
6428 CodeGenFunction::JumpDest
6429 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
6430   if (Kind == OMPD_parallel || Kind == OMPD_task ||
6431       Kind == OMPD_target_parallel || Kind == OMPD_taskloop ||
6432       Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop)
6433     return ReturnBlock;
6434   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
6435          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
6436          Kind == OMPD_distribute_parallel_for ||
6437          Kind == OMPD_target_parallel_for ||
6438          Kind == OMPD_teams_distribute_parallel_for ||
6439          Kind == OMPD_target_teams_distribute_parallel_for);
6440   return OMPCancelStack.getExitBlock();
6441 }
6442 
6443 void CodeGenFunction::EmitOMPUseDevicePtrClause(
6444     const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
6445     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
6446   auto OrigVarIt = C.varlist_begin();
6447   auto InitIt = C.inits().begin();
6448   for (const Expr *PvtVarIt : C.private_copies()) {
6449     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
6450     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
6451     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
6452 
6453     // In order to identify the right initializer we need to match the
6454     // declaration used by the mapping logic. In some cases we may get
6455     // OMPCapturedExprDecl that refers to the original declaration.
6456     const ValueDecl *MatchingVD = OrigVD;
6457     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
6458       // OMPCapturedExprDecl are used to privative fields of the current
6459       // structure.
6460       const auto *ME = cast<MemberExpr>(OED->getInit());
6461       assert(isa<CXXThisExpr>(ME->getBase()) &&
6462              "Base should be the current struct!");
6463       MatchingVD = ME->getMemberDecl();
6464     }
6465 
6466     // If we don't have information about the current list item, move on to
6467     // the next one.
6468     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
6469     if (InitAddrIt == CaptureDeviceAddrMap.end())
6470       continue;
6471 
6472     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
6473                                                          InitAddrIt, InitVD,
6474                                                          PvtVD]() {
6475       // Initialize the temporary initialization variable with the address we
6476       // get from the runtime library. We have to cast the source address
6477       // because it is always a void *. References are materialized in the
6478       // privatization scope, so the initialization here disregards the fact
6479       // the original variable is a reference.
6480       QualType AddrQTy =
6481           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
6482       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
6483       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
6484       setAddrOfLocalVar(InitVD, InitAddr);
6485 
6486       // Emit private declaration, it will be initialized by the value we
6487       // declaration we just added to the local declarations map.
6488       EmitDecl(*PvtVD);
6489 
6490       // The initialization variables reached its purpose in the emission
6491       // of the previous declaration, so we don't need it anymore.
6492       LocalDeclMap.erase(InitVD);
6493 
6494       // Return the address of the private variable.
6495       return GetAddrOfLocalVar(PvtVD);
6496     });
6497     assert(IsRegistered && "firstprivate var already registered as private");
6498     // Silence the warning about unused variable.
6499     (void)IsRegistered;
6500 
6501     ++OrigVarIt;
6502     ++InitIt;
6503   }
6504 }
6505 
6506 static const VarDecl *getBaseDecl(const Expr *Ref) {
6507   const Expr *Base = Ref->IgnoreParenImpCasts();
6508   while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base))
6509     Base = OASE->getBase()->IgnoreParenImpCasts();
6510   while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base))
6511     Base = ASE->getBase()->IgnoreParenImpCasts();
6512   return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl());
6513 }
6514 
6515 void CodeGenFunction::EmitOMPUseDeviceAddrClause(
6516     const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
6517     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
6518   llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
6519   for (const Expr *Ref : C.varlists()) {
6520     const VarDecl *OrigVD = getBaseDecl(Ref);
6521     if (!Processed.insert(OrigVD).second)
6522       continue;
6523     // In order to identify the right initializer we need to match the
6524     // declaration used by the mapping logic. In some cases we may get
6525     // OMPCapturedExprDecl that refers to the original declaration.
6526     const ValueDecl *MatchingVD = OrigVD;
6527     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
6528       // OMPCapturedExprDecl are used to privative fields of the current
6529       // structure.
6530       const auto *ME = cast<MemberExpr>(OED->getInit());
6531       assert(isa<CXXThisExpr>(ME->getBase()) &&
6532              "Base should be the current struct!");
6533       MatchingVD = ME->getMemberDecl();
6534     }
6535 
6536     // If we don't have information about the current list item, move on to
6537     // the next one.
6538     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
6539     if (InitAddrIt == CaptureDeviceAddrMap.end())
6540       continue;
6541 
6542     Address PrivAddr = InitAddrIt->getSecond();
6543     // For declrefs and variable length array need to load the pointer for
6544     // correct mapping, since the pointer to the data was passed to the runtime.
6545     if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) ||
6546         MatchingVD->getType()->isArrayType())
6547       PrivAddr =
6548           EmitLoadOfPointer(PrivAddr, getContext()
6549                                           .getPointerType(OrigVD->getType())
6550                                           ->castAs<PointerType>());
6551     llvm::Type *RealTy =
6552         ConvertTypeForMem(OrigVD->getType().getNonReferenceType())
6553             ->getPointerTo();
6554     PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy);
6555 
6556     (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; });
6557   }
6558 }
6559 
6560 // Generate the instructions for '#pragma omp target data' directive.
6561 void CodeGenFunction::EmitOMPTargetDataDirective(
6562     const OMPTargetDataDirective &S) {
6563   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true,
6564                                        /*SeparateBeginEndCalls=*/true);
6565 
6566   // Create a pre/post action to signal the privatization of the device pointer.
6567   // This action can be replaced by the OpenMP runtime code generation to
6568   // deactivate privatization.
6569   bool PrivatizeDevicePointers = false;
6570   class DevicePointerPrivActionTy : public PrePostActionTy {
6571     bool &PrivatizeDevicePointers;
6572 
6573   public:
6574     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
6575         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
6576     void Enter(CodeGenFunction &CGF) override {
6577       PrivatizeDevicePointers = true;
6578     }
6579   };
6580   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
6581 
6582   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
6583                        CodeGenFunction &CGF, PrePostActionTy &Action) {
6584     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6585       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
6586     };
6587 
6588     // Codegen that selects whether to generate the privatization code or not.
6589     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
6590                           &InnermostCodeGen](CodeGenFunction &CGF,
6591                                              PrePostActionTy &Action) {
6592       RegionCodeGenTy RCG(InnermostCodeGen);
6593       PrivatizeDevicePointers = false;
6594 
6595       // Call the pre-action to change the status of PrivatizeDevicePointers if
6596       // needed.
6597       Action.Enter(CGF);
6598 
6599       if (PrivatizeDevicePointers) {
6600         OMPPrivateScope PrivateScope(CGF);
6601         // Emit all instances of the use_device_ptr clause.
6602         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
6603           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
6604                                         Info.CaptureDeviceAddrMap);
6605         for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>())
6606           CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope,
6607                                          Info.CaptureDeviceAddrMap);
6608         (void)PrivateScope.Privatize();
6609         RCG(CGF);
6610       } else {
6611         OMPLexicalScope Scope(CGF, S, OMPD_unknown);
6612         RCG(CGF);
6613       }
6614     };
6615 
6616     // Forward the provided action to the privatization codegen.
6617     RegionCodeGenTy PrivRCG(PrivCodeGen);
6618     PrivRCG.setAction(Action);
6619 
6620     // Notwithstanding the body of the region is emitted as inlined directive,
6621     // we don't use an inline scope as changes in the references inside the
6622     // region are expected to be visible outside, so we do not privative them.
6623     OMPLexicalScope Scope(CGF, S);
6624     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
6625                                                     PrivRCG);
6626   };
6627 
6628   RegionCodeGenTy RCG(CodeGen);
6629 
6630   // If we don't have target devices, don't bother emitting the data mapping
6631   // code.
6632   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
6633     RCG(*this);
6634     return;
6635   }
6636 
6637   // Check if we have any if clause associated with the directive.
6638   const Expr *IfCond = nullptr;
6639   if (const auto *C = S.getSingleClause<OMPIfClause>())
6640     IfCond = C->getCondition();
6641 
6642   // Check if we have any device clause associated with the directive.
6643   const Expr *Device = nullptr;
6644   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6645     Device = C->getDevice();
6646 
6647   // Set the action to signal privatization of device pointers.
6648   RCG.setAction(PrivAction);
6649 
6650   // Emit region code.
6651   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
6652                                              Info);
6653 }
6654 
6655 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
6656     const OMPTargetEnterDataDirective &S) {
6657   // If we don't have target devices, don't bother emitting the data mapping
6658   // code.
6659   if (CGM.getLangOpts().OMPTargetTriples.empty())
6660     return;
6661 
6662   // Check if we have any if clause associated with the directive.
6663   const Expr *IfCond = nullptr;
6664   if (const auto *C = S.getSingleClause<OMPIfClause>())
6665     IfCond = C->getCondition();
6666 
6667   // Check if we have any device clause associated with the directive.
6668   const Expr *Device = nullptr;
6669   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6670     Device = C->getDevice();
6671 
6672   OMPLexicalScope Scope(*this, S, OMPD_task);
6673   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6674 }
6675 
6676 void CodeGenFunction::EmitOMPTargetExitDataDirective(
6677     const OMPTargetExitDataDirective &S) {
6678   // If we don't have target devices, don't bother emitting the data mapping
6679   // code.
6680   if (CGM.getLangOpts().OMPTargetTriples.empty())
6681     return;
6682 
6683   // Check if we have any if clause associated with the directive.
6684   const Expr *IfCond = nullptr;
6685   if (const auto *C = S.getSingleClause<OMPIfClause>())
6686     IfCond = C->getCondition();
6687 
6688   // Check if we have any device clause associated with the directive.
6689   const Expr *Device = nullptr;
6690   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6691     Device = C->getDevice();
6692 
6693   OMPLexicalScope Scope(*this, S, OMPD_task);
6694   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6695 }
6696 
6697 static void emitTargetParallelRegion(CodeGenFunction &CGF,
6698                                      const OMPTargetParallelDirective &S,
6699                                      PrePostActionTy &Action) {
6700   // Get the captured statement associated with the 'parallel' region.
6701   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
6702   Action.Enter(CGF);
6703   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
6704     Action.Enter(CGF);
6705     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6706     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
6707     CGF.EmitOMPPrivateClause(S, PrivateScope);
6708     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6709     (void)PrivateScope.Privatize();
6710     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
6711       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
6712     // TODO: Add support for clauses.
6713     CGF.EmitStmt(CS->getCapturedStmt());
6714     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
6715   };
6716   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
6717                                  emitEmptyBoundParameters);
6718   emitPostUpdateForReductionClause(CGF, S,
6719                                    [](CodeGenFunction &) { return nullptr; });
6720 }
6721 
6722 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
6723     CodeGenModule &CGM, StringRef ParentName,
6724     const OMPTargetParallelDirective &S) {
6725   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6726     emitTargetParallelRegion(CGF, S, Action);
6727   };
6728   llvm::Function *Fn;
6729   llvm::Constant *Addr;
6730   // Emit target region as a standalone region.
6731   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6732       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6733   assert(Fn && Addr && "Target device function emission failed.");
6734 }
6735 
6736 void CodeGenFunction::EmitOMPTargetParallelDirective(
6737     const OMPTargetParallelDirective &S) {
6738   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6739     emitTargetParallelRegion(CGF, S, Action);
6740   };
6741   emitCommonOMPTargetDirective(*this, S, CodeGen);
6742 }
6743 
6744 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
6745                                         const OMPTargetParallelForDirective &S,
6746                                         PrePostActionTy &Action) {
6747   Action.Enter(CGF);
6748   // Emit directive as a combined directive that consists of two implicit
6749   // directives: 'parallel' with 'for' directive.
6750   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6751     Action.Enter(CGF);
6752     CodeGenFunction::OMPCancelStackRAII CancelRegion(
6753         CGF, OMPD_target_parallel_for, S.hasCancel());
6754     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
6755                                emitDispatchForLoopBounds);
6756   };
6757   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
6758                                  emitEmptyBoundParameters);
6759 }
6760 
6761 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
6762     CodeGenModule &CGM, StringRef ParentName,
6763     const OMPTargetParallelForDirective &S) {
6764   // Emit SPMD target parallel for region as a standalone region.
6765   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6766     emitTargetParallelForRegion(CGF, S, Action);
6767   };
6768   llvm::Function *Fn;
6769   llvm::Constant *Addr;
6770   // Emit target region as a standalone region.
6771   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6772       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6773   assert(Fn && Addr && "Target device function emission failed.");
6774 }
6775 
6776 void CodeGenFunction::EmitOMPTargetParallelForDirective(
6777     const OMPTargetParallelForDirective &S) {
6778   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6779     emitTargetParallelForRegion(CGF, S, Action);
6780   };
6781   emitCommonOMPTargetDirective(*this, S, CodeGen);
6782 }
6783 
6784 static void
6785 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
6786                                 const OMPTargetParallelForSimdDirective &S,
6787                                 PrePostActionTy &Action) {
6788   Action.Enter(CGF);
6789   // Emit directive as a combined directive that consists of two implicit
6790   // directives: 'parallel' with 'for' directive.
6791   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6792     Action.Enter(CGF);
6793     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
6794                                emitDispatchForLoopBounds);
6795   };
6796   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
6797                                  emitEmptyBoundParameters);
6798 }
6799 
6800 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
6801     CodeGenModule &CGM, StringRef ParentName,
6802     const OMPTargetParallelForSimdDirective &S) {
6803   // Emit SPMD target parallel for region as a standalone region.
6804   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6805     emitTargetParallelForSimdRegion(CGF, S, Action);
6806   };
6807   llvm::Function *Fn;
6808   llvm::Constant *Addr;
6809   // Emit target region as a standalone region.
6810   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6811       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6812   assert(Fn && Addr && "Target device function emission failed.");
6813 }
6814 
6815 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
6816     const OMPTargetParallelForSimdDirective &S) {
6817   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6818     emitTargetParallelForSimdRegion(CGF, S, Action);
6819   };
6820   emitCommonOMPTargetDirective(*this, S, CodeGen);
6821 }
6822 
6823 /// Emit a helper variable and return corresponding lvalue.
6824 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
6825                      const ImplicitParamDecl *PVD,
6826                      CodeGenFunction::OMPPrivateScope &Privates) {
6827   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
6828   Privates.addPrivate(VDecl,
6829                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
6830 }
6831 
6832 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
6833   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
6834   // Emit outlined function for task construct.
6835   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
6836   Address CapturedStruct = Address::invalid();
6837   {
6838     OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
6839     CapturedStruct = GenerateCapturedStmtArgument(*CS);
6840   }
6841   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
6842   const Expr *IfCond = nullptr;
6843   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
6844     if (C->getNameModifier() == OMPD_unknown ||
6845         C->getNameModifier() == OMPD_taskloop) {
6846       IfCond = C->getCondition();
6847       break;
6848     }
6849   }
6850 
6851   OMPTaskDataTy Data;
6852   // Check if taskloop must be emitted without taskgroup.
6853   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
6854   // TODO: Check if we should emit tied or untied task.
6855   Data.Tied = true;
6856   // Set scheduling for taskloop
6857   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
6858     // grainsize clause
6859     Data.Schedule.setInt(/*IntVal=*/false);
6860     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
6861   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
6862     // num_tasks clause
6863     Data.Schedule.setInt(/*IntVal=*/true);
6864     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
6865   }
6866 
6867   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
6868     // if (PreCond) {
6869     //   for (IV in 0..LastIteration) BODY;
6870     //   <Final counter/linear vars updates>;
6871     // }
6872     //
6873 
6874     // Emit: if (PreCond) - begin.
6875     // If the condition constant folds and can be elided, avoid emitting the
6876     // whole loop.
6877     bool CondConstant;
6878     llvm::BasicBlock *ContBlock = nullptr;
6879     OMPLoopScope PreInitScope(CGF, S);
6880     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
6881       if (!CondConstant)
6882         return;
6883     } else {
6884       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
6885       ContBlock = CGF.createBasicBlock("taskloop.if.end");
6886       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
6887                   CGF.getProfileCount(&S));
6888       CGF.EmitBlock(ThenBlock);
6889       CGF.incrementProfileCounter(&S);
6890     }
6891 
6892     (void)CGF.EmitOMPLinearClauseInit(S);
6893 
6894     OMPPrivateScope LoopScope(CGF);
6895     // Emit helper vars inits.
6896     enum { LowerBound = 5, UpperBound, Stride, LastIter };
6897     auto *I = CS->getCapturedDecl()->param_begin();
6898     auto *LBP = std::next(I, LowerBound);
6899     auto *UBP = std::next(I, UpperBound);
6900     auto *STP = std::next(I, Stride);
6901     auto *LIP = std::next(I, LastIter);
6902     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
6903              LoopScope);
6904     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
6905              LoopScope);
6906     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
6907     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
6908              LoopScope);
6909     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
6910     CGF.EmitOMPLinearClause(S, LoopScope);
6911     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
6912     (void)LoopScope.Privatize();
6913     // Emit the loop iteration variable.
6914     const Expr *IVExpr = S.getIterationVariable();
6915     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
6916     CGF.EmitVarDecl(*IVDecl);
6917     CGF.EmitIgnoredExpr(S.getInit());
6918 
6919     // Emit the iterations count variable.
6920     // If it is not a variable, Sema decided to calculate iterations count on
6921     // each iteration (e.g., it is foldable into a constant).
6922     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
6923       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
6924       // Emit calculation of the iterations count.
6925       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
6926     }
6927 
6928     {
6929       OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
6930       emitCommonSimdLoop(
6931           CGF, S,
6932           [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6933             if (isOpenMPSimdDirective(S.getDirectiveKind()))
6934               CGF.EmitOMPSimdInit(S);
6935           },
6936           [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
6937             CGF.EmitOMPInnerLoop(
6938                 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
6939                 [&S](CodeGenFunction &CGF) {
6940                   emitOMPLoopBodyWithStopPoint(CGF, S,
6941                                                CodeGenFunction::JumpDest());
6942                 },
6943                 [](CodeGenFunction &) {});
6944           });
6945     }
6946     // Emit: if (PreCond) - end.
6947     if (ContBlock) {
6948       CGF.EmitBranch(ContBlock);
6949       CGF.EmitBlock(ContBlock, true);
6950     }
6951     // Emit final copy of the lastprivate variables if IsLastIter != 0.
6952     if (HasLastprivateClause) {
6953       CGF.EmitOMPLastprivateClauseFinal(
6954           S, isOpenMPSimdDirective(S.getDirectiveKind()),
6955           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
6956               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
6957               (*LIP)->getType(), S.getBeginLoc())));
6958     }
6959     CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) {
6960       return CGF.Builder.CreateIsNotNull(
6961           CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
6962                                (*LIP)->getType(), S.getBeginLoc()));
6963     });
6964   };
6965   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
6966                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
6967                             const OMPTaskDataTy &Data) {
6968     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
6969                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
6970       OMPLoopScope PreInitScope(CGF, S);
6971       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
6972                                                   OutlinedFn, SharedsTy,
6973                                                   CapturedStruct, IfCond, Data);
6974     };
6975     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
6976                                                     CodeGen);
6977   };
6978   if (Data.Nogroup) {
6979     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
6980   } else {
6981     CGM.getOpenMPRuntime().emitTaskgroupRegion(
6982         *this,
6983         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
6984                                         PrePostActionTy &Action) {
6985           Action.Enter(CGF);
6986           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
6987                                         Data);
6988         },
6989         S.getBeginLoc());
6990   }
6991 }
6992 
6993 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
6994   auto LPCRegion =
6995       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6996   EmitOMPTaskLoopBasedDirective(S);
6997 }
6998 
6999 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
7000     const OMPTaskLoopSimdDirective &S) {
7001   auto LPCRegion =
7002       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
7003   OMPLexicalScope Scope(*this, S);
7004   EmitOMPTaskLoopBasedDirective(S);
7005 }
7006 
7007 void CodeGenFunction::EmitOMPMasterTaskLoopDirective(
7008     const OMPMasterTaskLoopDirective &S) {
7009   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
7010     Action.Enter(CGF);
7011     EmitOMPTaskLoopBasedDirective(S);
7012   };
7013   auto LPCRegion =
7014       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
7015   OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false);
7016   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
7017 }
7018 
7019 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective(
7020     const OMPMasterTaskLoopSimdDirective &S) {
7021   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
7022     Action.Enter(CGF);
7023     EmitOMPTaskLoopBasedDirective(S);
7024   };
7025   auto LPCRegion =
7026       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
7027   OMPLexicalScope Scope(*this, S);
7028   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
7029 }
7030 
7031 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective(
7032     const OMPParallelMasterTaskLoopDirective &S) {
7033   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
7034     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
7035                                   PrePostActionTy &Action) {
7036       Action.Enter(CGF);
7037       CGF.EmitOMPTaskLoopBasedDirective(S);
7038     };
7039     OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
7040     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
7041                                             S.getBeginLoc());
7042   };
7043   auto LPCRegion =
7044       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
7045   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen,
7046                                  emitEmptyBoundParameters);
7047 }
7048 
7049 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective(
7050     const OMPParallelMasterTaskLoopSimdDirective &S) {
7051   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
7052     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
7053                                   PrePostActionTy &Action) {
7054       Action.Enter(CGF);
7055       CGF.EmitOMPTaskLoopBasedDirective(S);
7056     };
7057     OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
7058     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
7059                                             S.getBeginLoc());
7060   };
7061   auto LPCRegion =
7062       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
7063   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen,
7064                                  emitEmptyBoundParameters);
7065 }
7066 
7067 // Generate the instructions for '#pragma omp target update' directive.
7068 void CodeGenFunction::EmitOMPTargetUpdateDirective(
7069     const OMPTargetUpdateDirective &S) {
7070   // If we don't have target devices, don't bother emitting the data mapping
7071   // code.
7072   if (CGM.getLangOpts().OMPTargetTriples.empty())
7073     return;
7074 
7075   // Check if we have any if clause associated with the directive.
7076   const Expr *IfCond = nullptr;
7077   if (const auto *C = S.getSingleClause<OMPIfClause>())
7078     IfCond = C->getCondition();
7079 
7080   // Check if we have any device clause associated with the directive.
7081   const Expr *Device = nullptr;
7082   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
7083     Device = C->getDevice();
7084 
7085   OMPLexicalScope Scope(*this, S, OMPD_task);
7086   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
7087 }
7088 
7089 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
7090     const OMPExecutableDirective &D) {
7091   if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) {
7092     EmitOMPScanDirective(*SD);
7093     return;
7094   }
7095   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
7096     return;
7097   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
7098     OMPPrivateScope GlobalsScope(CGF);
7099     if (isOpenMPTaskingDirective(D.getDirectiveKind())) {
7100       // Capture global firstprivates to avoid crash.
7101       for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
7102         for (const Expr *Ref : C->varlists()) {
7103           const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
7104           if (!DRE)
7105             continue;
7106           const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7107           if (!VD || VD->hasLocalStorage())
7108             continue;
7109           if (!CGF.LocalDeclMap.count(VD)) {
7110             LValue GlobLVal = CGF.EmitLValue(Ref);
7111             GlobalsScope.addPrivate(
7112                 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
7113           }
7114         }
7115       }
7116     }
7117     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
7118       (void)GlobalsScope.Privatize();
7119       ParentLoopDirectiveForScanRegion ScanRegion(CGF, D);
7120       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
7121     } else {
7122       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
7123         for (const Expr *E : LD->counters()) {
7124           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
7125           if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) {
7126             LValue GlobLVal = CGF.EmitLValue(E);
7127             GlobalsScope.addPrivate(
7128                 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
7129           }
7130           if (isa<OMPCapturedExprDecl>(VD)) {
7131             // Emit only those that were not explicitly referenced in clauses.
7132             if (!CGF.LocalDeclMap.count(VD))
7133               CGF.EmitVarDecl(*VD);
7134           }
7135         }
7136         for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
7137           if (!C->getNumForLoops())
7138             continue;
7139           for (unsigned I = LD->getLoopsNumber(),
7140                         E = C->getLoopNumIterations().size();
7141                I < E; ++I) {
7142             if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
7143                     cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
7144               // Emit only those that were not explicitly referenced in clauses.
7145               if (!CGF.LocalDeclMap.count(VD))
7146                 CGF.EmitVarDecl(*VD);
7147             }
7148           }
7149         }
7150       }
7151       (void)GlobalsScope.Privatize();
7152       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
7153     }
7154   };
7155   if (D.getDirectiveKind() == OMPD_atomic ||
7156       D.getDirectiveKind() == OMPD_critical ||
7157       D.getDirectiveKind() == OMPD_section ||
7158       D.getDirectiveKind() == OMPD_master ||
7159       D.getDirectiveKind() == OMPD_masked) {
7160     EmitStmt(D.getAssociatedStmt());
7161   } else {
7162     auto LPCRegion =
7163         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D);
7164     OMPSimdLexicalScope Scope(*this, D);
7165     CGM.getOpenMPRuntime().emitInlinedDirective(
7166         *this,
7167         isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
7168                                                     : D.getDirectiveKind(),
7169         CodeGen);
7170   }
7171   // Check for outer lastprivate conditional update.
7172   checkForLastprivateConditionalUpdate(*this, D);
7173 }
7174