1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/Frontend/OpenMP/OMPConstants.h" 28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/Support/AtomicOrdering.h" 32 using namespace clang; 33 using namespace CodeGen; 34 using namespace llvm::omp; 35 36 static const VarDecl *getBaseDecl(const Expr *Ref); 37 38 namespace { 39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 40 /// for captured expressions. 41 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 42 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 43 for (const auto *C : S.clauses()) { 44 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 45 if (const auto *PreInit = 46 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 47 for (const auto *I : PreInit->decls()) { 48 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 49 CGF.EmitVarDecl(cast<VarDecl>(*I)); 50 } else { 51 CodeGenFunction::AutoVarEmission Emission = 52 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 53 CGF.EmitAutoVarCleanups(Emission); 54 } 55 } 56 } 57 } 58 } 59 } 60 CodeGenFunction::OMPPrivateScope InlinedShareds; 61 62 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 63 return CGF.LambdaCaptureFields.lookup(VD) || 64 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 65 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 66 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 67 } 68 69 public: 70 OMPLexicalScope( 71 CodeGenFunction &CGF, const OMPExecutableDirective &S, 72 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 73 const bool EmitPreInitStmt = true) 74 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 75 InlinedShareds(CGF) { 76 if (EmitPreInitStmt) 77 emitPreInitStmt(CGF, S); 78 if (!CapturedRegion.hasValue()) 79 return; 80 assert(S.hasAssociatedStmt() && 81 "Expected associated statement for inlined directive."); 82 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 83 for (const auto &C : CS->captures()) { 84 if (C.capturesVariable() || C.capturesVariableByCopy()) { 85 auto *VD = C.getCapturedVar(); 86 assert(VD == VD->getCanonicalDecl() && 87 "Canonical decl must be captured."); 88 DeclRefExpr DRE( 89 CGF.getContext(), const_cast<VarDecl *>(VD), 90 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 91 InlinedShareds.isGlobalVarCaptured(VD)), 92 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 93 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 94 return CGF.EmitLValue(&DRE).getAddress(CGF); 95 }); 96 } 97 } 98 (void)InlinedShareds.Privatize(); 99 } 100 }; 101 102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 103 /// for captured expressions. 104 class OMPParallelScope final : public OMPLexicalScope { 105 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 106 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 107 return !(isOpenMPTargetExecutionDirective(Kind) || 108 isOpenMPLoopBoundSharingDirective(Kind)) && 109 isOpenMPParallelDirective(Kind); 110 } 111 112 public: 113 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Lexical scope for OpenMP teams construct, that handles correct codegen 119 /// for captured expressions. 120 class OMPTeamsScope final : public OMPLexicalScope { 121 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 122 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 123 return !isOpenMPTargetExecutionDirective(Kind) && 124 isOpenMPTeamsDirective(Kind); 125 } 126 127 public: 128 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 129 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 130 EmitPreInitStmt(S)) {} 131 }; 132 133 /// Private scope for OpenMP loop-based directives, that supports capturing 134 /// of used expression from loop statement. 135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 136 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 137 const DeclStmt *PreInits; 138 CodeGenFunction::OMPMapVars PreCondVars; 139 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 140 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 141 for (const auto *E : LD->counters()) { 142 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 143 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 144 (void)PreCondVars.setVarAddr( 145 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 146 } 147 // Mark private vars as undefs. 148 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 149 for (const Expr *IRef : C->varlists()) { 150 const auto *OrigVD = 151 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 152 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 153 (void)PreCondVars.setVarAddr( 154 CGF, OrigVD, 155 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 156 CGF.getContext().getPointerType( 157 OrigVD->getType().getNonReferenceType()))), 158 CGF.getContext().getDeclAlign(OrigVD))); 159 } 160 } 161 } 162 (void)PreCondVars.apply(CGF); 163 // Emit init, __range and __end variables for C++ range loops. 164 (void)OMPLoopBasedDirective::doForAllLoops( 165 LD->getInnermostCapturedStmt()->getCapturedStmt(), 166 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 167 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 168 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 169 if (const Stmt *Init = CXXFor->getInit()) 170 CGF.EmitStmt(Init); 171 CGF.EmitStmt(CXXFor->getRangeStmt()); 172 CGF.EmitStmt(CXXFor->getEndStmt()); 173 } 174 return false; 175 }); 176 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 177 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 178 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 179 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 180 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 181 } else { 182 llvm_unreachable("Unknown loop-based directive kind."); 183 } 184 if (PreInits) { 185 for (const auto *I : PreInits->decls()) 186 CGF.EmitVarDecl(cast<VarDecl>(*I)); 187 } 188 PreCondVars.restore(CGF); 189 } 190 191 public: 192 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 193 : CodeGenFunction::RunCleanupsScope(CGF) { 194 emitPreInitStmt(CGF, S); 195 } 196 }; 197 198 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 199 CodeGenFunction::OMPPrivateScope InlinedShareds; 200 201 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 202 return CGF.LambdaCaptureFields.lookup(VD) || 203 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 204 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 205 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 206 } 207 208 public: 209 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 210 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 211 InlinedShareds(CGF) { 212 for (const auto *C : S.clauses()) { 213 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 214 if (const auto *PreInit = 215 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 216 for (const auto *I : PreInit->decls()) { 217 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 218 CGF.EmitVarDecl(cast<VarDecl>(*I)); 219 } else { 220 CodeGenFunction::AutoVarEmission Emission = 221 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 222 CGF.EmitAutoVarCleanups(Emission); 223 } 224 } 225 } 226 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 227 for (const Expr *E : UDP->varlists()) { 228 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 229 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 230 CGF.EmitVarDecl(*OED); 231 } 232 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 233 for (const Expr *E : UDP->varlists()) { 234 const Decl *D = getBaseDecl(E); 235 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 236 CGF.EmitVarDecl(*OED); 237 } 238 } 239 } 240 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 241 CGF.EmitOMPPrivateClause(S, InlinedShareds); 242 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 243 if (const Expr *E = TG->getReductionRef()) 244 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 245 } 246 // Temp copy arrays for inscan reductions should not be emitted as they are 247 // not used in simd only mode. 248 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 249 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 250 if (C->getModifier() != OMPC_REDUCTION_inscan) 251 continue; 252 for (const Expr *E : C->copy_array_temps()) 253 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 254 } 255 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 256 while (CS) { 257 for (auto &C : CS->captures()) { 258 if (C.capturesVariable() || C.capturesVariableByCopy()) { 259 auto *VD = C.getCapturedVar(); 260 if (CopyArrayTemps.contains(VD)) 261 continue; 262 assert(VD == VD->getCanonicalDecl() && 263 "Canonical decl must be captured."); 264 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 265 isCapturedVar(CGF, VD) || 266 (CGF.CapturedStmtInfo && 267 InlinedShareds.isGlobalVarCaptured(VD)), 268 VD->getType().getNonReferenceType(), VK_LValue, 269 C.getLocation()); 270 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 271 return CGF.EmitLValue(&DRE).getAddress(CGF); 272 }); 273 } 274 } 275 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 276 } 277 (void)InlinedShareds.Privatize(); 278 } 279 }; 280 281 } // namespace 282 283 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 284 const OMPExecutableDirective &S, 285 const RegionCodeGenTy &CodeGen); 286 287 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 288 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 289 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 290 OrigVD = OrigVD->getCanonicalDecl(); 291 bool IsCaptured = 292 LambdaCaptureFields.lookup(OrigVD) || 293 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 294 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 295 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 296 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 297 return EmitLValue(&DRE); 298 } 299 } 300 return EmitLValue(E); 301 } 302 303 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 304 ASTContext &C = getContext(); 305 llvm::Value *Size = nullptr; 306 auto SizeInChars = C.getTypeSizeInChars(Ty); 307 if (SizeInChars.isZero()) { 308 // getTypeSizeInChars() returns 0 for a VLA. 309 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 310 VlaSizePair VlaSize = getVLASize(VAT); 311 Ty = VlaSize.Type; 312 Size = 313 Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) : VlaSize.NumElts; 314 } 315 SizeInChars = C.getTypeSizeInChars(Ty); 316 if (SizeInChars.isZero()) 317 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 318 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 319 } 320 return CGM.getSize(SizeInChars); 321 } 322 323 void CodeGenFunction::GenerateOpenMPCapturedVars( 324 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 325 const RecordDecl *RD = S.getCapturedRecordDecl(); 326 auto CurField = RD->field_begin(); 327 auto CurCap = S.captures().begin(); 328 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 329 E = S.capture_init_end(); 330 I != E; ++I, ++CurField, ++CurCap) { 331 if (CurField->hasCapturedVLAType()) { 332 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 333 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 334 CapturedVars.push_back(Val); 335 } else if (CurCap->capturesThis()) { 336 CapturedVars.push_back(CXXThisValue); 337 } else if (CurCap->capturesVariableByCopy()) { 338 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 339 340 // If the field is not a pointer, we need to save the actual value 341 // and load it as a void pointer. 342 if (!CurField->getType()->isAnyPointerType()) { 343 ASTContext &Ctx = getContext(); 344 Address DstAddr = CreateMemTemp( 345 Ctx.getUIntPtrType(), 346 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 347 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 348 349 llvm::Value *SrcAddrVal = EmitScalarConversion( 350 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 351 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 352 LValue SrcLV = 353 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 354 355 // Store the value using the source type pointer. 356 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 357 358 // Load the value using the destination type pointer. 359 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 360 } 361 CapturedVars.push_back(CV); 362 } else { 363 assert(CurCap->capturesVariable() && "Expected capture by reference."); 364 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 365 } 366 } 367 } 368 369 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 370 QualType DstType, StringRef Name, 371 LValue AddrLV) { 372 ASTContext &Ctx = CGF.getContext(); 373 374 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 375 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 376 Ctx.getPointerType(DstType), Loc); 377 Address TmpAddr = 378 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 379 .getAddress(CGF); 380 return TmpAddr; 381 } 382 383 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 384 if (T->isLValueReferenceType()) 385 return C.getLValueReferenceType( 386 getCanonicalParamType(C, T.getNonReferenceType()), 387 /*SpelledAsLValue=*/false); 388 if (T->isPointerType()) 389 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 390 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 391 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 392 return getCanonicalParamType(C, VLA->getElementType()); 393 if (!A->isVariablyModifiedType()) 394 return C.getCanonicalType(T); 395 } 396 return C.getCanonicalParamType(T); 397 } 398 399 namespace { 400 /// Contains required data for proper outlined function codegen. 401 struct FunctionOptions { 402 /// Captured statement for which the function is generated. 403 const CapturedStmt *S = nullptr; 404 /// true if cast to/from UIntPtr is required for variables captured by 405 /// value. 406 const bool UIntPtrCastRequired = true; 407 /// true if only casted arguments must be registered as local args or VLA 408 /// sizes. 409 const bool RegisterCastedArgsOnly = false; 410 /// Name of the generated function. 411 const StringRef FunctionName; 412 /// Location of the non-debug version of the outlined function. 413 SourceLocation Loc; 414 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 415 bool RegisterCastedArgsOnly, StringRef FunctionName, 416 SourceLocation Loc) 417 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 418 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 419 FunctionName(FunctionName), Loc(Loc) {} 420 }; 421 } // namespace 422 423 static llvm::Function *emitOutlinedFunctionPrologue( 424 CodeGenFunction &CGF, FunctionArgList &Args, 425 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 426 &LocalAddrs, 427 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 428 &VLASizes, 429 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 430 const CapturedDecl *CD = FO.S->getCapturedDecl(); 431 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 432 assert(CD->hasBody() && "missing CapturedDecl body"); 433 434 CXXThisValue = nullptr; 435 // Build the argument list. 436 CodeGenModule &CGM = CGF.CGM; 437 ASTContext &Ctx = CGM.getContext(); 438 FunctionArgList TargetArgs; 439 Args.append(CD->param_begin(), 440 std::next(CD->param_begin(), CD->getContextParamPosition())); 441 TargetArgs.append( 442 CD->param_begin(), 443 std::next(CD->param_begin(), CD->getContextParamPosition())); 444 auto I = FO.S->captures().begin(); 445 FunctionDecl *DebugFunctionDecl = nullptr; 446 if (!FO.UIntPtrCastRequired) { 447 FunctionProtoType::ExtProtoInfo EPI; 448 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 449 DebugFunctionDecl = FunctionDecl::Create( 450 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 451 SourceLocation(), DeclarationName(), FunctionTy, 452 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 453 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 454 /*hasWrittenPrototype=*/false); 455 } 456 for (const FieldDecl *FD : RD->fields()) { 457 QualType ArgType = FD->getType(); 458 IdentifierInfo *II = nullptr; 459 VarDecl *CapVar = nullptr; 460 461 // If this is a capture by copy and the type is not a pointer, the outlined 462 // function argument type should be uintptr and the value properly casted to 463 // uintptr. This is necessary given that the runtime library is only able to 464 // deal with pointers. We can pass in the same way the VLA type sizes to the 465 // outlined function. 466 if (FO.UIntPtrCastRequired && 467 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 468 I->capturesVariableArrayType())) 469 ArgType = Ctx.getUIntPtrType(); 470 471 if (I->capturesVariable() || I->capturesVariableByCopy()) { 472 CapVar = I->getCapturedVar(); 473 II = CapVar->getIdentifier(); 474 } else if (I->capturesThis()) { 475 II = &Ctx.Idents.get("this"); 476 } else { 477 assert(I->capturesVariableArrayType()); 478 II = &Ctx.Idents.get("vla"); 479 } 480 if (ArgType->isVariablyModifiedType()) 481 ArgType = getCanonicalParamType(Ctx, ArgType); 482 VarDecl *Arg; 483 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 484 Arg = ParmVarDecl::Create( 485 Ctx, DebugFunctionDecl, 486 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 487 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 488 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 489 } else { 490 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 491 II, ArgType, ImplicitParamDecl::Other); 492 } 493 Args.emplace_back(Arg); 494 // Do not cast arguments if we emit function with non-original types. 495 TargetArgs.emplace_back( 496 FO.UIntPtrCastRequired 497 ? Arg 498 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 499 ++I; 500 } 501 Args.append(std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 502 CD->param_end()); 503 TargetArgs.append( 504 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 505 CD->param_end()); 506 507 // Create the function declaration. 508 const CGFunctionInfo &FuncInfo = 509 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 510 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 511 512 auto *F = 513 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 514 FO.FunctionName, &CGM.getModule()); 515 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 516 if (CD->isNothrow()) 517 F->setDoesNotThrow(); 518 F->setDoesNotRecurse(); 519 520 // Always inline the outlined function if optimizations are enabled. 521 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 522 F->addFnAttr(llvm::Attribute::AlwaysInline); 523 524 // Generate the function. 525 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 526 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 527 FO.UIntPtrCastRequired ? FO.Loc 528 : CD->getBody()->getBeginLoc()); 529 unsigned Cnt = CD->getContextParamPosition(); 530 I = FO.S->captures().begin(); 531 for (const FieldDecl *FD : RD->fields()) { 532 // Do not map arguments if we emit function with non-original types. 533 Address LocalAddr(Address::invalid()); 534 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 535 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 536 TargetArgs[Cnt]); 537 } else { 538 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 539 } 540 // If we are capturing a pointer by copy we don't need to do anything, just 541 // use the value that we get from the arguments. 542 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 543 const VarDecl *CurVD = I->getCapturedVar(); 544 if (!FO.RegisterCastedArgsOnly) 545 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 546 ++Cnt; 547 ++I; 548 continue; 549 } 550 551 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 552 AlignmentSource::Decl); 553 if (FD->hasCapturedVLAType()) { 554 if (FO.UIntPtrCastRequired) { 555 ArgLVal = CGF.MakeAddrLValue( 556 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 557 Args[Cnt]->getName(), ArgLVal), 558 FD->getType(), AlignmentSource::Decl); 559 } 560 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 561 const VariableArrayType *VAT = FD->getCapturedVLAType(); 562 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 563 } else if (I->capturesVariable()) { 564 const VarDecl *Var = I->getCapturedVar(); 565 QualType VarTy = Var->getType(); 566 Address ArgAddr = ArgLVal.getAddress(CGF); 567 if (ArgLVal.getType()->isLValueReferenceType()) { 568 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 569 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 570 assert(ArgLVal.getType()->isPointerType()); 571 ArgAddr = CGF.EmitLoadOfPointer( 572 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 573 } 574 if (!FO.RegisterCastedArgsOnly) { 575 LocalAddrs.insert( 576 {Args[Cnt], 577 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 578 } 579 } else if (I->capturesVariableByCopy()) { 580 assert(!FD->getType()->isAnyPointerType() && 581 "Not expecting a captured pointer."); 582 const VarDecl *Var = I->getCapturedVar(); 583 LocalAddrs.insert({Args[Cnt], 584 {Var, FO.UIntPtrCastRequired 585 ? castValueFromUintptr( 586 CGF, I->getLocation(), FD->getType(), 587 Args[Cnt]->getName(), ArgLVal) 588 : ArgLVal.getAddress(CGF)}}); 589 } else { 590 // If 'this' is captured, load it into CXXThisValue. 591 assert(I->capturesThis()); 592 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 593 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 594 } 595 ++Cnt; 596 ++I; 597 } 598 599 return F; 600 } 601 602 llvm::Function * 603 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 604 SourceLocation Loc) { 605 assert( 606 CapturedStmtInfo && 607 "CapturedStmtInfo should be set when generating the captured function"); 608 const CapturedDecl *CD = S.getCapturedDecl(); 609 // Build the argument list. 610 bool NeedWrapperFunction = 611 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 612 FunctionArgList Args; 613 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 614 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 615 SmallString<256> Buffer; 616 llvm::raw_svector_ostream Out(Buffer); 617 Out << CapturedStmtInfo->getHelperName(); 618 if (NeedWrapperFunction) 619 Out << "_debug__"; 620 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 621 Out.str(), Loc); 622 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 623 VLASizes, CXXThisValue, FO); 624 CodeGenFunction::OMPPrivateScope LocalScope(*this); 625 for (const auto &LocalAddrPair : LocalAddrs) { 626 if (LocalAddrPair.second.first) { 627 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 628 return LocalAddrPair.second.second; 629 }); 630 } 631 } 632 (void)LocalScope.Privatize(); 633 for (const auto &VLASizePair : VLASizes) 634 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 635 PGO.assignRegionCounters(GlobalDecl(CD), F); 636 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 637 (void)LocalScope.ForceCleanup(); 638 FinishFunction(CD->getBodyRBrace()); 639 if (!NeedWrapperFunction) 640 return F; 641 642 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 643 /*RegisterCastedArgsOnly=*/true, 644 CapturedStmtInfo->getHelperName(), Loc); 645 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 646 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 647 Args.clear(); 648 LocalAddrs.clear(); 649 VLASizes.clear(); 650 llvm::Function *WrapperF = 651 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 652 WrapperCGF.CXXThisValue, WrapperFO); 653 llvm::SmallVector<llvm::Value *, 4> CallArgs; 654 auto *PI = F->arg_begin(); 655 for (const auto *Arg : Args) { 656 llvm::Value *CallArg; 657 auto I = LocalAddrs.find(Arg); 658 if (I != LocalAddrs.end()) { 659 LValue LV = WrapperCGF.MakeAddrLValue( 660 I->second.second, 661 I->second.first ? I->second.first->getType() : Arg->getType(), 662 AlignmentSource::Decl); 663 if (LV.getType()->isAnyComplexType()) 664 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 665 LV.getAddress(WrapperCGF), 666 PI->getType()->getPointerTo( 667 LV.getAddress(WrapperCGF).getAddressSpace()))); 668 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 669 } else { 670 auto EI = VLASizes.find(Arg); 671 if (EI != VLASizes.end()) { 672 CallArg = EI->second.second; 673 } else { 674 LValue LV = 675 WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 676 Arg->getType(), AlignmentSource::Decl); 677 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 678 } 679 } 680 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 681 ++PI; 682 } 683 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 684 WrapperCGF.FinishFunction(); 685 return WrapperF; 686 } 687 688 //===----------------------------------------------------------------------===// 689 // OpenMP Directive Emission 690 //===----------------------------------------------------------------------===// 691 void CodeGenFunction::EmitOMPAggregateAssign( 692 Address DestAddr, Address SrcAddr, QualType OriginalType, 693 const llvm::function_ref<void(Address, Address)> CopyGen) { 694 // Perform element-by-element initialization. 695 QualType ElementTy; 696 697 // Drill down to the base element type on both arrays. 698 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 699 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 700 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 701 702 llvm::Value *SrcBegin = SrcAddr.getPointer(); 703 llvm::Value *DestBegin = DestAddr.getPointer(); 704 // Cast from pointer to array type to pointer to single element. 705 llvm::Value *DestEnd = 706 Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); 707 // The basic structure here is a while-do loop. 708 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 709 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 710 llvm::Value *IsEmpty = 711 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 712 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 713 714 // Enter the loop body, making that address the current address. 715 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 716 EmitBlock(BodyBB); 717 718 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 719 720 llvm::PHINode *SrcElementPHI = 721 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 722 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 723 Address SrcElementCurrent = 724 Address(SrcElementPHI, 725 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 726 727 llvm::PHINode *DestElementPHI = Builder.CreatePHI( 728 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 729 DestElementPHI->addIncoming(DestBegin, EntryBB); 730 Address DestElementCurrent = 731 Address(DestElementPHI, 732 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 733 734 // Emit copy. 735 CopyGen(DestElementCurrent, SrcElementCurrent); 736 737 // Shift the address forward by one element. 738 llvm::Value *DestElementNext = 739 Builder.CreateConstGEP1_32(DestAddr.getElementType(), DestElementPHI, 740 /*Idx0=*/1, "omp.arraycpy.dest.element"); 741 llvm::Value *SrcElementNext = 742 Builder.CreateConstGEP1_32(SrcAddr.getElementType(), SrcElementPHI, 743 /*Idx0=*/1, "omp.arraycpy.src.element"); 744 // Check whether we've reached the end. 745 llvm::Value *Done = 746 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 747 Builder.CreateCondBr(Done, DoneBB, BodyBB); 748 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 749 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 750 751 // Done. 752 EmitBlock(DoneBB, /*IsFinished=*/true); 753 } 754 755 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 756 Address SrcAddr, const VarDecl *DestVD, 757 const VarDecl *SrcVD, const Expr *Copy) { 758 if (OriginalType->isArrayType()) { 759 const auto *BO = dyn_cast<BinaryOperator>(Copy); 760 if (BO && BO->getOpcode() == BO_Assign) { 761 // Perform simple memcpy for simple copying. 762 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 763 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 764 EmitAggregateAssign(Dest, Src, OriginalType); 765 } else { 766 // For arrays with complex element types perform element by element 767 // copying. 768 EmitOMPAggregateAssign( 769 DestAddr, SrcAddr, OriginalType, 770 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 771 // Working with the single array element, so have to remap 772 // destination and source variables to corresponding array 773 // elements. 774 CodeGenFunction::OMPPrivateScope Remap(*this); 775 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 776 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 777 (void)Remap.Privatize(); 778 EmitIgnoredExpr(Copy); 779 }); 780 } 781 } else { 782 // Remap pseudo source variable to private copy. 783 CodeGenFunction::OMPPrivateScope Remap(*this); 784 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 785 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 786 (void)Remap.Privatize(); 787 // Emit copying of the whole variable. 788 EmitIgnoredExpr(Copy); 789 } 790 } 791 792 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 793 OMPPrivateScope &PrivateScope) { 794 if (!HaveInsertPoint()) 795 return false; 796 bool DeviceConstTarget = 797 getLangOpts().OpenMPIsDevice && 798 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 799 bool FirstprivateIsLastprivate = false; 800 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 801 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 802 for (const auto *D : C->varlists()) 803 Lastprivates.try_emplace( 804 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 805 C->getKind()); 806 } 807 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 808 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 809 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 810 // Force emission of the firstprivate copy if the directive does not emit 811 // outlined function, like omp for, omp simd, omp distribute etc. 812 bool MustEmitFirstprivateCopy = 813 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 814 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 815 const auto *IRef = C->varlist_begin(); 816 const auto *InitsRef = C->inits().begin(); 817 for (const Expr *IInit : C->private_copies()) { 818 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 819 bool ThisFirstprivateIsLastprivate = 820 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 821 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 822 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 823 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 824 !FD->getType()->isReferenceType() && 825 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 826 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 827 ++IRef; 828 ++InitsRef; 829 continue; 830 } 831 // Do not emit copy for firstprivate constant variables in target regions, 832 // captured by reference. 833 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 834 FD && FD->getType()->isReferenceType() && 835 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 836 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 837 ++IRef; 838 ++InitsRef; 839 continue; 840 } 841 FirstprivateIsLastprivate = 842 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 843 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 844 const auto *VDInit = 845 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 846 bool IsRegistered; 847 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 848 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 849 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 850 LValue OriginalLVal; 851 if (!FD) { 852 // Check if the firstprivate variable is just a constant value. 853 ConstantEmission CE = tryEmitAsConstant(&DRE); 854 if (CE && !CE.isReference()) { 855 // Constant value, no need to create a copy. 856 ++IRef; 857 ++InitsRef; 858 continue; 859 } 860 if (CE && CE.isReference()) { 861 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 862 } else { 863 assert(!CE && "Expected non-constant firstprivate."); 864 OriginalLVal = EmitLValue(&DRE); 865 } 866 } else { 867 OriginalLVal = EmitLValue(&DRE); 868 } 869 QualType Type = VD->getType(); 870 if (Type->isArrayType()) { 871 // Emit VarDecl with copy init for arrays. 872 // Get the address of the original variable captured in current 873 // captured region. 874 IsRegistered = PrivateScope.addPrivate( 875 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 876 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 877 const Expr *Init = VD->getInit(); 878 if (!isa<CXXConstructExpr>(Init) || 879 isTrivialInitializer(Init)) { 880 // Perform simple memcpy. 881 LValue Dest = 882 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 883 EmitAggregateAssign(Dest, OriginalLVal, Type); 884 } else { 885 EmitOMPAggregateAssign( 886 Emission.getAllocatedAddress(), 887 OriginalLVal.getAddress(*this), Type, 888 [this, VDInit, Init](Address DestElement, 889 Address SrcElement) { 890 // Clean up any temporaries needed by the 891 // initialization. 892 RunCleanupsScope InitScope(*this); 893 // Emit initialization for single element. 894 setAddrOfLocalVar(VDInit, SrcElement); 895 EmitAnyExprToMem(Init, DestElement, 896 Init->getType().getQualifiers(), 897 /*IsInitializer*/ false); 898 LocalDeclMap.erase(VDInit); 899 }); 900 } 901 EmitAutoVarCleanups(Emission); 902 return Emission.getAllocatedAddress(); 903 }); 904 } else { 905 Address OriginalAddr = OriginalLVal.getAddress(*this); 906 IsRegistered = 907 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 908 ThisFirstprivateIsLastprivate, 909 OrigVD, &Lastprivates, IRef]() { 910 // Emit private VarDecl with copy init. 911 // Remap temp VDInit variable to the address of the original 912 // variable (for proper handling of captured global variables). 913 setAddrOfLocalVar(VDInit, OriginalAddr); 914 EmitDecl(*VD); 915 LocalDeclMap.erase(VDInit); 916 if (ThisFirstprivateIsLastprivate && 917 Lastprivates[OrigVD->getCanonicalDecl()] == 918 OMPC_LASTPRIVATE_conditional) { 919 // Create/init special variable for lastprivate conditionals. 920 Address VDAddr = 921 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 922 *this, OrigVD); 923 llvm::Value *V = EmitLoadOfScalar( 924 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 925 AlignmentSource::Decl), 926 (*IRef)->getExprLoc()); 927 EmitStoreOfScalar(V, 928 MakeAddrLValue(VDAddr, (*IRef)->getType(), 929 AlignmentSource::Decl)); 930 LocalDeclMap.erase(VD); 931 setAddrOfLocalVar(VD, VDAddr); 932 return VDAddr; 933 } 934 return GetAddrOfLocalVar(VD); 935 }); 936 } 937 assert(IsRegistered && 938 "firstprivate var already registered as private"); 939 // Silence the warning about unused variable. 940 (void)IsRegistered; 941 } 942 ++IRef; 943 ++InitsRef; 944 } 945 } 946 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 947 } 948 949 void CodeGenFunction::EmitOMPPrivateClause( 950 const OMPExecutableDirective &D, 951 CodeGenFunction::OMPPrivateScope &PrivateScope) { 952 if (!HaveInsertPoint()) 953 return; 954 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 955 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 956 auto IRef = C->varlist_begin(); 957 for (const Expr *IInit : C->private_copies()) { 958 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 959 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 960 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 961 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 962 // Emit private VarDecl with copy init. 963 EmitDecl(*VD); 964 return GetAddrOfLocalVar(VD); 965 }); 966 assert(IsRegistered && "private var already registered as private"); 967 // Silence the warning about unused variable. 968 (void)IsRegistered; 969 } 970 ++IRef; 971 } 972 } 973 } 974 975 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 976 if (!HaveInsertPoint()) 977 return false; 978 // threadprivate_var1 = master_threadprivate_var1; 979 // operator=(threadprivate_var2, master_threadprivate_var2); 980 // ... 981 // __kmpc_barrier(&loc, global_tid); 982 llvm::DenseSet<const VarDecl *> CopiedVars; 983 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 984 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 985 auto IRef = C->varlist_begin(); 986 auto ISrcRef = C->source_exprs().begin(); 987 auto IDestRef = C->destination_exprs().begin(); 988 for (const Expr *AssignOp : C->assignment_ops()) { 989 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 990 QualType Type = VD->getType(); 991 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 992 // Get the address of the master variable. If we are emitting code with 993 // TLS support, the address is passed from the master as field in the 994 // captured declaration. 995 Address MasterAddr = Address::invalid(); 996 if (getLangOpts().OpenMPUseTLS && 997 getContext().getTargetInfo().isTLSSupported()) { 998 assert(CapturedStmtInfo->lookup(VD) && 999 "Copyin threadprivates should have been captured!"); 1000 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 1001 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1002 MasterAddr = EmitLValue(&DRE).getAddress(*this); 1003 LocalDeclMap.erase(VD); 1004 } else { 1005 MasterAddr = 1006 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1007 : CGM.GetAddrOfGlobal(VD), 1008 getContext().getDeclAlign(VD)); 1009 } 1010 // Get the address of the threadprivate variable. 1011 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1012 if (CopiedVars.size() == 1) { 1013 // At first check if current thread is a master thread. If it is, no 1014 // need to copy data. 1015 CopyBegin = createBasicBlock("copyin.not.master"); 1016 CopyEnd = createBasicBlock("copyin.not.master.end"); 1017 // TODO: Avoid ptrtoint conversion. 1018 auto *MasterAddrInt = 1019 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1020 auto *PrivateAddrInt = 1021 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1022 Builder.CreateCondBr( 1023 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1024 CopyEnd); 1025 EmitBlock(CopyBegin); 1026 } 1027 const auto *SrcVD = 1028 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1029 const auto *DestVD = 1030 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1031 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1032 } 1033 ++IRef; 1034 ++ISrcRef; 1035 ++IDestRef; 1036 } 1037 } 1038 if (CopyEnd) { 1039 // Exit out of copying procedure for non-master thread. 1040 EmitBlock(CopyEnd, /*IsFinished=*/true); 1041 return true; 1042 } 1043 return false; 1044 } 1045 1046 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1047 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1048 if (!HaveInsertPoint()) 1049 return false; 1050 bool HasAtLeastOneLastprivate = false; 1051 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1052 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1053 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1054 for (const Expr *C : LoopDirective->counters()) { 1055 SIMDLCVs.insert( 1056 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1057 } 1058 } 1059 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1060 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1061 HasAtLeastOneLastprivate = true; 1062 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1063 !getLangOpts().OpenMPSimd) 1064 break; 1065 const auto *IRef = C->varlist_begin(); 1066 const auto *IDestRef = C->destination_exprs().begin(); 1067 for (const Expr *IInit : C->private_copies()) { 1068 // Keep the address of the original variable for future update at the end 1069 // of the loop. 1070 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1071 // Taskloops do not require additional initialization, it is done in 1072 // runtime support library. 1073 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1074 const auto *DestVD = 1075 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1076 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1077 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1078 /*RefersToEnclosingVariableOrCapture=*/ 1079 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1080 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1081 return EmitLValue(&DRE).getAddress(*this); 1082 }); 1083 // Check if the variable is also a firstprivate: in this case IInit is 1084 // not generated. Initialization of this variable will happen in codegen 1085 // for 'firstprivate' clause. 1086 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1087 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1088 bool IsRegistered = 1089 PrivateScope.addPrivate(OrigVD, [this, VD, C, OrigVD]() { 1090 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1091 Address VDAddr = 1092 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 1093 *this, OrigVD); 1094 setAddrOfLocalVar(VD, VDAddr); 1095 return VDAddr; 1096 } 1097 // Emit private VarDecl with copy init. 1098 EmitDecl(*VD); 1099 return GetAddrOfLocalVar(VD); 1100 }); 1101 assert(IsRegistered && 1102 "lastprivate var already registered as private"); 1103 (void)IsRegistered; 1104 } 1105 } 1106 ++IRef; 1107 ++IDestRef; 1108 } 1109 } 1110 return HasAtLeastOneLastprivate; 1111 } 1112 1113 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1114 const OMPExecutableDirective &D, bool NoFinals, 1115 llvm::Value *IsLastIterCond) { 1116 if (!HaveInsertPoint()) 1117 return; 1118 // Emit following code: 1119 // if (<IsLastIterCond>) { 1120 // orig_var1 = private_orig_var1; 1121 // ... 1122 // orig_varn = private_orig_varn; 1123 // } 1124 llvm::BasicBlock *ThenBB = nullptr; 1125 llvm::BasicBlock *DoneBB = nullptr; 1126 if (IsLastIterCond) { 1127 // Emit implicit barrier if at least one lastprivate conditional is found 1128 // and this is not a simd mode. 1129 if (!getLangOpts().OpenMPSimd && 1130 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1131 [](const OMPLastprivateClause *C) { 1132 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1133 })) { 1134 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1135 OMPD_unknown, 1136 /*EmitChecks=*/false, 1137 /*ForceSimpleCall=*/true); 1138 } 1139 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1140 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1141 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1142 EmitBlock(ThenBB); 1143 } 1144 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1145 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1146 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1147 auto IC = LoopDirective->counters().begin(); 1148 for (const Expr *F : LoopDirective->finals()) { 1149 const auto *D = 1150 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1151 if (NoFinals) 1152 AlreadyEmittedVars.insert(D); 1153 else 1154 LoopCountersAndUpdates[D] = F; 1155 ++IC; 1156 } 1157 } 1158 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1159 auto IRef = C->varlist_begin(); 1160 auto ISrcRef = C->source_exprs().begin(); 1161 auto IDestRef = C->destination_exprs().begin(); 1162 for (const Expr *AssignOp : C->assignment_ops()) { 1163 const auto *PrivateVD = 1164 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1165 QualType Type = PrivateVD->getType(); 1166 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1167 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1168 // If lastprivate variable is a loop control variable for loop-based 1169 // directive, update its value before copyin back to original 1170 // variable. 1171 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1172 EmitIgnoredExpr(FinalExpr); 1173 const auto *SrcVD = 1174 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1175 const auto *DestVD = 1176 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1177 // Get the address of the private variable. 1178 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1179 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1180 PrivateAddr = 1181 Address(Builder.CreateLoad(PrivateAddr), 1182 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1183 // Store the last value to the private copy in the last iteration. 1184 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1185 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1186 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1187 (*IRef)->getExprLoc()); 1188 // Get the address of the original variable. 1189 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1190 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1191 } 1192 ++IRef; 1193 ++ISrcRef; 1194 ++IDestRef; 1195 } 1196 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1197 EmitIgnoredExpr(PostUpdate); 1198 } 1199 if (IsLastIterCond) 1200 EmitBlock(DoneBB, /*IsFinished=*/true); 1201 } 1202 1203 void CodeGenFunction::EmitOMPReductionClauseInit( 1204 const OMPExecutableDirective &D, 1205 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1206 if (!HaveInsertPoint()) 1207 return; 1208 SmallVector<const Expr *, 4> Shareds; 1209 SmallVector<const Expr *, 4> Privates; 1210 SmallVector<const Expr *, 4> ReductionOps; 1211 SmallVector<const Expr *, 4> LHSs; 1212 SmallVector<const Expr *, 4> RHSs; 1213 OMPTaskDataTy Data; 1214 SmallVector<const Expr *, 4> TaskLHSs; 1215 SmallVector<const Expr *, 4> TaskRHSs; 1216 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1217 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1218 continue; 1219 Shareds.append(C->varlist_begin(), C->varlist_end()); 1220 Privates.append(C->privates().begin(), C->privates().end()); 1221 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1222 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1223 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1224 if (C->getModifier() == OMPC_REDUCTION_task) { 1225 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1226 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1227 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1228 Data.ReductionOps.append(C->reduction_ops().begin(), 1229 C->reduction_ops().end()); 1230 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1231 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1232 } 1233 } 1234 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1235 unsigned Count = 0; 1236 auto *ILHS = LHSs.begin(); 1237 auto *IRHS = RHSs.begin(); 1238 auto *IPriv = Privates.begin(); 1239 for (const Expr *IRef : Shareds) { 1240 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1241 // Emit private VarDecl with reduction init. 1242 RedCG.emitSharedOrigLValue(*this, Count); 1243 RedCG.emitAggregateType(*this, Count); 1244 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1245 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1246 RedCG.getSharedLValue(Count), 1247 [&Emission](CodeGenFunction &CGF) { 1248 CGF.EmitAutoVarInit(Emission); 1249 return true; 1250 }); 1251 EmitAutoVarCleanups(Emission); 1252 Address BaseAddr = RedCG.adjustPrivateAddress( 1253 *this, Count, Emission.getAllocatedAddress()); 1254 bool IsRegistered = PrivateScope.addPrivate( 1255 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1256 assert(IsRegistered && "private var already registered as private"); 1257 // Silence the warning about unused variable. 1258 (void)IsRegistered; 1259 1260 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1261 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1262 QualType Type = PrivateVD->getType(); 1263 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1264 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1265 // Store the address of the original variable associated with the LHS 1266 // implicit variable. 1267 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1268 return RedCG.getSharedLValue(Count).getAddress(*this); 1269 }); 1270 PrivateScope.addPrivate( 1271 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1272 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1273 isa<ArraySubscriptExpr>(IRef)) { 1274 // Store the address of the original variable associated with the LHS 1275 // implicit variable. 1276 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1277 return RedCG.getSharedLValue(Count).getAddress(*this); 1278 }); 1279 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1280 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1281 ConvertTypeForMem(RHSVD->getType()), 1282 "rhs.begin"); 1283 }); 1284 } else { 1285 QualType Type = PrivateVD->getType(); 1286 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1287 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1288 // Store the address of the original variable associated with the LHS 1289 // implicit variable. 1290 if (IsArray) { 1291 OriginalAddr = Builder.CreateElementBitCast( 1292 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1293 } 1294 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1295 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1296 return IsArray ? Builder.CreateElementBitCast( 1297 GetAddrOfLocalVar(PrivateVD), 1298 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1299 : GetAddrOfLocalVar(PrivateVD); 1300 }); 1301 } 1302 ++ILHS; 1303 ++IRHS; 1304 ++IPriv; 1305 ++Count; 1306 } 1307 if (!Data.ReductionVars.empty()) { 1308 Data.IsReductionWithTaskMod = true; 1309 Data.IsWorksharingReduction = 1310 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1311 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1312 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1313 const Expr *TaskRedRef = nullptr; 1314 switch (D.getDirectiveKind()) { 1315 case OMPD_parallel: 1316 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1317 break; 1318 case OMPD_for: 1319 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1320 break; 1321 case OMPD_sections: 1322 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1323 break; 1324 case OMPD_parallel_for: 1325 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1326 break; 1327 case OMPD_parallel_master: 1328 TaskRedRef = 1329 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1330 break; 1331 case OMPD_parallel_sections: 1332 TaskRedRef = 1333 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1334 break; 1335 case OMPD_target_parallel: 1336 TaskRedRef = 1337 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1338 break; 1339 case OMPD_target_parallel_for: 1340 TaskRedRef = 1341 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1342 break; 1343 case OMPD_distribute_parallel_for: 1344 TaskRedRef = 1345 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1346 break; 1347 case OMPD_teams_distribute_parallel_for: 1348 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1349 .getTaskReductionRefExpr(); 1350 break; 1351 case OMPD_target_teams_distribute_parallel_for: 1352 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1353 .getTaskReductionRefExpr(); 1354 break; 1355 case OMPD_simd: 1356 case OMPD_for_simd: 1357 case OMPD_section: 1358 case OMPD_single: 1359 case OMPD_master: 1360 case OMPD_critical: 1361 case OMPD_parallel_for_simd: 1362 case OMPD_task: 1363 case OMPD_taskyield: 1364 case OMPD_barrier: 1365 case OMPD_taskwait: 1366 case OMPD_taskgroup: 1367 case OMPD_flush: 1368 case OMPD_depobj: 1369 case OMPD_scan: 1370 case OMPD_ordered: 1371 case OMPD_atomic: 1372 case OMPD_teams: 1373 case OMPD_target: 1374 case OMPD_cancellation_point: 1375 case OMPD_cancel: 1376 case OMPD_target_data: 1377 case OMPD_target_enter_data: 1378 case OMPD_target_exit_data: 1379 case OMPD_taskloop: 1380 case OMPD_taskloop_simd: 1381 case OMPD_master_taskloop: 1382 case OMPD_master_taskloop_simd: 1383 case OMPD_parallel_master_taskloop: 1384 case OMPD_parallel_master_taskloop_simd: 1385 case OMPD_distribute: 1386 case OMPD_target_update: 1387 case OMPD_distribute_parallel_for_simd: 1388 case OMPD_distribute_simd: 1389 case OMPD_target_parallel_for_simd: 1390 case OMPD_target_simd: 1391 case OMPD_teams_distribute: 1392 case OMPD_teams_distribute_simd: 1393 case OMPD_teams_distribute_parallel_for_simd: 1394 case OMPD_target_teams: 1395 case OMPD_target_teams_distribute: 1396 case OMPD_target_teams_distribute_parallel_for_simd: 1397 case OMPD_target_teams_distribute_simd: 1398 case OMPD_declare_target: 1399 case OMPD_end_declare_target: 1400 case OMPD_threadprivate: 1401 case OMPD_allocate: 1402 case OMPD_declare_reduction: 1403 case OMPD_declare_mapper: 1404 case OMPD_declare_simd: 1405 case OMPD_requires: 1406 case OMPD_declare_variant: 1407 case OMPD_begin_declare_variant: 1408 case OMPD_end_declare_variant: 1409 case OMPD_unknown: 1410 default: 1411 llvm_unreachable("Enexpected directive with task reductions."); 1412 } 1413 1414 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1415 EmitVarDecl(*VD); 1416 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1417 /*Volatile=*/false, TaskRedRef->getType()); 1418 } 1419 } 1420 1421 void CodeGenFunction::EmitOMPReductionClauseFinal( 1422 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1423 if (!HaveInsertPoint()) 1424 return; 1425 llvm::SmallVector<const Expr *, 8> Privates; 1426 llvm::SmallVector<const Expr *, 8> LHSExprs; 1427 llvm::SmallVector<const Expr *, 8> RHSExprs; 1428 llvm::SmallVector<const Expr *, 8> ReductionOps; 1429 bool HasAtLeastOneReduction = false; 1430 bool IsReductionWithTaskMod = false; 1431 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1432 // Do not emit for inscan reductions. 1433 if (C->getModifier() == OMPC_REDUCTION_inscan) 1434 continue; 1435 HasAtLeastOneReduction = true; 1436 Privates.append(C->privates().begin(), C->privates().end()); 1437 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1438 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1439 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1440 IsReductionWithTaskMod = 1441 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1442 } 1443 if (HasAtLeastOneReduction) { 1444 if (IsReductionWithTaskMod) { 1445 CGM.getOpenMPRuntime().emitTaskReductionFini( 1446 *this, D.getBeginLoc(), 1447 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1448 } 1449 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1450 isOpenMPParallelDirective(D.getDirectiveKind()) || 1451 ReductionKind == OMPD_simd; 1452 bool SimpleReduction = ReductionKind == OMPD_simd; 1453 // Emit nowait reduction if nowait clause is present or directive is a 1454 // parallel directive (it always has implicit barrier). 1455 CGM.getOpenMPRuntime().emitReduction( 1456 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1457 {WithNowait, SimpleReduction, ReductionKind}); 1458 } 1459 } 1460 1461 static void emitPostUpdateForReductionClause( 1462 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1463 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1464 if (!CGF.HaveInsertPoint()) 1465 return; 1466 llvm::BasicBlock *DoneBB = nullptr; 1467 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1468 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1469 if (!DoneBB) { 1470 if (llvm::Value *Cond = CondGen(CGF)) { 1471 // If the first post-update expression is found, emit conditional 1472 // block if it was requested. 1473 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1474 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1475 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1476 CGF.EmitBlock(ThenBB); 1477 } 1478 } 1479 CGF.EmitIgnoredExpr(PostUpdate); 1480 } 1481 } 1482 if (DoneBB) 1483 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1484 } 1485 1486 namespace { 1487 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1488 /// parallel function. This is necessary for combined constructs such as 1489 /// 'distribute parallel for' 1490 typedef llvm::function_ref<void(CodeGenFunction &, 1491 const OMPExecutableDirective &, 1492 llvm::SmallVectorImpl<llvm::Value *> &)> 1493 CodeGenBoundParametersTy; 1494 } // anonymous namespace 1495 1496 static void 1497 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1498 const OMPExecutableDirective &S) { 1499 if (CGF.getLangOpts().OpenMP < 50) 1500 return; 1501 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1502 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1503 for (const Expr *Ref : C->varlists()) { 1504 if (!Ref->getType()->isScalarType()) 1505 continue; 1506 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1507 if (!DRE) 1508 continue; 1509 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1510 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1511 } 1512 } 1513 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1514 for (const Expr *Ref : C->varlists()) { 1515 if (!Ref->getType()->isScalarType()) 1516 continue; 1517 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1518 if (!DRE) 1519 continue; 1520 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1521 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1522 } 1523 } 1524 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1525 for (const Expr *Ref : C->varlists()) { 1526 if (!Ref->getType()->isScalarType()) 1527 continue; 1528 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1529 if (!DRE) 1530 continue; 1531 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1532 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1533 } 1534 } 1535 // Privates should ne analyzed since they are not captured at all. 1536 // Task reductions may be skipped - tasks are ignored. 1537 // Firstprivates do not return value but may be passed by reference - no need 1538 // to check for updated lastprivate conditional. 1539 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1540 for (const Expr *Ref : C->varlists()) { 1541 if (!Ref->getType()->isScalarType()) 1542 continue; 1543 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1544 if (!DRE) 1545 continue; 1546 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1547 } 1548 } 1549 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1550 CGF, S, PrivateDecls); 1551 } 1552 1553 static void emitCommonOMPParallelDirective( 1554 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1555 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1556 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1557 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1558 llvm::Function *OutlinedFn = 1559 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1560 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1561 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1562 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1563 llvm::Value *NumThreads = 1564 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1565 /*IgnoreResultAssign=*/true); 1566 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1567 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1568 } 1569 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1570 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1571 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1572 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1573 } 1574 const Expr *IfCond = nullptr; 1575 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1576 if (C->getNameModifier() == OMPD_unknown || 1577 C->getNameModifier() == OMPD_parallel) { 1578 IfCond = C->getCondition(); 1579 break; 1580 } 1581 } 1582 1583 OMPParallelScope Scope(CGF, S); 1584 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1585 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1586 // lower and upper bounds with the pragma 'for' chunking mechanism. 1587 // The following lambda takes care of appending the lower and upper bound 1588 // parameters when necessary 1589 CodeGenBoundParameters(CGF, S, CapturedVars); 1590 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1591 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1592 CapturedVars, IfCond); 1593 } 1594 1595 static bool isAllocatableDecl(const VarDecl *VD) { 1596 const VarDecl *CVD = VD->getCanonicalDecl(); 1597 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1598 return false; 1599 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1600 // Use the default allocation. 1601 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1602 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1603 !AA->getAllocator()); 1604 } 1605 1606 static void emitEmptyBoundParameters(CodeGenFunction &, 1607 const OMPExecutableDirective &, 1608 llvm::SmallVectorImpl<llvm::Value *> &) {} 1609 1610 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1611 CodeGenFunction &CGF, const VarDecl *VD) { 1612 CodeGenModule &CGM = CGF.CGM; 1613 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1614 1615 if (!VD) 1616 return Address::invalid(); 1617 const VarDecl *CVD = VD->getCanonicalDecl(); 1618 if (!isAllocatableDecl(CVD)) 1619 return Address::invalid(); 1620 llvm::Value *Size; 1621 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1622 if (CVD->getType()->isVariablyModifiedType()) { 1623 Size = CGF.getTypeSize(CVD->getType()); 1624 // Align the size: ((size + align - 1) / align) * align 1625 Size = CGF.Builder.CreateNUWAdd( 1626 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1627 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1628 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1629 } else { 1630 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1631 Size = CGM.getSize(Sz.alignTo(Align)); 1632 } 1633 1634 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1635 assert(AA->getAllocator() && 1636 "Expected allocator expression for non-default allocator."); 1637 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1638 // According to the standard, the original allocator type is a enum (integer). 1639 // Convert to pointer type, if required. 1640 if (Allocator->getType()->isIntegerTy()) 1641 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1642 else if (Allocator->getType()->isPointerTy()) 1643 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1644 CGM.VoidPtrTy); 1645 1646 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1647 CGF.Builder, Size, Allocator, 1648 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1649 llvm::CallInst *FreeCI = 1650 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1651 1652 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1653 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1654 Addr, 1655 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1656 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1657 return Address(Addr, Align); 1658 } 1659 1660 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1661 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1662 SourceLocation Loc) { 1663 CodeGenModule &CGM = CGF.CGM; 1664 if (CGM.getLangOpts().OpenMPUseTLS && 1665 CGM.getContext().getTargetInfo().isTLSSupported()) 1666 return VDAddr; 1667 1668 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1669 1670 llvm::Type *VarTy = VDAddr.getElementType(); 1671 llvm::Value *Data = 1672 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1673 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1674 std::string Suffix = getNameWithSeparators({"cache", ""}); 1675 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1676 1677 llvm::CallInst *ThreadPrivateCacheCall = 1678 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1679 1680 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1681 } 1682 1683 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1684 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1685 SmallString<128> Buffer; 1686 llvm::raw_svector_ostream OS(Buffer); 1687 StringRef Sep = FirstSeparator; 1688 for (StringRef Part : Parts) { 1689 OS << Sep << Part; 1690 Sep = Separator; 1691 } 1692 return OS.str().str(); 1693 } 1694 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1695 if (CGM.getLangOpts().OpenMPIRBuilder) { 1696 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1697 // Check if we have any if clause associated with the directive. 1698 llvm::Value *IfCond = nullptr; 1699 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1700 IfCond = EmitScalarExpr(C->getCondition(), 1701 /*IgnoreResultAssign=*/true); 1702 1703 llvm::Value *NumThreads = nullptr; 1704 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1705 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1706 /*IgnoreResultAssign=*/true); 1707 1708 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1709 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1710 ProcBind = ProcBindClause->getProcBindKind(); 1711 1712 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1713 1714 // The cleanup callback that finalizes all variabels at the given location, 1715 // thus calls destructors etc. 1716 auto FiniCB = [this](InsertPointTy IP) { 1717 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1718 }; 1719 1720 // Privatization callback that performs appropriate action for 1721 // shared/private/firstprivate/lastprivate/copyin/... variables. 1722 // 1723 // TODO: This defaults to shared right now. 1724 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1725 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1726 // The next line is appropriate only for variables (Val) with the 1727 // data-sharing attribute "shared". 1728 ReplVal = &Val; 1729 1730 return CodeGenIP; 1731 }; 1732 1733 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1734 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1735 1736 auto BodyGenCB = [ParallelRegionBodyStmt, 1737 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1738 llvm::BasicBlock &ContinuationBB) { 1739 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1740 ContinuationBB); 1741 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1742 CodeGenIP, ContinuationBB); 1743 }; 1744 1745 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1746 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1747 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1748 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1749 Builder.restoreIP( 1750 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1751 IfCond, NumThreads, ProcBind, S.hasCancel())); 1752 return; 1753 } 1754 1755 // Emit parallel region as a standalone region. 1756 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1757 Action.Enter(CGF); 1758 OMPPrivateScope PrivateScope(CGF); 1759 bool Copyins = CGF.EmitOMPCopyinClause(S); 1760 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1761 if (Copyins) { 1762 // Emit implicit barrier to synchronize threads and avoid data races on 1763 // propagation master's thread values of threadprivate variables to local 1764 // instances of that variables of all other implicit threads. 1765 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1766 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1767 /*ForceSimpleCall=*/true); 1768 } 1769 CGF.EmitOMPPrivateClause(S, PrivateScope); 1770 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1771 (void)PrivateScope.Privatize(); 1772 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1773 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1774 }; 1775 { 1776 auto LPCRegion = 1777 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1778 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1779 emitEmptyBoundParameters); 1780 emitPostUpdateForReductionClause(*this, S, 1781 [](CodeGenFunction &) { return nullptr; }); 1782 } 1783 // Check for outer lastprivate conditional update. 1784 checkForLastprivateConditionalUpdate(*this, S); 1785 } 1786 1787 namespace { 1788 /// RAII to handle scopes for loop transformation directives. 1789 class OMPTransformDirectiveScopeRAII { 1790 OMPLoopScope *Scope = nullptr; 1791 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1792 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1793 1794 public: 1795 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1796 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1797 Scope = new OMPLoopScope(CGF, *Dir); 1798 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1799 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1800 } 1801 } 1802 ~OMPTransformDirectiveScopeRAII() { 1803 if (!Scope) 1804 return; 1805 delete CapInfoRAII; 1806 delete CGSI; 1807 delete Scope; 1808 } 1809 }; 1810 } // namespace 1811 1812 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1813 int MaxLevel, int Level = 0) { 1814 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1815 const Stmt *SimplifiedS = S->IgnoreContainers(); 1816 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1817 PrettyStackTraceLoc CrashInfo( 1818 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1819 "LLVM IR generation of compound statement ('{}')"); 1820 1821 // Keep track of the current cleanup stack depth, including debug scopes. 1822 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1823 for (const Stmt *CurStmt : CS->body()) 1824 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1825 return; 1826 } 1827 if (SimplifiedS == NextLoop) { 1828 if (auto *Dir = dyn_cast<OMPTileDirective>(SimplifiedS)) 1829 SimplifiedS = Dir->getTransformedStmt(); 1830 if (auto *Dir = dyn_cast<OMPUnrollDirective>(SimplifiedS)) 1831 SimplifiedS = Dir->getTransformedStmt(); 1832 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1833 SimplifiedS = CanonLoop->getLoopStmt(); 1834 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1835 S = For->getBody(); 1836 } else { 1837 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1838 "Expected canonical for loop or range-based for loop."); 1839 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1840 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1841 S = CXXFor->getBody(); 1842 } 1843 if (Level + 1 < MaxLevel) { 1844 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1845 S, /*TryImperfectlyNestedLoops=*/true); 1846 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1847 return; 1848 } 1849 } 1850 CGF.EmitStmt(S); 1851 } 1852 1853 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1854 JumpDest LoopExit) { 1855 RunCleanupsScope BodyScope(*this); 1856 // Update counters values on current iteration. 1857 for (const Expr *UE : D.updates()) 1858 EmitIgnoredExpr(UE); 1859 // Update the linear variables. 1860 // In distribute directives only loop counters may be marked as linear, no 1861 // need to generate the code for them. 1862 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1863 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1864 for (const Expr *UE : C->updates()) 1865 EmitIgnoredExpr(UE); 1866 } 1867 } 1868 1869 // On a continue in the body, jump to the end. 1870 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1871 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1872 for (const Expr *E : D.finals_conditions()) { 1873 if (!E) 1874 continue; 1875 // Check that loop counter in non-rectangular nest fits into the iteration 1876 // space. 1877 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1878 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1879 getProfileCount(D.getBody())); 1880 EmitBlock(NextBB); 1881 } 1882 1883 OMPPrivateScope InscanScope(*this); 1884 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1885 bool IsInscanRegion = InscanScope.Privatize(); 1886 if (IsInscanRegion) { 1887 // Need to remember the block before and after scan directive 1888 // to dispatch them correctly depending on the clause used in 1889 // this directive, inclusive or exclusive. For inclusive scan the natural 1890 // order of the blocks is used, for exclusive clause the blocks must be 1891 // executed in reverse order. 1892 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1893 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1894 // No need to allocate inscan exit block, in simd mode it is selected in the 1895 // codegen for the scan directive. 1896 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1897 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1898 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1899 EmitBranch(OMPScanDispatch); 1900 EmitBlock(OMPBeforeScanBlock); 1901 } 1902 1903 // Emit loop variables for C++ range loops. 1904 const Stmt *Body = 1905 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1906 // Emit loop body. 1907 emitBody(*this, Body, 1908 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1909 Body, /*TryImperfectlyNestedLoops=*/true), 1910 D.getLoopsNumber()); 1911 1912 // Jump to the dispatcher at the end of the loop body. 1913 if (IsInscanRegion) 1914 EmitBranch(OMPScanExitBlock); 1915 1916 // The end (updates/cleanups). 1917 EmitBlock(Continue.getBlock()); 1918 BreakContinueStack.pop_back(); 1919 } 1920 1921 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1922 1923 /// Emit a captured statement and return the function as well as its captured 1924 /// closure context. 1925 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1926 const CapturedStmt *S) { 1927 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1928 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1929 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1930 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1931 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1932 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1933 1934 return {F, CapStruct.getPointer(ParentCGF)}; 1935 } 1936 1937 /// Emit a call to a previously captured closure. 1938 static llvm::CallInst * 1939 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1940 llvm::ArrayRef<llvm::Value *> Args) { 1941 // Append the closure context to the argument. 1942 SmallVector<llvm::Value *> EffectiveArgs; 1943 EffectiveArgs.reserve(Args.size() + 1); 1944 llvm::append_range(EffectiveArgs, Args); 1945 EffectiveArgs.push_back(Cap.second); 1946 1947 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1948 } 1949 1950 llvm::CanonicalLoopInfo * 1951 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1952 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1953 1954 // The caller is processing the loop-associated directive processing the \p 1955 // Depth loops nested in \p S. Put the previous pending loop-associated 1956 // directive to the stack. If the current loop-associated directive is a loop 1957 // transformation directive, it will push its generated loops onto the stack 1958 // such that together with the loops left here they form the combined loop 1959 // nest for the parent loop-associated directive. 1960 int ParentExpectedOMPLoopDepth = ExpectedOMPLoopDepth; 1961 ExpectedOMPLoopDepth = Depth; 1962 1963 EmitStmt(S); 1964 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1965 1966 // The last added loop is the outermost one. 1967 llvm::CanonicalLoopInfo *Result = OMPLoopNestStack.back(); 1968 1969 // Pop the \p Depth loops requested by the call from that stack and restore 1970 // the previous context. 1971 OMPLoopNestStack.set_size(OMPLoopNestStack.size() - Depth); 1972 ExpectedOMPLoopDepth = ParentExpectedOMPLoopDepth; 1973 1974 return Result; 1975 } 1976 1977 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 1978 const Stmt *SyntacticalLoop = S->getLoopStmt(); 1979 if (!getLangOpts().OpenMPIRBuilder) { 1980 // Ignore if OpenMPIRBuilder is not enabled. 1981 EmitStmt(SyntacticalLoop); 1982 return; 1983 } 1984 1985 LexicalScope ForScope(*this, S->getSourceRange()); 1986 1987 // Emit init statements. The Distance/LoopVar funcs may reference variable 1988 // declarations they contain. 1989 const Stmt *BodyStmt; 1990 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 1991 if (const Stmt *InitStmt = For->getInit()) 1992 EmitStmt(InitStmt); 1993 BodyStmt = For->getBody(); 1994 } else if (const auto *RangeFor = 1995 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 1996 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 1997 EmitStmt(RangeStmt); 1998 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 1999 EmitStmt(BeginStmt); 2000 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 2001 EmitStmt(EndStmt); 2002 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 2003 EmitStmt(LoopVarStmt); 2004 BodyStmt = RangeFor->getBody(); 2005 } else 2006 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 2007 2008 // Emit closure for later use. By-value captures will be captured here. 2009 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 2010 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 2011 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 2012 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2013 2014 // Call the distance function to get the number of iterations of the loop to 2015 // come. 2016 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2017 ->getParam(0) 2018 ->getType() 2019 .getNonReferenceType(); 2020 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2021 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2022 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2023 2024 // Emit the loop structure. 2025 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2026 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2027 llvm::Value *IndVar) { 2028 Builder.restoreIP(CodeGenIP); 2029 2030 // Emit the loop body: Convert the logical iteration number to the loop 2031 // variable and emit the body. 2032 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2033 LValue LCVal = EmitLValue(LoopVarRef); 2034 Address LoopVarAddress = LCVal.getAddress(*this); 2035 emitCapturedStmtCall(*this, LoopVarClosure, 2036 {LoopVarAddress.getPointer(), IndVar}); 2037 2038 RunCleanupsScope BodyScope(*this); 2039 EmitStmt(BodyStmt); 2040 }; 2041 llvm::CanonicalLoopInfo *CL = 2042 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2043 2044 // Finish up the loop. 2045 Builder.restoreIP(CL->getAfterIP()); 2046 ForScope.ForceCleanup(); 2047 2048 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2049 OMPLoopNestStack.push_back(CL); 2050 } 2051 2052 void CodeGenFunction::EmitOMPInnerLoop( 2053 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2054 const Expr *IncExpr, 2055 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2056 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2057 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2058 2059 // Start the loop with a block that tests the condition. 2060 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2061 EmitBlock(CondBlock); 2062 const SourceRange R = S.getSourceRange(); 2063 2064 // If attributes are attached, push to the basic block with them. 2065 const auto &OMPED = cast<OMPExecutableDirective>(S); 2066 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2067 const Stmt *SS = ICS->getCapturedStmt(); 2068 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2069 OMPLoopNestStack.clear(); 2070 if (AS) 2071 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2072 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2073 SourceLocToDebugLoc(R.getEnd())); 2074 else 2075 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2076 SourceLocToDebugLoc(R.getEnd())); 2077 2078 // If there are any cleanups between here and the loop-exit scope, 2079 // create a block to stage a loop exit along. 2080 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2081 if (RequiresCleanup) 2082 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2083 2084 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2085 2086 // Emit condition. 2087 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2088 if (ExitBlock != LoopExit.getBlock()) { 2089 EmitBlock(ExitBlock); 2090 EmitBranchThroughCleanup(LoopExit); 2091 } 2092 2093 EmitBlock(LoopBody); 2094 incrementProfileCounter(&S); 2095 2096 // Create a block for the increment. 2097 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2098 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2099 2100 BodyGen(*this); 2101 2102 // Emit "IV = IV + 1" and a back-edge to the condition block. 2103 EmitBlock(Continue.getBlock()); 2104 EmitIgnoredExpr(IncExpr); 2105 PostIncGen(*this); 2106 BreakContinueStack.pop_back(); 2107 EmitBranch(CondBlock); 2108 LoopStack.pop(); 2109 // Emit the fall-through block. 2110 EmitBlock(LoopExit.getBlock()); 2111 } 2112 2113 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2114 if (!HaveInsertPoint()) 2115 return false; 2116 // Emit inits for the linear variables. 2117 bool HasLinears = false; 2118 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2119 for (const Expr *Init : C->inits()) { 2120 HasLinears = true; 2121 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2122 if (const auto *Ref = 2123 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2124 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2125 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2126 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2127 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2128 VD->getInit()->getType(), VK_LValue, 2129 VD->getInit()->getExprLoc()); 2130 EmitExprAsInit( 2131 &DRE, VD, 2132 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 2133 /*capturedByInit=*/false); 2134 EmitAutoVarCleanups(Emission); 2135 } else { 2136 EmitVarDecl(*VD); 2137 } 2138 } 2139 // Emit the linear steps for the linear clauses. 2140 // If a step is not constant, it is pre-calculated before the loop. 2141 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2142 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2143 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2144 // Emit calculation of the linear step. 2145 EmitIgnoredExpr(CS); 2146 } 2147 } 2148 return HasLinears; 2149 } 2150 2151 void CodeGenFunction::EmitOMPLinearClauseFinal( 2152 const OMPLoopDirective &D, 2153 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2154 if (!HaveInsertPoint()) 2155 return; 2156 llvm::BasicBlock *DoneBB = nullptr; 2157 // Emit the final values of the linear variables. 2158 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2159 auto IC = C->varlist_begin(); 2160 for (const Expr *F : C->finals()) { 2161 if (!DoneBB) { 2162 if (llvm::Value *Cond = CondGen(*this)) { 2163 // If the first post-update expression is found, emit conditional 2164 // block if it was requested. 2165 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2166 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2167 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2168 EmitBlock(ThenBB); 2169 } 2170 } 2171 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2172 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2173 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2174 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2175 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2176 CodeGenFunction::OMPPrivateScope VarScope(*this); 2177 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2178 (void)VarScope.Privatize(); 2179 EmitIgnoredExpr(F); 2180 ++IC; 2181 } 2182 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2183 EmitIgnoredExpr(PostUpdate); 2184 } 2185 if (DoneBB) 2186 EmitBlock(DoneBB, /*IsFinished=*/true); 2187 } 2188 2189 static void emitAlignedClause(CodeGenFunction &CGF, 2190 const OMPExecutableDirective &D) { 2191 if (!CGF.HaveInsertPoint()) 2192 return; 2193 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2194 llvm::APInt ClauseAlignment(64, 0); 2195 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2196 auto *AlignmentCI = 2197 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2198 ClauseAlignment = AlignmentCI->getValue(); 2199 } 2200 for (const Expr *E : Clause->varlists()) { 2201 llvm::APInt Alignment(ClauseAlignment); 2202 if (Alignment == 0) { 2203 // OpenMP [2.8.1, Description] 2204 // If no optional parameter is specified, implementation-defined default 2205 // alignments for SIMD instructions on the target platforms are assumed. 2206 Alignment = 2207 CGF.getContext() 2208 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2209 E->getType()->getPointeeType())) 2210 .getQuantity(); 2211 } 2212 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2213 "alignment is not power of 2"); 2214 if (Alignment != 0) { 2215 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2216 CGF.emitAlignmentAssumption( 2217 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2218 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2219 } 2220 } 2221 } 2222 } 2223 2224 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2225 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2226 if (!HaveInsertPoint()) 2227 return; 2228 auto I = S.private_counters().begin(); 2229 for (const Expr *E : S.counters()) { 2230 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2231 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2232 // Emit var without initialization. 2233 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2234 EmitAutoVarCleanups(VarEmission); 2235 LocalDeclMap.erase(PrivateVD); 2236 (void)LoopScope.addPrivate( 2237 VD, [&VarEmission]() { return VarEmission.getAllocatedAddress(); }); 2238 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2239 VD->hasGlobalStorage()) { 2240 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2241 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2242 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2243 E->getType(), VK_LValue, E->getExprLoc()); 2244 return EmitLValue(&DRE).getAddress(*this); 2245 }); 2246 } else { 2247 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2248 return VarEmission.getAllocatedAddress(); 2249 }); 2250 } 2251 ++I; 2252 } 2253 // Privatize extra loop counters used in loops for ordered(n) clauses. 2254 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2255 if (!C->getNumForLoops()) 2256 continue; 2257 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2258 I < E; ++I) { 2259 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2260 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2261 // Override only those variables that can be captured to avoid re-emission 2262 // of the variables declared within the loops. 2263 if (DRE->refersToEnclosingVariableOrCapture()) { 2264 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2265 return CreateMemTemp(DRE->getType(), VD->getName()); 2266 }); 2267 } 2268 } 2269 } 2270 } 2271 2272 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2273 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2274 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2275 if (!CGF.HaveInsertPoint()) 2276 return; 2277 { 2278 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2279 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2280 (void)PreCondScope.Privatize(); 2281 // Get initial values of real counters. 2282 for (const Expr *I : S.inits()) { 2283 CGF.EmitIgnoredExpr(I); 2284 } 2285 } 2286 // Create temp loop control variables with their init values to support 2287 // non-rectangular loops. 2288 CodeGenFunction::OMPMapVars PreCondVars; 2289 for (const Expr *E : S.dependent_counters()) { 2290 if (!E) 2291 continue; 2292 assert(!E->getType().getNonReferenceType()->isRecordType() && 2293 "dependent counter must not be an iterator."); 2294 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2295 Address CounterAddr = 2296 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2297 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2298 } 2299 (void)PreCondVars.apply(CGF); 2300 for (const Expr *E : S.dependent_inits()) { 2301 if (!E) 2302 continue; 2303 CGF.EmitIgnoredExpr(E); 2304 } 2305 // Check that loop is executed at least one time. 2306 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2307 PreCondVars.restore(CGF); 2308 } 2309 2310 void CodeGenFunction::EmitOMPLinearClause( 2311 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2312 if (!HaveInsertPoint()) 2313 return; 2314 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2315 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2316 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2317 for (const Expr *C : LoopDirective->counters()) { 2318 SIMDLCVs.insert( 2319 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2320 } 2321 } 2322 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2323 auto CurPrivate = C->privates().begin(); 2324 for (const Expr *E : C->varlists()) { 2325 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2326 const auto *PrivateVD = 2327 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2328 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2329 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2330 // Emit private VarDecl with copy init. 2331 EmitVarDecl(*PrivateVD); 2332 return GetAddrOfLocalVar(PrivateVD); 2333 }); 2334 assert(IsRegistered && "linear var already registered as private"); 2335 // Silence the warning about unused variable. 2336 (void)IsRegistered; 2337 } else { 2338 EmitVarDecl(*PrivateVD); 2339 } 2340 ++CurPrivate; 2341 } 2342 } 2343 } 2344 2345 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2346 const OMPExecutableDirective &D) { 2347 if (!CGF.HaveInsertPoint()) 2348 return; 2349 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2350 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2351 /*ignoreResult=*/true); 2352 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2353 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2354 // In presence of finite 'safelen', it may be unsafe to mark all 2355 // the memory instructions parallel, because loop-carried 2356 // dependences of 'safelen' iterations are possible. 2357 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2358 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2359 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2360 /*ignoreResult=*/true); 2361 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2362 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2363 // In presence of finite 'safelen', it may be unsafe to mark all 2364 // the memory instructions parallel, because loop-carried 2365 // dependences of 'safelen' iterations are possible. 2366 CGF.LoopStack.setParallel(/*Enable=*/false); 2367 } 2368 } 2369 2370 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2371 // Walk clauses and process safelen/lastprivate. 2372 LoopStack.setParallel(/*Enable=*/true); 2373 LoopStack.setVectorizeEnable(); 2374 emitSimdlenSafelenClause(*this, D); 2375 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2376 if (C->getKind() == OMPC_ORDER_concurrent) 2377 LoopStack.setParallel(/*Enable=*/true); 2378 if ((D.getDirectiveKind() == OMPD_simd || 2379 (getLangOpts().OpenMPSimd && 2380 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2381 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2382 [](const OMPReductionClause *C) { 2383 return C->getModifier() == OMPC_REDUCTION_inscan; 2384 })) 2385 // Disable parallel access in case of prefix sum. 2386 LoopStack.setParallel(/*Enable=*/false); 2387 } 2388 2389 void CodeGenFunction::EmitOMPSimdFinal( 2390 const OMPLoopDirective &D, 2391 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2392 if (!HaveInsertPoint()) 2393 return; 2394 llvm::BasicBlock *DoneBB = nullptr; 2395 auto IC = D.counters().begin(); 2396 auto IPC = D.private_counters().begin(); 2397 for (const Expr *F : D.finals()) { 2398 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2399 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2400 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2401 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2402 OrigVD->hasGlobalStorage() || CED) { 2403 if (!DoneBB) { 2404 if (llvm::Value *Cond = CondGen(*this)) { 2405 // If the first post-update expression is found, emit conditional 2406 // block if it was requested. 2407 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2408 DoneBB = createBasicBlock(".omp.final.done"); 2409 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2410 EmitBlock(ThenBB); 2411 } 2412 } 2413 Address OrigAddr = Address::invalid(); 2414 if (CED) { 2415 OrigAddr = 2416 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2417 } else { 2418 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2419 /*RefersToEnclosingVariableOrCapture=*/false, 2420 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2421 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2422 } 2423 OMPPrivateScope VarScope(*this); 2424 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2425 (void)VarScope.Privatize(); 2426 EmitIgnoredExpr(F); 2427 } 2428 ++IC; 2429 ++IPC; 2430 } 2431 if (DoneBB) 2432 EmitBlock(DoneBB, /*IsFinished=*/true); 2433 } 2434 2435 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2436 const OMPLoopDirective &S, 2437 CodeGenFunction::JumpDest LoopExit) { 2438 CGF.EmitOMPLoopBody(S, LoopExit); 2439 CGF.EmitStopPoint(&S); 2440 } 2441 2442 /// Emit a helper variable and return corresponding lvalue. 2443 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2444 const DeclRefExpr *Helper) { 2445 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2446 CGF.EmitVarDecl(*VDecl); 2447 return CGF.EmitLValue(Helper); 2448 } 2449 2450 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2451 const RegionCodeGenTy &SimdInitGen, 2452 const RegionCodeGenTy &BodyCodeGen) { 2453 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2454 PrePostActionTy &) { 2455 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2456 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2457 SimdInitGen(CGF); 2458 2459 BodyCodeGen(CGF); 2460 }; 2461 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2462 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2463 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2464 2465 BodyCodeGen(CGF); 2466 }; 2467 const Expr *IfCond = nullptr; 2468 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2469 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2470 if (CGF.getLangOpts().OpenMP >= 50 && 2471 (C->getNameModifier() == OMPD_unknown || 2472 C->getNameModifier() == OMPD_simd)) { 2473 IfCond = C->getCondition(); 2474 break; 2475 } 2476 } 2477 } 2478 if (IfCond) { 2479 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2480 } else { 2481 RegionCodeGenTy ThenRCG(ThenGen); 2482 ThenRCG(CGF); 2483 } 2484 } 2485 2486 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2487 PrePostActionTy &Action) { 2488 Action.Enter(CGF); 2489 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2490 "Expected simd directive"); 2491 OMPLoopScope PreInitScope(CGF, S); 2492 // if (PreCond) { 2493 // for (IV in 0..LastIteration) BODY; 2494 // <Final counter/linear vars updates>; 2495 // } 2496 // 2497 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2498 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2499 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2500 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2501 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2502 } 2503 2504 // Emit: if (PreCond) - begin. 2505 // If the condition constant folds and can be elided, avoid emitting the 2506 // whole loop. 2507 bool CondConstant; 2508 llvm::BasicBlock *ContBlock = nullptr; 2509 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2510 if (!CondConstant) 2511 return; 2512 } else { 2513 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2514 ContBlock = CGF.createBasicBlock("simd.if.end"); 2515 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2516 CGF.getProfileCount(&S)); 2517 CGF.EmitBlock(ThenBlock); 2518 CGF.incrementProfileCounter(&S); 2519 } 2520 2521 // Emit the loop iteration variable. 2522 const Expr *IVExpr = S.getIterationVariable(); 2523 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2524 CGF.EmitVarDecl(*IVDecl); 2525 CGF.EmitIgnoredExpr(S.getInit()); 2526 2527 // Emit the iterations count variable. 2528 // If it is not a variable, Sema decided to calculate iterations count on 2529 // each iteration (e.g., it is foldable into a constant). 2530 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2531 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2532 // Emit calculation of the iterations count. 2533 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2534 } 2535 2536 emitAlignedClause(CGF, S); 2537 (void)CGF.EmitOMPLinearClauseInit(S); 2538 { 2539 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2540 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2541 CGF.EmitOMPLinearClause(S, LoopScope); 2542 CGF.EmitOMPPrivateClause(S, LoopScope); 2543 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2544 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2545 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2546 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2547 (void)LoopScope.Privatize(); 2548 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2549 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2550 2551 emitCommonSimdLoop( 2552 CGF, S, 2553 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2554 CGF.EmitOMPSimdInit(S); 2555 }, 2556 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2557 CGF.EmitOMPInnerLoop( 2558 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2559 [&S](CodeGenFunction &CGF) { 2560 emitOMPLoopBodyWithStopPoint(CGF, S, 2561 CodeGenFunction::JumpDest()); 2562 }, 2563 [](CodeGenFunction &) {}); 2564 }); 2565 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2566 // Emit final copy of the lastprivate variables at the end of loops. 2567 if (HasLastprivateClause) 2568 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2569 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2570 emitPostUpdateForReductionClause(CGF, S, 2571 [](CodeGenFunction &) { return nullptr; }); 2572 } 2573 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2574 // Emit: if (PreCond) - end. 2575 if (ContBlock) { 2576 CGF.EmitBranch(ContBlock); 2577 CGF.EmitBlock(ContBlock, true); 2578 } 2579 } 2580 2581 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2582 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2583 OMPFirstScanLoop = true; 2584 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2585 emitOMPSimdRegion(CGF, S, Action); 2586 }; 2587 { 2588 auto LPCRegion = 2589 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2590 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2591 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2592 } 2593 // Check for outer lastprivate conditional update. 2594 checkForLastprivateConditionalUpdate(*this, S); 2595 } 2596 2597 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2598 // Emit the de-sugared statement. 2599 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2600 EmitStmt(S.getTransformedStmt()); 2601 } 2602 2603 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2604 bool UseOMPIRBuilder = CGM.getLangOpts().OpenMPIRBuilder; 2605 2606 if (UseOMPIRBuilder) { 2607 auto DL = SourceLocToDebugLoc(S.getBeginLoc()); 2608 const Stmt *Inner = S.getRawStmt(); 2609 2610 // Consume nested loop. Clear the entire remaining loop stack because a 2611 // fully unrolled loop is non-transformable. For partial unrolling the 2612 // generated outer loop is pushed back to the stack. 2613 llvm::CanonicalLoopInfo *CLI = EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2614 OMPLoopNestStack.clear(); 2615 2616 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2617 2618 bool NeedsUnrolledCLI = ExpectedOMPLoopDepth >= 1; 2619 llvm::CanonicalLoopInfo *UnrolledCLI = nullptr; 2620 2621 if (S.hasClausesOfKind<OMPFullClause>()) { 2622 assert(ExpectedOMPLoopDepth == 0); 2623 OMPBuilder.unrollLoopFull(DL, CLI); 2624 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2625 uint64_t Factor = 0; 2626 if (Expr *FactorExpr = PartialClause->getFactor()) { 2627 Factor = FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2628 assert(Factor >= 1 && "Only positive factors are valid"); 2629 } 2630 OMPBuilder.unrollLoopPartial(DL, CLI, Factor, 2631 NeedsUnrolledCLI ? &UnrolledCLI : nullptr); 2632 } else { 2633 OMPBuilder.unrollLoopHeuristic(DL, CLI); 2634 } 2635 2636 assert((!NeedsUnrolledCLI || UnrolledCLI) && 2637 "NeedsUnrolledCLI implies UnrolledCLI to be set"); 2638 if (UnrolledCLI) 2639 OMPLoopNestStack.push_back(UnrolledCLI); 2640 2641 return; 2642 } 2643 2644 // This function is only called if the unrolled loop is not consumed by any 2645 // other loop-associated construct. Such a loop-associated construct will have 2646 // used the transformed AST. 2647 2648 // Set the unroll metadata for the next emitted loop. 2649 LoopStack.setUnrollState(LoopAttributes::Enable); 2650 2651 if (S.hasClausesOfKind<OMPFullClause>()) { 2652 LoopStack.setUnrollState(LoopAttributes::Full); 2653 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2654 if (Expr *FactorExpr = PartialClause->getFactor()) { 2655 uint64_t Factor = 2656 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2657 assert(Factor >= 1 && "Only positive factors are valid"); 2658 LoopStack.setUnrollCount(Factor); 2659 } 2660 } 2661 2662 EmitStmt(S.getAssociatedStmt()); 2663 } 2664 2665 void CodeGenFunction::EmitOMPOuterLoop( 2666 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2667 CodeGenFunction::OMPPrivateScope &LoopScope, 2668 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2669 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2670 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2671 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2672 2673 const Expr *IVExpr = S.getIterationVariable(); 2674 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2675 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2676 2677 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2678 2679 // Start the loop with a block that tests the condition. 2680 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2681 EmitBlock(CondBlock); 2682 const SourceRange R = S.getSourceRange(); 2683 OMPLoopNestStack.clear(); 2684 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2685 SourceLocToDebugLoc(R.getEnd())); 2686 2687 llvm::Value *BoolCondVal = nullptr; 2688 if (!DynamicOrOrdered) { 2689 // UB = min(UB, GlobalUB) or 2690 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2691 // 'distribute parallel for') 2692 EmitIgnoredExpr(LoopArgs.EUB); 2693 // IV = LB 2694 EmitIgnoredExpr(LoopArgs.Init); 2695 // IV < UB 2696 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2697 } else { 2698 BoolCondVal = 2699 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2700 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2701 } 2702 2703 // If there are any cleanups between here and the loop-exit scope, 2704 // create a block to stage a loop exit along. 2705 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2706 if (LoopScope.requiresCleanups()) 2707 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2708 2709 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2710 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2711 if (ExitBlock != LoopExit.getBlock()) { 2712 EmitBlock(ExitBlock); 2713 EmitBranchThroughCleanup(LoopExit); 2714 } 2715 EmitBlock(LoopBody); 2716 2717 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2718 // LB for loop condition and emitted it above). 2719 if (DynamicOrOrdered) 2720 EmitIgnoredExpr(LoopArgs.Init); 2721 2722 // Create a block for the increment. 2723 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2724 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2725 2726 emitCommonSimdLoop( 2727 *this, S, 2728 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2729 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2730 // with dynamic/guided scheduling and without ordered clause. 2731 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2732 CGF.LoopStack.setParallel(!IsMonotonic); 2733 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2734 if (C->getKind() == OMPC_ORDER_concurrent) 2735 CGF.LoopStack.setParallel(/*Enable=*/true); 2736 } else { 2737 CGF.EmitOMPSimdInit(S); 2738 } 2739 }, 2740 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2741 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2742 SourceLocation Loc = S.getBeginLoc(); 2743 // when 'distribute' is not combined with a 'for': 2744 // while (idx <= UB) { BODY; ++idx; } 2745 // when 'distribute' is combined with a 'for' 2746 // (e.g. 'distribute parallel for') 2747 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2748 CGF.EmitOMPInnerLoop( 2749 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2750 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2751 CodeGenLoop(CGF, S, LoopExit); 2752 }, 2753 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2754 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2755 }); 2756 }); 2757 2758 EmitBlock(Continue.getBlock()); 2759 BreakContinueStack.pop_back(); 2760 if (!DynamicOrOrdered) { 2761 // Emit "LB = LB + Stride", "UB = UB + Stride". 2762 EmitIgnoredExpr(LoopArgs.NextLB); 2763 EmitIgnoredExpr(LoopArgs.NextUB); 2764 } 2765 2766 EmitBranch(CondBlock); 2767 OMPLoopNestStack.clear(); 2768 LoopStack.pop(); 2769 // Emit the fall-through block. 2770 EmitBlock(LoopExit.getBlock()); 2771 2772 // Tell the runtime we are done. 2773 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2774 if (!DynamicOrOrdered) 2775 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2776 S.getDirectiveKind()); 2777 }; 2778 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2779 } 2780 2781 void CodeGenFunction::EmitOMPForOuterLoop( 2782 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2783 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2784 const OMPLoopArguments &LoopArgs, 2785 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2786 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2787 2788 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2789 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind.Schedule); 2790 2791 assert((Ordered || !RT.isStaticNonchunked(ScheduleKind.Schedule, 2792 LoopArgs.Chunk != nullptr)) && 2793 "static non-chunked schedule does not need outer loop"); 2794 2795 // Emit outer loop. 2796 // 2797 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2798 // When schedule(dynamic,chunk_size) is specified, the iterations are 2799 // distributed to threads in the team in chunks as the threads request them. 2800 // Each thread executes a chunk of iterations, then requests another chunk, 2801 // until no chunks remain to be distributed. Each chunk contains chunk_size 2802 // iterations, except for the last chunk to be distributed, which may have 2803 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2804 // 2805 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2806 // to threads in the team in chunks as the executing threads request them. 2807 // Each thread executes a chunk of iterations, then requests another chunk, 2808 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2809 // each chunk is proportional to the number of unassigned iterations divided 2810 // by the number of threads in the team, decreasing to 1. For a chunk_size 2811 // with value k (greater than 1), the size of each chunk is determined in the 2812 // same way, with the restriction that the chunks do not contain fewer than k 2813 // iterations (except for the last chunk to be assigned, which may have fewer 2814 // than k iterations). 2815 // 2816 // When schedule(auto) is specified, the decision regarding scheduling is 2817 // delegated to the compiler and/or runtime system. The programmer gives the 2818 // implementation the freedom to choose any possible mapping of iterations to 2819 // threads in the team. 2820 // 2821 // When schedule(runtime) is specified, the decision regarding scheduling is 2822 // deferred until run time, and the schedule and chunk size are taken from the 2823 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2824 // implementation defined 2825 // 2826 // while(__kmpc_dispatch_next(&LB, &UB)) { 2827 // idx = LB; 2828 // while (idx <= UB) { BODY; ++idx; 2829 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2830 // } // inner loop 2831 // } 2832 // 2833 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2834 // When schedule(static, chunk_size) is specified, iterations are divided into 2835 // chunks of size chunk_size, and the chunks are assigned to the threads in 2836 // the team in a round-robin fashion in the order of the thread number. 2837 // 2838 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2839 // while (idx <= UB) { BODY; ++idx; } // inner loop 2840 // LB = LB + ST; 2841 // UB = UB + ST; 2842 // } 2843 // 2844 2845 const Expr *IVExpr = S.getIterationVariable(); 2846 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2847 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2848 2849 if (DynamicOrOrdered) { 2850 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2851 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2852 llvm::Value *LBVal = DispatchBounds.first; 2853 llvm::Value *UBVal = DispatchBounds.second; 2854 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2855 LoopArgs.Chunk}; 2856 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2857 IVSigned, Ordered, DipatchRTInputValues); 2858 } else { 2859 CGOpenMPRuntime::StaticRTInput StaticInit( 2860 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2861 LoopArgs.ST, LoopArgs.Chunk); 2862 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2863 ScheduleKind, StaticInit); 2864 } 2865 2866 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2867 const unsigned IVSize, 2868 const bool IVSigned) { 2869 if (Ordered) { 2870 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2871 IVSigned); 2872 } 2873 }; 2874 2875 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2876 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2877 OuterLoopArgs.IncExpr = S.getInc(); 2878 OuterLoopArgs.Init = S.getInit(); 2879 OuterLoopArgs.Cond = S.getCond(); 2880 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2881 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2882 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2883 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2884 } 2885 2886 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2887 const unsigned IVSize, const bool IVSigned) {} 2888 2889 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2890 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2891 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2892 const CodeGenLoopTy &CodeGenLoopContent) { 2893 2894 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2895 2896 // Emit outer loop. 2897 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2898 // dynamic 2899 // 2900 2901 const Expr *IVExpr = S.getIterationVariable(); 2902 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2903 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2904 2905 CGOpenMPRuntime::StaticRTInput StaticInit( 2906 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2907 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2908 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2909 2910 // for combined 'distribute' and 'for' the increment expression of distribute 2911 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2912 Expr *IncExpr; 2913 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2914 IncExpr = S.getDistInc(); 2915 else 2916 IncExpr = S.getInc(); 2917 2918 // this routine is shared by 'omp distribute parallel for' and 2919 // 'omp distribute': select the right EUB expression depending on the 2920 // directive 2921 OMPLoopArguments OuterLoopArgs; 2922 OuterLoopArgs.LB = LoopArgs.LB; 2923 OuterLoopArgs.UB = LoopArgs.UB; 2924 OuterLoopArgs.ST = LoopArgs.ST; 2925 OuterLoopArgs.IL = LoopArgs.IL; 2926 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2927 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2928 ? S.getCombinedEnsureUpperBound() 2929 : S.getEnsureUpperBound(); 2930 OuterLoopArgs.IncExpr = IncExpr; 2931 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2932 ? S.getCombinedInit() 2933 : S.getInit(); 2934 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2935 ? S.getCombinedCond() 2936 : S.getCond(); 2937 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2938 ? S.getCombinedNextLowerBound() 2939 : S.getNextLowerBound(); 2940 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2941 ? S.getCombinedNextUpperBound() 2942 : S.getNextUpperBound(); 2943 2944 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2945 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2946 emitEmptyOrdered); 2947 } 2948 2949 static std::pair<LValue, LValue> 2950 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2951 const OMPExecutableDirective &S) { 2952 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2953 LValue LB = 2954 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2955 LValue UB = 2956 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2957 2958 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2959 // parallel for') we need to use the 'distribute' 2960 // chunk lower and upper bounds rather than the whole loop iteration 2961 // space. These are parameters to the outlined function for 'parallel' 2962 // and we copy the bounds of the previous schedule into the 2963 // the current ones. 2964 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2965 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2966 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2967 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2968 PrevLBVal = CGF.EmitScalarConversion( 2969 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2970 LS.getIterationVariable()->getType(), 2971 LS.getPrevLowerBoundVariable()->getExprLoc()); 2972 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2973 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2974 PrevUBVal = CGF.EmitScalarConversion( 2975 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2976 LS.getIterationVariable()->getType(), 2977 LS.getPrevUpperBoundVariable()->getExprLoc()); 2978 2979 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2980 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2981 2982 return {LB, UB}; 2983 } 2984 2985 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2986 /// we need to use the LB and UB expressions generated by the worksharing 2987 /// code generation support, whereas in non combined situations we would 2988 /// just emit 0 and the LastIteration expression 2989 /// This function is necessary due to the difference of the LB and UB 2990 /// types for the RT emission routines for 'for_static_init' and 2991 /// 'for_dispatch_init' 2992 static std::pair<llvm::Value *, llvm::Value *> 2993 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2994 const OMPExecutableDirective &S, 2995 Address LB, Address UB) { 2996 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2997 const Expr *IVExpr = LS.getIterationVariable(); 2998 // when implementing a dynamic schedule for a 'for' combined with a 2999 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 3000 // is not normalized as each team only executes its own assigned 3001 // distribute chunk 3002 QualType IteratorTy = IVExpr->getType(); 3003 llvm::Value *LBVal = 3004 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3005 llvm::Value *UBVal = 3006 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3007 return {LBVal, UBVal}; 3008 } 3009 3010 static void emitDistributeParallelForDistributeInnerBoundParams( 3011 CodeGenFunction &CGF, const OMPExecutableDirective &S, 3012 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 3013 const auto &Dir = cast<OMPLoopDirective>(S); 3014 LValue LB = 3015 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 3016 llvm::Value *LBCast = 3017 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 3018 CGF.SizeTy, /*isSigned=*/false); 3019 CapturedVars.push_back(LBCast); 3020 LValue UB = 3021 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 3022 3023 llvm::Value *UBCast = 3024 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 3025 CGF.SizeTy, /*isSigned=*/false); 3026 CapturedVars.push_back(UBCast); 3027 } 3028 3029 static void 3030 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 3031 const OMPLoopDirective &S, 3032 CodeGenFunction::JumpDest LoopExit) { 3033 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 3034 PrePostActionTy &Action) { 3035 Action.Enter(CGF); 3036 bool HasCancel = false; 3037 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 3038 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 3039 HasCancel = D->hasCancel(); 3040 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 3041 HasCancel = D->hasCancel(); 3042 else if (const auto *D = 3043 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 3044 HasCancel = D->hasCancel(); 3045 } 3046 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3047 HasCancel); 3048 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 3049 emitDistributeParallelForInnerBounds, 3050 emitDistributeParallelForDispatchBounds); 3051 }; 3052 3053 emitCommonOMPParallelDirective( 3054 CGF, S, 3055 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3056 CGInlinedWorksharingLoop, 3057 emitDistributeParallelForDistributeInnerBoundParams); 3058 } 3059 3060 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3061 const OMPDistributeParallelForDirective &S) { 3062 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3063 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3064 S.getDistInc()); 3065 }; 3066 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3067 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3068 } 3069 3070 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3071 const OMPDistributeParallelForSimdDirective &S) { 3072 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3073 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3074 S.getDistInc()); 3075 }; 3076 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3077 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3078 } 3079 3080 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3081 const OMPDistributeSimdDirective &S) { 3082 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3083 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3084 }; 3085 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3086 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3087 } 3088 3089 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3090 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3091 // Emit SPMD target parallel for region as a standalone region. 3092 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3093 emitOMPSimdRegion(CGF, S, Action); 3094 }; 3095 llvm::Function *Fn; 3096 llvm::Constant *Addr; 3097 // Emit target region as a standalone region. 3098 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3099 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3100 assert(Fn && Addr && "Target device function emission failed."); 3101 } 3102 3103 void CodeGenFunction::EmitOMPTargetSimdDirective( 3104 const OMPTargetSimdDirective &S) { 3105 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3106 emitOMPSimdRegion(CGF, S, Action); 3107 }; 3108 emitCommonOMPTargetDirective(*this, S, CodeGen); 3109 } 3110 3111 namespace { 3112 struct ScheduleKindModifiersTy { 3113 OpenMPScheduleClauseKind Kind; 3114 OpenMPScheduleClauseModifier M1; 3115 OpenMPScheduleClauseModifier M2; 3116 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3117 OpenMPScheduleClauseModifier M1, 3118 OpenMPScheduleClauseModifier M2) 3119 : Kind(Kind), M1(M1), M2(M2) {} 3120 }; 3121 } // namespace 3122 3123 bool CodeGenFunction::EmitOMPWorksharingLoop( 3124 const OMPLoopDirective &S, Expr *EUB, 3125 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3126 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3127 // Emit the loop iteration variable. 3128 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3129 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3130 EmitVarDecl(*IVDecl); 3131 3132 // Emit the iterations count variable. 3133 // If it is not a variable, Sema decided to calculate iterations count on each 3134 // iteration (e.g., it is foldable into a constant). 3135 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3136 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3137 // Emit calculation of the iterations count. 3138 EmitIgnoredExpr(S.getCalcLastIteration()); 3139 } 3140 3141 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3142 3143 bool HasLastprivateClause; 3144 // Check pre-condition. 3145 { 3146 OMPLoopScope PreInitScope(*this, S); 3147 // Skip the entire loop if we don't meet the precondition. 3148 // If the condition constant folds and can be elided, avoid emitting the 3149 // whole loop. 3150 bool CondConstant; 3151 llvm::BasicBlock *ContBlock = nullptr; 3152 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3153 if (!CondConstant) 3154 return false; 3155 } else { 3156 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3157 ContBlock = createBasicBlock("omp.precond.end"); 3158 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3159 getProfileCount(&S)); 3160 EmitBlock(ThenBlock); 3161 incrementProfileCounter(&S); 3162 } 3163 3164 RunCleanupsScope DoacrossCleanupScope(*this); 3165 bool Ordered = false; 3166 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3167 if (OrderedClause->getNumForLoops()) 3168 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3169 else 3170 Ordered = true; 3171 } 3172 3173 llvm::DenseSet<const Expr *> EmittedFinals; 3174 emitAlignedClause(*this, S); 3175 bool HasLinears = EmitOMPLinearClauseInit(S); 3176 // Emit helper vars inits. 3177 3178 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3179 LValue LB = Bounds.first; 3180 LValue UB = Bounds.second; 3181 LValue ST = 3182 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3183 LValue IL = 3184 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3185 3186 // Emit 'then' code. 3187 { 3188 OMPPrivateScope LoopScope(*this); 3189 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3190 // Emit implicit barrier to synchronize threads and avoid data races on 3191 // initialization of firstprivate variables and post-update of 3192 // lastprivate variables. 3193 CGM.getOpenMPRuntime().emitBarrierCall( 3194 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3195 /*ForceSimpleCall=*/true); 3196 } 3197 EmitOMPPrivateClause(S, LoopScope); 3198 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3199 *this, S, EmitLValue(S.getIterationVariable())); 3200 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3201 EmitOMPReductionClauseInit(S, LoopScope); 3202 EmitOMPPrivateLoopCounters(S, LoopScope); 3203 EmitOMPLinearClause(S, LoopScope); 3204 (void)LoopScope.Privatize(); 3205 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3206 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3207 3208 // Detect the loop schedule kind and chunk. 3209 const Expr *ChunkExpr = nullptr; 3210 OpenMPScheduleTy ScheduleKind; 3211 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3212 ScheduleKind.Schedule = C->getScheduleKind(); 3213 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3214 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3215 ChunkExpr = C->getChunkSize(); 3216 } else { 3217 // Default behaviour for schedule clause. 3218 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3219 *this, S, ScheduleKind.Schedule, ChunkExpr); 3220 } 3221 bool HasChunkSizeOne = false; 3222 llvm::Value *Chunk = nullptr; 3223 if (ChunkExpr) { 3224 Chunk = EmitScalarExpr(ChunkExpr); 3225 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3226 S.getIterationVariable()->getType(), 3227 S.getBeginLoc()); 3228 Expr::EvalResult Result; 3229 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3230 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3231 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3232 } 3233 } 3234 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3235 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3236 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3237 // If the static schedule kind is specified or if the ordered clause is 3238 // specified, and if no monotonic modifier is specified, the effect will 3239 // be as if the monotonic modifier was specified. 3240 bool StaticChunkedOne = 3241 RT.isStaticChunked(ScheduleKind.Schedule, 3242 /* Chunked */ Chunk != nullptr) && 3243 HasChunkSizeOne && 3244 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3245 bool IsMonotonic = 3246 Ordered || 3247 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3248 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3249 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3250 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3251 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3252 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3253 /* Chunked */ Chunk != nullptr) || 3254 StaticChunkedOne) && 3255 !Ordered) { 3256 JumpDest LoopExit = 3257 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3258 emitCommonSimdLoop( 3259 *this, S, 3260 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3261 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3262 CGF.EmitOMPSimdInit(S); 3263 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3264 if (C->getKind() == OMPC_ORDER_concurrent) 3265 CGF.LoopStack.setParallel(/*Enable=*/true); 3266 } 3267 }, 3268 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3269 &S, ScheduleKind, LoopExit, 3270 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3271 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3272 // When no chunk_size is specified, the iteration space is divided 3273 // into chunks that are approximately equal in size, and at most 3274 // one chunk is distributed to each thread. Note that the size of 3275 // the chunks is unspecified in this case. 3276 CGOpenMPRuntime::StaticRTInput StaticInit( 3277 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3278 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3279 StaticChunkedOne ? Chunk : nullptr); 3280 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3281 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3282 StaticInit); 3283 // UB = min(UB, GlobalUB); 3284 if (!StaticChunkedOne) 3285 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3286 // IV = LB; 3287 CGF.EmitIgnoredExpr(S.getInit()); 3288 // For unchunked static schedule generate: 3289 // 3290 // while (idx <= UB) { 3291 // BODY; 3292 // ++idx; 3293 // } 3294 // 3295 // For static schedule with chunk one: 3296 // 3297 // while (IV <= PrevUB) { 3298 // BODY; 3299 // IV += ST; 3300 // } 3301 CGF.EmitOMPInnerLoop( 3302 S, LoopScope.requiresCleanups(), 3303 StaticChunkedOne ? S.getCombinedParForInDistCond() 3304 : S.getCond(), 3305 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3306 [&S, LoopExit](CodeGenFunction &CGF) { 3307 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3308 }, 3309 [](CodeGenFunction &) {}); 3310 }); 3311 EmitBlock(LoopExit.getBlock()); 3312 // Tell the runtime we are done. 3313 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3314 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3315 S.getDirectiveKind()); 3316 }; 3317 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3318 } else { 3319 // Emit the outer loop, which requests its work chunk [LB..UB] from 3320 // runtime and runs the inner loop to process it. 3321 const OMPLoopArguments LoopArguments( 3322 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3323 IL.getAddress(*this), Chunk, EUB); 3324 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3325 LoopArguments, CGDispatchBounds); 3326 } 3327 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3328 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3329 return CGF.Builder.CreateIsNotNull( 3330 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3331 }); 3332 } 3333 EmitOMPReductionClauseFinal( 3334 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3335 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3336 : /*Parallel only*/ OMPD_parallel); 3337 // Emit post-update of the reduction variables if IsLastIter != 0. 3338 emitPostUpdateForReductionClause( 3339 *this, S, [IL, &S](CodeGenFunction &CGF) { 3340 return CGF.Builder.CreateIsNotNull( 3341 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3342 }); 3343 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3344 if (HasLastprivateClause) 3345 EmitOMPLastprivateClauseFinal( 3346 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3347 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3348 } 3349 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3350 return CGF.Builder.CreateIsNotNull( 3351 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3352 }); 3353 DoacrossCleanupScope.ForceCleanup(); 3354 // We're now done with the loop, so jump to the continuation block. 3355 if (ContBlock) { 3356 EmitBranch(ContBlock); 3357 EmitBlock(ContBlock, /*IsFinished=*/true); 3358 } 3359 } 3360 return HasLastprivateClause; 3361 } 3362 3363 /// The following two functions generate expressions for the loop lower 3364 /// and upper bounds in case of static and dynamic (dispatch) schedule 3365 /// of the associated 'for' or 'distribute' loop. 3366 static std::pair<LValue, LValue> 3367 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3368 const auto &LS = cast<OMPLoopDirective>(S); 3369 LValue LB = 3370 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3371 LValue UB = 3372 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3373 return {LB, UB}; 3374 } 3375 3376 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3377 /// consider the lower and upper bound expressions generated by the 3378 /// worksharing loop support, but we use 0 and the iteration space size as 3379 /// constants 3380 static std::pair<llvm::Value *, llvm::Value *> 3381 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3382 Address LB, Address UB) { 3383 const auto &LS = cast<OMPLoopDirective>(S); 3384 const Expr *IVExpr = LS.getIterationVariable(); 3385 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3386 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3387 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3388 return {LBVal, UBVal}; 3389 } 3390 3391 /// Emits internal temp array declarations for the directive with inscan 3392 /// reductions. 3393 /// The code is the following: 3394 /// \code 3395 /// size num_iters = <num_iters>; 3396 /// <type> buffer[num_iters]; 3397 /// \endcode 3398 static void emitScanBasedDirectiveDecls( 3399 CodeGenFunction &CGF, const OMPLoopDirective &S, 3400 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3401 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3402 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3403 SmallVector<const Expr *, 4> Shareds; 3404 SmallVector<const Expr *, 4> Privates; 3405 SmallVector<const Expr *, 4> ReductionOps; 3406 SmallVector<const Expr *, 4> CopyArrayTemps; 3407 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3408 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3409 "Only inscan reductions are expected."); 3410 Shareds.append(C->varlist_begin(), C->varlist_end()); 3411 Privates.append(C->privates().begin(), C->privates().end()); 3412 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3413 CopyArrayTemps.append(C->copy_array_temps().begin(), 3414 C->copy_array_temps().end()); 3415 } 3416 { 3417 // Emit buffers for each reduction variables. 3418 // ReductionCodeGen is required to emit correctly the code for array 3419 // reductions. 3420 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3421 unsigned Count = 0; 3422 auto *ITA = CopyArrayTemps.begin(); 3423 for (const Expr *IRef : Privates) { 3424 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3425 // Emit variably modified arrays, used for arrays/array sections 3426 // reductions. 3427 if (PrivateVD->getType()->isVariablyModifiedType()) { 3428 RedCG.emitSharedOrigLValue(CGF, Count); 3429 RedCG.emitAggregateType(CGF, Count); 3430 } 3431 CodeGenFunction::OpaqueValueMapping DimMapping( 3432 CGF, 3433 cast<OpaqueValueExpr>( 3434 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3435 ->getSizeExpr()), 3436 RValue::get(OMPScanNumIterations)); 3437 // Emit temp buffer. 3438 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3439 ++ITA; 3440 ++Count; 3441 } 3442 } 3443 } 3444 3445 /// Emits the code for the directive with inscan reductions. 3446 /// The code is the following: 3447 /// \code 3448 /// #pragma omp ... 3449 /// for (i: 0..<num_iters>) { 3450 /// <input phase>; 3451 /// buffer[i] = red; 3452 /// } 3453 /// #pragma omp master // in parallel region 3454 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3455 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3456 /// buffer[i] op= buffer[i-pow(2,k)]; 3457 /// #pragma omp barrier // in parallel region 3458 /// #pragma omp ... 3459 /// for (0..<num_iters>) { 3460 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3461 /// <scan phase>; 3462 /// } 3463 /// \endcode 3464 static void emitScanBasedDirective( 3465 CodeGenFunction &CGF, const OMPLoopDirective &S, 3466 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3467 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3468 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3469 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3470 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3471 SmallVector<const Expr *, 4> Privates; 3472 SmallVector<const Expr *, 4> ReductionOps; 3473 SmallVector<const Expr *, 4> LHSs; 3474 SmallVector<const Expr *, 4> RHSs; 3475 SmallVector<const Expr *, 4> CopyArrayElems; 3476 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3477 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3478 "Only inscan reductions are expected."); 3479 Privates.append(C->privates().begin(), C->privates().end()); 3480 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3481 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3482 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3483 CopyArrayElems.append(C->copy_array_elems().begin(), 3484 C->copy_array_elems().end()); 3485 } 3486 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3487 { 3488 // Emit loop with input phase: 3489 // #pragma omp ... 3490 // for (i: 0..<num_iters>) { 3491 // <input phase>; 3492 // buffer[i] = red; 3493 // } 3494 CGF.OMPFirstScanLoop = true; 3495 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3496 FirstGen(CGF); 3497 } 3498 // #pragma omp barrier // in parallel region 3499 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3500 &ReductionOps, 3501 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3502 Action.Enter(CGF); 3503 // Emit prefix reduction: 3504 // #pragma omp master // in parallel region 3505 // for (int k = 0; k <= ceil(log2(n)); ++k) 3506 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3507 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3508 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3509 llvm::Function *F = 3510 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3511 llvm::Value *Arg = 3512 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3513 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3514 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3515 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3516 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3517 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3518 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3519 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3520 CGF.EmitBlock(LoopBB); 3521 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3522 // size pow2k = 1; 3523 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3524 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3525 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3526 // for (size i = n - 1; i >= 2 ^ k; --i) 3527 // tmp[i] op= tmp[i-pow2k]; 3528 llvm::BasicBlock *InnerLoopBB = 3529 CGF.createBasicBlock("omp.inner.log.scan.body"); 3530 llvm::BasicBlock *InnerExitBB = 3531 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3532 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3533 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3534 CGF.EmitBlock(InnerLoopBB); 3535 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3536 IVal->addIncoming(NMin1, LoopBB); 3537 { 3538 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3539 auto *ILHS = LHSs.begin(); 3540 auto *IRHS = RHSs.begin(); 3541 for (const Expr *CopyArrayElem : CopyArrayElems) { 3542 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3543 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3544 Address LHSAddr = Address::invalid(); 3545 { 3546 CodeGenFunction::OpaqueValueMapping IdxMapping( 3547 CGF, 3548 cast<OpaqueValueExpr>( 3549 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3550 RValue::get(IVal)); 3551 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3552 } 3553 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3554 Address RHSAddr = Address::invalid(); 3555 { 3556 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3557 CodeGenFunction::OpaqueValueMapping IdxMapping( 3558 CGF, 3559 cast<OpaqueValueExpr>( 3560 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3561 RValue::get(OffsetIVal)); 3562 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3563 } 3564 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3565 ++ILHS; 3566 ++IRHS; 3567 } 3568 PrivScope.Privatize(); 3569 CGF.CGM.getOpenMPRuntime().emitReduction( 3570 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3571 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3572 } 3573 llvm::Value *NextIVal = 3574 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3575 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3576 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3577 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3578 CGF.EmitBlock(InnerExitBB); 3579 llvm::Value *Next = 3580 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3581 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3582 // pow2k <<= 1; 3583 llvm::Value *NextPow2K = 3584 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3585 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3586 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3587 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3588 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3589 CGF.EmitBlock(ExitBB); 3590 }; 3591 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3592 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3593 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3594 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3595 /*ForceSimpleCall=*/true); 3596 } else { 3597 RegionCodeGenTy RCG(CodeGen); 3598 RCG(CGF); 3599 } 3600 3601 CGF.OMPFirstScanLoop = false; 3602 SecondGen(CGF); 3603 } 3604 3605 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3606 const OMPLoopDirective &S, 3607 bool HasCancel) { 3608 bool HasLastprivates; 3609 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3610 [](const OMPReductionClause *C) { 3611 return C->getModifier() == OMPC_REDUCTION_inscan; 3612 })) { 3613 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3614 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3615 OMPLoopScope LoopScope(CGF, S); 3616 return CGF.EmitScalarExpr(S.getNumIterations()); 3617 }; 3618 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3619 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3620 CGF, S.getDirectiveKind(), HasCancel); 3621 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3622 emitForLoopBounds, 3623 emitDispatchForLoopBounds); 3624 // Emit an implicit barrier at the end. 3625 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3626 OMPD_for); 3627 }; 3628 const auto &&SecondGen = [&S, HasCancel, 3629 &HasLastprivates](CodeGenFunction &CGF) { 3630 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3631 CGF, S.getDirectiveKind(), HasCancel); 3632 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3633 emitForLoopBounds, 3634 emitDispatchForLoopBounds); 3635 }; 3636 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3637 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3638 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3639 } else { 3640 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3641 HasCancel); 3642 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3643 emitForLoopBounds, 3644 emitDispatchForLoopBounds); 3645 } 3646 return HasLastprivates; 3647 } 3648 3649 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3650 if (S.hasCancel()) 3651 return false; 3652 for (OMPClause *C : S.clauses()) 3653 if (!isa<OMPNowaitClause>(C)) 3654 return false; 3655 3656 return true; 3657 } 3658 3659 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3660 bool HasLastprivates = false; 3661 bool UseOMPIRBuilder = 3662 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3663 auto &&CodeGen = [this, &S, &HasLastprivates, 3664 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3665 // Use the OpenMPIRBuilder if enabled. 3666 if (UseOMPIRBuilder) { 3667 // Emit the associated statement and get its loop representation. 3668 const Stmt *Inner = S.getRawStmt(); 3669 llvm::CanonicalLoopInfo *CLI = 3670 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3671 3672 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3673 llvm::OpenMPIRBuilder &OMPBuilder = 3674 CGM.getOpenMPRuntime().getOMPBuilder(); 3675 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3676 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3677 OMPBuilder.applyWorkshareLoop(Builder.getCurrentDebugLocation(), CLI, 3678 AllocaIP, NeedsBarrier); 3679 return; 3680 } 3681 3682 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3683 }; 3684 { 3685 auto LPCRegion = 3686 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3687 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3688 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3689 S.hasCancel()); 3690 } 3691 3692 if (!UseOMPIRBuilder) { 3693 // Emit an implicit barrier at the end. 3694 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3695 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3696 } 3697 // Check for outer lastprivate conditional update. 3698 checkForLastprivateConditionalUpdate(*this, S); 3699 } 3700 3701 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3702 bool HasLastprivates = false; 3703 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3704 PrePostActionTy &) { 3705 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3706 }; 3707 { 3708 auto LPCRegion = 3709 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3710 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3711 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3712 } 3713 3714 // Emit an implicit barrier at the end. 3715 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3716 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3717 // Check for outer lastprivate conditional update. 3718 checkForLastprivateConditionalUpdate(*this, S); 3719 } 3720 3721 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3722 const Twine &Name, 3723 llvm::Value *Init = nullptr) { 3724 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3725 if (Init) 3726 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3727 return LVal; 3728 } 3729 3730 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3731 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3732 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3733 bool HasLastprivates = false; 3734 auto &&CodeGen = [&S, CapturedStmt, CS, 3735 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3736 const ASTContext &C = CGF.getContext(); 3737 QualType KmpInt32Ty = 3738 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3739 // Emit helper vars inits. 3740 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3741 CGF.Builder.getInt32(0)); 3742 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3743 ? CGF.Builder.getInt32(CS->size() - 1) 3744 : CGF.Builder.getInt32(0); 3745 LValue UB = 3746 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3747 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3748 CGF.Builder.getInt32(1)); 3749 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3750 CGF.Builder.getInt32(0)); 3751 // Loop counter. 3752 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3753 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3754 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3755 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3756 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3757 // Generate condition for loop. 3758 BinaryOperator *Cond = BinaryOperator::Create( 3759 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 3760 S.getBeginLoc(), FPOptionsOverride()); 3761 // Increment for loop counter. 3762 UnaryOperator *Inc = UnaryOperator::Create( 3763 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 3764 S.getBeginLoc(), true, FPOptionsOverride()); 3765 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3766 // Iterate through all sections and emit a switch construct: 3767 // switch (IV) { 3768 // case 0: 3769 // <SectionStmt[0]>; 3770 // break; 3771 // ... 3772 // case <NumSection> - 1: 3773 // <SectionStmt[<NumSection> - 1]>; 3774 // break; 3775 // } 3776 // .omp.sections.exit: 3777 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3778 llvm::SwitchInst *SwitchStmt = 3779 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3780 ExitBB, CS == nullptr ? 1 : CS->size()); 3781 if (CS) { 3782 unsigned CaseNumber = 0; 3783 for (const Stmt *SubStmt : CS->children()) { 3784 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3785 CGF.EmitBlock(CaseBB); 3786 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3787 CGF.EmitStmt(SubStmt); 3788 CGF.EmitBranch(ExitBB); 3789 ++CaseNumber; 3790 } 3791 } else { 3792 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3793 CGF.EmitBlock(CaseBB); 3794 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3795 CGF.EmitStmt(CapturedStmt); 3796 CGF.EmitBranch(ExitBB); 3797 } 3798 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3799 }; 3800 3801 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3802 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3803 // Emit implicit barrier to synchronize threads and avoid data races on 3804 // initialization of firstprivate variables and post-update of lastprivate 3805 // variables. 3806 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3807 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3808 /*ForceSimpleCall=*/true); 3809 } 3810 CGF.EmitOMPPrivateClause(S, LoopScope); 3811 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3812 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3813 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3814 (void)LoopScope.Privatize(); 3815 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3816 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3817 3818 // Emit static non-chunked loop. 3819 OpenMPScheduleTy ScheduleKind; 3820 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3821 CGOpenMPRuntime::StaticRTInput StaticInit( 3822 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3823 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3824 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3825 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3826 // UB = min(UB, GlobalUB); 3827 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3828 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3829 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3830 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3831 // IV = LB; 3832 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3833 // while (idx <= UB) { BODY; ++idx; } 3834 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3835 [](CodeGenFunction &) {}); 3836 // Tell the runtime we are done. 3837 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3838 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3839 S.getDirectiveKind()); 3840 }; 3841 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3842 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3843 // Emit post-update of the reduction variables if IsLastIter != 0. 3844 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3845 return CGF.Builder.CreateIsNotNull( 3846 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3847 }); 3848 3849 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3850 if (HasLastprivates) 3851 CGF.EmitOMPLastprivateClauseFinal( 3852 S, /*NoFinals=*/false, 3853 CGF.Builder.CreateIsNotNull( 3854 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3855 }; 3856 3857 bool HasCancel = false; 3858 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3859 HasCancel = OSD->hasCancel(); 3860 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3861 HasCancel = OPSD->hasCancel(); 3862 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3863 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3864 HasCancel); 3865 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3866 // clause. Otherwise the barrier will be generated by the codegen for the 3867 // directive. 3868 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3869 // Emit implicit barrier to synchronize threads and avoid data races on 3870 // initialization of firstprivate variables. 3871 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3872 OMPD_unknown); 3873 } 3874 } 3875 3876 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3877 if (CGM.getLangOpts().OpenMPIRBuilder) { 3878 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3879 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3880 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 3881 3882 auto FiniCB = [this](InsertPointTy IP) { 3883 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3884 }; 3885 3886 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 3887 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3888 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3889 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 3890 if (CS) { 3891 for (const Stmt *SubStmt : CS->children()) { 3892 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 3893 InsertPointTy CodeGenIP, 3894 llvm::BasicBlock &FiniBB) { 3895 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 3896 FiniBB); 3897 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP, 3898 FiniBB); 3899 }; 3900 SectionCBVector.push_back(SectionCB); 3901 } 3902 } else { 3903 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 3904 InsertPointTy CodeGenIP, 3905 llvm::BasicBlock &FiniBB) { 3906 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3907 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP, 3908 FiniBB); 3909 }; 3910 SectionCBVector.push_back(SectionCB); 3911 } 3912 3913 // Privatization callback that performs appropriate action for 3914 // shared/private/firstprivate/lastprivate/copyin/... variables. 3915 // 3916 // TODO: This defaults to shared right now. 3917 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 3918 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 3919 // The next line is appropriate only for variables (Val) with the 3920 // data-sharing attribute "shared". 3921 ReplVal = &Val; 3922 3923 return CodeGenIP; 3924 }; 3925 3926 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 3927 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3928 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3929 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3930 Builder.restoreIP(OMPBuilder.createSections( 3931 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 3932 S.getSingleClause<OMPNowaitClause>())); 3933 return; 3934 } 3935 { 3936 auto LPCRegion = 3937 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3938 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3939 EmitSections(S); 3940 } 3941 // Emit an implicit barrier at the end. 3942 if (!S.getSingleClause<OMPNowaitClause>()) { 3943 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3944 OMPD_sections); 3945 } 3946 // Check for outer lastprivate conditional update. 3947 checkForLastprivateConditionalUpdate(*this, S); 3948 } 3949 3950 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3951 if (CGM.getLangOpts().OpenMPIRBuilder) { 3952 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3953 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3954 3955 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 3956 auto FiniCB = [this](InsertPointTy IP) { 3957 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3958 }; 3959 3960 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 3961 InsertPointTy CodeGenIP, 3962 llvm::BasicBlock &FiniBB) { 3963 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3964 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt, 3965 CodeGenIP, FiniBB); 3966 }; 3967 3968 LexicalScope Scope(*this, S.getSourceRange()); 3969 EmitStopPoint(&S); 3970 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 3971 3972 return; 3973 } 3974 LexicalScope Scope(*this, S.getSourceRange()); 3975 EmitStopPoint(&S); 3976 EmitStmt(S.getAssociatedStmt()); 3977 } 3978 3979 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3980 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3981 llvm::SmallVector<const Expr *, 8> DestExprs; 3982 llvm::SmallVector<const Expr *, 8> SrcExprs; 3983 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3984 // Check if there are any 'copyprivate' clauses associated with this 3985 // 'single' construct. 3986 // Build a list of copyprivate variables along with helper expressions 3987 // (<source>, <destination>, <destination>=<source> expressions) 3988 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3989 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3990 DestExprs.append(C->destination_exprs().begin(), 3991 C->destination_exprs().end()); 3992 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3993 AssignmentOps.append(C->assignment_ops().begin(), 3994 C->assignment_ops().end()); 3995 } 3996 // Emit code for 'single' region along with 'copyprivate' clauses 3997 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3998 Action.Enter(CGF); 3999 OMPPrivateScope SingleScope(CGF); 4000 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 4001 CGF.EmitOMPPrivateClause(S, SingleScope); 4002 (void)SingleScope.Privatize(); 4003 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4004 }; 4005 { 4006 auto LPCRegion = 4007 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4008 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4009 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 4010 CopyprivateVars, DestExprs, 4011 SrcExprs, AssignmentOps); 4012 } 4013 // Emit an implicit barrier at the end (to avoid data race on firstprivate 4014 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 4015 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 4016 CGM.getOpenMPRuntime().emitBarrierCall( 4017 *this, S.getBeginLoc(), 4018 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 4019 } 4020 // Check for outer lastprivate conditional update. 4021 checkForLastprivateConditionalUpdate(*this, S); 4022 } 4023 4024 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4025 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4026 Action.Enter(CGF); 4027 CGF.EmitStmt(S.getRawStmt()); 4028 }; 4029 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 4030 } 4031 4032 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 4033 if (CGM.getLangOpts().OpenMPIRBuilder) { 4034 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4035 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4036 4037 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 4038 4039 auto FiniCB = [this](InsertPointTy IP) { 4040 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4041 }; 4042 4043 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 4044 InsertPointTy CodeGenIP, 4045 llvm::BasicBlock &FiniBB) { 4046 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4047 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 4048 CodeGenIP, FiniBB); 4049 }; 4050 4051 LexicalScope Scope(*this, S.getSourceRange()); 4052 EmitStopPoint(&S); 4053 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4054 4055 return; 4056 } 4057 LexicalScope Scope(*this, S.getSourceRange()); 4058 EmitStopPoint(&S); 4059 emitMaster(*this, S); 4060 } 4061 4062 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4063 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4064 Action.Enter(CGF); 4065 CGF.EmitStmt(S.getRawStmt()); 4066 }; 4067 Expr *Filter = nullptr; 4068 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4069 Filter = FilterClause->getThreadID(); 4070 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4071 Filter); 4072 } 4073 4074 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4075 if (CGM.getLangOpts().OpenMPIRBuilder) { 4076 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4077 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4078 4079 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4080 const Expr *Filter = nullptr; 4081 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4082 Filter = FilterClause->getThreadID(); 4083 llvm::Value *FilterVal = Filter 4084 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4085 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4086 4087 auto FiniCB = [this](InsertPointTy IP) { 4088 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4089 }; 4090 4091 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4092 InsertPointTy CodeGenIP, 4093 llvm::BasicBlock &FiniBB) { 4094 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4095 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt, 4096 CodeGenIP, FiniBB); 4097 }; 4098 4099 LexicalScope Scope(*this, S.getSourceRange()); 4100 EmitStopPoint(&S); 4101 Builder.restoreIP( 4102 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4103 4104 return; 4105 } 4106 LexicalScope Scope(*this, S.getSourceRange()); 4107 EmitStopPoint(&S); 4108 emitMasked(*this, S); 4109 } 4110 4111 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4112 if (CGM.getLangOpts().OpenMPIRBuilder) { 4113 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4114 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4115 4116 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4117 const Expr *Hint = nullptr; 4118 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4119 Hint = HintClause->getHint(); 4120 4121 // TODO: This is slightly different from what's currently being done in 4122 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4123 // about typing is final. 4124 llvm::Value *HintInst = nullptr; 4125 if (Hint) 4126 HintInst = 4127 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4128 4129 auto FiniCB = [this](InsertPointTy IP) { 4130 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4131 }; 4132 4133 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4134 InsertPointTy CodeGenIP, 4135 llvm::BasicBlock &FiniBB) { 4136 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4137 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 4138 CodeGenIP, FiniBB); 4139 }; 4140 4141 LexicalScope Scope(*this, S.getSourceRange()); 4142 EmitStopPoint(&S); 4143 Builder.restoreIP(OMPBuilder.createCritical( 4144 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4145 HintInst)); 4146 4147 return; 4148 } 4149 4150 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4151 Action.Enter(CGF); 4152 CGF.EmitStmt(S.getAssociatedStmt()); 4153 }; 4154 const Expr *Hint = nullptr; 4155 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4156 Hint = HintClause->getHint(); 4157 LexicalScope Scope(*this, S.getSourceRange()); 4158 EmitStopPoint(&S); 4159 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4160 S.getDirectiveName().getAsString(), 4161 CodeGen, S.getBeginLoc(), Hint); 4162 } 4163 4164 void CodeGenFunction::EmitOMPParallelForDirective( 4165 const OMPParallelForDirective &S) { 4166 // Emit directive as a combined directive that consists of two implicit 4167 // directives: 'parallel' with 'for' directive. 4168 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4169 Action.Enter(CGF); 4170 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4171 }; 4172 { 4173 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4174 [](const OMPReductionClause *C) { 4175 return C->getModifier() == OMPC_REDUCTION_inscan; 4176 })) { 4177 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4178 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4179 CGCapturedStmtInfo CGSI(CR_OpenMP); 4180 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4181 OMPLoopScope LoopScope(CGF, S); 4182 return CGF.EmitScalarExpr(S.getNumIterations()); 4183 }; 4184 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4185 } 4186 auto LPCRegion = 4187 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4188 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4189 emitEmptyBoundParameters); 4190 } 4191 // Check for outer lastprivate conditional update. 4192 checkForLastprivateConditionalUpdate(*this, S); 4193 } 4194 4195 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4196 const OMPParallelForSimdDirective &S) { 4197 // Emit directive as a combined directive that consists of two implicit 4198 // directives: 'parallel' with 'for' directive. 4199 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4200 Action.Enter(CGF); 4201 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4202 }; 4203 { 4204 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4205 [](const OMPReductionClause *C) { 4206 return C->getModifier() == OMPC_REDUCTION_inscan; 4207 })) { 4208 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4209 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4210 CGCapturedStmtInfo CGSI(CR_OpenMP); 4211 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4212 OMPLoopScope LoopScope(CGF, S); 4213 return CGF.EmitScalarExpr(S.getNumIterations()); 4214 }; 4215 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4216 } 4217 auto LPCRegion = 4218 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4219 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4220 emitEmptyBoundParameters); 4221 } 4222 // Check for outer lastprivate conditional update. 4223 checkForLastprivateConditionalUpdate(*this, S); 4224 } 4225 4226 void CodeGenFunction::EmitOMPParallelMasterDirective( 4227 const OMPParallelMasterDirective &S) { 4228 // Emit directive as a combined directive that consists of two implicit 4229 // directives: 'parallel' with 'master' directive. 4230 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4231 Action.Enter(CGF); 4232 OMPPrivateScope PrivateScope(CGF); 4233 bool Copyins = CGF.EmitOMPCopyinClause(S); 4234 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4235 if (Copyins) { 4236 // Emit implicit barrier to synchronize threads and avoid data races on 4237 // propagation master's thread values of threadprivate variables to local 4238 // instances of that variables of all other implicit threads. 4239 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4240 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4241 /*ForceSimpleCall=*/true); 4242 } 4243 CGF.EmitOMPPrivateClause(S, PrivateScope); 4244 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4245 (void)PrivateScope.Privatize(); 4246 emitMaster(CGF, S); 4247 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4248 }; 4249 { 4250 auto LPCRegion = 4251 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4252 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4253 emitEmptyBoundParameters); 4254 emitPostUpdateForReductionClause(*this, S, 4255 [](CodeGenFunction &) { return nullptr; }); 4256 } 4257 // Check for outer lastprivate conditional update. 4258 checkForLastprivateConditionalUpdate(*this, S); 4259 } 4260 4261 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4262 const OMPParallelSectionsDirective &S) { 4263 // Emit directive as a combined directive that consists of two implicit 4264 // directives: 'parallel' with 'sections' directive. 4265 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4266 Action.Enter(CGF); 4267 CGF.EmitSections(S); 4268 }; 4269 { 4270 auto LPCRegion = 4271 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4272 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4273 emitEmptyBoundParameters); 4274 } 4275 // Check for outer lastprivate conditional update. 4276 checkForLastprivateConditionalUpdate(*this, S); 4277 } 4278 4279 namespace { 4280 /// Get the list of variables declared in the context of the untied tasks. 4281 class CheckVarsEscapingUntiedTaskDeclContext final 4282 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4283 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4284 4285 public: 4286 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4287 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4288 void VisitDeclStmt(const DeclStmt *S) { 4289 if (!S) 4290 return; 4291 // Need to privatize only local vars, static locals can be processed as is. 4292 for (const Decl *D : S->decls()) { 4293 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4294 if (VD->hasLocalStorage()) 4295 PrivateDecls.push_back(VD); 4296 } 4297 } 4298 void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; } 4299 void VisitCapturedStmt(const CapturedStmt *) { return; } 4300 void VisitLambdaExpr(const LambdaExpr *) { return; } 4301 void VisitBlockExpr(const BlockExpr *) { return; } 4302 void VisitStmt(const Stmt *S) { 4303 if (!S) 4304 return; 4305 for (const Stmt *Child : S->children()) 4306 if (Child) 4307 Visit(Child); 4308 } 4309 4310 /// Swaps list of vars with the provided one. 4311 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4312 }; 4313 } // anonymous namespace 4314 4315 void CodeGenFunction::EmitOMPTaskBasedDirective( 4316 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4317 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4318 OMPTaskDataTy &Data) { 4319 // Emit outlined function for task construct. 4320 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4321 auto I = CS->getCapturedDecl()->param_begin(); 4322 auto PartId = std::next(I); 4323 auto TaskT = std::next(I, 4); 4324 // Check if the task is final 4325 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4326 // If the condition constant folds and can be elided, try to avoid emitting 4327 // the condition and the dead arm of the if/else. 4328 const Expr *Cond = Clause->getCondition(); 4329 bool CondConstant; 4330 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4331 Data.Final.setInt(CondConstant); 4332 else 4333 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4334 } else { 4335 // By default the task is not final. 4336 Data.Final.setInt(/*IntVal=*/false); 4337 } 4338 // Check if the task has 'priority' clause. 4339 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4340 const Expr *Prio = Clause->getPriority(); 4341 Data.Priority.setInt(/*IntVal=*/true); 4342 Data.Priority.setPointer(EmitScalarConversion( 4343 EmitScalarExpr(Prio), Prio->getType(), 4344 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4345 Prio->getExprLoc())); 4346 } 4347 // The first function argument for tasks is a thread id, the second one is a 4348 // part id (0 for tied tasks, >=0 for untied task). 4349 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4350 // Get list of private variables. 4351 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4352 auto IRef = C->varlist_begin(); 4353 for (const Expr *IInit : C->private_copies()) { 4354 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4355 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4356 Data.PrivateVars.push_back(*IRef); 4357 Data.PrivateCopies.push_back(IInit); 4358 } 4359 ++IRef; 4360 } 4361 } 4362 EmittedAsPrivate.clear(); 4363 // Get list of firstprivate variables. 4364 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4365 auto IRef = C->varlist_begin(); 4366 auto IElemInitRef = C->inits().begin(); 4367 for (const Expr *IInit : C->private_copies()) { 4368 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4369 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4370 Data.FirstprivateVars.push_back(*IRef); 4371 Data.FirstprivateCopies.push_back(IInit); 4372 Data.FirstprivateInits.push_back(*IElemInitRef); 4373 } 4374 ++IRef; 4375 ++IElemInitRef; 4376 } 4377 } 4378 // Get list of lastprivate variables (for taskloops). 4379 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4380 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4381 auto IRef = C->varlist_begin(); 4382 auto ID = C->destination_exprs().begin(); 4383 for (const Expr *IInit : C->private_copies()) { 4384 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4385 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4386 Data.LastprivateVars.push_back(*IRef); 4387 Data.LastprivateCopies.push_back(IInit); 4388 } 4389 LastprivateDstsOrigs.insert( 4390 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4391 cast<DeclRefExpr>(*IRef))); 4392 ++IRef; 4393 ++ID; 4394 } 4395 } 4396 SmallVector<const Expr *, 4> LHSs; 4397 SmallVector<const Expr *, 4> RHSs; 4398 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4399 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4400 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4401 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4402 Data.ReductionOps.append(C->reduction_ops().begin(), 4403 C->reduction_ops().end()); 4404 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4405 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4406 } 4407 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4408 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4409 // Build list of dependences. 4410 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4411 OMPTaskDataTy::DependData &DD = 4412 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4413 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4414 } 4415 // Get list of local vars for untied tasks. 4416 if (!Data.Tied) { 4417 CheckVarsEscapingUntiedTaskDeclContext Checker; 4418 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4419 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4420 Checker.getPrivateDecls().end()); 4421 } 4422 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4423 CapturedRegion](CodeGenFunction &CGF, 4424 PrePostActionTy &Action) { 4425 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4426 std::pair<Address, Address>> 4427 UntiedLocalVars; 4428 // Set proper addresses for generated private copies. 4429 OMPPrivateScope Scope(CGF); 4430 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4431 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4432 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4433 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4434 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4435 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4436 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4437 CS->getCapturedDecl()->getParam(PrivatesParam))); 4438 // Map privates. 4439 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4440 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4441 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4442 CallArgs.push_back(PrivatesPtr); 4443 ParamTypes.push_back(PrivatesPtr->getType()); 4444 for (const Expr *E : Data.PrivateVars) { 4445 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4446 Address PrivatePtr = CGF.CreateMemTemp( 4447 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4448 PrivatePtrs.emplace_back(VD, PrivatePtr); 4449 CallArgs.push_back(PrivatePtr.getPointer()); 4450 ParamTypes.push_back(PrivatePtr.getType()); 4451 } 4452 for (const Expr *E : Data.FirstprivateVars) { 4453 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4454 Address PrivatePtr = 4455 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4456 ".firstpriv.ptr.addr"); 4457 PrivatePtrs.emplace_back(VD, PrivatePtr); 4458 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4459 CallArgs.push_back(PrivatePtr.getPointer()); 4460 ParamTypes.push_back(PrivatePtr.getType()); 4461 } 4462 for (const Expr *E : Data.LastprivateVars) { 4463 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4464 Address PrivatePtr = 4465 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4466 ".lastpriv.ptr.addr"); 4467 PrivatePtrs.emplace_back(VD, PrivatePtr); 4468 CallArgs.push_back(PrivatePtr.getPointer()); 4469 ParamTypes.push_back(PrivatePtr.getType()); 4470 } 4471 for (const VarDecl *VD : Data.PrivateLocals) { 4472 QualType Ty = VD->getType().getNonReferenceType(); 4473 if (VD->getType()->isLValueReferenceType()) 4474 Ty = CGF.getContext().getPointerType(Ty); 4475 if (isAllocatableDecl(VD)) 4476 Ty = CGF.getContext().getPointerType(Ty); 4477 Address PrivatePtr = CGF.CreateMemTemp( 4478 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4479 auto Result = UntiedLocalVars.insert( 4480 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4481 // If key exists update in place. 4482 if (Result.second == false) 4483 *Result.first = std::make_pair( 4484 VD, std::make_pair(PrivatePtr, Address::invalid())); 4485 CallArgs.push_back(PrivatePtr.getPointer()); 4486 ParamTypes.push_back(PrivatePtr.getType()); 4487 } 4488 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4489 ParamTypes, /*isVarArg=*/false); 4490 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4491 CopyFn, CopyFnTy->getPointerTo()); 4492 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4493 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4494 for (const auto &Pair : LastprivateDstsOrigs) { 4495 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4496 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4497 /*RefersToEnclosingVariableOrCapture=*/ 4498 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4499 Pair.second->getType(), VK_LValue, 4500 Pair.second->getExprLoc()); 4501 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4502 return CGF.EmitLValue(&DRE).getAddress(CGF); 4503 }); 4504 } 4505 for (const auto &Pair : PrivatePtrs) { 4506 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4507 CGF.getContext().getDeclAlign(Pair.first)); 4508 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4509 } 4510 // Adjust mapping for internal locals by mapping actual memory instead of 4511 // a pointer to this memory. 4512 for (auto &Pair : UntiedLocalVars) { 4513 if (isAllocatableDecl(Pair.first)) { 4514 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4515 Address Replacement(Ptr, CGF.getPointerAlign()); 4516 Pair.second.first = Replacement; 4517 Ptr = CGF.Builder.CreateLoad(Replacement); 4518 Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4519 Pair.second.second = Replacement; 4520 } else { 4521 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4522 Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4523 Pair.second.first = Replacement; 4524 } 4525 } 4526 } 4527 if (Data.Reductions) { 4528 OMPPrivateScope FirstprivateScope(CGF); 4529 for (const auto &Pair : FirstprivatePtrs) { 4530 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4531 CGF.getContext().getDeclAlign(Pair.first)); 4532 FirstprivateScope.addPrivate(Pair.first, 4533 [Replacement]() { return Replacement; }); 4534 } 4535 (void)FirstprivateScope.Privatize(); 4536 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4537 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4538 Data.ReductionCopies, Data.ReductionOps); 4539 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4540 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4541 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4542 RedCG.emitSharedOrigLValue(CGF, Cnt); 4543 RedCG.emitAggregateType(CGF, Cnt); 4544 // FIXME: This must removed once the runtime library is fixed. 4545 // Emit required threadprivate variables for 4546 // initializer/combiner/finalizer. 4547 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4548 RedCG, Cnt); 4549 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4550 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4551 Replacement = 4552 Address(CGF.EmitScalarConversion( 4553 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4554 CGF.getContext().getPointerType( 4555 Data.ReductionCopies[Cnt]->getType()), 4556 Data.ReductionCopies[Cnt]->getExprLoc()), 4557 Replacement.getAlignment()); 4558 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4559 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4560 [Replacement]() { return Replacement; }); 4561 } 4562 } 4563 // Privatize all private variables except for in_reduction items. 4564 (void)Scope.Privatize(); 4565 SmallVector<const Expr *, 4> InRedVars; 4566 SmallVector<const Expr *, 4> InRedPrivs; 4567 SmallVector<const Expr *, 4> InRedOps; 4568 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4569 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4570 auto IPriv = C->privates().begin(); 4571 auto IRed = C->reduction_ops().begin(); 4572 auto ITD = C->taskgroup_descriptors().begin(); 4573 for (const Expr *Ref : C->varlists()) { 4574 InRedVars.emplace_back(Ref); 4575 InRedPrivs.emplace_back(*IPriv); 4576 InRedOps.emplace_back(*IRed); 4577 TaskgroupDescriptors.emplace_back(*ITD); 4578 std::advance(IPriv, 1); 4579 std::advance(IRed, 1); 4580 std::advance(ITD, 1); 4581 } 4582 } 4583 // Privatize in_reduction items here, because taskgroup descriptors must be 4584 // privatized earlier. 4585 OMPPrivateScope InRedScope(CGF); 4586 if (!InRedVars.empty()) { 4587 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4588 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4589 RedCG.emitSharedOrigLValue(CGF, Cnt); 4590 RedCG.emitAggregateType(CGF, Cnt); 4591 // The taskgroup descriptor variable is always implicit firstprivate and 4592 // privatized already during processing of the firstprivates. 4593 // FIXME: This must removed once the runtime library is fixed. 4594 // Emit required threadprivate variables for 4595 // initializer/combiner/finalizer. 4596 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4597 RedCG, Cnt); 4598 llvm::Value *ReductionsPtr; 4599 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4600 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4601 TRExpr->getExprLoc()); 4602 } else { 4603 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4604 } 4605 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4606 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4607 Replacement = Address( 4608 CGF.EmitScalarConversion( 4609 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4610 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4611 InRedPrivs[Cnt]->getExprLoc()), 4612 Replacement.getAlignment()); 4613 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4614 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4615 [Replacement]() { return Replacement; }); 4616 } 4617 } 4618 (void)InRedScope.Privatize(); 4619 4620 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4621 UntiedLocalVars); 4622 Action.Enter(CGF); 4623 BodyGen(CGF); 4624 }; 4625 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4626 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4627 Data.NumberOfParts); 4628 OMPLexicalScope Scope(*this, S, llvm::None, 4629 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4630 !isOpenMPSimdDirective(S.getDirectiveKind())); 4631 TaskGen(*this, OutlinedFn, Data); 4632 } 4633 4634 static ImplicitParamDecl * 4635 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4636 QualType Ty, CapturedDecl *CD, 4637 SourceLocation Loc) { 4638 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4639 ImplicitParamDecl::Other); 4640 auto *OrigRef = DeclRefExpr::Create( 4641 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4642 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4643 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4644 ImplicitParamDecl::Other); 4645 auto *PrivateRef = DeclRefExpr::Create( 4646 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4647 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4648 QualType ElemType = C.getBaseElementType(Ty); 4649 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4650 ImplicitParamDecl::Other); 4651 auto *InitRef = DeclRefExpr::Create( 4652 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4653 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4654 PrivateVD->setInitStyle(VarDecl::CInit); 4655 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4656 InitRef, /*BasePath=*/nullptr, 4657 VK_PRValue, FPOptionsOverride())); 4658 Data.FirstprivateVars.emplace_back(OrigRef); 4659 Data.FirstprivateCopies.emplace_back(PrivateRef); 4660 Data.FirstprivateInits.emplace_back(InitRef); 4661 return OrigVD; 4662 } 4663 4664 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4665 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4666 OMPTargetDataInfo &InputInfo) { 4667 // Emit outlined function for task construct. 4668 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4669 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4670 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4671 auto I = CS->getCapturedDecl()->param_begin(); 4672 auto PartId = std::next(I); 4673 auto TaskT = std::next(I, 4); 4674 OMPTaskDataTy Data; 4675 // The task is not final. 4676 Data.Final.setInt(/*IntVal=*/false); 4677 // Get list of firstprivate variables. 4678 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4679 auto IRef = C->varlist_begin(); 4680 auto IElemInitRef = C->inits().begin(); 4681 for (auto *IInit : C->private_copies()) { 4682 Data.FirstprivateVars.push_back(*IRef); 4683 Data.FirstprivateCopies.push_back(IInit); 4684 Data.FirstprivateInits.push_back(*IElemInitRef); 4685 ++IRef; 4686 ++IElemInitRef; 4687 } 4688 } 4689 OMPPrivateScope TargetScope(*this); 4690 VarDecl *BPVD = nullptr; 4691 VarDecl *PVD = nullptr; 4692 VarDecl *SVD = nullptr; 4693 VarDecl *MVD = nullptr; 4694 if (InputInfo.NumberOfTargetItems > 0) { 4695 auto *CD = CapturedDecl::Create( 4696 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4697 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4698 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4699 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4700 /*IndexTypeQuals=*/0); 4701 BPVD = createImplicitFirstprivateForType( 4702 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4703 PVD = createImplicitFirstprivateForType( 4704 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4705 QualType SizesType = getContext().getConstantArrayType( 4706 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4707 ArrSize, nullptr, ArrayType::Normal, 4708 /*IndexTypeQuals=*/0); 4709 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4710 S.getBeginLoc()); 4711 TargetScope.addPrivate( 4712 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4713 TargetScope.addPrivate(PVD, 4714 [&InputInfo]() { return InputInfo.PointersArray; }); 4715 TargetScope.addPrivate(SVD, 4716 [&InputInfo]() { return InputInfo.SizesArray; }); 4717 // If there is no user-defined mapper, the mapper array will be nullptr. In 4718 // this case, we don't need to privatize it. 4719 if (!dyn_cast_or_null<llvm::ConstantPointerNull>( 4720 InputInfo.MappersArray.getPointer())) { 4721 MVD = createImplicitFirstprivateForType( 4722 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4723 TargetScope.addPrivate(MVD, 4724 [&InputInfo]() { return InputInfo.MappersArray; }); 4725 } 4726 } 4727 (void)TargetScope.Privatize(); 4728 // Build list of dependences. 4729 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4730 OMPTaskDataTy::DependData &DD = 4731 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4732 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4733 } 4734 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4735 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4736 // Set proper addresses for generated private copies. 4737 OMPPrivateScope Scope(CGF); 4738 if (!Data.FirstprivateVars.empty()) { 4739 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4740 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4741 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4742 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4743 CS->getCapturedDecl()->getParam(PrivatesParam))); 4744 // Map privates. 4745 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4746 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4747 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4748 CallArgs.push_back(PrivatesPtr); 4749 ParamTypes.push_back(PrivatesPtr->getType()); 4750 for (const Expr *E : Data.FirstprivateVars) { 4751 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4752 Address PrivatePtr = 4753 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4754 ".firstpriv.ptr.addr"); 4755 PrivatePtrs.emplace_back(VD, PrivatePtr); 4756 CallArgs.push_back(PrivatePtr.getPointer()); 4757 ParamTypes.push_back(PrivatePtr.getType()); 4758 } 4759 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4760 ParamTypes, /*isVarArg=*/false); 4761 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4762 CopyFn, CopyFnTy->getPointerTo()); 4763 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4764 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4765 for (const auto &Pair : PrivatePtrs) { 4766 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4767 CGF.getContext().getDeclAlign(Pair.first)); 4768 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4769 } 4770 } 4771 // Privatize all private variables except for in_reduction items. 4772 (void)Scope.Privatize(); 4773 if (InputInfo.NumberOfTargetItems > 0) { 4774 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4775 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4776 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4777 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4778 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4779 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4780 // If MVD is nullptr, the mapper array is not privatized 4781 if (MVD) 4782 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4783 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4784 } 4785 4786 Action.Enter(CGF); 4787 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4788 BodyGen(CGF); 4789 }; 4790 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4791 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4792 Data.NumberOfParts); 4793 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4794 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4795 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4796 SourceLocation()); 4797 4798 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4799 SharedsTy, CapturedStruct, &IfCond, Data); 4800 } 4801 4802 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4803 // Emit outlined function for task construct. 4804 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4805 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4806 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4807 const Expr *IfCond = nullptr; 4808 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4809 if (C->getNameModifier() == OMPD_unknown || 4810 C->getNameModifier() == OMPD_task) { 4811 IfCond = C->getCondition(); 4812 break; 4813 } 4814 } 4815 4816 OMPTaskDataTy Data; 4817 // Check if we should emit tied or untied task. 4818 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4819 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4820 CGF.EmitStmt(CS->getCapturedStmt()); 4821 }; 4822 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4823 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4824 const OMPTaskDataTy &Data) { 4825 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4826 SharedsTy, CapturedStruct, IfCond, 4827 Data); 4828 }; 4829 auto LPCRegion = 4830 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4831 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4832 } 4833 4834 void CodeGenFunction::EmitOMPTaskyieldDirective( 4835 const OMPTaskyieldDirective &S) { 4836 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4837 } 4838 4839 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4840 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4841 } 4842 4843 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4844 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 4845 } 4846 4847 void CodeGenFunction::EmitOMPTaskgroupDirective( 4848 const OMPTaskgroupDirective &S) { 4849 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4850 Action.Enter(CGF); 4851 if (const Expr *E = S.getReductionRef()) { 4852 SmallVector<const Expr *, 4> LHSs; 4853 SmallVector<const Expr *, 4> RHSs; 4854 OMPTaskDataTy Data; 4855 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4856 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4857 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4858 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4859 Data.ReductionOps.append(C->reduction_ops().begin(), 4860 C->reduction_ops().end()); 4861 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4862 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4863 } 4864 llvm::Value *ReductionDesc = 4865 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4866 LHSs, RHSs, Data); 4867 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4868 CGF.EmitVarDecl(*VD); 4869 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4870 /*Volatile=*/false, E->getType()); 4871 } 4872 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4873 }; 4874 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4875 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4876 } 4877 4878 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4879 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4880 ? llvm::AtomicOrdering::NotAtomic 4881 : llvm::AtomicOrdering::AcquireRelease; 4882 CGM.getOpenMPRuntime().emitFlush( 4883 *this, 4884 [&S]() -> ArrayRef<const Expr *> { 4885 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4886 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4887 FlushClause->varlist_end()); 4888 return llvm::None; 4889 }(), 4890 S.getBeginLoc(), AO); 4891 } 4892 4893 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4894 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4895 LValue DOLVal = EmitLValue(DO->getDepobj()); 4896 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4897 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4898 DC->getModifier()); 4899 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4900 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4901 *this, Dependencies, DC->getBeginLoc()); 4902 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4903 return; 4904 } 4905 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4906 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4907 return; 4908 } 4909 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4910 CGM.getOpenMPRuntime().emitUpdateClause( 4911 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4912 return; 4913 } 4914 } 4915 4916 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4917 if (!OMPParentLoopDirectiveForScan) 4918 return; 4919 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4920 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4921 SmallVector<const Expr *, 4> Shareds; 4922 SmallVector<const Expr *, 4> Privates; 4923 SmallVector<const Expr *, 4> LHSs; 4924 SmallVector<const Expr *, 4> RHSs; 4925 SmallVector<const Expr *, 4> ReductionOps; 4926 SmallVector<const Expr *, 4> CopyOps; 4927 SmallVector<const Expr *, 4> CopyArrayTemps; 4928 SmallVector<const Expr *, 4> CopyArrayElems; 4929 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4930 if (C->getModifier() != OMPC_REDUCTION_inscan) 4931 continue; 4932 Shareds.append(C->varlist_begin(), C->varlist_end()); 4933 Privates.append(C->privates().begin(), C->privates().end()); 4934 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4935 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4936 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 4937 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 4938 CopyArrayTemps.append(C->copy_array_temps().begin(), 4939 C->copy_array_temps().end()); 4940 CopyArrayElems.append(C->copy_array_elems().begin(), 4941 C->copy_array_elems().end()); 4942 } 4943 if (ParentDir.getDirectiveKind() == OMPD_simd || 4944 (getLangOpts().OpenMPSimd && 4945 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 4946 // For simd directive and simd-based directives in simd only mode, use the 4947 // following codegen: 4948 // int x = 0; 4949 // #pragma omp simd reduction(inscan, +: x) 4950 // for (..) { 4951 // <first part> 4952 // #pragma omp scan inclusive(x) 4953 // <second part> 4954 // } 4955 // is transformed to: 4956 // int x = 0; 4957 // for (..) { 4958 // int x_priv = 0; 4959 // <first part> 4960 // x = x_priv + x; 4961 // x_priv = x; 4962 // <second part> 4963 // } 4964 // and 4965 // int x = 0; 4966 // #pragma omp simd reduction(inscan, +: x) 4967 // for (..) { 4968 // <first part> 4969 // #pragma omp scan exclusive(x) 4970 // <second part> 4971 // } 4972 // to 4973 // int x = 0; 4974 // for (..) { 4975 // int x_priv = 0; 4976 // <second part> 4977 // int temp = x; 4978 // x = x_priv + x; 4979 // x_priv = temp; 4980 // <first part> 4981 // } 4982 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 4983 EmitBranch(IsInclusive 4984 ? OMPScanReduce 4985 : BreakContinueStack.back().ContinueBlock.getBlock()); 4986 EmitBlock(OMPScanDispatch); 4987 { 4988 // New scope for correct construction/destruction of temp variables for 4989 // exclusive scan. 4990 LexicalScope Scope(*this, S.getSourceRange()); 4991 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 4992 EmitBlock(OMPScanReduce); 4993 if (!IsInclusive) { 4994 // Create temp var and copy LHS value to this temp value. 4995 // TMP = LHS; 4996 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4997 const Expr *PrivateExpr = Privates[I]; 4998 const Expr *TempExpr = CopyArrayTemps[I]; 4999 EmitAutoVarDecl( 5000 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 5001 LValue DestLVal = EmitLValue(TempExpr); 5002 LValue SrcLVal = EmitLValue(LHSs[I]); 5003 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5004 SrcLVal.getAddress(*this), 5005 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5006 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5007 CopyOps[I]); 5008 } 5009 } 5010 CGM.getOpenMPRuntime().emitReduction( 5011 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 5012 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 5013 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5014 const Expr *PrivateExpr = Privates[I]; 5015 LValue DestLVal; 5016 LValue SrcLVal; 5017 if (IsInclusive) { 5018 DestLVal = EmitLValue(RHSs[I]); 5019 SrcLVal = EmitLValue(LHSs[I]); 5020 } else { 5021 const Expr *TempExpr = CopyArrayTemps[I]; 5022 DestLVal = EmitLValue(RHSs[I]); 5023 SrcLVal = EmitLValue(TempExpr); 5024 } 5025 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5026 SrcLVal.getAddress(*this), 5027 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5028 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5029 CopyOps[I]); 5030 } 5031 } 5032 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 5033 OMPScanExitBlock = IsInclusive 5034 ? BreakContinueStack.back().ContinueBlock.getBlock() 5035 : OMPScanReduce; 5036 EmitBlock(OMPAfterScanBlock); 5037 return; 5038 } 5039 if (!IsInclusive) { 5040 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5041 EmitBlock(OMPScanExitBlock); 5042 } 5043 if (OMPFirstScanLoop) { 5044 // Emit buffer[i] = red; at the end of the input phase. 5045 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5046 .getIterationVariable() 5047 ->IgnoreParenImpCasts(); 5048 LValue IdxLVal = EmitLValue(IVExpr); 5049 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5050 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5051 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5052 const Expr *PrivateExpr = Privates[I]; 5053 const Expr *OrigExpr = Shareds[I]; 5054 const Expr *CopyArrayElem = CopyArrayElems[I]; 5055 OpaqueValueMapping IdxMapping( 5056 *this, 5057 cast<OpaqueValueExpr>( 5058 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5059 RValue::get(IdxVal)); 5060 LValue DestLVal = EmitLValue(CopyArrayElem); 5061 LValue SrcLVal = EmitLValue(OrigExpr); 5062 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5063 SrcLVal.getAddress(*this), 5064 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5065 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5066 CopyOps[I]); 5067 } 5068 } 5069 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5070 if (IsInclusive) { 5071 EmitBlock(OMPScanExitBlock); 5072 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5073 } 5074 EmitBlock(OMPScanDispatch); 5075 if (!OMPFirstScanLoop) { 5076 // Emit red = buffer[i]; at the entrance to the scan phase. 5077 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5078 .getIterationVariable() 5079 ->IgnoreParenImpCasts(); 5080 LValue IdxLVal = EmitLValue(IVExpr); 5081 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5082 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5083 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5084 if (!IsInclusive) { 5085 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5086 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5087 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5088 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5089 EmitBlock(ContBB); 5090 // Use idx - 1 iteration for exclusive scan. 5091 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5092 } 5093 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5094 const Expr *PrivateExpr = Privates[I]; 5095 const Expr *OrigExpr = Shareds[I]; 5096 const Expr *CopyArrayElem = CopyArrayElems[I]; 5097 OpaqueValueMapping IdxMapping( 5098 *this, 5099 cast<OpaqueValueExpr>( 5100 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5101 RValue::get(IdxVal)); 5102 LValue SrcLVal = EmitLValue(CopyArrayElem); 5103 LValue DestLVal = EmitLValue(OrigExpr); 5104 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5105 SrcLVal.getAddress(*this), 5106 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5107 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5108 CopyOps[I]); 5109 } 5110 if (!IsInclusive) { 5111 EmitBlock(ExclusiveExitBB); 5112 } 5113 } 5114 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5115 : OMPAfterScanBlock); 5116 EmitBlock(OMPAfterScanBlock); 5117 } 5118 5119 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5120 const CodeGenLoopTy &CodeGenLoop, 5121 Expr *IncExpr) { 5122 // Emit the loop iteration variable. 5123 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5124 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5125 EmitVarDecl(*IVDecl); 5126 5127 // Emit the iterations count variable. 5128 // If it is not a variable, Sema decided to calculate iterations count on each 5129 // iteration (e.g., it is foldable into a constant). 5130 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5131 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5132 // Emit calculation of the iterations count. 5133 EmitIgnoredExpr(S.getCalcLastIteration()); 5134 } 5135 5136 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5137 5138 bool HasLastprivateClause = false; 5139 // Check pre-condition. 5140 { 5141 OMPLoopScope PreInitScope(*this, S); 5142 // Skip the entire loop if we don't meet the precondition. 5143 // If the condition constant folds and can be elided, avoid emitting the 5144 // whole loop. 5145 bool CondConstant; 5146 llvm::BasicBlock *ContBlock = nullptr; 5147 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5148 if (!CondConstant) 5149 return; 5150 } else { 5151 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5152 ContBlock = createBasicBlock("omp.precond.end"); 5153 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5154 getProfileCount(&S)); 5155 EmitBlock(ThenBlock); 5156 incrementProfileCounter(&S); 5157 } 5158 5159 emitAlignedClause(*this, S); 5160 // Emit 'then' code. 5161 { 5162 // Emit helper vars inits. 5163 5164 LValue LB = EmitOMPHelperVar( 5165 *this, cast<DeclRefExpr>( 5166 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5167 ? S.getCombinedLowerBoundVariable() 5168 : S.getLowerBoundVariable()))); 5169 LValue UB = EmitOMPHelperVar( 5170 *this, cast<DeclRefExpr>( 5171 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5172 ? S.getCombinedUpperBoundVariable() 5173 : S.getUpperBoundVariable()))); 5174 LValue ST = 5175 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5176 LValue IL = 5177 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5178 5179 OMPPrivateScope LoopScope(*this); 5180 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5181 // Emit implicit barrier to synchronize threads and avoid data races 5182 // on initialization of firstprivate variables and post-update of 5183 // lastprivate variables. 5184 CGM.getOpenMPRuntime().emitBarrierCall( 5185 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5186 /*ForceSimpleCall=*/true); 5187 } 5188 EmitOMPPrivateClause(S, LoopScope); 5189 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5190 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5191 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5192 EmitOMPReductionClauseInit(S, LoopScope); 5193 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5194 EmitOMPPrivateLoopCounters(S, LoopScope); 5195 (void)LoopScope.Privatize(); 5196 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5197 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5198 5199 // Detect the distribute schedule kind and chunk. 5200 llvm::Value *Chunk = nullptr; 5201 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5202 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5203 ScheduleKind = C->getDistScheduleKind(); 5204 if (const Expr *Ch = C->getChunkSize()) { 5205 Chunk = EmitScalarExpr(Ch); 5206 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5207 S.getIterationVariable()->getType(), 5208 S.getBeginLoc()); 5209 } 5210 } else { 5211 // Default behaviour for dist_schedule clause. 5212 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5213 *this, S, ScheduleKind, Chunk); 5214 } 5215 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5216 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5217 5218 // OpenMP [2.10.8, distribute Construct, Description] 5219 // If dist_schedule is specified, kind must be static. If specified, 5220 // iterations are divided into chunks of size chunk_size, chunks are 5221 // assigned to the teams of the league in a round-robin fashion in the 5222 // order of the team number. When no chunk_size is specified, the 5223 // iteration space is divided into chunks that are approximately equal 5224 // in size, and at most one chunk is distributed to each team of the 5225 // league. The size of the chunks is unspecified in this case. 5226 bool StaticChunked = 5227 RT.isStaticChunked(ScheduleKind, /* Chunked */ Chunk != nullptr) && 5228 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5229 if (RT.isStaticNonchunked(ScheduleKind, 5230 /* Chunked */ Chunk != nullptr) || 5231 StaticChunked) { 5232 CGOpenMPRuntime::StaticRTInput StaticInit( 5233 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5234 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5235 StaticChunked ? Chunk : nullptr); 5236 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5237 StaticInit); 5238 JumpDest LoopExit = 5239 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5240 // UB = min(UB, GlobalUB); 5241 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5242 ? S.getCombinedEnsureUpperBound() 5243 : S.getEnsureUpperBound()); 5244 // IV = LB; 5245 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5246 ? S.getCombinedInit() 5247 : S.getInit()); 5248 5249 const Expr *Cond = 5250 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5251 ? S.getCombinedCond() 5252 : S.getCond(); 5253 5254 if (StaticChunked) 5255 Cond = S.getCombinedDistCond(); 5256 5257 // For static unchunked schedules generate: 5258 // 5259 // 1. For distribute alone, codegen 5260 // while (idx <= UB) { 5261 // BODY; 5262 // ++idx; 5263 // } 5264 // 5265 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5266 // while (idx <= UB) { 5267 // <CodeGen rest of pragma>(LB, UB); 5268 // idx += ST; 5269 // } 5270 // 5271 // For static chunk one schedule generate: 5272 // 5273 // while (IV <= GlobalUB) { 5274 // <CodeGen rest of pragma>(LB, UB); 5275 // LB += ST; 5276 // UB += ST; 5277 // UB = min(UB, GlobalUB); 5278 // IV = LB; 5279 // } 5280 // 5281 emitCommonSimdLoop( 5282 *this, S, 5283 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5284 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5285 CGF.EmitOMPSimdInit(S); 5286 }, 5287 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5288 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5289 CGF.EmitOMPInnerLoop( 5290 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5291 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5292 CodeGenLoop(CGF, S, LoopExit); 5293 }, 5294 [&S, StaticChunked](CodeGenFunction &CGF) { 5295 if (StaticChunked) { 5296 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5297 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5298 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5299 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5300 } 5301 }); 5302 }); 5303 EmitBlock(LoopExit.getBlock()); 5304 // Tell the runtime we are done. 5305 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5306 } else { 5307 // Emit the outer loop, which requests its work chunk [LB..UB] from 5308 // runtime and runs the inner loop to process it. 5309 const OMPLoopArguments LoopArguments = { 5310 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5311 IL.getAddress(*this), Chunk}; 5312 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5313 CodeGenLoop); 5314 } 5315 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5316 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5317 return CGF.Builder.CreateIsNotNull( 5318 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5319 }); 5320 } 5321 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5322 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5323 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5324 EmitOMPReductionClauseFinal(S, OMPD_simd); 5325 // Emit post-update of the reduction variables if IsLastIter != 0. 5326 emitPostUpdateForReductionClause( 5327 *this, S, [IL, &S](CodeGenFunction &CGF) { 5328 return CGF.Builder.CreateIsNotNull( 5329 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5330 }); 5331 } 5332 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5333 if (HasLastprivateClause) { 5334 EmitOMPLastprivateClauseFinal( 5335 S, /*NoFinals=*/false, 5336 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5337 } 5338 } 5339 5340 // We're now done with the loop, so jump to the continuation block. 5341 if (ContBlock) { 5342 EmitBranch(ContBlock); 5343 EmitBlock(ContBlock, true); 5344 } 5345 } 5346 } 5347 5348 void CodeGenFunction::EmitOMPDistributeDirective( 5349 const OMPDistributeDirective &S) { 5350 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5351 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5352 }; 5353 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5354 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5355 } 5356 5357 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5358 const CapturedStmt *S, 5359 SourceLocation Loc) { 5360 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5361 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5362 CGF.CapturedStmtInfo = &CapStmtInfo; 5363 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5364 Fn->setDoesNotRecurse(); 5365 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 5366 Fn->addFnAttr(llvm::Attribute::AlwaysInline); 5367 return Fn; 5368 } 5369 5370 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5371 if (S.hasClausesOfKind<OMPDependClause>()) { 5372 assert(!S.hasAssociatedStmt() && 5373 "No associated statement must be in ordered depend construct."); 5374 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5375 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5376 return; 5377 } 5378 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5379 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5380 PrePostActionTy &Action) { 5381 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5382 if (C) { 5383 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5384 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5385 llvm::Function *OutlinedFn = 5386 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5387 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5388 OutlinedFn, CapturedVars); 5389 } else { 5390 Action.Enter(CGF); 5391 CGF.EmitStmt(CS->getCapturedStmt()); 5392 } 5393 }; 5394 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5395 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5396 } 5397 5398 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5399 QualType SrcType, QualType DestType, 5400 SourceLocation Loc) { 5401 assert(CGF.hasScalarEvaluationKind(DestType) && 5402 "DestType must have scalar evaluation kind."); 5403 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5404 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5405 DestType, Loc) 5406 : CGF.EmitComplexToScalarConversion( 5407 Val.getComplexVal(), SrcType, DestType, Loc); 5408 } 5409 5410 static CodeGenFunction::ComplexPairTy 5411 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5412 QualType DestType, SourceLocation Loc) { 5413 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5414 "DestType must have complex evaluation kind."); 5415 CodeGenFunction::ComplexPairTy ComplexVal; 5416 if (Val.isScalar()) { 5417 // Convert the input element to the element type of the complex. 5418 QualType DestElementType = 5419 DestType->castAs<ComplexType>()->getElementType(); 5420 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5421 Val.getScalarVal(), SrcType, DestElementType, Loc); 5422 ComplexVal = CodeGenFunction::ComplexPairTy( 5423 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5424 } else { 5425 assert(Val.isComplex() && "Must be a scalar or complex."); 5426 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5427 QualType DestElementType = 5428 DestType->castAs<ComplexType>()->getElementType(); 5429 ComplexVal.first = CGF.EmitScalarConversion( 5430 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5431 ComplexVal.second = CGF.EmitScalarConversion( 5432 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5433 } 5434 return ComplexVal; 5435 } 5436 5437 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5438 LValue LVal, RValue RVal) { 5439 if (LVal.isGlobalReg()) 5440 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5441 else 5442 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5443 } 5444 5445 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5446 llvm::AtomicOrdering AO, LValue LVal, 5447 SourceLocation Loc) { 5448 if (LVal.isGlobalReg()) 5449 return CGF.EmitLoadOfLValue(LVal, Loc); 5450 return CGF.EmitAtomicLoad( 5451 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5452 LVal.isVolatile()); 5453 } 5454 5455 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5456 QualType RValTy, SourceLocation Loc) { 5457 switch (getEvaluationKind(LVal.getType())) { 5458 case TEK_Scalar: 5459 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5460 *this, RVal, RValTy, LVal.getType(), Loc)), 5461 LVal); 5462 break; 5463 case TEK_Complex: 5464 EmitStoreOfComplex( 5465 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5466 /*isInit=*/false); 5467 break; 5468 case TEK_Aggregate: 5469 llvm_unreachable("Must be a scalar or complex."); 5470 } 5471 } 5472 5473 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5474 const Expr *X, const Expr *V, 5475 SourceLocation Loc) { 5476 // v = x; 5477 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5478 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5479 LValue XLValue = CGF.EmitLValue(X); 5480 LValue VLValue = CGF.EmitLValue(V); 5481 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5482 // OpenMP, 2.17.7, atomic Construct 5483 // If the read or capture clause is specified and the acquire, acq_rel, or 5484 // seq_cst clause is specified then the strong flush on exit from the atomic 5485 // operation is also an acquire flush. 5486 switch (AO) { 5487 case llvm::AtomicOrdering::Acquire: 5488 case llvm::AtomicOrdering::AcquireRelease: 5489 case llvm::AtomicOrdering::SequentiallyConsistent: 5490 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5491 llvm::AtomicOrdering::Acquire); 5492 break; 5493 case llvm::AtomicOrdering::Monotonic: 5494 case llvm::AtomicOrdering::Release: 5495 break; 5496 case llvm::AtomicOrdering::NotAtomic: 5497 case llvm::AtomicOrdering::Unordered: 5498 llvm_unreachable("Unexpected ordering."); 5499 } 5500 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5501 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5502 } 5503 5504 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5505 llvm::AtomicOrdering AO, const Expr *X, 5506 const Expr *E, SourceLocation Loc) { 5507 // x = expr; 5508 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5509 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5510 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5511 // OpenMP, 2.17.7, atomic Construct 5512 // If the write, update, or capture clause is specified and the release, 5513 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5514 // the atomic operation is also a release flush. 5515 switch (AO) { 5516 case llvm::AtomicOrdering::Release: 5517 case llvm::AtomicOrdering::AcquireRelease: 5518 case llvm::AtomicOrdering::SequentiallyConsistent: 5519 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5520 llvm::AtomicOrdering::Release); 5521 break; 5522 case llvm::AtomicOrdering::Acquire: 5523 case llvm::AtomicOrdering::Monotonic: 5524 break; 5525 case llvm::AtomicOrdering::NotAtomic: 5526 case llvm::AtomicOrdering::Unordered: 5527 llvm_unreachable("Unexpected ordering."); 5528 } 5529 } 5530 5531 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5532 RValue Update, 5533 BinaryOperatorKind BO, 5534 llvm::AtomicOrdering AO, 5535 bool IsXLHSInRHSPart) { 5536 ASTContext &Context = CGF.getContext(); 5537 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5538 // expression is simple and atomic is allowed for the given type for the 5539 // target platform. 5540 if (BO == BO_Comma || !Update.isScalar() || 5541 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5542 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5543 (Update.getScalarVal()->getType() != 5544 X.getAddress(CGF).getElementType())) || 5545 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5546 !Context.getTargetInfo().hasBuiltinAtomic( 5547 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5548 return std::make_pair(false, RValue::get(nullptr)); 5549 5550 llvm::AtomicRMWInst::BinOp RMWOp; 5551 switch (BO) { 5552 case BO_Add: 5553 RMWOp = llvm::AtomicRMWInst::Add; 5554 break; 5555 case BO_Sub: 5556 if (!IsXLHSInRHSPart) 5557 return std::make_pair(false, RValue::get(nullptr)); 5558 RMWOp = llvm::AtomicRMWInst::Sub; 5559 break; 5560 case BO_And: 5561 RMWOp = llvm::AtomicRMWInst::And; 5562 break; 5563 case BO_Or: 5564 RMWOp = llvm::AtomicRMWInst::Or; 5565 break; 5566 case BO_Xor: 5567 RMWOp = llvm::AtomicRMWInst::Xor; 5568 break; 5569 case BO_LT: 5570 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5571 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5572 : llvm::AtomicRMWInst::Max) 5573 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5574 : llvm::AtomicRMWInst::UMax); 5575 break; 5576 case BO_GT: 5577 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5578 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5579 : llvm::AtomicRMWInst::Min) 5580 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5581 : llvm::AtomicRMWInst::UMin); 5582 break; 5583 case BO_Assign: 5584 RMWOp = llvm::AtomicRMWInst::Xchg; 5585 break; 5586 case BO_Mul: 5587 case BO_Div: 5588 case BO_Rem: 5589 case BO_Shl: 5590 case BO_Shr: 5591 case BO_LAnd: 5592 case BO_LOr: 5593 return std::make_pair(false, RValue::get(nullptr)); 5594 case BO_PtrMemD: 5595 case BO_PtrMemI: 5596 case BO_LE: 5597 case BO_GE: 5598 case BO_EQ: 5599 case BO_NE: 5600 case BO_Cmp: 5601 case BO_AddAssign: 5602 case BO_SubAssign: 5603 case BO_AndAssign: 5604 case BO_OrAssign: 5605 case BO_XorAssign: 5606 case BO_MulAssign: 5607 case BO_DivAssign: 5608 case BO_RemAssign: 5609 case BO_ShlAssign: 5610 case BO_ShrAssign: 5611 case BO_Comma: 5612 llvm_unreachable("Unsupported atomic update operation"); 5613 } 5614 llvm::Value *UpdateVal = Update.getScalarVal(); 5615 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5616 UpdateVal = CGF.Builder.CreateIntCast( 5617 IC, X.getAddress(CGF).getElementType(), 5618 X.getType()->hasSignedIntegerRepresentation()); 5619 } 5620 llvm::Value *Res = 5621 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5622 return std::make_pair(true, RValue::get(Res)); 5623 } 5624 5625 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5626 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5627 llvm::AtomicOrdering AO, SourceLocation Loc, 5628 const llvm::function_ref<RValue(RValue)> CommonGen) { 5629 // Update expressions are allowed to have the following forms: 5630 // x binop= expr; -> xrval + expr; 5631 // x++, ++x -> xrval + 1; 5632 // x--, --x -> xrval - 1; 5633 // x = x binop expr; -> xrval binop expr 5634 // x = expr Op x; - > expr binop xrval; 5635 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5636 if (!Res.first) { 5637 if (X.isGlobalReg()) { 5638 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5639 // 'xrval'. 5640 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5641 } else { 5642 // Perform compare-and-swap procedure. 5643 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5644 } 5645 } 5646 return Res; 5647 } 5648 5649 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5650 llvm::AtomicOrdering AO, const Expr *X, 5651 const Expr *E, const Expr *UE, 5652 bool IsXLHSInRHSPart, SourceLocation Loc) { 5653 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5654 "Update expr in 'atomic update' must be a binary operator."); 5655 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5656 // Update expressions are allowed to have the following forms: 5657 // x binop= expr; -> xrval + expr; 5658 // x++, ++x -> xrval + 1; 5659 // x--, --x -> xrval - 1; 5660 // x = x binop expr; -> xrval binop expr 5661 // x = expr Op x; - > expr binop xrval; 5662 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5663 LValue XLValue = CGF.EmitLValue(X); 5664 RValue ExprRValue = CGF.EmitAnyExpr(E); 5665 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5666 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5667 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5668 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5669 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5670 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5671 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5672 return CGF.EmitAnyExpr(UE); 5673 }; 5674 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5675 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5676 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5677 // OpenMP, 2.17.7, atomic Construct 5678 // If the write, update, or capture clause is specified and the release, 5679 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5680 // the atomic operation is also a release flush. 5681 switch (AO) { 5682 case llvm::AtomicOrdering::Release: 5683 case llvm::AtomicOrdering::AcquireRelease: 5684 case llvm::AtomicOrdering::SequentiallyConsistent: 5685 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5686 llvm::AtomicOrdering::Release); 5687 break; 5688 case llvm::AtomicOrdering::Acquire: 5689 case llvm::AtomicOrdering::Monotonic: 5690 break; 5691 case llvm::AtomicOrdering::NotAtomic: 5692 case llvm::AtomicOrdering::Unordered: 5693 llvm_unreachable("Unexpected ordering."); 5694 } 5695 } 5696 5697 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5698 QualType SourceType, QualType ResType, 5699 SourceLocation Loc) { 5700 switch (CGF.getEvaluationKind(ResType)) { 5701 case TEK_Scalar: 5702 return RValue::get( 5703 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5704 case TEK_Complex: { 5705 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5706 return RValue::getComplex(Res.first, Res.second); 5707 } 5708 case TEK_Aggregate: 5709 break; 5710 } 5711 llvm_unreachable("Must be a scalar or complex."); 5712 } 5713 5714 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5715 llvm::AtomicOrdering AO, 5716 bool IsPostfixUpdate, const Expr *V, 5717 const Expr *X, const Expr *E, 5718 const Expr *UE, bool IsXLHSInRHSPart, 5719 SourceLocation Loc) { 5720 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5721 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5722 RValue NewVVal; 5723 LValue VLValue = CGF.EmitLValue(V); 5724 LValue XLValue = CGF.EmitLValue(X); 5725 RValue ExprRValue = CGF.EmitAnyExpr(E); 5726 QualType NewVValType; 5727 if (UE) { 5728 // 'x' is updated with some additional value. 5729 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5730 "Update expr in 'atomic capture' must be a binary operator."); 5731 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5732 // Update expressions are allowed to have the following forms: 5733 // x binop= expr; -> xrval + expr; 5734 // x++, ++x -> xrval + 1; 5735 // x--, --x -> xrval - 1; 5736 // x = x binop expr; -> xrval binop expr 5737 // x = expr Op x; - > expr binop xrval; 5738 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5739 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5740 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5741 NewVValType = XRValExpr->getType(); 5742 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5743 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5744 IsPostfixUpdate](RValue XRValue) { 5745 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5746 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5747 RValue Res = CGF.EmitAnyExpr(UE); 5748 NewVVal = IsPostfixUpdate ? XRValue : Res; 5749 return Res; 5750 }; 5751 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5752 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5753 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5754 if (Res.first) { 5755 // 'atomicrmw' instruction was generated. 5756 if (IsPostfixUpdate) { 5757 // Use old value from 'atomicrmw'. 5758 NewVVal = Res.second; 5759 } else { 5760 // 'atomicrmw' does not provide new value, so evaluate it using old 5761 // value of 'x'. 5762 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5763 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5764 NewVVal = CGF.EmitAnyExpr(UE); 5765 } 5766 } 5767 } else { 5768 // 'x' is simply rewritten with some 'expr'. 5769 NewVValType = X->getType().getNonReferenceType(); 5770 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5771 X->getType().getNonReferenceType(), Loc); 5772 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5773 NewVVal = XRValue; 5774 return ExprRValue; 5775 }; 5776 // Try to perform atomicrmw xchg, otherwise simple exchange. 5777 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5778 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5779 Loc, Gen); 5780 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5781 if (Res.first) { 5782 // 'atomicrmw' instruction was generated. 5783 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5784 } 5785 } 5786 // Emit post-update store to 'v' of old/new 'x' value. 5787 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5788 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5789 // OpenMP 5.1 removes the required flush for capture clause. 5790 if (CGF.CGM.getLangOpts().OpenMP < 51) { 5791 // OpenMP, 2.17.7, atomic Construct 5792 // If the write, update, or capture clause is specified and the release, 5793 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5794 // the atomic operation is also a release flush. 5795 // If the read or capture clause is specified and the acquire, acq_rel, or 5796 // seq_cst clause is specified then the strong flush on exit from the atomic 5797 // operation is also an acquire flush. 5798 switch (AO) { 5799 case llvm::AtomicOrdering::Release: 5800 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5801 llvm::AtomicOrdering::Release); 5802 break; 5803 case llvm::AtomicOrdering::Acquire: 5804 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5805 llvm::AtomicOrdering::Acquire); 5806 break; 5807 case llvm::AtomicOrdering::AcquireRelease: 5808 case llvm::AtomicOrdering::SequentiallyConsistent: 5809 CGF.CGM.getOpenMPRuntime().emitFlush( 5810 CGF, llvm::None, Loc, llvm::AtomicOrdering::AcquireRelease); 5811 break; 5812 case llvm::AtomicOrdering::Monotonic: 5813 break; 5814 case llvm::AtomicOrdering::NotAtomic: 5815 case llvm::AtomicOrdering::Unordered: 5816 llvm_unreachable("Unexpected ordering."); 5817 } 5818 } 5819 } 5820 5821 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5822 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5823 const Expr *X, const Expr *V, const Expr *E, 5824 const Expr *UE, bool IsXLHSInRHSPart, 5825 SourceLocation Loc) { 5826 switch (Kind) { 5827 case OMPC_read: 5828 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5829 break; 5830 case OMPC_write: 5831 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5832 break; 5833 case OMPC_unknown: 5834 case OMPC_update: 5835 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5836 break; 5837 case OMPC_capture: 5838 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5839 IsXLHSInRHSPart, Loc); 5840 break; 5841 case OMPC_if: 5842 case OMPC_final: 5843 case OMPC_num_threads: 5844 case OMPC_private: 5845 case OMPC_firstprivate: 5846 case OMPC_lastprivate: 5847 case OMPC_reduction: 5848 case OMPC_task_reduction: 5849 case OMPC_in_reduction: 5850 case OMPC_safelen: 5851 case OMPC_simdlen: 5852 case OMPC_sizes: 5853 case OMPC_full: 5854 case OMPC_partial: 5855 case OMPC_allocator: 5856 case OMPC_allocate: 5857 case OMPC_collapse: 5858 case OMPC_default: 5859 case OMPC_seq_cst: 5860 case OMPC_acq_rel: 5861 case OMPC_acquire: 5862 case OMPC_release: 5863 case OMPC_relaxed: 5864 case OMPC_shared: 5865 case OMPC_linear: 5866 case OMPC_aligned: 5867 case OMPC_copyin: 5868 case OMPC_copyprivate: 5869 case OMPC_flush: 5870 case OMPC_depobj: 5871 case OMPC_proc_bind: 5872 case OMPC_schedule: 5873 case OMPC_ordered: 5874 case OMPC_nowait: 5875 case OMPC_untied: 5876 case OMPC_threadprivate: 5877 case OMPC_depend: 5878 case OMPC_mergeable: 5879 case OMPC_device: 5880 case OMPC_threads: 5881 case OMPC_simd: 5882 case OMPC_map: 5883 case OMPC_num_teams: 5884 case OMPC_thread_limit: 5885 case OMPC_priority: 5886 case OMPC_grainsize: 5887 case OMPC_nogroup: 5888 case OMPC_num_tasks: 5889 case OMPC_hint: 5890 case OMPC_dist_schedule: 5891 case OMPC_defaultmap: 5892 case OMPC_uniform: 5893 case OMPC_to: 5894 case OMPC_from: 5895 case OMPC_use_device_ptr: 5896 case OMPC_use_device_addr: 5897 case OMPC_is_device_ptr: 5898 case OMPC_unified_address: 5899 case OMPC_unified_shared_memory: 5900 case OMPC_reverse_offload: 5901 case OMPC_dynamic_allocators: 5902 case OMPC_atomic_default_mem_order: 5903 case OMPC_device_type: 5904 case OMPC_match: 5905 case OMPC_nontemporal: 5906 case OMPC_order: 5907 case OMPC_destroy: 5908 case OMPC_detach: 5909 case OMPC_inclusive: 5910 case OMPC_exclusive: 5911 case OMPC_uses_allocators: 5912 case OMPC_affinity: 5913 case OMPC_init: 5914 case OMPC_inbranch: 5915 case OMPC_notinbranch: 5916 case OMPC_link: 5917 case OMPC_use: 5918 case OMPC_novariants: 5919 case OMPC_nocontext: 5920 case OMPC_filter: 5921 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 5922 } 5923 } 5924 5925 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 5926 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 5927 bool MemOrderingSpecified = false; 5928 if (S.getSingleClause<OMPSeqCstClause>()) { 5929 AO = llvm::AtomicOrdering::SequentiallyConsistent; 5930 MemOrderingSpecified = true; 5931 } else if (S.getSingleClause<OMPAcqRelClause>()) { 5932 AO = llvm::AtomicOrdering::AcquireRelease; 5933 MemOrderingSpecified = true; 5934 } else if (S.getSingleClause<OMPAcquireClause>()) { 5935 AO = llvm::AtomicOrdering::Acquire; 5936 MemOrderingSpecified = true; 5937 } else if (S.getSingleClause<OMPReleaseClause>()) { 5938 AO = llvm::AtomicOrdering::Release; 5939 MemOrderingSpecified = true; 5940 } else if (S.getSingleClause<OMPRelaxedClause>()) { 5941 AO = llvm::AtomicOrdering::Monotonic; 5942 MemOrderingSpecified = true; 5943 } 5944 OpenMPClauseKind Kind = OMPC_unknown; 5945 for (const OMPClause *C : S.clauses()) { 5946 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 5947 // if it is first). 5948 if (C->getClauseKind() != OMPC_seq_cst && 5949 C->getClauseKind() != OMPC_acq_rel && 5950 C->getClauseKind() != OMPC_acquire && 5951 C->getClauseKind() != OMPC_release && 5952 C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) { 5953 Kind = C->getClauseKind(); 5954 break; 5955 } 5956 } 5957 if (!MemOrderingSpecified) { 5958 llvm::AtomicOrdering DefaultOrder = 5959 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 5960 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 5961 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 5962 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 5963 Kind == OMPC_capture)) { 5964 AO = DefaultOrder; 5965 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 5966 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 5967 AO = llvm::AtomicOrdering::Release; 5968 } else if (Kind == OMPC_read) { 5969 assert(Kind == OMPC_read && "Unexpected atomic kind."); 5970 AO = llvm::AtomicOrdering::Acquire; 5971 } 5972 } 5973 } 5974 5975 LexicalScope Scope(*this, S.getSourceRange()); 5976 EmitStopPoint(S.getAssociatedStmt()); 5977 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 5978 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 5979 S.getBeginLoc()); 5980 } 5981 5982 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 5983 const OMPExecutableDirective &S, 5984 const RegionCodeGenTy &CodeGen) { 5985 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 5986 CodeGenModule &CGM = CGF.CGM; 5987 5988 // On device emit this construct as inlined code. 5989 if (CGM.getLangOpts().OpenMPIsDevice) { 5990 OMPLexicalScope Scope(CGF, S, OMPD_target); 5991 CGM.getOpenMPRuntime().emitInlinedDirective( 5992 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5993 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5994 }); 5995 return; 5996 } 5997 5998 auto LPCRegion = CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 5999 llvm::Function *Fn = nullptr; 6000 llvm::Constant *FnID = nullptr; 6001 6002 const Expr *IfCond = nullptr; 6003 // Check for the at most one if clause associated with the target region. 6004 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6005 if (C->getNameModifier() == OMPD_unknown || 6006 C->getNameModifier() == OMPD_target) { 6007 IfCond = C->getCondition(); 6008 break; 6009 } 6010 } 6011 6012 // Check if we have any device clause associated with the directive. 6013 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 6014 nullptr, OMPC_DEVICE_unknown); 6015 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 6016 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 6017 6018 // Check if we have an if clause whose conditional always evaluates to false 6019 // or if we do not have any targets specified. If so the target region is not 6020 // an offload entry point. 6021 bool IsOffloadEntry = true; 6022 if (IfCond) { 6023 bool Val; 6024 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 6025 IsOffloadEntry = false; 6026 } 6027 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6028 IsOffloadEntry = false; 6029 6030 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 6031 StringRef ParentName; 6032 // In case we have Ctors/Dtors we use the complete type variant to produce 6033 // the mangling of the device outlined kernel. 6034 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 6035 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 6036 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 6037 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 6038 else 6039 ParentName = 6040 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 6041 6042 // Emit target region as a standalone region. 6043 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 6044 IsOffloadEntry, CodeGen); 6045 OMPLexicalScope Scope(CGF, S, OMPD_task); 6046 auto &&SizeEmitter = 6047 [IsOffloadEntry](CodeGenFunction &CGF, 6048 const OMPLoopDirective &D) -> llvm::Value * { 6049 if (IsOffloadEntry) { 6050 OMPLoopScope(CGF, D); 6051 // Emit calculation of the iterations count. 6052 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6053 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6054 /*isSigned=*/false); 6055 return NumIterations; 6056 } 6057 return nullptr; 6058 }; 6059 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6060 SizeEmitter); 6061 } 6062 6063 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6064 PrePostActionTy &Action) { 6065 Action.Enter(CGF); 6066 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6067 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6068 CGF.EmitOMPPrivateClause(S, PrivateScope); 6069 (void)PrivateScope.Privatize(); 6070 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6071 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6072 6073 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6074 CGF.EnsureInsertPoint(); 6075 } 6076 6077 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6078 StringRef ParentName, 6079 const OMPTargetDirective &S) { 6080 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6081 emitTargetRegion(CGF, S, Action); 6082 }; 6083 llvm::Function *Fn; 6084 llvm::Constant *Addr; 6085 // Emit target region as a standalone region. 6086 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6087 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6088 assert(Fn && Addr && "Target device function emission failed."); 6089 } 6090 6091 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6092 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6093 emitTargetRegion(CGF, S, Action); 6094 }; 6095 emitCommonOMPTargetDirective(*this, S, CodeGen); 6096 } 6097 6098 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6099 const OMPExecutableDirective &S, 6100 OpenMPDirectiveKind InnermostKind, 6101 const RegionCodeGenTy &CodeGen) { 6102 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6103 llvm::Function *OutlinedFn = 6104 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6105 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6106 6107 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6108 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6109 if (NT || TL) { 6110 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6111 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6112 6113 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6114 S.getBeginLoc()); 6115 } 6116 6117 OMPTeamsScope Scope(CGF, S); 6118 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6119 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6120 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6121 CapturedVars); 6122 } 6123 6124 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6125 // Emit teams region as a standalone region. 6126 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6127 Action.Enter(CGF); 6128 OMPPrivateScope PrivateScope(CGF); 6129 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6130 CGF.EmitOMPPrivateClause(S, PrivateScope); 6131 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6132 (void)PrivateScope.Privatize(); 6133 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6134 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6135 }; 6136 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6137 emitPostUpdateForReductionClause(*this, S, 6138 [](CodeGenFunction &) { return nullptr; }); 6139 } 6140 6141 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6142 const OMPTargetTeamsDirective &S) { 6143 auto *CS = S.getCapturedStmt(OMPD_teams); 6144 Action.Enter(CGF); 6145 // Emit teams region as a standalone region. 6146 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6147 Action.Enter(CGF); 6148 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6149 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6150 CGF.EmitOMPPrivateClause(S, PrivateScope); 6151 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6152 (void)PrivateScope.Privatize(); 6153 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6154 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6155 CGF.EmitStmt(CS->getCapturedStmt()); 6156 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6157 }; 6158 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6159 emitPostUpdateForReductionClause(CGF, S, 6160 [](CodeGenFunction &) { return nullptr; }); 6161 } 6162 6163 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6164 CodeGenModule &CGM, StringRef ParentName, 6165 const OMPTargetTeamsDirective &S) { 6166 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6167 emitTargetTeamsRegion(CGF, Action, S); 6168 }; 6169 llvm::Function *Fn; 6170 llvm::Constant *Addr; 6171 // Emit target region as a standalone region. 6172 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6173 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6174 assert(Fn && Addr && "Target device function emission failed."); 6175 } 6176 6177 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6178 const OMPTargetTeamsDirective &S) { 6179 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6180 emitTargetTeamsRegion(CGF, Action, S); 6181 }; 6182 emitCommonOMPTargetDirective(*this, S, CodeGen); 6183 } 6184 6185 static void 6186 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6187 const OMPTargetTeamsDistributeDirective &S) { 6188 Action.Enter(CGF); 6189 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6190 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6191 }; 6192 6193 // Emit teams region as a standalone region. 6194 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6195 PrePostActionTy &Action) { 6196 Action.Enter(CGF); 6197 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6198 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6199 (void)PrivateScope.Privatize(); 6200 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6201 CodeGenDistribute); 6202 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6203 }; 6204 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6205 emitPostUpdateForReductionClause(CGF, S, 6206 [](CodeGenFunction &) { return nullptr; }); 6207 } 6208 6209 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6210 CodeGenModule &CGM, StringRef ParentName, 6211 const OMPTargetTeamsDistributeDirective &S) { 6212 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6213 emitTargetTeamsDistributeRegion(CGF, Action, S); 6214 }; 6215 llvm::Function *Fn; 6216 llvm::Constant *Addr; 6217 // Emit target region as a standalone region. 6218 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6219 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6220 assert(Fn && Addr && "Target device function emission failed."); 6221 } 6222 6223 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6224 const OMPTargetTeamsDistributeDirective &S) { 6225 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6226 emitTargetTeamsDistributeRegion(CGF, Action, S); 6227 }; 6228 emitCommonOMPTargetDirective(*this, S, CodeGen); 6229 } 6230 6231 static void emitTargetTeamsDistributeSimdRegion( 6232 CodeGenFunction &CGF, PrePostActionTy &Action, 6233 const OMPTargetTeamsDistributeSimdDirective &S) { 6234 Action.Enter(CGF); 6235 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6236 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6237 }; 6238 6239 // Emit teams region as a standalone region. 6240 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6241 PrePostActionTy &Action) { 6242 Action.Enter(CGF); 6243 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6244 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6245 (void)PrivateScope.Privatize(); 6246 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6247 CodeGenDistribute); 6248 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6249 }; 6250 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6251 emitPostUpdateForReductionClause(CGF, S, 6252 [](CodeGenFunction &) { return nullptr; }); 6253 } 6254 6255 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6256 CodeGenModule &CGM, StringRef ParentName, 6257 const OMPTargetTeamsDistributeSimdDirective &S) { 6258 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6259 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6260 }; 6261 llvm::Function *Fn; 6262 llvm::Constant *Addr; 6263 // Emit target region as a standalone region. 6264 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6265 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6266 assert(Fn && Addr && "Target device function emission failed."); 6267 } 6268 6269 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6270 const OMPTargetTeamsDistributeSimdDirective &S) { 6271 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6272 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6273 }; 6274 emitCommonOMPTargetDirective(*this, S, CodeGen); 6275 } 6276 6277 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6278 const OMPTeamsDistributeDirective &S) { 6279 6280 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6281 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6282 }; 6283 6284 // Emit teams region as a standalone region. 6285 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6286 PrePostActionTy &Action) { 6287 Action.Enter(CGF); 6288 OMPPrivateScope PrivateScope(CGF); 6289 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6290 (void)PrivateScope.Privatize(); 6291 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6292 CodeGenDistribute); 6293 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6294 }; 6295 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6296 emitPostUpdateForReductionClause(*this, S, 6297 [](CodeGenFunction &) { return nullptr; }); 6298 } 6299 6300 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6301 const OMPTeamsDistributeSimdDirective &S) { 6302 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6303 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6304 }; 6305 6306 // Emit teams region as a standalone region. 6307 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6308 PrePostActionTy &Action) { 6309 Action.Enter(CGF); 6310 OMPPrivateScope PrivateScope(CGF); 6311 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6312 (void)PrivateScope.Privatize(); 6313 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6314 CodeGenDistribute); 6315 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6316 }; 6317 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6318 emitPostUpdateForReductionClause(*this, S, 6319 [](CodeGenFunction &) { return nullptr; }); 6320 } 6321 6322 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6323 const OMPTeamsDistributeParallelForDirective &S) { 6324 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6325 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6326 S.getDistInc()); 6327 }; 6328 6329 // Emit teams region as a standalone region. 6330 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6331 PrePostActionTy &Action) { 6332 Action.Enter(CGF); 6333 OMPPrivateScope PrivateScope(CGF); 6334 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6335 (void)PrivateScope.Privatize(); 6336 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6337 CodeGenDistribute); 6338 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6339 }; 6340 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6341 emitPostUpdateForReductionClause(*this, S, 6342 [](CodeGenFunction &) { return nullptr; }); 6343 } 6344 6345 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6346 const OMPTeamsDistributeParallelForSimdDirective &S) { 6347 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6348 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6349 S.getDistInc()); 6350 }; 6351 6352 // Emit teams region as a standalone region. 6353 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6354 PrePostActionTy &Action) { 6355 Action.Enter(CGF); 6356 OMPPrivateScope PrivateScope(CGF); 6357 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6358 (void)PrivateScope.Privatize(); 6359 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6360 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6361 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6362 }; 6363 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6364 CodeGen); 6365 emitPostUpdateForReductionClause(*this, S, 6366 [](CodeGenFunction &) { return nullptr; }); 6367 } 6368 6369 static void emitTargetTeamsDistributeParallelForRegion( 6370 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 6371 PrePostActionTy &Action) { 6372 Action.Enter(CGF); 6373 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6374 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6375 S.getDistInc()); 6376 }; 6377 6378 // Emit teams region as a standalone region. 6379 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6380 PrePostActionTy &Action) { 6381 Action.Enter(CGF); 6382 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6383 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6384 (void)PrivateScope.Privatize(); 6385 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6386 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6387 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6388 }; 6389 6390 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 6391 CodeGenTeams); 6392 emitPostUpdateForReductionClause(CGF, S, 6393 [](CodeGenFunction &) { return nullptr; }); 6394 } 6395 6396 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 6397 CodeGenModule &CGM, StringRef ParentName, 6398 const OMPTargetTeamsDistributeParallelForDirective &S) { 6399 // Emit SPMD target teams distribute parallel for region as a standalone 6400 // region. 6401 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6402 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6403 }; 6404 llvm::Function *Fn; 6405 llvm::Constant *Addr; 6406 // Emit target region as a standalone region. 6407 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6408 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6409 assert(Fn && Addr && "Target device function emission failed."); 6410 } 6411 6412 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 6413 const OMPTargetTeamsDistributeParallelForDirective &S) { 6414 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6415 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6416 }; 6417 emitCommonOMPTargetDirective(*this, S, CodeGen); 6418 } 6419 6420 static void emitTargetTeamsDistributeParallelForSimdRegion( 6421 CodeGenFunction &CGF, 6422 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 6423 PrePostActionTy &Action) { 6424 Action.Enter(CGF); 6425 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6426 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6427 S.getDistInc()); 6428 }; 6429 6430 // Emit teams region as a standalone region. 6431 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6432 PrePostActionTy &Action) { 6433 Action.Enter(CGF); 6434 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6435 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6436 (void)PrivateScope.Privatize(); 6437 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6438 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6439 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6440 }; 6441 6442 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 6443 CodeGenTeams); 6444 emitPostUpdateForReductionClause(CGF, S, 6445 [](CodeGenFunction &) { return nullptr; }); 6446 } 6447 6448 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 6449 CodeGenModule &CGM, StringRef ParentName, 6450 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6451 // Emit SPMD target teams distribute parallel for simd region as a standalone 6452 // region. 6453 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6454 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6455 }; 6456 llvm::Function *Fn; 6457 llvm::Constant *Addr; 6458 // Emit target region as a standalone region. 6459 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6460 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6461 assert(Fn && Addr && "Target device function emission failed."); 6462 } 6463 6464 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 6465 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6466 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6467 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6468 }; 6469 emitCommonOMPTargetDirective(*this, S, CodeGen); 6470 } 6471 6472 void CodeGenFunction::EmitOMPCancellationPointDirective( 6473 const OMPCancellationPointDirective &S) { 6474 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 6475 S.getCancelRegion()); 6476 } 6477 6478 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 6479 const Expr *IfCond = nullptr; 6480 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6481 if (C->getNameModifier() == OMPD_unknown || 6482 C->getNameModifier() == OMPD_cancel) { 6483 IfCond = C->getCondition(); 6484 break; 6485 } 6486 } 6487 if (CGM.getLangOpts().OpenMPIRBuilder) { 6488 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6489 // TODO: This check is necessary as we only generate `omp parallel` through 6490 // the OpenMPIRBuilder for now. 6491 if (S.getCancelRegion() == OMPD_parallel || 6492 S.getCancelRegion() == OMPD_sections || 6493 S.getCancelRegion() == OMPD_section) { 6494 llvm::Value *IfCondition = nullptr; 6495 if (IfCond) 6496 IfCondition = EmitScalarExpr(IfCond, 6497 /*IgnoreResultAssign=*/true); 6498 return Builder.restoreIP( 6499 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 6500 } 6501 } 6502 6503 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 6504 S.getCancelRegion()); 6505 } 6506 6507 CodeGenFunction::JumpDest 6508 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 6509 if (Kind == OMPD_parallel || Kind == OMPD_task || 6510 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 6511 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 6512 return ReturnBlock; 6513 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 6514 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 6515 Kind == OMPD_distribute_parallel_for || 6516 Kind == OMPD_target_parallel_for || 6517 Kind == OMPD_teams_distribute_parallel_for || 6518 Kind == OMPD_target_teams_distribute_parallel_for); 6519 return OMPCancelStack.getExitBlock(); 6520 } 6521 6522 void CodeGenFunction::EmitOMPUseDevicePtrClause( 6523 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 6524 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6525 auto OrigVarIt = C.varlist_begin(); 6526 auto InitIt = C.inits().begin(); 6527 for (const Expr *PvtVarIt : C.private_copies()) { 6528 const auto *OrigVD = 6529 cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6530 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6531 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6532 6533 // In order to identify the right initializer we need to match the 6534 // declaration used by the mapping logic. In some cases we may get 6535 // OMPCapturedExprDecl that refers to the original declaration. 6536 const ValueDecl *MatchingVD = OrigVD; 6537 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6538 // OMPCapturedExprDecl are used to privative fields of the current 6539 // structure. 6540 const auto *ME = cast<MemberExpr>(OED->getInit()); 6541 assert(isa<CXXThisExpr>(ME->getBase()) && 6542 "Base should be the current struct!"); 6543 MatchingVD = ME->getMemberDecl(); 6544 } 6545 6546 // If we don't have information about the current list item, move on to 6547 // the next one. 6548 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6549 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6550 continue; 6551 6552 bool IsRegistered = PrivateScope.addPrivate( 6553 OrigVD, [this, OrigVD, InitAddrIt, InitVD, PvtVD]() { 6554 // Initialize the temporary initialization variable with the address 6555 // we get from the runtime library. We have to cast the source address 6556 // because it is always a void *. References are materialized in the 6557 // privatization scope, so the initialization here disregards the fact 6558 // the original variable is a reference. 6559 QualType AddrQTy = getContext().getPointerType( 6560 OrigVD->getType().getNonReferenceType()); 6561 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 6562 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 6563 setAddrOfLocalVar(InitVD, InitAddr); 6564 6565 // Emit private declaration, it will be initialized by the value we 6566 // declaration we just added to the local declarations map. 6567 EmitDecl(*PvtVD); 6568 6569 // The initialization variables reached its purpose in the emission 6570 // of the previous declaration, so we don't need it anymore. 6571 LocalDeclMap.erase(InitVD); 6572 6573 // Return the address of the private variable. 6574 return GetAddrOfLocalVar(PvtVD); 6575 }); 6576 assert(IsRegistered && "firstprivate var already registered as private"); 6577 // Silence the warning about unused variable. 6578 (void)IsRegistered; 6579 6580 ++OrigVarIt; 6581 ++InitIt; 6582 } 6583 } 6584 6585 static const VarDecl *getBaseDecl(const Expr *Ref) { 6586 const Expr *Base = Ref->IgnoreParenImpCasts(); 6587 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6588 Base = OASE->getBase()->IgnoreParenImpCasts(); 6589 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6590 Base = ASE->getBase()->IgnoreParenImpCasts(); 6591 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6592 } 6593 6594 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6595 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6596 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6597 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6598 for (const Expr *Ref : C.varlists()) { 6599 const VarDecl *OrigVD = getBaseDecl(Ref); 6600 if (!Processed.insert(OrigVD).second) 6601 continue; 6602 // In order to identify the right initializer we need to match the 6603 // declaration used by the mapping logic. In some cases we may get 6604 // OMPCapturedExprDecl that refers to the original declaration. 6605 const ValueDecl *MatchingVD = OrigVD; 6606 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6607 // OMPCapturedExprDecl are used to privative fields of the current 6608 // structure. 6609 const auto *ME = cast<MemberExpr>(OED->getInit()); 6610 assert(isa<CXXThisExpr>(ME->getBase()) && 6611 "Base should be the current struct!"); 6612 MatchingVD = ME->getMemberDecl(); 6613 } 6614 6615 // If we don't have information about the current list item, move on to 6616 // the next one. 6617 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6618 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6619 continue; 6620 6621 Address PrivAddr = InitAddrIt->getSecond(); 6622 // For declrefs and variable length array need to load the pointer for 6623 // correct mapping, since the pointer to the data was passed to the runtime. 6624 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6625 MatchingVD->getType()->isArrayType()) 6626 PrivAddr = 6627 EmitLoadOfPointer(PrivAddr, getContext() 6628 .getPointerType(OrigVD->getType()) 6629 ->castAs<PointerType>()); 6630 llvm::Type *RealTy = 6631 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6632 ->getPointerTo(); 6633 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6634 6635 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6636 } 6637 } 6638 6639 // Generate the instructions for '#pragma omp target data' directive. 6640 void CodeGenFunction::EmitOMPTargetDataDirective( 6641 const OMPTargetDataDirective &S) { 6642 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 6643 /*SeparateBeginEndCalls=*/true); 6644 6645 // Create a pre/post action to signal the privatization of the device pointer. 6646 // This action can be replaced by the OpenMP runtime code generation to 6647 // deactivate privatization. 6648 bool PrivatizeDevicePointers = false; 6649 class DevicePointerPrivActionTy : public PrePostActionTy { 6650 bool &PrivatizeDevicePointers; 6651 6652 public: 6653 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6654 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6655 void Enter(CodeGenFunction &CGF) override { 6656 PrivatizeDevicePointers = true; 6657 } 6658 }; 6659 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6660 6661 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6662 CodeGenFunction &CGF, PrePostActionTy &Action) { 6663 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6664 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6665 }; 6666 6667 // Codegen that selects whether to generate the privatization code or not. 6668 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6669 &InnermostCodeGen](CodeGenFunction &CGF, 6670 PrePostActionTy &Action) { 6671 RegionCodeGenTy RCG(InnermostCodeGen); 6672 PrivatizeDevicePointers = false; 6673 6674 // Call the pre-action to change the status of PrivatizeDevicePointers if 6675 // needed. 6676 Action.Enter(CGF); 6677 6678 if (PrivatizeDevicePointers) { 6679 OMPPrivateScope PrivateScope(CGF); 6680 // Emit all instances of the use_device_ptr clause. 6681 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6682 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6683 Info.CaptureDeviceAddrMap); 6684 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6685 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6686 Info.CaptureDeviceAddrMap); 6687 (void)PrivateScope.Privatize(); 6688 RCG(CGF); 6689 } else { 6690 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6691 RCG(CGF); 6692 } 6693 }; 6694 6695 // Forward the provided action to the privatization codegen. 6696 RegionCodeGenTy PrivRCG(PrivCodeGen); 6697 PrivRCG.setAction(Action); 6698 6699 // Notwithstanding the body of the region is emitted as inlined directive, 6700 // we don't use an inline scope as changes in the references inside the 6701 // region are expected to be visible outside, so we do not privative them. 6702 OMPLexicalScope Scope(CGF, S); 6703 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6704 PrivRCG); 6705 }; 6706 6707 RegionCodeGenTy RCG(CodeGen); 6708 6709 // If we don't have target devices, don't bother emitting the data mapping 6710 // code. 6711 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6712 RCG(*this); 6713 return; 6714 } 6715 6716 // Check if we have any if clause associated with the directive. 6717 const Expr *IfCond = nullptr; 6718 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6719 IfCond = C->getCondition(); 6720 6721 // Check if we have any device clause associated with the directive. 6722 const Expr *Device = nullptr; 6723 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6724 Device = C->getDevice(); 6725 6726 // Set the action to signal privatization of device pointers. 6727 RCG.setAction(PrivAction); 6728 6729 // Emit region code. 6730 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6731 Info); 6732 } 6733 6734 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6735 const OMPTargetEnterDataDirective &S) { 6736 // If we don't have target devices, don't bother emitting the data mapping 6737 // code. 6738 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6739 return; 6740 6741 // Check if we have any if clause associated with the directive. 6742 const Expr *IfCond = nullptr; 6743 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6744 IfCond = C->getCondition(); 6745 6746 // Check if we have any device clause associated with the directive. 6747 const Expr *Device = nullptr; 6748 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6749 Device = C->getDevice(); 6750 6751 OMPLexicalScope Scope(*this, S, OMPD_task); 6752 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6753 } 6754 6755 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6756 const OMPTargetExitDataDirective &S) { 6757 // If we don't have target devices, don't bother emitting the data mapping 6758 // code. 6759 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6760 return; 6761 6762 // Check if we have any if clause associated with the directive. 6763 const Expr *IfCond = nullptr; 6764 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6765 IfCond = C->getCondition(); 6766 6767 // Check if we have any device clause associated with the directive. 6768 const Expr *Device = nullptr; 6769 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6770 Device = C->getDevice(); 6771 6772 OMPLexicalScope Scope(*this, S, OMPD_task); 6773 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6774 } 6775 6776 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6777 const OMPTargetParallelDirective &S, 6778 PrePostActionTy &Action) { 6779 // Get the captured statement associated with the 'parallel' region. 6780 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6781 Action.Enter(CGF); 6782 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6783 Action.Enter(CGF); 6784 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6785 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6786 CGF.EmitOMPPrivateClause(S, PrivateScope); 6787 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6788 (void)PrivateScope.Privatize(); 6789 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6790 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6791 // TODO: Add support for clauses. 6792 CGF.EmitStmt(CS->getCapturedStmt()); 6793 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6794 }; 6795 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6796 emitEmptyBoundParameters); 6797 emitPostUpdateForReductionClause(CGF, S, 6798 [](CodeGenFunction &) { return nullptr; }); 6799 } 6800 6801 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6802 CodeGenModule &CGM, StringRef ParentName, 6803 const OMPTargetParallelDirective &S) { 6804 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6805 emitTargetParallelRegion(CGF, S, Action); 6806 }; 6807 llvm::Function *Fn; 6808 llvm::Constant *Addr; 6809 // Emit target region as a standalone region. 6810 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6811 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6812 assert(Fn && Addr && "Target device function emission failed."); 6813 } 6814 6815 void CodeGenFunction::EmitOMPTargetParallelDirective( 6816 const OMPTargetParallelDirective &S) { 6817 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6818 emitTargetParallelRegion(CGF, S, Action); 6819 }; 6820 emitCommonOMPTargetDirective(*this, S, CodeGen); 6821 } 6822 6823 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6824 const OMPTargetParallelForDirective &S, 6825 PrePostActionTy &Action) { 6826 Action.Enter(CGF); 6827 // Emit directive as a combined directive that consists of two implicit 6828 // directives: 'parallel' with 'for' directive. 6829 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6830 Action.Enter(CGF); 6831 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6832 CGF, OMPD_target_parallel_for, S.hasCancel()); 6833 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6834 emitDispatchForLoopBounds); 6835 }; 6836 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6837 emitEmptyBoundParameters); 6838 } 6839 6840 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6841 CodeGenModule &CGM, StringRef ParentName, 6842 const OMPTargetParallelForDirective &S) { 6843 // Emit SPMD target parallel for region as a standalone region. 6844 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6845 emitTargetParallelForRegion(CGF, S, Action); 6846 }; 6847 llvm::Function *Fn; 6848 llvm::Constant *Addr; 6849 // Emit target region as a standalone region. 6850 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6851 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6852 assert(Fn && Addr && "Target device function emission failed."); 6853 } 6854 6855 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6856 const OMPTargetParallelForDirective &S) { 6857 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6858 emitTargetParallelForRegion(CGF, S, Action); 6859 }; 6860 emitCommonOMPTargetDirective(*this, S, CodeGen); 6861 } 6862 6863 static void 6864 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 6865 const OMPTargetParallelForSimdDirective &S, 6866 PrePostActionTy &Action) { 6867 Action.Enter(CGF); 6868 // Emit directive as a combined directive that consists of two implicit 6869 // directives: 'parallel' with 'for' directive. 6870 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6871 Action.Enter(CGF); 6872 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6873 emitDispatchForLoopBounds); 6874 }; 6875 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 6876 emitEmptyBoundParameters); 6877 } 6878 6879 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 6880 CodeGenModule &CGM, StringRef ParentName, 6881 const OMPTargetParallelForSimdDirective &S) { 6882 // Emit SPMD target parallel for region as a standalone region. 6883 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6884 emitTargetParallelForSimdRegion(CGF, S, Action); 6885 }; 6886 llvm::Function *Fn; 6887 llvm::Constant *Addr; 6888 // Emit target region as a standalone region. 6889 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6890 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6891 assert(Fn && Addr && "Target device function emission failed."); 6892 } 6893 6894 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 6895 const OMPTargetParallelForSimdDirective &S) { 6896 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6897 emitTargetParallelForSimdRegion(CGF, S, Action); 6898 }; 6899 emitCommonOMPTargetDirective(*this, S, CodeGen); 6900 } 6901 6902 /// Emit a helper variable and return corresponding lvalue. 6903 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 6904 const ImplicitParamDecl *PVD, 6905 CodeGenFunction::OMPPrivateScope &Privates) { 6906 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 6907 Privates.addPrivate(VDecl, 6908 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 6909 } 6910 6911 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 6912 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 6913 // Emit outlined function for task construct. 6914 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 6915 Address CapturedStruct = Address::invalid(); 6916 { 6917 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6918 CapturedStruct = GenerateCapturedStmtArgument(*CS); 6919 } 6920 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 6921 const Expr *IfCond = nullptr; 6922 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6923 if (C->getNameModifier() == OMPD_unknown || 6924 C->getNameModifier() == OMPD_taskloop) { 6925 IfCond = C->getCondition(); 6926 break; 6927 } 6928 } 6929 6930 OMPTaskDataTy Data; 6931 // Check if taskloop must be emitted without taskgroup. 6932 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 6933 // TODO: Check if we should emit tied or untied task. 6934 Data.Tied = true; 6935 // Set scheduling for taskloop 6936 if (const auto *Clause = S.getSingleClause<OMPGrainsizeClause>()) { 6937 // grainsize clause 6938 Data.Schedule.setInt(/*IntVal=*/false); 6939 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 6940 } else if (const auto *Clause = S.getSingleClause<OMPNumTasksClause>()) { 6941 // num_tasks clause 6942 Data.Schedule.setInt(/*IntVal=*/true); 6943 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 6944 } 6945 6946 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 6947 // if (PreCond) { 6948 // for (IV in 0..LastIteration) BODY; 6949 // <Final counter/linear vars updates>; 6950 // } 6951 // 6952 6953 // Emit: if (PreCond) - begin. 6954 // If the condition constant folds and can be elided, avoid emitting the 6955 // whole loop. 6956 bool CondConstant; 6957 llvm::BasicBlock *ContBlock = nullptr; 6958 OMPLoopScope PreInitScope(CGF, S); 6959 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 6960 if (!CondConstant) 6961 return; 6962 } else { 6963 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 6964 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 6965 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 6966 CGF.getProfileCount(&S)); 6967 CGF.EmitBlock(ThenBlock); 6968 CGF.incrementProfileCounter(&S); 6969 } 6970 6971 (void)CGF.EmitOMPLinearClauseInit(S); 6972 6973 OMPPrivateScope LoopScope(CGF); 6974 // Emit helper vars inits. 6975 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 6976 auto *I = CS->getCapturedDecl()->param_begin(); 6977 auto *LBP = std::next(I, LowerBound); 6978 auto *UBP = std::next(I, UpperBound); 6979 auto *STP = std::next(I, Stride); 6980 auto *LIP = std::next(I, LastIter); 6981 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 6982 LoopScope); 6983 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 6984 LoopScope); 6985 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 6986 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 6987 LoopScope); 6988 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 6989 CGF.EmitOMPLinearClause(S, LoopScope); 6990 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 6991 (void)LoopScope.Privatize(); 6992 // Emit the loop iteration variable. 6993 const Expr *IVExpr = S.getIterationVariable(); 6994 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 6995 CGF.EmitVarDecl(*IVDecl); 6996 CGF.EmitIgnoredExpr(S.getInit()); 6997 6998 // Emit the iterations count variable. 6999 // If it is not a variable, Sema decided to calculate iterations count on 7000 // each iteration (e.g., it is foldable into a constant). 7001 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 7002 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 7003 // Emit calculation of the iterations count. 7004 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 7005 } 7006 7007 { 7008 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7009 emitCommonSimdLoop( 7010 CGF, S, 7011 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7012 if (isOpenMPSimdDirective(S.getDirectiveKind())) 7013 CGF.EmitOMPSimdInit(S); 7014 }, 7015 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 7016 CGF.EmitOMPInnerLoop( 7017 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 7018 [&S](CodeGenFunction &CGF) { 7019 emitOMPLoopBodyWithStopPoint(CGF, S, 7020 CodeGenFunction::JumpDest()); 7021 }, 7022 [](CodeGenFunction &) {}); 7023 }); 7024 } 7025 // Emit: if (PreCond) - end. 7026 if (ContBlock) { 7027 CGF.EmitBranch(ContBlock); 7028 CGF.EmitBlock(ContBlock, true); 7029 } 7030 // Emit final copy of the lastprivate variables if IsLastIter != 0. 7031 if (HasLastprivateClause) { 7032 CGF.EmitOMPLastprivateClauseFinal( 7033 S, isOpenMPSimdDirective(S.getDirectiveKind()), 7034 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 7035 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7036 (*LIP)->getType(), S.getBeginLoc()))); 7037 } 7038 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 7039 return CGF.Builder.CreateIsNotNull( 7040 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7041 (*LIP)->getType(), S.getBeginLoc())); 7042 }); 7043 }; 7044 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 7045 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 7046 const OMPTaskDataTy &Data) { 7047 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 7048 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 7049 OMPLoopScope PreInitScope(CGF, S); 7050 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 7051 OutlinedFn, SharedsTy, 7052 CapturedStruct, IfCond, Data); 7053 }; 7054 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7055 CodeGen); 7056 }; 7057 if (Data.Nogroup) { 7058 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7059 } else { 7060 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7061 *this, 7062 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7063 PrePostActionTy &Action) { 7064 Action.Enter(CGF); 7065 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7066 Data); 7067 }, 7068 S.getBeginLoc()); 7069 } 7070 } 7071 7072 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7073 auto LPCRegion = 7074 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7075 EmitOMPTaskLoopBasedDirective(S); 7076 } 7077 7078 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7079 const OMPTaskLoopSimdDirective &S) { 7080 auto LPCRegion = 7081 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7082 OMPLexicalScope Scope(*this, S); 7083 EmitOMPTaskLoopBasedDirective(S); 7084 } 7085 7086 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7087 const OMPMasterTaskLoopDirective &S) { 7088 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7089 Action.Enter(CGF); 7090 EmitOMPTaskLoopBasedDirective(S); 7091 }; 7092 auto LPCRegion = 7093 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7094 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 7095 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7096 } 7097 7098 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7099 const OMPMasterTaskLoopSimdDirective &S) { 7100 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7101 Action.Enter(CGF); 7102 EmitOMPTaskLoopBasedDirective(S); 7103 }; 7104 auto LPCRegion = 7105 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7106 OMPLexicalScope Scope(*this, S); 7107 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7108 } 7109 7110 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7111 const OMPParallelMasterTaskLoopDirective &S) { 7112 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7113 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7114 PrePostActionTy &Action) { 7115 Action.Enter(CGF); 7116 CGF.EmitOMPTaskLoopBasedDirective(S); 7117 }; 7118 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7119 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7120 S.getBeginLoc()); 7121 }; 7122 auto LPCRegion = 7123 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7124 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7125 emitEmptyBoundParameters); 7126 } 7127 7128 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7129 const OMPParallelMasterTaskLoopSimdDirective &S) { 7130 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7131 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7132 PrePostActionTy &Action) { 7133 Action.Enter(CGF); 7134 CGF.EmitOMPTaskLoopBasedDirective(S); 7135 }; 7136 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7137 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7138 S.getBeginLoc()); 7139 }; 7140 auto LPCRegion = 7141 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7142 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7143 emitEmptyBoundParameters); 7144 } 7145 7146 // Generate the instructions for '#pragma omp target update' directive. 7147 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7148 const OMPTargetUpdateDirective &S) { 7149 // If we don't have target devices, don't bother emitting the data mapping 7150 // code. 7151 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7152 return; 7153 7154 // Check if we have any if clause associated with the directive. 7155 const Expr *IfCond = nullptr; 7156 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7157 IfCond = C->getCondition(); 7158 7159 // Check if we have any device clause associated with the directive. 7160 const Expr *Device = nullptr; 7161 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7162 Device = C->getDevice(); 7163 7164 OMPLexicalScope Scope(*this, S, OMPD_task); 7165 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7166 } 7167 7168 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7169 const OMPExecutableDirective &D) { 7170 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7171 EmitOMPScanDirective(*SD); 7172 return; 7173 } 7174 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7175 return; 7176 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7177 OMPPrivateScope GlobalsScope(CGF); 7178 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7179 // Capture global firstprivates to avoid crash. 7180 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7181 for (const Expr *Ref : C->varlists()) { 7182 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7183 if (!DRE) 7184 continue; 7185 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7186 if (!VD || VD->hasLocalStorage()) 7187 continue; 7188 if (!CGF.LocalDeclMap.count(VD)) { 7189 LValue GlobLVal = CGF.EmitLValue(Ref); 7190 GlobalsScope.addPrivate( 7191 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7192 } 7193 } 7194 } 7195 } 7196 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7197 (void)GlobalsScope.Privatize(); 7198 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7199 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7200 } else { 7201 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7202 for (const Expr *E : LD->counters()) { 7203 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7204 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7205 LValue GlobLVal = CGF.EmitLValue(E); 7206 GlobalsScope.addPrivate( 7207 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7208 } 7209 if (isa<OMPCapturedExprDecl>(VD)) { 7210 // Emit only those that were not explicitly referenced in clauses. 7211 if (!CGF.LocalDeclMap.count(VD)) 7212 CGF.EmitVarDecl(*VD); 7213 } 7214 } 7215 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7216 if (!C->getNumForLoops()) 7217 continue; 7218 for (unsigned I = LD->getLoopsNumber(), 7219 E = C->getLoopNumIterations().size(); 7220 I < E; ++I) { 7221 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7222 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7223 // Emit only those that were not explicitly referenced in clauses. 7224 if (!CGF.LocalDeclMap.count(VD)) 7225 CGF.EmitVarDecl(*VD); 7226 } 7227 } 7228 } 7229 } 7230 (void)GlobalsScope.Privatize(); 7231 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7232 } 7233 }; 7234 if (D.getDirectiveKind() == OMPD_atomic || 7235 D.getDirectiveKind() == OMPD_critical || 7236 D.getDirectiveKind() == OMPD_section || 7237 D.getDirectiveKind() == OMPD_master || 7238 D.getDirectiveKind() == OMPD_masked) { 7239 EmitStmt(D.getAssociatedStmt()); 7240 } else { 7241 auto LPCRegion = 7242 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7243 OMPSimdLexicalScope Scope(*this, D); 7244 CGM.getOpenMPRuntime().emitInlinedDirective( 7245 *this, 7246 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7247 : D.getDirectiveKind(), 7248 CodeGen); 7249 } 7250 // Check for outer lastprivate conditional update. 7251 checkForLastprivateConditionalUpdate(*this, D); 7252 } 7253