1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/DeclOpenMP.h" 21 using namespace clang; 22 using namespace CodeGen; 23 24 namespace { 25 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 26 /// for captured expressions. 27 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 28 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 29 for (const auto *C : S.clauses()) { 30 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 31 if (const auto *PreInit = 32 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 33 for (const auto *I : PreInit->decls()) { 34 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 35 CGF.EmitVarDecl(cast<VarDecl>(*I)); 36 } else { 37 CodeGenFunction::AutoVarEmission Emission = 38 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 39 CGF.EmitAutoVarCleanups(Emission); 40 } 41 } 42 } 43 } 44 } 45 } 46 CodeGenFunction::OMPPrivateScope InlinedShareds; 47 48 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 49 return CGF.LambdaCaptureFields.lookup(VD) || 50 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 51 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 52 } 53 54 public: 55 OMPLexicalScope( 56 CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 58 const bool EmitPreInitStmt = true) 59 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 60 InlinedShareds(CGF) { 61 if (EmitPreInitStmt) 62 emitPreInitStmt(CGF, S); 63 if (!CapturedRegion.hasValue()) 64 return; 65 assert(S.hasAssociatedStmt() && 66 "Expected associated statement for inlined directive."); 67 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 68 for (const auto &C : CS->captures()) { 69 if (C.capturesVariable() || C.capturesVariableByCopy()) { 70 auto *VD = C.getCapturedVar(); 71 assert(VD == VD->getCanonicalDecl() && 72 "Canonical decl must be captured."); 73 DeclRefExpr DRE( 74 CGF.getContext(), const_cast<VarDecl *>(VD), 75 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 76 InlinedShareds.isGlobalVarCaptured(VD)), 77 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 78 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 79 return CGF.EmitLValue(&DRE).getAddress(); 80 }); 81 } 82 } 83 (void)InlinedShareds.Privatize(); 84 } 85 }; 86 87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 88 /// for captured expressions. 89 class OMPParallelScope final : public OMPLexicalScope { 90 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 91 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 92 return !(isOpenMPTargetExecutionDirective(Kind) || 93 isOpenMPLoopBoundSharingDirective(Kind)) && 94 isOpenMPParallelDirective(Kind); 95 } 96 97 public: 98 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 99 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 100 EmitPreInitStmt(S)) {} 101 }; 102 103 /// Lexical scope for OpenMP teams construct, that handles correct codegen 104 /// for captured expressions. 105 class OMPTeamsScope final : public OMPLexicalScope { 106 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 107 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 108 return !isOpenMPTargetExecutionDirective(Kind) && 109 isOpenMPTeamsDirective(Kind); 110 } 111 112 public: 113 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Private scope for OpenMP loop-based directives, that supports capturing 119 /// of used expression from loop statement. 120 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 121 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 122 CodeGenFunction::OMPMapVars PreCondVars; 123 for (const auto *E : S.counters()) { 124 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 125 (void)PreCondVars.setVarAddr( 126 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 127 } 128 (void)PreCondVars.apply(CGF); 129 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 130 for (const auto *I : PreInits->decls()) 131 CGF.EmitVarDecl(cast<VarDecl>(*I)); 132 } 133 PreCondVars.restore(CGF); 134 } 135 136 public: 137 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 138 : CodeGenFunction::RunCleanupsScope(CGF) { 139 emitPreInitStmt(CGF, S); 140 } 141 }; 142 143 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 144 CodeGenFunction::OMPPrivateScope InlinedShareds; 145 146 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 147 return CGF.LambdaCaptureFields.lookup(VD) || 148 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 149 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 150 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 151 } 152 153 public: 154 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 155 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 156 InlinedShareds(CGF) { 157 for (const auto *C : S.clauses()) { 158 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 159 if (const auto *PreInit = 160 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 161 for (const auto *I : PreInit->decls()) { 162 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 163 CGF.EmitVarDecl(cast<VarDecl>(*I)); 164 } else { 165 CodeGenFunction::AutoVarEmission Emission = 166 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 167 CGF.EmitAutoVarCleanups(Emission); 168 } 169 } 170 } 171 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 172 for (const Expr *E : UDP->varlists()) { 173 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 174 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 175 CGF.EmitVarDecl(*OED); 176 } 177 } 178 } 179 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 180 CGF.EmitOMPPrivateClause(S, InlinedShareds); 181 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 182 if (const Expr *E = TG->getReductionRef()) 183 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 184 } 185 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 186 while (CS) { 187 for (auto &C : CS->captures()) { 188 if (C.capturesVariable() || C.capturesVariableByCopy()) { 189 auto *VD = C.getCapturedVar(); 190 assert(VD == VD->getCanonicalDecl() && 191 "Canonical decl must be captured."); 192 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 193 isCapturedVar(CGF, VD) || 194 (CGF.CapturedStmtInfo && 195 InlinedShareds.isGlobalVarCaptured(VD)), 196 VD->getType().getNonReferenceType(), VK_LValue, 197 C.getLocation()); 198 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 199 return CGF.EmitLValue(&DRE).getAddress(); 200 }); 201 } 202 } 203 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 204 } 205 (void)InlinedShareds.Privatize(); 206 } 207 }; 208 209 } // namespace 210 211 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 212 const OMPExecutableDirective &S, 213 const RegionCodeGenTy &CodeGen); 214 215 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 216 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 217 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 218 OrigVD = OrigVD->getCanonicalDecl(); 219 bool IsCaptured = 220 LambdaCaptureFields.lookup(OrigVD) || 221 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 222 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 223 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 224 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 225 return EmitLValue(&DRE); 226 } 227 } 228 return EmitLValue(E); 229 } 230 231 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 232 ASTContext &C = getContext(); 233 llvm::Value *Size = nullptr; 234 auto SizeInChars = C.getTypeSizeInChars(Ty); 235 if (SizeInChars.isZero()) { 236 // getTypeSizeInChars() returns 0 for a VLA. 237 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 238 VlaSizePair VlaSize = getVLASize(VAT); 239 Ty = VlaSize.Type; 240 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 241 : VlaSize.NumElts; 242 } 243 SizeInChars = C.getTypeSizeInChars(Ty); 244 if (SizeInChars.isZero()) 245 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 246 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 247 } 248 return CGM.getSize(SizeInChars); 249 } 250 251 void CodeGenFunction::GenerateOpenMPCapturedVars( 252 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 253 const RecordDecl *RD = S.getCapturedRecordDecl(); 254 auto CurField = RD->field_begin(); 255 auto CurCap = S.captures().begin(); 256 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 257 E = S.capture_init_end(); 258 I != E; ++I, ++CurField, ++CurCap) { 259 if (CurField->hasCapturedVLAType()) { 260 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 261 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 262 CapturedVars.push_back(Val); 263 } else if (CurCap->capturesThis()) { 264 CapturedVars.push_back(CXXThisValue); 265 } else if (CurCap->capturesVariableByCopy()) { 266 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 267 268 // If the field is not a pointer, we need to save the actual value 269 // and load it as a void pointer. 270 if (!CurField->getType()->isAnyPointerType()) { 271 ASTContext &Ctx = getContext(); 272 Address DstAddr = CreateMemTemp( 273 Ctx.getUIntPtrType(), 274 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 275 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 276 277 llvm::Value *SrcAddrVal = EmitScalarConversion( 278 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 279 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 280 LValue SrcLV = 281 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 282 283 // Store the value using the source type pointer. 284 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 285 286 // Load the value using the destination type pointer. 287 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 288 } 289 CapturedVars.push_back(CV); 290 } else { 291 assert(CurCap->capturesVariable() && "Expected capture by reference."); 292 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 293 } 294 } 295 } 296 297 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 298 QualType DstType, StringRef Name, 299 LValue AddrLV) { 300 ASTContext &Ctx = CGF.getContext(); 301 302 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 303 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 304 Ctx.getPointerType(DstType), Loc); 305 Address TmpAddr = 306 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 307 .getAddress(); 308 return TmpAddr; 309 } 310 311 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 312 if (T->isLValueReferenceType()) 313 return C.getLValueReferenceType( 314 getCanonicalParamType(C, T.getNonReferenceType()), 315 /*SpelledAsLValue=*/false); 316 if (T->isPointerType()) 317 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 318 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 319 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 320 return getCanonicalParamType(C, VLA->getElementType()); 321 if (!A->isVariablyModifiedType()) 322 return C.getCanonicalType(T); 323 } 324 return C.getCanonicalParamType(T); 325 } 326 327 namespace { 328 /// Contains required data for proper outlined function codegen. 329 struct FunctionOptions { 330 /// Captured statement for which the function is generated. 331 const CapturedStmt *S = nullptr; 332 /// true if cast to/from UIntPtr is required for variables captured by 333 /// value. 334 const bool UIntPtrCastRequired = true; 335 /// true if only casted arguments must be registered as local args or VLA 336 /// sizes. 337 const bool RegisterCastedArgsOnly = false; 338 /// Name of the generated function. 339 const StringRef FunctionName; 340 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 341 bool RegisterCastedArgsOnly, 342 StringRef FunctionName) 343 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 344 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 345 FunctionName(FunctionName) {} 346 }; 347 } 348 349 static llvm::Function *emitOutlinedFunctionPrologue( 350 CodeGenFunction &CGF, FunctionArgList &Args, 351 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 352 &LocalAddrs, 353 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 354 &VLASizes, 355 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 356 const CapturedDecl *CD = FO.S->getCapturedDecl(); 357 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 358 assert(CD->hasBody() && "missing CapturedDecl body"); 359 360 CXXThisValue = nullptr; 361 // Build the argument list. 362 CodeGenModule &CGM = CGF.CGM; 363 ASTContext &Ctx = CGM.getContext(); 364 FunctionArgList TargetArgs; 365 Args.append(CD->param_begin(), 366 std::next(CD->param_begin(), CD->getContextParamPosition())); 367 TargetArgs.append( 368 CD->param_begin(), 369 std::next(CD->param_begin(), CD->getContextParamPosition())); 370 auto I = FO.S->captures().begin(); 371 FunctionDecl *DebugFunctionDecl = nullptr; 372 if (!FO.UIntPtrCastRequired) { 373 FunctionProtoType::ExtProtoInfo EPI; 374 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 375 DebugFunctionDecl = FunctionDecl::Create( 376 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 377 SourceLocation(), DeclarationName(), FunctionTy, 378 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 379 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 380 } 381 for (const FieldDecl *FD : RD->fields()) { 382 QualType ArgType = FD->getType(); 383 IdentifierInfo *II = nullptr; 384 VarDecl *CapVar = nullptr; 385 386 // If this is a capture by copy and the type is not a pointer, the outlined 387 // function argument type should be uintptr and the value properly casted to 388 // uintptr. This is necessary given that the runtime library is only able to 389 // deal with pointers. We can pass in the same way the VLA type sizes to the 390 // outlined function. 391 if (FO.UIntPtrCastRequired && 392 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 393 I->capturesVariableArrayType())) 394 ArgType = Ctx.getUIntPtrType(); 395 396 if (I->capturesVariable() || I->capturesVariableByCopy()) { 397 CapVar = I->getCapturedVar(); 398 II = CapVar->getIdentifier(); 399 } else if (I->capturesThis()) { 400 II = &Ctx.Idents.get("this"); 401 } else { 402 assert(I->capturesVariableArrayType()); 403 II = &Ctx.Idents.get("vla"); 404 } 405 if (ArgType->isVariablyModifiedType()) 406 ArgType = getCanonicalParamType(Ctx, ArgType); 407 VarDecl *Arg; 408 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 409 Arg = ParmVarDecl::Create( 410 Ctx, DebugFunctionDecl, 411 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 412 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 413 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 414 } else { 415 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 416 II, ArgType, ImplicitParamDecl::Other); 417 } 418 Args.emplace_back(Arg); 419 // Do not cast arguments if we emit function with non-original types. 420 TargetArgs.emplace_back( 421 FO.UIntPtrCastRequired 422 ? Arg 423 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 424 ++I; 425 } 426 Args.append( 427 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 428 CD->param_end()); 429 TargetArgs.append( 430 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 431 CD->param_end()); 432 433 // Create the function declaration. 434 const CGFunctionInfo &FuncInfo = 435 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 436 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 437 438 auto *F = 439 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 440 FO.FunctionName, &CGM.getModule()); 441 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 442 if (CD->isNothrow()) 443 F->setDoesNotThrow(); 444 F->setDoesNotRecurse(); 445 446 // Generate the function. 447 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 448 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 449 unsigned Cnt = CD->getContextParamPosition(); 450 I = FO.S->captures().begin(); 451 for (const FieldDecl *FD : RD->fields()) { 452 // Do not map arguments if we emit function with non-original types. 453 Address LocalAddr(Address::invalid()); 454 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 455 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 456 TargetArgs[Cnt]); 457 } else { 458 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 459 } 460 // If we are capturing a pointer by copy we don't need to do anything, just 461 // use the value that we get from the arguments. 462 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 463 const VarDecl *CurVD = I->getCapturedVar(); 464 if (!FO.RegisterCastedArgsOnly) 465 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 466 ++Cnt; 467 ++I; 468 continue; 469 } 470 471 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 472 AlignmentSource::Decl); 473 if (FD->hasCapturedVLAType()) { 474 if (FO.UIntPtrCastRequired) { 475 ArgLVal = CGF.MakeAddrLValue( 476 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 477 Args[Cnt]->getName(), ArgLVal), 478 FD->getType(), AlignmentSource::Decl); 479 } 480 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 481 const VariableArrayType *VAT = FD->getCapturedVLAType(); 482 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 483 } else if (I->capturesVariable()) { 484 const VarDecl *Var = I->getCapturedVar(); 485 QualType VarTy = Var->getType(); 486 Address ArgAddr = ArgLVal.getAddress(); 487 if (ArgLVal.getType()->isLValueReferenceType()) { 488 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 489 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 490 assert(ArgLVal.getType()->isPointerType()); 491 ArgAddr = CGF.EmitLoadOfPointer( 492 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 493 } 494 if (!FO.RegisterCastedArgsOnly) { 495 LocalAddrs.insert( 496 {Args[Cnt], 497 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 498 } 499 } else if (I->capturesVariableByCopy()) { 500 assert(!FD->getType()->isAnyPointerType() && 501 "Not expecting a captured pointer."); 502 const VarDecl *Var = I->getCapturedVar(); 503 LocalAddrs.insert({Args[Cnt], 504 {Var, FO.UIntPtrCastRequired 505 ? castValueFromUintptr( 506 CGF, I->getLocation(), FD->getType(), 507 Args[Cnt]->getName(), ArgLVal) 508 : ArgLVal.getAddress()}}); 509 } else { 510 // If 'this' is captured, load it into CXXThisValue. 511 assert(I->capturesThis()); 512 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 513 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 514 } 515 ++Cnt; 516 ++I; 517 } 518 519 return F; 520 } 521 522 llvm::Function * 523 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 524 assert( 525 CapturedStmtInfo && 526 "CapturedStmtInfo should be set when generating the captured function"); 527 const CapturedDecl *CD = S.getCapturedDecl(); 528 // Build the argument list. 529 bool NeedWrapperFunction = 530 getDebugInfo() && 531 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 532 FunctionArgList Args; 533 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 534 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 535 SmallString<256> Buffer; 536 llvm::raw_svector_ostream Out(Buffer); 537 Out << CapturedStmtInfo->getHelperName(); 538 if (NeedWrapperFunction) 539 Out << "_debug__"; 540 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 541 Out.str()); 542 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 543 VLASizes, CXXThisValue, FO); 544 CodeGenFunction::OMPPrivateScope LocalScope(*this); 545 for (const auto &LocalAddrPair : LocalAddrs) { 546 if (LocalAddrPair.second.first) { 547 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 548 return LocalAddrPair.second.second; 549 }); 550 } 551 } 552 (void)LocalScope.Privatize(); 553 for (const auto &VLASizePair : VLASizes) 554 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 555 PGO.assignRegionCounters(GlobalDecl(CD), F); 556 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 557 (void)LocalScope.ForceCleanup(); 558 FinishFunction(CD->getBodyRBrace()); 559 if (!NeedWrapperFunction) 560 return F; 561 562 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 563 /*RegisterCastedArgsOnly=*/true, 564 CapturedStmtInfo->getHelperName()); 565 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 566 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 567 Args.clear(); 568 LocalAddrs.clear(); 569 VLASizes.clear(); 570 llvm::Function *WrapperF = 571 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 572 WrapperCGF.CXXThisValue, WrapperFO); 573 llvm::SmallVector<llvm::Value *, 4> CallArgs; 574 for (const auto *Arg : Args) { 575 llvm::Value *CallArg; 576 auto I = LocalAddrs.find(Arg); 577 if (I != LocalAddrs.end()) { 578 LValue LV = WrapperCGF.MakeAddrLValue( 579 I->second.second, 580 I->second.first ? I->second.first->getType() : Arg->getType(), 581 AlignmentSource::Decl); 582 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 583 } else { 584 auto EI = VLASizes.find(Arg); 585 if (EI != VLASizes.end()) { 586 CallArg = EI->second.second; 587 } else { 588 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 589 Arg->getType(), 590 AlignmentSource::Decl); 591 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 592 } 593 } 594 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 595 } 596 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 597 F, CallArgs); 598 WrapperCGF.FinishFunction(); 599 return WrapperF; 600 } 601 602 //===----------------------------------------------------------------------===// 603 // OpenMP Directive Emission 604 //===----------------------------------------------------------------------===// 605 void CodeGenFunction::EmitOMPAggregateAssign( 606 Address DestAddr, Address SrcAddr, QualType OriginalType, 607 const llvm::function_ref<void(Address, Address)> CopyGen) { 608 // Perform element-by-element initialization. 609 QualType ElementTy; 610 611 // Drill down to the base element type on both arrays. 612 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 613 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 614 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 615 616 llvm::Value *SrcBegin = SrcAddr.getPointer(); 617 llvm::Value *DestBegin = DestAddr.getPointer(); 618 // Cast from pointer to array type to pointer to single element. 619 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 620 // The basic structure here is a while-do loop. 621 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 622 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 623 llvm::Value *IsEmpty = 624 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 625 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 626 627 // Enter the loop body, making that address the current address. 628 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 629 EmitBlock(BodyBB); 630 631 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 632 633 llvm::PHINode *SrcElementPHI = 634 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 635 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 636 Address SrcElementCurrent = 637 Address(SrcElementPHI, 638 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 639 640 llvm::PHINode *DestElementPHI = 641 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 642 DestElementPHI->addIncoming(DestBegin, EntryBB); 643 Address DestElementCurrent = 644 Address(DestElementPHI, 645 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 646 647 // Emit copy. 648 CopyGen(DestElementCurrent, SrcElementCurrent); 649 650 // Shift the address forward by one element. 651 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 652 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 653 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 654 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 655 // Check whether we've reached the end. 656 llvm::Value *Done = 657 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 658 Builder.CreateCondBr(Done, DoneBB, BodyBB); 659 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 660 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 661 662 // Done. 663 EmitBlock(DoneBB, /*IsFinished=*/true); 664 } 665 666 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 667 Address SrcAddr, const VarDecl *DestVD, 668 const VarDecl *SrcVD, const Expr *Copy) { 669 if (OriginalType->isArrayType()) { 670 const auto *BO = dyn_cast<BinaryOperator>(Copy); 671 if (BO && BO->getOpcode() == BO_Assign) { 672 // Perform simple memcpy for simple copying. 673 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 674 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 675 EmitAggregateAssign(Dest, Src, OriginalType); 676 } else { 677 // For arrays with complex element types perform element by element 678 // copying. 679 EmitOMPAggregateAssign( 680 DestAddr, SrcAddr, OriginalType, 681 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 682 // Working with the single array element, so have to remap 683 // destination and source variables to corresponding array 684 // elements. 685 CodeGenFunction::OMPPrivateScope Remap(*this); 686 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 687 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 688 (void)Remap.Privatize(); 689 EmitIgnoredExpr(Copy); 690 }); 691 } 692 } else { 693 // Remap pseudo source variable to private copy. 694 CodeGenFunction::OMPPrivateScope Remap(*this); 695 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 696 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 697 (void)Remap.Privatize(); 698 // Emit copying of the whole variable. 699 EmitIgnoredExpr(Copy); 700 } 701 } 702 703 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 704 OMPPrivateScope &PrivateScope) { 705 if (!HaveInsertPoint()) 706 return false; 707 bool DeviceConstTarget = 708 getLangOpts().OpenMPIsDevice && 709 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 710 bool FirstprivateIsLastprivate = false; 711 llvm::DenseSet<const VarDecl *> Lastprivates; 712 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 713 for (const auto *D : C->varlists()) 714 Lastprivates.insert( 715 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 716 } 717 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 718 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 719 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 720 // Force emission of the firstprivate copy if the directive does not emit 721 // outlined function, like omp for, omp simd, omp distribute etc. 722 bool MustEmitFirstprivateCopy = 723 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 724 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 725 auto IRef = C->varlist_begin(); 726 auto InitsRef = C->inits().begin(); 727 for (const Expr *IInit : C->private_copies()) { 728 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 729 bool ThisFirstprivateIsLastprivate = 730 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 731 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 732 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 733 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 734 !FD->getType()->isReferenceType() && 735 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 736 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 737 ++IRef; 738 ++InitsRef; 739 continue; 740 } 741 // Do not emit copy for firstprivate constant variables in target regions, 742 // captured by reference. 743 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 744 FD && FD->getType()->isReferenceType() && 745 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 746 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 747 OrigVD); 748 ++IRef; 749 ++InitsRef; 750 continue; 751 } 752 FirstprivateIsLastprivate = 753 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 754 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 755 const auto *VDInit = 756 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 757 bool IsRegistered; 758 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 759 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 760 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 761 LValue OriginalLVal; 762 if (!FD) { 763 // Check if the firstprivate variable is just a constant value. 764 ConstantEmission CE = tryEmitAsConstant(&DRE); 765 if (CE && !CE.isReference()) { 766 // Constant value, no need to create a copy. 767 ++IRef; 768 ++InitsRef; 769 continue; 770 } 771 if (CE && CE.isReference()) { 772 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 773 } else { 774 assert(!CE && "Expected non-constant firstprivate."); 775 OriginalLVal = EmitLValue(&DRE); 776 } 777 } else { 778 OriginalLVal = EmitLValue(&DRE); 779 } 780 QualType Type = VD->getType(); 781 if (Type->isArrayType()) { 782 // Emit VarDecl with copy init for arrays. 783 // Get the address of the original variable captured in current 784 // captured region. 785 IsRegistered = PrivateScope.addPrivate( 786 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 787 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 788 const Expr *Init = VD->getInit(); 789 if (!isa<CXXConstructExpr>(Init) || 790 isTrivialInitializer(Init)) { 791 // Perform simple memcpy. 792 LValue Dest = 793 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 794 EmitAggregateAssign(Dest, OriginalLVal, Type); 795 } else { 796 EmitOMPAggregateAssign( 797 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 798 Type, 799 [this, VDInit, Init](Address DestElement, 800 Address SrcElement) { 801 // Clean up any temporaries needed by the 802 // initialization. 803 RunCleanupsScope InitScope(*this); 804 // Emit initialization for single element. 805 setAddrOfLocalVar(VDInit, SrcElement); 806 EmitAnyExprToMem(Init, DestElement, 807 Init->getType().getQualifiers(), 808 /*IsInitializer*/ false); 809 LocalDeclMap.erase(VDInit); 810 }); 811 } 812 EmitAutoVarCleanups(Emission); 813 return Emission.getAllocatedAddress(); 814 }); 815 } else { 816 Address OriginalAddr = OriginalLVal.getAddress(); 817 IsRegistered = PrivateScope.addPrivate( 818 OrigVD, [this, VDInit, OriginalAddr, VD]() { 819 // Emit private VarDecl with copy init. 820 // Remap temp VDInit variable to the address of the original 821 // variable (for proper handling of captured global variables). 822 setAddrOfLocalVar(VDInit, OriginalAddr); 823 EmitDecl(*VD); 824 LocalDeclMap.erase(VDInit); 825 return GetAddrOfLocalVar(VD); 826 }); 827 } 828 assert(IsRegistered && 829 "firstprivate var already registered as private"); 830 // Silence the warning about unused variable. 831 (void)IsRegistered; 832 } 833 ++IRef; 834 ++InitsRef; 835 } 836 } 837 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 838 } 839 840 void CodeGenFunction::EmitOMPPrivateClause( 841 const OMPExecutableDirective &D, 842 CodeGenFunction::OMPPrivateScope &PrivateScope) { 843 if (!HaveInsertPoint()) 844 return; 845 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 846 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 847 auto IRef = C->varlist_begin(); 848 for (const Expr *IInit : C->private_copies()) { 849 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 850 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 851 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 852 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 853 // Emit private VarDecl with copy init. 854 EmitDecl(*VD); 855 return GetAddrOfLocalVar(VD); 856 }); 857 assert(IsRegistered && "private var already registered as private"); 858 // Silence the warning about unused variable. 859 (void)IsRegistered; 860 } 861 ++IRef; 862 } 863 } 864 } 865 866 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 867 if (!HaveInsertPoint()) 868 return false; 869 // threadprivate_var1 = master_threadprivate_var1; 870 // operator=(threadprivate_var2, master_threadprivate_var2); 871 // ... 872 // __kmpc_barrier(&loc, global_tid); 873 llvm::DenseSet<const VarDecl *> CopiedVars; 874 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 875 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 876 auto IRef = C->varlist_begin(); 877 auto ISrcRef = C->source_exprs().begin(); 878 auto IDestRef = C->destination_exprs().begin(); 879 for (const Expr *AssignOp : C->assignment_ops()) { 880 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 881 QualType Type = VD->getType(); 882 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 883 // Get the address of the master variable. If we are emitting code with 884 // TLS support, the address is passed from the master as field in the 885 // captured declaration. 886 Address MasterAddr = Address::invalid(); 887 if (getLangOpts().OpenMPUseTLS && 888 getContext().getTargetInfo().isTLSSupported()) { 889 assert(CapturedStmtInfo->lookup(VD) && 890 "Copyin threadprivates should have been captured!"); 891 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 892 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 893 MasterAddr = EmitLValue(&DRE).getAddress(); 894 LocalDeclMap.erase(VD); 895 } else { 896 MasterAddr = 897 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 898 : CGM.GetAddrOfGlobal(VD), 899 getContext().getDeclAlign(VD)); 900 } 901 // Get the address of the threadprivate variable. 902 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 903 if (CopiedVars.size() == 1) { 904 // At first check if current thread is a master thread. If it is, no 905 // need to copy data. 906 CopyBegin = createBasicBlock("copyin.not.master"); 907 CopyEnd = createBasicBlock("copyin.not.master.end"); 908 Builder.CreateCondBr( 909 Builder.CreateICmpNE( 910 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 911 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 912 CGM.IntPtrTy)), 913 CopyBegin, CopyEnd); 914 EmitBlock(CopyBegin); 915 } 916 const auto *SrcVD = 917 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 918 const auto *DestVD = 919 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 920 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 921 } 922 ++IRef; 923 ++ISrcRef; 924 ++IDestRef; 925 } 926 } 927 if (CopyEnd) { 928 // Exit out of copying procedure for non-master thread. 929 EmitBlock(CopyEnd, /*IsFinished=*/true); 930 return true; 931 } 932 return false; 933 } 934 935 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 936 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 937 if (!HaveInsertPoint()) 938 return false; 939 bool HasAtLeastOneLastprivate = false; 940 llvm::DenseSet<const VarDecl *> SIMDLCVs; 941 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 942 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 943 for (const Expr *C : LoopDirective->counters()) { 944 SIMDLCVs.insert( 945 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 946 } 947 } 948 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 949 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 950 HasAtLeastOneLastprivate = true; 951 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 952 !getLangOpts().OpenMPSimd) 953 break; 954 auto IRef = C->varlist_begin(); 955 auto IDestRef = C->destination_exprs().begin(); 956 for (const Expr *IInit : C->private_copies()) { 957 // Keep the address of the original variable for future update at the end 958 // of the loop. 959 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 960 // Taskloops do not require additional initialization, it is done in 961 // runtime support library. 962 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 963 const auto *DestVD = 964 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 965 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 966 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 967 /*RefersToEnclosingVariableOrCapture=*/ 968 CapturedStmtInfo->lookup(OrigVD) != nullptr, 969 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 970 return EmitLValue(&DRE).getAddress(); 971 }); 972 // Check if the variable is also a firstprivate: in this case IInit is 973 // not generated. Initialization of this variable will happen in codegen 974 // for 'firstprivate' clause. 975 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 976 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 977 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 978 // Emit private VarDecl with copy init. 979 EmitDecl(*VD); 980 return GetAddrOfLocalVar(VD); 981 }); 982 assert(IsRegistered && 983 "lastprivate var already registered as private"); 984 (void)IsRegistered; 985 } 986 } 987 ++IRef; 988 ++IDestRef; 989 } 990 } 991 return HasAtLeastOneLastprivate; 992 } 993 994 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 995 const OMPExecutableDirective &D, bool NoFinals, 996 llvm::Value *IsLastIterCond) { 997 if (!HaveInsertPoint()) 998 return; 999 // Emit following code: 1000 // if (<IsLastIterCond>) { 1001 // orig_var1 = private_orig_var1; 1002 // ... 1003 // orig_varn = private_orig_varn; 1004 // } 1005 llvm::BasicBlock *ThenBB = nullptr; 1006 llvm::BasicBlock *DoneBB = nullptr; 1007 if (IsLastIterCond) { 1008 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1009 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1010 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1011 EmitBlock(ThenBB); 1012 } 1013 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1014 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1015 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1016 auto IC = LoopDirective->counters().begin(); 1017 for (const Expr *F : LoopDirective->finals()) { 1018 const auto *D = 1019 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1020 if (NoFinals) 1021 AlreadyEmittedVars.insert(D); 1022 else 1023 LoopCountersAndUpdates[D] = F; 1024 ++IC; 1025 } 1026 } 1027 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1028 auto IRef = C->varlist_begin(); 1029 auto ISrcRef = C->source_exprs().begin(); 1030 auto IDestRef = C->destination_exprs().begin(); 1031 for (const Expr *AssignOp : C->assignment_ops()) { 1032 const auto *PrivateVD = 1033 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1034 QualType Type = PrivateVD->getType(); 1035 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1036 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1037 // If lastprivate variable is a loop control variable for loop-based 1038 // directive, update its value before copyin back to original 1039 // variable. 1040 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1041 EmitIgnoredExpr(FinalExpr); 1042 const auto *SrcVD = 1043 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1044 const auto *DestVD = 1045 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1046 // Get the address of the original variable. 1047 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1048 // Get the address of the private variable. 1049 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1050 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1051 PrivateAddr = 1052 Address(Builder.CreateLoad(PrivateAddr), 1053 getNaturalTypeAlignment(RefTy->getPointeeType())); 1054 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1055 } 1056 ++IRef; 1057 ++ISrcRef; 1058 ++IDestRef; 1059 } 1060 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1061 EmitIgnoredExpr(PostUpdate); 1062 } 1063 if (IsLastIterCond) 1064 EmitBlock(DoneBB, /*IsFinished=*/true); 1065 } 1066 1067 void CodeGenFunction::EmitOMPReductionClauseInit( 1068 const OMPExecutableDirective &D, 1069 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1070 if (!HaveInsertPoint()) 1071 return; 1072 SmallVector<const Expr *, 4> Shareds; 1073 SmallVector<const Expr *, 4> Privates; 1074 SmallVector<const Expr *, 4> ReductionOps; 1075 SmallVector<const Expr *, 4> LHSs; 1076 SmallVector<const Expr *, 4> RHSs; 1077 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1078 auto IPriv = C->privates().begin(); 1079 auto IRed = C->reduction_ops().begin(); 1080 auto ILHS = C->lhs_exprs().begin(); 1081 auto IRHS = C->rhs_exprs().begin(); 1082 for (const Expr *Ref : C->varlists()) { 1083 Shareds.emplace_back(Ref); 1084 Privates.emplace_back(*IPriv); 1085 ReductionOps.emplace_back(*IRed); 1086 LHSs.emplace_back(*ILHS); 1087 RHSs.emplace_back(*IRHS); 1088 std::advance(IPriv, 1); 1089 std::advance(IRed, 1); 1090 std::advance(ILHS, 1); 1091 std::advance(IRHS, 1); 1092 } 1093 } 1094 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1095 unsigned Count = 0; 1096 auto ILHS = LHSs.begin(); 1097 auto IRHS = RHSs.begin(); 1098 auto IPriv = Privates.begin(); 1099 for (const Expr *IRef : Shareds) { 1100 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1101 // Emit private VarDecl with reduction init. 1102 RedCG.emitSharedLValue(*this, Count); 1103 RedCG.emitAggregateType(*this, Count); 1104 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1105 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1106 RedCG.getSharedLValue(Count), 1107 [&Emission](CodeGenFunction &CGF) { 1108 CGF.EmitAutoVarInit(Emission); 1109 return true; 1110 }); 1111 EmitAutoVarCleanups(Emission); 1112 Address BaseAddr = RedCG.adjustPrivateAddress( 1113 *this, Count, Emission.getAllocatedAddress()); 1114 bool IsRegistered = PrivateScope.addPrivate( 1115 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1116 assert(IsRegistered && "private var already registered as private"); 1117 // Silence the warning about unused variable. 1118 (void)IsRegistered; 1119 1120 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1121 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1122 QualType Type = PrivateVD->getType(); 1123 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1124 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1125 // Store the address of the original variable associated with the LHS 1126 // implicit variable. 1127 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1128 return RedCG.getSharedLValue(Count).getAddress(); 1129 }); 1130 PrivateScope.addPrivate( 1131 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1132 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1133 isa<ArraySubscriptExpr>(IRef)) { 1134 // Store the address of the original variable associated with the LHS 1135 // implicit variable. 1136 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1137 return RedCG.getSharedLValue(Count).getAddress(); 1138 }); 1139 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1140 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1141 ConvertTypeForMem(RHSVD->getType()), 1142 "rhs.begin"); 1143 }); 1144 } else { 1145 QualType Type = PrivateVD->getType(); 1146 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1147 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1148 // Store the address of the original variable associated with the LHS 1149 // implicit variable. 1150 if (IsArray) { 1151 OriginalAddr = Builder.CreateElementBitCast( 1152 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1153 } 1154 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1155 PrivateScope.addPrivate( 1156 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1157 return IsArray 1158 ? Builder.CreateElementBitCast( 1159 GetAddrOfLocalVar(PrivateVD), 1160 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1161 : GetAddrOfLocalVar(PrivateVD); 1162 }); 1163 } 1164 ++ILHS; 1165 ++IRHS; 1166 ++IPriv; 1167 ++Count; 1168 } 1169 } 1170 1171 void CodeGenFunction::EmitOMPReductionClauseFinal( 1172 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1173 if (!HaveInsertPoint()) 1174 return; 1175 llvm::SmallVector<const Expr *, 8> Privates; 1176 llvm::SmallVector<const Expr *, 8> LHSExprs; 1177 llvm::SmallVector<const Expr *, 8> RHSExprs; 1178 llvm::SmallVector<const Expr *, 8> ReductionOps; 1179 bool HasAtLeastOneReduction = false; 1180 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1181 HasAtLeastOneReduction = true; 1182 Privates.append(C->privates().begin(), C->privates().end()); 1183 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1184 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1185 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1186 } 1187 if (HasAtLeastOneReduction) { 1188 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1189 isOpenMPParallelDirective(D.getDirectiveKind()) || 1190 ReductionKind == OMPD_simd; 1191 bool SimpleReduction = ReductionKind == OMPD_simd; 1192 // Emit nowait reduction if nowait clause is present or directive is a 1193 // parallel directive (it always has implicit barrier). 1194 CGM.getOpenMPRuntime().emitReduction( 1195 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1196 {WithNowait, SimpleReduction, ReductionKind}); 1197 } 1198 } 1199 1200 static void emitPostUpdateForReductionClause( 1201 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1202 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1203 if (!CGF.HaveInsertPoint()) 1204 return; 1205 llvm::BasicBlock *DoneBB = nullptr; 1206 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1207 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1208 if (!DoneBB) { 1209 if (llvm::Value *Cond = CondGen(CGF)) { 1210 // If the first post-update expression is found, emit conditional 1211 // block if it was requested. 1212 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1213 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1214 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1215 CGF.EmitBlock(ThenBB); 1216 } 1217 } 1218 CGF.EmitIgnoredExpr(PostUpdate); 1219 } 1220 } 1221 if (DoneBB) 1222 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1223 } 1224 1225 namespace { 1226 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1227 /// parallel function. This is necessary for combined constructs such as 1228 /// 'distribute parallel for' 1229 typedef llvm::function_ref<void(CodeGenFunction &, 1230 const OMPExecutableDirective &, 1231 llvm::SmallVectorImpl<llvm::Value *> &)> 1232 CodeGenBoundParametersTy; 1233 } // anonymous namespace 1234 1235 static void emitCommonOMPParallelDirective( 1236 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1237 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1238 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1239 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1240 llvm::Function *OutlinedFn = 1241 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1242 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1243 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1244 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1245 llvm::Value *NumThreads = 1246 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1247 /*IgnoreResultAssign=*/true); 1248 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1249 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1250 } 1251 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1252 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1253 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1254 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1255 } 1256 const Expr *IfCond = nullptr; 1257 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1258 if (C->getNameModifier() == OMPD_unknown || 1259 C->getNameModifier() == OMPD_parallel) { 1260 IfCond = C->getCondition(); 1261 break; 1262 } 1263 } 1264 1265 OMPParallelScope Scope(CGF, S); 1266 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1267 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1268 // lower and upper bounds with the pragma 'for' chunking mechanism. 1269 // The following lambda takes care of appending the lower and upper bound 1270 // parameters when necessary 1271 CodeGenBoundParameters(CGF, S, CapturedVars); 1272 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1273 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1274 CapturedVars, IfCond); 1275 } 1276 1277 static void emitEmptyBoundParameters(CodeGenFunction &, 1278 const OMPExecutableDirective &, 1279 llvm::SmallVectorImpl<llvm::Value *> &) {} 1280 1281 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1282 // Emit parallel region as a standalone region. 1283 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1284 Action.Enter(CGF); 1285 OMPPrivateScope PrivateScope(CGF); 1286 bool Copyins = CGF.EmitOMPCopyinClause(S); 1287 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1288 if (Copyins) { 1289 // Emit implicit barrier to synchronize threads and avoid data races on 1290 // propagation master's thread values of threadprivate variables to local 1291 // instances of that variables of all other implicit threads. 1292 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1293 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1294 /*ForceSimpleCall=*/true); 1295 } 1296 CGF.EmitOMPPrivateClause(S, PrivateScope); 1297 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1298 (void)PrivateScope.Privatize(); 1299 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1300 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1301 }; 1302 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1303 emitEmptyBoundParameters); 1304 emitPostUpdateForReductionClause(*this, S, 1305 [](CodeGenFunction &) { return nullptr; }); 1306 } 1307 1308 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1309 JumpDest LoopExit) { 1310 RunCleanupsScope BodyScope(*this); 1311 // Update counters values on current iteration. 1312 for (const Expr *UE : D.updates()) 1313 EmitIgnoredExpr(UE); 1314 // Update the linear variables. 1315 // In distribute directives only loop counters may be marked as linear, no 1316 // need to generate the code for them. 1317 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1318 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1319 for (const Expr *UE : C->updates()) 1320 EmitIgnoredExpr(UE); 1321 } 1322 } 1323 1324 // On a continue in the body, jump to the end. 1325 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1326 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1327 // Emit loop body. 1328 EmitStmt(D.getBody()); 1329 // The end (updates/cleanups). 1330 EmitBlock(Continue.getBlock()); 1331 BreakContinueStack.pop_back(); 1332 } 1333 1334 void CodeGenFunction::EmitOMPInnerLoop( 1335 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1336 const Expr *IncExpr, 1337 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1338 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1339 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1340 1341 // Start the loop with a block that tests the condition. 1342 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1343 EmitBlock(CondBlock); 1344 const SourceRange R = S.getSourceRange(); 1345 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1346 SourceLocToDebugLoc(R.getEnd())); 1347 1348 // If there are any cleanups between here and the loop-exit scope, 1349 // create a block to stage a loop exit along. 1350 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1351 if (RequiresCleanup) 1352 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1353 1354 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1355 1356 // Emit condition. 1357 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1358 if (ExitBlock != LoopExit.getBlock()) { 1359 EmitBlock(ExitBlock); 1360 EmitBranchThroughCleanup(LoopExit); 1361 } 1362 1363 EmitBlock(LoopBody); 1364 incrementProfileCounter(&S); 1365 1366 // Create a block for the increment. 1367 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1368 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1369 1370 BodyGen(*this); 1371 1372 // Emit "IV = IV + 1" and a back-edge to the condition block. 1373 EmitBlock(Continue.getBlock()); 1374 EmitIgnoredExpr(IncExpr); 1375 PostIncGen(*this); 1376 BreakContinueStack.pop_back(); 1377 EmitBranch(CondBlock); 1378 LoopStack.pop(); 1379 // Emit the fall-through block. 1380 EmitBlock(LoopExit.getBlock()); 1381 } 1382 1383 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1384 if (!HaveInsertPoint()) 1385 return false; 1386 // Emit inits for the linear variables. 1387 bool HasLinears = false; 1388 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1389 for (const Expr *Init : C->inits()) { 1390 HasLinears = true; 1391 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1392 if (const auto *Ref = 1393 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1394 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1395 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1396 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1397 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1398 VD->getInit()->getType(), VK_LValue, 1399 VD->getInit()->getExprLoc()); 1400 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1401 VD->getType()), 1402 /*capturedByInit=*/false); 1403 EmitAutoVarCleanups(Emission); 1404 } else { 1405 EmitVarDecl(*VD); 1406 } 1407 } 1408 // Emit the linear steps for the linear clauses. 1409 // If a step is not constant, it is pre-calculated before the loop. 1410 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1411 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1412 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1413 // Emit calculation of the linear step. 1414 EmitIgnoredExpr(CS); 1415 } 1416 } 1417 return HasLinears; 1418 } 1419 1420 void CodeGenFunction::EmitOMPLinearClauseFinal( 1421 const OMPLoopDirective &D, 1422 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1423 if (!HaveInsertPoint()) 1424 return; 1425 llvm::BasicBlock *DoneBB = nullptr; 1426 // Emit the final values of the linear variables. 1427 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1428 auto IC = C->varlist_begin(); 1429 for (const Expr *F : C->finals()) { 1430 if (!DoneBB) { 1431 if (llvm::Value *Cond = CondGen(*this)) { 1432 // If the first post-update expression is found, emit conditional 1433 // block if it was requested. 1434 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1435 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1436 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1437 EmitBlock(ThenBB); 1438 } 1439 } 1440 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1441 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1442 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1443 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1444 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1445 CodeGenFunction::OMPPrivateScope VarScope(*this); 1446 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1447 (void)VarScope.Privatize(); 1448 EmitIgnoredExpr(F); 1449 ++IC; 1450 } 1451 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1452 EmitIgnoredExpr(PostUpdate); 1453 } 1454 if (DoneBB) 1455 EmitBlock(DoneBB, /*IsFinished=*/true); 1456 } 1457 1458 static void emitAlignedClause(CodeGenFunction &CGF, 1459 const OMPExecutableDirective &D) { 1460 if (!CGF.HaveInsertPoint()) 1461 return; 1462 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1463 unsigned ClauseAlignment = 0; 1464 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1465 auto *AlignmentCI = 1466 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1467 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1468 } 1469 for (const Expr *E : Clause->varlists()) { 1470 unsigned Alignment = ClauseAlignment; 1471 if (Alignment == 0) { 1472 // OpenMP [2.8.1, Description] 1473 // If no optional parameter is specified, implementation-defined default 1474 // alignments for SIMD instructions on the target platforms are assumed. 1475 Alignment = 1476 CGF.getContext() 1477 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1478 E->getType()->getPointeeType())) 1479 .getQuantity(); 1480 } 1481 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1482 "alignment is not power of 2"); 1483 if (Alignment != 0) { 1484 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1485 CGF.EmitAlignmentAssumption( 1486 PtrValue, E, /*No second loc needed*/ SourceLocation(), Alignment); 1487 } 1488 } 1489 } 1490 } 1491 1492 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1493 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1494 if (!HaveInsertPoint()) 1495 return; 1496 auto I = S.private_counters().begin(); 1497 for (const Expr *E : S.counters()) { 1498 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1499 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1500 // Emit var without initialization. 1501 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1502 EmitAutoVarCleanups(VarEmission); 1503 LocalDeclMap.erase(PrivateVD); 1504 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1505 return VarEmission.getAllocatedAddress(); 1506 }); 1507 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1508 VD->hasGlobalStorage()) { 1509 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1510 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1511 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1512 E->getType(), VK_LValue, E->getExprLoc()); 1513 return EmitLValue(&DRE).getAddress(); 1514 }); 1515 } else { 1516 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1517 return VarEmission.getAllocatedAddress(); 1518 }); 1519 } 1520 ++I; 1521 } 1522 // Privatize extra loop counters used in loops for ordered(n) clauses. 1523 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1524 if (!C->getNumForLoops()) 1525 continue; 1526 for (unsigned I = S.getCollapsedNumber(), 1527 E = C->getLoopNumIterations().size(); 1528 I < E; ++I) { 1529 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1530 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1531 // Override only those variables that can be captured to avoid re-emission 1532 // of the variables declared within the loops. 1533 if (DRE->refersToEnclosingVariableOrCapture()) { 1534 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1535 return CreateMemTemp(DRE->getType(), VD->getName()); 1536 }); 1537 } 1538 } 1539 } 1540 } 1541 1542 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1543 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1544 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1545 if (!CGF.HaveInsertPoint()) 1546 return; 1547 { 1548 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1549 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1550 (void)PreCondScope.Privatize(); 1551 // Get initial values of real counters. 1552 for (const Expr *I : S.inits()) { 1553 CGF.EmitIgnoredExpr(I); 1554 } 1555 } 1556 // Check that loop is executed at least one time. 1557 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1558 } 1559 1560 void CodeGenFunction::EmitOMPLinearClause( 1561 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1562 if (!HaveInsertPoint()) 1563 return; 1564 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1565 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1566 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1567 for (const Expr *C : LoopDirective->counters()) { 1568 SIMDLCVs.insert( 1569 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1570 } 1571 } 1572 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1573 auto CurPrivate = C->privates().begin(); 1574 for (const Expr *E : C->varlists()) { 1575 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1576 const auto *PrivateVD = 1577 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1578 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1579 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1580 // Emit private VarDecl with copy init. 1581 EmitVarDecl(*PrivateVD); 1582 return GetAddrOfLocalVar(PrivateVD); 1583 }); 1584 assert(IsRegistered && "linear var already registered as private"); 1585 // Silence the warning about unused variable. 1586 (void)IsRegistered; 1587 } else { 1588 EmitVarDecl(*PrivateVD); 1589 } 1590 ++CurPrivate; 1591 } 1592 } 1593 } 1594 1595 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1596 const OMPExecutableDirective &D, 1597 bool IsMonotonic) { 1598 if (!CGF.HaveInsertPoint()) 1599 return; 1600 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1601 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1602 /*ignoreResult=*/true); 1603 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1604 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1605 // In presence of finite 'safelen', it may be unsafe to mark all 1606 // the memory instructions parallel, because loop-carried 1607 // dependences of 'safelen' iterations are possible. 1608 if (!IsMonotonic) 1609 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1610 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1611 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1612 /*ignoreResult=*/true); 1613 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1614 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1615 // In presence of finite 'safelen', it may be unsafe to mark all 1616 // the memory instructions parallel, because loop-carried 1617 // dependences of 'safelen' iterations are possible. 1618 CGF.LoopStack.setParallel(/*Enable=*/false); 1619 } 1620 } 1621 1622 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1623 bool IsMonotonic) { 1624 // Walk clauses and process safelen/lastprivate. 1625 LoopStack.setParallel(!IsMonotonic); 1626 LoopStack.setVectorizeEnable(); 1627 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1628 } 1629 1630 void CodeGenFunction::EmitOMPSimdFinal( 1631 const OMPLoopDirective &D, 1632 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1633 if (!HaveInsertPoint()) 1634 return; 1635 llvm::BasicBlock *DoneBB = nullptr; 1636 auto IC = D.counters().begin(); 1637 auto IPC = D.private_counters().begin(); 1638 for (const Expr *F : D.finals()) { 1639 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1640 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1641 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1642 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1643 OrigVD->hasGlobalStorage() || CED) { 1644 if (!DoneBB) { 1645 if (llvm::Value *Cond = CondGen(*this)) { 1646 // If the first post-update expression is found, emit conditional 1647 // block if it was requested. 1648 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1649 DoneBB = createBasicBlock(".omp.final.done"); 1650 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1651 EmitBlock(ThenBB); 1652 } 1653 } 1654 Address OrigAddr = Address::invalid(); 1655 if (CED) { 1656 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1657 } else { 1658 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1659 /*RefersToEnclosingVariableOrCapture=*/false, 1660 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1661 OrigAddr = EmitLValue(&DRE).getAddress(); 1662 } 1663 OMPPrivateScope VarScope(*this); 1664 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1665 (void)VarScope.Privatize(); 1666 EmitIgnoredExpr(F); 1667 } 1668 ++IC; 1669 ++IPC; 1670 } 1671 if (DoneBB) 1672 EmitBlock(DoneBB, /*IsFinished=*/true); 1673 } 1674 1675 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1676 const OMPLoopDirective &S, 1677 CodeGenFunction::JumpDest LoopExit) { 1678 CGF.EmitOMPLoopBody(S, LoopExit); 1679 CGF.EmitStopPoint(&S); 1680 } 1681 1682 /// Emit a helper variable and return corresponding lvalue. 1683 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1684 const DeclRefExpr *Helper) { 1685 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1686 CGF.EmitVarDecl(*VDecl); 1687 return CGF.EmitLValue(Helper); 1688 } 1689 1690 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1691 PrePostActionTy &Action) { 1692 Action.Enter(CGF); 1693 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1694 "Expected simd directive"); 1695 OMPLoopScope PreInitScope(CGF, S); 1696 // if (PreCond) { 1697 // for (IV in 0..LastIteration) BODY; 1698 // <Final counter/linear vars updates>; 1699 // } 1700 // 1701 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1702 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1703 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1704 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1705 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1706 } 1707 1708 // Emit: if (PreCond) - begin. 1709 // If the condition constant folds and can be elided, avoid emitting the 1710 // whole loop. 1711 bool CondConstant; 1712 llvm::BasicBlock *ContBlock = nullptr; 1713 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1714 if (!CondConstant) 1715 return; 1716 } else { 1717 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1718 ContBlock = CGF.createBasicBlock("simd.if.end"); 1719 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1720 CGF.getProfileCount(&S)); 1721 CGF.EmitBlock(ThenBlock); 1722 CGF.incrementProfileCounter(&S); 1723 } 1724 1725 // Emit the loop iteration variable. 1726 const Expr *IVExpr = S.getIterationVariable(); 1727 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1728 CGF.EmitVarDecl(*IVDecl); 1729 CGF.EmitIgnoredExpr(S.getInit()); 1730 1731 // Emit the iterations count variable. 1732 // If it is not a variable, Sema decided to calculate iterations count on 1733 // each iteration (e.g., it is foldable into a constant). 1734 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1735 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1736 // Emit calculation of the iterations count. 1737 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1738 } 1739 1740 CGF.EmitOMPSimdInit(S); 1741 1742 emitAlignedClause(CGF, S); 1743 (void)CGF.EmitOMPLinearClauseInit(S); 1744 { 1745 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1746 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1747 CGF.EmitOMPLinearClause(S, LoopScope); 1748 CGF.EmitOMPPrivateClause(S, LoopScope); 1749 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1750 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1751 (void)LoopScope.Privatize(); 1752 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1753 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1754 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1755 S.getInc(), 1756 [&S](CodeGenFunction &CGF) { 1757 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1758 CGF.EmitStopPoint(&S); 1759 }, 1760 [](CodeGenFunction &) {}); 1761 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1762 // Emit final copy of the lastprivate variables at the end of loops. 1763 if (HasLastprivateClause) 1764 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1765 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1766 emitPostUpdateForReductionClause(CGF, S, 1767 [](CodeGenFunction &) { return nullptr; }); 1768 } 1769 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1770 // Emit: if (PreCond) - end. 1771 if (ContBlock) { 1772 CGF.EmitBranch(ContBlock); 1773 CGF.EmitBlock(ContBlock, true); 1774 } 1775 } 1776 1777 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1778 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1779 emitOMPSimdRegion(CGF, S, Action); 1780 }; 1781 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1782 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1783 } 1784 1785 void CodeGenFunction::EmitOMPOuterLoop( 1786 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1787 CodeGenFunction::OMPPrivateScope &LoopScope, 1788 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1789 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1790 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1791 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1792 1793 const Expr *IVExpr = S.getIterationVariable(); 1794 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1795 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1796 1797 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1798 1799 // Start the loop with a block that tests the condition. 1800 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1801 EmitBlock(CondBlock); 1802 const SourceRange R = S.getSourceRange(); 1803 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1804 SourceLocToDebugLoc(R.getEnd())); 1805 1806 llvm::Value *BoolCondVal = nullptr; 1807 if (!DynamicOrOrdered) { 1808 // UB = min(UB, GlobalUB) or 1809 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1810 // 'distribute parallel for') 1811 EmitIgnoredExpr(LoopArgs.EUB); 1812 // IV = LB 1813 EmitIgnoredExpr(LoopArgs.Init); 1814 // IV < UB 1815 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1816 } else { 1817 BoolCondVal = 1818 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1819 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1820 } 1821 1822 // If there are any cleanups between here and the loop-exit scope, 1823 // create a block to stage a loop exit along. 1824 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1825 if (LoopScope.requiresCleanups()) 1826 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1827 1828 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1829 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1830 if (ExitBlock != LoopExit.getBlock()) { 1831 EmitBlock(ExitBlock); 1832 EmitBranchThroughCleanup(LoopExit); 1833 } 1834 EmitBlock(LoopBody); 1835 1836 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1837 // LB for loop condition and emitted it above). 1838 if (DynamicOrOrdered) 1839 EmitIgnoredExpr(LoopArgs.Init); 1840 1841 // Create a block for the increment. 1842 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1843 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1844 1845 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1846 // with dynamic/guided scheduling and without ordered clause. 1847 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1848 LoopStack.setParallel(!IsMonotonic); 1849 else 1850 EmitOMPSimdInit(S, IsMonotonic); 1851 1852 SourceLocation Loc = S.getBeginLoc(); 1853 1854 // when 'distribute' is not combined with a 'for': 1855 // while (idx <= UB) { BODY; ++idx; } 1856 // when 'distribute' is combined with a 'for' 1857 // (e.g. 'distribute parallel for') 1858 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1859 EmitOMPInnerLoop( 1860 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1861 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1862 CodeGenLoop(CGF, S, LoopExit); 1863 }, 1864 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1865 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1866 }); 1867 1868 EmitBlock(Continue.getBlock()); 1869 BreakContinueStack.pop_back(); 1870 if (!DynamicOrOrdered) { 1871 // Emit "LB = LB + Stride", "UB = UB + Stride". 1872 EmitIgnoredExpr(LoopArgs.NextLB); 1873 EmitIgnoredExpr(LoopArgs.NextUB); 1874 } 1875 1876 EmitBranch(CondBlock); 1877 LoopStack.pop(); 1878 // Emit the fall-through block. 1879 EmitBlock(LoopExit.getBlock()); 1880 1881 // Tell the runtime we are done. 1882 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1883 if (!DynamicOrOrdered) 1884 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 1885 S.getDirectiveKind()); 1886 }; 1887 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1888 } 1889 1890 void CodeGenFunction::EmitOMPForOuterLoop( 1891 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1892 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1893 const OMPLoopArguments &LoopArgs, 1894 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1895 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1896 1897 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1898 const bool DynamicOrOrdered = 1899 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1900 1901 assert((Ordered || 1902 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1903 LoopArgs.Chunk != nullptr)) && 1904 "static non-chunked schedule does not need outer loop"); 1905 1906 // Emit outer loop. 1907 // 1908 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1909 // When schedule(dynamic,chunk_size) is specified, the iterations are 1910 // distributed to threads in the team in chunks as the threads request them. 1911 // Each thread executes a chunk of iterations, then requests another chunk, 1912 // until no chunks remain to be distributed. Each chunk contains chunk_size 1913 // iterations, except for the last chunk to be distributed, which may have 1914 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1915 // 1916 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1917 // to threads in the team in chunks as the executing threads request them. 1918 // Each thread executes a chunk of iterations, then requests another chunk, 1919 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1920 // each chunk is proportional to the number of unassigned iterations divided 1921 // by the number of threads in the team, decreasing to 1. For a chunk_size 1922 // with value k (greater than 1), the size of each chunk is determined in the 1923 // same way, with the restriction that the chunks do not contain fewer than k 1924 // iterations (except for the last chunk to be assigned, which may have fewer 1925 // than k iterations). 1926 // 1927 // When schedule(auto) is specified, the decision regarding scheduling is 1928 // delegated to the compiler and/or runtime system. The programmer gives the 1929 // implementation the freedom to choose any possible mapping of iterations to 1930 // threads in the team. 1931 // 1932 // When schedule(runtime) is specified, the decision regarding scheduling is 1933 // deferred until run time, and the schedule and chunk size are taken from the 1934 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1935 // implementation defined 1936 // 1937 // while(__kmpc_dispatch_next(&LB, &UB)) { 1938 // idx = LB; 1939 // while (idx <= UB) { BODY; ++idx; 1940 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1941 // } // inner loop 1942 // } 1943 // 1944 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1945 // When schedule(static, chunk_size) is specified, iterations are divided into 1946 // chunks of size chunk_size, and the chunks are assigned to the threads in 1947 // the team in a round-robin fashion in the order of the thread number. 1948 // 1949 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1950 // while (idx <= UB) { BODY; ++idx; } // inner loop 1951 // LB = LB + ST; 1952 // UB = UB + ST; 1953 // } 1954 // 1955 1956 const Expr *IVExpr = S.getIterationVariable(); 1957 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1958 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1959 1960 if (DynamicOrOrdered) { 1961 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 1962 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1963 llvm::Value *LBVal = DispatchBounds.first; 1964 llvm::Value *UBVal = DispatchBounds.second; 1965 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1966 LoopArgs.Chunk}; 1967 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 1968 IVSigned, Ordered, DipatchRTInputValues); 1969 } else { 1970 CGOpenMPRuntime::StaticRTInput StaticInit( 1971 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1972 LoopArgs.ST, LoopArgs.Chunk); 1973 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 1974 ScheduleKind, StaticInit); 1975 } 1976 1977 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1978 const unsigned IVSize, 1979 const bool IVSigned) { 1980 if (Ordered) { 1981 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1982 IVSigned); 1983 } 1984 }; 1985 1986 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1987 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1988 OuterLoopArgs.IncExpr = S.getInc(); 1989 OuterLoopArgs.Init = S.getInit(); 1990 OuterLoopArgs.Cond = S.getCond(); 1991 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1992 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1993 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1994 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1995 } 1996 1997 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1998 const unsigned IVSize, const bool IVSigned) {} 1999 2000 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2001 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2002 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2003 const CodeGenLoopTy &CodeGenLoopContent) { 2004 2005 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2006 2007 // Emit outer loop. 2008 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2009 // dynamic 2010 // 2011 2012 const Expr *IVExpr = S.getIterationVariable(); 2013 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2014 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2015 2016 CGOpenMPRuntime::StaticRTInput StaticInit( 2017 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2018 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2019 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2020 2021 // for combined 'distribute' and 'for' the increment expression of distribute 2022 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2023 Expr *IncExpr; 2024 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2025 IncExpr = S.getDistInc(); 2026 else 2027 IncExpr = S.getInc(); 2028 2029 // this routine is shared by 'omp distribute parallel for' and 2030 // 'omp distribute': select the right EUB expression depending on the 2031 // directive 2032 OMPLoopArguments OuterLoopArgs; 2033 OuterLoopArgs.LB = LoopArgs.LB; 2034 OuterLoopArgs.UB = LoopArgs.UB; 2035 OuterLoopArgs.ST = LoopArgs.ST; 2036 OuterLoopArgs.IL = LoopArgs.IL; 2037 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2038 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2039 ? S.getCombinedEnsureUpperBound() 2040 : S.getEnsureUpperBound(); 2041 OuterLoopArgs.IncExpr = IncExpr; 2042 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2043 ? S.getCombinedInit() 2044 : S.getInit(); 2045 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2046 ? S.getCombinedCond() 2047 : S.getCond(); 2048 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2049 ? S.getCombinedNextLowerBound() 2050 : S.getNextLowerBound(); 2051 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2052 ? S.getCombinedNextUpperBound() 2053 : S.getNextUpperBound(); 2054 2055 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2056 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2057 emitEmptyOrdered); 2058 } 2059 2060 static std::pair<LValue, LValue> 2061 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2062 const OMPExecutableDirective &S) { 2063 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2064 LValue LB = 2065 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2066 LValue UB = 2067 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2068 2069 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2070 // parallel for') we need to use the 'distribute' 2071 // chunk lower and upper bounds rather than the whole loop iteration 2072 // space. These are parameters to the outlined function for 'parallel' 2073 // and we copy the bounds of the previous schedule into the 2074 // the current ones. 2075 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2076 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2077 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2078 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2079 PrevLBVal = CGF.EmitScalarConversion( 2080 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2081 LS.getIterationVariable()->getType(), 2082 LS.getPrevLowerBoundVariable()->getExprLoc()); 2083 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2084 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2085 PrevUBVal = CGF.EmitScalarConversion( 2086 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2087 LS.getIterationVariable()->getType(), 2088 LS.getPrevUpperBoundVariable()->getExprLoc()); 2089 2090 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2091 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2092 2093 return {LB, UB}; 2094 } 2095 2096 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2097 /// we need to use the LB and UB expressions generated by the worksharing 2098 /// code generation support, whereas in non combined situations we would 2099 /// just emit 0 and the LastIteration expression 2100 /// This function is necessary due to the difference of the LB and UB 2101 /// types for the RT emission routines for 'for_static_init' and 2102 /// 'for_dispatch_init' 2103 static std::pair<llvm::Value *, llvm::Value *> 2104 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2105 const OMPExecutableDirective &S, 2106 Address LB, Address UB) { 2107 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2108 const Expr *IVExpr = LS.getIterationVariable(); 2109 // when implementing a dynamic schedule for a 'for' combined with a 2110 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2111 // is not normalized as each team only executes its own assigned 2112 // distribute chunk 2113 QualType IteratorTy = IVExpr->getType(); 2114 llvm::Value *LBVal = 2115 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2116 llvm::Value *UBVal = 2117 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2118 return {LBVal, UBVal}; 2119 } 2120 2121 static void emitDistributeParallelForDistributeInnerBoundParams( 2122 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2123 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2124 const auto &Dir = cast<OMPLoopDirective>(S); 2125 LValue LB = 2126 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2127 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2128 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2129 CapturedVars.push_back(LBCast); 2130 LValue UB = 2131 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2132 2133 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2134 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2135 CapturedVars.push_back(UBCast); 2136 } 2137 2138 static void 2139 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2140 const OMPLoopDirective &S, 2141 CodeGenFunction::JumpDest LoopExit) { 2142 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2143 PrePostActionTy &Action) { 2144 Action.Enter(CGF); 2145 bool HasCancel = false; 2146 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2147 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2148 HasCancel = D->hasCancel(); 2149 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2150 HasCancel = D->hasCancel(); 2151 else if (const auto *D = 2152 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2153 HasCancel = D->hasCancel(); 2154 } 2155 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2156 HasCancel); 2157 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2158 emitDistributeParallelForInnerBounds, 2159 emitDistributeParallelForDispatchBounds); 2160 }; 2161 2162 emitCommonOMPParallelDirective( 2163 CGF, S, 2164 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2165 CGInlinedWorksharingLoop, 2166 emitDistributeParallelForDistributeInnerBoundParams); 2167 } 2168 2169 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2170 const OMPDistributeParallelForDirective &S) { 2171 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2172 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2173 S.getDistInc()); 2174 }; 2175 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2176 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2177 } 2178 2179 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2180 const OMPDistributeParallelForSimdDirective &S) { 2181 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2182 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2183 S.getDistInc()); 2184 }; 2185 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2186 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2187 } 2188 2189 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2190 const OMPDistributeSimdDirective &S) { 2191 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2192 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2193 }; 2194 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2195 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2196 } 2197 2198 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2199 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2200 // Emit SPMD target parallel for region as a standalone region. 2201 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2202 emitOMPSimdRegion(CGF, S, Action); 2203 }; 2204 llvm::Function *Fn; 2205 llvm::Constant *Addr; 2206 // Emit target region as a standalone region. 2207 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2208 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2209 assert(Fn && Addr && "Target device function emission failed."); 2210 } 2211 2212 void CodeGenFunction::EmitOMPTargetSimdDirective( 2213 const OMPTargetSimdDirective &S) { 2214 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2215 emitOMPSimdRegion(CGF, S, Action); 2216 }; 2217 emitCommonOMPTargetDirective(*this, S, CodeGen); 2218 } 2219 2220 namespace { 2221 struct ScheduleKindModifiersTy { 2222 OpenMPScheduleClauseKind Kind; 2223 OpenMPScheduleClauseModifier M1; 2224 OpenMPScheduleClauseModifier M2; 2225 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2226 OpenMPScheduleClauseModifier M1, 2227 OpenMPScheduleClauseModifier M2) 2228 : Kind(Kind), M1(M1), M2(M2) {} 2229 }; 2230 } // namespace 2231 2232 bool CodeGenFunction::EmitOMPWorksharingLoop( 2233 const OMPLoopDirective &S, Expr *EUB, 2234 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2235 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2236 // Emit the loop iteration variable. 2237 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2238 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2239 EmitVarDecl(*IVDecl); 2240 2241 // Emit the iterations count variable. 2242 // If it is not a variable, Sema decided to calculate iterations count on each 2243 // iteration (e.g., it is foldable into a constant). 2244 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2245 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2246 // Emit calculation of the iterations count. 2247 EmitIgnoredExpr(S.getCalcLastIteration()); 2248 } 2249 2250 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2251 2252 bool HasLastprivateClause; 2253 // Check pre-condition. 2254 { 2255 OMPLoopScope PreInitScope(*this, S); 2256 // Skip the entire loop if we don't meet the precondition. 2257 // If the condition constant folds and can be elided, avoid emitting the 2258 // whole loop. 2259 bool CondConstant; 2260 llvm::BasicBlock *ContBlock = nullptr; 2261 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2262 if (!CondConstant) 2263 return false; 2264 } else { 2265 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2266 ContBlock = createBasicBlock("omp.precond.end"); 2267 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2268 getProfileCount(&S)); 2269 EmitBlock(ThenBlock); 2270 incrementProfileCounter(&S); 2271 } 2272 2273 RunCleanupsScope DoacrossCleanupScope(*this); 2274 bool Ordered = false; 2275 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2276 if (OrderedClause->getNumForLoops()) 2277 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2278 else 2279 Ordered = true; 2280 } 2281 2282 llvm::DenseSet<const Expr *> EmittedFinals; 2283 emitAlignedClause(*this, S); 2284 bool HasLinears = EmitOMPLinearClauseInit(S); 2285 // Emit helper vars inits. 2286 2287 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2288 LValue LB = Bounds.first; 2289 LValue UB = Bounds.second; 2290 LValue ST = 2291 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2292 LValue IL = 2293 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2294 2295 // Emit 'then' code. 2296 { 2297 OMPPrivateScope LoopScope(*this); 2298 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2299 // Emit implicit barrier to synchronize threads and avoid data races on 2300 // initialization of firstprivate variables and post-update of 2301 // lastprivate variables. 2302 CGM.getOpenMPRuntime().emitBarrierCall( 2303 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2304 /*ForceSimpleCall=*/true); 2305 } 2306 EmitOMPPrivateClause(S, LoopScope); 2307 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2308 EmitOMPReductionClauseInit(S, LoopScope); 2309 EmitOMPPrivateLoopCounters(S, LoopScope); 2310 EmitOMPLinearClause(S, LoopScope); 2311 (void)LoopScope.Privatize(); 2312 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2313 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2314 2315 // Detect the loop schedule kind and chunk. 2316 const Expr *ChunkExpr = nullptr; 2317 OpenMPScheduleTy ScheduleKind; 2318 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2319 ScheduleKind.Schedule = C->getScheduleKind(); 2320 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2321 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2322 ChunkExpr = C->getChunkSize(); 2323 } else { 2324 // Default behaviour for schedule clause. 2325 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2326 *this, S, ScheduleKind.Schedule, ChunkExpr); 2327 } 2328 bool HasChunkSizeOne = false; 2329 llvm::Value *Chunk = nullptr; 2330 if (ChunkExpr) { 2331 Chunk = EmitScalarExpr(ChunkExpr); 2332 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2333 S.getIterationVariable()->getType(), 2334 S.getBeginLoc()); 2335 Expr::EvalResult Result; 2336 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2337 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2338 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2339 } 2340 } 2341 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2342 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2343 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2344 // If the static schedule kind is specified or if the ordered clause is 2345 // specified, and if no monotonic modifier is specified, the effect will 2346 // be as if the monotonic modifier was specified. 2347 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2348 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2349 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2350 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2351 /* Chunked */ Chunk != nullptr) || 2352 StaticChunkedOne) && 2353 !Ordered) { 2354 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2355 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2356 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2357 // When no chunk_size is specified, the iteration space is divided into 2358 // chunks that are approximately equal in size, and at most one chunk is 2359 // distributed to each thread. Note that the size of the chunks is 2360 // unspecified in this case. 2361 CGOpenMPRuntime::StaticRTInput StaticInit( 2362 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2363 UB.getAddress(), ST.getAddress(), 2364 StaticChunkedOne ? Chunk : nullptr); 2365 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2366 ScheduleKind, StaticInit); 2367 JumpDest LoopExit = 2368 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2369 // UB = min(UB, GlobalUB); 2370 if (!StaticChunkedOne) 2371 EmitIgnoredExpr(S.getEnsureUpperBound()); 2372 // IV = LB; 2373 EmitIgnoredExpr(S.getInit()); 2374 // For unchunked static schedule generate: 2375 // 2376 // while (idx <= UB) { 2377 // BODY; 2378 // ++idx; 2379 // } 2380 // 2381 // For static schedule with chunk one: 2382 // 2383 // while (IV <= PrevUB) { 2384 // BODY; 2385 // IV += ST; 2386 // } 2387 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), 2388 StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), 2389 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2390 [&S, LoopExit](CodeGenFunction &CGF) { 2391 CGF.EmitOMPLoopBody(S, LoopExit); 2392 CGF.EmitStopPoint(&S); 2393 }, 2394 [](CodeGenFunction &) {}); 2395 EmitBlock(LoopExit.getBlock()); 2396 // Tell the runtime we are done. 2397 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2398 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2399 S.getDirectiveKind()); 2400 }; 2401 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2402 } else { 2403 const bool IsMonotonic = 2404 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2405 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2406 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2407 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2408 // Emit the outer loop, which requests its work chunk [LB..UB] from 2409 // runtime and runs the inner loop to process it. 2410 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2411 ST.getAddress(), IL.getAddress(), 2412 Chunk, EUB); 2413 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2414 LoopArguments, CGDispatchBounds); 2415 } 2416 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2417 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2418 return CGF.Builder.CreateIsNotNull( 2419 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2420 }); 2421 } 2422 EmitOMPReductionClauseFinal( 2423 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2424 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2425 : /*Parallel only*/ OMPD_parallel); 2426 // Emit post-update of the reduction variables if IsLastIter != 0. 2427 emitPostUpdateForReductionClause( 2428 *this, S, [IL, &S](CodeGenFunction &CGF) { 2429 return CGF.Builder.CreateIsNotNull( 2430 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2431 }); 2432 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2433 if (HasLastprivateClause) 2434 EmitOMPLastprivateClauseFinal( 2435 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2436 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2437 } 2438 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2439 return CGF.Builder.CreateIsNotNull( 2440 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2441 }); 2442 DoacrossCleanupScope.ForceCleanup(); 2443 // We're now done with the loop, so jump to the continuation block. 2444 if (ContBlock) { 2445 EmitBranch(ContBlock); 2446 EmitBlock(ContBlock, /*IsFinished=*/true); 2447 } 2448 } 2449 return HasLastprivateClause; 2450 } 2451 2452 /// The following two functions generate expressions for the loop lower 2453 /// and upper bounds in case of static and dynamic (dispatch) schedule 2454 /// of the associated 'for' or 'distribute' loop. 2455 static std::pair<LValue, LValue> 2456 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2457 const auto &LS = cast<OMPLoopDirective>(S); 2458 LValue LB = 2459 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2460 LValue UB = 2461 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2462 return {LB, UB}; 2463 } 2464 2465 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2466 /// consider the lower and upper bound expressions generated by the 2467 /// worksharing loop support, but we use 0 and the iteration space size as 2468 /// constants 2469 static std::pair<llvm::Value *, llvm::Value *> 2470 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2471 Address LB, Address UB) { 2472 const auto &LS = cast<OMPLoopDirective>(S); 2473 const Expr *IVExpr = LS.getIterationVariable(); 2474 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2475 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2476 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2477 return {LBVal, UBVal}; 2478 } 2479 2480 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2481 bool HasLastprivates = false; 2482 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2483 PrePostActionTy &) { 2484 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2485 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2486 emitForLoopBounds, 2487 emitDispatchForLoopBounds); 2488 }; 2489 { 2490 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2491 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2492 S.hasCancel()); 2493 } 2494 2495 // Emit an implicit barrier at the end. 2496 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2497 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2498 } 2499 2500 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2501 bool HasLastprivates = false; 2502 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2503 PrePostActionTy &) { 2504 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2505 emitForLoopBounds, 2506 emitDispatchForLoopBounds); 2507 }; 2508 { 2509 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2510 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2511 } 2512 2513 // Emit an implicit barrier at the end. 2514 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2515 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2516 } 2517 2518 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2519 const Twine &Name, 2520 llvm::Value *Init = nullptr) { 2521 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2522 if (Init) 2523 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2524 return LVal; 2525 } 2526 2527 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2528 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2529 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2530 bool HasLastprivates = false; 2531 auto &&CodeGen = [&S, CapturedStmt, CS, 2532 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2533 ASTContext &C = CGF.getContext(); 2534 QualType KmpInt32Ty = 2535 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2536 // Emit helper vars inits. 2537 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2538 CGF.Builder.getInt32(0)); 2539 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2540 ? CGF.Builder.getInt32(CS->size() - 1) 2541 : CGF.Builder.getInt32(0); 2542 LValue UB = 2543 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2544 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2545 CGF.Builder.getInt32(1)); 2546 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2547 CGF.Builder.getInt32(0)); 2548 // Loop counter. 2549 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2550 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2551 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2552 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2553 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2554 // Generate condition for loop. 2555 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2556 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2557 // Increment for loop counter. 2558 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2559 S.getBeginLoc(), true); 2560 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2561 // Iterate through all sections and emit a switch construct: 2562 // switch (IV) { 2563 // case 0: 2564 // <SectionStmt[0]>; 2565 // break; 2566 // ... 2567 // case <NumSection> - 1: 2568 // <SectionStmt[<NumSection> - 1]>; 2569 // break; 2570 // } 2571 // .omp.sections.exit: 2572 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2573 llvm::SwitchInst *SwitchStmt = 2574 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2575 ExitBB, CS == nullptr ? 1 : CS->size()); 2576 if (CS) { 2577 unsigned CaseNumber = 0; 2578 for (const Stmt *SubStmt : CS->children()) { 2579 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2580 CGF.EmitBlock(CaseBB); 2581 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2582 CGF.EmitStmt(SubStmt); 2583 CGF.EmitBranch(ExitBB); 2584 ++CaseNumber; 2585 } 2586 } else { 2587 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2588 CGF.EmitBlock(CaseBB); 2589 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2590 CGF.EmitStmt(CapturedStmt); 2591 CGF.EmitBranch(ExitBB); 2592 } 2593 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2594 }; 2595 2596 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2597 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2598 // Emit implicit barrier to synchronize threads and avoid data races on 2599 // initialization of firstprivate variables and post-update of lastprivate 2600 // variables. 2601 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2602 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2603 /*ForceSimpleCall=*/true); 2604 } 2605 CGF.EmitOMPPrivateClause(S, LoopScope); 2606 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2607 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2608 (void)LoopScope.Privatize(); 2609 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2610 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2611 2612 // Emit static non-chunked loop. 2613 OpenMPScheduleTy ScheduleKind; 2614 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2615 CGOpenMPRuntime::StaticRTInput StaticInit( 2616 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2617 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2618 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2619 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2620 // UB = min(UB, GlobalUB); 2621 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2622 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2623 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2624 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2625 // IV = LB; 2626 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2627 // while (idx <= UB) { BODY; ++idx; } 2628 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2629 [](CodeGenFunction &) {}); 2630 // Tell the runtime we are done. 2631 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2632 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2633 S.getDirectiveKind()); 2634 }; 2635 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2636 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2637 // Emit post-update of the reduction variables if IsLastIter != 0. 2638 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2639 return CGF.Builder.CreateIsNotNull( 2640 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2641 }); 2642 2643 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2644 if (HasLastprivates) 2645 CGF.EmitOMPLastprivateClauseFinal( 2646 S, /*NoFinals=*/false, 2647 CGF.Builder.CreateIsNotNull( 2648 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2649 }; 2650 2651 bool HasCancel = false; 2652 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2653 HasCancel = OSD->hasCancel(); 2654 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2655 HasCancel = OPSD->hasCancel(); 2656 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2657 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2658 HasCancel); 2659 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2660 // clause. Otherwise the barrier will be generated by the codegen for the 2661 // directive. 2662 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2663 // Emit implicit barrier to synchronize threads and avoid data races on 2664 // initialization of firstprivate variables. 2665 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2666 OMPD_unknown); 2667 } 2668 } 2669 2670 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2671 { 2672 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2673 EmitSections(S); 2674 } 2675 // Emit an implicit barrier at the end. 2676 if (!S.getSingleClause<OMPNowaitClause>()) { 2677 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2678 OMPD_sections); 2679 } 2680 } 2681 2682 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2683 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2684 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2685 }; 2686 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2687 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2688 S.hasCancel()); 2689 } 2690 2691 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2692 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2693 llvm::SmallVector<const Expr *, 8> DestExprs; 2694 llvm::SmallVector<const Expr *, 8> SrcExprs; 2695 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2696 // Check if there are any 'copyprivate' clauses associated with this 2697 // 'single' construct. 2698 // Build a list of copyprivate variables along with helper expressions 2699 // (<source>, <destination>, <destination>=<source> expressions) 2700 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2701 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2702 DestExprs.append(C->destination_exprs().begin(), 2703 C->destination_exprs().end()); 2704 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2705 AssignmentOps.append(C->assignment_ops().begin(), 2706 C->assignment_ops().end()); 2707 } 2708 // Emit code for 'single' region along with 'copyprivate' clauses 2709 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2710 Action.Enter(CGF); 2711 OMPPrivateScope SingleScope(CGF); 2712 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2713 CGF.EmitOMPPrivateClause(S, SingleScope); 2714 (void)SingleScope.Privatize(); 2715 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2716 }; 2717 { 2718 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2719 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2720 CopyprivateVars, DestExprs, 2721 SrcExprs, AssignmentOps); 2722 } 2723 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2724 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2725 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2726 CGM.getOpenMPRuntime().emitBarrierCall( 2727 *this, S.getBeginLoc(), 2728 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2729 } 2730 } 2731 2732 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2733 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2734 Action.Enter(CGF); 2735 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2736 }; 2737 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2738 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2739 } 2740 2741 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2742 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2743 Action.Enter(CGF); 2744 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2745 }; 2746 const Expr *Hint = nullptr; 2747 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2748 Hint = HintClause->getHint(); 2749 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2750 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2751 S.getDirectiveName().getAsString(), 2752 CodeGen, S.getBeginLoc(), Hint); 2753 } 2754 2755 void CodeGenFunction::EmitOMPParallelForDirective( 2756 const OMPParallelForDirective &S) { 2757 // Emit directive as a combined directive that consists of two implicit 2758 // directives: 'parallel' with 'for' directive. 2759 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2760 Action.Enter(CGF); 2761 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2762 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2763 emitDispatchForLoopBounds); 2764 }; 2765 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2766 emitEmptyBoundParameters); 2767 } 2768 2769 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2770 const OMPParallelForSimdDirective &S) { 2771 // Emit directive as a combined directive that consists of two implicit 2772 // directives: 'parallel' with 'for' directive. 2773 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2774 Action.Enter(CGF); 2775 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2776 emitDispatchForLoopBounds); 2777 }; 2778 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2779 emitEmptyBoundParameters); 2780 } 2781 2782 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2783 const OMPParallelSectionsDirective &S) { 2784 // Emit directive as a combined directive that consists of two implicit 2785 // directives: 'parallel' with 'sections' directive. 2786 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2787 Action.Enter(CGF); 2788 CGF.EmitSections(S); 2789 }; 2790 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2791 emitEmptyBoundParameters); 2792 } 2793 2794 void CodeGenFunction::EmitOMPTaskBasedDirective( 2795 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2796 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2797 OMPTaskDataTy &Data) { 2798 // Emit outlined function for task construct. 2799 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2800 auto I = CS->getCapturedDecl()->param_begin(); 2801 auto PartId = std::next(I); 2802 auto TaskT = std::next(I, 4); 2803 // Check if the task is final 2804 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2805 // If the condition constant folds and can be elided, try to avoid emitting 2806 // the condition and the dead arm of the if/else. 2807 const Expr *Cond = Clause->getCondition(); 2808 bool CondConstant; 2809 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2810 Data.Final.setInt(CondConstant); 2811 else 2812 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2813 } else { 2814 // By default the task is not final. 2815 Data.Final.setInt(/*IntVal=*/false); 2816 } 2817 // Check if the task has 'priority' clause. 2818 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2819 const Expr *Prio = Clause->getPriority(); 2820 Data.Priority.setInt(/*IntVal=*/true); 2821 Data.Priority.setPointer(EmitScalarConversion( 2822 EmitScalarExpr(Prio), Prio->getType(), 2823 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2824 Prio->getExprLoc())); 2825 } 2826 // The first function argument for tasks is a thread id, the second one is a 2827 // part id (0 for tied tasks, >=0 for untied task). 2828 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2829 // Get list of private variables. 2830 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2831 auto IRef = C->varlist_begin(); 2832 for (const Expr *IInit : C->private_copies()) { 2833 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2834 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2835 Data.PrivateVars.push_back(*IRef); 2836 Data.PrivateCopies.push_back(IInit); 2837 } 2838 ++IRef; 2839 } 2840 } 2841 EmittedAsPrivate.clear(); 2842 // Get list of firstprivate variables. 2843 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2844 auto IRef = C->varlist_begin(); 2845 auto IElemInitRef = C->inits().begin(); 2846 for (const Expr *IInit : C->private_copies()) { 2847 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2848 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2849 Data.FirstprivateVars.push_back(*IRef); 2850 Data.FirstprivateCopies.push_back(IInit); 2851 Data.FirstprivateInits.push_back(*IElemInitRef); 2852 } 2853 ++IRef; 2854 ++IElemInitRef; 2855 } 2856 } 2857 // Get list of lastprivate variables (for taskloops). 2858 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2859 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2860 auto IRef = C->varlist_begin(); 2861 auto ID = C->destination_exprs().begin(); 2862 for (const Expr *IInit : C->private_copies()) { 2863 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2864 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2865 Data.LastprivateVars.push_back(*IRef); 2866 Data.LastprivateCopies.push_back(IInit); 2867 } 2868 LastprivateDstsOrigs.insert( 2869 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2870 cast<DeclRefExpr>(*IRef)}); 2871 ++IRef; 2872 ++ID; 2873 } 2874 } 2875 SmallVector<const Expr *, 4> LHSs; 2876 SmallVector<const Expr *, 4> RHSs; 2877 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2878 auto IPriv = C->privates().begin(); 2879 auto IRed = C->reduction_ops().begin(); 2880 auto ILHS = C->lhs_exprs().begin(); 2881 auto IRHS = C->rhs_exprs().begin(); 2882 for (const Expr *Ref : C->varlists()) { 2883 Data.ReductionVars.emplace_back(Ref); 2884 Data.ReductionCopies.emplace_back(*IPriv); 2885 Data.ReductionOps.emplace_back(*IRed); 2886 LHSs.emplace_back(*ILHS); 2887 RHSs.emplace_back(*IRHS); 2888 std::advance(IPriv, 1); 2889 std::advance(IRed, 1); 2890 std::advance(ILHS, 1); 2891 std::advance(IRHS, 1); 2892 } 2893 } 2894 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2895 *this, S.getBeginLoc(), LHSs, RHSs, Data); 2896 // Build list of dependences. 2897 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2898 for (const Expr *IRef : C->varlists()) 2899 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 2900 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2901 CapturedRegion](CodeGenFunction &CGF, 2902 PrePostActionTy &Action) { 2903 // Set proper addresses for generated private copies. 2904 OMPPrivateScope Scope(CGF); 2905 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2906 !Data.LastprivateVars.empty()) { 2907 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 2908 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 2909 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2910 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 2911 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 2912 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 2913 CS->getCapturedDecl()->getParam(PrivatesParam))); 2914 // Map privates. 2915 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2916 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2917 CallArgs.push_back(PrivatesPtr); 2918 for (const Expr *E : Data.PrivateVars) { 2919 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2920 Address PrivatePtr = CGF.CreateMemTemp( 2921 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2922 PrivatePtrs.emplace_back(VD, PrivatePtr); 2923 CallArgs.push_back(PrivatePtr.getPointer()); 2924 } 2925 for (const Expr *E : Data.FirstprivateVars) { 2926 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2927 Address PrivatePtr = 2928 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2929 ".firstpriv.ptr.addr"); 2930 PrivatePtrs.emplace_back(VD, PrivatePtr); 2931 CallArgs.push_back(PrivatePtr.getPointer()); 2932 } 2933 for (const Expr *E : Data.LastprivateVars) { 2934 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2935 Address PrivatePtr = 2936 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2937 ".lastpriv.ptr.addr"); 2938 PrivatePtrs.emplace_back(VD, PrivatePtr); 2939 CallArgs.push_back(PrivatePtr.getPointer()); 2940 } 2941 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2942 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 2943 for (const auto &Pair : LastprivateDstsOrigs) { 2944 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2945 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 2946 /*RefersToEnclosingVariableOrCapture=*/ 2947 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 2948 Pair.second->getType(), VK_LValue, 2949 Pair.second->getExprLoc()); 2950 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2951 return CGF.EmitLValue(&DRE).getAddress(); 2952 }); 2953 } 2954 for (const auto &Pair : PrivatePtrs) { 2955 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2956 CGF.getContext().getDeclAlign(Pair.first)); 2957 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2958 } 2959 } 2960 if (Data.Reductions) { 2961 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2962 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2963 Data.ReductionOps); 2964 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2965 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2966 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2967 RedCG.emitSharedLValue(CGF, Cnt); 2968 RedCG.emitAggregateType(CGF, Cnt); 2969 // FIXME: This must removed once the runtime library is fixed. 2970 // Emit required threadprivate variables for 2971 // initializer/combiner/finalizer. 2972 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 2973 RedCG, Cnt); 2974 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2975 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2976 Replacement = 2977 Address(CGF.EmitScalarConversion( 2978 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2979 CGF.getContext().getPointerType( 2980 Data.ReductionCopies[Cnt]->getType()), 2981 Data.ReductionCopies[Cnt]->getExprLoc()), 2982 Replacement.getAlignment()); 2983 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2984 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2985 [Replacement]() { return Replacement; }); 2986 } 2987 } 2988 // Privatize all private variables except for in_reduction items. 2989 (void)Scope.Privatize(); 2990 SmallVector<const Expr *, 4> InRedVars; 2991 SmallVector<const Expr *, 4> InRedPrivs; 2992 SmallVector<const Expr *, 4> InRedOps; 2993 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2994 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2995 auto IPriv = C->privates().begin(); 2996 auto IRed = C->reduction_ops().begin(); 2997 auto ITD = C->taskgroup_descriptors().begin(); 2998 for (const Expr *Ref : C->varlists()) { 2999 InRedVars.emplace_back(Ref); 3000 InRedPrivs.emplace_back(*IPriv); 3001 InRedOps.emplace_back(*IRed); 3002 TaskgroupDescriptors.emplace_back(*ITD); 3003 std::advance(IPriv, 1); 3004 std::advance(IRed, 1); 3005 std::advance(ITD, 1); 3006 } 3007 } 3008 // Privatize in_reduction items here, because taskgroup descriptors must be 3009 // privatized earlier. 3010 OMPPrivateScope InRedScope(CGF); 3011 if (!InRedVars.empty()) { 3012 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3013 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3014 RedCG.emitSharedLValue(CGF, Cnt); 3015 RedCG.emitAggregateType(CGF, Cnt); 3016 // The taskgroup descriptor variable is always implicit firstprivate and 3017 // privatized already during processing of the firstprivates. 3018 // FIXME: This must removed once the runtime library is fixed. 3019 // Emit required threadprivate variables for 3020 // initializer/combiner/finalizer. 3021 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3022 RedCG, Cnt); 3023 llvm::Value *ReductionsPtr = 3024 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3025 TaskgroupDescriptors[Cnt]->getExprLoc()); 3026 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3027 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3028 Replacement = Address( 3029 CGF.EmitScalarConversion( 3030 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3031 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3032 InRedPrivs[Cnt]->getExprLoc()), 3033 Replacement.getAlignment()); 3034 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3035 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3036 [Replacement]() { return Replacement; }); 3037 } 3038 } 3039 (void)InRedScope.Privatize(); 3040 3041 Action.Enter(CGF); 3042 BodyGen(CGF); 3043 }; 3044 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3045 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3046 Data.NumberOfParts); 3047 OMPLexicalScope Scope(*this, S); 3048 TaskGen(*this, OutlinedFn, Data); 3049 } 3050 3051 static ImplicitParamDecl * 3052 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3053 QualType Ty, CapturedDecl *CD, 3054 SourceLocation Loc) { 3055 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3056 ImplicitParamDecl::Other); 3057 auto *OrigRef = DeclRefExpr::Create( 3058 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3059 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3060 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3061 ImplicitParamDecl::Other); 3062 auto *PrivateRef = DeclRefExpr::Create( 3063 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3064 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3065 QualType ElemType = C.getBaseElementType(Ty); 3066 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3067 ImplicitParamDecl::Other); 3068 auto *InitRef = DeclRefExpr::Create( 3069 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3070 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3071 PrivateVD->setInitStyle(VarDecl::CInit); 3072 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3073 InitRef, /*BasePath=*/nullptr, 3074 VK_RValue)); 3075 Data.FirstprivateVars.emplace_back(OrigRef); 3076 Data.FirstprivateCopies.emplace_back(PrivateRef); 3077 Data.FirstprivateInits.emplace_back(InitRef); 3078 return OrigVD; 3079 } 3080 3081 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3082 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3083 OMPTargetDataInfo &InputInfo) { 3084 // Emit outlined function for task construct. 3085 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3086 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3087 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3088 auto I = CS->getCapturedDecl()->param_begin(); 3089 auto PartId = std::next(I); 3090 auto TaskT = std::next(I, 4); 3091 OMPTaskDataTy Data; 3092 // The task is not final. 3093 Data.Final.setInt(/*IntVal=*/false); 3094 // Get list of firstprivate variables. 3095 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3096 auto IRef = C->varlist_begin(); 3097 auto IElemInitRef = C->inits().begin(); 3098 for (auto *IInit : C->private_copies()) { 3099 Data.FirstprivateVars.push_back(*IRef); 3100 Data.FirstprivateCopies.push_back(IInit); 3101 Data.FirstprivateInits.push_back(*IElemInitRef); 3102 ++IRef; 3103 ++IElemInitRef; 3104 } 3105 } 3106 OMPPrivateScope TargetScope(*this); 3107 VarDecl *BPVD = nullptr; 3108 VarDecl *PVD = nullptr; 3109 VarDecl *SVD = nullptr; 3110 if (InputInfo.NumberOfTargetItems > 0) { 3111 auto *CD = CapturedDecl::Create( 3112 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3113 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3114 QualType BaseAndPointersType = getContext().getConstantArrayType( 3115 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3116 /*IndexTypeQuals=*/0); 3117 BPVD = createImplicitFirstprivateForType( 3118 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3119 PVD = createImplicitFirstprivateForType( 3120 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3121 QualType SizesType = getContext().getConstantArrayType( 3122 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3123 /*IndexTypeQuals=*/0); 3124 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3125 S.getBeginLoc()); 3126 TargetScope.addPrivate( 3127 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3128 TargetScope.addPrivate(PVD, 3129 [&InputInfo]() { return InputInfo.PointersArray; }); 3130 TargetScope.addPrivate(SVD, 3131 [&InputInfo]() { return InputInfo.SizesArray; }); 3132 } 3133 (void)TargetScope.Privatize(); 3134 // Build list of dependences. 3135 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3136 for (const Expr *IRef : C->varlists()) 3137 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3138 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3139 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3140 // Set proper addresses for generated private copies. 3141 OMPPrivateScope Scope(CGF); 3142 if (!Data.FirstprivateVars.empty()) { 3143 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3144 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3145 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3146 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3147 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3148 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3149 CS->getCapturedDecl()->getParam(PrivatesParam))); 3150 // Map privates. 3151 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3152 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3153 CallArgs.push_back(PrivatesPtr); 3154 for (const Expr *E : Data.FirstprivateVars) { 3155 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3156 Address PrivatePtr = 3157 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3158 ".firstpriv.ptr.addr"); 3159 PrivatePtrs.emplace_back(VD, PrivatePtr); 3160 CallArgs.push_back(PrivatePtr.getPointer()); 3161 } 3162 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3163 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3164 for (const auto &Pair : PrivatePtrs) { 3165 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3166 CGF.getContext().getDeclAlign(Pair.first)); 3167 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3168 } 3169 } 3170 // Privatize all private variables except for in_reduction items. 3171 (void)Scope.Privatize(); 3172 if (InputInfo.NumberOfTargetItems > 0) { 3173 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3174 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3175 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3176 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3177 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3178 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3179 } 3180 3181 Action.Enter(CGF); 3182 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3183 BodyGen(CGF); 3184 }; 3185 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3186 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3187 Data.NumberOfParts); 3188 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3189 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3190 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3191 SourceLocation()); 3192 3193 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3194 SharedsTy, CapturedStruct, &IfCond, Data); 3195 } 3196 3197 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3198 // Emit outlined function for task construct. 3199 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3200 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3201 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3202 const Expr *IfCond = nullptr; 3203 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3204 if (C->getNameModifier() == OMPD_unknown || 3205 C->getNameModifier() == OMPD_task) { 3206 IfCond = C->getCondition(); 3207 break; 3208 } 3209 } 3210 3211 OMPTaskDataTy Data; 3212 // Check if we should emit tied or untied task. 3213 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3214 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3215 CGF.EmitStmt(CS->getCapturedStmt()); 3216 }; 3217 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3218 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3219 const OMPTaskDataTy &Data) { 3220 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3221 SharedsTy, CapturedStruct, IfCond, 3222 Data); 3223 }; 3224 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3225 } 3226 3227 void CodeGenFunction::EmitOMPTaskyieldDirective( 3228 const OMPTaskyieldDirective &S) { 3229 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3230 } 3231 3232 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3233 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3234 } 3235 3236 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3237 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3238 } 3239 3240 void CodeGenFunction::EmitOMPTaskgroupDirective( 3241 const OMPTaskgroupDirective &S) { 3242 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3243 Action.Enter(CGF); 3244 if (const Expr *E = S.getReductionRef()) { 3245 SmallVector<const Expr *, 4> LHSs; 3246 SmallVector<const Expr *, 4> RHSs; 3247 OMPTaskDataTy Data; 3248 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3249 auto IPriv = C->privates().begin(); 3250 auto IRed = C->reduction_ops().begin(); 3251 auto ILHS = C->lhs_exprs().begin(); 3252 auto IRHS = C->rhs_exprs().begin(); 3253 for (const Expr *Ref : C->varlists()) { 3254 Data.ReductionVars.emplace_back(Ref); 3255 Data.ReductionCopies.emplace_back(*IPriv); 3256 Data.ReductionOps.emplace_back(*IRed); 3257 LHSs.emplace_back(*ILHS); 3258 RHSs.emplace_back(*IRHS); 3259 std::advance(IPriv, 1); 3260 std::advance(IRed, 1); 3261 std::advance(ILHS, 1); 3262 std::advance(IRHS, 1); 3263 } 3264 } 3265 llvm::Value *ReductionDesc = 3266 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3267 LHSs, RHSs, Data); 3268 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3269 CGF.EmitVarDecl(*VD); 3270 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3271 /*Volatile=*/false, E->getType()); 3272 } 3273 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3274 }; 3275 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3276 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3277 } 3278 3279 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3280 CGM.getOpenMPRuntime().emitFlush( 3281 *this, 3282 [&S]() -> ArrayRef<const Expr *> { 3283 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3284 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3285 FlushClause->varlist_end()); 3286 return llvm::None; 3287 }(), 3288 S.getBeginLoc()); 3289 } 3290 3291 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3292 const CodeGenLoopTy &CodeGenLoop, 3293 Expr *IncExpr) { 3294 // Emit the loop iteration variable. 3295 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3296 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3297 EmitVarDecl(*IVDecl); 3298 3299 // Emit the iterations count variable. 3300 // If it is not a variable, Sema decided to calculate iterations count on each 3301 // iteration (e.g., it is foldable into a constant). 3302 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3303 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3304 // Emit calculation of the iterations count. 3305 EmitIgnoredExpr(S.getCalcLastIteration()); 3306 } 3307 3308 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3309 3310 bool HasLastprivateClause = false; 3311 // Check pre-condition. 3312 { 3313 OMPLoopScope PreInitScope(*this, S); 3314 // Skip the entire loop if we don't meet the precondition. 3315 // If the condition constant folds and can be elided, avoid emitting the 3316 // whole loop. 3317 bool CondConstant; 3318 llvm::BasicBlock *ContBlock = nullptr; 3319 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3320 if (!CondConstant) 3321 return; 3322 } else { 3323 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3324 ContBlock = createBasicBlock("omp.precond.end"); 3325 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3326 getProfileCount(&S)); 3327 EmitBlock(ThenBlock); 3328 incrementProfileCounter(&S); 3329 } 3330 3331 emitAlignedClause(*this, S); 3332 // Emit 'then' code. 3333 { 3334 // Emit helper vars inits. 3335 3336 LValue LB = EmitOMPHelperVar( 3337 *this, cast<DeclRefExpr>( 3338 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3339 ? S.getCombinedLowerBoundVariable() 3340 : S.getLowerBoundVariable()))); 3341 LValue UB = EmitOMPHelperVar( 3342 *this, cast<DeclRefExpr>( 3343 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3344 ? S.getCombinedUpperBoundVariable() 3345 : S.getUpperBoundVariable()))); 3346 LValue ST = 3347 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3348 LValue IL = 3349 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3350 3351 OMPPrivateScope LoopScope(*this); 3352 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3353 // Emit implicit barrier to synchronize threads and avoid data races 3354 // on initialization of firstprivate variables and post-update of 3355 // lastprivate variables. 3356 CGM.getOpenMPRuntime().emitBarrierCall( 3357 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3358 /*ForceSimpleCall=*/true); 3359 } 3360 EmitOMPPrivateClause(S, LoopScope); 3361 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3362 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3363 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3364 EmitOMPReductionClauseInit(S, LoopScope); 3365 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3366 EmitOMPPrivateLoopCounters(S, LoopScope); 3367 (void)LoopScope.Privatize(); 3368 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3369 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3370 3371 // Detect the distribute schedule kind and chunk. 3372 llvm::Value *Chunk = nullptr; 3373 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3374 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3375 ScheduleKind = C->getDistScheduleKind(); 3376 if (const Expr *Ch = C->getChunkSize()) { 3377 Chunk = EmitScalarExpr(Ch); 3378 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3379 S.getIterationVariable()->getType(), 3380 S.getBeginLoc()); 3381 } 3382 } else { 3383 // Default behaviour for dist_schedule clause. 3384 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3385 *this, S, ScheduleKind, Chunk); 3386 } 3387 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3388 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3389 3390 // OpenMP [2.10.8, distribute Construct, Description] 3391 // If dist_schedule is specified, kind must be static. If specified, 3392 // iterations are divided into chunks of size chunk_size, chunks are 3393 // assigned to the teams of the league in a round-robin fashion in the 3394 // order of the team number. When no chunk_size is specified, the 3395 // iteration space is divided into chunks that are approximately equal 3396 // in size, and at most one chunk is distributed to each team of the 3397 // league. The size of the chunks is unspecified in this case. 3398 bool StaticChunked = RT.isStaticChunked( 3399 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3400 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3401 if (RT.isStaticNonchunked(ScheduleKind, 3402 /* Chunked */ Chunk != nullptr) || 3403 StaticChunked) { 3404 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3405 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3406 CGOpenMPRuntime::StaticRTInput StaticInit( 3407 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3408 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3409 StaticChunked ? Chunk : nullptr); 3410 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3411 StaticInit); 3412 JumpDest LoopExit = 3413 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3414 // UB = min(UB, GlobalUB); 3415 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3416 ? S.getCombinedEnsureUpperBound() 3417 : S.getEnsureUpperBound()); 3418 // IV = LB; 3419 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3420 ? S.getCombinedInit() 3421 : S.getInit()); 3422 3423 const Expr *Cond = 3424 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3425 ? S.getCombinedCond() 3426 : S.getCond(); 3427 3428 if (StaticChunked) 3429 Cond = S.getCombinedDistCond(); 3430 3431 // For static unchunked schedules generate: 3432 // 3433 // 1. For distribute alone, codegen 3434 // while (idx <= UB) { 3435 // BODY; 3436 // ++idx; 3437 // } 3438 // 3439 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3440 // while (idx <= UB) { 3441 // <CodeGen rest of pragma>(LB, UB); 3442 // idx += ST; 3443 // } 3444 // 3445 // For static chunk one schedule generate: 3446 // 3447 // while (IV <= GlobalUB) { 3448 // <CodeGen rest of pragma>(LB, UB); 3449 // LB += ST; 3450 // UB += ST; 3451 // UB = min(UB, GlobalUB); 3452 // IV = LB; 3453 // } 3454 // 3455 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3456 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3457 CodeGenLoop(CGF, S, LoopExit); 3458 }, 3459 [&S, StaticChunked](CodeGenFunction &CGF) { 3460 if (StaticChunked) { 3461 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3462 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3463 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3464 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3465 } 3466 }); 3467 EmitBlock(LoopExit.getBlock()); 3468 // Tell the runtime we are done. 3469 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3470 } else { 3471 // Emit the outer loop, which requests its work chunk [LB..UB] from 3472 // runtime and runs the inner loop to process it. 3473 const OMPLoopArguments LoopArguments = { 3474 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3475 Chunk}; 3476 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3477 CodeGenLoop); 3478 } 3479 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3480 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3481 return CGF.Builder.CreateIsNotNull( 3482 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3483 }); 3484 } 3485 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3486 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3487 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3488 EmitOMPReductionClauseFinal(S, OMPD_simd); 3489 // Emit post-update of the reduction variables if IsLastIter != 0. 3490 emitPostUpdateForReductionClause( 3491 *this, S, [IL, &S](CodeGenFunction &CGF) { 3492 return CGF.Builder.CreateIsNotNull( 3493 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3494 }); 3495 } 3496 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3497 if (HasLastprivateClause) { 3498 EmitOMPLastprivateClauseFinal( 3499 S, /*NoFinals=*/false, 3500 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3501 } 3502 } 3503 3504 // We're now done with the loop, so jump to the continuation block. 3505 if (ContBlock) { 3506 EmitBranch(ContBlock); 3507 EmitBlock(ContBlock, true); 3508 } 3509 } 3510 } 3511 3512 void CodeGenFunction::EmitOMPDistributeDirective( 3513 const OMPDistributeDirective &S) { 3514 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3515 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3516 }; 3517 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3518 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3519 } 3520 3521 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3522 const CapturedStmt *S) { 3523 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3524 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3525 CGF.CapturedStmtInfo = &CapStmtInfo; 3526 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3527 Fn->setDoesNotRecurse(); 3528 return Fn; 3529 } 3530 3531 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3532 if (S.hasClausesOfKind<OMPDependClause>()) { 3533 assert(!S.getAssociatedStmt() && 3534 "No associated statement must be in ordered depend construct."); 3535 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3536 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3537 return; 3538 } 3539 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3540 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3541 PrePostActionTy &Action) { 3542 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3543 if (C) { 3544 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3545 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3546 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3547 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3548 OutlinedFn, CapturedVars); 3549 } else { 3550 Action.Enter(CGF); 3551 CGF.EmitStmt(CS->getCapturedStmt()); 3552 } 3553 }; 3554 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3555 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3556 } 3557 3558 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3559 QualType SrcType, QualType DestType, 3560 SourceLocation Loc) { 3561 assert(CGF.hasScalarEvaluationKind(DestType) && 3562 "DestType must have scalar evaluation kind."); 3563 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3564 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3565 DestType, Loc) 3566 : CGF.EmitComplexToScalarConversion( 3567 Val.getComplexVal(), SrcType, DestType, Loc); 3568 } 3569 3570 static CodeGenFunction::ComplexPairTy 3571 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3572 QualType DestType, SourceLocation Loc) { 3573 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3574 "DestType must have complex evaluation kind."); 3575 CodeGenFunction::ComplexPairTy ComplexVal; 3576 if (Val.isScalar()) { 3577 // Convert the input element to the element type of the complex. 3578 QualType DestElementType = 3579 DestType->castAs<ComplexType>()->getElementType(); 3580 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3581 Val.getScalarVal(), SrcType, DestElementType, Loc); 3582 ComplexVal = CodeGenFunction::ComplexPairTy( 3583 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3584 } else { 3585 assert(Val.isComplex() && "Must be a scalar or complex."); 3586 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3587 QualType DestElementType = 3588 DestType->castAs<ComplexType>()->getElementType(); 3589 ComplexVal.first = CGF.EmitScalarConversion( 3590 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3591 ComplexVal.second = CGF.EmitScalarConversion( 3592 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3593 } 3594 return ComplexVal; 3595 } 3596 3597 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3598 LValue LVal, RValue RVal) { 3599 if (LVal.isGlobalReg()) { 3600 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3601 } else { 3602 CGF.EmitAtomicStore(RVal, LVal, 3603 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3604 : llvm::AtomicOrdering::Monotonic, 3605 LVal.isVolatile(), /*IsInit=*/false); 3606 } 3607 } 3608 3609 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3610 QualType RValTy, SourceLocation Loc) { 3611 switch (getEvaluationKind(LVal.getType())) { 3612 case TEK_Scalar: 3613 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3614 *this, RVal, RValTy, LVal.getType(), Loc)), 3615 LVal); 3616 break; 3617 case TEK_Complex: 3618 EmitStoreOfComplex( 3619 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3620 /*isInit=*/false); 3621 break; 3622 case TEK_Aggregate: 3623 llvm_unreachable("Must be a scalar or complex."); 3624 } 3625 } 3626 3627 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3628 const Expr *X, const Expr *V, 3629 SourceLocation Loc) { 3630 // v = x; 3631 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3632 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3633 LValue XLValue = CGF.EmitLValue(X); 3634 LValue VLValue = CGF.EmitLValue(V); 3635 RValue Res = XLValue.isGlobalReg() 3636 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3637 : CGF.EmitAtomicLoad( 3638 XLValue, Loc, 3639 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3640 : llvm::AtomicOrdering::Monotonic, 3641 XLValue.isVolatile()); 3642 // OpenMP, 2.12.6, atomic Construct 3643 // Any atomic construct with a seq_cst clause forces the atomically 3644 // performed operation to include an implicit flush operation without a 3645 // list. 3646 if (IsSeqCst) 3647 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3648 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3649 } 3650 3651 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3652 const Expr *X, const Expr *E, 3653 SourceLocation Loc) { 3654 // x = expr; 3655 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3656 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3657 // OpenMP, 2.12.6, atomic Construct 3658 // Any atomic construct with a seq_cst clause forces the atomically 3659 // performed operation to include an implicit flush operation without a 3660 // list. 3661 if (IsSeqCst) 3662 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3663 } 3664 3665 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3666 RValue Update, 3667 BinaryOperatorKind BO, 3668 llvm::AtomicOrdering AO, 3669 bool IsXLHSInRHSPart) { 3670 ASTContext &Context = CGF.getContext(); 3671 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3672 // expression is simple and atomic is allowed for the given type for the 3673 // target platform. 3674 if (BO == BO_Comma || !Update.isScalar() || 3675 !Update.getScalarVal()->getType()->isIntegerTy() || 3676 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3677 (Update.getScalarVal()->getType() != 3678 X.getAddress().getElementType())) || 3679 !X.getAddress().getElementType()->isIntegerTy() || 3680 !Context.getTargetInfo().hasBuiltinAtomic( 3681 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3682 return std::make_pair(false, RValue::get(nullptr)); 3683 3684 llvm::AtomicRMWInst::BinOp RMWOp; 3685 switch (BO) { 3686 case BO_Add: 3687 RMWOp = llvm::AtomicRMWInst::Add; 3688 break; 3689 case BO_Sub: 3690 if (!IsXLHSInRHSPart) 3691 return std::make_pair(false, RValue::get(nullptr)); 3692 RMWOp = llvm::AtomicRMWInst::Sub; 3693 break; 3694 case BO_And: 3695 RMWOp = llvm::AtomicRMWInst::And; 3696 break; 3697 case BO_Or: 3698 RMWOp = llvm::AtomicRMWInst::Or; 3699 break; 3700 case BO_Xor: 3701 RMWOp = llvm::AtomicRMWInst::Xor; 3702 break; 3703 case BO_LT: 3704 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3705 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3706 : llvm::AtomicRMWInst::Max) 3707 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3708 : llvm::AtomicRMWInst::UMax); 3709 break; 3710 case BO_GT: 3711 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3712 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3713 : llvm::AtomicRMWInst::Min) 3714 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3715 : llvm::AtomicRMWInst::UMin); 3716 break; 3717 case BO_Assign: 3718 RMWOp = llvm::AtomicRMWInst::Xchg; 3719 break; 3720 case BO_Mul: 3721 case BO_Div: 3722 case BO_Rem: 3723 case BO_Shl: 3724 case BO_Shr: 3725 case BO_LAnd: 3726 case BO_LOr: 3727 return std::make_pair(false, RValue::get(nullptr)); 3728 case BO_PtrMemD: 3729 case BO_PtrMemI: 3730 case BO_LE: 3731 case BO_GE: 3732 case BO_EQ: 3733 case BO_NE: 3734 case BO_Cmp: 3735 case BO_AddAssign: 3736 case BO_SubAssign: 3737 case BO_AndAssign: 3738 case BO_OrAssign: 3739 case BO_XorAssign: 3740 case BO_MulAssign: 3741 case BO_DivAssign: 3742 case BO_RemAssign: 3743 case BO_ShlAssign: 3744 case BO_ShrAssign: 3745 case BO_Comma: 3746 llvm_unreachable("Unsupported atomic update operation"); 3747 } 3748 llvm::Value *UpdateVal = Update.getScalarVal(); 3749 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3750 UpdateVal = CGF.Builder.CreateIntCast( 3751 IC, X.getAddress().getElementType(), 3752 X.getType()->hasSignedIntegerRepresentation()); 3753 } 3754 llvm::Value *Res = 3755 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3756 return std::make_pair(true, RValue::get(Res)); 3757 } 3758 3759 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3760 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3761 llvm::AtomicOrdering AO, SourceLocation Loc, 3762 const llvm::function_ref<RValue(RValue)> CommonGen) { 3763 // Update expressions are allowed to have the following forms: 3764 // x binop= expr; -> xrval + expr; 3765 // x++, ++x -> xrval + 1; 3766 // x--, --x -> xrval - 1; 3767 // x = x binop expr; -> xrval binop expr 3768 // x = expr Op x; - > expr binop xrval; 3769 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3770 if (!Res.first) { 3771 if (X.isGlobalReg()) { 3772 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3773 // 'xrval'. 3774 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3775 } else { 3776 // Perform compare-and-swap procedure. 3777 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3778 } 3779 } 3780 return Res; 3781 } 3782 3783 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3784 const Expr *X, const Expr *E, 3785 const Expr *UE, bool IsXLHSInRHSPart, 3786 SourceLocation Loc) { 3787 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3788 "Update expr in 'atomic update' must be a binary operator."); 3789 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3790 // Update expressions are allowed to have the following forms: 3791 // x binop= expr; -> xrval + expr; 3792 // x++, ++x -> xrval + 1; 3793 // x--, --x -> xrval - 1; 3794 // x = x binop expr; -> xrval binop expr 3795 // x = expr Op x; - > expr binop xrval; 3796 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3797 LValue XLValue = CGF.EmitLValue(X); 3798 RValue ExprRValue = CGF.EmitAnyExpr(E); 3799 llvm::AtomicOrdering AO = IsSeqCst 3800 ? llvm::AtomicOrdering::SequentiallyConsistent 3801 : llvm::AtomicOrdering::Monotonic; 3802 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3803 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3804 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3805 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3806 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3807 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3808 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3809 return CGF.EmitAnyExpr(UE); 3810 }; 3811 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3812 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3813 // OpenMP, 2.12.6, atomic Construct 3814 // Any atomic construct with a seq_cst clause forces the atomically 3815 // performed operation to include an implicit flush operation without a 3816 // list. 3817 if (IsSeqCst) 3818 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3819 } 3820 3821 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3822 QualType SourceType, QualType ResType, 3823 SourceLocation Loc) { 3824 switch (CGF.getEvaluationKind(ResType)) { 3825 case TEK_Scalar: 3826 return RValue::get( 3827 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3828 case TEK_Complex: { 3829 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3830 return RValue::getComplex(Res.first, Res.second); 3831 } 3832 case TEK_Aggregate: 3833 break; 3834 } 3835 llvm_unreachable("Must be a scalar or complex."); 3836 } 3837 3838 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3839 bool IsPostfixUpdate, const Expr *V, 3840 const Expr *X, const Expr *E, 3841 const Expr *UE, bool IsXLHSInRHSPart, 3842 SourceLocation Loc) { 3843 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3844 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3845 RValue NewVVal; 3846 LValue VLValue = CGF.EmitLValue(V); 3847 LValue XLValue = CGF.EmitLValue(X); 3848 RValue ExprRValue = CGF.EmitAnyExpr(E); 3849 llvm::AtomicOrdering AO = IsSeqCst 3850 ? llvm::AtomicOrdering::SequentiallyConsistent 3851 : llvm::AtomicOrdering::Monotonic; 3852 QualType NewVValType; 3853 if (UE) { 3854 // 'x' is updated with some additional value. 3855 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3856 "Update expr in 'atomic capture' must be a binary operator."); 3857 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3858 // Update expressions are allowed to have the following forms: 3859 // x binop= expr; -> xrval + expr; 3860 // x++, ++x -> xrval + 1; 3861 // x--, --x -> xrval - 1; 3862 // x = x binop expr; -> xrval binop expr 3863 // x = expr Op x; - > expr binop xrval; 3864 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3865 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3866 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3867 NewVValType = XRValExpr->getType(); 3868 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3869 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3870 IsPostfixUpdate](RValue XRValue) { 3871 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3872 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3873 RValue Res = CGF.EmitAnyExpr(UE); 3874 NewVVal = IsPostfixUpdate ? XRValue : Res; 3875 return Res; 3876 }; 3877 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3878 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3879 if (Res.first) { 3880 // 'atomicrmw' instruction was generated. 3881 if (IsPostfixUpdate) { 3882 // Use old value from 'atomicrmw'. 3883 NewVVal = Res.second; 3884 } else { 3885 // 'atomicrmw' does not provide new value, so evaluate it using old 3886 // value of 'x'. 3887 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3888 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3889 NewVVal = CGF.EmitAnyExpr(UE); 3890 } 3891 } 3892 } else { 3893 // 'x' is simply rewritten with some 'expr'. 3894 NewVValType = X->getType().getNonReferenceType(); 3895 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3896 X->getType().getNonReferenceType(), Loc); 3897 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 3898 NewVVal = XRValue; 3899 return ExprRValue; 3900 }; 3901 // Try to perform atomicrmw xchg, otherwise simple exchange. 3902 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3903 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3904 Loc, Gen); 3905 if (Res.first) { 3906 // 'atomicrmw' instruction was generated. 3907 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3908 } 3909 } 3910 // Emit post-update store to 'v' of old/new 'x' value. 3911 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3912 // OpenMP, 2.12.6, atomic Construct 3913 // Any atomic construct with a seq_cst clause forces the atomically 3914 // performed operation to include an implicit flush operation without a 3915 // list. 3916 if (IsSeqCst) 3917 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3918 } 3919 3920 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3921 bool IsSeqCst, bool IsPostfixUpdate, 3922 const Expr *X, const Expr *V, const Expr *E, 3923 const Expr *UE, bool IsXLHSInRHSPart, 3924 SourceLocation Loc) { 3925 switch (Kind) { 3926 case OMPC_read: 3927 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3928 break; 3929 case OMPC_write: 3930 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3931 break; 3932 case OMPC_unknown: 3933 case OMPC_update: 3934 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3935 break; 3936 case OMPC_capture: 3937 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3938 IsXLHSInRHSPart, Loc); 3939 break; 3940 case OMPC_if: 3941 case OMPC_final: 3942 case OMPC_num_threads: 3943 case OMPC_private: 3944 case OMPC_firstprivate: 3945 case OMPC_lastprivate: 3946 case OMPC_reduction: 3947 case OMPC_task_reduction: 3948 case OMPC_in_reduction: 3949 case OMPC_safelen: 3950 case OMPC_simdlen: 3951 case OMPC_allocator: 3952 case OMPC_allocate: 3953 case OMPC_collapse: 3954 case OMPC_default: 3955 case OMPC_seq_cst: 3956 case OMPC_shared: 3957 case OMPC_linear: 3958 case OMPC_aligned: 3959 case OMPC_copyin: 3960 case OMPC_copyprivate: 3961 case OMPC_flush: 3962 case OMPC_proc_bind: 3963 case OMPC_schedule: 3964 case OMPC_ordered: 3965 case OMPC_nowait: 3966 case OMPC_untied: 3967 case OMPC_threadprivate: 3968 case OMPC_depend: 3969 case OMPC_mergeable: 3970 case OMPC_device: 3971 case OMPC_threads: 3972 case OMPC_simd: 3973 case OMPC_map: 3974 case OMPC_num_teams: 3975 case OMPC_thread_limit: 3976 case OMPC_priority: 3977 case OMPC_grainsize: 3978 case OMPC_nogroup: 3979 case OMPC_num_tasks: 3980 case OMPC_hint: 3981 case OMPC_dist_schedule: 3982 case OMPC_defaultmap: 3983 case OMPC_uniform: 3984 case OMPC_to: 3985 case OMPC_from: 3986 case OMPC_use_device_ptr: 3987 case OMPC_is_device_ptr: 3988 case OMPC_unified_address: 3989 case OMPC_unified_shared_memory: 3990 case OMPC_reverse_offload: 3991 case OMPC_dynamic_allocators: 3992 case OMPC_atomic_default_mem_order: 3993 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3994 } 3995 } 3996 3997 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3998 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3999 OpenMPClauseKind Kind = OMPC_unknown; 4000 for (const OMPClause *C : S.clauses()) { 4001 // Find first clause (skip seq_cst clause, if it is first). 4002 if (C->getClauseKind() != OMPC_seq_cst) { 4003 Kind = C->getClauseKind(); 4004 break; 4005 } 4006 } 4007 4008 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4009 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4010 enterFullExpression(FE); 4011 // Processing for statements under 'atomic capture'. 4012 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4013 for (const Stmt *C : Compound->body()) { 4014 if (const auto *FE = dyn_cast<FullExpr>(C)) 4015 enterFullExpression(FE); 4016 } 4017 } 4018 4019 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4020 PrePostActionTy &) { 4021 CGF.EmitStopPoint(CS); 4022 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4023 S.getV(), S.getExpr(), S.getUpdateExpr(), 4024 S.isXLHSInRHSPart(), S.getBeginLoc()); 4025 }; 4026 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4027 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4028 } 4029 4030 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4031 const OMPExecutableDirective &S, 4032 const RegionCodeGenTy &CodeGen) { 4033 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4034 CodeGenModule &CGM = CGF.CGM; 4035 4036 // On device emit this construct as inlined code. 4037 if (CGM.getLangOpts().OpenMPIsDevice) { 4038 OMPLexicalScope Scope(CGF, S, OMPD_target); 4039 CGM.getOpenMPRuntime().emitInlinedDirective( 4040 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4041 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4042 }); 4043 return; 4044 } 4045 4046 llvm::Function *Fn = nullptr; 4047 llvm::Constant *FnID = nullptr; 4048 4049 const Expr *IfCond = nullptr; 4050 // Check for the at most one if clause associated with the target region. 4051 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4052 if (C->getNameModifier() == OMPD_unknown || 4053 C->getNameModifier() == OMPD_target) { 4054 IfCond = C->getCondition(); 4055 break; 4056 } 4057 } 4058 4059 // Check if we have any device clause associated with the directive. 4060 const Expr *Device = nullptr; 4061 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4062 Device = C->getDevice(); 4063 4064 // Check if we have an if clause whose conditional always evaluates to false 4065 // or if we do not have any targets specified. If so the target region is not 4066 // an offload entry point. 4067 bool IsOffloadEntry = true; 4068 if (IfCond) { 4069 bool Val; 4070 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4071 IsOffloadEntry = false; 4072 } 4073 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4074 IsOffloadEntry = false; 4075 4076 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4077 StringRef ParentName; 4078 // In case we have Ctors/Dtors we use the complete type variant to produce 4079 // the mangling of the device outlined kernel. 4080 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4081 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4082 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4083 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4084 else 4085 ParentName = 4086 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4087 4088 // Emit target region as a standalone region. 4089 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4090 IsOffloadEntry, CodeGen); 4091 OMPLexicalScope Scope(CGF, S, OMPD_task); 4092 auto &&SizeEmitter = [](CodeGenFunction &CGF, const OMPLoopDirective &D) { 4093 OMPLoopScope(CGF, D); 4094 // Emit calculation of the iterations count. 4095 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4096 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4097 /*IsSigned=*/false); 4098 return NumIterations; 4099 }; 4100 if (IsOffloadEntry) 4101 CGM.getOpenMPRuntime().emitTargetNumIterationsCall(CGF, S, Device, 4102 SizeEmitter); 4103 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 4104 } 4105 4106 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4107 PrePostActionTy &Action) { 4108 Action.Enter(CGF); 4109 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4110 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4111 CGF.EmitOMPPrivateClause(S, PrivateScope); 4112 (void)PrivateScope.Privatize(); 4113 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4114 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4115 4116 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4117 } 4118 4119 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4120 StringRef ParentName, 4121 const OMPTargetDirective &S) { 4122 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4123 emitTargetRegion(CGF, S, Action); 4124 }; 4125 llvm::Function *Fn; 4126 llvm::Constant *Addr; 4127 // Emit target region as a standalone region. 4128 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4129 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4130 assert(Fn && Addr && "Target device function emission failed."); 4131 } 4132 4133 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4134 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4135 emitTargetRegion(CGF, S, Action); 4136 }; 4137 emitCommonOMPTargetDirective(*this, S, CodeGen); 4138 } 4139 4140 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4141 const OMPExecutableDirective &S, 4142 OpenMPDirectiveKind InnermostKind, 4143 const RegionCodeGenTy &CodeGen) { 4144 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4145 llvm::Function *OutlinedFn = 4146 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4147 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4148 4149 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4150 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4151 if (NT || TL) { 4152 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4153 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4154 4155 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4156 S.getBeginLoc()); 4157 } 4158 4159 OMPTeamsScope Scope(CGF, S); 4160 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4161 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4162 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4163 CapturedVars); 4164 } 4165 4166 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4167 // Emit teams region as a standalone region. 4168 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4169 Action.Enter(CGF); 4170 OMPPrivateScope PrivateScope(CGF); 4171 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4172 CGF.EmitOMPPrivateClause(S, PrivateScope); 4173 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4174 (void)PrivateScope.Privatize(); 4175 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4176 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4177 }; 4178 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4179 emitPostUpdateForReductionClause(*this, S, 4180 [](CodeGenFunction &) { return nullptr; }); 4181 } 4182 4183 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4184 const OMPTargetTeamsDirective &S) { 4185 auto *CS = S.getCapturedStmt(OMPD_teams); 4186 Action.Enter(CGF); 4187 // Emit teams region as a standalone region. 4188 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4189 Action.Enter(CGF); 4190 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4191 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4192 CGF.EmitOMPPrivateClause(S, PrivateScope); 4193 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4194 (void)PrivateScope.Privatize(); 4195 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4196 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4197 CGF.EmitStmt(CS->getCapturedStmt()); 4198 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4199 }; 4200 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4201 emitPostUpdateForReductionClause(CGF, S, 4202 [](CodeGenFunction &) { return nullptr; }); 4203 } 4204 4205 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4206 CodeGenModule &CGM, StringRef ParentName, 4207 const OMPTargetTeamsDirective &S) { 4208 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4209 emitTargetTeamsRegion(CGF, Action, S); 4210 }; 4211 llvm::Function *Fn; 4212 llvm::Constant *Addr; 4213 // Emit target region as a standalone region. 4214 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4215 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4216 assert(Fn && Addr && "Target device function emission failed."); 4217 } 4218 4219 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4220 const OMPTargetTeamsDirective &S) { 4221 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4222 emitTargetTeamsRegion(CGF, Action, S); 4223 }; 4224 emitCommonOMPTargetDirective(*this, S, CodeGen); 4225 } 4226 4227 static void 4228 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4229 const OMPTargetTeamsDistributeDirective &S) { 4230 Action.Enter(CGF); 4231 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4232 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4233 }; 4234 4235 // Emit teams region as a standalone region. 4236 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4237 PrePostActionTy &Action) { 4238 Action.Enter(CGF); 4239 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4240 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4241 (void)PrivateScope.Privatize(); 4242 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4243 CodeGenDistribute); 4244 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4245 }; 4246 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4247 emitPostUpdateForReductionClause(CGF, S, 4248 [](CodeGenFunction &) { return nullptr; }); 4249 } 4250 4251 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4252 CodeGenModule &CGM, StringRef ParentName, 4253 const OMPTargetTeamsDistributeDirective &S) { 4254 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4255 emitTargetTeamsDistributeRegion(CGF, Action, S); 4256 }; 4257 llvm::Function *Fn; 4258 llvm::Constant *Addr; 4259 // Emit target region as a standalone region. 4260 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4261 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4262 assert(Fn && Addr && "Target device function emission failed."); 4263 } 4264 4265 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4266 const OMPTargetTeamsDistributeDirective &S) { 4267 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4268 emitTargetTeamsDistributeRegion(CGF, Action, S); 4269 }; 4270 emitCommonOMPTargetDirective(*this, S, CodeGen); 4271 } 4272 4273 static void emitTargetTeamsDistributeSimdRegion( 4274 CodeGenFunction &CGF, PrePostActionTy &Action, 4275 const OMPTargetTeamsDistributeSimdDirective &S) { 4276 Action.Enter(CGF); 4277 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4278 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4279 }; 4280 4281 // Emit teams region as a standalone region. 4282 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4283 PrePostActionTy &Action) { 4284 Action.Enter(CGF); 4285 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4286 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4287 (void)PrivateScope.Privatize(); 4288 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4289 CodeGenDistribute); 4290 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4291 }; 4292 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4293 emitPostUpdateForReductionClause(CGF, S, 4294 [](CodeGenFunction &) { return nullptr; }); 4295 } 4296 4297 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4298 CodeGenModule &CGM, StringRef ParentName, 4299 const OMPTargetTeamsDistributeSimdDirective &S) { 4300 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4301 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4302 }; 4303 llvm::Function *Fn; 4304 llvm::Constant *Addr; 4305 // Emit target region as a standalone region. 4306 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4307 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4308 assert(Fn && Addr && "Target device function emission failed."); 4309 } 4310 4311 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4312 const OMPTargetTeamsDistributeSimdDirective &S) { 4313 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4314 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4315 }; 4316 emitCommonOMPTargetDirective(*this, S, CodeGen); 4317 } 4318 4319 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4320 const OMPTeamsDistributeDirective &S) { 4321 4322 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4323 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4324 }; 4325 4326 // Emit teams region as a standalone region. 4327 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4328 PrePostActionTy &Action) { 4329 Action.Enter(CGF); 4330 OMPPrivateScope PrivateScope(CGF); 4331 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4332 (void)PrivateScope.Privatize(); 4333 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4334 CodeGenDistribute); 4335 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4336 }; 4337 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4338 emitPostUpdateForReductionClause(*this, S, 4339 [](CodeGenFunction &) { return nullptr; }); 4340 } 4341 4342 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4343 const OMPTeamsDistributeSimdDirective &S) { 4344 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4345 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4346 }; 4347 4348 // Emit teams region as a standalone region. 4349 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4350 PrePostActionTy &Action) { 4351 Action.Enter(CGF); 4352 OMPPrivateScope PrivateScope(CGF); 4353 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4354 (void)PrivateScope.Privatize(); 4355 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4356 CodeGenDistribute); 4357 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4358 }; 4359 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4360 emitPostUpdateForReductionClause(*this, S, 4361 [](CodeGenFunction &) { return nullptr; }); 4362 } 4363 4364 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4365 const OMPTeamsDistributeParallelForDirective &S) { 4366 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4367 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4368 S.getDistInc()); 4369 }; 4370 4371 // Emit teams region as a standalone region. 4372 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4373 PrePostActionTy &Action) { 4374 Action.Enter(CGF); 4375 OMPPrivateScope PrivateScope(CGF); 4376 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4377 (void)PrivateScope.Privatize(); 4378 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4379 CodeGenDistribute); 4380 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4381 }; 4382 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4383 emitPostUpdateForReductionClause(*this, S, 4384 [](CodeGenFunction &) { return nullptr; }); 4385 } 4386 4387 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4388 const OMPTeamsDistributeParallelForSimdDirective &S) { 4389 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4390 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4391 S.getDistInc()); 4392 }; 4393 4394 // Emit teams region as a standalone region. 4395 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4396 PrePostActionTy &Action) { 4397 Action.Enter(CGF); 4398 OMPPrivateScope PrivateScope(CGF); 4399 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4400 (void)PrivateScope.Privatize(); 4401 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4402 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4403 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4404 }; 4405 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4406 emitPostUpdateForReductionClause(*this, S, 4407 [](CodeGenFunction &) { return nullptr; }); 4408 } 4409 4410 static void emitTargetTeamsDistributeParallelForRegion( 4411 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4412 PrePostActionTy &Action) { 4413 Action.Enter(CGF); 4414 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4415 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4416 S.getDistInc()); 4417 }; 4418 4419 // Emit teams region as a standalone region. 4420 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4421 PrePostActionTy &Action) { 4422 Action.Enter(CGF); 4423 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4424 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4425 (void)PrivateScope.Privatize(); 4426 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4427 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4428 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4429 }; 4430 4431 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4432 CodeGenTeams); 4433 emitPostUpdateForReductionClause(CGF, S, 4434 [](CodeGenFunction &) { return nullptr; }); 4435 } 4436 4437 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4438 CodeGenModule &CGM, StringRef ParentName, 4439 const OMPTargetTeamsDistributeParallelForDirective &S) { 4440 // Emit SPMD target teams distribute parallel for region as a standalone 4441 // region. 4442 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4443 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4444 }; 4445 llvm::Function *Fn; 4446 llvm::Constant *Addr; 4447 // Emit target region as a standalone region. 4448 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4449 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4450 assert(Fn && Addr && "Target device function emission failed."); 4451 } 4452 4453 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4454 const OMPTargetTeamsDistributeParallelForDirective &S) { 4455 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4456 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4457 }; 4458 emitCommonOMPTargetDirective(*this, S, CodeGen); 4459 } 4460 4461 static void emitTargetTeamsDistributeParallelForSimdRegion( 4462 CodeGenFunction &CGF, 4463 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4464 PrePostActionTy &Action) { 4465 Action.Enter(CGF); 4466 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4467 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4468 S.getDistInc()); 4469 }; 4470 4471 // Emit teams region as a standalone region. 4472 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4473 PrePostActionTy &Action) { 4474 Action.Enter(CGF); 4475 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4476 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4477 (void)PrivateScope.Privatize(); 4478 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4479 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4480 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4481 }; 4482 4483 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4484 CodeGenTeams); 4485 emitPostUpdateForReductionClause(CGF, S, 4486 [](CodeGenFunction &) { return nullptr; }); 4487 } 4488 4489 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4490 CodeGenModule &CGM, StringRef ParentName, 4491 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4492 // Emit SPMD target teams distribute parallel for simd region as a standalone 4493 // region. 4494 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4495 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4496 }; 4497 llvm::Function *Fn; 4498 llvm::Constant *Addr; 4499 // Emit target region as a standalone region. 4500 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4501 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4502 assert(Fn && Addr && "Target device function emission failed."); 4503 } 4504 4505 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4506 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4507 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4508 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4509 }; 4510 emitCommonOMPTargetDirective(*this, S, CodeGen); 4511 } 4512 4513 void CodeGenFunction::EmitOMPCancellationPointDirective( 4514 const OMPCancellationPointDirective &S) { 4515 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4516 S.getCancelRegion()); 4517 } 4518 4519 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4520 const Expr *IfCond = nullptr; 4521 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4522 if (C->getNameModifier() == OMPD_unknown || 4523 C->getNameModifier() == OMPD_cancel) { 4524 IfCond = C->getCondition(); 4525 break; 4526 } 4527 } 4528 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4529 S.getCancelRegion()); 4530 } 4531 4532 CodeGenFunction::JumpDest 4533 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4534 if (Kind == OMPD_parallel || Kind == OMPD_task || 4535 Kind == OMPD_target_parallel) 4536 return ReturnBlock; 4537 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4538 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4539 Kind == OMPD_distribute_parallel_for || 4540 Kind == OMPD_target_parallel_for || 4541 Kind == OMPD_teams_distribute_parallel_for || 4542 Kind == OMPD_target_teams_distribute_parallel_for); 4543 return OMPCancelStack.getExitBlock(); 4544 } 4545 4546 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4547 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4548 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4549 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4550 auto OrigVarIt = C.varlist_begin(); 4551 auto InitIt = C.inits().begin(); 4552 for (const Expr *PvtVarIt : C.private_copies()) { 4553 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4554 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4555 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4556 4557 // In order to identify the right initializer we need to match the 4558 // declaration used by the mapping logic. In some cases we may get 4559 // OMPCapturedExprDecl that refers to the original declaration. 4560 const ValueDecl *MatchingVD = OrigVD; 4561 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4562 // OMPCapturedExprDecl are used to privative fields of the current 4563 // structure. 4564 const auto *ME = cast<MemberExpr>(OED->getInit()); 4565 assert(isa<CXXThisExpr>(ME->getBase()) && 4566 "Base should be the current struct!"); 4567 MatchingVD = ME->getMemberDecl(); 4568 } 4569 4570 // If we don't have information about the current list item, move on to 4571 // the next one. 4572 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4573 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4574 continue; 4575 4576 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4577 InitAddrIt, InitVD, 4578 PvtVD]() { 4579 // Initialize the temporary initialization variable with the address we 4580 // get from the runtime library. We have to cast the source address 4581 // because it is always a void *. References are materialized in the 4582 // privatization scope, so the initialization here disregards the fact 4583 // the original variable is a reference. 4584 QualType AddrQTy = 4585 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4586 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4587 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4588 setAddrOfLocalVar(InitVD, InitAddr); 4589 4590 // Emit private declaration, it will be initialized by the value we 4591 // declaration we just added to the local declarations map. 4592 EmitDecl(*PvtVD); 4593 4594 // The initialization variables reached its purpose in the emission 4595 // of the previous declaration, so we don't need it anymore. 4596 LocalDeclMap.erase(InitVD); 4597 4598 // Return the address of the private variable. 4599 return GetAddrOfLocalVar(PvtVD); 4600 }); 4601 assert(IsRegistered && "firstprivate var already registered as private"); 4602 // Silence the warning about unused variable. 4603 (void)IsRegistered; 4604 4605 ++OrigVarIt; 4606 ++InitIt; 4607 } 4608 } 4609 4610 // Generate the instructions for '#pragma omp target data' directive. 4611 void CodeGenFunction::EmitOMPTargetDataDirective( 4612 const OMPTargetDataDirective &S) { 4613 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4614 4615 // Create a pre/post action to signal the privatization of the device pointer. 4616 // This action can be replaced by the OpenMP runtime code generation to 4617 // deactivate privatization. 4618 bool PrivatizeDevicePointers = false; 4619 class DevicePointerPrivActionTy : public PrePostActionTy { 4620 bool &PrivatizeDevicePointers; 4621 4622 public: 4623 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4624 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4625 void Enter(CodeGenFunction &CGF) override { 4626 PrivatizeDevicePointers = true; 4627 } 4628 }; 4629 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4630 4631 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4632 CodeGenFunction &CGF, PrePostActionTy &Action) { 4633 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4634 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4635 }; 4636 4637 // Codegen that selects whether to generate the privatization code or not. 4638 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4639 &InnermostCodeGen](CodeGenFunction &CGF, 4640 PrePostActionTy &Action) { 4641 RegionCodeGenTy RCG(InnermostCodeGen); 4642 PrivatizeDevicePointers = false; 4643 4644 // Call the pre-action to change the status of PrivatizeDevicePointers if 4645 // needed. 4646 Action.Enter(CGF); 4647 4648 if (PrivatizeDevicePointers) { 4649 OMPPrivateScope PrivateScope(CGF); 4650 // Emit all instances of the use_device_ptr clause. 4651 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4652 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4653 Info.CaptureDeviceAddrMap); 4654 (void)PrivateScope.Privatize(); 4655 RCG(CGF); 4656 } else { 4657 RCG(CGF); 4658 } 4659 }; 4660 4661 // Forward the provided action to the privatization codegen. 4662 RegionCodeGenTy PrivRCG(PrivCodeGen); 4663 PrivRCG.setAction(Action); 4664 4665 // Notwithstanding the body of the region is emitted as inlined directive, 4666 // we don't use an inline scope as changes in the references inside the 4667 // region are expected to be visible outside, so we do not privative them. 4668 OMPLexicalScope Scope(CGF, S); 4669 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4670 PrivRCG); 4671 }; 4672 4673 RegionCodeGenTy RCG(CodeGen); 4674 4675 // If we don't have target devices, don't bother emitting the data mapping 4676 // code. 4677 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4678 RCG(*this); 4679 return; 4680 } 4681 4682 // Check if we have any if clause associated with the directive. 4683 const Expr *IfCond = nullptr; 4684 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4685 IfCond = C->getCondition(); 4686 4687 // Check if we have any device clause associated with the directive. 4688 const Expr *Device = nullptr; 4689 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4690 Device = C->getDevice(); 4691 4692 // Set the action to signal privatization of device pointers. 4693 RCG.setAction(PrivAction); 4694 4695 // Emit region code. 4696 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4697 Info); 4698 } 4699 4700 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4701 const OMPTargetEnterDataDirective &S) { 4702 // If we don't have target devices, don't bother emitting the data mapping 4703 // code. 4704 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4705 return; 4706 4707 // Check if we have any if clause associated with the directive. 4708 const Expr *IfCond = nullptr; 4709 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4710 IfCond = C->getCondition(); 4711 4712 // Check if we have any device clause associated with the directive. 4713 const Expr *Device = nullptr; 4714 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4715 Device = C->getDevice(); 4716 4717 OMPLexicalScope Scope(*this, S, OMPD_task); 4718 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4719 } 4720 4721 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4722 const OMPTargetExitDataDirective &S) { 4723 // If we don't have target devices, don't bother emitting the data mapping 4724 // code. 4725 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4726 return; 4727 4728 // Check if we have any if clause associated with the directive. 4729 const Expr *IfCond = nullptr; 4730 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4731 IfCond = C->getCondition(); 4732 4733 // Check if we have any device clause associated with the directive. 4734 const Expr *Device = nullptr; 4735 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4736 Device = C->getDevice(); 4737 4738 OMPLexicalScope Scope(*this, S, OMPD_task); 4739 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4740 } 4741 4742 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4743 const OMPTargetParallelDirective &S, 4744 PrePostActionTy &Action) { 4745 // Get the captured statement associated with the 'parallel' region. 4746 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4747 Action.Enter(CGF); 4748 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4749 Action.Enter(CGF); 4750 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4751 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4752 CGF.EmitOMPPrivateClause(S, PrivateScope); 4753 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4754 (void)PrivateScope.Privatize(); 4755 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4756 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4757 // TODO: Add support for clauses. 4758 CGF.EmitStmt(CS->getCapturedStmt()); 4759 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4760 }; 4761 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4762 emitEmptyBoundParameters); 4763 emitPostUpdateForReductionClause(CGF, S, 4764 [](CodeGenFunction &) { return nullptr; }); 4765 } 4766 4767 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4768 CodeGenModule &CGM, StringRef ParentName, 4769 const OMPTargetParallelDirective &S) { 4770 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4771 emitTargetParallelRegion(CGF, S, Action); 4772 }; 4773 llvm::Function *Fn; 4774 llvm::Constant *Addr; 4775 // Emit target region as a standalone region. 4776 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4777 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4778 assert(Fn && Addr && "Target device function emission failed."); 4779 } 4780 4781 void CodeGenFunction::EmitOMPTargetParallelDirective( 4782 const OMPTargetParallelDirective &S) { 4783 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4784 emitTargetParallelRegion(CGF, S, Action); 4785 }; 4786 emitCommonOMPTargetDirective(*this, S, CodeGen); 4787 } 4788 4789 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4790 const OMPTargetParallelForDirective &S, 4791 PrePostActionTy &Action) { 4792 Action.Enter(CGF); 4793 // Emit directive as a combined directive that consists of two implicit 4794 // directives: 'parallel' with 'for' directive. 4795 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4796 Action.Enter(CGF); 4797 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4798 CGF, OMPD_target_parallel_for, S.hasCancel()); 4799 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4800 emitDispatchForLoopBounds); 4801 }; 4802 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4803 emitEmptyBoundParameters); 4804 } 4805 4806 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4807 CodeGenModule &CGM, StringRef ParentName, 4808 const OMPTargetParallelForDirective &S) { 4809 // Emit SPMD target parallel for region as a standalone region. 4810 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4811 emitTargetParallelForRegion(CGF, S, Action); 4812 }; 4813 llvm::Function *Fn; 4814 llvm::Constant *Addr; 4815 // Emit target region as a standalone region. 4816 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4817 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4818 assert(Fn && Addr && "Target device function emission failed."); 4819 } 4820 4821 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4822 const OMPTargetParallelForDirective &S) { 4823 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4824 emitTargetParallelForRegion(CGF, S, Action); 4825 }; 4826 emitCommonOMPTargetDirective(*this, S, CodeGen); 4827 } 4828 4829 static void 4830 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4831 const OMPTargetParallelForSimdDirective &S, 4832 PrePostActionTy &Action) { 4833 Action.Enter(CGF); 4834 // Emit directive as a combined directive that consists of two implicit 4835 // directives: 'parallel' with 'for' directive. 4836 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4837 Action.Enter(CGF); 4838 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4839 emitDispatchForLoopBounds); 4840 }; 4841 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4842 emitEmptyBoundParameters); 4843 } 4844 4845 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4846 CodeGenModule &CGM, StringRef ParentName, 4847 const OMPTargetParallelForSimdDirective &S) { 4848 // Emit SPMD target parallel for region as a standalone region. 4849 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4850 emitTargetParallelForSimdRegion(CGF, S, Action); 4851 }; 4852 llvm::Function *Fn; 4853 llvm::Constant *Addr; 4854 // Emit target region as a standalone region. 4855 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4856 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4857 assert(Fn && Addr && "Target device function emission failed."); 4858 } 4859 4860 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4861 const OMPTargetParallelForSimdDirective &S) { 4862 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4863 emitTargetParallelForSimdRegion(CGF, S, Action); 4864 }; 4865 emitCommonOMPTargetDirective(*this, S, CodeGen); 4866 } 4867 4868 /// Emit a helper variable and return corresponding lvalue. 4869 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4870 const ImplicitParamDecl *PVD, 4871 CodeGenFunction::OMPPrivateScope &Privates) { 4872 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4873 Privates.addPrivate(VDecl, 4874 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 4875 } 4876 4877 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4878 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4879 // Emit outlined function for task construct. 4880 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4881 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4882 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4883 const Expr *IfCond = nullptr; 4884 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4885 if (C->getNameModifier() == OMPD_unknown || 4886 C->getNameModifier() == OMPD_taskloop) { 4887 IfCond = C->getCondition(); 4888 break; 4889 } 4890 } 4891 4892 OMPTaskDataTy Data; 4893 // Check if taskloop must be emitted without taskgroup. 4894 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4895 // TODO: Check if we should emit tied or untied task. 4896 Data.Tied = true; 4897 // Set scheduling for taskloop 4898 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4899 // grainsize clause 4900 Data.Schedule.setInt(/*IntVal=*/false); 4901 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4902 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4903 // num_tasks clause 4904 Data.Schedule.setInt(/*IntVal=*/true); 4905 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4906 } 4907 4908 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4909 // if (PreCond) { 4910 // for (IV in 0..LastIteration) BODY; 4911 // <Final counter/linear vars updates>; 4912 // } 4913 // 4914 4915 // Emit: if (PreCond) - begin. 4916 // If the condition constant folds and can be elided, avoid emitting the 4917 // whole loop. 4918 bool CondConstant; 4919 llvm::BasicBlock *ContBlock = nullptr; 4920 OMPLoopScope PreInitScope(CGF, S); 4921 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4922 if (!CondConstant) 4923 return; 4924 } else { 4925 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4926 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4927 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4928 CGF.getProfileCount(&S)); 4929 CGF.EmitBlock(ThenBlock); 4930 CGF.incrementProfileCounter(&S); 4931 } 4932 4933 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4934 CGF.EmitOMPSimdInit(S); 4935 4936 OMPPrivateScope LoopScope(CGF); 4937 // Emit helper vars inits. 4938 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4939 auto *I = CS->getCapturedDecl()->param_begin(); 4940 auto *LBP = std::next(I, LowerBound); 4941 auto *UBP = std::next(I, UpperBound); 4942 auto *STP = std::next(I, Stride); 4943 auto *LIP = std::next(I, LastIter); 4944 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4945 LoopScope); 4946 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4947 LoopScope); 4948 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4949 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4950 LoopScope); 4951 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4952 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4953 (void)LoopScope.Privatize(); 4954 // Emit the loop iteration variable. 4955 const Expr *IVExpr = S.getIterationVariable(); 4956 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4957 CGF.EmitVarDecl(*IVDecl); 4958 CGF.EmitIgnoredExpr(S.getInit()); 4959 4960 // Emit the iterations count variable. 4961 // If it is not a variable, Sema decided to calculate iterations count on 4962 // each iteration (e.g., it is foldable into a constant). 4963 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4964 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4965 // Emit calculation of the iterations count. 4966 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4967 } 4968 4969 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4970 S.getInc(), 4971 [&S](CodeGenFunction &CGF) { 4972 CGF.EmitOMPLoopBody(S, JumpDest()); 4973 CGF.EmitStopPoint(&S); 4974 }, 4975 [](CodeGenFunction &) {}); 4976 // Emit: if (PreCond) - end. 4977 if (ContBlock) { 4978 CGF.EmitBranch(ContBlock); 4979 CGF.EmitBlock(ContBlock, true); 4980 } 4981 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4982 if (HasLastprivateClause) { 4983 CGF.EmitOMPLastprivateClauseFinal( 4984 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4985 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4986 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4987 (*LIP)->getType(), S.getBeginLoc()))); 4988 } 4989 }; 4990 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4991 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4992 const OMPTaskDataTy &Data) { 4993 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 4994 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 4995 OMPLoopScope PreInitScope(CGF, S); 4996 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 4997 OutlinedFn, SharedsTy, 4998 CapturedStruct, IfCond, Data); 4999 }; 5000 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5001 CodeGen); 5002 }; 5003 if (Data.Nogroup) { 5004 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5005 } else { 5006 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5007 *this, 5008 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5009 PrePostActionTy &Action) { 5010 Action.Enter(CGF); 5011 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5012 Data); 5013 }, 5014 S.getBeginLoc()); 5015 } 5016 } 5017 5018 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5019 EmitOMPTaskLoopBasedDirective(S); 5020 } 5021 5022 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5023 const OMPTaskLoopSimdDirective &S) { 5024 EmitOMPTaskLoopBasedDirective(S); 5025 } 5026 5027 // Generate the instructions for '#pragma omp target update' directive. 5028 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5029 const OMPTargetUpdateDirective &S) { 5030 // If we don't have target devices, don't bother emitting the data mapping 5031 // code. 5032 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5033 return; 5034 5035 // Check if we have any if clause associated with the directive. 5036 const Expr *IfCond = nullptr; 5037 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5038 IfCond = C->getCondition(); 5039 5040 // Check if we have any device clause associated with the directive. 5041 const Expr *Device = nullptr; 5042 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5043 Device = C->getDevice(); 5044 5045 OMPLexicalScope Scope(*this, S, OMPD_task); 5046 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5047 } 5048 5049 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5050 const OMPExecutableDirective &D) { 5051 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5052 return; 5053 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5054 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5055 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5056 } else { 5057 OMPPrivateScope LoopGlobals(CGF); 5058 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5059 for (const Expr *E : LD->counters()) { 5060 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5061 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5062 LValue GlobLVal = CGF.EmitLValue(E); 5063 LoopGlobals.addPrivate( 5064 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5065 } 5066 if (isa<OMPCapturedExprDecl>(VD)) { 5067 // Emit only those that were not explicitly referenced in clauses. 5068 if (!CGF.LocalDeclMap.count(VD)) 5069 CGF.EmitVarDecl(*VD); 5070 } 5071 } 5072 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5073 if (!C->getNumForLoops()) 5074 continue; 5075 for (unsigned I = LD->getCollapsedNumber(), 5076 E = C->getLoopNumIterations().size(); 5077 I < E; ++I) { 5078 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5079 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5080 // Emit only those that were not explicitly referenced in clauses. 5081 if (!CGF.LocalDeclMap.count(VD)) 5082 CGF.EmitVarDecl(*VD); 5083 } 5084 } 5085 } 5086 } 5087 LoopGlobals.Privatize(); 5088 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5089 } 5090 }; 5091 OMPSimdLexicalScope Scope(*this, D); 5092 CGM.getOpenMPRuntime().emitInlinedDirective( 5093 *this, 5094 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5095 : D.getDirectiveKind(), 5096 CodeGen); 5097 } 5098