1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
34           for (const auto *I : PreInit->decls()) {
35             if (!I->hasAttr<OMPCaptureNoInitAttr>())
36               CGF.EmitVarDecl(cast<VarDecl>(*I));
37             else {
38               CodeGenFunction::AutoVarEmission Emission =
39                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
40               CGF.EmitAutoVarCleanups(Emission);
41             }
42           }
43         }
44       }
45     }
46   }
47   CodeGenFunction::OMPPrivateScope InlinedShareds;
48 
49   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
50     return CGF.LambdaCaptureFields.lookup(VD) ||
51            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
52            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
53   }
54 
55 public:
56   OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S,
57                   bool AsInlined = false, bool EmitPreInitStmt = true)
58       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
59         InlinedShareds(CGF) {
60     if (EmitPreInitStmt)
61       emitPreInitStmt(CGF, S);
62     if (AsInlined) {
63       if (S.hasAssociatedStmt()) {
64         auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
65         for (auto &C : CS->captures()) {
66           if (C.capturesVariable() || C.capturesVariableByCopy()) {
67             auto *VD = C.getCapturedVar();
68             assert(VD == VD->getCanonicalDecl() &&
69                         "Canonical decl must be captured.");
70             DeclRefExpr DRE(const_cast<VarDecl *>(VD),
71                             isCapturedVar(CGF, VD) ||
72                                 (CGF.CapturedStmtInfo &&
73                                  InlinedShareds.isGlobalVarCaptured(VD)),
74                             VD->getType().getNonReferenceType(), VK_LValue,
75                             SourceLocation());
76             InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
77               return CGF.EmitLValue(&DRE).getAddress();
78             });
79           }
80         }
81         (void)InlinedShareds.Privatize();
82       }
83     }
84   }
85 };
86 
87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
88 /// for captured expressions.
89 class OMPParallelScope final : public OMPLexicalScope {
90   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
91     OpenMPDirectiveKind Kind = S.getDirectiveKind();
92     return !(isOpenMPTargetExecutionDirective(Kind) ||
93              isOpenMPLoopBoundSharingDirective(Kind)) &&
94            isOpenMPParallelDirective(Kind);
95   }
96 
97 public:
98   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
99       : OMPLexicalScope(CGF, S,
100                         /*AsInlined=*/false,
101                         /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {}
102 };
103 
104 /// Lexical scope for OpenMP teams construct, that handles correct codegen
105 /// for captured expressions.
106 class OMPTeamsScope final : public OMPLexicalScope {
107   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
108     OpenMPDirectiveKind Kind = S.getDirectiveKind();
109     return !isOpenMPTargetExecutionDirective(Kind) &&
110            isOpenMPTeamsDirective(Kind);
111   }
112 
113 public:
114   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
115       : OMPLexicalScope(CGF, S,
116                         /*AsInlined=*/false,
117                         /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {}
118 };
119 
120 /// Private scope for OpenMP loop-based directives, that supports capturing
121 /// of used expression from loop statement.
122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
123   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
124     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
125       if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) {
126         for (const auto *I : PreInits->decls())
127           CGF.EmitVarDecl(cast<VarDecl>(*I));
128       }
129     }
130   }
131 
132 public:
133   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
134       : CodeGenFunction::RunCleanupsScope(CGF) {
135     emitPreInitStmt(CGF, S);
136   }
137 };
138 
139 } // namespace
140 
141 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
142   if (auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
143     if (auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
144       OrigVD = OrigVD->getCanonicalDecl();
145       bool IsCaptured =
146           LambdaCaptureFields.lookup(OrigVD) ||
147           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
148           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
149       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured,
150                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
151       return EmitLValue(&DRE);
152     }
153   }
154   return EmitLValue(E);
155 }
156 
157 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
158   auto &C = getContext();
159   llvm::Value *Size = nullptr;
160   auto SizeInChars = C.getTypeSizeInChars(Ty);
161   if (SizeInChars.isZero()) {
162     // getTypeSizeInChars() returns 0 for a VLA.
163     while (auto *VAT = C.getAsVariableArrayType(Ty)) {
164       llvm::Value *ArraySize;
165       std::tie(ArraySize, Ty) = getVLASize(VAT);
166       Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize;
167     }
168     SizeInChars = C.getTypeSizeInChars(Ty);
169     if (SizeInChars.isZero())
170       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
171     Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
172   } else
173     Size = CGM.getSize(SizeInChars);
174   return Size;
175 }
176 
177 void CodeGenFunction::GenerateOpenMPCapturedVars(
178     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
179   const RecordDecl *RD = S.getCapturedRecordDecl();
180   auto CurField = RD->field_begin();
181   auto CurCap = S.captures().begin();
182   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
183                                                  E = S.capture_init_end();
184        I != E; ++I, ++CurField, ++CurCap) {
185     if (CurField->hasCapturedVLAType()) {
186       auto VAT = CurField->getCapturedVLAType();
187       auto *Val = VLASizeMap[VAT->getSizeExpr()];
188       CapturedVars.push_back(Val);
189     } else if (CurCap->capturesThis())
190       CapturedVars.push_back(CXXThisValue);
191     else if (CurCap->capturesVariableByCopy()) {
192       llvm::Value *CV =
193           EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal();
194 
195       // If the field is not a pointer, we need to save the actual value
196       // and load it as a void pointer.
197       if (!CurField->getType()->isAnyPointerType()) {
198         auto &Ctx = getContext();
199         auto DstAddr = CreateMemTemp(
200             Ctx.getUIntPtrType(),
201             Twine(CurCap->getCapturedVar()->getName()) + ".casted");
202         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
203 
204         auto *SrcAddrVal = EmitScalarConversion(
205             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
206             Ctx.getPointerType(CurField->getType()), SourceLocation());
207         LValue SrcLV =
208             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
209 
210         // Store the value using the source type pointer.
211         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
212 
213         // Load the value using the destination type pointer.
214         CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal();
215       }
216       CapturedVars.push_back(CV);
217     } else {
218       assert(CurCap->capturesVariable() && "Expected capture by reference.");
219       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
220     }
221   }
222 }
223 
224 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
225                                     StringRef Name, LValue AddrLV,
226                                     bool isReferenceType = false) {
227   ASTContext &Ctx = CGF.getContext();
228 
229   auto *CastedPtr = CGF.EmitScalarConversion(
230       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
231       Ctx.getPointerType(DstType), SourceLocation());
232   auto TmpAddr =
233       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
234           .getAddress();
235 
236   // If we are dealing with references we need to return the address of the
237   // reference instead of the reference of the value.
238   if (isReferenceType) {
239     QualType RefType = Ctx.getLValueReferenceType(DstType);
240     auto *RefVal = TmpAddr.getPointer();
241     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
242     auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
243     CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true);
244   }
245 
246   return TmpAddr;
247 }
248 
249 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
250   if (T->isLValueReferenceType()) {
251     return C.getLValueReferenceType(
252         getCanonicalParamType(C, T.getNonReferenceType()),
253         /*SpelledAsLValue=*/false);
254   }
255   if (T->isPointerType())
256     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
257   return C.getCanonicalParamType(T);
258 }
259 
260 namespace {
261   /// Contains required data for proper outlined function codegen.
262   struct FunctionOptions {
263     /// Captured statement for which the function is generated.
264     const CapturedStmt *S = nullptr;
265     /// true if cast to/from  UIntPtr is required for variables captured by
266     /// value.
267     const bool UIntPtrCastRequired = true;
268     /// true if only casted arguments must be registered as local args or VLA
269     /// sizes.
270     const bool RegisterCastedArgsOnly = false;
271     /// Name of the generated function.
272     const StringRef FunctionName;
273     explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
274                              bool RegisterCastedArgsOnly,
275                              StringRef FunctionName)
276         : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
277           RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
278           FunctionName(FunctionName) {}
279   };
280 }
281 
282 static llvm::Function *emitOutlinedFunctionPrologue(
283     CodeGenFunction &CGF, FunctionArgList &Args,
284     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
285         &LocalAddrs,
286     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
287         &VLASizes,
288     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
289   const CapturedDecl *CD = FO.S->getCapturedDecl();
290   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
291   assert(CD->hasBody() && "missing CapturedDecl body");
292 
293   CXXThisValue = nullptr;
294   // Build the argument list.
295   CodeGenModule &CGM = CGF.CGM;
296   ASTContext &Ctx = CGM.getContext();
297   FunctionArgList TargetArgs;
298   Args.append(CD->param_begin(),
299               std::next(CD->param_begin(), CD->getContextParamPosition()));
300   TargetArgs.append(
301       CD->param_begin(),
302       std::next(CD->param_begin(), CD->getContextParamPosition()));
303   auto I = FO.S->captures().begin();
304   for (auto *FD : RD->fields()) {
305     QualType ArgType = FD->getType();
306     IdentifierInfo *II = nullptr;
307     VarDecl *CapVar = nullptr;
308 
309     // If this is a capture by copy and the type is not a pointer, the outlined
310     // function argument type should be uintptr and the value properly casted to
311     // uintptr. This is necessary given that the runtime library is only able to
312     // deal with pointers. We can pass in the same way the VLA type sizes to the
313     // outlined function.
314     if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
315         I->capturesVariableArrayType()) {
316       if (FO.UIntPtrCastRequired)
317         ArgType = Ctx.getUIntPtrType();
318     }
319 
320     if (I->capturesVariable() || I->capturesVariableByCopy()) {
321       CapVar = I->getCapturedVar();
322       II = CapVar->getIdentifier();
323     } else if (I->capturesThis())
324       II = &Ctx.Idents.get("this");
325     else {
326       assert(I->capturesVariableArrayType());
327       II = &Ctx.Idents.get("vla");
328     }
329     if (ArgType->isVariablyModifiedType())
330       ArgType = getCanonicalParamType(Ctx, ArgType.getNonReferenceType());
331     auto *Arg =
332         ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), II,
333                                   ArgType, ImplicitParamDecl::Other);
334     Args.emplace_back(Arg);
335     // Do not cast arguments if we emit function with non-original types.
336     TargetArgs.emplace_back(
337         FO.UIntPtrCastRequired
338             ? Arg
339             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
340     ++I;
341   }
342   Args.append(
343       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
344       CD->param_end());
345   TargetArgs.append(
346       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
347       CD->param_end());
348 
349   // Create the function declaration.
350   FunctionType::ExtInfo ExtInfo;
351   const CGFunctionInfo &FuncInfo =
352       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
353   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
354 
355   llvm::Function *F =
356       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
357                              FO.FunctionName, &CGM.getModule());
358   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
359   if (CD->isNothrow())
360     F->setDoesNotThrow();
361 
362   // Generate the function.
363   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
364                     FO.S->getLocStart(), CD->getBody()->getLocStart());
365   unsigned Cnt = CD->getContextParamPosition();
366   I = FO.S->captures().begin();
367   for (auto *FD : RD->fields()) {
368     // Do not map arguments if we emit function with non-original types.
369     Address LocalAddr(Address::invalid());
370     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
371       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
372                                                              TargetArgs[Cnt]);
373     } else {
374       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
375     }
376     // If we are capturing a pointer by copy we don't need to do anything, just
377     // use the value that we get from the arguments.
378     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
379       const VarDecl *CurVD = I->getCapturedVar();
380       // If the variable is a reference we need to materialize it here.
381       if (CurVD->getType()->isReferenceType()) {
382         Address RefAddr = CGF.CreateMemTemp(
383             CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref");
384         CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr,
385                               /*Volatile=*/false, CurVD->getType());
386         LocalAddr = RefAddr;
387       }
388       if (!FO.RegisterCastedArgsOnly)
389         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
390       ++Cnt;
391       ++I;
392       continue;
393     }
394 
395     LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
396     LValue ArgLVal =
397         CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), BaseInfo);
398     if (FD->hasCapturedVLAType()) {
399       if (FO.UIntPtrCastRequired) {
400         ArgLVal = CGF.MakeAddrLValue(castValueFromUintptr(CGF, FD->getType(),
401                                                           Args[Cnt]->getName(),
402                                                           ArgLVal),
403                                      FD->getType(), BaseInfo);
404       }
405       auto *ExprArg =
406           CGF.EmitLoadOfLValue(ArgLVal, SourceLocation()).getScalarVal();
407       auto VAT = FD->getCapturedVLAType();
408       VLASizes.insert({Args[Cnt], {VAT->getSizeExpr(), ExprArg}});
409     } else if (I->capturesVariable()) {
410       auto *Var = I->getCapturedVar();
411       QualType VarTy = Var->getType();
412       Address ArgAddr = ArgLVal.getAddress();
413       if (!VarTy->isReferenceType()) {
414         if (ArgLVal.getType()->isLValueReferenceType()) {
415           ArgAddr = CGF.EmitLoadOfReference(
416               ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
417         } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
418           assert(ArgLVal.getType()->isPointerType());
419           ArgAddr = CGF.EmitLoadOfPointer(
420               ArgAddr, ArgLVal.getType()->castAs<PointerType>());
421         }
422       }
423       if (!FO.RegisterCastedArgsOnly) {
424         LocalAddrs.insert(
425             {Args[Cnt],
426              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
427       }
428     } else if (I->capturesVariableByCopy()) {
429       assert(!FD->getType()->isAnyPointerType() &&
430              "Not expecting a captured pointer.");
431       auto *Var = I->getCapturedVar();
432       QualType VarTy = Var->getType();
433       LocalAddrs.insert(
434           {Args[Cnt],
435            {Var,
436             FO.UIntPtrCastRequired
437                 ? castValueFromUintptr(CGF, FD->getType(), Args[Cnt]->getName(),
438                                        ArgLVal, VarTy->isReferenceType())
439                 : ArgLVal.getAddress()}});
440     } else {
441       // If 'this' is captured, load it into CXXThisValue.
442       assert(I->capturesThis());
443       CXXThisValue = CGF.EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation())
444                          .getScalarVal();
445       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}});
446     }
447     ++Cnt;
448     ++I;
449   }
450 
451   return F;
452 }
453 
454 llvm::Function *
455 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
456   assert(
457       CapturedStmtInfo &&
458       "CapturedStmtInfo should be set when generating the captured function");
459   const CapturedDecl *CD = S.getCapturedDecl();
460   // Build the argument list.
461   bool NeedWrapperFunction =
462       getDebugInfo() &&
463       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo;
464   FunctionArgList Args;
465   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
466   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
467   SmallString<256> Buffer;
468   llvm::raw_svector_ostream Out(Buffer);
469   Out << CapturedStmtInfo->getHelperName();
470   if (NeedWrapperFunction)
471     Out << "_debug__";
472   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
473                      Out.str());
474   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
475                                                    VLASizes, CXXThisValue, FO);
476   for (const auto &LocalAddrPair : LocalAddrs) {
477     if (LocalAddrPair.second.first) {
478       setAddrOfLocalVar(LocalAddrPair.second.first,
479                         LocalAddrPair.second.second);
480     }
481   }
482   for (const auto &VLASizePair : VLASizes)
483     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
484   PGO.assignRegionCounters(GlobalDecl(CD), F);
485   CapturedStmtInfo->EmitBody(*this, CD->getBody());
486   FinishFunction(CD->getBodyRBrace());
487   if (!NeedWrapperFunction)
488     return F;
489 
490   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
491                             /*RegisterCastedArgsOnly=*/true,
492                             CapturedStmtInfo->getHelperName());
493   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
494   Args.clear();
495   LocalAddrs.clear();
496   VLASizes.clear();
497   llvm::Function *WrapperF =
498       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
499                                    WrapperCGF.CXXThisValue, WrapperFO);
500   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
501   llvm::SmallVector<llvm::Value *, 4> CallArgs;
502   for (const auto *Arg : Args) {
503     llvm::Value *CallArg;
504     auto I = LocalAddrs.find(Arg);
505     if (I != LocalAddrs.end()) {
506       LValue LV =
507           WrapperCGF.MakeAddrLValue(I->second.second, Arg->getType(), BaseInfo);
508       CallArg = WrapperCGF.EmitLoadOfScalar(LV, SourceLocation());
509     } else {
510       auto EI = VLASizes.find(Arg);
511       if (EI != VLASizes.end())
512         CallArg = EI->second.second;
513       else {
514         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
515                                               Arg->getType(), BaseInfo);
516         CallArg = WrapperCGF.EmitLoadOfScalar(LV, SourceLocation());
517       }
518     }
519     CallArgs.emplace_back(CallArg);
520   }
521   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getLocStart(),
522                                                   F, CallArgs);
523   WrapperCGF.FinishFunction();
524   return WrapperF;
525 }
526 
527 //===----------------------------------------------------------------------===//
528 //                              OpenMP Directive Emission
529 //===----------------------------------------------------------------------===//
530 void CodeGenFunction::EmitOMPAggregateAssign(
531     Address DestAddr, Address SrcAddr, QualType OriginalType,
532     const llvm::function_ref<void(Address, Address)> &CopyGen) {
533   // Perform element-by-element initialization.
534   QualType ElementTy;
535 
536   // Drill down to the base element type on both arrays.
537   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
538   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
539   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
540 
541   auto SrcBegin = SrcAddr.getPointer();
542   auto DestBegin = DestAddr.getPointer();
543   // Cast from pointer to array type to pointer to single element.
544   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
545   // The basic structure here is a while-do loop.
546   auto BodyBB = createBasicBlock("omp.arraycpy.body");
547   auto DoneBB = createBasicBlock("omp.arraycpy.done");
548   auto IsEmpty =
549       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
550   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
551 
552   // Enter the loop body, making that address the current address.
553   auto EntryBB = Builder.GetInsertBlock();
554   EmitBlock(BodyBB);
555 
556   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
557 
558   llvm::PHINode *SrcElementPHI =
559     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
560   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
561   Address SrcElementCurrent =
562       Address(SrcElementPHI,
563               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
564 
565   llvm::PHINode *DestElementPHI =
566     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
567   DestElementPHI->addIncoming(DestBegin, EntryBB);
568   Address DestElementCurrent =
569     Address(DestElementPHI,
570             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
571 
572   // Emit copy.
573   CopyGen(DestElementCurrent, SrcElementCurrent);
574 
575   // Shift the address forward by one element.
576   auto DestElementNext = Builder.CreateConstGEP1_32(
577       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
578   auto SrcElementNext = Builder.CreateConstGEP1_32(
579       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
580   // Check whether we've reached the end.
581   auto Done =
582       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
583   Builder.CreateCondBr(Done, DoneBB, BodyBB);
584   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
585   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
586 
587   // Done.
588   EmitBlock(DoneBB, /*IsFinished=*/true);
589 }
590 
591 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
592                                   Address SrcAddr, const VarDecl *DestVD,
593                                   const VarDecl *SrcVD, const Expr *Copy) {
594   if (OriginalType->isArrayType()) {
595     auto *BO = dyn_cast<BinaryOperator>(Copy);
596     if (BO && BO->getOpcode() == BO_Assign) {
597       // Perform simple memcpy for simple copying.
598       EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
599     } else {
600       // For arrays with complex element types perform element by element
601       // copying.
602       EmitOMPAggregateAssign(
603           DestAddr, SrcAddr, OriginalType,
604           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
605             // Working with the single array element, so have to remap
606             // destination and source variables to corresponding array
607             // elements.
608             CodeGenFunction::OMPPrivateScope Remap(*this);
609             Remap.addPrivate(DestVD, [DestElement]() -> Address {
610               return DestElement;
611             });
612             Remap.addPrivate(
613                 SrcVD, [SrcElement]() -> Address { return SrcElement; });
614             (void)Remap.Privatize();
615             EmitIgnoredExpr(Copy);
616           });
617     }
618   } else {
619     // Remap pseudo source variable to private copy.
620     CodeGenFunction::OMPPrivateScope Remap(*this);
621     Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
622     Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
623     (void)Remap.Privatize();
624     // Emit copying of the whole variable.
625     EmitIgnoredExpr(Copy);
626   }
627 }
628 
629 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
630                                                 OMPPrivateScope &PrivateScope) {
631   if (!HaveInsertPoint())
632     return false;
633   bool FirstprivateIsLastprivate = false;
634   llvm::DenseSet<const VarDecl *> Lastprivates;
635   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
636     for (const auto *D : C->varlists())
637       Lastprivates.insert(
638           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
639   }
640   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
641   CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt()));
642   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
643     auto IRef = C->varlist_begin();
644     auto InitsRef = C->inits().begin();
645     for (auto IInit : C->private_copies()) {
646       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
647       bool ThisFirstprivateIsLastprivate =
648           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
649       auto *CapFD = CapturesInfo.lookup(OrigVD);
650       auto *FD = CapturedStmtInfo->lookup(OrigVD);
651       if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) &&
652           !FD->getType()->isReferenceType()) {
653         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
654         ++IRef;
655         ++InitsRef;
656         continue;
657       }
658       FirstprivateIsLastprivate =
659           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
660       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
661         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
662         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
663         bool IsRegistered;
664         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
665                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
666                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
667         Address OriginalAddr = EmitLValue(&DRE).getAddress();
668         QualType Type = VD->getType();
669         if (Type->isArrayType()) {
670           // Emit VarDecl with copy init for arrays.
671           // Get the address of the original variable captured in current
672           // captured region.
673           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
674             auto Emission = EmitAutoVarAlloca(*VD);
675             auto *Init = VD->getInit();
676             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
677               // Perform simple memcpy.
678               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
679                                   Type);
680             } else {
681               EmitOMPAggregateAssign(
682                   Emission.getAllocatedAddress(), OriginalAddr, Type,
683                   [this, VDInit, Init](Address DestElement,
684                                        Address SrcElement) {
685                     // Clean up any temporaries needed by the initialization.
686                     RunCleanupsScope InitScope(*this);
687                     // Emit initialization for single element.
688                     setAddrOfLocalVar(VDInit, SrcElement);
689                     EmitAnyExprToMem(Init, DestElement,
690                                      Init->getType().getQualifiers(),
691                                      /*IsInitializer*/ false);
692                     LocalDeclMap.erase(VDInit);
693                   });
694             }
695             EmitAutoVarCleanups(Emission);
696             return Emission.getAllocatedAddress();
697           });
698         } else {
699           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
700             // Emit private VarDecl with copy init.
701             // Remap temp VDInit variable to the address of the original
702             // variable
703             // (for proper handling of captured global variables).
704             setAddrOfLocalVar(VDInit, OriginalAddr);
705             EmitDecl(*VD);
706             LocalDeclMap.erase(VDInit);
707             return GetAddrOfLocalVar(VD);
708           });
709         }
710         assert(IsRegistered &&
711                "firstprivate var already registered as private");
712         // Silence the warning about unused variable.
713         (void)IsRegistered;
714       }
715       ++IRef;
716       ++InitsRef;
717     }
718   }
719   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
720 }
721 
722 void CodeGenFunction::EmitOMPPrivateClause(
723     const OMPExecutableDirective &D,
724     CodeGenFunction::OMPPrivateScope &PrivateScope) {
725   if (!HaveInsertPoint())
726     return;
727   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
728   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
729     auto IRef = C->varlist_begin();
730     for (auto IInit : C->private_copies()) {
731       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
732       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
733         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
734         bool IsRegistered =
735             PrivateScope.addPrivate(OrigVD, [&]() -> Address {
736               // Emit private VarDecl with copy init.
737               EmitDecl(*VD);
738               return GetAddrOfLocalVar(VD);
739             });
740         assert(IsRegistered && "private var already registered as private");
741         // Silence the warning about unused variable.
742         (void)IsRegistered;
743       }
744       ++IRef;
745     }
746   }
747 }
748 
749 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
750   if (!HaveInsertPoint())
751     return false;
752   // threadprivate_var1 = master_threadprivate_var1;
753   // operator=(threadprivate_var2, master_threadprivate_var2);
754   // ...
755   // __kmpc_barrier(&loc, global_tid);
756   llvm::DenseSet<const VarDecl *> CopiedVars;
757   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
758   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
759     auto IRef = C->varlist_begin();
760     auto ISrcRef = C->source_exprs().begin();
761     auto IDestRef = C->destination_exprs().begin();
762     for (auto *AssignOp : C->assignment_ops()) {
763       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
764       QualType Type = VD->getType();
765       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
766         // Get the address of the master variable. If we are emitting code with
767         // TLS support, the address is passed from the master as field in the
768         // captured declaration.
769         Address MasterAddr = Address::invalid();
770         if (getLangOpts().OpenMPUseTLS &&
771             getContext().getTargetInfo().isTLSSupported()) {
772           assert(CapturedStmtInfo->lookup(VD) &&
773                  "Copyin threadprivates should have been captured!");
774           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
775                           VK_LValue, (*IRef)->getExprLoc());
776           MasterAddr = EmitLValue(&DRE).getAddress();
777           LocalDeclMap.erase(VD);
778         } else {
779           MasterAddr =
780             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
781                                         : CGM.GetAddrOfGlobal(VD),
782                     getContext().getDeclAlign(VD));
783         }
784         // Get the address of the threadprivate variable.
785         Address PrivateAddr = EmitLValue(*IRef).getAddress();
786         if (CopiedVars.size() == 1) {
787           // At first check if current thread is a master thread. If it is, no
788           // need to copy data.
789           CopyBegin = createBasicBlock("copyin.not.master");
790           CopyEnd = createBasicBlock("copyin.not.master.end");
791           Builder.CreateCondBr(
792               Builder.CreateICmpNE(
793                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
794                   Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
795               CopyBegin, CopyEnd);
796           EmitBlock(CopyBegin);
797         }
798         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
799         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
800         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
801       }
802       ++IRef;
803       ++ISrcRef;
804       ++IDestRef;
805     }
806   }
807   if (CopyEnd) {
808     // Exit out of copying procedure for non-master thread.
809     EmitBlock(CopyEnd, /*IsFinished=*/true);
810     return true;
811   }
812   return false;
813 }
814 
815 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
816     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
817   if (!HaveInsertPoint())
818     return false;
819   bool HasAtLeastOneLastprivate = false;
820   llvm::DenseSet<const VarDecl *> SIMDLCVs;
821   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
822     auto *LoopDirective = cast<OMPLoopDirective>(&D);
823     for (auto *C : LoopDirective->counters()) {
824       SIMDLCVs.insert(
825           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
826     }
827   }
828   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
829   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
830     HasAtLeastOneLastprivate = true;
831     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()))
832       break;
833     auto IRef = C->varlist_begin();
834     auto IDestRef = C->destination_exprs().begin();
835     for (auto *IInit : C->private_copies()) {
836       // Keep the address of the original variable for future update at the end
837       // of the loop.
838       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
839       // Taskloops do not require additional initialization, it is done in
840       // runtime support library.
841       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
842         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
843         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
844           DeclRefExpr DRE(
845               const_cast<VarDecl *>(OrigVD),
846               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
847                   OrigVD) != nullptr,
848               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
849           return EmitLValue(&DRE).getAddress();
850         });
851         // Check if the variable is also a firstprivate: in this case IInit is
852         // not generated. Initialization of this variable will happen in codegen
853         // for 'firstprivate' clause.
854         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
855           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
856           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
857             // Emit private VarDecl with copy init.
858             EmitDecl(*VD);
859             return GetAddrOfLocalVar(VD);
860           });
861           assert(IsRegistered &&
862                  "lastprivate var already registered as private");
863           (void)IsRegistered;
864         }
865       }
866       ++IRef;
867       ++IDestRef;
868     }
869   }
870   return HasAtLeastOneLastprivate;
871 }
872 
873 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
874     const OMPExecutableDirective &D, bool NoFinals,
875     llvm::Value *IsLastIterCond) {
876   if (!HaveInsertPoint())
877     return;
878   // Emit following code:
879   // if (<IsLastIterCond>) {
880   //   orig_var1 = private_orig_var1;
881   //   ...
882   //   orig_varn = private_orig_varn;
883   // }
884   llvm::BasicBlock *ThenBB = nullptr;
885   llvm::BasicBlock *DoneBB = nullptr;
886   if (IsLastIterCond) {
887     ThenBB = createBasicBlock(".omp.lastprivate.then");
888     DoneBB = createBasicBlock(".omp.lastprivate.done");
889     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
890     EmitBlock(ThenBB);
891   }
892   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
893   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
894   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
895     auto IC = LoopDirective->counters().begin();
896     for (auto F : LoopDirective->finals()) {
897       auto *D =
898           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
899       if (NoFinals)
900         AlreadyEmittedVars.insert(D);
901       else
902         LoopCountersAndUpdates[D] = F;
903       ++IC;
904     }
905   }
906   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
907     auto IRef = C->varlist_begin();
908     auto ISrcRef = C->source_exprs().begin();
909     auto IDestRef = C->destination_exprs().begin();
910     for (auto *AssignOp : C->assignment_ops()) {
911       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
912       QualType Type = PrivateVD->getType();
913       auto *CanonicalVD = PrivateVD->getCanonicalDecl();
914       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
915         // If lastprivate variable is a loop control variable for loop-based
916         // directive, update its value before copyin back to original
917         // variable.
918         if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
919           EmitIgnoredExpr(FinalExpr);
920         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
921         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
922         // Get the address of the original variable.
923         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
924         // Get the address of the private variable.
925         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
926         if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
927           PrivateAddr =
928               Address(Builder.CreateLoad(PrivateAddr),
929                       getNaturalTypeAlignment(RefTy->getPointeeType()));
930         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
931       }
932       ++IRef;
933       ++ISrcRef;
934       ++IDestRef;
935     }
936     if (auto *PostUpdate = C->getPostUpdateExpr())
937       EmitIgnoredExpr(PostUpdate);
938   }
939   if (IsLastIterCond)
940     EmitBlock(DoneBB, /*IsFinished=*/true);
941 }
942 
943 void CodeGenFunction::EmitOMPReductionClauseInit(
944     const OMPExecutableDirective &D,
945     CodeGenFunction::OMPPrivateScope &PrivateScope) {
946   if (!HaveInsertPoint())
947     return;
948   SmallVector<const Expr *, 4> Shareds;
949   SmallVector<const Expr *, 4> Privates;
950   SmallVector<const Expr *, 4> ReductionOps;
951   SmallVector<const Expr *, 4> LHSs;
952   SmallVector<const Expr *, 4> RHSs;
953   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
954     auto IPriv = C->privates().begin();
955     auto IRed = C->reduction_ops().begin();
956     auto ILHS = C->lhs_exprs().begin();
957     auto IRHS = C->rhs_exprs().begin();
958     for (const auto *Ref : C->varlists()) {
959       Shareds.emplace_back(Ref);
960       Privates.emplace_back(*IPriv);
961       ReductionOps.emplace_back(*IRed);
962       LHSs.emplace_back(*ILHS);
963       RHSs.emplace_back(*IRHS);
964       std::advance(IPriv, 1);
965       std::advance(IRed, 1);
966       std::advance(ILHS, 1);
967       std::advance(IRHS, 1);
968     }
969   }
970   ReductionCodeGen RedCG(Shareds, Privates, ReductionOps);
971   unsigned Count = 0;
972   auto ILHS = LHSs.begin();
973   auto IRHS = RHSs.begin();
974   auto IPriv = Privates.begin();
975   for (const auto *IRef : Shareds) {
976     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
977     // Emit private VarDecl with reduction init.
978     RedCG.emitSharedLValue(*this, Count);
979     RedCG.emitAggregateType(*this, Count);
980     auto Emission = EmitAutoVarAlloca(*PrivateVD);
981     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
982                              RedCG.getSharedLValue(Count),
983                              [&Emission](CodeGenFunction &CGF) {
984                                CGF.EmitAutoVarInit(Emission);
985                                return true;
986                              });
987     EmitAutoVarCleanups(Emission);
988     Address BaseAddr = RedCG.adjustPrivateAddress(
989         *this, Count, Emission.getAllocatedAddress());
990     bool IsRegistered = PrivateScope.addPrivate(
991         RedCG.getBaseDecl(Count), [BaseAddr]() -> Address { return BaseAddr; });
992     assert(IsRegistered && "private var already registered as private");
993     // Silence the warning about unused variable.
994     (void)IsRegistered;
995 
996     auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
997     auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
998     if (isa<OMPArraySectionExpr>(IRef)) {
999       // Store the address of the original variable associated with the LHS
1000       // implicit variable.
1001       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address {
1002         return RedCG.getSharedLValue(Count).getAddress();
1003       });
1004       PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1005         return GetAddrOfLocalVar(PrivateVD);
1006       });
1007     } else if (isa<ArraySubscriptExpr>(IRef)) {
1008       // Store the address of the original variable associated with the LHS
1009       // implicit variable.
1010       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address {
1011         return RedCG.getSharedLValue(Count).getAddress();
1012       });
1013       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1014         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1015                                             ConvertTypeForMem(RHSVD->getType()),
1016                                             "rhs.begin");
1017       });
1018     } else {
1019       QualType Type = PrivateVD->getType();
1020       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1021       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress();
1022       // Store the address of the original variable associated with the LHS
1023       // implicit variable.
1024       if (IsArray) {
1025         OriginalAddr = Builder.CreateElementBitCast(
1026             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1027       }
1028       PrivateScope.addPrivate(
1029           LHSVD, [OriginalAddr]() -> Address { return OriginalAddr; });
1030       PrivateScope.addPrivate(
1031           RHSVD, [this, PrivateVD, RHSVD, IsArray]() -> Address {
1032             return IsArray
1033                        ? Builder.CreateElementBitCast(
1034                              GetAddrOfLocalVar(PrivateVD),
1035                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1036                        : GetAddrOfLocalVar(PrivateVD);
1037           });
1038     }
1039     ++ILHS;
1040     ++IRHS;
1041     ++IPriv;
1042     ++Count;
1043   }
1044 }
1045 
1046 void CodeGenFunction::EmitOMPReductionClauseFinal(
1047     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1048   if (!HaveInsertPoint())
1049     return;
1050   llvm::SmallVector<const Expr *, 8> Privates;
1051   llvm::SmallVector<const Expr *, 8> LHSExprs;
1052   llvm::SmallVector<const Expr *, 8> RHSExprs;
1053   llvm::SmallVector<const Expr *, 8> ReductionOps;
1054   bool HasAtLeastOneReduction = false;
1055   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1056     HasAtLeastOneReduction = true;
1057     Privates.append(C->privates().begin(), C->privates().end());
1058     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1059     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1060     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1061   }
1062   if (HasAtLeastOneReduction) {
1063     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1064                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1065                       D.getDirectiveKind() == OMPD_simd;
1066     bool SimpleReduction = D.getDirectiveKind() == OMPD_simd;
1067     // Emit nowait reduction if nowait clause is present or directive is a
1068     // parallel directive (it always has implicit barrier).
1069     CGM.getOpenMPRuntime().emitReduction(
1070         *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
1071         {WithNowait, SimpleReduction, ReductionKind});
1072   }
1073 }
1074 
1075 static void emitPostUpdateForReductionClause(
1076     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1077     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1078   if (!CGF.HaveInsertPoint())
1079     return;
1080   llvm::BasicBlock *DoneBB = nullptr;
1081   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1082     if (auto *PostUpdate = C->getPostUpdateExpr()) {
1083       if (!DoneBB) {
1084         if (auto *Cond = CondGen(CGF)) {
1085           // If the first post-update expression is found, emit conditional
1086           // block if it was requested.
1087           auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1088           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1089           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1090           CGF.EmitBlock(ThenBB);
1091         }
1092       }
1093       CGF.EmitIgnoredExpr(PostUpdate);
1094     }
1095   }
1096   if (DoneBB)
1097     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1098 }
1099 
1100 namespace {
1101 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1102 /// parallel function. This is necessary for combined constructs such as
1103 /// 'distribute parallel for'
1104 typedef llvm::function_ref<void(CodeGenFunction &,
1105                                 const OMPExecutableDirective &,
1106                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1107     CodeGenBoundParametersTy;
1108 } // anonymous namespace
1109 
1110 static void emitCommonOMPParallelDirective(
1111     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1112     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1113     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1114   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1115   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1116       S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1117   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1118     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1119     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1120                                          /*IgnoreResultAssign*/ true);
1121     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1122         CGF, NumThreads, NumThreadsClause->getLocStart());
1123   }
1124   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1125     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1126     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1127         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
1128   }
1129   const Expr *IfCond = nullptr;
1130   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1131     if (C->getNameModifier() == OMPD_unknown ||
1132         C->getNameModifier() == OMPD_parallel) {
1133       IfCond = C->getCondition();
1134       break;
1135     }
1136   }
1137 
1138   OMPParallelScope Scope(CGF, S);
1139   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1140   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1141   // lower and upper bounds with the pragma 'for' chunking mechanism.
1142   // The following lambda takes care of appending the lower and upper bound
1143   // parameters when necessary
1144   CodeGenBoundParameters(CGF, S, CapturedVars);
1145   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1146   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
1147                                               CapturedVars, IfCond);
1148 }
1149 
1150 static void emitEmptyBoundParameters(CodeGenFunction &,
1151                                      const OMPExecutableDirective &,
1152                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1153 
1154 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1155   // Emit parallel region as a standalone region.
1156   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1157     OMPPrivateScope PrivateScope(CGF);
1158     bool Copyins = CGF.EmitOMPCopyinClause(S);
1159     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1160     if (Copyins) {
1161       // Emit implicit barrier to synchronize threads and avoid data races on
1162       // propagation master's thread values of threadprivate variables to local
1163       // instances of that variables of all other implicit threads.
1164       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1165           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
1166           /*ForceSimpleCall=*/true);
1167     }
1168     CGF.EmitOMPPrivateClause(S, PrivateScope);
1169     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1170     (void)PrivateScope.Privatize();
1171     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1172     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1173   };
1174   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1175                                  emitEmptyBoundParameters);
1176   emitPostUpdateForReductionClause(
1177       *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1178 }
1179 
1180 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1181                                       JumpDest LoopExit) {
1182   RunCleanupsScope BodyScope(*this);
1183   // Update counters values on current iteration.
1184   for (auto I : D.updates()) {
1185     EmitIgnoredExpr(I);
1186   }
1187   // Update the linear variables.
1188   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1189     for (auto *U : C->updates())
1190       EmitIgnoredExpr(U);
1191   }
1192 
1193   // On a continue in the body, jump to the end.
1194   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
1195   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1196   // Emit loop body.
1197   EmitStmt(D.getBody());
1198   // The end (updates/cleanups).
1199   EmitBlock(Continue.getBlock());
1200   BreakContinueStack.pop_back();
1201 }
1202 
1203 void CodeGenFunction::EmitOMPInnerLoop(
1204     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1205     const Expr *IncExpr,
1206     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
1207     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
1208   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1209 
1210   // Start the loop with a block that tests the condition.
1211   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1212   EmitBlock(CondBlock);
1213   const SourceRange &R = S.getSourceRange();
1214   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1215                  SourceLocToDebugLoc(R.getEnd()));
1216 
1217   // If there are any cleanups between here and the loop-exit scope,
1218   // create a block to stage a loop exit along.
1219   auto ExitBlock = LoopExit.getBlock();
1220   if (RequiresCleanup)
1221     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1222 
1223   auto LoopBody = createBasicBlock("omp.inner.for.body");
1224 
1225   // Emit condition.
1226   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1227   if (ExitBlock != LoopExit.getBlock()) {
1228     EmitBlock(ExitBlock);
1229     EmitBranchThroughCleanup(LoopExit);
1230   }
1231 
1232   EmitBlock(LoopBody);
1233   incrementProfileCounter(&S);
1234 
1235   // Create a block for the increment.
1236   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1237   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1238 
1239   BodyGen(*this);
1240 
1241   // Emit "IV = IV + 1" and a back-edge to the condition block.
1242   EmitBlock(Continue.getBlock());
1243   EmitIgnoredExpr(IncExpr);
1244   PostIncGen(*this);
1245   BreakContinueStack.pop_back();
1246   EmitBranch(CondBlock);
1247   LoopStack.pop();
1248   // Emit the fall-through block.
1249   EmitBlock(LoopExit.getBlock());
1250 }
1251 
1252 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1253   if (!HaveInsertPoint())
1254     return false;
1255   // Emit inits for the linear variables.
1256   bool HasLinears = false;
1257   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1258     for (auto *Init : C->inits()) {
1259       HasLinears = true;
1260       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1261       if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1262         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1263         auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1264         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1265                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1266                         VD->getInit()->getType(), VK_LValue,
1267                         VD->getInit()->getExprLoc());
1268         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1269                                                 VD->getType()),
1270                        /*capturedByInit=*/false);
1271         EmitAutoVarCleanups(Emission);
1272       } else
1273         EmitVarDecl(*VD);
1274     }
1275     // Emit the linear steps for the linear clauses.
1276     // If a step is not constant, it is pre-calculated before the loop.
1277     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1278       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1279         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1280         // Emit calculation of the linear step.
1281         EmitIgnoredExpr(CS);
1282       }
1283   }
1284   return HasLinears;
1285 }
1286 
1287 void CodeGenFunction::EmitOMPLinearClauseFinal(
1288     const OMPLoopDirective &D,
1289     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1290   if (!HaveInsertPoint())
1291     return;
1292   llvm::BasicBlock *DoneBB = nullptr;
1293   // Emit the final values of the linear variables.
1294   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1295     auto IC = C->varlist_begin();
1296     for (auto *F : C->finals()) {
1297       if (!DoneBB) {
1298         if (auto *Cond = CondGen(*this)) {
1299           // If the first post-update expression is found, emit conditional
1300           // block if it was requested.
1301           auto *ThenBB = createBasicBlock(".omp.linear.pu");
1302           DoneBB = createBasicBlock(".omp.linear.pu.done");
1303           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1304           EmitBlock(ThenBB);
1305         }
1306       }
1307       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1308       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1309                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1310                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1311       Address OrigAddr = EmitLValue(&DRE).getAddress();
1312       CodeGenFunction::OMPPrivateScope VarScope(*this);
1313       VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; });
1314       (void)VarScope.Privatize();
1315       EmitIgnoredExpr(F);
1316       ++IC;
1317     }
1318     if (auto *PostUpdate = C->getPostUpdateExpr())
1319       EmitIgnoredExpr(PostUpdate);
1320   }
1321   if (DoneBB)
1322     EmitBlock(DoneBB, /*IsFinished=*/true);
1323 }
1324 
1325 static void emitAlignedClause(CodeGenFunction &CGF,
1326                               const OMPExecutableDirective &D) {
1327   if (!CGF.HaveInsertPoint())
1328     return;
1329   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1330     unsigned ClauseAlignment = 0;
1331     if (auto AlignmentExpr = Clause->getAlignment()) {
1332       auto AlignmentCI =
1333           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1334       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1335     }
1336     for (auto E : Clause->varlists()) {
1337       unsigned Alignment = ClauseAlignment;
1338       if (Alignment == 0) {
1339         // OpenMP [2.8.1, Description]
1340         // If no optional parameter is specified, implementation-defined default
1341         // alignments for SIMD instructions on the target platforms are assumed.
1342         Alignment =
1343             CGF.getContext()
1344                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1345                     E->getType()->getPointeeType()))
1346                 .getQuantity();
1347       }
1348       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1349              "alignment is not power of 2");
1350       if (Alignment != 0) {
1351         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1352         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1353       }
1354     }
1355   }
1356 }
1357 
1358 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1359     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1360   if (!HaveInsertPoint())
1361     return;
1362   auto I = S.private_counters().begin();
1363   for (auto *E : S.counters()) {
1364     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1365     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1366     (void)LoopScope.addPrivate(VD, [&]() -> Address {
1367       // Emit var without initialization.
1368       if (!LocalDeclMap.count(PrivateVD)) {
1369         auto VarEmission = EmitAutoVarAlloca(*PrivateVD);
1370         EmitAutoVarCleanups(VarEmission);
1371       }
1372       DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1373                       /*RefersToEnclosingVariableOrCapture=*/false,
1374                       (*I)->getType(), VK_LValue, (*I)->getExprLoc());
1375       return EmitLValue(&DRE).getAddress();
1376     });
1377     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1378         VD->hasGlobalStorage()) {
1379       (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
1380         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1381                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1382                         E->getType(), VK_LValue, E->getExprLoc());
1383         return EmitLValue(&DRE).getAddress();
1384       });
1385     }
1386     ++I;
1387   }
1388 }
1389 
1390 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1391                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1392                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1393   if (!CGF.HaveInsertPoint())
1394     return;
1395   {
1396     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1397     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1398     (void)PreCondScope.Privatize();
1399     // Get initial values of real counters.
1400     for (auto I : S.inits()) {
1401       CGF.EmitIgnoredExpr(I);
1402     }
1403   }
1404   // Check that loop is executed at least one time.
1405   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1406 }
1407 
1408 void CodeGenFunction::EmitOMPLinearClause(
1409     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1410   if (!HaveInsertPoint())
1411     return;
1412   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1413   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1414     auto *LoopDirective = cast<OMPLoopDirective>(&D);
1415     for (auto *C : LoopDirective->counters()) {
1416       SIMDLCVs.insert(
1417           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1418     }
1419   }
1420   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1421     auto CurPrivate = C->privates().begin();
1422     for (auto *E : C->varlists()) {
1423       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1424       auto *PrivateVD =
1425           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1426       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1427         bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
1428           // Emit private VarDecl with copy init.
1429           EmitVarDecl(*PrivateVD);
1430           return GetAddrOfLocalVar(PrivateVD);
1431         });
1432         assert(IsRegistered && "linear var already registered as private");
1433         // Silence the warning about unused variable.
1434         (void)IsRegistered;
1435       } else
1436         EmitVarDecl(*PrivateVD);
1437       ++CurPrivate;
1438     }
1439   }
1440 }
1441 
1442 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1443                                      const OMPExecutableDirective &D,
1444                                      bool IsMonotonic) {
1445   if (!CGF.HaveInsertPoint())
1446     return;
1447   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1448     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1449                                  /*ignoreResult=*/true);
1450     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1451     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1452     // In presence of finite 'safelen', it may be unsafe to mark all
1453     // the memory instructions parallel, because loop-carried
1454     // dependences of 'safelen' iterations are possible.
1455     if (!IsMonotonic)
1456       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1457   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1458     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1459                                  /*ignoreResult=*/true);
1460     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1461     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1462     // In presence of finite 'safelen', it may be unsafe to mark all
1463     // the memory instructions parallel, because loop-carried
1464     // dependences of 'safelen' iterations are possible.
1465     CGF.LoopStack.setParallel(false);
1466   }
1467 }
1468 
1469 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1470                                       bool IsMonotonic) {
1471   // Walk clauses and process safelen/lastprivate.
1472   LoopStack.setParallel(!IsMonotonic);
1473   LoopStack.setVectorizeEnable(true);
1474   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1475 }
1476 
1477 void CodeGenFunction::EmitOMPSimdFinal(
1478     const OMPLoopDirective &D,
1479     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1480   if (!HaveInsertPoint())
1481     return;
1482   llvm::BasicBlock *DoneBB = nullptr;
1483   auto IC = D.counters().begin();
1484   auto IPC = D.private_counters().begin();
1485   for (auto F : D.finals()) {
1486     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1487     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1488     auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1489     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1490         OrigVD->hasGlobalStorage() || CED) {
1491       if (!DoneBB) {
1492         if (auto *Cond = CondGen(*this)) {
1493           // If the first post-update expression is found, emit conditional
1494           // block if it was requested.
1495           auto *ThenBB = createBasicBlock(".omp.final.then");
1496           DoneBB = createBasicBlock(".omp.final.done");
1497           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1498           EmitBlock(ThenBB);
1499         }
1500       }
1501       Address OrigAddr = Address::invalid();
1502       if (CED)
1503         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1504       else {
1505         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1506                         /*RefersToEnclosingVariableOrCapture=*/false,
1507                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1508         OrigAddr = EmitLValue(&DRE).getAddress();
1509       }
1510       OMPPrivateScope VarScope(*this);
1511       VarScope.addPrivate(OrigVD,
1512                           [OrigAddr]() -> Address { return OrigAddr; });
1513       (void)VarScope.Privatize();
1514       EmitIgnoredExpr(F);
1515     }
1516     ++IC;
1517     ++IPC;
1518   }
1519   if (DoneBB)
1520     EmitBlock(DoneBB, /*IsFinished=*/true);
1521 }
1522 
1523 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
1524                                          const OMPLoopDirective &S,
1525                                          CodeGenFunction::JumpDest LoopExit) {
1526   CGF.EmitOMPLoopBody(S, LoopExit);
1527   CGF.EmitStopPoint(&S);
1528 }
1529 
1530 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1531   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1532     OMPLoopScope PreInitScope(CGF, S);
1533     // if (PreCond) {
1534     //   for (IV in 0..LastIteration) BODY;
1535     //   <Final counter/linear vars updates>;
1536     // }
1537     //
1538 
1539     // Emit: if (PreCond) - begin.
1540     // If the condition constant folds and can be elided, avoid emitting the
1541     // whole loop.
1542     bool CondConstant;
1543     llvm::BasicBlock *ContBlock = nullptr;
1544     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1545       if (!CondConstant)
1546         return;
1547     } else {
1548       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
1549       ContBlock = CGF.createBasicBlock("simd.if.end");
1550       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1551                   CGF.getProfileCount(&S));
1552       CGF.EmitBlock(ThenBlock);
1553       CGF.incrementProfileCounter(&S);
1554     }
1555 
1556     // Emit the loop iteration variable.
1557     const Expr *IVExpr = S.getIterationVariable();
1558     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1559     CGF.EmitVarDecl(*IVDecl);
1560     CGF.EmitIgnoredExpr(S.getInit());
1561 
1562     // Emit the iterations count variable.
1563     // If it is not a variable, Sema decided to calculate iterations count on
1564     // each iteration (e.g., it is foldable into a constant).
1565     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1566       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1567       // Emit calculation of the iterations count.
1568       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1569     }
1570 
1571     CGF.EmitOMPSimdInit(S);
1572 
1573     emitAlignedClause(CGF, S);
1574     (void)CGF.EmitOMPLinearClauseInit(S);
1575     {
1576       OMPPrivateScope LoopScope(CGF);
1577       CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1578       CGF.EmitOMPLinearClause(S, LoopScope);
1579       CGF.EmitOMPPrivateClause(S, LoopScope);
1580       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1581       bool HasLastprivateClause =
1582           CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1583       (void)LoopScope.Privatize();
1584       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1585                            S.getInc(),
1586                            [&S](CodeGenFunction &CGF) {
1587                              CGF.EmitOMPLoopBody(S, JumpDest());
1588                              CGF.EmitStopPoint(&S);
1589                            },
1590                            [](CodeGenFunction &) {});
1591       CGF.EmitOMPSimdFinal(
1592           S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1593       // Emit final copy of the lastprivate variables at the end of loops.
1594       if (HasLastprivateClause)
1595         CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1596       CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
1597       emitPostUpdateForReductionClause(
1598           CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1599     }
1600     CGF.EmitOMPLinearClauseFinal(
1601         S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1602     // Emit: if (PreCond) - end.
1603     if (ContBlock) {
1604       CGF.EmitBranch(ContBlock);
1605       CGF.EmitBlock(ContBlock, true);
1606     }
1607   };
1608   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1609   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1610 }
1611 
1612 void CodeGenFunction::EmitOMPOuterLoop(
1613     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
1614     CodeGenFunction::OMPPrivateScope &LoopScope,
1615     const CodeGenFunction::OMPLoopArguments &LoopArgs,
1616     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
1617     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
1618   auto &RT = CGM.getOpenMPRuntime();
1619 
1620   const Expr *IVExpr = S.getIterationVariable();
1621   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1622   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1623 
1624   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1625 
1626   // Start the loop with a block that tests the condition.
1627   auto CondBlock = createBasicBlock("omp.dispatch.cond");
1628   EmitBlock(CondBlock);
1629   const SourceRange &R = S.getSourceRange();
1630   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1631                  SourceLocToDebugLoc(R.getEnd()));
1632 
1633   llvm::Value *BoolCondVal = nullptr;
1634   if (!DynamicOrOrdered) {
1635     // UB = min(UB, GlobalUB) or
1636     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
1637     // 'distribute parallel for')
1638     EmitIgnoredExpr(LoopArgs.EUB);
1639     // IV = LB
1640     EmitIgnoredExpr(LoopArgs.Init);
1641     // IV < UB
1642     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
1643   } else {
1644     BoolCondVal =
1645         RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, LoopArgs.IL,
1646                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
1647   }
1648 
1649   // If there are any cleanups between here and the loop-exit scope,
1650   // create a block to stage a loop exit along.
1651   auto ExitBlock = LoopExit.getBlock();
1652   if (LoopScope.requiresCleanups())
1653     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1654 
1655   auto LoopBody = createBasicBlock("omp.dispatch.body");
1656   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1657   if (ExitBlock != LoopExit.getBlock()) {
1658     EmitBlock(ExitBlock);
1659     EmitBranchThroughCleanup(LoopExit);
1660   }
1661   EmitBlock(LoopBody);
1662 
1663   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1664   // LB for loop condition and emitted it above).
1665   if (DynamicOrOrdered)
1666     EmitIgnoredExpr(LoopArgs.Init);
1667 
1668   // Create a block for the increment.
1669   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1670   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1671 
1672   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1673   // with dynamic/guided scheduling and without ordered clause.
1674   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1675     LoopStack.setParallel(!IsMonotonic);
1676   else
1677     EmitOMPSimdInit(S, IsMonotonic);
1678 
1679   SourceLocation Loc = S.getLocStart();
1680 
1681   // when 'distribute' is not combined with a 'for':
1682   // while (idx <= UB) { BODY; ++idx; }
1683   // when 'distribute' is combined with a 'for'
1684   // (e.g. 'distribute parallel for')
1685   // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
1686   EmitOMPInnerLoop(
1687       S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
1688       [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
1689         CodeGenLoop(CGF, S, LoopExit);
1690       },
1691       [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
1692         CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
1693       });
1694 
1695   EmitBlock(Continue.getBlock());
1696   BreakContinueStack.pop_back();
1697   if (!DynamicOrOrdered) {
1698     // Emit "LB = LB + Stride", "UB = UB + Stride".
1699     EmitIgnoredExpr(LoopArgs.NextLB);
1700     EmitIgnoredExpr(LoopArgs.NextUB);
1701   }
1702 
1703   EmitBranch(CondBlock);
1704   LoopStack.pop();
1705   // Emit the fall-through block.
1706   EmitBlock(LoopExit.getBlock());
1707 
1708   // Tell the runtime we are done.
1709   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
1710     if (!DynamicOrOrdered)
1711       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(),
1712                                                      S.getDirectiveKind());
1713   };
1714   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
1715 }
1716 
1717 void CodeGenFunction::EmitOMPForOuterLoop(
1718     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1719     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1720     const OMPLoopArguments &LoopArgs,
1721     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
1722   auto &RT = CGM.getOpenMPRuntime();
1723 
1724   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1725   const bool DynamicOrOrdered =
1726       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1727 
1728   assert((Ordered ||
1729           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1730                                  LoopArgs.Chunk != nullptr)) &&
1731          "static non-chunked schedule does not need outer loop");
1732 
1733   // Emit outer loop.
1734   //
1735   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1736   // When schedule(dynamic,chunk_size) is specified, the iterations are
1737   // distributed to threads in the team in chunks as the threads request them.
1738   // Each thread executes a chunk of iterations, then requests another chunk,
1739   // until no chunks remain to be distributed. Each chunk contains chunk_size
1740   // iterations, except for the last chunk to be distributed, which may have
1741   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1742   //
1743   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1744   // to threads in the team in chunks as the executing threads request them.
1745   // Each thread executes a chunk of iterations, then requests another chunk,
1746   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1747   // each chunk is proportional to the number of unassigned iterations divided
1748   // by the number of threads in the team, decreasing to 1. For a chunk_size
1749   // with value k (greater than 1), the size of each chunk is determined in the
1750   // same way, with the restriction that the chunks do not contain fewer than k
1751   // iterations (except for the last chunk to be assigned, which may have fewer
1752   // than k iterations).
1753   //
1754   // When schedule(auto) is specified, the decision regarding scheduling is
1755   // delegated to the compiler and/or runtime system. The programmer gives the
1756   // implementation the freedom to choose any possible mapping of iterations to
1757   // threads in the team.
1758   //
1759   // When schedule(runtime) is specified, the decision regarding scheduling is
1760   // deferred until run time, and the schedule and chunk size are taken from the
1761   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1762   // implementation defined
1763   //
1764   // while(__kmpc_dispatch_next(&LB, &UB)) {
1765   //   idx = LB;
1766   //   while (idx <= UB) { BODY; ++idx;
1767   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1768   //   } // inner loop
1769   // }
1770   //
1771   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1772   // When schedule(static, chunk_size) is specified, iterations are divided into
1773   // chunks of size chunk_size, and the chunks are assigned to the threads in
1774   // the team in a round-robin fashion in the order of the thread number.
1775   //
1776   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1777   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1778   //   LB = LB + ST;
1779   //   UB = UB + ST;
1780   // }
1781   //
1782 
1783   const Expr *IVExpr = S.getIterationVariable();
1784   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1785   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1786 
1787   if (DynamicOrOrdered) {
1788     auto DispatchBounds = CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
1789     llvm::Value *LBVal = DispatchBounds.first;
1790     llvm::Value *UBVal = DispatchBounds.second;
1791     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
1792                                                              LoopArgs.Chunk};
1793     RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize,
1794                            IVSigned, Ordered, DipatchRTInputValues);
1795   } else {
1796     CGOpenMPRuntime::StaticRTInput StaticInit(
1797         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
1798         LoopArgs.ST, LoopArgs.Chunk);
1799     RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(),
1800                          ScheduleKind, StaticInit);
1801   }
1802 
1803   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
1804                                     const unsigned IVSize,
1805                                     const bool IVSigned) {
1806     if (Ordered) {
1807       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
1808                                                             IVSigned);
1809     }
1810   };
1811 
1812   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
1813                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
1814   OuterLoopArgs.IncExpr = S.getInc();
1815   OuterLoopArgs.Init = S.getInit();
1816   OuterLoopArgs.Cond = S.getCond();
1817   OuterLoopArgs.NextLB = S.getNextLowerBound();
1818   OuterLoopArgs.NextUB = S.getNextUpperBound();
1819   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
1820                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
1821 }
1822 
1823 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
1824                              const unsigned IVSize, const bool IVSigned) {}
1825 
1826 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1827     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
1828     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
1829     const CodeGenLoopTy &CodeGenLoopContent) {
1830 
1831   auto &RT = CGM.getOpenMPRuntime();
1832 
1833   // Emit outer loop.
1834   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1835   // dynamic
1836   //
1837 
1838   const Expr *IVExpr = S.getIterationVariable();
1839   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1840   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1841 
1842   CGOpenMPRuntime::StaticRTInput StaticInit(
1843       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
1844       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
1845   RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, StaticInit);
1846 
1847   // for combined 'distribute' and 'for' the increment expression of distribute
1848   // is store in DistInc. For 'distribute' alone, it is in Inc.
1849   Expr *IncExpr;
1850   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
1851     IncExpr = S.getDistInc();
1852   else
1853     IncExpr = S.getInc();
1854 
1855   // this routine is shared by 'omp distribute parallel for' and
1856   // 'omp distribute': select the right EUB expression depending on the
1857   // directive
1858   OMPLoopArguments OuterLoopArgs;
1859   OuterLoopArgs.LB = LoopArgs.LB;
1860   OuterLoopArgs.UB = LoopArgs.UB;
1861   OuterLoopArgs.ST = LoopArgs.ST;
1862   OuterLoopArgs.IL = LoopArgs.IL;
1863   OuterLoopArgs.Chunk = LoopArgs.Chunk;
1864   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
1865                           ? S.getCombinedEnsureUpperBound()
1866                           : S.getEnsureUpperBound();
1867   OuterLoopArgs.IncExpr = IncExpr;
1868   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
1869                            ? S.getCombinedInit()
1870                            : S.getInit();
1871   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
1872                            ? S.getCombinedCond()
1873                            : S.getCond();
1874   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
1875                              ? S.getCombinedNextLowerBound()
1876                              : S.getNextLowerBound();
1877   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
1878                              ? S.getCombinedNextUpperBound()
1879                              : S.getNextUpperBound();
1880 
1881   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
1882                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
1883                    emitEmptyOrdered);
1884 }
1885 
1886 /// Emit a helper variable and return corresponding lvalue.
1887 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1888                                const DeclRefExpr *Helper) {
1889   auto VDecl = cast<VarDecl>(Helper->getDecl());
1890   CGF.EmitVarDecl(*VDecl);
1891   return CGF.EmitLValue(Helper);
1892 }
1893 
1894 static std::pair<LValue, LValue>
1895 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
1896                                      const OMPExecutableDirective &S) {
1897   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
1898   LValue LB =
1899       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
1900   LValue UB =
1901       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
1902 
1903   // When composing 'distribute' with 'for' (e.g. as in 'distribute
1904   // parallel for') we need to use the 'distribute'
1905   // chunk lower and upper bounds rather than the whole loop iteration
1906   // space. These are parameters to the outlined function for 'parallel'
1907   // and we copy the bounds of the previous schedule into the
1908   // the current ones.
1909   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
1910   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
1911   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(PrevLB, SourceLocation());
1912   PrevLBVal = CGF.EmitScalarConversion(
1913       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
1914       LS.getIterationVariable()->getType(), SourceLocation());
1915   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(PrevUB, SourceLocation());
1916   PrevUBVal = CGF.EmitScalarConversion(
1917       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
1918       LS.getIterationVariable()->getType(), SourceLocation());
1919 
1920   CGF.EmitStoreOfScalar(PrevLBVal, LB);
1921   CGF.EmitStoreOfScalar(PrevUBVal, UB);
1922 
1923   return {LB, UB};
1924 }
1925 
1926 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
1927 /// we need to use the LB and UB expressions generated by the worksharing
1928 /// code generation support, whereas in non combined situations we would
1929 /// just emit 0 and the LastIteration expression
1930 /// This function is necessary due to the difference of the LB and UB
1931 /// types for the RT emission routines for 'for_static_init' and
1932 /// 'for_dispatch_init'
1933 static std::pair<llvm::Value *, llvm::Value *>
1934 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
1935                                         const OMPExecutableDirective &S,
1936                                         Address LB, Address UB) {
1937   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
1938   const Expr *IVExpr = LS.getIterationVariable();
1939   // when implementing a dynamic schedule for a 'for' combined with a
1940   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
1941   // is not normalized as each team only executes its own assigned
1942   // distribute chunk
1943   QualType IteratorTy = IVExpr->getType();
1944   llvm::Value *LBVal = CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy,
1945                                             SourceLocation());
1946   llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy,
1947                                             SourceLocation());
1948   return {LBVal, UBVal};
1949 }
1950 
1951 static void emitDistributeParallelForDistributeInnerBoundParams(
1952     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1953     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
1954   const auto &Dir = cast<OMPLoopDirective>(S);
1955   LValue LB =
1956       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
1957   auto LBCast = CGF.Builder.CreateIntCast(
1958       CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
1959   CapturedVars.push_back(LBCast);
1960   LValue UB =
1961       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
1962 
1963   auto UBCast = CGF.Builder.CreateIntCast(
1964       CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
1965   CapturedVars.push_back(UBCast);
1966 }
1967 
1968 static void
1969 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
1970                                  const OMPLoopDirective &S,
1971                                  CodeGenFunction::JumpDest LoopExit) {
1972   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
1973                                          PrePostActionTy &) {
1974     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
1975                                emitDistributeParallelForInnerBounds,
1976                                emitDistributeParallelForDispatchBounds);
1977   };
1978 
1979   emitCommonOMPParallelDirective(
1980       CGF, S, OMPD_for, CGInlinedWorksharingLoop,
1981       emitDistributeParallelForDistributeInnerBoundParams);
1982 }
1983 
1984 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
1985     const OMPDistributeParallelForDirective &S) {
1986   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1987     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
1988                               S.getDistInc());
1989   };
1990   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1991   OMPCancelStackRAII CancelRegion(*this, OMPD_distribute_parallel_for,
1992                                   /*HasCancel=*/false);
1993   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen,
1994                                               /*HasCancel=*/false);
1995 }
1996 
1997 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
1998     const OMPDistributeParallelForSimdDirective &S) {
1999   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2000   CGM.getOpenMPRuntime().emitInlinedDirective(
2001       *this, OMPD_distribute_parallel_for_simd,
2002       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2003         OMPLoopScope PreInitScope(CGF, S);
2004         CGF.EmitStmt(
2005             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2006       });
2007 }
2008 
2009 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2010     const OMPDistributeSimdDirective &S) {
2011   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2012   CGM.getOpenMPRuntime().emitInlinedDirective(
2013       *this, OMPD_distribute_simd,
2014       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2015         OMPLoopScope PreInitScope(CGF, S);
2016         CGF.EmitStmt(
2017             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2018       });
2019 }
2020 
2021 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
2022     const OMPTargetParallelForSimdDirective &S) {
2023   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2024   CGM.getOpenMPRuntime().emitInlinedDirective(
2025       *this, OMPD_target_parallel_for_simd,
2026       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2027         OMPLoopScope PreInitScope(CGF, S);
2028         CGF.EmitStmt(
2029             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2030       });
2031 }
2032 
2033 void CodeGenFunction::EmitOMPTargetSimdDirective(
2034     const OMPTargetSimdDirective &S) {
2035   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2036   CGM.getOpenMPRuntime().emitInlinedDirective(
2037       *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2038         OMPLoopScope PreInitScope(CGF, S);
2039         CGF.EmitStmt(
2040             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2041       });
2042 }
2043 
2044 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
2045     const OMPTeamsDistributeDirective &S) {
2046   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2047   CGM.getOpenMPRuntime().emitInlinedDirective(
2048       *this, OMPD_teams_distribute,
2049       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2050         OMPLoopScope PreInitScope(CGF, S);
2051         CGF.EmitStmt(
2052             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2053       });
2054 }
2055 
2056 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
2057     const OMPTeamsDistributeSimdDirective &S) {
2058   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2059   CGM.getOpenMPRuntime().emitInlinedDirective(
2060       *this, OMPD_teams_distribute_simd,
2061       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2062         OMPLoopScope PreInitScope(CGF, S);
2063         CGF.EmitStmt(
2064             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2065       });
2066 }
2067 
2068 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
2069     const OMPTeamsDistributeParallelForSimdDirective &S) {
2070   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2071   CGM.getOpenMPRuntime().emitInlinedDirective(
2072       *this, OMPD_teams_distribute_parallel_for_simd,
2073       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2074         OMPLoopScope PreInitScope(CGF, S);
2075         CGF.EmitStmt(
2076             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2077       });
2078 }
2079 
2080 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
2081     const OMPTeamsDistributeParallelForDirective &S) {
2082   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2083   CGM.getOpenMPRuntime().emitInlinedDirective(
2084       *this, OMPD_teams_distribute_parallel_for,
2085       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2086         OMPLoopScope PreInitScope(CGF, S);
2087         CGF.EmitStmt(
2088             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2089       });
2090 }
2091 
2092 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
2093     const OMPTargetTeamsDistributeDirective &S) {
2094   CGM.getOpenMPRuntime().emitInlinedDirective(
2095       *this, OMPD_target_teams_distribute,
2096       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2097         CGF.EmitStmt(
2098             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2099       });
2100 }
2101 
2102 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
2103     const OMPTargetTeamsDistributeParallelForDirective &S) {
2104   CGM.getOpenMPRuntime().emitInlinedDirective(
2105       *this, OMPD_target_teams_distribute_parallel_for,
2106       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2107         CGF.EmitStmt(
2108             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2109       });
2110 }
2111 
2112 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2113     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
2114   CGM.getOpenMPRuntime().emitInlinedDirective(
2115       *this, OMPD_target_teams_distribute_parallel_for_simd,
2116       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2117         CGF.EmitStmt(
2118             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2119       });
2120 }
2121 
2122 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
2123     const OMPTargetTeamsDistributeSimdDirective &S) {
2124   CGM.getOpenMPRuntime().emitInlinedDirective(
2125       *this, OMPD_target_teams_distribute_simd,
2126       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2127         CGF.EmitStmt(
2128             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2129       });
2130 }
2131 
2132 namespace {
2133   struct ScheduleKindModifiersTy {
2134     OpenMPScheduleClauseKind Kind;
2135     OpenMPScheduleClauseModifier M1;
2136     OpenMPScheduleClauseModifier M2;
2137     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
2138                             OpenMPScheduleClauseModifier M1,
2139                             OpenMPScheduleClauseModifier M2)
2140         : Kind(Kind), M1(M1), M2(M2) {}
2141   };
2142 } // namespace
2143 
2144 bool CodeGenFunction::EmitOMPWorksharingLoop(
2145     const OMPLoopDirective &S, Expr *EUB,
2146     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2147     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2148   // Emit the loop iteration variable.
2149   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2150   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
2151   EmitVarDecl(*IVDecl);
2152 
2153   // Emit the iterations count variable.
2154   // If it is not a variable, Sema decided to calculate iterations count on each
2155   // iteration (e.g., it is foldable into a constant).
2156   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2157     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2158     // Emit calculation of the iterations count.
2159     EmitIgnoredExpr(S.getCalcLastIteration());
2160   }
2161 
2162   auto &RT = CGM.getOpenMPRuntime();
2163 
2164   bool HasLastprivateClause;
2165   // Check pre-condition.
2166   {
2167     OMPLoopScope PreInitScope(*this, S);
2168     // Skip the entire loop if we don't meet the precondition.
2169     // If the condition constant folds and can be elided, avoid emitting the
2170     // whole loop.
2171     bool CondConstant;
2172     llvm::BasicBlock *ContBlock = nullptr;
2173     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2174       if (!CondConstant)
2175         return false;
2176     } else {
2177       auto *ThenBlock = createBasicBlock("omp.precond.then");
2178       ContBlock = createBasicBlock("omp.precond.end");
2179       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2180                   getProfileCount(&S));
2181       EmitBlock(ThenBlock);
2182       incrementProfileCounter(&S);
2183     }
2184 
2185     bool Ordered = false;
2186     if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2187       if (OrderedClause->getNumForLoops())
2188         RT.emitDoacrossInit(*this, S);
2189       else
2190         Ordered = true;
2191     }
2192 
2193     llvm::DenseSet<const Expr *> EmittedFinals;
2194     emitAlignedClause(*this, S);
2195     bool HasLinears = EmitOMPLinearClauseInit(S);
2196     // Emit helper vars inits.
2197 
2198     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
2199     LValue LB = Bounds.first;
2200     LValue UB = Bounds.second;
2201     LValue ST =
2202         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2203     LValue IL =
2204         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2205 
2206     // Emit 'then' code.
2207     {
2208       OMPPrivateScope LoopScope(*this);
2209       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
2210         // Emit implicit barrier to synchronize threads and avoid data races on
2211         // initialization of firstprivate variables and post-update of
2212         // lastprivate variables.
2213         CGM.getOpenMPRuntime().emitBarrierCall(
2214             *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2215             /*ForceSimpleCall=*/true);
2216       }
2217       EmitOMPPrivateClause(S, LoopScope);
2218       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2219       EmitOMPReductionClauseInit(S, LoopScope);
2220       EmitOMPPrivateLoopCounters(S, LoopScope);
2221       EmitOMPLinearClause(S, LoopScope);
2222       (void)LoopScope.Privatize();
2223 
2224       // Detect the loop schedule kind and chunk.
2225       llvm::Value *Chunk = nullptr;
2226       OpenMPScheduleTy ScheduleKind;
2227       if (auto *C = S.getSingleClause<OMPScheduleClause>()) {
2228         ScheduleKind.Schedule = C->getScheduleKind();
2229         ScheduleKind.M1 = C->getFirstScheduleModifier();
2230         ScheduleKind.M2 = C->getSecondScheduleModifier();
2231         if (const auto *Ch = C->getChunkSize()) {
2232           Chunk = EmitScalarExpr(Ch);
2233           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2234                                        S.getIterationVariable()->getType(),
2235                                        S.getLocStart());
2236         }
2237       }
2238       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2239       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2240       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2241       // If the static schedule kind is specified or if the ordered clause is
2242       // specified, and if no monotonic modifier is specified, the effect will
2243       // be as if the monotonic modifier was specified.
2244       if (RT.isStaticNonchunked(ScheduleKind.Schedule,
2245                                 /* Chunked */ Chunk != nullptr) &&
2246           !Ordered) {
2247         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2248           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2249         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2250         // When no chunk_size is specified, the iteration space is divided into
2251         // chunks that are approximately equal in size, and at most one chunk is
2252         // distributed to each thread. Note that the size of the chunks is
2253         // unspecified in this case.
2254         CGOpenMPRuntime::StaticRTInput StaticInit(
2255             IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(),
2256             UB.getAddress(), ST.getAddress());
2257         RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(),
2258                              ScheduleKind, StaticInit);
2259         auto LoopExit =
2260             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2261         // UB = min(UB, GlobalUB);
2262         EmitIgnoredExpr(S.getEnsureUpperBound());
2263         // IV = LB;
2264         EmitIgnoredExpr(S.getInit());
2265         // while (idx <= UB) { BODY; ++idx; }
2266         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2267                          S.getInc(),
2268                          [&S, LoopExit](CodeGenFunction &CGF) {
2269                            CGF.EmitOMPLoopBody(S, LoopExit);
2270                            CGF.EmitStopPoint(&S);
2271                          },
2272                          [](CodeGenFunction &) {});
2273         EmitBlock(LoopExit.getBlock());
2274         // Tell the runtime we are done.
2275         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2276           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(),
2277                                                          S.getDirectiveKind());
2278         };
2279         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2280       } else {
2281         const bool IsMonotonic =
2282             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2283             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2284             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2285             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2286         // Emit the outer loop, which requests its work chunk [LB..UB] from
2287         // runtime and runs the inner loop to process it.
2288         const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(),
2289                                              ST.getAddress(), IL.getAddress(),
2290                                              Chunk, EUB);
2291         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2292                             LoopArguments, CGDispatchBounds);
2293       }
2294       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2295         EmitOMPSimdFinal(S,
2296                          [&](CodeGenFunction &CGF) -> llvm::Value * {
2297                            return CGF.Builder.CreateIsNotNull(
2298                                CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2299                          });
2300       }
2301       EmitOMPReductionClauseFinal(
2302           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
2303                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
2304                  : /*Parallel only*/ OMPD_parallel);
2305       // Emit post-update of the reduction variables if IsLastIter != 0.
2306       emitPostUpdateForReductionClause(
2307           *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2308             return CGF.Builder.CreateIsNotNull(
2309                 CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2310           });
2311       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2312       if (HasLastprivateClause)
2313         EmitOMPLastprivateClauseFinal(
2314             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2315             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
2316     }
2317     EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2318       return CGF.Builder.CreateIsNotNull(
2319           CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2320     });
2321     // We're now done with the loop, so jump to the continuation block.
2322     if (ContBlock) {
2323       EmitBranch(ContBlock);
2324       EmitBlock(ContBlock, true);
2325     }
2326   }
2327   return HasLastprivateClause;
2328 }
2329 
2330 /// The following two functions generate expressions for the loop lower
2331 /// and upper bounds in case of static and dynamic (dispatch) schedule
2332 /// of the associated 'for' or 'distribute' loop.
2333 static std::pair<LValue, LValue>
2334 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
2335   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2336   LValue LB =
2337       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2338   LValue UB =
2339       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2340   return {LB, UB};
2341 }
2342 
2343 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
2344 /// consider the lower and upper bound expressions generated by the
2345 /// worksharing loop support, but we use 0 and the iteration space size as
2346 /// constants
2347 static std::pair<llvm::Value *, llvm::Value *>
2348 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
2349                           Address LB, Address UB) {
2350   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2351   const Expr *IVExpr = LS.getIterationVariable();
2352   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
2353   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
2354   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
2355   return {LBVal, UBVal};
2356 }
2357 
2358 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2359   bool HasLastprivates = false;
2360   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2361                                           PrePostActionTy &) {
2362     OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel());
2363     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2364                                                  emitForLoopBounds,
2365                                                  emitDispatchForLoopBounds);
2366   };
2367   {
2368     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2369     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2370                                                 S.hasCancel());
2371   }
2372 
2373   // Emit an implicit barrier at the end.
2374   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2375     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2376   }
2377 }
2378 
2379 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2380   bool HasLastprivates = false;
2381   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2382                                           PrePostActionTy &) {
2383     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2384                                                  emitForLoopBounds,
2385                                                  emitDispatchForLoopBounds);
2386   };
2387   {
2388     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2389     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2390   }
2391 
2392   // Emit an implicit barrier at the end.
2393   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2394     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2395   }
2396 }
2397 
2398 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2399                                 const Twine &Name,
2400                                 llvm::Value *Init = nullptr) {
2401   auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2402   if (Init)
2403     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2404   return LVal;
2405 }
2406 
2407 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2408   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
2409   auto *CS = dyn_cast<CompoundStmt>(Stmt);
2410   bool HasLastprivates = false;
2411   auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF,
2412                                                     PrePostActionTy &) {
2413     auto &C = CGF.CGM.getContext();
2414     auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2415     // Emit helper vars inits.
2416     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2417                                   CGF.Builder.getInt32(0));
2418     auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1)
2419                                       : CGF.Builder.getInt32(0);
2420     LValue UB =
2421         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2422     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2423                                   CGF.Builder.getInt32(1));
2424     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2425                                   CGF.Builder.getInt32(0));
2426     // Loop counter.
2427     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2428     OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2429     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2430     OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2431     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2432     // Generate condition for loop.
2433     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2434                         OK_Ordinary, S.getLocStart(), FPOptions());
2435     // Increment for loop counter.
2436     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2437                       S.getLocStart());
2438     auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) {
2439       // Iterate through all sections and emit a switch construct:
2440       // switch (IV) {
2441       //   case 0:
2442       //     <SectionStmt[0]>;
2443       //     break;
2444       // ...
2445       //   case <NumSection> - 1:
2446       //     <SectionStmt[<NumSection> - 1]>;
2447       //     break;
2448       // }
2449       // .omp.sections.exit:
2450       auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2451       auto *SwitchStmt = CGF.Builder.CreateSwitch(
2452           CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
2453           CS == nullptr ? 1 : CS->size());
2454       if (CS) {
2455         unsigned CaseNumber = 0;
2456         for (auto *SubStmt : CS->children()) {
2457           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2458           CGF.EmitBlock(CaseBB);
2459           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2460           CGF.EmitStmt(SubStmt);
2461           CGF.EmitBranch(ExitBB);
2462           ++CaseNumber;
2463         }
2464       } else {
2465         auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2466         CGF.EmitBlock(CaseBB);
2467         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2468         CGF.EmitStmt(Stmt);
2469         CGF.EmitBranch(ExitBB);
2470       }
2471       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2472     };
2473 
2474     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2475     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2476       // Emit implicit barrier to synchronize threads and avoid data races on
2477       // initialization of firstprivate variables and post-update of lastprivate
2478       // variables.
2479       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2480           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2481           /*ForceSimpleCall=*/true);
2482     }
2483     CGF.EmitOMPPrivateClause(S, LoopScope);
2484     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2485     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2486     (void)LoopScope.Privatize();
2487 
2488     // Emit static non-chunked loop.
2489     OpenMPScheduleTy ScheduleKind;
2490     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2491     CGOpenMPRuntime::StaticRTInput StaticInit(
2492         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
2493         LB.getAddress(), UB.getAddress(), ST.getAddress());
2494     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2495         CGF, S.getLocStart(), S.getDirectiveKind(), ScheduleKind, StaticInit);
2496     // UB = min(UB, GlobalUB);
2497     auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
2498     auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
2499         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2500     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2501     // IV = LB;
2502     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
2503     // while (idx <= UB) { BODY; ++idx; }
2504     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2505                          [](CodeGenFunction &) {});
2506     // Tell the runtime we are done.
2507     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2508       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(),
2509                                                      S.getDirectiveKind());
2510     };
2511     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
2512     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
2513     // Emit post-update of the reduction variables if IsLastIter != 0.
2514     emitPostUpdateForReductionClause(
2515         CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2516           return CGF.Builder.CreateIsNotNull(
2517               CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2518         });
2519 
2520     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2521     if (HasLastprivates)
2522       CGF.EmitOMPLastprivateClauseFinal(
2523           S, /*NoFinals=*/false,
2524           CGF.Builder.CreateIsNotNull(
2525               CGF.EmitLoadOfScalar(IL, S.getLocStart())));
2526   };
2527 
2528   bool HasCancel = false;
2529   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2530     HasCancel = OSD->hasCancel();
2531   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2532     HasCancel = OPSD->hasCancel();
2533   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
2534   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2535                                               HasCancel);
2536   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2537   // clause. Otherwise the barrier will be generated by the codegen for the
2538   // directive.
2539   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2540     // Emit implicit barrier to synchronize threads and avoid data races on
2541     // initialization of firstprivate variables.
2542     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2543                                            OMPD_unknown);
2544   }
2545 }
2546 
2547 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2548   {
2549     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2550     EmitSections(S);
2551   }
2552   // Emit an implicit barrier at the end.
2553   if (!S.getSingleClause<OMPNowaitClause>()) {
2554     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2555                                            OMPD_sections);
2556   }
2557 }
2558 
2559 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2560   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2561     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2562   };
2563   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2564   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2565                                               S.hasCancel());
2566 }
2567 
2568 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2569   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2570   llvm::SmallVector<const Expr *, 8> DestExprs;
2571   llvm::SmallVector<const Expr *, 8> SrcExprs;
2572   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2573   // Check if there are any 'copyprivate' clauses associated with this
2574   // 'single' construct.
2575   // Build a list of copyprivate variables along with helper expressions
2576   // (<source>, <destination>, <destination>=<source> expressions)
2577   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2578     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2579     DestExprs.append(C->destination_exprs().begin(),
2580                      C->destination_exprs().end());
2581     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2582     AssignmentOps.append(C->assignment_ops().begin(),
2583                          C->assignment_ops().end());
2584   }
2585   // Emit code for 'single' region along with 'copyprivate' clauses
2586   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2587     Action.Enter(CGF);
2588     OMPPrivateScope SingleScope(CGF);
2589     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2590     CGF.EmitOMPPrivateClause(S, SingleScope);
2591     (void)SingleScope.Privatize();
2592     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2593   };
2594   {
2595     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2596     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
2597                                             CopyprivateVars, DestExprs,
2598                                             SrcExprs, AssignmentOps);
2599   }
2600   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2601   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2602   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2603     CGM.getOpenMPRuntime().emitBarrierCall(
2604         *this, S.getLocStart(),
2605         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2606   }
2607 }
2608 
2609 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2610   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2611     Action.Enter(CGF);
2612     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2613   };
2614   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2615   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
2616 }
2617 
2618 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2619   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2620     Action.Enter(CGF);
2621     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2622   };
2623   Expr *Hint = nullptr;
2624   if (auto *HintClause = S.getSingleClause<OMPHintClause>())
2625     Hint = HintClause->getHint();
2626   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2627   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2628                                             S.getDirectiveName().getAsString(),
2629                                             CodeGen, S.getLocStart(), Hint);
2630 }
2631 
2632 void CodeGenFunction::EmitOMPParallelForDirective(
2633     const OMPParallelForDirective &S) {
2634   // Emit directive as a combined directive that consists of two implicit
2635   // directives: 'parallel' with 'for' directive.
2636   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2637     OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel());
2638     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2639                                emitDispatchForLoopBounds);
2640   };
2641   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
2642                                  emitEmptyBoundParameters);
2643 }
2644 
2645 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2646     const OMPParallelForSimdDirective &S) {
2647   // Emit directive as a combined directive that consists of two implicit
2648   // directives: 'parallel' with 'for' directive.
2649   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2650     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2651                                emitDispatchForLoopBounds);
2652   };
2653   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen,
2654                                  emitEmptyBoundParameters);
2655 }
2656 
2657 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2658     const OMPParallelSectionsDirective &S) {
2659   // Emit directive as a combined directive that consists of two implicit
2660   // directives: 'parallel' with 'sections' directive.
2661   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2662     CGF.EmitSections(S);
2663   };
2664   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
2665                                  emitEmptyBoundParameters);
2666 }
2667 
2668 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2669                                                 const RegionCodeGenTy &BodyGen,
2670                                                 const TaskGenTy &TaskGen,
2671                                                 OMPTaskDataTy &Data) {
2672   // Emit outlined function for task construct.
2673   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2674   auto *I = CS->getCapturedDecl()->param_begin();
2675   auto *PartId = std::next(I);
2676   auto *TaskT = std::next(I, 4);
2677   // Check if the task is final
2678   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2679     // If the condition constant folds and can be elided, try to avoid emitting
2680     // the condition and the dead arm of the if/else.
2681     auto *Cond = Clause->getCondition();
2682     bool CondConstant;
2683     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2684       Data.Final.setInt(CondConstant);
2685     else
2686       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2687   } else {
2688     // By default the task is not final.
2689     Data.Final.setInt(/*IntVal=*/false);
2690   }
2691   // Check if the task has 'priority' clause.
2692   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2693     auto *Prio = Clause->getPriority();
2694     Data.Priority.setInt(/*IntVal=*/true);
2695     Data.Priority.setPointer(EmitScalarConversion(
2696         EmitScalarExpr(Prio), Prio->getType(),
2697         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2698         Prio->getExprLoc()));
2699   }
2700   // The first function argument for tasks is a thread id, the second one is a
2701   // part id (0 for tied tasks, >=0 for untied task).
2702   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2703   // Get list of private variables.
2704   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2705     auto IRef = C->varlist_begin();
2706     for (auto *IInit : C->private_copies()) {
2707       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2708       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2709         Data.PrivateVars.push_back(*IRef);
2710         Data.PrivateCopies.push_back(IInit);
2711       }
2712       ++IRef;
2713     }
2714   }
2715   EmittedAsPrivate.clear();
2716   // Get list of firstprivate variables.
2717   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2718     auto IRef = C->varlist_begin();
2719     auto IElemInitRef = C->inits().begin();
2720     for (auto *IInit : C->private_copies()) {
2721       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2722       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2723         Data.FirstprivateVars.push_back(*IRef);
2724         Data.FirstprivateCopies.push_back(IInit);
2725         Data.FirstprivateInits.push_back(*IElemInitRef);
2726       }
2727       ++IRef;
2728       ++IElemInitRef;
2729     }
2730   }
2731   // Get list of lastprivate variables (for taskloops).
2732   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2733   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2734     auto IRef = C->varlist_begin();
2735     auto ID = C->destination_exprs().begin();
2736     for (auto *IInit : C->private_copies()) {
2737       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2738       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2739         Data.LastprivateVars.push_back(*IRef);
2740         Data.LastprivateCopies.push_back(IInit);
2741       }
2742       LastprivateDstsOrigs.insert(
2743           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2744            cast<DeclRefExpr>(*IRef)});
2745       ++IRef;
2746       ++ID;
2747     }
2748   }
2749   SmallVector<const Expr *, 4> LHSs;
2750   SmallVector<const Expr *, 4> RHSs;
2751   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
2752     auto IPriv = C->privates().begin();
2753     auto IRed = C->reduction_ops().begin();
2754     auto ILHS = C->lhs_exprs().begin();
2755     auto IRHS = C->rhs_exprs().begin();
2756     for (const auto *Ref : C->varlists()) {
2757       Data.ReductionVars.emplace_back(Ref);
2758       Data.ReductionCopies.emplace_back(*IPriv);
2759       Data.ReductionOps.emplace_back(*IRed);
2760       LHSs.emplace_back(*ILHS);
2761       RHSs.emplace_back(*IRHS);
2762       std::advance(IPriv, 1);
2763       std::advance(IRed, 1);
2764       std::advance(ILHS, 1);
2765       std::advance(IRHS, 1);
2766     }
2767   }
2768   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
2769       *this, S.getLocStart(), LHSs, RHSs, Data);
2770   // Build list of dependences.
2771   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2772     for (auto *IRef : C->varlists())
2773       Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
2774   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs](
2775       CodeGenFunction &CGF, PrePostActionTy &Action) {
2776     // Set proper addresses for generated private copies.
2777     OMPPrivateScope Scope(CGF);
2778     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2779         !Data.LastprivateVars.empty()) {
2780       enum { PrivatesParam = 2, CopyFnParam = 3 };
2781       auto *CopyFn = CGF.Builder.CreateLoad(
2782           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
2783       auto *PrivatesPtr = CGF.Builder.CreateLoad(
2784           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
2785       // Map privates.
2786       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2787       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2788       CallArgs.push_back(PrivatesPtr);
2789       for (auto *E : Data.PrivateVars) {
2790         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2791         Address PrivatePtr = CGF.CreateMemTemp(
2792             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2793         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2794         CallArgs.push_back(PrivatePtr.getPointer());
2795       }
2796       for (auto *E : Data.FirstprivateVars) {
2797         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2798         Address PrivatePtr =
2799             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2800                               ".firstpriv.ptr.addr");
2801         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2802         CallArgs.push_back(PrivatePtr.getPointer());
2803       }
2804       for (auto *E : Data.LastprivateVars) {
2805         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2806         Address PrivatePtr =
2807             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2808                               ".lastpriv.ptr.addr");
2809         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2810         CallArgs.push_back(PrivatePtr.getPointer());
2811       }
2812       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(),
2813                                                           CopyFn, CallArgs);
2814       for (auto &&Pair : LastprivateDstsOrigs) {
2815         auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2816         DeclRefExpr DRE(
2817             const_cast<VarDecl *>(OrigVD),
2818             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2819                 OrigVD) != nullptr,
2820             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2821         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2822           return CGF.EmitLValue(&DRE).getAddress();
2823         });
2824       }
2825       for (auto &&Pair : PrivatePtrs) {
2826         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2827                             CGF.getContext().getDeclAlign(Pair.first));
2828         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2829       }
2830     }
2831     if (Data.Reductions) {
2832       OMPLexicalScope LexScope(CGF, S, /*AsInlined=*/true);
2833       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies,
2834                              Data.ReductionOps);
2835       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
2836           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
2837       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
2838         RedCG.emitSharedLValue(CGF, Cnt);
2839         RedCG.emitAggregateType(CGF, Cnt);
2840         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
2841             CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
2842         Replacement =
2843             Address(CGF.EmitScalarConversion(
2844                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
2845                         CGF.getContext().getPointerType(
2846                             Data.ReductionCopies[Cnt]->getType()),
2847                         SourceLocation()),
2848                     Replacement.getAlignment());
2849         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
2850         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
2851                          [Replacement]() { return Replacement; });
2852         // FIXME: This must removed once the runtime library is fixed.
2853         // Emit required threadprivate variables for
2854         // initilizer/combiner/finalizer.
2855         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(),
2856                                                            RedCG, Cnt);
2857       }
2858     }
2859     // Privatize all private variables except for in_reduction items.
2860     (void)Scope.Privatize();
2861     SmallVector<const Expr *, 4> InRedVars;
2862     SmallVector<const Expr *, 4> InRedPrivs;
2863     SmallVector<const Expr *, 4> InRedOps;
2864     SmallVector<const Expr *, 4> TaskgroupDescriptors;
2865     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
2866       auto IPriv = C->privates().begin();
2867       auto IRed = C->reduction_ops().begin();
2868       auto ITD = C->taskgroup_descriptors().begin();
2869       for (const auto *Ref : C->varlists()) {
2870         InRedVars.emplace_back(Ref);
2871         InRedPrivs.emplace_back(*IPriv);
2872         InRedOps.emplace_back(*IRed);
2873         TaskgroupDescriptors.emplace_back(*ITD);
2874         std::advance(IPriv, 1);
2875         std::advance(IRed, 1);
2876         std::advance(ITD, 1);
2877       }
2878     }
2879     // Privatize in_reduction items here, because taskgroup descriptors must be
2880     // privatized earlier.
2881     OMPPrivateScope InRedScope(CGF);
2882     if (!InRedVars.empty()) {
2883       ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps);
2884       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
2885         RedCG.emitSharedLValue(CGF, Cnt);
2886         RedCG.emitAggregateType(CGF, Cnt);
2887         // The taskgroup descriptor variable is always implicit firstprivate and
2888         // privatized already during procoessing of the firstprivates.
2889         llvm::Value *ReductionsPtr = CGF.EmitLoadOfScalar(
2890             CGF.EmitLValue(TaskgroupDescriptors[Cnt]), SourceLocation());
2891         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
2892             CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
2893         Replacement = Address(
2894             CGF.EmitScalarConversion(
2895                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
2896                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
2897                 SourceLocation()),
2898             Replacement.getAlignment());
2899         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
2900         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
2901                               [Replacement]() { return Replacement; });
2902         // FIXME: This must removed once the runtime library is fixed.
2903         // Emit required threadprivate variables for
2904         // initilizer/combiner/finalizer.
2905         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(),
2906                                                            RedCG, Cnt);
2907       }
2908     }
2909     (void)InRedScope.Privatize();
2910 
2911     Action.Enter(CGF);
2912     BodyGen(CGF);
2913   };
2914   auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
2915       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
2916       Data.NumberOfParts);
2917   OMPLexicalScope Scope(*this, S);
2918   TaskGen(*this, OutlinedFn, Data);
2919 }
2920 
2921 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
2922   // Emit outlined function for task construct.
2923   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2924   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
2925   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
2926   const Expr *IfCond = nullptr;
2927   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2928     if (C->getNameModifier() == OMPD_unknown ||
2929         C->getNameModifier() == OMPD_task) {
2930       IfCond = C->getCondition();
2931       break;
2932     }
2933   }
2934 
2935   OMPTaskDataTy Data;
2936   // Check if we should emit tied or untied task.
2937   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
2938   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
2939     CGF.EmitStmt(CS->getCapturedStmt());
2940   };
2941   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
2942                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
2943                             const OMPTaskDataTy &Data) {
2944     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn,
2945                                             SharedsTy, CapturedStruct, IfCond,
2946                                             Data);
2947   };
2948   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
2949 }
2950 
2951 void CodeGenFunction::EmitOMPTaskyieldDirective(
2952     const OMPTaskyieldDirective &S) {
2953   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
2954 }
2955 
2956 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
2957   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
2958 }
2959 
2960 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
2961   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
2962 }
2963 
2964 void CodeGenFunction::EmitOMPTaskgroupDirective(
2965     const OMPTaskgroupDirective &S) {
2966   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2967     Action.Enter(CGF);
2968     if (const Expr *E = S.getReductionRef()) {
2969       SmallVector<const Expr *, 4> LHSs;
2970       SmallVector<const Expr *, 4> RHSs;
2971       OMPTaskDataTy Data;
2972       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
2973         auto IPriv = C->privates().begin();
2974         auto IRed = C->reduction_ops().begin();
2975         auto ILHS = C->lhs_exprs().begin();
2976         auto IRHS = C->rhs_exprs().begin();
2977         for (const auto *Ref : C->varlists()) {
2978           Data.ReductionVars.emplace_back(Ref);
2979           Data.ReductionCopies.emplace_back(*IPriv);
2980           Data.ReductionOps.emplace_back(*IRed);
2981           LHSs.emplace_back(*ILHS);
2982           RHSs.emplace_back(*IRHS);
2983           std::advance(IPriv, 1);
2984           std::advance(IRed, 1);
2985           std::advance(ILHS, 1);
2986           std::advance(IRHS, 1);
2987         }
2988       }
2989       llvm::Value *ReductionDesc =
2990           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getLocStart(),
2991                                                            LHSs, RHSs, Data);
2992       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2993       CGF.EmitVarDecl(*VD);
2994       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
2995                             /*Volatile=*/false, E->getType());
2996     }
2997     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2998   };
2999   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3000   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
3001 }
3002 
3003 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
3004   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
3005     if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
3006       return llvm::makeArrayRef(FlushClause->varlist_begin(),
3007                                 FlushClause->varlist_end());
3008     }
3009     return llvm::None;
3010   }(), S.getLocStart());
3011 }
3012 
3013 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
3014                                             const CodeGenLoopTy &CodeGenLoop,
3015                                             Expr *IncExpr) {
3016   // Emit the loop iteration variable.
3017   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3018   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
3019   EmitVarDecl(*IVDecl);
3020 
3021   // Emit the iterations count variable.
3022   // If it is not a variable, Sema decided to calculate iterations count on each
3023   // iteration (e.g., it is foldable into a constant).
3024   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3025     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3026     // Emit calculation of the iterations count.
3027     EmitIgnoredExpr(S.getCalcLastIteration());
3028   }
3029 
3030   auto &RT = CGM.getOpenMPRuntime();
3031 
3032   bool HasLastprivateClause = false;
3033   // Check pre-condition.
3034   {
3035     OMPLoopScope PreInitScope(*this, S);
3036     // Skip the entire loop if we don't meet the precondition.
3037     // If the condition constant folds and can be elided, avoid emitting the
3038     // whole loop.
3039     bool CondConstant;
3040     llvm::BasicBlock *ContBlock = nullptr;
3041     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3042       if (!CondConstant)
3043         return;
3044     } else {
3045       auto *ThenBlock = createBasicBlock("omp.precond.then");
3046       ContBlock = createBasicBlock("omp.precond.end");
3047       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3048                   getProfileCount(&S));
3049       EmitBlock(ThenBlock);
3050       incrementProfileCounter(&S);
3051     }
3052 
3053     // Emit 'then' code.
3054     {
3055       // Emit helper vars inits.
3056 
3057       LValue LB = EmitOMPHelperVar(
3058           *this, cast<DeclRefExpr>(
3059                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3060                           ? S.getCombinedLowerBoundVariable()
3061                           : S.getLowerBoundVariable())));
3062       LValue UB = EmitOMPHelperVar(
3063           *this, cast<DeclRefExpr>(
3064                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3065                           ? S.getCombinedUpperBoundVariable()
3066                           : S.getUpperBoundVariable())));
3067       LValue ST =
3068           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3069       LValue IL =
3070           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3071 
3072       OMPPrivateScope LoopScope(*this);
3073       if (EmitOMPFirstprivateClause(S, LoopScope)) {
3074         // Emit implicit barrier to synchronize threads and avoid data races on
3075         // initialization of firstprivate variables and post-update of
3076         // lastprivate variables.
3077         CGM.getOpenMPRuntime().emitBarrierCall(
3078           *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
3079           /*ForceSimpleCall=*/true);
3080       }
3081       EmitOMPPrivateClause(S, LoopScope);
3082       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3083       EmitOMPPrivateLoopCounters(S, LoopScope);
3084       (void)LoopScope.Privatize();
3085 
3086       // Detect the distribute schedule kind and chunk.
3087       llvm::Value *Chunk = nullptr;
3088       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
3089       if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
3090         ScheduleKind = C->getDistScheduleKind();
3091         if (const auto *Ch = C->getChunkSize()) {
3092           Chunk = EmitScalarExpr(Ch);
3093           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
3094           S.getIterationVariable()->getType(),
3095           S.getLocStart());
3096         }
3097       }
3098       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3099       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3100 
3101       // OpenMP [2.10.8, distribute Construct, Description]
3102       // If dist_schedule is specified, kind must be static. If specified,
3103       // iterations are divided into chunks of size chunk_size, chunks are
3104       // assigned to the teams of the league in a round-robin fashion in the
3105       // order of the team number. When no chunk_size is specified, the
3106       // iteration space is divided into chunks that are approximately equal
3107       // in size, and at most one chunk is distributed to each team of the
3108       // league. The size of the chunks is unspecified in this case.
3109       if (RT.isStaticNonchunked(ScheduleKind,
3110                                 /* Chunked */ Chunk != nullptr)) {
3111         CGOpenMPRuntime::StaticRTInput StaticInit(
3112             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(),
3113             LB.getAddress(), UB.getAddress(), ST.getAddress());
3114         RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
3115                                     StaticInit);
3116         auto LoopExit =
3117             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3118         // UB = min(UB, GlobalUB);
3119         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3120                             ? S.getCombinedEnsureUpperBound()
3121                             : S.getEnsureUpperBound());
3122         // IV = LB;
3123         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3124                             ? S.getCombinedInit()
3125                             : S.getInit());
3126 
3127         Expr *Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3128                          ? S.getCombinedCond()
3129                          : S.getCond();
3130 
3131         // for distribute alone,  codegen
3132         // while (idx <= UB) { BODY; ++idx; }
3133         // when combined with 'for' (e.g. as in 'distribute parallel for')
3134         // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
3135         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr,
3136                          [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
3137                            CodeGenLoop(CGF, S, LoopExit);
3138                          },
3139                          [](CodeGenFunction &) {});
3140         EmitBlock(LoopExit.getBlock());
3141         // Tell the runtime we are done.
3142         RT.emitForStaticFinish(*this, S.getLocStart(), S.getDirectiveKind());
3143       } else {
3144         // Emit the outer loop, which requests its work chunk [LB..UB] from
3145         // runtime and runs the inner loop to process it.
3146         const OMPLoopArguments LoopArguments = {
3147             LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(),
3148             Chunk};
3149         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
3150                                    CodeGenLoop);
3151       }
3152 
3153       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3154       if (HasLastprivateClause)
3155         EmitOMPLastprivateClauseFinal(
3156             S, /*NoFinals=*/false,
3157             Builder.CreateIsNotNull(
3158                 EmitLoadOfScalar(IL, S.getLocStart())));
3159     }
3160 
3161     // We're now done with the loop, so jump to the continuation block.
3162     if (ContBlock) {
3163       EmitBranch(ContBlock);
3164       EmitBlock(ContBlock, true);
3165     }
3166   }
3167 }
3168 
3169 void CodeGenFunction::EmitOMPDistributeDirective(
3170     const OMPDistributeDirective &S) {
3171   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3172 
3173     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
3174   };
3175   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3176   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen,
3177                                               false);
3178 }
3179 
3180 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
3181                                                    const CapturedStmt *S) {
3182   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3183   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
3184   CGF.CapturedStmtInfo = &CapStmtInfo;
3185   auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
3186   Fn->addFnAttr(llvm::Attribute::NoInline);
3187   return Fn;
3188 }
3189 
3190 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
3191   if (!S.getAssociatedStmt()) {
3192     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
3193       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
3194     return;
3195   }
3196   auto *C = S.getSingleClause<OMPSIMDClause>();
3197   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
3198                                  PrePostActionTy &Action) {
3199     if (C) {
3200       auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3201       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3202       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3203       auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
3204       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(),
3205                                                       OutlinedFn, CapturedVars);
3206     } else {
3207       Action.Enter(CGF);
3208       CGF.EmitStmt(
3209           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3210     }
3211   };
3212   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3213   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
3214 }
3215 
3216 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
3217                                          QualType SrcType, QualType DestType,
3218                                          SourceLocation Loc) {
3219   assert(CGF.hasScalarEvaluationKind(DestType) &&
3220          "DestType must have scalar evaluation kind.");
3221   assert(!Val.isAggregate() && "Must be a scalar or complex.");
3222   return Val.isScalar()
3223              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
3224                                         Loc)
3225              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
3226                                                  DestType, Loc);
3227 }
3228 
3229 static CodeGenFunction::ComplexPairTy
3230 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
3231                       QualType DestType, SourceLocation Loc) {
3232   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
3233          "DestType must have complex evaluation kind.");
3234   CodeGenFunction::ComplexPairTy ComplexVal;
3235   if (Val.isScalar()) {
3236     // Convert the input element to the element type of the complex.
3237     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
3238     auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
3239                                               DestElementType, Loc);
3240     ComplexVal = CodeGenFunction::ComplexPairTy(
3241         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
3242   } else {
3243     assert(Val.isComplex() && "Must be a scalar or complex.");
3244     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
3245     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
3246     ComplexVal.first = CGF.EmitScalarConversion(
3247         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
3248     ComplexVal.second = CGF.EmitScalarConversion(
3249         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
3250   }
3251   return ComplexVal;
3252 }
3253 
3254 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
3255                                   LValue LVal, RValue RVal) {
3256   if (LVal.isGlobalReg()) {
3257     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
3258   } else {
3259     CGF.EmitAtomicStore(RVal, LVal,
3260                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3261                                  : llvm::AtomicOrdering::Monotonic,
3262                         LVal.isVolatile(), /*IsInit=*/false);
3263   }
3264 }
3265 
3266 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
3267                                          QualType RValTy, SourceLocation Loc) {
3268   switch (getEvaluationKind(LVal.getType())) {
3269   case TEK_Scalar:
3270     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
3271                                *this, RVal, RValTy, LVal.getType(), Loc)),
3272                            LVal);
3273     break;
3274   case TEK_Complex:
3275     EmitStoreOfComplex(
3276         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
3277         /*isInit=*/false);
3278     break;
3279   case TEK_Aggregate:
3280     llvm_unreachable("Must be a scalar or complex.");
3281   }
3282 }
3283 
3284 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
3285                                   const Expr *X, const Expr *V,
3286                                   SourceLocation Loc) {
3287   // v = x;
3288   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
3289   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
3290   LValue XLValue = CGF.EmitLValue(X);
3291   LValue VLValue = CGF.EmitLValue(V);
3292   RValue Res = XLValue.isGlobalReg()
3293                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
3294                    : CGF.EmitAtomicLoad(
3295                          XLValue, Loc,
3296                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3297                                   : llvm::AtomicOrdering::Monotonic,
3298                          XLValue.isVolatile());
3299   // OpenMP, 2.12.6, atomic Construct
3300   // Any atomic construct with a seq_cst clause forces the atomically
3301   // performed operation to include an implicit flush operation without a
3302   // list.
3303   if (IsSeqCst)
3304     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3305   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
3306 }
3307 
3308 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
3309                                    const Expr *X, const Expr *E,
3310                                    SourceLocation Loc) {
3311   // x = expr;
3312   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
3313   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
3314   // OpenMP, 2.12.6, atomic Construct
3315   // Any atomic construct with a seq_cst clause forces the atomically
3316   // performed operation to include an implicit flush operation without a
3317   // list.
3318   if (IsSeqCst)
3319     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3320 }
3321 
3322 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
3323                                                 RValue Update,
3324                                                 BinaryOperatorKind BO,
3325                                                 llvm::AtomicOrdering AO,
3326                                                 bool IsXLHSInRHSPart) {
3327   auto &Context = CGF.CGM.getContext();
3328   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
3329   // expression is simple and atomic is allowed for the given type for the
3330   // target platform.
3331   if (BO == BO_Comma || !Update.isScalar() ||
3332       !Update.getScalarVal()->getType()->isIntegerTy() ||
3333       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
3334                         (Update.getScalarVal()->getType() !=
3335                          X.getAddress().getElementType())) ||
3336       !X.getAddress().getElementType()->isIntegerTy() ||
3337       !Context.getTargetInfo().hasBuiltinAtomic(
3338           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
3339     return std::make_pair(false, RValue::get(nullptr));
3340 
3341   llvm::AtomicRMWInst::BinOp RMWOp;
3342   switch (BO) {
3343   case BO_Add:
3344     RMWOp = llvm::AtomicRMWInst::Add;
3345     break;
3346   case BO_Sub:
3347     if (!IsXLHSInRHSPart)
3348       return std::make_pair(false, RValue::get(nullptr));
3349     RMWOp = llvm::AtomicRMWInst::Sub;
3350     break;
3351   case BO_And:
3352     RMWOp = llvm::AtomicRMWInst::And;
3353     break;
3354   case BO_Or:
3355     RMWOp = llvm::AtomicRMWInst::Or;
3356     break;
3357   case BO_Xor:
3358     RMWOp = llvm::AtomicRMWInst::Xor;
3359     break;
3360   case BO_LT:
3361     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3362                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
3363                                    : llvm::AtomicRMWInst::Max)
3364                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
3365                                    : llvm::AtomicRMWInst::UMax);
3366     break;
3367   case BO_GT:
3368     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3369                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
3370                                    : llvm::AtomicRMWInst::Min)
3371                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
3372                                    : llvm::AtomicRMWInst::UMin);
3373     break;
3374   case BO_Assign:
3375     RMWOp = llvm::AtomicRMWInst::Xchg;
3376     break;
3377   case BO_Mul:
3378   case BO_Div:
3379   case BO_Rem:
3380   case BO_Shl:
3381   case BO_Shr:
3382   case BO_LAnd:
3383   case BO_LOr:
3384     return std::make_pair(false, RValue::get(nullptr));
3385   case BO_PtrMemD:
3386   case BO_PtrMemI:
3387   case BO_LE:
3388   case BO_GE:
3389   case BO_EQ:
3390   case BO_NE:
3391   case BO_AddAssign:
3392   case BO_SubAssign:
3393   case BO_AndAssign:
3394   case BO_OrAssign:
3395   case BO_XorAssign:
3396   case BO_MulAssign:
3397   case BO_DivAssign:
3398   case BO_RemAssign:
3399   case BO_ShlAssign:
3400   case BO_ShrAssign:
3401   case BO_Comma:
3402     llvm_unreachable("Unsupported atomic update operation");
3403   }
3404   auto *UpdateVal = Update.getScalarVal();
3405   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3406     UpdateVal = CGF.Builder.CreateIntCast(
3407         IC, X.getAddress().getElementType(),
3408         X.getType()->hasSignedIntegerRepresentation());
3409   }
3410   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3411   return std::make_pair(true, RValue::get(Res));
3412 }
3413 
3414 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3415     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3416     llvm::AtomicOrdering AO, SourceLocation Loc,
3417     const llvm::function_ref<RValue(RValue)> &CommonGen) {
3418   // Update expressions are allowed to have the following forms:
3419   // x binop= expr; -> xrval + expr;
3420   // x++, ++x -> xrval + 1;
3421   // x--, --x -> xrval - 1;
3422   // x = x binop expr; -> xrval binop expr
3423   // x = expr Op x; - > expr binop xrval;
3424   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3425   if (!Res.first) {
3426     if (X.isGlobalReg()) {
3427       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3428       // 'xrval'.
3429       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3430     } else {
3431       // Perform compare-and-swap procedure.
3432       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3433     }
3434   }
3435   return Res;
3436 }
3437 
3438 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3439                                     const Expr *X, const Expr *E,
3440                                     const Expr *UE, bool IsXLHSInRHSPart,
3441                                     SourceLocation Loc) {
3442   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3443          "Update expr in 'atomic update' must be a binary operator.");
3444   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3445   // Update expressions are allowed to have the following forms:
3446   // x binop= expr; -> xrval + expr;
3447   // x++, ++x -> xrval + 1;
3448   // x--, --x -> xrval - 1;
3449   // x = x binop expr; -> xrval binop expr
3450   // x = expr Op x; - > expr binop xrval;
3451   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3452   LValue XLValue = CGF.EmitLValue(X);
3453   RValue ExprRValue = CGF.EmitAnyExpr(E);
3454   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3455                      : llvm::AtomicOrdering::Monotonic;
3456   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3457   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3458   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3459   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3460   auto Gen =
3461       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
3462         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3463         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3464         return CGF.EmitAnyExpr(UE);
3465       };
3466   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3467       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3468   // OpenMP, 2.12.6, atomic Construct
3469   // Any atomic construct with a seq_cst clause forces the atomically
3470   // performed operation to include an implicit flush operation without a
3471   // list.
3472   if (IsSeqCst)
3473     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3474 }
3475 
3476 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3477                             QualType SourceType, QualType ResType,
3478                             SourceLocation Loc) {
3479   switch (CGF.getEvaluationKind(ResType)) {
3480   case TEK_Scalar:
3481     return RValue::get(
3482         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3483   case TEK_Complex: {
3484     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3485     return RValue::getComplex(Res.first, Res.second);
3486   }
3487   case TEK_Aggregate:
3488     break;
3489   }
3490   llvm_unreachable("Must be a scalar or complex.");
3491 }
3492 
3493 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3494                                      bool IsPostfixUpdate, const Expr *V,
3495                                      const Expr *X, const Expr *E,
3496                                      const Expr *UE, bool IsXLHSInRHSPart,
3497                                      SourceLocation Loc) {
3498   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3499   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3500   RValue NewVVal;
3501   LValue VLValue = CGF.EmitLValue(V);
3502   LValue XLValue = CGF.EmitLValue(X);
3503   RValue ExprRValue = CGF.EmitAnyExpr(E);
3504   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3505                      : llvm::AtomicOrdering::Monotonic;
3506   QualType NewVValType;
3507   if (UE) {
3508     // 'x' is updated with some additional value.
3509     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3510            "Update expr in 'atomic capture' must be a binary operator.");
3511     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3512     // Update expressions are allowed to have the following forms:
3513     // x binop= expr; -> xrval + expr;
3514     // x++, ++x -> xrval + 1;
3515     // x--, --x -> xrval - 1;
3516     // x = x binop expr; -> xrval binop expr
3517     // x = expr Op x; - > expr binop xrval;
3518     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3519     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3520     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3521     NewVValType = XRValExpr->getType();
3522     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3523     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3524                   IsPostfixUpdate](RValue XRValue) -> RValue {
3525       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3526       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3527       RValue Res = CGF.EmitAnyExpr(UE);
3528       NewVVal = IsPostfixUpdate ? XRValue : Res;
3529       return Res;
3530     };
3531     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3532         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3533     if (Res.first) {
3534       // 'atomicrmw' instruction was generated.
3535       if (IsPostfixUpdate) {
3536         // Use old value from 'atomicrmw'.
3537         NewVVal = Res.second;
3538       } else {
3539         // 'atomicrmw' does not provide new value, so evaluate it using old
3540         // value of 'x'.
3541         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3542         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3543         NewVVal = CGF.EmitAnyExpr(UE);
3544       }
3545     }
3546   } else {
3547     // 'x' is simply rewritten with some 'expr'.
3548     NewVValType = X->getType().getNonReferenceType();
3549     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3550                                X->getType().getNonReferenceType(), Loc);
3551     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) -> RValue {
3552       NewVVal = XRValue;
3553       return ExprRValue;
3554     };
3555     // Try to perform atomicrmw xchg, otherwise simple exchange.
3556     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3557         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3558         Loc, Gen);
3559     if (Res.first) {
3560       // 'atomicrmw' instruction was generated.
3561       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3562     }
3563   }
3564   // Emit post-update store to 'v' of old/new 'x' value.
3565   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3566   // OpenMP, 2.12.6, atomic Construct
3567   // Any atomic construct with a seq_cst clause forces the atomically
3568   // performed operation to include an implicit flush operation without a
3569   // list.
3570   if (IsSeqCst)
3571     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3572 }
3573 
3574 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3575                               bool IsSeqCst, bool IsPostfixUpdate,
3576                               const Expr *X, const Expr *V, const Expr *E,
3577                               const Expr *UE, bool IsXLHSInRHSPart,
3578                               SourceLocation Loc) {
3579   switch (Kind) {
3580   case OMPC_read:
3581     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3582     break;
3583   case OMPC_write:
3584     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3585     break;
3586   case OMPC_unknown:
3587   case OMPC_update:
3588     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3589     break;
3590   case OMPC_capture:
3591     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3592                              IsXLHSInRHSPart, Loc);
3593     break;
3594   case OMPC_if:
3595   case OMPC_final:
3596   case OMPC_num_threads:
3597   case OMPC_private:
3598   case OMPC_firstprivate:
3599   case OMPC_lastprivate:
3600   case OMPC_reduction:
3601   case OMPC_task_reduction:
3602   case OMPC_in_reduction:
3603   case OMPC_safelen:
3604   case OMPC_simdlen:
3605   case OMPC_collapse:
3606   case OMPC_default:
3607   case OMPC_seq_cst:
3608   case OMPC_shared:
3609   case OMPC_linear:
3610   case OMPC_aligned:
3611   case OMPC_copyin:
3612   case OMPC_copyprivate:
3613   case OMPC_flush:
3614   case OMPC_proc_bind:
3615   case OMPC_schedule:
3616   case OMPC_ordered:
3617   case OMPC_nowait:
3618   case OMPC_untied:
3619   case OMPC_threadprivate:
3620   case OMPC_depend:
3621   case OMPC_mergeable:
3622   case OMPC_device:
3623   case OMPC_threads:
3624   case OMPC_simd:
3625   case OMPC_map:
3626   case OMPC_num_teams:
3627   case OMPC_thread_limit:
3628   case OMPC_priority:
3629   case OMPC_grainsize:
3630   case OMPC_nogroup:
3631   case OMPC_num_tasks:
3632   case OMPC_hint:
3633   case OMPC_dist_schedule:
3634   case OMPC_defaultmap:
3635   case OMPC_uniform:
3636   case OMPC_to:
3637   case OMPC_from:
3638   case OMPC_use_device_ptr:
3639   case OMPC_is_device_ptr:
3640     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3641   }
3642 }
3643 
3644 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3645   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3646   OpenMPClauseKind Kind = OMPC_unknown;
3647   for (auto *C : S.clauses()) {
3648     // Find first clause (skip seq_cst clause, if it is first).
3649     if (C->getClauseKind() != OMPC_seq_cst) {
3650       Kind = C->getClauseKind();
3651       break;
3652     }
3653   }
3654 
3655   const auto *CS =
3656       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
3657   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
3658     enterFullExpression(EWC);
3659   }
3660   // Processing for statements under 'atomic capture'.
3661   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3662     for (const auto *C : Compound->body()) {
3663       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
3664         enterFullExpression(EWC);
3665       }
3666     }
3667   }
3668 
3669   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
3670                                             PrePostActionTy &) {
3671     CGF.EmitStopPoint(CS);
3672     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
3673                       S.getV(), S.getExpr(), S.getUpdateExpr(),
3674                       S.isXLHSInRHSPart(), S.getLocStart());
3675   };
3676   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3677   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
3678 }
3679 
3680 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
3681                                          const OMPExecutableDirective &S,
3682                                          const RegionCodeGenTy &CodeGen) {
3683   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
3684   CodeGenModule &CGM = CGF.CGM;
3685   const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());
3686 
3687   llvm::Function *Fn = nullptr;
3688   llvm::Constant *FnID = nullptr;
3689 
3690   const Expr *IfCond = nullptr;
3691   // Check for the at most one if clause associated with the target region.
3692   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3693     if (C->getNameModifier() == OMPD_unknown ||
3694         C->getNameModifier() == OMPD_target) {
3695       IfCond = C->getCondition();
3696       break;
3697     }
3698   }
3699 
3700   // Check if we have any device clause associated with the directive.
3701   const Expr *Device = nullptr;
3702   if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
3703     Device = C->getDevice();
3704   }
3705 
3706   // Check if we have an if clause whose conditional always evaluates to false
3707   // or if we do not have any targets specified. If so the target region is not
3708   // an offload entry point.
3709   bool IsOffloadEntry = true;
3710   if (IfCond) {
3711     bool Val;
3712     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
3713       IsOffloadEntry = false;
3714   }
3715   if (CGM.getLangOpts().OMPTargetTriples.empty())
3716     IsOffloadEntry = false;
3717 
3718   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
3719   StringRef ParentName;
3720   // In case we have Ctors/Dtors we use the complete type variant to produce
3721   // the mangling of the device outlined kernel.
3722   if (auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
3723     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
3724   else if (auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
3725     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
3726   else
3727     ParentName =
3728         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
3729 
3730   // Emit target region as a standalone region.
3731   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
3732                                                     IsOffloadEntry, CodeGen);
3733   OMPLexicalScope Scope(CGF, S);
3734   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3735   CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
3736   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device,
3737                                         CapturedVars);
3738 }
3739 
3740 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
3741                              PrePostActionTy &Action) {
3742   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
3743   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3744   CGF.EmitOMPPrivateClause(S, PrivateScope);
3745   (void)PrivateScope.Privatize();
3746 
3747   Action.Enter(CGF);
3748   CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3749 }
3750 
3751 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3752                                                   StringRef ParentName,
3753                                                   const OMPTargetDirective &S) {
3754   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3755     emitTargetRegion(CGF, S, Action);
3756   };
3757   llvm::Function *Fn;
3758   llvm::Constant *Addr;
3759   // Emit target region as a standalone region.
3760   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3761       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
3762   assert(Fn && Addr && "Target device function emission failed.");
3763 }
3764 
3765 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
3766   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3767     emitTargetRegion(CGF, S, Action);
3768   };
3769   emitCommonOMPTargetDirective(*this, S, CodeGen);
3770 }
3771 
3772 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
3773                                         const OMPExecutableDirective &S,
3774                                         OpenMPDirectiveKind InnermostKind,
3775                                         const RegionCodeGenTy &CodeGen) {
3776   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
3777   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
3778       S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
3779 
3780   const OMPNumTeamsClause *NT = S.getSingleClause<OMPNumTeamsClause>();
3781   const OMPThreadLimitClause *TL = S.getSingleClause<OMPThreadLimitClause>();
3782   if (NT || TL) {
3783     Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr;
3784     Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr;
3785 
3786     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
3787                                                   S.getLocStart());
3788   }
3789 
3790   OMPTeamsScope Scope(CGF, S);
3791   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3792   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3793   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn,
3794                                            CapturedVars);
3795 }
3796 
3797 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
3798   // Emit teams region as a standalone region.
3799   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3800     OMPPrivateScope PrivateScope(CGF);
3801     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3802     CGF.EmitOMPPrivateClause(S, PrivateScope);
3803     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
3804     (void)PrivateScope.Privatize();
3805     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3806     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
3807   };
3808   emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen);
3809   emitPostUpdateForReductionClause(
3810       *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
3811 }
3812 
3813 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
3814                                   const OMPTargetTeamsDirective &S) {
3815   auto *CS = S.getCapturedStmt(OMPD_teams);
3816   Action.Enter(CGF);
3817   auto &&CodeGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
3818     // TODO: Add support for clauses.
3819     CGF.EmitStmt(CS->getCapturedStmt());
3820   };
3821   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
3822 }
3823 
3824 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
3825     CodeGenModule &CGM, StringRef ParentName,
3826     const OMPTargetTeamsDirective &S) {
3827   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3828     emitTargetTeamsRegion(CGF, Action, S);
3829   };
3830   llvm::Function *Fn;
3831   llvm::Constant *Addr;
3832   // Emit target region as a standalone region.
3833   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3834       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
3835   assert(Fn && Addr && "Target device function emission failed.");
3836 }
3837 
3838 void CodeGenFunction::EmitOMPTargetTeamsDirective(
3839     const OMPTargetTeamsDirective &S) {
3840   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3841     emitTargetTeamsRegion(CGF, Action, S);
3842   };
3843   emitCommonOMPTargetDirective(*this, S, CodeGen);
3844 }
3845 
3846 void CodeGenFunction::EmitOMPCancellationPointDirective(
3847     const OMPCancellationPointDirective &S) {
3848   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
3849                                                    S.getCancelRegion());
3850 }
3851 
3852 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
3853   const Expr *IfCond = nullptr;
3854   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3855     if (C->getNameModifier() == OMPD_unknown ||
3856         C->getNameModifier() == OMPD_cancel) {
3857       IfCond = C->getCondition();
3858       break;
3859     }
3860   }
3861   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
3862                                         S.getCancelRegion());
3863 }
3864 
3865 CodeGenFunction::JumpDest
3866 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
3867   if (Kind == OMPD_parallel || Kind == OMPD_task ||
3868       Kind == OMPD_target_parallel)
3869     return ReturnBlock;
3870   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
3871          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
3872          Kind == OMPD_distribute_parallel_for ||
3873          Kind == OMPD_target_parallel_for);
3874   return OMPCancelStack.getExitBlock();
3875 }
3876 
3877 void CodeGenFunction::EmitOMPUseDevicePtrClause(
3878     const OMPClause &NC, OMPPrivateScope &PrivateScope,
3879     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
3880   const auto &C = cast<OMPUseDevicePtrClause>(NC);
3881   auto OrigVarIt = C.varlist_begin();
3882   auto InitIt = C.inits().begin();
3883   for (auto PvtVarIt : C.private_copies()) {
3884     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
3885     auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
3886     auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
3887 
3888     // In order to identify the right initializer we need to match the
3889     // declaration used by the mapping logic. In some cases we may get
3890     // OMPCapturedExprDecl that refers to the original declaration.
3891     const ValueDecl *MatchingVD = OrigVD;
3892     if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
3893       // OMPCapturedExprDecl are used to privative fields of the current
3894       // structure.
3895       auto *ME = cast<MemberExpr>(OED->getInit());
3896       assert(isa<CXXThisExpr>(ME->getBase()) &&
3897              "Base should be the current struct!");
3898       MatchingVD = ME->getMemberDecl();
3899     }
3900 
3901     // If we don't have information about the current list item, move on to
3902     // the next one.
3903     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
3904     if (InitAddrIt == CaptureDeviceAddrMap.end())
3905       continue;
3906 
3907     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
3908       // Initialize the temporary initialization variable with the address we
3909       // get from the runtime library. We have to cast the source address
3910       // because it is always a void *. References are materialized in the
3911       // privatization scope, so the initialization here disregards the fact
3912       // the original variable is a reference.
3913       QualType AddrQTy =
3914           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
3915       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
3916       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
3917       setAddrOfLocalVar(InitVD, InitAddr);
3918 
3919       // Emit private declaration, it will be initialized by the value we
3920       // declaration we just added to the local declarations map.
3921       EmitDecl(*PvtVD);
3922 
3923       // The initialization variables reached its purpose in the emission
3924       // ofthe previous declaration, so we don't need it anymore.
3925       LocalDeclMap.erase(InitVD);
3926 
3927       // Return the address of the private variable.
3928       return GetAddrOfLocalVar(PvtVD);
3929     });
3930     assert(IsRegistered && "firstprivate var already registered as private");
3931     // Silence the warning about unused variable.
3932     (void)IsRegistered;
3933 
3934     ++OrigVarIt;
3935     ++InitIt;
3936   }
3937 }
3938 
3939 // Generate the instructions for '#pragma omp target data' directive.
3940 void CodeGenFunction::EmitOMPTargetDataDirective(
3941     const OMPTargetDataDirective &S) {
3942   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
3943 
3944   // Create a pre/post action to signal the privatization of the device pointer.
3945   // This action can be replaced by the OpenMP runtime code generation to
3946   // deactivate privatization.
3947   bool PrivatizeDevicePointers = false;
3948   class DevicePointerPrivActionTy : public PrePostActionTy {
3949     bool &PrivatizeDevicePointers;
3950 
3951   public:
3952     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
3953         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
3954     void Enter(CodeGenFunction &CGF) override {
3955       PrivatizeDevicePointers = true;
3956     }
3957   };
3958   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
3959 
3960   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
3961       CodeGenFunction &CGF, PrePostActionTy &Action) {
3962     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3963       CGF.EmitStmt(
3964           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3965     };
3966 
3967     // Codegen that selects wheather to generate the privatization code or not.
3968     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
3969                           &InnermostCodeGen](CodeGenFunction &CGF,
3970                                              PrePostActionTy &Action) {
3971       RegionCodeGenTy RCG(InnermostCodeGen);
3972       PrivatizeDevicePointers = false;
3973 
3974       // Call the pre-action to change the status of PrivatizeDevicePointers if
3975       // needed.
3976       Action.Enter(CGF);
3977 
3978       if (PrivatizeDevicePointers) {
3979         OMPPrivateScope PrivateScope(CGF);
3980         // Emit all instances of the use_device_ptr clause.
3981         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
3982           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
3983                                         Info.CaptureDeviceAddrMap);
3984         (void)PrivateScope.Privatize();
3985         RCG(CGF);
3986       } else
3987         RCG(CGF);
3988     };
3989 
3990     // Forward the provided action to the privatization codegen.
3991     RegionCodeGenTy PrivRCG(PrivCodeGen);
3992     PrivRCG.setAction(Action);
3993 
3994     // Notwithstanding the body of the region is emitted as inlined directive,
3995     // we don't use an inline scope as changes in the references inside the
3996     // region are expected to be visible outside, so we do not privative them.
3997     OMPLexicalScope Scope(CGF, S);
3998     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
3999                                                     PrivRCG);
4000   };
4001 
4002   RegionCodeGenTy RCG(CodeGen);
4003 
4004   // If we don't have target devices, don't bother emitting the data mapping
4005   // code.
4006   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
4007     RCG(*this);
4008     return;
4009   }
4010 
4011   // Check if we have any if clause associated with the directive.
4012   const Expr *IfCond = nullptr;
4013   if (auto *C = S.getSingleClause<OMPIfClause>())
4014     IfCond = C->getCondition();
4015 
4016   // Check if we have any device clause associated with the directive.
4017   const Expr *Device = nullptr;
4018   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4019     Device = C->getDevice();
4020 
4021   // Set the action to signal privatization of device pointers.
4022   RCG.setAction(PrivAction);
4023 
4024   // Emit region code.
4025   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
4026                                              Info);
4027 }
4028 
4029 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
4030     const OMPTargetEnterDataDirective &S) {
4031   // If we don't have target devices, don't bother emitting the data mapping
4032   // code.
4033   if (CGM.getLangOpts().OMPTargetTriples.empty())
4034     return;
4035 
4036   // Check if we have any if clause associated with the directive.
4037   const Expr *IfCond = nullptr;
4038   if (auto *C = S.getSingleClause<OMPIfClause>())
4039     IfCond = C->getCondition();
4040 
4041   // Check if we have any device clause associated with the directive.
4042   const Expr *Device = nullptr;
4043   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4044     Device = C->getDevice();
4045 
4046   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4047 }
4048 
4049 void CodeGenFunction::EmitOMPTargetExitDataDirective(
4050     const OMPTargetExitDataDirective &S) {
4051   // If we don't have target devices, don't bother emitting the data mapping
4052   // code.
4053   if (CGM.getLangOpts().OMPTargetTriples.empty())
4054     return;
4055 
4056   // Check if we have any if clause associated with the directive.
4057   const Expr *IfCond = nullptr;
4058   if (auto *C = S.getSingleClause<OMPIfClause>())
4059     IfCond = C->getCondition();
4060 
4061   // Check if we have any device clause associated with the directive.
4062   const Expr *Device = nullptr;
4063   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4064     Device = C->getDevice();
4065 
4066   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4067 }
4068 
4069 static void emitTargetParallelRegion(CodeGenFunction &CGF,
4070                                      const OMPTargetParallelDirective &S,
4071                                      PrePostActionTy &Action) {
4072   // Get the captured statement associated with the 'parallel' region.
4073   auto *CS = S.getCapturedStmt(OMPD_parallel);
4074   Action.Enter(CGF);
4075   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &) {
4076     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4077     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4078     CGF.EmitOMPPrivateClause(S, PrivateScope);
4079     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4080     (void)PrivateScope.Privatize();
4081     // TODO: Add support for clauses.
4082     CGF.EmitStmt(CS->getCapturedStmt());
4083     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
4084   };
4085   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
4086                                  emitEmptyBoundParameters);
4087   emitPostUpdateForReductionClause(
4088       CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
4089 }
4090 
4091 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
4092     CodeGenModule &CGM, StringRef ParentName,
4093     const OMPTargetParallelDirective &S) {
4094   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4095     emitTargetParallelRegion(CGF, S, Action);
4096   };
4097   llvm::Function *Fn;
4098   llvm::Constant *Addr;
4099   // Emit target region as a standalone region.
4100   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4101       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4102   assert(Fn && Addr && "Target device function emission failed.");
4103 }
4104 
4105 void CodeGenFunction::EmitOMPTargetParallelDirective(
4106     const OMPTargetParallelDirective &S) {
4107   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4108     emitTargetParallelRegion(CGF, S, Action);
4109   };
4110   emitCommonOMPTargetDirective(*this, S, CodeGen);
4111 }
4112 
4113 void CodeGenFunction::EmitOMPTargetParallelForDirective(
4114     const OMPTargetParallelForDirective &S) {
4115   // TODO: codegen for target parallel for.
4116 }
4117 
4118 /// Emit a helper variable and return corresponding lvalue.
4119 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
4120                      const ImplicitParamDecl *PVD,
4121                      CodeGenFunction::OMPPrivateScope &Privates) {
4122   auto *VDecl = cast<VarDecl>(Helper->getDecl());
4123   Privates.addPrivate(
4124       VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); });
4125 }
4126 
4127 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
4128   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
4129   // Emit outlined function for task construct.
4130   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
4131   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
4132   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4133   const Expr *IfCond = nullptr;
4134   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4135     if (C->getNameModifier() == OMPD_unknown ||
4136         C->getNameModifier() == OMPD_taskloop) {
4137       IfCond = C->getCondition();
4138       break;
4139     }
4140   }
4141 
4142   OMPTaskDataTy Data;
4143   // Check if taskloop must be emitted without taskgroup.
4144   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
4145   // TODO: Check if we should emit tied or untied task.
4146   Data.Tied = true;
4147   // Set scheduling for taskloop
4148   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
4149     // grainsize clause
4150     Data.Schedule.setInt(/*IntVal=*/false);
4151     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
4152   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
4153     // num_tasks clause
4154     Data.Schedule.setInt(/*IntVal=*/true);
4155     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
4156   }
4157 
4158   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
4159     // if (PreCond) {
4160     //   for (IV in 0..LastIteration) BODY;
4161     //   <Final counter/linear vars updates>;
4162     // }
4163     //
4164 
4165     // Emit: if (PreCond) - begin.
4166     // If the condition constant folds and can be elided, avoid emitting the
4167     // whole loop.
4168     bool CondConstant;
4169     llvm::BasicBlock *ContBlock = nullptr;
4170     OMPLoopScope PreInitScope(CGF, S);
4171     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
4172       if (!CondConstant)
4173         return;
4174     } else {
4175       auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
4176       ContBlock = CGF.createBasicBlock("taskloop.if.end");
4177       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
4178                   CGF.getProfileCount(&S));
4179       CGF.EmitBlock(ThenBlock);
4180       CGF.incrementProfileCounter(&S);
4181     }
4182 
4183     if (isOpenMPSimdDirective(S.getDirectiveKind()))
4184       CGF.EmitOMPSimdInit(S);
4185 
4186     OMPPrivateScope LoopScope(CGF);
4187     // Emit helper vars inits.
4188     enum { LowerBound = 5, UpperBound, Stride, LastIter };
4189     auto *I = CS->getCapturedDecl()->param_begin();
4190     auto *LBP = std::next(I, LowerBound);
4191     auto *UBP = std::next(I, UpperBound);
4192     auto *STP = std::next(I, Stride);
4193     auto *LIP = std::next(I, LastIter);
4194     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
4195              LoopScope);
4196     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
4197              LoopScope);
4198     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
4199     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
4200              LoopScope);
4201     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
4202     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
4203     (void)LoopScope.Privatize();
4204     // Emit the loop iteration variable.
4205     const Expr *IVExpr = S.getIterationVariable();
4206     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
4207     CGF.EmitVarDecl(*IVDecl);
4208     CGF.EmitIgnoredExpr(S.getInit());
4209 
4210     // Emit the iterations count variable.
4211     // If it is not a variable, Sema decided to calculate iterations count on
4212     // each iteration (e.g., it is foldable into a constant).
4213     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
4214       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
4215       // Emit calculation of the iterations count.
4216       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
4217     }
4218 
4219     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
4220                          S.getInc(),
4221                          [&S](CodeGenFunction &CGF) {
4222                            CGF.EmitOMPLoopBody(S, JumpDest());
4223                            CGF.EmitStopPoint(&S);
4224                          },
4225                          [](CodeGenFunction &) {});
4226     // Emit: if (PreCond) - end.
4227     if (ContBlock) {
4228       CGF.EmitBranch(ContBlock);
4229       CGF.EmitBlock(ContBlock, true);
4230     }
4231     // Emit final copy of the lastprivate variables if IsLastIter != 0.
4232     if (HasLastprivateClause) {
4233       CGF.EmitOMPLastprivateClauseFinal(
4234           S, isOpenMPSimdDirective(S.getDirectiveKind()),
4235           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
4236               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
4237               (*LIP)->getType(), S.getLocStart())));
4238     }
4239   };
4240   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
4241                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
4242                             const OMPTaskDataTy &Data) {
4243     auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) {
4244       OMPLoopScope PreInitScope(CGF, S);
4245       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S,
4246                                                   OutlinedFn, SharedsTy,
4247                                                   CapturedStruct, IfCond, Data);
4248     };
4249     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
4250                                                     CodeGen);
4251   };
4252   if (Data.Nogroup)
4253     EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
4254   else {
4255     CGM.getOpenMPRuntime().emitTaskgroupRegion(
4256         *this,
4257         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
4258                                         PrePostActionTy &Action) {
4259           Action.Enter(CGF);
4260           CGF.EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
4261         },
4262         S.getLocStart());
4263   }
4264 }
4265 
4266 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
4267   EmitOMPTaskLoopBasedDirective(S);
4268 }
4269 
4270 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
4271     const OMPTaskLoopSimdDirective &S) {
4272   EmitOMPTaskLoopBasedDirective(S);
4273 }
4274 
4275 // Generate the instructions for '#pragma omp target update' directive.
4276 void CodeGenFunction::EmitOMPTargetUpdateDirective(
4277     const OMPTargetUpdateDirective &S) {
4278   // If we don't have target devices, don't bother emitting the data mapping
4279   // code.
4280   if (CGM.getLangOpts().OMPTargetTriples.empty())
4281     return;
4282 
4283   // Check if we have any if clause associated with the directive.
4284   const Expr *IfCond = nullptr;
4285   if (auto *C = S.getSingleClause<OMPIfClause>())
4286     IfCond = C->getCondition();
4287 
4288   // Check if we have any device clause associated with the directive.
4289   const Expr *Device = nullptr;
4290   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4291     Device = C->getDevice();
4292 
4293   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4294 }
4295