1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Stmt.h"
19 #include "clang/AST/StmtOpenMP.h"
20 using namespace clang;
21 using namespace CodeGen;
22 
23 //===----------------------------------------------------------------------===//
24 //                              OpenMP Directive Emission
25 //===----------------------------------------------------------------------===//
26 void CodeGenFunction::EmitOMPAggregateAssign(
27     llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
28     const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen) {
29   // Perform element-by-element initialization.
30   QualType ElementTy;
31   auto SrcBegin = SrcAddr;
32   auto DestBegin = DestAddr;
33   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
34   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestBegin);
35   // Cast from pointer to array type to pointer to single element.
36   SrcBegin = Builder.CreatePointerBitCastOrAddrSpaceCast(SrcBegin,
37                                                          DestBegin->getType());
38   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
39   // The basic structure here is a while-do loop.
40   auto BodyBB = createBasicBlock("omp.arraycpy.body");
41   auto DoneBB = createBasicBlock("omp.arraycpy.done");
42   auto IsEmpty =
43       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
44   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
45 
46   // Enter the loop body, making that address the current address.
47   auto EntryBB = Builder.GetInsertBlock();
48   EmitBlock(BodyBB);
49   auto SrcElementCurrent =
50       Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
51   SrcElementCurrent->addIncoming(SrcBegin, EntryBB);
52   auto DestElementCurrent = Builder.CreatePHI(DestBegin->getType(), 2,
53                                               "omp.arraycpy.destElementPast");
54   DestElementCurrent->addIncoming(DestBegin, EntryBB);
55 
56   // Emit copy.
57   CopyGen(DestElementCurrent, SrcElementCurrent);
58 
59   // Shift the address forward by one element.
60   auto DestElementNext = Builder.CreateConstGEP1_32(
61       DestElementCurrent, /*Idx0=*/1, "omp.arraycpy.dest.element");
62   auto SrcElementNext = Builder.CreateConstGEP1_32(
63       SrcElementCurrent, /*Idx0=*/1, "omp.arraycpy.src.element");
64   // Check whether we've reached the end.
65   auto Done =
66       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
67   Builder.CreateCondBr(Done, DoneBB, BodyBB);
68   DestElementCurrent->addIncoming(DestElementNext, Builder.GetInsertBlock());
69   SrcElementCurrent->addIncoming(SrcElementNext, Builder.GetInsertBlock());
70 
71   // Done.
72   EmitBlock(DoneBB, /*IsFinished=*/true);
73 }
74 
75 void CodeGenFunction::EmitOMPCopy(CodeGenFunction &CGF,
76                                   QualType OriginalType, llvm::Value *DestAddr,
77                                   llvm::Value *SrcAddr, const VarDecl *DestVD,
78                                   const VarDecl *SrcVD, const Expr *Copy) {
79   if (OriginalType->isArrayType()) {
80     auto *BO = dyn_cast<BinaryOperator>(Copy);
81     if (BO && BO->getOpcode() == BO_Assign) {
82       // Perform simple memcpy for simple copying.
83       CGF.EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
84     } else {
85       // For arrays with complex element types perform element by element
86       // copying.
87       CGF.EmitOMPAggregateAssign(
88           DestAddr, SrcAddr, OriginalType,
89           [&CGF, Copy, SrcVD, DestVD](llvm::Value *DestElement,
90                                           llvm::Value *SrcElement) {
91             // Working with the single array element, so have to remap
92             // destination and source variables to corresponding array
93             // elements.
94             CodeGenFunction::OMPPrivateScope Remap(CGF);
95             Remap.addPrivate(DestVD, [DestElement]() -> llvm::Value *{
96               return DestElement;
97             });
98             Remap.addPrivate(
99                 SrcVD, [SrcElement]() -> llvm::Value *{ return SrcElement; });
100             (void)Remap.Privatize();
101             CGF.EmitIgnoredExpr(Copy);
102           });
103     }
104   } else {
105     // Remap pseudo source variable to private copy.
106     CodeGenFunction::OMPPrivateScope Remap(CGF);
107     Remap.addPrivate(SrcVD, [SrcAddr]() -> llvm::Value *{ return SrcAddr; });
108     Remap.addPrivate(DestVD, [DestAddr]() -> llvm::Value *{ return DestAddr; });
109     (void)Remap.Privatize();
110     // Emit copying of the whole variable.
111     CGF.EmitIgnoredExpr(Copy);
112   }
113 }
114 
115 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
116                                                 OMPPrivateScope &PrivateScope) {
117   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
118   for (auto &&I = D.getClausesOfKind(OMPC_firstprivate); I; ++I) {
119     auto *C = cast<OMPFirstprivateClause>(*I);
120     auto IRef = C->varlist_begin();
121     auto InitsRef = C->inits().begin();
122     for (auto IInit : C->private_copies()) {
123       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
124       if (EmittedAsFirstprivate.count(OrigVD) == 0) {
125         EmittedAsFirstprivate.insert(OrigVD);
126         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
127         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
128         bool IsRegistered;
129         DeclRefExpr DRE(
130             const_cast<VarDecl *>(OrigVD),
131             /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
132                 OrigVD) != nullptr,
133             (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
134         auto *OriginalAddr = EmitLValue(&DRE).getAddress();
135         QualType Type = OrigVD->getType();
136         if (Type->isArrayType()) {
137           // Emit VarDecl with copy init for arrays.
138           // Get the address of the original variable captured in current
139           // captured region.
140           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
141             auto Emission = EmitAutoVarAlloca(*VD);
142             auto *Init = VD->getInit();
143             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
144               // Perform simple memcpy.
145               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
146                                   Type);
147             } else {
148               EmitOMPAggregateAssign(
149                   Emission.getAllocatedAddress(), OriginalAddr, Type,
150                   [this, VDInit, Init](llvm::Value *DestElement,
151                                        llvm::Value *SrcElement) {
152                     // Clean up any temporaries needed by the initialization.
153                     RunCleanupsScope InitScope(*this);
154                     // Emit initialization for single element.
155                     LocalDeclMap[VDInit] = SrcElement;
156                     EmitAnyExprToMem(Init, DestElement,
157                                      Init->getType().getQualifiers(),
158                                      /*IsInitializer*/ false);
159                     LocalDeclMap.erase(VDInit);
160                   });
161             }
162             EmitAutoVarCleanups(Emission);
163             return Emission.getAllocatedAddress();
164           });
165         } else {
166           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
167             // Emit private VarDecl with copy init.
168             // Remap temp VDInit variable to the address of the original
169             // variable
170             // (for proper handling of captured global variables).
171             LocalDeclMap[VDInit] = OriginalAddr;
172             EmitDecl(*VD);
173             LocalDeclMap.erase(VDInit);
174             return GetAddrOfLocalVar(VD);
175           });
176         }
177         assert(IsRegistered &&
178                "firstprivate var already registered as private");
179         // Silence the warning about unused variable.
180         (void)IsRegistered;
181       }
182       ++IRef, ++InitsRef;
183     }
184   }
185   return !EmittedAsFirstprivate.empty();
186 }
187 
188 void CodeGenFunction::EmitOMPPrivateClause(
189     const OMPExecutableDirective &D,
190     CodeGenFunction::OMPPrivateScope &PrivateScope) {
191   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
192   for (auto &&I = D.getClausesOfKind(OMPC_private); I; ++I) {
193     auto *C = cast<OMPPrivateClause>(*I);
194     auto IRef = C->varlist_begin();
195     for (auto IInit : C->private_copies()) {
196       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
197       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
198         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
199         bool IsRegistered =
200             PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
201               // Emit private VarDecl with copy init.
202               EmitDecl(*VD);
203               return GetAddrOfLocalVar(VD);
204             });
205         assert(IsRegistered && "private var already registered as private");
206         // Silence the warning about unused variable.
207         (void)IsRegistered;
208       }
209       ++IRef;
210     }
211   }
212 }
213 
214 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
215   // threadprivate_var1 = master_threadprivate_var1;
216   // operator=(threadprivate_var2, master_threadprivate_var2);
217   // ...
218   // __kmpc_barrier(&loc, global_tid);
219   llvm::DenseSet<const VarDecl *> CopiedVars;
220   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
221   for (auto &&I = D.getClausesOfKind(OMPC_copyin); I; ++I) {
222     auto *C = cast<OMPCopyinClause>(*I);
223     auto IRef = C->varlist_begin();
224     auto ISrcRef = C->source_exprs().begin();
225     auto IDestRef = C->destination_exprs().begin();
226     for (auto *AssignOp : C->assignment_ops()) {
227       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
228       QualType Type = VD->getType();
229       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
230 
231         // Get the address of the master variable. If we are emitting code with
232         // TLS support, the address is passed from the master as field in the
233         // captured declaration.
234         llvm::Value *MasterAddr;
235         if (getLangOpts().OpenMPUseTLS &&
236             getContext().getTargetInfo().isTLSSupported()) {
237           assert(CapturedStmtInfo->lookup(VD) &&
238                  "Copyin threadprivates should have been captured!");
239           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
240                           VK_LValue, (*IRef)->getExprLoc());
241           MasterAddr = EmitLValue(&DRE).getAddress();
242         } else {
243           MasterAddr = VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
244                                            : CGM.GetAddrOfGlobal(VD);
245         }
246         // Get the address of the threadprivate variable.
247         auto *PrivateAddr = EmitLValue(*IRef).getAddress();
248         if (CopiedVars.size() == 1) {
249           // At first check if current thread is a master thread. If it is, no
250           // need to copy data.
251           CopyBegin = createBasicBlock("copyin.not.master");
252           CopyEnd = createBasicBlock("copyin.not.master.end");
253           Builder.CreateCondBr(
254               Builder.CreateICmpNE(
255                   Builder.CreatePtrToInt(MasterAddr, CGM.IntPtrTy),
256                   Builder.CreatePtrToInt(PrivateAddr, CGM.IntPtrTy)),
257               CopyBegin, CopyEnd);
258           EmitBlock(CopyBegin);
259         }
260         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
261         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
262         EmitOMPCopy(*this, Type, PrivateAddr, MasterAddr, DestVD, SrcVD,
263                     AssignOp);
264       }
265       ++IRef;
266       ++ISrcRef;
267       ++IDestRef;
268     }
269   }
270   if (CopyEnd) {
271     // Exit out of copying procedure for non-master thread.
272     EmitBlock(CopyEnd, /*IsFinished=*/true);
273     return true;
274   }
275   return false;
276 }
277 
278 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
279     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
280   bool HasAtLeastOneLastprivate = false;
281   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
282   for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
283     HasAtLeastOneLastprivate = true;
284     auto *C = cast<OMPLastprivateClause>(*I);
285     auto IRef = C->varlist_begin();
286     auto IDestRef = C->destination_exprs().begin();
287     for (auto *IInit : C->private_copies()) {
288       // Keep the address of the original variable for future update at the end
289       // of the loop.
290       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
291       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
292         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
293         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> llvm::Value *{
294           DeclRefExpr DRE(
295               const_cast<VarDecl *>(OrigVD),
296               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
297                   OrigVD) != nullptr,
298               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
299           return EmitLValue(&DRE).getAddress();
300         });
301         // Check if the variable is also a firstprivate: in this case IInit is
302         // not generated. Initialization of this variable will happen in codegen
303         // for 'firstprivate' clause.
304         if (IInit) {
305           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
306           bool IsRegistered =
307               PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
308                 // Emit private VarDecl with copy init.
309                 EmitDecl(*VD);
310                 return GetAddrOfLocalVar(VD);
311               });
312           assert(IsRegistered &&
313                  "lastprivate var already registered as private");
314           (void)IsRegistered;
315         }
316       }
317       ++IRef, ++IDestRef;
318     }
319   }
320   return HasAtLeastOneLastprivate;
321 }
322 
323 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
324     const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) {
325   // Emit following code:
326   // if (<IsLastIterCond>) {
327   //   orig_var1 = private_orig_var1;
328   //   ...
329   //   orig_varn = private_orig_varn;
330   // }
331   llvm::BasicBlock *ThenBB = nullptr;
332   llvm::BasicBlock *DoneBB = nullptr;
333   if (IsLastIterCond) {
334     ThenBB = createBasicBlock(".omp.lastprivate.then");
335     DoneBB = createBasicBlock(".omp.lastprivate.done");
336     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
337     EmitBlock(ThenBB);
338   }
339   llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates;
340   const Expr *LastIterVal = nullptr;
341   const Expr *IVExpr = nullptr;
342   const Expr *IncExpr = nullptr;
343   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
344     if (isOpenMPWorksharingDirective(D.getDirectiveKind())) {
345       LastIterVal = cast<VarDecl>(cast<DeclRefExpr>(
346                                       LoopDirective->getUpperBoundVariable())
347                                       ->getDecl())
348                         ->getAnyInitializer();
349       IVExpr = LoopDirective->getIterationVariable();
350       IncExpr = LoopDirective->getInc();
351       auto IUpdate = LoopDirective->updates().begin();
352       for (auto *E : LoopDirective->counters()) {
353         auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
354         LoopCountersAndUpdates[D] = *IUpdate;
355         ++IUpdate;
356       }
357     }
358   }
359   {
360     llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
361     bool FirstLCV = true;
362     for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
363       auto *C = cast<OMPLastprivateClause>(*I);
364       auto IRef = C->varlist_begin();
365       auto ISrcRef = C->source_exprs().begin();
366       auto IDestRef = C->destination_exprs().begin();
367       for (auto *AssignOp : C->assignment_ops()) {
368         auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
369         QualType Type = PrivateVD->getType();
370         auto *CanonicalVD = PrivateVD->getCanonicalDecl();
371         if (AlreadyEmittedVars.insert(CanonicalVD).second) {
372           // If lastprivate variable is a loop control variable for loop-based
373           // directive, update its value before copyin back to original
374           // variable.
375           if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) {
376             if (FirstLCV && LastIterVal) {
377               EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(),
378                                IVExpr->getType().getQualifiers(),
379                                /*IsInitializer=*/false);
380               EmitIgnoredExpr(IncExpr);
381               FirstLCV = false;
382             }
383             EmitIgnoredExpr(UpExpr);
384           }
385           auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
386           auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
387           // Get the address of the original variable.
388           auto *OriginalAddr = GetAddrOfLocalVar(DestVD);
389           // Get the address of the private variable.
390           auto *PrivateAddr = GetAddrOfLocalVar(PrivateVD);
391           EmitOMPCopy(*this, Type, OriginalAddr, PrivateAddr, DestVD, SrcVD,
392                       AssignOp);
393         }
394         ++IRef;
395         ++ISrcRef;
396         ++IDestRef;
397       }
398     }
399   }
400   if (IsLastIterCond) {
401     EmitBlock(DoneBB, /*IsFinished=*/true);
402   }
403 }
404 
405 void CodeGenFunction::EmitOMPReductionClauseInit(
406     const OMPExecutableDirective &D,
407     CodeGenFunction::OMPPrivateScope &PrivateScope) {
408   for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
409     auto *C = cast<OMPReductionClause>(*I);
410     auto ILHS = C->lhs_exprs().begin();
411     auto IRHS = C->rhs_exprs().begin();
412     for (auto IRef : C->varlists()) {
413       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
414       auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
415       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
416       // Store the address of the original variable associated with the LHS
417       // implicit variable.
418       PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> llvm::Value *{
419         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
420                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
421                         IRef->getType(), VK_LValue, IRef->getExprLoc());
422         return EmitLValue(&DRE).getAddress();
423       });
424       // Emit reduction copy.
425       bool IsRegistered =
426           PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> llvm::Value *{
427             // Emit private VarDecl with reduction init.
428             EmitDecl(*PrivateVD);
429             return GetAddrOfLocalVar(PrivateVD);
430           });
431       assert(IsRegistered && "private var already registered as private");
432       // Silence the warning about unused variable.
433       (void)IsRegistered;
434       ++ILHS, ++IRHS;
435     }
436   }
437 }
438 
439 void CodeGenFunction::EmitOMPReductionClauseFinal(
440     const OMPExecutableDirective &D) {
441   llvm::SmallVector<const Expr *, 8> LHSExprs;
442   llvm::SmallVector<const Expr *, 8> RHSExprs;
443   llvm::SmallVector<const Expr *, 8> ReductionOps;
444   bool HasAtLeastOneReduction = false;
445   for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
446     HasAtLeastOneReduction = true;
447     auto *C = cast<OMPReductionClause>(*I);
448     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
449     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
450     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
451   }
452   if (HasAtLeastOneReduction) {
453     // Emit nowait reduction if nowait clause is present or directive is a
454     // parallel directive (it always has implicit barrier).
455     CGM.getOpenMPRuntime().emitReduction(
456         *this, D.getLocEnd(), LHSExprs, RHSExprs, ReductionOps,
457         D.getSingleClause(OMPC_nowait) ||
458             isOpenMPParallelDirective(D.getDirectiveKind()) ||
459             D.getDirectiveKind() == OMPD_simd,
460         D.getDirectiveKind() == OMPD_simd);
461   }
462 }
463 
464 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
465                                            const OMPExecutableDirective &S,
466                                            OpenMPDirectiveKind InnermostKind,
467                                            const RegionCodeGenTy &CodeGen) {
468   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
469   auto CapturedStruct = CGF.GenerateCapturedStmtArgument(*CS);
470   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
471       S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
472   if (auto C = S.getSingleClause(OMPC_num_threads)) {
473     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
474     auto NumThreadsClause = cast<OMPNumThreadsClause>(C);
475     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
476                                          /*IgnoreResultAssign*/ true);
477     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
478         CGF, NumThreads, NumThreadsClause->getLocStart());
479   }
480   if (auto *C = S.getSingleClause(OMPC_proc_bind)) {
481     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
482     auto *ProcBindClause = cast<OMPProcBindClause>(C);
483     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
484         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
485   }
486   const Expr *IfCond = nullptr;
487   if (auto C = S.getSingleClause(OMPC_if)) {
488     IfCond = cast<OMPIfClause>(C)->getCondition();
489   }
490   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
491                                               CapturedStruct, IfCond);
492 }
493 
494 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
495   LexicalScope Scope(*this, S.getSourceRange());
496   // Emit parallel region as a standalone region.
497   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
498     OMPPrivateScope PrivateScope(CGF);
499     bool Copyins = CGF.EmitOMPCopyinClause(S);
500     bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope);
501     if (Copyins || Firstprivates) {
502       // Emit implicit barrier to synchronize threads and avoid data races on
503       // initialization of firstprivate variables or propagation master's thread
504       // values of threadprivate variables to local instances of that variables
505       // of all other implicit threads.
506       CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
507                                                  OMPD_unknown);
508     }
509     CGF.EmitOMPPrivateClause(S, PrivateScope);
510     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
511     (void)PrivateScope.Privatize();
512     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
513     CGF.EmitOMPReductionClauseFinal(S);
514     // Emit implicit barrier at the end of the 'parallel' directive.
515     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
516                                                OMPD_unknown);
517   };
518   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
519 }
520 
521 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
522                                       JumpDest LoopExit) {
523   RunCleanupsScope BodyScope(*this);
524   // Update counters values on current iteration.
525   for (auto I : D.updates()) {
526     EmitIgnoredExpr(I);
527   }
528   // Update the linear variables.
529   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
530     auto *C = cast<OMPLinearClause>(*I);
531     for (auto U : C->updates()) {
532       EmitIgnoredExpr(U);
533     }
534   }
535 
536   // On a continue in the body, jump to the end.
537   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
538   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
539   // Emit loop body.
540   EmitStmt(D.getBody());
541   // The end (updates/cleanups).
542   EmitBlock(Continue.getBlock());
543   BreakContinueStack.pop_back();
544     // TODO: Update lastprivates if the SeparateIter flag is true.
545     // This will be implemented in a follow-up OMPLastprivateClause patch, but
546     // result should be still correct without it, as we do not make these
547     // variables private yet.
548 }
549 
550 void CodeGenFunction::EmitOMPInnerLoop(
551     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
552     const Expr *IncExpr,
553     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
554     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
555   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
556 
557   // Start the loop with a block that tests the condition.
558   auto CondBlock = createBasicBlock("omp.inner.for.cond");
559   EmitBlock(CondBlock);
560   LoopStack.push(CondBlock);
561 
562   // If there are any cleanups between here and the loop-exit scope,
563   // create a block to stage a loop exit along.
564   auto ExitBlock = LoopExit.getBlock();
565   if (RequiresCleanup)
566     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
567 
568   auto LoopBody = createBasicBlock("omp.inner.for.body");
569 
570   // Emit condition.
571   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
572   if (ExitBlock != LoopExit.getBlock()) {
573     EmitBlock(ExitBlock);
574     EmitBranchThroughCleanup(LoopExit);
575   }
576 
577   EmitBlock(LoopBody);
578   incrementProfileCounter(&S);
579 
580   // Create a block for the increment.
581   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
582   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
583 
584   BodyGen(*this);
585 
586   // Emit "IV = IV + 1" and a back-edge to the condition block.
587   EmitBlock(Continue.getBlock());
588   EmitIgnoredExpr(IncExpr);
589   PostIncGen(*this);
590   BreakContinueStack.pop_back();
591   EmitBranch(CondBlock);
592   LoopStack.pop();
593   // Emit the fall-through block.
594   EmitBlock(LoopExit.getBlock());
595 }
596 
597 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
598   // Emit inits for the linear variables.
599   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
600     auto *C = cast<OMPLinearClause>(*I);
601     for (auto Init : C->inits()) {
602       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
603       auto *OrigVD = cast<VarDecl>(
604           cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl());
605       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
606                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
607                       VD->getInit()->getType(), VK_LValue,
608                       VD->getInit()->getExprLoc());
609       AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
610       EmitExprAsInit(&DRE, VD,
611                      MakeAddrLValue(Emission.getAllocatedAddress(),
612                                     VD->getType(), Emission.Alignment),
613                      /*capturedByInit=*/false);
614       EmitAutoVarCleanups(Emission);
615     }
616     // Emit the linear steps for the linear clauses.
617     // If a step is not constant, it is pre-calculated before the loop.
618     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
619       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
620         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
621         // Emit calculation of the linear step.
622         EmitIgnoredExpr(CS);
623       }
624   }
625 }
626 
627 static void emitLinearClauseFinal(CodeGenFunction &CGF,
628                                   const OMPLoopDirective &D) {
629   // Emit the final values of the linear variables.
630   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
631     auto *C = cast<OMPLinearClause>(*I);
632     auto IC = C->varlist_begin();
633     for (auto F : C->finals()) {
634       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
635       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
636                       CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
637                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
638       auto *OrigAddr = CGF.EmitLValue(&DRE).getAddress();
639       CodeGenFunction::OMPPrivateScope VarScope(CGF);
640       VarScope.addPrivate(OrigVD,
641                           [OrigAddr]() -> llvm::Value *{ return OrigAddr; });
642       (void)VarScope.Privatize();
643       CGF.EmitIgnoredExpr(F);
644       ++IC;
645     }
646   }
647 }
648 
649 static void emitAlignedClause(CodeGenFunction &CGF,
650                               const OMPExecutableDirective &D) {
651   for (auto &&I = D.getClausesOfKind(OMPC_aligned); I; ++I) {
652     auto *Clause = cast<OMPAlignedClause>(*I);
653     unsigned ClauseAlignment = 0;
654     if (auto AlignmentExpr = Clause->getAlignment()) {
655       auto AlignmentCI =
656           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
657       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
658     }
659     for (auto E : Clause->varlists()) {
660       unsigned Alignment = ClauseAlignment;
661       if (Alignment == 0) {
662         // OpenMP [2.8.1, Description]
663         // If no optional parameter is specified, implementation-defined default
664         // alignments for SIMD instructions on the target platforms are assumed.
665         Alignment =
666             CGF.getContext()
667                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
668                     E->getType()->getPointeeType()))
669                 .getQuantity();
670       }
671       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
672              "alignment is not power of 2");
673       if (Alignment != 0) {
674         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
675         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
676       }
677     }
678   }
679 }
680 
681 static void emitPrivateLoopCounters(CodeGenFunction &CGF,
682                                     CodeGenFunction::OMPPrivateScope &LoopScope,
683                                     ArrayRef<Expr *> Counters,
684                                     ArrayRef<Expr *> PrivateCounters) {
685   auto I = PrivateCounters.begin();
686   for (auto *E : Counters) {
687     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
688     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
689     llvm::Value *Addr;
690     (void)LoopScope.addPrivate(PrivateVD, [&]() -> llvm::Value * {
691       // Emit var without initialization.
692       auto VarEmission = CGF.EmitAutoVarAlloca(*PrivateVD);
693       CGF.EmitAutoVarCleanups(VarEmission);
694       Addr = VarEmission.getAllocatedAddress();
695       return Addr;
696     });
697     (void)LoopScope.addPrivate(VD, [&]() -> llvm::Value * { return Addr; });
698     ++I;
699   }
700 }
701 
702 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
703                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
704                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
705   {
706     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
707     emitPrivateLoopCounters(CGF, PreCondScope, S.counters(),
708                             S.private_counters());
709     (void)PreCondScope.Privatize();
710     // Get initial values of real counters.
711     for (auto I : S.inits()) {
712       CGF.EmitIgnoredExpr(I);
713     }
714   }
715   // Check that loop is executed at least one time.
716   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
717 }
718 
719 static void
720 emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
721                       CodeGenFunction::OMPPrivateScope &PrivateScope) {
722   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
723     auto *C = cast<OMPLinearClause>(*I);
724     for (auto *E : C->varlists()) {
725       auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
726       bool IsRegistered = PrivateScope.addPrivate(VD, [&]()->llvm::Value * {
727         // Emit var without initialization.
728         auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
729         CGF.EmitAutoVarCleanups(VarEmission);
730         return VarEmission.getAllocatedAddress();
731       });
732       assert(IsRegistered && "linear var already registered as private");
733       // Silence the warning about unused variable.
734       (void)IsRegistered;
735     }
736   }
737 }
738 
739 static void emitSafelenClause(CodeGenFunction &CGF,
740                               const OMPExecutableDirective &D) {
741   if (auto *C =
742           cast_or_null<OMPSafelenClause>(D.getSingleClause(OMPC_safelen))) {
743     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
744                                  /*ignoreResult=*/true);
745     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
746     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
747     // In presence of finite 'safelen', it may be unsafe to mark all
748     // the memory instructions parallel, because loop-carried
749     // dependences of 'safelen' iterations are possible.
750     CGF.LoopStack.setParallel(false);
751   }
752 }
753 
754 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) {
755   // Walk clauses and process safelen/lastprivate.
756   LoopStack.setParallel();
757   LoopStack.setVectorizeEnable(true);
758   emitSafelenClause(*this, D);
759 }
760 
761 void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) {
762   auto IC = D.counters().begin();
763   for (auto F : D.finals()) {
764     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
765     if (LocalDeclMap.lookup(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) {
766       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
767                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
768                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
769       auto *OrigAddr = EmitLValue(&DRE).getAddress();
770       OMPPrivateScope VarScope(*this);
771       VarScope.addPrivate(OrigVD,
772                           [OrigAddr]() -> llvm::Value *{ return OrigAddr; });
773       (void)VarScope.Privatize();
774       EmitIgnoredExpr(F);
775     }
776     ++IC;
777   }
778   emitLinearClauseFinal(*this, D);
779 }
780 
781 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
782   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
783     // if (PreCond) {
784     //   for (IV in 0..LastIteration) BODY;
785     //   <Final counter/linear vars updates>;
786     // }
787     //
788 
789     // Emit: if (PreCond) - begin.
790     // If the condition constant folds and can be elided, avoid emitting the
791     // whole loop.
792     bool CondConstant;
793     llvm::BasicBlock *ContBlock = nullptr;
794     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
795       if (!CondConstant)
796         return;
797     } else {
798       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
799       ContBlock = CGF.createBasicBlock("simd.if.end");
800       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
801                   CGF.getProfileCount(&S));
802       CGF.EmitBlock(ThenBlock);
803       CGF.incrementProfileCounter(&S);
804     }
805 
806     // Emit the loop iteration variable.
807     const Expr *IVExpr = S.getIterationVariable();
808     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
809     CGF.EmitVarDecl(*IVDecl);
810     CGF.EmitIgnoredExpr(S.getInit());
811 
812     // Emit the iterations count variable.
813     // If it is not a variable, Sema decided to calculate iterations count on
814     // each iteration (e.g., it is foldable into a constant).
815     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
816       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
817       // Emit calculation of the iterations count.
818       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
819     }
820 
821     CGF.EmitOMPSimdInit(S);
822 
823     emitAlignedClause(CGF, S);
824     CGF.EmitOMPLinearClauseInit(S);
825     bool HasLastprivateClause;
826     {
827       OMPPrivateScope LoopScope(CGF);
828       emitPrivateLoopCounters(CGF, LoopScope, S.counters(),
829                               S.private_counters());
830       emitPrivateLinearVars(CGF, S, LoopScope);
831       CGF.EmitOMPPrivateClause(S, LoopScope);
832       CGF.EmitOMPReductionClauseInit(S, LoopScope);
833       HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
834       (void)LoopScope.Privatize();
835       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
836                            S.getInc(),
837                            [&S](CodeGenFunction &CGF) {
838                              CGF.EmitOMPLoopBody(S, JumpDest());
839                              CGF.EmitStopPoint(&S);
840                            },
841                            [](CodeGenFunction &) {});
842       // Emit final copy of the lastprivate variables at the end of loops.
843       if (HasLastprivateClause) {
844         CGF.EmitOMPLastprivateClauseFinal(S);
845       }
846       CGF.EmitOMPReductionClauseFinal(S);
847     }
848     CGF.EmitOMPSimdFinal(S);
849     // Emit: if (PreCond) - end.
850     if (ContBlock) {
851       CGF.EmitBranch(ContBlock);
852       CGF.EmitBlock(ContBlock, true);
853     }
854   };
855   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
856 }
857 
858 void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
859                                           const OMPLoopDirective &S,
860                                           OMPPrivateScope &LoopScope,
861                                           bool Ordered, llvm::Value *LB,
862                                           llvm::Value *UB, llvm::Value *ST,
863                                           llvm::Value *IL, llvm::Value *Chunk) {
864   auto &RT = CGM.getOpenMPRuntime();
865 
866   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
867   const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind);
868 
869   assert((Ordered ||
870           !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) &&
871          "static non-chunked schedule does not need outer loop");
872 
873   // Emit outer loop.
874   //
875   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
876   // When schedule(dynamic,chunk_size) is specified, the iterations are
877   // distributed to threads in the team in chunks as the threads request them.
878   // Each thread executes a chunk of iterations, then requests another chunk,
879   // until no chunks remain to be distributed. Each chunk contains chunk_size
880   // iterations, except for the last chunk to be distributed, which may have
881   // fewer iterations. When no chunk_size is specified, it defaults to 1.
882   //
883   // When schedule(guided,chunk_size) is specified, the iterations are assigned
884   // to threads in the team in chunks as the executing threads request them.
885   // Each thread executes a chunk of iterations, then requests another chunk,
886   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
887   // each chunk is proportional to the number of unassigned iterations divided
888   // by the number of threads in the team, decreasing to 1. For a chunk_size
889   // with value k (greater than 1), the size of each chunk is determined in the
890   // same way, with the restriction that the chunks do not contain fewer than k
891   // iterations (except for the last chunk to be assigned, which may have fewer
892   // than k iterations).
893   //
894   // When schedule(auto) is specified, the decision regarding scheduling is
895   // delegated to the compiler and/or runtime system. The programmer gives the
896   // implementation the freedom to choose any possible mapping of iterations to
897   // threads in the team.
898   //
899   // When schedule(runtime) is specified, the decision regarding scheduling is
900   // deferred until run time, and the schedule and chunk size are taken from the
901   // run-sched-var ICV. If the ICV is set to auto, the schedule is
902   // implementation defined
903   //
904   // while(__kmpc_dispatch_next(&LB, &UB)) {
905   //   idx = LB;
906   //   while (idx <= UB) { BODY; ++idx;
907   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
908   //   } // inner loop
909   // }
910   //
911   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
912   // When schedule(static, chunk_size) is specified, iterations are divided into
913   // chunks of size chunk_size, and the chunks are assigned to the threads in
914   // the team in a round-robin fashion in the order of the thread number.
915   //
916   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
917   //   while (idx <= UB) { BODY; ++idx; } // inner loop
918   //   LB = LB + ST;
919   //   UB = UB + ST;
920   // }
921   //
922 
923   const Expr *IVExpr = S.getIterationVariable();
924   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
925   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
926 
927   RT.emitForInit(
928       *this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, Ordered, IL, LB,
929       (DynamicOrOrdered ? EmitAnyExpr(S.getLastIteration()).getScalarVal()
930                         : UB),
931       ST, Chunk);
932 
933   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
934 
935   // Start the loop with a block that tests the condition.
936   auto CondBlock = createBasicBlock("omp.dispatch.cond");
937   EmitBlock(CondBlock);
938   LoopStack.push(CondBlock);
939 
940   llvm::Value *BoolCondVal = nullptr;
941   if (!DynamicOrOrdered) {
942     // UB = min(UB, GlobalUB)
943     EmitIgnoredExpr(S.getEnsureUpperBound());
944     // IV = LB
945     EmitIgnoredExpr(S.getInit());
946     // IV < UB
947     BoolCondVal = EvaluateExprAsBool(S.getCond());
948   } else {
949     BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
950                                     IL, LB, UB, ST);
951   }
952 
953   // If there are any cleanups between here and the loop-exit scope,
954   // create a block to stage a loop exit along.
955   auto ExitBlock = LoopExit.getBlock();
956   if (LoopScope.requiresCleanups())
957     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
958 
959   auto LoopBody = createBasicBlock("omp.dispatch.body");
960   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
961   if (ExitBlock != LoopExit.getBlock()) {
962     EmitBlock(ExitBlock);
963     EmitBranchThroughCleanup(LoopExit);
964   }
965   EmitBlock(LoopBody);
966 
967   // Emit "IV = LB" (in case of static schedule, we have already calculated new
968   // LB for loop condition and emitted it above).
969   if (DynamicOrOrdered)
970     EmitIgnoredExpr(S.getInit());
971 
972   // Create a block for the increment.
973   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
974   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
975 
976   // Generate !llvm.loop.parallel metadata for loads and stores for loops
977   // with dynamic/guided scheduling and without ordered clause.
978   if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
979     LoopStack.setParallel((ScheduleKind == OMPC_SCHEDULE_dynamic ||
980                            ScheduleKind == OMPC_SCHEDULE_guided) &&
981                           !Ordered);
982   } else {
983     EmitOMPSimdInit(S);
984   }
985 
986   SourceLocation Loc = S.getLocStart();
987   EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
988                    [&S, LoopExit](CodeGenFunction &CGF) {
989                      CGF.EmitOMPLoopBody(S, LoopExit);
990                      CGF.EmitStopPoint(&S);
991                    },
992                    [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
993                      if (Ordered) {
994                        CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
995                            CGF, Loc, IVSize, IVSigned);
996                      }
997                    });
998 
999   EmitBlock(Continue.getBlock());
1000   BreakContinueStack.pop_back();
1001   if (!DynamicOrOrdered) {
1002     // Emit "LB = LB + Stride", "UB = UB + Stride".
1003     EmitIgnoredExpr(S.getNextLowerBound());
1004     EmitIgnoredExpr(S.getNextUpperBound());
1005   }
1006 
1007   EmitBranch(CondBlock);
1008   LoopStack.pop();
1009   // Emit the fall-through block.
1010   EmitBlock(LoopExit.getBlock());
1011 
1012   // Tell the runtime we are done.
1013   if (!DynamicOrOrdered)
1014     RT.emitForStaticFinish(*this, S.getLocEnd());
1015 }
1016 
1017 /// \brief Emit a helper variable and return corresponding lvalue.
1018 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1019                                const DeclRefExpr *Helper) {
1020   auto VDecl = cast<VarDecl>(Helper->getDecl());
1021   CGF.EmitVarDecl(*VDecl);
1022   return CGF.EmitLValue(Helper);
1023 }
1024 
1025 static std::pair<llvm::Value * /*Chunk*/, OpenMPScheduleClauseKind>
1026 emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S,
1027                    bool OuterRegion) {
1028   // Detect the loop schedule kind and chunk.
1029   auto ScheduleKind = OMPC_SCHEDULE_unknown;
1030   llvm::Value *Chunk = nullptr;
1031   if (auto *C =
1032           cast_or_null<OMPScheduleClause>(S.getSingleClause(OMPC_schedule))) {
1033     ScheduleKind = C->getScheduleKind();
1034     if (const auto *Ch = C->getChunkSize()) {
1035       if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) {
1036         if (OuterRegion) {
1037           const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl());
1038           CGF.EmitVarDecl(*ImpVar);
1039           CGF.EmitStoreThroughLValue(
1040               CGF.EmitAnyExpr(Ch),
1041               CGF.MakeNaturalAlignAddrLValue(CGF.GetAddrOfLocalVar(ImpVar),
1042                                              ImpVar->getType()));
1043         } else {
1044           Ch = ImpRef;
1045         }
1046       }
1047       if (!C->getHelperChunkSize() || !OuterRegion) {
1048         Chunk = CGF.EmitScalarExpr(Ch);
1049         Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(),
1050                                          S.getIterationVariable()->getType(),
1051                                          S.getLocStart());
1052       }
1053     }
1054   }
1055   return std::make_pair(Chunk, ScheduleKind);
1056 }
1057 
1058 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
1059   // Emit the loop iteration variable.
1060   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
1061   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
1062   EmitVarDecl(*IVDecl);
1063 
1064   // Emit the iterations count variable.
1065   // If it is not a variable, Sema decided to calculate iterations count on each
1066   // iteration (e.g., it is foldable into a constant).
1067   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1068     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1069     // Emit calculation of the iterations count.
1070     EmitIgnoredExpr(S.getCalcLastIteration());
1071   }
1072 
1073   auto &RT = CGM.getOpenMPRuntime();
1074 
1075   bool HasLastprivateClause;
1076   // Check pre-condition.
1077   {
1078     // Skip the entire loop if we don't meet the precondition.
1079     // If the condition constant folds and can be elided, avoid emitting the
1080     // whole loop.
1081     bool CondConstant;
1082     llvm::BasicBlock *ContBlock = nullptr;
1083     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1084       if (!CondConstant)
1085         return false;
1086     } else {
1087       auto *ThenBlock = createBasicBlock("omp.precond.then");
1088       ContBlock = createBasicBlock("omp.precond.end");
1089       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
1090                   getProfileCount(&S));
1091       EmitBlock(ThenBlock);
1092       incrementProfileCounter(&S);
1093     }
1094 
1095     emitAlignedClause(*this, S);
1096     EmitOMPLinearClauseInit(S);
1097     // Emit 'then' code.
1098     {
1099       // Emit helper vars inits.
1100       LValue LB =
1101           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1102       LValue UB =
1103           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
1104       LValue ST =
1105           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
1106       LValue IL =
1107           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
1108 
1109       OMPPrivateScope LoopScope(*this);
1110       if (EmitOMPFirstprivateClause(S, LoopScope)) {
1111         // Emit implicit barrier to synchronize threads and avoid data races on
1112         // initialization of firstprivate variables.
1113         CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
1114                                                OMPD_unknown);
1115       }
1116       EmitOMPPrivateClause(S, LoopScope);
1117       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
1118       EmitOMPReductionClauseInit(S, LoopScope);
1119       emitPrivateLoopCounters(*this, LoopScope, S.counters(),
1120                               S.private_counters());
1121       emitPrivateLinearVars(*this, S, LoopScope);
1122       (void)LoopScope.Privatize();
1123 
1124       // Detect the loop schedule kind and chunk.
1125       llvm::Value *Chunk;
1126       OpenMPScheduleClauseKind ScheduleKind;
1127       auto ScheduleInfo =
1128           emitScheduleClause(*this, S, /*OuterRegion=*/false);
1129       Chunk = ScheduleInfo.first;
1130       ScheduleKind = ScheduleInfo.second;
1131       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1132       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1133       const bool Ordered = S.getSingleClause(OMPC_ordered) != nullptr;
1134       if (RT.isStaticNonchunked(ScheduleKind,
1135                                 /* Chunked */ Chunk != nullptr) &&
1136           !Ordered) {
1137         if (isOpenMPSimdDirective(S.getDirectiveKind())) {
1138           EmitOMPSimdInit(S);
1139         }
1140         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1141         // When no chunk_size is specified, the iteration space is divided into
1142         // chunks that are approximately equal in size, and at most one chunk is
1143         // distributed to each thread. Note that the size of the chunks is
1144         // unspecified in this case.
1145         RT.emitForInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
1146                        Ordered, IL.getAddress(), LB.getAddress(),
1147                        UB.getAddress(), ST.getAddress());
1148         auto LoopExit = getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
1149         // UB = min(UB, GlobalUB);
1150         EmitIgnoredExpr(S.getEnsureUpperBound());
1151         // IV = LB;
1152         EmitIgnoredExpr(S.getInit());
1153         // while (idx <= UB) { BODY; ++idx; }
1154         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1155                          S.getInc(),
1156                          [&S, LoopExit](CodeGenFunction &CGF) {
1157                            CGF.EmitOMPLoopBody(S, LoopExit);
1158                            CGF.EmitStopPoint(&S);
1159                          },
1160                          [](CodeGenFunction &) {});
1161         EmitBlock(LoopExit.getBlock());
1162         // Tell the runtime we are done.
1163         RT.emitForStaticFinish(*this, S.getLocStart());
1164       } else {
1165         // Emit the outer loop, which requests its work chunk [LB..UB] from
1166         // runtime and runs the inner loop to process it.
1167         EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, Ordered,
1168                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
1169                             IL.getAddress(), Chunk);
1170       }
1171       EmitOMPReductionClauseFinal(S);
1172       // Emit final copy of the lastprivate variables if IsLastIter != 0.
1173       if (HasLastprivateClause)
1174         EmitOMPLastprivateClauseFinal(
1175             S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
1176     }
1177     if (isOpenMPSimdDirective(S.getDirectiveKind())) {
1178       EmitOMPSimdFinal(S);
1179     }
1180     // We're now done with the loop, so jump to the continuation block.
1181     if (ContBlock) {
1182       EmitBranch(ContBlock);
1183       EmitBlock(ContBlock, true);
1184     }
1185   }
1186   return HasLastprivateClause;
1187 }
1188 
1189 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
1190   LexicalScope Scope(*this, S.getSourceRange());
1191   bool HasLastprivates = false;
1192   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
1193     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
1194   };
1195   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen);
1196 
1197   // Emit an implicit barrier at the end.
1198   if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) {
1199     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
1200   }
1201 }
1202 
1203 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
1204   LexicalScope Scope(*this, S.getSourceRange());
1205   bool HasLastprivates = false;
1206   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
1207     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
1208   };
1209   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1210 
1211   // Emit an implicit barrier at the end.
1212   if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) {
1213     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
1214   }
1215 }
1216 
1217 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
1218                                 const Twine &Name,
1219                                 llvm::Value *Init = nullptr) {
1220   auto LVal = CGF.MakeNaturalAlignAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
1221   if (Init)
1222     CGF.EmitScalarInit(Init, LVal);
1223   return LVal;
1224 }
1225 
1226 OpenMPDirectiveKind
1227 CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
1228   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
1229   auto *CS = dyn_cast<CompoundStmt>(Stmt);
1230   if (CS && CS->size() > 1) {
1231     bool HasLastprivates = false;
1232     auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) {
1233       auto &C = CGF.CGM.getContext();
1234       auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
1235       // Emit helper vars inits.
1236       LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
1237                                     CGF.Builder.getInt32(0));
1238       auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1);
1239       LValue UB =
1240           createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
1241       LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
1242                                     CGF.Builder.getInt32(1));
1243       LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
1244                                     CGF.Builder.getInt32(0));
1245       // Loop counter.
1246       LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
1247       OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
1248       CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
1249       OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
1250       CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
1251       // Generate condition for loop.
1252       BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
1253                           OK_Ordinary, S.getLocStart(),
1254                           /*fpContractable=*/false);
1255       // Increment for loop counter.
1256       UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue,
1257                         OK_Ordinary, S.getLocStart());
1258       auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) {
1259         // Iterate through all sections and emit a switch construct:
1260         // switch (IV) {
1261         //   case 0:
1262         //     <SectionStmt[0]>;
1263         //     break;
1264         // ...
1265         //   case <NumSection> - 1:
1266         //     <SectionStmt[<NumSection> - 1]>;
1267         //     break;
1268         // }
1269         // .omp.sections.exit:
1270         auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
1271         auto *SwitchStmt = CGF.Builder.CreateSwitch(
1272             CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
1273             CS->size());
1274         unsigned CaseNumber = 0;
1275         for (auto *SubStmt : CS->children()) {
1276           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
1277           CGF.EmitBlock(CaseBB);
1278           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
1279           CGF.EmitStmt(SubStmt);
1280           CGF.EmitBranch(ExitBB);
1281           ++CaseNumber;
1282         }
1283         CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1284       };
1285 
1286       CodeGenFunction::OMPPrivateScope LoopScope(CGF);
1287       if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
1288         // Emit implicit barrier to synchronize threads and avoid data races on
1289         // initialization of firstprivate variables.
1290         CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1291                                                    OMPD_unknown);
1292       }
1293       CGF.EmitOMPPrivateClause(S, LoopScope);
1294       HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1295       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1296       (void)LoopScope.Privatize();
1297 
1298       // Emit static non-chunked loop.
1299       CGF.CGM.getOpenMPRuntime().emitForInit(
1300           CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
1301           /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
1302           LB.getAddress(), UB.getAddress(), ST.getAddress());
1303       // UB = min(UB, GlobalUB);
1304       auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
1305       auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
1306           CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
1307       CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
1308       // IV = LB;
1309       CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
1310       // while (idx <= UB) { BODY; ++idx; }
1311       CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
1312                            [](CodeGenFunction &) {});
1313       // Tell the runtime we are done.
1314       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
1315       CGF.EmitOMPReductionClauseFinal(S);
1316 
1317       // Emit final copy of the lastprivate variables if IsLastIter != 0.
1318       if (HasLastprivates)
1319         CGF.EmitOMPLastprivateClauseFinal(
1320             S, CGF.Builder.CreateIsNotNull(
1321                    CGF.EmitLoadOfScalar(IL, S.getLocStart())));
1322     };
1323 
1324     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen);
1325     // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
1326     // clause. Otherwise the barrier will be generated by the codegen for the
1327     // directive.
1328     if (HasLastprivates && S.getSingleClause(OMPC_nowait)) {
1329       // Emit implicit barrier to synchronize threads and avoid data races on
1330       // initialization of firstprivate variables.
1331       CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
1332                                              OMPD_unknown);
1333     }
1334     return OMPD_sections;
1335   }
1336   // If only one section is found - no need to generate loop, emit as a single
1337   // region.
1338   bool HasFirstprivates;
1339   // No need to generate reductions for sections with single section region, we
1340   // can use original shared variables for all operations.
1341   bool HasReductions = !S.getClausesOfKind(OMPC_reduction).empty();
1342   // No need to generate lastprivates for sections with single section region,
1343   // we can use original shared variable for all calculations with barrier at
1344   // the end of the sections.
1345   bool HasLastprivates = !S.getClausesOfKind(OMPC_lastprivate).empty();
1346   auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) {
1347     CodeGenFunction::OMPPrivateScope SingleScope(CGF);
1348     HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
1349     CGF.EmitOMPPrivateClause(S, SingleScope);
1350     (void)SingleScope.Privatize();
1351 
1352     CGF.EmitStmt(Stmt);
1353   };
1354   CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
1355                                           llvm::None, llvm::None, llvm::None,
1356                                           llvm::None);
1357   // Emit barrier for firstprivates, lastprivates or reductions only if
1358   // 'sections' directive has 'nowait' clause. Otherwise the barrier will be
1359   // generated by the codegen for the directive.
1360   if ((HasFirstprivates || HasLastprivates || HasReductions) &&
1361       S.getSingleClause(OMPC_nowait)) {
1362     // Emit implicit barrier to synchronize threads and avoid data races on
1363     // initialization of firstprivate variables.
1364     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_unknown);
1365   }
1366   return OMPD_single;
1367 }
1368 
1369 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
1370   LexicalScope Scope(*this, S.getSourceRange());
1371   OpenMPDirectiveKind EmittedAs = EmitSections(S);
1372   // Emit an implicit barrier at the end.
1373   if (!S.getSingleClause(OMPC_nowait)) {
1374     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs);
1375   }
1376 }
1377 
1378 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
1379   LexicalScope Scope(*this, S.getSourceRange());
1380   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1381     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1382     CGF.EnsureInsertPoint();
1383   };
1384   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen);
1385 }
1386 
1387 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
1388   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
1389   llvm::SmallVector<const Expr *, 8> DestExprs;
1390   llvm::SmallVector<const Expr *, 8> SrcExprs;
1391   llvm::SmallVector<const Expr *, 8> AssignmentOps;
1392   // Check if there are any 'copyprivate' clauses associated with this
1393   // 'single'
1394   // construct.
1395   // Build a list of copyprivate variables along with helper expressions
1396   // (<source>, <destination>, <destination>=<source> expressions)
1397   for (auto &&I = S.getClausesOfKind(OMPC_copyprivate); I; ++I) {
1398     auto *C = cast<OMPCopyprivateClause>(*I);
1399     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
1400     DestExprs.append(C->destination_exprs().begin(),
1401                      C->destination_exprs().end());
1402     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
1403     AssignmentOps.append(C->assignment_ops().begin(),
1404                          C->assignment_ops().end());
1405   }
1406   LexicalScope Scope(*this, S.getSourceRange());
1407   // Emit code for 'single' region along with 'copyprivate' clauses
1408   bool HasFirstprivates;
1409   auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) {
1410     CodeGenFunction::OMPPrivateScope SingleScope(CGF);
1411     HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
1412     CGF.EmitOMPPrivateClause(S, SingleScope);
1413     (void)SingleScope.Privatize();
1414 
1415     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1416     CGF.EnsureInsertPoint();
1417   };
1418   CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
1419                                           CopyprivateVars, DestExprs, SrcExprs,
1420                                           AssignmentOps);
1421   // Emit an implicit barrier at the end (to avoid data race on firstprivate
1422   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
1423   if ((!S.getSingleClause(OMPC_nowait) || HasFirstprivates) &&
1424       CopyprivateVars.empty()) {
1425     CGM.getOpenMPRuntime().emitBarrierCall(
1426         *this, S.getLocStart(),
1427         S.getSingleClause(OMPC_nowait) ? OMPD_unknown : OMPD_single);
1428   }
1429 }
1430 
1431 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
1432   LexicalScope Scope(*this, S.getSourceRange());
1433   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1434     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1435     CGF.EnsureInsertPoint();
1436   };
1437   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
1438 }
1439 
1440 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
1441   LexicalScope Scope(*this, S.getSourceRange());
1442   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1443     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1444     CGF.EnsureInsertPoint();
1445   };
1446   CGM.getOpenMPRuntime().emitCriticalRegion(
1447       *this, S.getDirectiveName().getAsString(), CodeGen, S.getLocStart());
1448 }
1449 
1450 void CodeGenFunction::EmitOMPParallelForDirective(
1451     const OMPParallelForDirective &S) {
1452   // Emit directive as a combined directive that consists of two implicit
1453   // directives: 'parallel' with 'for' directive.
1454   LexicalScope Scope(*this, S.getSourceRange());
1455   (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
1456   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1457     CGF.EmitOMPWorksharingLoop(S);
1458     // Emit implicit barrier at the end of parallel region, but this barrier
1459     // is at the end of 'for' directive, so emit it as the implicit barrier for
1460     // this 'for' directive.
1461     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1462                                                OMPD_parallel);
1463   };
1464   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
1465 }
1466 
1467 void CodeGenFunction::EmitOMPParallelForSimdDirective(
1468     const OMPParallelForSimdDirective &S) {
1469   // Emit directive as a combined directive that consists of two implicit
1470   // directives: 'parallel' with 'for' directive.
1471   LexicalScope Scope(*this, S.getSourceRange());
1472   (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
1473   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1474     CGF.EmitOMPWorksharingLoop(S);
1475     // Emit implicit barrier at the end of parallel region, but this barrier
1476     // is at the end of 'for' directive, so emit it as the implicit barrier for
1477     // this 'for' directive.
1478     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1479                                                OMPD_parallel);
1480   };
1481   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
1482 }
1483 
1484 void CodeGenFunction::EmitOMPParallelSectionsDirective(
1485     const OMPParallelSectionsDirective &S) {
1486   // Emit directive as a combined directive that consists of two implicit
1487   // directives: 'parallel' with 'sections' directive.
1488   LexicalScope Scope(*this, S.getSourceRange());
1489   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1490     (void)CGF.EmitSections(S);
1491     // Emit implicit barrier at the end of parallel region.
1492     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1493                                                OMPD_parallel);
1494   };
1495   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
1496 }
1497 
1498 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
1499   // Emit outlined function for task construct.
1500   LexicalScope Scope(*this, S.getSourceRange());
1501   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
1502   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
1503   auto *I = CS->getCapturedDecl()->param_begin();
1504   auto *PartId = std::next(I);
1505   // The first function argument for tasks is a thread id, the second one is a
1506   // part id (0 for tied tasks, >=0 for untied task).
1507   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
1508   // Get list of private variables.
1509   llvm::SmallVector<const Expr *, 8> PrivateVars;
1510   llvm::SmallVector<const Expr *, 8> PrivateCopies;
1511   for (auto &&I = S.getClausesOfKind(OMPC_private); I; ++I) {
1512     auto *C = cast<OMPPrivateClause>(*I);
1513     auto IRef = C->varlist_begin();
1514     for (auto *IInit : C->private_copies()) {
1515       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1516       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
1517         PrivateVars.push_back(*IRef);
1518         PrivateCopies.push_back(IInit);
1519       }
1520       ++IRef;
1521     }
1522   }
1523   EmittedAsPrivate.clear();
1524   // Get list of firstprivate variables.
1525   llvm::SmallVector<const Expr *, 8> FirstprivateVars;
1526   llvm::SmallVector<const Expr *, 8> FirstprivateCopies;
1527   llvm::SmallVector<const Expr *, 8> FirstprivateInits;
1528   for (auto &&I = S.getClausesOfKind(OMPC_firstprivate); I; ++I) {
1529     auto *C = cast<OMPFirstprivateClause>(*I);
1530     auto IRef = C->varlist_begin();
1531     auto IElemInitRef = C->inits().begin();
1532     for (auto *IInit : C->private_copies()) {
1533       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1534       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
1535         FirstprivateVars.push_back(*IRef);
1536         FirstprivateCopies.push_back(IInit);
1537         FirstprivateInits.push_back(*IElemInitRef);
1538       }
1539       ++IRef, ++IElemInitRef;
1540     }
1541   }
1542   // Build list of dependences.
1543   llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8>
1544       Dependences;
1545   for (auto &&I = S.getClausesOfKind(OMPC_depend); I; ++I) {
1546     auto *C = cast<OMPDependClause>(*I);
1547     for (auto *IRef : C->varlists()) {
1548       Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
1549     }
1550   }
1551   auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars](
1552       CodeGenFunction &CGF) {
1553     // Set proper addresses for generated private copies.
1554     auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
1555     OMPPrivateScope Scope(CGF);
1556     if (!PrivateVars.empty() || !FirstprivateVars.empty()) {
1557       auto *CopyFn = CGF.Builder.CreateAlignedLoad(
1558           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)),
1559           CGF.PointerAlignInBytes);
1560       auto *PrivatesPtr = CGF.Builder.CreateAlignedLoad(
1561           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)),
1562           CGF.PointerAlignInBytes);
1563       // Map privates.
1564       llvm::SmallVector<std::pair<const VarDecl *, llvm::Value *>, 16>
1565           PrivatePtrs;
1566       llvm::SmallVector<llvm::Value *, 16> CallArgs;
1567       CallArgs.push_back(PrivatesPtr);
1568       for (auto *E : PrivateVars) {
1569         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1570         auto *PrivatePtr =
1571             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
1572         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
1573         CallArgs.push_back(PrivatePtr);
1574       }
1575       for (auto *E : FirstprivateVars) {
1576         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1577         auto *PrivatePtr =
1578             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
1579         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
1580         CallArgs.push_back(PrivatePtr);
1581       }
1582       CGF.EmitRuntimeCall(CopyFn, CallArgs);
1583       for (auto &&Pair : PrivatePtrs) {
1584         auto *Replacement =
1585             CGF.Builder.CreateAlignedLoad(Pair.second, CGF.PointerAlignInBytes);
1586         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
1587       }
1588     }
1589     (void)Scope.Privatize();
1590     if (*PartId) {
1591       // TODO: emit code for untied tasks.
1592     }
1593     CGF.EmitStmt(CS->getCapturedStmt());
1594   };
1595   auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
1596       S, *I, OMPD_task, CodeGen);
1597   // Check if we should emit tied or untied task.
1598   bool Tied = !S.getSingleClause(OMPC_untied);
1599   // Check if the task is final
1600   llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
1601   if (auto *Clause = S.getSingleClause(OMPC_final)) {
1602     // If the condition constant folds and can be elided, try to avoid emitting
1603     // the condition and the dead arm of the if/else.
1604     auto *Cond = cast<OMPFinalClause>(Clause)->getCondition();
1605     bool CondConstant;
1606     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
1607       Final.setInt(CondConstant);
1608     else
1609       Final.setPointer(EvaluateExprAsBool(Cond));
1610   } else {
1611     // By default the task is not final.
1612     Final.setInt(/*IntVal=*/false);
1613   }
1614   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
1615   const Expr *IfCond = nullptr;
1616   if (auto C = S.getSingleClause(OMPC_if)) {
1617     IfCond = cast<OMPIfClause>(C)->getCondition();
1618   }
1619   CGM.getOpenMPRuntime().emitTaskCall(
1620       *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy,
1621       CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars,
1622       FirstprivateCopies, FirstprivateInits, Dependences);
1623 }
1624 
1625 void CodeGenFunction::EmitOMPTaskyieldDirective(
1626     const OMPTaskyieldDirective &S) {
1627   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
1628 }
1629 
1630 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
1631   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
1632 }
1633 
1634 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
1635   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
1636 }
1637 
1638 void CodeGenFunction::EmitOMPTaskgroupDirective(
1639     const OMPTaskgroupDirective &S) {
1640   LexicalScope Scope(*this, S.getSourceRange());
1641   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1642     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1643     CGF.EnsureInsertPoint();
1644   };
1645   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
1646 }
1647 
1648 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
1649   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
1650     if (auto C = S.getSingleClause(/*K*/ OMPC_flush)) {
1651       auto FlushClause = cast<OMPFlushClause>(C);
1652       return llvm::makeArrayRef(FlushClause->varlist_begin(),
1653                                 FlushClause->varlist_end());
1654     }
1655     return llvm::None;
1656   }(), S.getLocStart());
1657 }
1658 
1659 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
1660   LexicalScope Scope(*this, S.getSourceRange());
1661   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1662     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1663     CGF.EnsureInsertPoint();
1664   };
1665   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart());
1666 }
1667 
1668 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
1669                                          QualType SrcType, QualType DestType,
1670                                          SourceLocation Loc) {
1671   assert(CGF.hasScalarEvaluationKind(DestType) &&
1672          "DestType must have scalar evaluation kind.");
1673   assert(!Val.isAggregate() && "Must be a scalar or complex.");
1674   return Val.isScalar()
1675              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
1676                                         Loc)
1677              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
1678                                                  DestType, Loc);
1679 }
1680 
1681 static CodeGenFunction::ComplexPairTy
1682 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
1683                       QualType DestType, SourceLocation Loc) {
1684   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
1685          "DestType must have complex evaluation kind.");
1686   CodeGenFunction::ComplexPairTy ComplexVal;
1687   if (Val.isScalar()) {
1688     // Convert the input element to the element type of the complex.
1689     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
1690     auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
1691                                               DestElementType, Loc);
1692     ComplexVal = CodeGenFunction::ComplexPairTy(
1693         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
1694   } else {
1695     assert(Val.isComplex() && "Must be a scalar or complex.");
1696     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
1697     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
1698     ComplexVal.first = CGF.EmitScalarConversion(
1699         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
1700     ComplexVal.second = CGF.EmitScalarConversion(
1701         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
1702   }
1703   return ComplexVal;
1704 }
1705 
1706 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
1707                                   LValue LVal, RValue RVal) {
1708   if (LVal.isGlobalReg()) {
1709     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
1710   } else {
1711     CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent
1712                                              : llvm::Monotonic,
1713                         LVal.isVolatile(), /*IsInit=*/false);
1714   }
1715 }
1716 
1717 static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal,
1718                             QualType RValTy, SourceLocation Loc) {
1719   switch (CGF.getEvaluationKind(LVal.getType())) {
1720   case TEK_Scalar:
1721     CGF.EmitStoreThroughLValue(RValue::get(convertToScalarValue(
1722                                    CGF, RVal, RValTy, LVal.getType(), Loc)),
1723                                LVal);
1724     break;
1725   case TEK_Complex:
1726     CGF.EmitStoreOfComplex(
1727         convertToComplexValue(CGF, RVal, RValTy, LVal.getType(), Loc), LVal,
1728         /*isInit=*/false);
1729     break;
1730   case TEK_Aggregate:
1731     llvm_unreachable("Must be a scalar or complex.");
1732   }
1733 }
1734 
1735 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
1736                                   const Expr *X, const Expr *V,
1737                                   SourceLocation Loc) {
1738   // v = x;
1739   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
1740   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
1741   LValue XLValue = CGF.EmitLValue(X);
1742   LValue VLValue = CGF.EmitLValue(V);
1743   RValue Res = XLValue.isGlobalReg()
1744                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
1745                    : CGF.EmitAtomicLoad(XLValue, Loc,
1746                                         IsSeqCst ? llvm::SequentiallyConsistent
1747                                                  : llvm::Monotonic,
1748                                         XLValue.isVolatile());
1749   // OpenMP, 2.12.6, atomic Construct
1750   // Any atomic construct with a seq_cst clause forces the atomically
1751   // performed operation to include an implicit flush operation without a
1752   // list.
1753   if (IsSeqCst)
1754     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
1755   emitSimpleStore(CGF, VLValue, Res, X->getType().getNonReferenceType(), Loc);
1756 }
1757 
1758 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
1759                                    const Expr *X, const Expr *E,
1760                                    SourceLocation Loc) {
1761   // x = expr;
1762   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
1763   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
1764   // OpenMP, 2.12.6, atomic Construct
1765   // Any atomic construct with a seq_cst clause forces the atomically
1766   // performed operation to include an implicit flush operation without a
1767   // list.
1768   if (IsSeqCst)
1769     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
1770 }
1771 
1772 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
1773                                                 RValue Update,
1774                                                 BinaryOperatorKind BO,
1775                                                 llvm::AtomicOrdering AO,
1776                                                 bool IsXLHSInRHSPart) {
1777   auto &Context = CGF.CGM.getContext();
1778   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
1779   // expression is simple and atomic is allowed for the given type for the
1780   // target platform.
1781   if (BO == BO_Comma || !Update.isScalar() ||
1782       !Update.getScalarVal()->getType()->isIntegerTy() ||
1783       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
1784                         (Update.getScalarVal()->getType() !=
1785                          X.getAddress()->getType()->getPointerElementType())) ||
1786       !X.getAddress()->getType()->getPointerElementType()->isIntegerTy() ||
1787       !Context.getTargetInfo().hasBuiltinAtomic(
1788           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
1789     return std::make_pair(false, RValue::get(nullptr));
1790 
1791   llvm::AtomicRMWInst::BinOp RMWOp;
1792   switch (BO) {
1793   case BO_Add:
1794     RMWOp = llvm::AtomicRMWInst::Add;
1795     break;
1796   case BO_Sub:
1797     if (!IsXLHSInRHSPart)
1798       return std::make_pair(false, RValue::get(nullptr));
1799     RMWOp = llvm::AtomicRMWInst::Sub;
1800     break;
1801   case BO_And:
1802     RMWOp = llvm::AtomicRMWInst::And;
1803     break;
1804   case BO_Or:
1805     RMWOp = llvm::AtomicRMWInst::Or;
1806     break;
1807   case BO_Xor:
1808     RMWOp = llvm::AtomicRMWInst::Xor;
1809     break;
1810   case BO_LT:
1811     RMWOp = X.getType()->hasSignedIntegerRepresentation()
1812                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
1813                                    : llvm::AtomicRMWInst::Max)
1814                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
1815                                    : llvm::AtomicRMWInst::UMax);
1816     break;
1817   case BO_GT:
1818     RMWOp = X.getType()->hasSignedIntegerRepresentation()
1819                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
1820                                    : llvm::AtomicRMWInst::Min)
1821                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
1822                                    : llvm::AtomicRMWInst::UMin);
1823     break;
1824   case BO_Assign:
1825     RMWOp = llvm::AtomicRMWInst::Xchg;
1826     break;
1827   case BO_Mul:
1828   case BO_Div:
1829   case BO_Rem:
1830   case BO_Shl:
1831   case BO_Shr:
1832   case BO_LAnd:
1833   case BO_LOr:
1834     return std::make_pair(false, RValue::get(nullptr));
1835   case BO_PtrMemD:
1836   case BO_PtrMemI:
1837   case BO_LE:
1838   case BO_GE:
1839   case BO_EQ:
1840   case BO_NE:
1841   case BO_AddAssign:
1842   case BO_SubAssign:
1843   case BO_AndAssign:
1844   case BO_OrAssign:
1845   case BO_XorAssign:
1846   case BO_MulAssign:
1847   case BO_DivAssign:
1848   case BO_RemAssign:
1849   case BO_ShlAssign:
1850   case BO_ShrAssign:
1851   case BO_Comma:
1852     llvm_unreachable("Unsupported atomic update operation");
1853   }
1854   auto *UpdateVal = Update.getScalarVal();
1855   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
1856     UpdateVal = CGF.Builder.CreateIntCast(
1857         IC, X.getAddress()->getType()->getPointerElementType(),
1858         X.getType()->hasSignedIntegerRepresentation());
1859   }
1860   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getAddress(), UpdateVal, AO);
1861   return std::make_pair(true, RValue::get(Res));
1862 }
1863 
1864 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
1865     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
1866     llvm::AtomicOrdering AO, SourceLocation Loc,
1867     const llvm::function_ref<RValue(RValue)> &CommonGen) {
1868   // Update expressions are allowed to have the following forms:
1869   // x binop= expr; -> xrval + expr;
1870   // x++, ++x -> xrval + 1;
1871   // x--, --x -> xrval - 1;
1872   // x = x binop expr; -> xrval binop expr
1873   // x = expr Op x; - > expr binop xrval;
1874   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
1875   if (!Res.first) {
1876     if (X.isGlobalReg()) {
1877       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
1878       // 'xrval'.
1879       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
1880     } else {
1881       // Perform compare-and-swap procedure.
1882       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
1883     }
1884   }
1885   return Res;
1886 }
1887 
1888 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
1889                                     const Expr *X, const Expr *E,
1890                                     const Expr *UE, bool IsXLHSInRHSPart,
1891                                     SourceLocation Loc) {
1892   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
1893          "Update expr in 'atomic update' must be a binary operator.");
1894   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
1895   // Update expressions are allowed to have the following forms:
1896   // x binop= expr; -> xrval + expr;
1897   // x++, ++x -> xrval + 1;
1898   // x--, --x -> xrval - 1;
1899   // x = x binop expr; -> xrval binop expr
1900   // x = expr Op x; - > expr binop xrval;
1901   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
1902   LValue XLValue = CGF.EmitLValue(X);
1903   RValue ExprRValue = CGF.EmitAnyExpr(E);
1904   auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
1905   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
1906   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
1907   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
1908   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
1909   auto Gen =
1910       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
1911         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
1912         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
1913         return CGF.EmitAnyExpr(UE);
1914       };
1915   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
1916       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
1917   // OpenMP, 2.12.6, atomic Construct
1918   // Any atomic construct with a seq_cst clause forces the atomically
1919   // performed operation to include an implicit flush operation without a
1920   // list.
1921   if (IsSeqCst)
1922     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
1923 }
1924 
1925 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
1926                             QualType SourceType, QualType ResType,
1927                             SourceLocation Loc) {
1928   switch (CGF.getEvaluationKind(ResType)) {
1929   case TEK_Scalar:
1930     return RValue::get(
1931         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
1932   case TEK_Complex: {
1933     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
1934     return RValue::getComplex(Res.first, Res.second);
1935   }
1936   case TEK_Aggregate:
1937     break;
1938   }
1939   llvm_unreachable("Must be a scalar or complex.");
1940 }
1941 
1942 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
1943                                      bool IsPostfixUpdate, const Expr *V,
1944                                      const Expr *X, const Expr *E,
1945                                      const Expr *UE, bool IsXLHSInRHSPart,
1946                                      SourceLocation Loc) {
1947   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
1948   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
1949   RValue NewVVal;
1950   LValue VLValue = CGF.EmitLValue(V);
1951   LValue XLValue = CGF.EmitLValue(X);
1952   RValue ExprRValue = CGF.EmitAnyExpr(E);
1953   auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
1954   QualType NewVValType;
1955   if (UE) {
1956     // 'x' is updated with some additional value.
1957     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
1958            "Update expr in 'atomic capture' must be a binary operator.");
1959     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
1960     // Update expressions are allowed to have the following forms:
1961     // x binop= expr; -> xrval + expr;
1962     // x++, ++x -> xrval + 1;
1963     // x--, --x -> xrval - 1;
1964     // x = x binop expr; -> xrval binop expr
1965     // x = expr Op x; - > expr binop xrval;
1966     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
1967     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
1968     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
1969     NewVValType = XRValExpr->getType();
1970     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
1971     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
1972                   IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
1973       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
1974       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
1975       RValue Res = CGF.EmitAnyExpr(UE);
1976       NewVVal = IsPostfixUpdate ? XRValue : Res;
1977       return Res;
1978     };
1979     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
1980         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
1981     if (Res.first) {
1982       // 'atomicrmw' instruction was generated.
1983       if (IsPostfixUpdate) {
1984         // Use old value from 'atomicrmw'.
1985         NewVVal = Res.second;
1986       } else {
1987         // 'atomicrmw' does not provide new value, so evaluate it using old
1988         // value of 'x'.
1989         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
1990         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
1991         NewVVal = CGF.EmitAnyExpr(UE);
1992       }
1993     }
1994   } else {
1995     // 'x' is simply rewritten with some 'expr'.
1996     NewVValType = X->getType().getNonReferenceType();
1997     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
1998                                X->getType().getNonReferenceType(), Loc);
1999     auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
2000       NewVVal = XRValue;
2001       return ExprRValue;
2002     };
2003     // Try to perform atomicrmw xchg, otherwise simple exchange.
2004     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
2005         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
2006         Loc, Gen);
2007     if (Res.first) {
2008       // 'atomicrmw' instruction was generated.
2009       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
2010     }
2011   }
2012   // Emit post-update store to 'v' of old/new 'x' value.
2013   emitSimpleStore(CGF, VLValue, NewVVal, NewVValType, Loc);
2014   // OpenMP, 2.12.6, atomic Construct
2015   // Any atomic construct with a seq_cst clause forces the atomically
2016   // performed operation to include an implicit flush operation without a
2017   // list.
2018   if (IsSeqCst)
2019     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2020 }
2021 
2022 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
2023                               bool IsSeqCst, bool IsPostfixUpdate,
2024                               const Expr *X, const Expr *V, const Expr *E,
2025                               const Expr *UE, bool IsXLHSInRHSPart,
2026                               SourceLocation Loc) {
2027   switch (Kind) {
2028   case OMPC_read:
2029     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
2030     break;
2031   case OMPC_write:
2032     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
2033     break;
2034   case OMPC_unknown:
2035   case OMPC_update:
2036     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
2037     break;
2038   case OMPC_capture:
2039     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
2040                              IsXLHSInRHSPart, Loc);
2041     break;
2042   case OMPC_if:
2043   case OMPC_final:
2044   case OMPC_num_threads:
2045   case OMPC_private:
2046   case OMPC_firstprivate:
2047   case OMPC_lastprivate:
2048   case OMPC_reduction:
2049   case OMPC_safelen:
2050   case OMPC_collapse:
2051   case OMPC_default:
2052   case OMPC_seq_cst:
2053   case OMPC_shared:
2054   case OMPC_linear:
2055   case OMPC_aligned:
2056   case OMPC_copyin:
2057   case OMPC_copyprivate:
2058   case OMPC_flush:
2059   case OMPC_proc_bind:
2060   case OMPC_schedule:
2061   case OMPC_ordered:
2062   case OMPC_nowait:
2063   case OMPC_untied:
2064   case OMPC_threadprivate:
2065   case OMPC_depend:
2066   case OMPC_mergeable:
2067   case OMPC_device:
2068     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
2069   }
2070 }
2071 
2072 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
2073   bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst);
2074   OpenMPClauseKind Kind = OMPC_unknown;
2075   for (auto *C : S.clauses()) {
2076     // Find first clause (skip seq_cst clause, if it is first).
2077     if (C->getClauseKind() != OMPC_seq_cst) {
2078       Kind = C->getClauseKind();
2079       break;
2080     }
2081   }
2082 
2083   const auto *CS =
2084       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
2085   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
2086     enterFullExpression(EWC);
2087   }
2088   // Processing for statements under 'atomic capture'.
2089   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
2090     for (const auto *C : Compound->body()) {
2091       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
2092         enterFullExpression(EWC);
2093       }
2094     }
2095   }
2096 
2097   LexicalScope Scope(*this, S.getSourceRange());
2098   auto &&CodeGen = [&S, Kind, IsSeqCst](CodeGenFunction &CGF) {
2099     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
2100                       S.getV(), S.getExpr(), S.getUpdateExpr(),
2101                       S.isXLHSInRHSPart(), S.getLocStart());
2102   };
2103   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
2104 }
2105 
2106 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) {
2107   llvm_unreachable("CodeGen for 'omp target' is not supported yet.");
2108 }
2109 
2110 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
2111   llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
2112 }
2113 
2114 void CodeGenFunction::EmitOMPCancellationPointDirective(
2115     const OMPCancellationPointDirective &S) {
2116   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
2117                                                    S.getCancelRegion());
2118 }
2119 
2120 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
2121   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(),
2122                                         S.getCancelRegion());
2123 }
2124 
2125 CodeGenFunction::JumpDest
2126 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
2127   if (Kind == OMPD_parallel || Kind == OMPD_task)
2128     return ReturnBlock;
2129   else if (Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections)
2130     return BreakContinueStack.empty() ? JumpDest()
2131                                       : BreakContinueStack.back().BreakBlock;
2132   return JumpDest();
2133 }
2134 
2135 // Generate the instructions for '#pragma omp target data' directive.
2136 void CodeGenFunction::EmitOMPTargetDataDirective(
2137     const OMPTargetDataDirective &S) {
2138 
2139   // emit the code inside the construct for now
2140   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2141   CGM.getOpenMPRuntime().emitInlinedDirective(
2142       *this, OMPD_target_data,
2143       [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
2144 }
2145