1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/Basic/PrettyStackTrace.h" 22 using namespace clang; 23 using namespace CodeGen; 24 25 namespace { 26 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 27 /// for captured expressions. 28 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 29 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 30 for (const auto *C : S.clauses()) { 31 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 32 if (const auto *PreInit = 33 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 } else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope( 57 CodeGenFunction &CGF, const OMPExecutableDirective &S, 58 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 59 const bool EmitPreInitStmt = true) 60 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 61 InlinedShareds(CGF) { 62 if (EmitPreInitStmt) 63 emitPreInitStmt(CGF, S); 64 if (!CapturedRegion.hasValue()) 65 return; 66 assert(S.hasAssociatedStmt() && 67 "Expected associated statement for inlined directive."); 68 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 69 for (const auto &C : CS->captures()) { 70 if (C.capturesVariable() || C.capturesVariableByCopy()) { 71 auto *VD = C.getCapturedVar(); 72 assert(VD == VD->getCanonicalDecl() && 73 "Canonical decl must be captured."); 74 DeclRefExpr DRE( 75 CGF.getContext(), const_cast<VarDecl *>(VD), 76 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 77 InlinedShareds.isGlobalVarCaptured(VD)), 78 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 79 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 80 return CGF.EmitLValue(&DRE).getAddress(); 81 }); 82 } 83 } 84 (void)InlinedShareds.Privatize(); 85 } 86 }; 87 88 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 89 /// for captured expressions. 90 class OMPParallelScope final : public OMPLexicalScope { 91 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 92 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 93 return !(isOpenMPTargetExecutionDirective(Kind) || 94 isOpenMPLoopBoundSharingDirective(Kind)) && 95 isOpenMPParallelDirective(Kind); 96 } 97 98 public: 99 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 100 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 101 EmitPreInitStmt(S)) {} 102 }; 103 104 /// Lexical scope for OpenMP teams construct, that handles correct codegen 105 /// for captured expressions. 106 class OMPTeamsScope final : public OMPLexicalScope { 107 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 108 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 109 return !isOpenMPTargetExecutionDirective(Kind) && 110 isOpenMPTeamsDirective(Kind); 111 } 112 113 public: 114 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 115 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 116 EmitPreInitStmt(S)) {} 117 }; 118 119 /// Private scope for OpenMP loop-based directives, that supports capturing 120 /// of used expression from loop statement. 121 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 122 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 123 CodeGenFunction::OMPMapVars PreCondVars; 124 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 125 for (const auto *E : S.counters()) { 126 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 127 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 128 (void)PreCondVars.setVarAddr( 129 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 130 } 131 // Mark private vars as undefs. 132 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 133 for (const Expr *IRef : C->varlists()) { 134 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 135 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 136 (void)PreCondVars.setVarAddr( 137 CGF, OrigVD, 138 Address(llvm::UndefValue::get( 139 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 140 OrigVD->getType().getNonReferenceType()))), 141 CGF.getContext().getDeclAlign(OrigVD))); 142 } 143 } 144 } 145 (void)PreCondVars.apply(CGF); 146 // Emit init, __range and __end variables for C++ range loops. 147 const Stmt *Body = 148 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 149 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 150 Body = OMPLoopDirective::tryToFindNextInnerLoop( 151 Body, /*TryImperfectlyNestedLoops=*/true); 152 if (auto *For = dyn_cast<ForStmt>(Body)) { 153 Body = For->getBody(); 154 } else { 155 assert(isa<CXXForRangeStmt>(Body) && 156 "Expected canonical for loop or range-based for loop."); 157 auto *CXXFor = cast<CXXForRangeStmt>(Body); 158 if (const Stmt *Init = CXXFor->getInit()) 159 CGF.EmitStmt(Init); 160 CGF.EmitStmt(CXXFor->getRangeStmt()); 161 CGF.EmitStmt(CXXFor->getEndStmt()); 162 Body = CXXFor->getBody(); 163 } 164 } 165 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 166 for (const auto *I : PreInits->decls()) 167 CGF.EmitVarDecl(cast<VarDecl>(*I)); 168 } 169 PreCondVars.restore(CGF); 170 } 171 172 public: 173 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 174 : CodeGenFunction::RunCleanupsScope(CGF) { 175 emitPreInitStmt(CGF, S); 176 } 177 }; 178 179 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 180 CodeGenFunction::OMPPrivateScope InlinedShareds; 181 182 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 183 return CGF.LambdaCaptureFields.lookup(VD) || 184 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 185 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 186 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 187 } 188 189 public: 190 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 191 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 192 InlinedShareds(CGF) { 193 for (const auto *C : S.clauses()) { 194 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 195 if (const auto *PreInit = 196 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 197 for (const auto *I : PreInit->decls()) { 198 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 199 CGF.EmitVarDecl(cast<VarDecl>(*I)); 200 } else { 201 CodeGenFunction::AutoVarEmission Emission = 202 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 203 CGF.EmitAutoVarCleanups(Emission); 204 } 205 } 206 } 207 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 208 for (const Expr *E : UDP->varlists()) { 209 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 210 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 211 CGF.EmitVarDecl(*OED); 212 } 213 } 214 } 215 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 216 CGF.EmitOMPPrivateClause(S, InlinedShareds); 217 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 218 if (const Expr *E = TG->getReductionRef()) 219 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 220 } 221 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 222 while (CS) { 223 for (auto &C : CS->captures()) { 224 if (C.capturesVariable() || C.capturesVariableByCopy()) { 225 auto *VD = C.getCapturedVar(); 226 assert(VD == VD->getCanonicalDecl() && 227 "Canonical decl must be captured."); 228 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 229 isCapturedVar(CGF, VD) || 230 (CGF.CapturedStmtInfo && 231 InlinedShareds.isGlobalVarCaptured(VD)), 232 VD->getType().getNonReferenceType(), VK_LValue, 233 C.getLocation()); 234 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 235 return CGF.EmitLValue(&DRE).getAddress(); 236 }); 237 } 238 } 239 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 240 } 241 (void)InlinedShareds.Privatize(); 242 } 243 }; 244 245 } // namespace 246 247 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 248 const OMPExecutableDirective &S, 249 const RegionCodeGenTy &CodeGen); 250 251 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 252 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 253 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 254 OrigVD = OrigVD->getCanonicalDecl(); 255 bool IsCaptured = 256 LambdaCaptureFields.lookup(OrigVD) || 257 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 258 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 259 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 260 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 261 return EmitLValue(&DRE); 262 } 263 } 264 return EmitLValue(E); 265 } 266 267 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 268 ASTContext &C = getContext(); 269 llvm::Value *Size = nullptr; 270 auto SizeInChars = C.getTypeSizeInChars(Ty); 271 if (SizeInChars.isZero()) { 272 // getTypeSizeInChars() returns 0 for a VLA. 273 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 274 VlaSizePair VlaSize = getVLASize(VAT); 275 Ty = VlaSize.Type; 276 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 277 : VlaSize.NumElts; 278 } 279 SizeInChars = C.getTypeSizeInChars(Ty); 280 if (SizeInChars.isZero()) 281 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 282 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 283 } 284 return CGM.getSize(SizeInChars); 285 } 286 287 void CodeGenFunction::GenerateOpenMPCapturedVars( 288 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 289 const RecordDecl *RD = S.getCapturedRecordDecl(); 290 auto CurField = RD->field_begin(); 291 auto CurCap = S.captures().begin(); 292 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 293 E = S.capture_init_end(); 294 I != E; ++I, ++CurField, ++CurCap) { 295 if (CurField->hasCapturedVLAType()) { 296 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 297 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 298 CapturedVars.push_back(Val); 299 } else if (CurCap->capturesThis()) { 300 CapturedVars.push_back(CXXThisValue); 301 } else if (CurCap->capturesVariableByCopy()) { 302 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 303 304 // If the field is not a pointer, we need to save the actual value 305 // and load it as a void pointer. 306 if (!CurField->getType()->isAnyPointerType()) { 307 ASTContext &Ctx = getContext(); 308 Address DstAddr = CreateMemTemp( 309 Ctx.getUIntPtrType(), 310 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 311 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 312 313 llvm::Value *SrcAddrVal = EmitScalarConversion( 314 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 315 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 316 LValue SrcLV = 317 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 318 319 // Store the value using the source type pointer. 320 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 321 322 // Load the value using the destination type pointer. 323 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 324 } 325 CapturedVars.push_back(CV); 326 } else { 327 assert(CurCap->capturesVariable() && "Expected capture by reference."); 328 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 329 } 330 } 331 } 332 333 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 334 QualType DstType, StringRef Name, 335 LValue AddrLV) { 336 ASTContext &Ctx = CGF.getContext(); 337 338 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 339 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 340 Ctx.getPointerType(DstType), Loc); 341 Address TmpAddr = 342 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 343 .getAddress(); 344 return TmpAddr; 345 } 346 347 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 348 if (T->isLValueReferenceType()) 349 return C.getLValueReferenceType( 350 getCanonicalParamType(C, T.getNonReferenceType()), 351 /*SpelledAsLValue=*/false); 352 if (T->isPointerType()) 353 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 354 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 355 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 356 return getCanonicalParamType(C, VLA->getElementType()); 357 if (!A->isVariablyModifiedType()) 358 return C.getCanonicalType(T); 359 } 360 return C.getCanonicalParamType(T); 361 } 362 363 namespace { 364 /// Contains required data for proper outlined function codegen. 365 struct FunctionOptions { 366 /// Captured statement for which the function is generated. 367 const CapturedStmt *S = nullptr; 368 /// true if cast to/from UIntPtr is required for variables captured by 369 /// value. 370 const bool UIntPtrCastRequired = true; 371 /// true if only casted arguments must be registered as local args or VLA 372 /// sizes. 373 const bool RegisterCastedArgsOnly = false; 374 /// Name of the generated function. 375 const StringRef FunctionName; 376 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 377 bool RegisterCastedArgsOnly, 378 StringRef FunctionName) 379 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 380 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 381 FunctionName(FunctionName) {} 382 }; 383 } 384 385 static llvm::Function *emitOutlinedFunctionPrologue( 386 CodeGenFunction &CGF, FunctionArgList &Args, 387 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 388 &LocalAddrs, 389 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 390 &VLASizes, 391 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 392 const CapturedDecl *CD = FO.S->getCapturedDecl(); 393 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 394 assert(CD->hasBody() && "missing CapturedDecl body"); 395 396 CXXThisValue = nullptr; 397 // Build the argument list. 398 CodeGenModule &CGM = CGF.CGM; 399 ASTContext &Ctx = CGM.getContext(); 400 FunctionArgList TargetArgs; 401 Args.append(CD->param_begin(), 402 std::next(CD->param_begin(), CD->getContextParamPosition())); 403 TargetArgs.append( 404 CD->param_begin(), 405 std::next(CD->param_begin(), CD->getContextParamPosition())); 406 auto I = FO.S->captures().begin(); 407 FunctionDecl *DebugFunctionDecl = nullptr; 408 if (!FO.UIntPtrCastRequired) { 409 FunctionProtoType::ExtProtoInfo EPI; 410 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 411 DebugFunctionDecl = FunctionDecl::Create( 412 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 413 SourceLocation(), DeclarationName(), FunctionTy, 414 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 415 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 416 } 417 for (const FieldDecl *FD : RD->fields()) { 418 QualType ArgType = FD->getType(); 419 IdentifierInfo *II = nullptr; 420 VarDecl *CapVar = nullptr; 421 422 // If this is a capture by copy and the type is not a pointer, the outlined 423 // function argument type should be uintptr and the value properly casted to 424 // uintptr. This is necessary given that the runtime library is only able to 425 // deal with pointers. We can pass in the same way the VLA type sizes to the 426 // outlined function. 427 if (FO.UIntPtrCastRequired && 428 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 429 I->capturesVariableArrayType())) 430 ArgType = Ctx.getUIntPtrType(); 431 432 if (I->capturesVariable() || I->capturesVariableByCopy()) { 433 CapVar = I->getCapturedVar(); 434 II = CapVar->getIdentifier(); 435 } else if (I->capturesThis()) { 436 II = &Ctx.Idents.get("this"); 437 } else { 438 assert(I->capturesVariableArrayType()); 439 II = &Ctx.Idents.get("vla"); 440 } 441 if (ArgType->isVariablyModifiedType()) 442 ArgType = getCanonicalParamType(Ctx, ArgType); 443 VarDecl *Arg; 444 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 445 Arg = ParmVarDecl::Create( 446 Ctx, DebugFunctionDecl, 447 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 448 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 449 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 450 } else { 451 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 452 II, ArgType, ImplicitParamDecl::Other); 453 } 454 Args.emplace_back(Arg); 455 // Do not cast arguments if we emit function with non-original types. 456 TargetArgs.emplace_back( 457 FO.UIntPtrCastRequired 458 ? Arg 459 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 460 ++I; 461 } 462 Args.append( 463 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 464 CD->param_end()); 465 TargetArgs.append( 466 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 467 CD->param_end()); 468 469 // Create the function declaration. 470 const CGFunctionInfo &FuncInfo = 471 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 472 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 473 474 auto *F = 475 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 476 FO.FunctionName, &CGM.getModule()); 477 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 478 if (CD->isNothrow()) 479 F->setDoesNotThrow(); 480 F->setDoesNotRecurse(); 481 482 // Generate the function. 483 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 484 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 485 unsigned Cnt = CD->getContextParamPosition(); 486 I = FO.S->captures().begin(); 487 for (const FieldDecl *FD : RD->fields()) { 488 // Do not map arguments if we emit function with non-original types. 489 Address LocalAddr(Address::invalid()); 490 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 491 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 492 TargetArgs[Cnt]); 493 } else { 494 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 495 } 496 // If we are capturing a pointer by copy we don't need to do anything, just 497 // use the value that we get from the arguments. 498 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 499 const VarDecl *CurVD = I->getCapturedVar(); 500 if (!FO.RegisterCastedArgsOnly) 501 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 502 ++Cnt; 503 ++I; 504 continue; 505 } 506 507 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 508 AlignmentSource::Decl); 509 if (FD->hasCapturedVLAType()) { 510 if (FO.UIntPtrCastRequired) { 511 ArgLVal = CGF.MakeAddrLValue( 512 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 513 Args[Cnt]->getName(), ArgLVal), 514 FD->getType(), AlignmentSource::Decl); 515 } 516 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 517 const VariableArrayType *VAT = FD->getCapturedVLAType(); 518 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 519 } else if (I->capturesVariable()) { 520 const VarDecl *Var = I->getCapturedVar(); 521 QualType VarTy = Var->getType(); 522 Address ArgAddr = ArgLVal.getAddress(); 523 if (ArgLVal.getType()->isLValueReferenceType()) { 524 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 525 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 526 assert(ArgLVal.getType()->isPointerType()); 527 ArgAddr = CGF.EmitLoadOfPointer( 528 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 529 } 530 if (!FO.RegisterCastedArgsOnly) { 531 LocalAddrs.insert( 532 {Args[Cnt], 533 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 534 } 535 } else if (I->capturesVariableByCopy()) { 536 assert(!FD->getType()->isAnyPointerType() && 537 "Not expecting a captured pointer."); 538 const VarDecl *Var = I->getCapturedVar(); 539 LocalAddrs.insert({Args[Cnt], 540 {Var, FO.UIntPtrCastRequired 541 ? castValueFromUintptr( 542 CGF, I->getLocation(), FD->getType(), 543 Args[Cnt]->getName(), ArgLVal) 544 : ArgLVal.getAddress()}}); 545 } else { 546 // If 'this' is captured, load it into CXXThisValue. 547 assert(I->capturesThis()); 548 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 549 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 550 } 551 ++Cnt; 552 ++I; 553 } 554 555 return F; 556 } 557 558 llvm::Function * 559 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 560 assert( 561 CapturedStmtInfo && 562 "CapturedStmtInfo should be set when generating the captured function"); 563 const CapturedDecl *CD = S.getCapturedDecl(); 564 // Build the argument list. 565 bool NeedWrapperFunction = 566 getDebugInfo() && 567 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 568 FunctionArgList Args; 569 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 570 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 571 SmallString<256> Buffer; 572 llvm::raw_svector_ostream Out(Buffer); 573 Out << CapturedStmtInfo->getHelperName(); 574 if (NeedWrapperFunction) 575 Out << "_debug__"; 576 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 577 Out.str()); 578 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 579 VLASizes, CXXThisValue, FO); 580 CodeGenFunction::OMPPrivateScope LocalScope(*this); 581 for (const auto &LocalAddrPair : LocalAddrs) { 582 if (LocalAddrPair.second.first) { 583 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 584 return LocalAddrPair.second.second; 585 }); 586 } 587 } 588 (void)LocalScope.Privatize(); 589 for (const auto &VLASizePair : VLASizes) 590 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 591 PGO.assignRegionCounters(GlobalDecl(CD), F); 592 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 593 (void)LocalScope.ForceCleanup(); 594 FinishFunction(CD->getBodyRBrace()); 595 if (!NeedWrapperFunction) 596 return F; 597 598 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 599 /*RegisterCastedArgsOnly=*/true, 600 CapturedStmtInfo->getHelperName()); 601 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 602 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 603 Args.clear(); 604 LocalAddrs.clear(); 605 VLASizes.clear(); 606 llvm::Function *WrapperF = 607 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 608 WrapperCGF.CXXThisValue, WrapperFO); 609 llvm::SmallVector<llvm::Value *, 4> CallArgs; 610 for (const auto *Arg : Args) { 611 llvm::Value *CallArg; 612 auto I = LocalAddrs.find(Arg); 613 if (I != LocalAddrs.end()) { 614 LValue LV = WrapperCGF.MakeAddrLValue( 615 I->second.second, 616 I->second.first ? I->second.first->getType() : Arg->getType(), 617 AlignmentSource::Decl); 618 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 619 } else { 620 auto EI = VLASizes.find(Arg); 621 if (EI != VLASizes.end()) { 622 CallArg = EI->second.second; 623 } else { 624 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 625 Arg->getType(), 626 AlignmentSource::Decl); 627 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 628 } 629 } 630 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 631 } 632 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 633 F, CallArgs); 634 WrapperCGF.FinishFunction(); 635 return WrapperF; 636 } 637 638 //===----------------------------------------------------------------------===// 639 // OpenMP Directive Emission 640 //===----------------------------------------------------------------------===// 641 void CodeGenFunction::EmitOMPAggregateAssign( 642 Address DestAddr, Address SrcAddr, QualType OriginalType, 643 const llvm::function_ref<void(Address, Address)> CopyGen) { 644 // Perform element-by-element initialization. 645 QualType ElementTy; 646 647 // Drill down to the base element type on both arrays. 648 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 649 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 650 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 651 652 llvm::Value *SrcBegin = SrcAddr.getPointer(); 653 llvm::Value *DestBegin = DestAddr.getPointer(); 654 // Cast from pointer to array type to pointer to single element. 655 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 656 // The basic structure here is a while-do loop. 657 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 658 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 659 llvm::Value *IsEmpty = 660 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 661 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 662 663 // Enter the loop body, making that address the current address. 664 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 665 EmitBlock(BodyBB); 666 667 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 668 669 llvm::PHINode *SrcElementPHI = 670 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 671 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 672 Address SrcElementCurrent = 673 Address(SrcElementPHI, 674 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 675 676 llvm::PHINode *DestElementPHI = 677 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 678 DestElementPHI->addIncoming(DestBegin, EntryBB); 679 Address DestElementCurrent = 680 Address(DestElementPHI, 681 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 682 683 // Emit copy. 684 CopyGen(DestElementCurrent, SrcElementCurrent); 685 686 // Shift the address forward by one element. 687 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 688 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 689 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 690 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 691 // Check whether we've reached the end. 692 llvm::Value *Done = 693 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 694 Builder.CreateCondBr(Done, DoneBB, BodyBB); 695 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 696 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 697 698 // Done. 699 EmitBlock(DoneBB, /*IsFinished=*/true); 700 } 701 702 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 703 Address SrcAddr, const VarDecl *DestVD, 704 const VarDecl *SrcVD, const Expr *Copy) { 705 if (OriginalType->isArrayType()) { 706 const auto *BO = dyn_cast<BinaryOperator>(Copy); 707 if (BO && BO->getOpcode() == BO_Assign) { 708 // Perform simple memcpy for simple copying. 709 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 710 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 711 EmitAggregateAssign(Dest, Src, OriginalType); 712 } else { 713 // For arrays with complex element types perform element by element 714 // copying. 715 EmitOMPAggregateAssign( 716 DestAddr, SrcAddr, OriginalType, 717 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 718 // Working with the single array element, so have to remap 719 // destination and source variables to corresponding array 720 // elements. 721 CodeGenFunction::OMPPrivateScope Remap(*this); 722 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 723 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 724 (void)Remap.Privatize(); 725 EmitIgnoredExpr(Copy); 726 }); 727 } 728 } else { 729 // Remap pseudo source variable to private copy. 730 CodeGenFunction::OMPPrivateScope Remap(*this); 731 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 732 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 733 (void)Remap.Privatize(); 734 // Emit copying of the whole variable. 735 EmitIgnoredExpr(Copy); 736 } 737 } 738 739 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 740 OMPPrivateScope &PrivateScope) { 741 if (!HaveInsertPoint()) 742 return false; 743 bool DeviceConstTarget = 744 getLangOpts().OpenMPIsDevice && 745 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 746 bool FirstprivateIsLastprivate = false; 747 llvm::DenseSet<const VarDecl *> Lastprivates; 748 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 749 for (const auto *D : C->varlists()) 750 Lastprivates.insert( 751 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 752 } 753 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 754 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 755 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 756 // Force emission of the firstprivate copy if the directive does not emit 757 // outlined function, like omp for, omp simd, omp distribute etc. 758 bool MustEmitFirstprivateCopy = 759 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 760 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 761 auto IRef = C->varlist_begin(); 762 auto InitsRef = C->inits().begin(); 763 for (const Expr *IInit : C->private_copies()) { 764 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 765 bool ThisFirstprivateIsLastprivate = 766 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 767 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 768 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 769 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 770 !FD->getType()->isReferenceType() && 771 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 772 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 773 ++IRef; 774 ++InitsRef; 775 continue; 776 } 777 // Do not emit copy for firstprivate constant variables in target regions, 778 // captured by reference. 779 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 780 FD && FD->getType()->isReferenceType() && 781 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 782 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 783 OrigVD); 784 ++IRef; 785 ++InitsRef; 786 continue; 787 } 788 FirstprivateIsLastprivate = 789 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 790 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 791 const auto *VDInit = 792 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 793 bool IsRegistered; 794 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 795 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 796 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 797 LValue OriginalLVal; 798 if (!FD) { 799 // Check if the firstprivate variable is just a constant value. 800 ConstantEmission CE = tryEmitAsConstant(&DRE); 801 if (CE && !CE.isReference()) { 802 // Constant value, no need to create a copy. 803 ++IRef; 804 ++InitsRef; 805 continue; 806 } 807 if (CE && CE.isReference()) { 808 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 809 } else { 810 assert(!CE && "Expected non-constant firstprivate."); 811 OriginalLVal = EmitLValue(&DRE); 812 } 813 } else { 814 OriginalLVal = EmitLValue(&DRE); 815 } 816 QualType Type = VD->getType(); 817 if (Type->isArrayType()) { 818 // Emit VarDecl with copy init for arrays. 819 // Get the address of the original variable captured in current 820 // captured region. 821 IsRegistered = PrivateScope.addPrivate( 822 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 823 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 824 const Expr *Init = VD->getInit(); 825 if (!isa<CXXConstructExpr>(Init) || 826 isTrivialInitializer(Init)) { 827 // Perform simple memcpy. 828 LValue Dest = 829 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 830 EmitAggregateAssign(Dest, OriginalLVal, Type); 831 } else { 832 EmitOMPAggregateAssign( 833 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 834 Type, 835 [this, VDInit, Init](Address DestElement, 836 Address SrcElement) { 837 // Clean up any temporaries needed by the 838 // initialization. 839 RunCleanupsScope InitScope(*this); 840 // Emit initialization for single element. 841 setAddrOfLocalVar(VDInit, SrcElement); 842 EmitAnyExprToMem(Init, DestElement, 843 Init->getType().getQualifiers(), 844 /*IsInitializer*/ false); 845 LocalDeclMap.erase(VDInit); 846 }); 847 } 848 EmitAutoVarCleanups(Emission); 849 return Emission.getAllocatedAddress(); 850 }); 851 } else { 852 Address OriginalAddr = OriginalLVal.getAddress(); 853 IsRegistered = PrivateScope.addPrivate( 854 OrigVD, [this, VDInit, OriginalAddr, VD]() { 855 // Emit private VarDecl with copy init. 856 // Remap temp VDInit variable to the address of the original 857 // variable (for proper handling of captured global variables). 858 setAddrOfLocalVar(VDInit, OriginalAddr); 859 EmitDecl(*VD); 860 LocalDeclMap.erase(VDInit); 861 return GetAddrOfLocalVar(VD); 862 }); 863 } 864 assert(IsRegistered && 865 "firstprivate var already registered as private"); 866 // Silence the warning about unused variable. 867 (void)IsRegistered; 868 } 869 ++IRef; 870 ++InitsRef; 871 } 872 } 873 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 874 } 875 876 void CodeGenFunction::EmitOMPPrivateClause( 877 const OMPExecutableDirective &D, 878 CodeGenFunction::OMPPrivateScope &PrivateScope) { 879 if (!HaveInsertPoint()) 880 return; 881 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 882 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 883 auto IRef = C->varlist_begin(); 884 for (const Expr *IInit : C->private_copies()) { 885 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 886 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 887 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 888 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 889 // Emit private VarDecl with copy init. 890 EmitDecl(*VD); 891 return GetAddrOfLocalVar(VD); 892 }); 893 assert(IsRegistered && "private var already registered as private"); 894 // Silence the warning about unused variable. 895 (void)IsRegistered; 896 } 897 ++IRef; 898 } 899 } 900 } 901 902 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 903 if (!HaveInsertPoint()) 904 return false; 905 // threadprivate_var1 = master_threadprivate_var1; 906 // operator=(threadprivate_var2, master_threadprivate_var2); 907 // ... 908 // __kmpc_barrier(&loc, global_tid); 909 llvm::DenseSet<const VarDecl *> CopiedVars; 910 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 911 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 912 auto IRef = C->varlist_begin(); 913 auto ISrcRef = C->source_exprs().begin(); 914 auto IDestRef = C->destination_exprs().begin(); 915 for (const Expr *AssignOp : C->assignment_ops()) { 916 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 917 QualType Type = VD->getType(); 918 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 919 // Get the address of the master variable. If we are emitting code with 920 // TLS support, the address is passed from the master as field in the 921 // captured declaration. 922 Address MasterAddr = Address::invalid(); 923 if (getLangOpts().OpenMPUseTLS && 924 getContext().getTargetInfo().isTLSSupported()) { 925 assert(CapturedStmtInfo->lookup(VD) && 926 "Copyin threadprivates should have been captured!"); 927 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 928 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 929 MasterAddr = EmitLValue(&DRE).getAddress(); 930 LocalDeclMap.erase(VD); 931 } else { 932 MasterAddr = 933 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 934 : CGM.GetAddrOfGlobal(VD), 935 getContext().getDeclAlign(VD)); 936 } 937 // Get the address of the threadprivate variable. 938 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 939 if (CopiedVars.size() == 1) { 940 // At first check if current thread is a master thread. If it is, no 941 // need to copy data. 942 CopyBegin = createBasicBlock("copyin.not.master"); 943 CopyEnd = createBasicBlock("copyin.not.master.end"); 944 Builder.CreateCondBr( 945 Builder.CreateICmpNE( 946 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 947 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 948 CGM.IntPtrTy)), 949 CopyBegin, CopyEnd); 950 EmitBlock(CopyBegin); 951 } 952 const auto *SrcVD = 953 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 954 const auto *DestVD = 955 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 956 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 957 } 958 ++IRef; 959 ++ISrcRef; 960 ++IDestRef; 961 } 962 } 963 if (CopyEnd) { 964 // Exit out of copying procedure for non-master thread. 965 EmitBlock(CopyEnd, /*IsFinished=*/true); 966 return true; 967 } 968 return false; 969 } 970 971 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 972 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 973 if (!HaveInsertPoint()) 974 return false; 975 bool HasAtLeastOneLastprivate = false; 976 llvm::DenseSet<const VarDecl *> SIMDLCVs; 977 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 978 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 979 for (const Expr *C : LoopDirective->counters()) { 980 SIMDLCVs.insert( 981 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 982 } 983 } 984 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 985 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 986 HasAtLeastOneLastprivate = true; 987 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 988 !getLangOpts().OpenMPSimd) 989 break; 990 auto IRef = C->varlist_begin(); 991 auto IDestRef = C->destination_exprs().begin(); 992 for (const Expr *IInit : C->private_copies()) { 993 // Keep the address of the original variable for future update at the end 994 // of the loop. 995 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 996 // Taskloops do not require additional initialization, it is done in 997 // runtime support library. 998 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 999 const auto *DestVD = 1000 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1001 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1002 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1003 /*RefersToEnclosingVariableOrCapture=*/ 1004 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1005 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1006 return EmitLValue(&DRE).getAddress(); 1007 }); 1008 // Check if the variable is also a firstprivate: in this case IInit is 1009 // not generated. Initialization of this variable will happen in codegen 1010 // for 'firstprivate' clause. 1011 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1012 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1013 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 1014 // Emit private VarDecl with copy init. 1015 EmitDecl(*VD); 1016 return GetAddrOfLocalVar(VD); 1017 }); 1018 assert(IsRegistered && 1019 "lastprivate var already registered as private"); 1020 (void)IsRegistered; 1021 } 1022 } 1023 ++IRef; 1024 ++IDestRef; 1025 } 1026 } 1027 return HasAtLeastOneLastprivate; 1028 } 1029 1030 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1031 const OMPExecutableDirective &D, bool NoFinals, 1032 llvm::Value *IsLastIterCond) { 1033 if (!HaveInsertPoint()) 1034 return; 1035 // Emit following code: 1036 // if (<IsLastIterCond>) { 1037 // orig_var1 = private_orig_var1; 1038 // ... 1039 // orig_varn = private_orig_varn; 1040 // } 1041 llvm::BasicBlock *ThenBB = nullptr; 1042 llvm::BasicBlock *DoneBB = nullptr; 1043 if (IsLastIterCond) { 1044 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1045 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1046 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1047 EmitBlock(ThenBB); 1048 } 1049 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1050 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1051 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1052 auto IC = LoopDirective->counters().begin(); 1053 for (const Expr *F : LoopDirective->finals()) { 1054 const auto *D = 1055 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1056 if (NoFinals) 1057 AlreadyEmittedVars.insert(D); 1058 else 1059 LoopCountersAndUpdates[D] = F; 1060 ++IC; 1061 } 1062 } 1063 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1064 auto IRef = C->varlist_begin(); 1065 auto ISrcRef = C->source_exprs().begin(); 1066 auto IDestRef = C->destination_exprs().begin(); 1067 for (const Expr *AssignOp : C->assignment_ops()) { 1068 const auto *PrivateVD = 1069 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1070 QualType Type = PrivateVD->getType(); 1071 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1072 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1073 // If lastprivate variable is a loop control variable for loop-based 1074 // directive, update its value before copyin back to original 1075 // variable. 1076 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1077 EmitIgnoredExpr(FinalExpr); 1078 const auto *SrcVD = 1079 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1080 const auto *DestVD = 1081 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1082 // Get the address of the original variable. 1083 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1084 // Get the address of the private variable. 1085 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1086 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1087 PrivateAddr = 1088 Address(Builder.CreateLoad(PrivateAddr), 1089 getNaturalTypeAlignment(RefTy->getPointeeType())); 1090 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1091 } 1092 ++IRef; 1093 ++ISrcRef; 1094 ++IDestRef; 1095 } 1096 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1097 EmitIgnoredExpr(PostUpdate); 1098 } 1099 if (IsLastIterCond) 1100 EmitBlock(DoneBB, /*IsFinished=*/true); 1101 } 1102 1103 void CodeGenFunction::EmitOMPReductionClauseInit( 1104 const OMPExecutableDirective &D, 1105 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1106 if (!HaveInsertPoint()) 1107 return; 1108 SmallVector<const Expr *, 4> Shareds; 1109 SmallVector<const Expr *, 4> Privates; 1110 SmallVector<const Expr *, 4> ReductionOps; 1111 SmallVector<const Expr *, 4> LHSs; 1112 SmallVector<const Expr *, 4> RHSs; 1113 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1114 auto IPriv = C->privates().begin(); 1115 auto IRed = C->reduction_ops().begin(); 1116 auto ILHS = C->lhs_exprs().begin(); 1117 auto IRHS = C->rhs_exprs().begin(); 1118 for (const Expr *Ref : C->varlists()) { 1119 Shareds.emplace_back(Ref); 1120 Privates.emplace_back(*IPriv); 1121 ReductionOps.emplace_back(*IRed); 1122 LHSs.emplace_back(*ILHS); 1123 RHSs.emplace_back(*IRHS); 1124 std::advance(IPriv, 1); 1125 std::advance(IRed, 1); 1126 std::advance(ILHS, 1); 1127 std::advance(IRHS, 1); 1128 } 1129 } 1130 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1131 unsigned Count = 0; 1132 auto ILHS = LHSs.begin(); 1133 auto IRHS = RHSs.begin(); 1134 auto IPriv = Privates.begin(); 1135 for (const Expr *IRef : Shareds) { 1136 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1137 // Emit private VarDecl with reduction init. 1138 RedCG.emitSharedLValue(*this, Count); 1139 RedCG.emitAggregateType(*this, Count); 1140 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1141 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1142 RedCG.getSharedLValue(Count), 1143 [&Emission](CodeGenFunction &CGF) { 1144 CGF.EmitAutoVarInit(Emission); 1145 return true; 1146 }); 1147 EmitAutoVarCleanups(Emission); 1148 Address BaseAddr = RedCG.adjustPrivateAddress( 1149 *this, Count, Emission.getAllocatedAddress()); 1150 bool IsRegistered = PrivateScope.addPrivate( 1151 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1152 assert(IsRegistered && "private var already registered as private"); 1153 // Silence the warning about unused variable. 1154 (void)IsRegistered; 1155 1156 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1157 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1158 QualType Type = PrivateVD->getType(); 1159 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1160 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1161 // Store the address of the original variable associated with the LHS 1162 // implicit variable. 1163 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1164 return RedCG.getSharedLValue(Count).getAddress(); 1165 }); 1166 PrivateScope.addPrivate( 1167 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1168 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1169 isa<ArraySubscriptExpr>(IRef)) { 1170 // Store the address of the original variable associated with the LHS 1171 // implicit variable. 1172 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1173 return RedCG.getSharedLValue(Count).getAddress(); 1174 }); 1175 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1176 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1177 ConvertTypeForMem(RHSVD->getType()), 1178 "rhs.begin"); 1179 }); 1180 } else { 1181 QualType Type = PrivateVD->getType(); 1182 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1183 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1184 // Store the address of the original variable associated with the LHS 1185 // implicit variable. 1186 if (IsArray) { 1187 OriginalAddr = Builder.CreateElementBitCast( 1188 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1189 } 1190 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1191 PrivateScope.addPrivate( 1192 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1193 return IsArray 1194 ? Builder.CreateElementBitCast( 1195 GetAddrOfLocalVar(PrivateVD), 1196 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1197 : GetAddrOfLocalVar(PrivateVD); 1198 }); 1199 } 1200 ++ILHS; 1201 ++IRHS; 1202 ++IPriv; 1203 ++Count; 1204 } 1205 } 1206 1207 void CodeGenFunction::EmitOMPReductionClauseFinal( 1208 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1209 if (!HaveInsertPoint()) 1210 return; 1211 llvm::SmallVector<const Expr *, 8> Privates; 1212 llvm::SmallVector<const Expr *, 8> LHSExprs; 1213 llvm::SmallVector<const Expr *, 8> RHSExprs; 1214 llvm::SmallVector<const Expr *, 8> ReductionOps; 1215 bool HasAtLeastOneReduction = false; 1216 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1217 HasAtLeastOneReduction = true; 1218 Privates.append(C->privates().begin(), C->privates().end()); 1219 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1220 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1221 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1222 } 1223 if (HasAtLeastOneReduction) { 1224 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1225 isOpenMPParallelDirective(D.getDirectiveKind()) || 1226 ReductionKind == OMPD_simd; 1227 bool SimpleReduction = ReductionKind == OMPD_simd; 1228 // Emit nowait reduction if nowait clause is present or directive is a 1229 // parallel directive (it always has implicit barrier). 1230 CGM.getOpenMPRuntime().emitReduction( 1231 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1232 {WithNowait, SimpleReduction, ReductionKind}); 1233 } 1234 } 1235 1236 static void emitPostUpdateForReductionClause( 1237 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1238 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1239 if (!CGF.HaveInsertPoint()) 1240 return; 1241 llvm::BasicBlock *DoneBB = nullptr; 1242 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1243 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1244 if (!DoneBB) { 1245 if (llvm::Value *Cond = CondGen(CGF)) { 1246 // If the first post-update expression is found, emit conditional 1247 // block if it was requested. 1248 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1249 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1250 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1251 CGF.EmitBlock(ThenBB); 1252 } 1253 } 1254 CGF.EmitIgnoredExpr(PostUpdate); 1255 } 1256 } 1257 if (DoneBB) 1258 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1259 } 1260 1261 namespace { 1262 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1263 /// parallel function. This is necessary for combined constructs such as 1264 /// 'distribute parallel for' 1265 typedef llvm::function_ref<void(CodeGenFunction &, 1266 const OMPExecutableDirective &, 1267 llvm::SmallVectorImpl<llvm::Value *> &)> 1268 CodeGenBoundParametersTy; 1269 } // anonymous namespace 1270 1271 static void emitCommonOMPParallelDirective( 1272 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1273 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1274 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1275 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1276 llvm::Function *OutlinedFn = 1277 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1278 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1279 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1280 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1281 llvm::Value *NumThreads = 1282 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1283 /*IgnoreResultAssign=*/true); 1284 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1285 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1286 } 1287 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1288 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1289 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1290 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1291 } 1292 const Expr *IfCond = nullptr; 1293 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1294 if (C->getNameModifier() == OMPD_unknown || 1295 C->getNameModifier() == OMPD_parallel) { 1296 IfCond = C->getCondition(); 1297 break; 1298 } 1299 } 1300 1301 OMPParallelScope Scope(CGF, S); 1302 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1303 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1304 // lower and upper bounds with the pragma 'for' chunking mechanism. 1305 // The following lambda takes care of appending the lower and upper bound 1306 // parameters when necessary 1307 CodeGenBoundParameters(CGF, S, CapturedVars); 1308 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1309 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1310 CapturedVars, IfCond); 1311 } 1312 1313 static void emitEmptyBoundParameters(CodeGenFunction &, 1314 const OMPExecutableDirective &, 1315 llvm::SmallVectorImpl<llvm::Value *> &) {} 1316 1317 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1318 // Emit parallel region as a standalone region. 1319 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1320 Action.Enter(CGF); 1321 OMPPrivateScope PrivateScope(CGF); 1322 bool Copyins = CGF.EmitOMPCopyinClause(S); 1323 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1324 if (Copyins) { 1325 // Emit implicit barrier to synchronize threads and avoid data races on 1326 // propagation master's thread values of threadprivate variables to local 1327 // instances of that variables of all other implicit threads. 1328 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1329 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1330 /*ForceSimpleCall=*/true); 1331 } 1332 CGF.EmitOMPPrivateClause(S, PrivateScope); 1333 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1334 (void)PrivateScope.Privatize(); 1335 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1336 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1337 }; 1338 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1339 emitEmptyBoundParameters); 1340 emitPostUpdateForReductionClause(*this, S, 1341 [](CodeGenFunction &) { return nullptr; }); 1342 } 1343 1344 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1345 int MaxLevel, int Level = 0) { 1346 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1347 const Stmt *SimplifiedS = S->IgnoreContainers(); 1348 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1349 PrettyStackTraceLoc CrashInfo( 1350 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1351 "LLVM IR generation of compound statement ('{}')"); 1352 1353 // Keep track of the current cleanup stack depth, including debug scopes. 1354 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1355 for (const Stmt *CurStmt : CS->body()) 1356 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1357 return; 1358 } 1359 if (SimplifiedS == NextLoop) { 1360 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1361 S = For->getBody(); 1362 } else { 1363 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1364 "Expected canonical for loop or range-based for loop."); 1365 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1366 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1367 S = CXXFor->getBody(); 1368 } 1369 if (Level + 1 < MaxLevel) { 1370 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1371 S, /*TryImperfectlyNestedLoops=*/true); 1372 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1373 return; 1374 } 1375 } 1376 CGF.EmitStmt(S); 1377 } 1378 1379 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1380 JumpDest LoopExit) { 1381 RunCleanupsScope BodyScope(*this); 1382 // Update counters values on current iteration. 1383 for (const Expr *UE : D.updates()) 1384 EmitIgnoredExpr(UE); 1385 // Update the linear variables. 1386 // In distribute directives only loop counters may be marked as linear, no 1387 // need to generate the code for them. 1388 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1389 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1390 for (const Expr *UE : C->updates()) 1391 EmitIgnoredExpr(UE); 1392 } 1393 } 1394 1395 // On a continue in the body, jump to the end. 1396 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1397 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1398 for (const Expr *E : D.finals_conditions()) { 1399 if (!E) 1400 continue; 1401 // Check that loop counter in non-rectangular nest fits into the iteration 1402 // space. 1403 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1404 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1405 getProfileCount(D.getBody())); 1406 EmitBlock(NextBB); 1407 } 1408 // Emit loop variables for C++ range loops. 1409 const Stmt *Body = 1410 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1411 // Emit loop body. 1412 emitBody(*this, Body, 1413 OMPLoopDirective::tryToFindNextInnerLoop( 1414 Body, /*TryImperfectlyNestedLoops=*/true), 1415 D.getCollapsedNumber()); 1416 1417 // The end (updates/cleanups). 1418 EmitBlock(Continue.getBlock()); 1419 BreakContinueStack.pop_back(); 1420 } 1421 1422 void CodeGenFunction::EmitOMPInnerLoop( 1423 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1424 const Expr *IncExpr, 1425 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1426 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1427 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1428 1429 // Start the loop with a block that tests the condition. 1430 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1431 EmitBlock(CondBlock); 1432 const SourceRange R = S.getSourceRange(); 1433 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1434 SourceLocToDebugLoc(R.getEnd())); 1435 1436 // If there are any cleanups between here and the loop-exit scope, 1437 // create a block to stage a loop exit along. 1438 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1439 if (RequiresCleanup) 1440 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1441 1442 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1443 1444 // Emit condition. 1445 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1446 if (ExitBlock != LoopExit.getBlock()) { 1447 EmitBlock(ExitBlock); 1448 EmitBranchThroughCleanup(LoopExit); 1449 } 1450 1451 EmitBlock(LoopBody); 1452 incrementProfileCounter(&S); 1453 1454 // Create a block for the increment. 1455 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1456 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1457 1458 BodyGen(*this); 1459 1460 // Emit "IV = IV + 1" and a back-edge to the condition block. 1461 EmitBlock(Continue.getBlock()); 1462 EmitIgnoredExpr(IncExpr); 1463 PostIncGen(*this); 1464 BreakContinueStack.pop_back(); 1465 EmitBranch(CondBlock); 1466 LoopStack.pop(); 1467 // Emit the fall-through block. 1468 EmitBlock(LoopExit.getBlock()); 1469 } 1470 1471 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1472 if (!HaveInsertPoint()) 1473 return false; 1474 // Emit inits for the linear variables. 1475 bool HasLinears = false; 1476 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1477 for (const Expr *Init : C->inits()) { 1478 HasLinears = true; 1479 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1480 if (const auto *Ref = 1481 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1482 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1483 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1484 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1485 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1486 VD->getInit()->getType(), VK_LValue, 1487 VD->getInit()->getExprLoc()); 1488 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1489 VD->getType()), 1490 /*capturedByInit=*/false); 1491 EmitAutoVarCleanups(Emission); 1492 } else { 1493 EmitVarDecl(*VD); 1494 } 1495 } 1496 // Emit the linear steps for the linear clauses. 1497 // If a step is not constant, it is pre-calculated before the loop. 1498 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1499 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1500 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1501 // Emit calculation of the linear step. 1502 EmitIgnoredExpr(CS); 1503 } 1504 } 1505 return HasLinears; 1506 } 1507 1508 void CodeGenFunction::EmitOMPLinearClauseFinal( 1509 const OMPLoopDirective &D, 1510 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1511 if (!HaveInsertPoint()) 1512 return; 1513 llvm::BasicBlock *DoneBB = nullptr; 1514 // Emit the final values of the linear variables. 1515 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1516 auto IC = C->varlist_begin(); 1517 for (const Expr *F : C->finals()) { 1518 if (!DoneBB) { 1519 if (llvm::Value *Cond = CondGen(*this)) { 1520 // If the first post-update expression is found, emit conditional 1521 // block if it was requested. 1522 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1523 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1524 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1525 EmitBlock(ThenBB); 1526 } 1527 } 1528 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1529 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1530 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1531 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1532 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1533 CodeGenFunction::OMPPrivateScope VarScope(*this); 1534 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1535 (void)VarScope.Privatize(); 1536 EmitIgnoredExpr(F); 1537 ++IC; 1538 } 1539 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1540 EmitIgnoredExpr(PostUpdate); 1541 } 1542 if (DoneBB) 1543 EmitBlock(DoneBB, /*IsFinished=*/true); 1544 } 1545 1546 static void emitAlignedClause(CodeGenFunction &CGF, 1547 const OMPExecutableDirective &D) { 1548 if (!CGF.HaveInsertPoint()) 1549 return; 1550 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1551 llvm::APInt ClauseAlignment(64, 0); 1552 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1553 auto *AlignmentCI = 1554 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1555 ClauseAlignment = AlignmentCI->getValue(); 1556 } 1557 for (const Expr *E : Clause->varlists()) { 1558 llvm::APInt Alignment(ClauseAlignment); 1559 if (Alignment == 0) { 1560 // OpenMP [2.8.1, Description] 1561 // If no optional parameter is specified, implementation-defined default 1562 // alignments for SIMD instructions on the target platforms are assumed. 1563 Alignment = 1564 CGF.getContext() 1565 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1566 E->getType()->getPointeeType())) 1567 .getQuantity(); 1568 } 1569 assert((Alignment == 0 || Alignment.isPowerOf2()) && 1570 "alignment is not power of 2"); 1571 if (Alignment != 0) { 1572 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1573 CGF.EmitAlignmentAssumption( 1574 PtrValue, E, /*No second loc needed*/ SourceLocation(), 1575 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 1576 } 1577 } 1578 } 1579 } 1580 1581 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1582 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1583 if (!HaveInsertPoint()) 1584 return; 1585 auto I = S.private_counters().begin(); 1586 for (const Expr *E : S.counters()) { 1587 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1588 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1589 // Emit var without initialization. 1590 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1591 EmitAutoVarCleanups(VarEmission); 1592 LocalDeclMap.erase(PrivateVD); 1593 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1594 return VarEmission.getAllocatedAddress(); 1595 }); 1596 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1597 VD->hasGlobalStorage()) { 1598 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1599 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1600 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1601 E->getType(), VK_LValue, E->getExprLoc()); 1602 return EmitLValue(&DRE).getAddress(); 1603 }); 1604 } else { 1605 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1606 return VarEmission.getAllocatedAddress(); 1607 }); 1608 } 1609 ++I; 1610 } 1611 // Privatize extra loop counters used in loops for ordered(n) clauses. 1612 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1613 if (!C->getNumForLoops()) 1614 continue; 1615 for (unsigned I = S.getCollapsedNumber(), 1616 E = C->getLoopNumIterations().size(); 1617 I < E; ++I) { 1618 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1619 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1620 // Override only those variables that can be captured to avoid re-emission 1621 // of the variables declared within the loops. 1622 if (DRE->refersToEnclosingVariableOrCapture()) { 1623 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1624 return CreateMemTemp(DRE->getType(), VD->getName()); 1625 }); 1626 } 1627 } 1628 } 1629 } 1630 1631 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1632 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1633 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1634 if (!CGF.HaveInsertPoint()) 1635 return; 1636 { 1637 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1638 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1639 (void)PreCondScope.Privatize(); 1640 // Get initial values of real counters. 1641 for (const Expr *I : S.inits()) { 1642 CGF.EmitIgnoredExpr(I); 1643 } 1644 } 1645 // Create temp loop control variables with their init values to support 1646 // non-rectangular loops. 1647 CodeGenFunction::OMPMapVars PreCondVars; 1648 for (const Expr * E: S.dependent_counters()) { 1649 if (!E) 1650 continue; 1651 assert(!E->getType().getNonReferenceType()->isRecordType() && 1652 "dependent counter must not be an iterator."); 1653 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1654 Address CounterAddr = 1655 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 1656 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 1657 } 1658 (void)PreCondVars.apply(CGF); 1659 for (const Expr *E : S.dependent_inits()) { 1660 if (!E) 1661 continue; 1662 CGF.EmitIgnoredExpr(E); 1663 } 1664 // Check that loop is executed at least one time. 1665 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1666 PreCondVars.restore(CGF); 1667 } 1668 1669 void CodeGenFunction::EmitOMPLinearClause( 1670 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1671 if (!HaveInsertPoint()) 1672 return; 1673 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1674 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1675 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1676 for (const Expr *C : LoopDirective->counters()) { 1677 SIMDLCVs.insert( 1678 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1679 } 1680 } 1681 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1682 auto CurPrivate = C->privates().begin(); 1683 for (const Expr *E : C->varlists()) { 1684 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1685 const auto *PrivateVD = 1686 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1687 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1688 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1689 // Emit private VarDecl with copy init. 1690 EmitVarDecl(*PrivateVD); 1691 return GetAddrOfLocalVar(PrivateVD); 1692 }); 1693 assert(IsRegistered && "linear var already registered as private"); 1694 // Silence the warning about unused variable. 1695 (void)IsRegistered; 1696 } else { 1697 EmitVarDecl(*PrivateVD); 1698 } 1699 ++CurPrivate; 1700 } 1701 } 1702 } 1703 1704 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1705 const OMPExecutableDirective &D, 1706 bool IsMonotonic) { 1707 if (!CGF.HaveInsertPoint()) 1708 return; 1709 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1710 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1711 /*ignoreResult=*/true); 1712 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1713 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1714 // In presence of finite 'safelen', it may be unsafe to mark all 1715 // the memory instructions parallel, because loop-carried 1716 // dependences of 'safelen' iterations are possible. 1717 if (!IsMonotonic) 1718 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1719 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1720 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1721 /*ignoreResult=*/true); 1722 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1723 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1724 // In presence of finite 'safelen', it may be unsafe to mark all 1725 // the memory instructions parallel, because loop-carried 1726 // dependences of 'safelen' iterations are possible. 1727 CGF.LoopStack.setParallel(/*Enable=*/false); 1728 } 1729 } 1730 1731 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1732 bool IsMonotonic) { 1733 // Walk clauses and process safelen/lastprivate. 1734 LoopStack.setParallel(!IsMonotonic); 1735 LoopStack.setVectorizeEnable(); 1736 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1737 } 1738 1739 void CodeGenFunction::EmitOMPSimdFinal( 1740 const OMPLoopDirective &D, 1741 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1742 if (!HaveInsertPoint()) 1743 return; 1744 llvm::BasicBlock *DoneBB = nullptr; 1745 auto IC = D.counters().begin(); 1746 auto IPC = D.private_counters().begin(); 1747 for (const Expr *F : D.finals()) { 1748 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1749 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1750 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1751 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1752 OrigVD->hasGlobalStorage() || CED) { 1753 if (!DoneBB) { 1754 if (llvm::Value *Cond = CondGen(*this)) { 1755 // If the first post-update expression is found, emit conditional 1756 // block if it was requested. 1757 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1758 DoneBB = createBasicBlock(".omp.final.done"); 1759 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1760 EmitBlock(ThenBB); 1761 } 1762 } 1763 Address OrigAddr = Address::invalid(); 1764 if (CED) { 1765 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1766 } else { 1767 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1768 /*RefersToEnclosingVariableOrCapture=*/false, 1769 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1770 OrigAddr = EmitLValue(&DRE).getAddress(); 1771 } 1772 OMPPrivateScope VarScope(*this); 1773 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1774 (void)VarScope.Privatize(); 1775 EmitIgnoredExpr(F); 1776 } 1777 ++IC; 1778 ++IPC; 1779 } 1780 if (DoneBB) 1781 EmitBlock(DoneBB, /*IsFinished=*/true); 1782 } 1783 1784 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1785 const OMPLoopDirective &S, 1786 CodeGenFunction::JumpDest LoopExit) { 1787 CGF.EmitOMPLoopBody(S, LoopExit); 1788 CGF.EmitStopPoint(&S); 1789 } 1790 1791 /// Emit a helper variable and return corresponding lvalue. 1792 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1793 const DeclRefExpr *Helper) { 1794 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1795 CGF.EmitVarDecl(*VDecl); 1796 return CGF.EmitLValue(Helper); 1797 } 1798 1799 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 1800 const RegionCodeGenTy &SimdInitGen, 1801 const RegionCodeGenTy &BodyCodeGen) { 1802 auto &&ThenGen = [&SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 1803 PrePostActionTy &) { 1804 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1805 SimdInitGen(CGF); 1806 1807 BodyCodeGen(CGF); 1808 }; 1809 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 1810 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1811 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 1812 1813 BodyCodeGen(CGF); 1814 }; 1815 const Expr *IfCond = nullptr; 1816 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1817 if (CGF.getLangOpts().OpenMP >= 50 && 1818 (C->getNameModifier() == OMPD_unknown || 1819 C->getNameModifier() == OMPD_simd)) { 1820 IfCond = C->getCondition(); 1821 break; 1822 } 1823 } 1824 if (IfCond) { 1825 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 1826 } else { 1827 RegionCodeGenTy ThenRCG(ThenGen); 1828 ThenRCG(CGF); 1829 } 1830 } 1831 1832 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1833 PrePostActionTy &Action) { 1834 Action.Enter(CGF); 1835 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1836 "Expected simd directive"); 1837 OMPLoopScope PreInitScope(CGF, S); 1838 // if (PreCond) { 1839 // for (IV in 0..LastIteration) BODY; 1840 // <Final counter/linear vars updates>; 1841 // } 1842 // 1843 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1844 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1845 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1846 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1847 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1848 } 1849 1850 // Emit: if (PreCond) - begin. 1851 // If the condition constant folds and can be elided, avoid emitting the 1852 // whole loop. 1853 bool CondConstant; 1854 llvm::BasicBlock *ContBlock = nullptr; 1855 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1856 if (!CondConstant) 1857 return; 1858 } else { 1859 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1860 ContBlock = CGF.createBasicBlock("simd.if.end"); 1861 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1862 CGF.getProfileCount(&S)); 1863 CGF.EmitBlock(ThenBlock); 1864 CGF.incrementProfileCounter(&S); 1865 } 1866 1867 // Emit the loop iteration variable. 1868 const Expr *IVExpr = S.getIterationVariable(); 1869 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1870 CGF.EmitVarDecl(*IVDecl); 1871 CGF.EmitIgnoredExpr(S.getInit()); 1872 1873 // Emit the iterations count variable. 1874 // If it is not a variable, Sema decided to calculate iterations count on 1875 // each iteration (e.g., it is foldable into a constant). 1876 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1877 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1878 // Emit calculation of the iterations count. 1879 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1880 } 1881 1882 emitAlignedClause(CGF, S); 1883 (void)CGF.EmitOMPLinearClauseInit(S); 1884 { 1885 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1886 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1887 CGF.EmitOMPLinearClause(S, LoopScope); 1888 CGF.EmitOMPPrivateClause(S, LoopScope); 1889 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1890 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1891 (void)LoopScope.Privatize(); 1892 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1893 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1894 1895 emitCommonSimdLoop( 1896 CGF, S, 1897 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1898 CGF.EmitOMPSimdInit(S); 1899 }, 1900 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 1901 CGF.EmitOMPInnerLoop( 1902 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1903 [&S](CodeGenFunction &CGF) { 1904 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1905 CGF.EmitStopPoint(&S); 1906 }, 1907 [](CodeGenFunction &) {}); 1908 }); 1909 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1910 // Emit final copy of the lastprivate variables at the end of loops. 1911 if (HasLastprivateClause) 1912 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1913 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1914 emitPostUpdateForReductionClause(CGF, S, 1915 [](CodeGenFunction &) { return nullptr; }); 1916 } 1917 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1918 // Emit: if (PreCond) - end. 1919 if (ContBlock) { 1920 CGF.EmitBranch(ContBlock); 1921 CGF.EmitBlock(ContBlock, true); 1922 } 1923 } 1924 1925 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1926 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1927 emitOMPSimdRegion(CGF, S, Action); 1928 }; 1929 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1930 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1931 } 1932 1933 void CodeGenFunction::EmitOMPOuterLoop( 1934 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1935 CodeGenFunction::OMPPrivateScope &LoopScope, 1936 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1937 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1938 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1939 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1940 1941 const Expr *IVExpr = S.getIterationVariable(); 1942 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1943 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1944 1945 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1946 1947 // Start the loop with a block that tests the condition. 1948 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1949 EmitBlock(CondBlock); 1950 const SourceRange R = S.getSourceRange(); 1951 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1952 SourceLocToDebugLoc(R.getEnd())); 1953 1954 llvm::Value *BoolCondVal = nullptr; 1955 if (!DynamicOrOrdered) { 1956 // UB = min(UB, GlobalUB) or 1957 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1958 // 'distribute parallel for') 1959 EmitIgnoredExpr(LoopArgs.EUB); 1960 // IV = LB 1961 EmitIgnoredExpr(LoopArgs.Init); 1962 // IV < UB 1963 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1964 } else { 1965 BoolCondVal = 1966 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1967 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1968 } 1969 1970 // If there are any cleanups between here and the loop-exit scope, 1971 // create a block to stage a loop exit along. 1972 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1973 if (LoopScope.requiresCleanups()) 1974 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1975 1976 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1977 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1978 if (ExitBlock != LoopExit.getBlock()) { 1979 EmitBlock(ExitBlock); 1980 EmitBranchThroughCleanup(LoopExit); 1981 } 1982 EmitBlock(LoopBody); 1983 1984 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1985 // LB for loop condition and emitted it above). 1986 if (DynamicOrOrdered) 1987 EmitIgnoredExpr(LoopArgs.Init); 1988 1989 // Create a block for the increment. 1990 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1991 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1992 1993 emitCommonSimdLoop( 1994 *this, S, 1995 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 1996 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1997 // with dynamic/guided scheduling and without ordered clause. 1998 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1999 CGF.LoopStack.setParallel(!IsMonotonic); 2000 else 2001 CGF.EmitOMPSimdInit(S, IsMonotonic); 2002 }, 2003 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2004 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2005 SourceLocation Loc = S.getBeginLoc(); 2006 // when 'distribute' is not combined with a 'for': 2007 // while (idx <= UB) { BODY; ++idx; } 2008 // when 'distribute' is combined with a 'for' 2009 // (e.g. 'distribute parallel for') 2010 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2011 CGF.EmitOMPInnerLoop( 2012 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2013 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2014 CodeGenLoop(CGF, S, LoopExit); 2015 }, 2016 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2017 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2018 }); 2019 }); 2020 2021 EmitBlock(Continue.getBlock()); 2022 BreakContinueStack.pop_back(); 2023 if (!DynamicOrOrdered) { 2024 // Emit "LB = LB + Stride", "UB = UB + Stride". 2025 EmitIgnoredExpr(LoopArgs.NextLB); 2026 EmitIgnoredExpr(LoopArgs.NextUB); 2027 } 2028 2029 EmitBranch(CondBlock); 2030 LoopStack.pop(); 2031 // Emit the fall-through block. 2032 EmitBlock(LoopExit.getBlock()); 2033 2034 // Tell the runtime we are done. 2035 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2036 if (!DynamicOrOrdered) 2037 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2038 S.getDirectiveKind()); 2039 }; 2040 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2041 } 2042 2043 void CodeGenFunction::EmitOMPForOuterLoop( 2044 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2045 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2046 const OMPLoopArguments &LoopArgs, 2047 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2048 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2049 2050 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2051 const bool DynamicOrOrdered = 2052 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2053 2054 assert((Ordered || 2055 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2056 LoopArgs.Chunk != nullptr)) && 2057 "static non-chunked schedule does not need outer loop"); 2058 2059 // Emit outer loop. 2060 // 2061 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2062 // When schedule(dynamic,chunk_size) is specified, the iterations are 2063 // distributed to threads in the team in chunks as the threads request them. 2064 // Each thread executes a chunk of iterations, then requests another chunk, 2065 // until no chunks remain to be distributed. Each chunk contains chunk_size 2066 // iterations, except for the last chunk to be distributed, which may have 2067 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2068 // 2069 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2070 // to threads in the team in chunks as the executing threads request them. 2071 // Each thread executes a chunk of iterations, then requests another chunk, 2072 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2073 // each chunk is proportional to the number of unassigned iterations divided 2074 // by the number of threads in the team, decreasing to 1. For a chunk_size 2075 // with value k (greater than 1), the size of each chunk is determined in the 2076 // same way, with the restriction that the chunks do not contain fewer than k 2077 // iterations (except for the last chunk to be assigned, which may have fewer 2078 // than k iterations). 2079 // 2080 // When schedule(auto) is specified, the decision regarding scheduling is 2081 // delegated to the compiler and/or runtime system. The programmer gives the 2082 // implementation the freedom to choose any possible mapping of iterations to 2083 // threads in the team. 2084 // 2085 // When schedule(runtime) is specified, the decision regarding scheduling is 2086 // deferred until run time, and the schedule and chunk size are taken from the 2087 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2088 // implementation defined 2089 // 2090 // while(__kmpc_dispatch_next(&LB, &UB)) { 2091 // idx = LB; 2092 // while (idx <= UB) { BODY; ++idx; 2093 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2094 // } // inner loop 2095 // } 2096 // 2097 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2098 // When schedule(static, chunk_size) is specified, iterations are divided into 2099 // chunks of size chunk_size, and the chunks are assigned to the threads in 2100 // the team in a round-robin fashion in the order of the thread number. 2101 // 2102 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2103 // while (idx <= UB) { BODY; ++idx; } // inner loop 2104 // LB = LB + ST; 2105 // UB = UB + ST; 2106 // } 2107 // 2108 2109 const Expr *IVExpr = S.getIterationVariable(); 2110 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2111 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2112 2113 if (DynamicOrOrdered) { 2114 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2115 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2116 llvm::Value *LBVal = DispatchBounds.first; 2117 llvm::Value *UBVal = DispatchBounds.second; 2118 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2119 LoopArgs.Chunk}; 2120 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2121 IVSigned, Ordered, DipatchRTInputValues); 2122 } else { 2123 CGOpenMPRuntime::StaticRTInput StaticInit( 2124 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2125 LoopArgs.ST, LoopArgs.Chunk); 2126 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2127 ScheduleKind, StaticInit); 2128 } 2129 2130 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2131 const unsigned IVSize, 2132 const bool IVSigned) { 2133 if (Ordered) { 2134 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2135 IVSigned); 2136 } 2137 }; 2138 2139 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2140 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2141 OuterLoopArgs.IncExpr = S.getInc(); 2142 OuterLoopArgs.Init = S.getInit(); 2143 OuterLoopArgs.Cond = S.getCond(); 2144 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2145 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2146 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2147 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2148 } 2149 2150 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2151 const unsigned IVSize, const bool IVSigned) {} 2152 2153 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2154 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2155 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2156 const CodeGenLoopTy &CodeGenLoopContent) { 2157 2158 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2159 2160 // Emit outer loop. 2161 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2162 // dynamic 2163 // 2164 2165 const Expr *IVExpr = S.getIterationVariable(); 2166 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2167 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2168 2169 CGOpenMPRuntime::StaticRTInput StaticInit( 2170 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2171 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2172 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2173 2174 // for combined 'distribute' and 'for' the increment expression of distribute 2175 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2176 Expr *IncExpr; 2177 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2178 IncExpr = S.getDistInc(); 2179 else 2180 IncExpr = S.getInc(); 2181 2182 // this routine is shared by 'omp distribute parallel for' and 2183 // 'omp distribute': select the right EUB expression depending on the 2184 // directive 2185 OMPLoopArguments OuterLoopArgs; 2186 OuterLoopArgs.LB = LoopArgs.LB; 2187 OuterLoopArgs.UB = LoopArgs.UB; 2188 OuterLoopArgs.ST = LoopArgs.ST; 2189 OuterLoopArgs.IL = LoopArgs.IL; 2190 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2191 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2192 ? S.getCombinedEnsureUpperBound() 2193 : S.getEnsureUpperBound(); 2194 OuterLoopArgs.IncExpr = IncExpr; 2195 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2196 ? S.getCombinedInit() 2197 : S.getInit(); 2198 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2199 ? S.getCombinedCond() 2200 : S.getCond(); 2201 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2202 ? S.getCombinedNextLowerBound() 2203 : S.getNextLowerBound(); 2204 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2205 ? S.getCombinedNextUpperBound() 2206 : S.getNextUpperBound(); 2207 2208 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2209 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2210 emitEmptyOrdered); 2211 } 2212 2213 static std::pair<LValue, LValue> 2214 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2215 const OMPExecutableDirective &S) { 2216 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2217 LValue LB = 2218 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2219 LValue UB = 2220 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2221 2222 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2223 // parallel for') we need to use the 'distribute' 2224 // chunk lower and upper bounds rather than the whole loop iteration 2225 // space. These are parameters to the outlined function for 'parallel' 2226 // and we copy the bounds of the previous schedule into the 2227 // the current ones. 2228 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2229 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2230 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2231 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2232 PrevLBVal = CGF.EmitScalarConversion( 2233 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2234 LS.getIterationVariable()->getType(), 2235 LS.getPrevLowerBoundVariable()->getExprLoc()); 2236 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2237 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2238 PrevUBVal = CGF.EmitScalarConversion( 2239 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2240 LS.getIterationVariable()->getType(), 2241 LS.getPrevUpperBoundVariable()->getExprLoc()); 2242 2243 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2244 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2245 2246 return {LB, UB}; 2247 } 2248 2249 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2250 /// we need to use the LB and UB expressions generated by the worksharing 2251 /// code generation support, whereas in non combined situations we would 2252 /// just emit 0 and the LastIteration expression 2253 /// This function is necessary due to the difference of the LB and UB 2254 /// types for the RT emission routines for 'for_static_init' and 2255 /// 'for_dispatch_init' 2256 static std::pair<llvm::Value *, llvm::Value *> 2257 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2258 const OMPExecutableDirective &S, 2259 Address LB, Address UB) { 2260 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2261 const Expr *IVExpr = LS.getIterationVariable(); 2262 // when implementing a dynamic schedule for a 'for' combined with a 2263 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2264 // is not normalized as each team only executes its own assigned 2265 // distribute chunk 2266 QualType IteratorTy = IVExpr->getType(); 2267 llvm::Value *LBVal = 2268 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2269 llvm::Value *UBVal = 2270 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2271 return {LBVal, UBVal}; 2272 } 2273 2274 static void emitDistributeParallelForDistributeInnerBoundParams( 2275 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2276 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2277 const auto &Dir = cast<OMPLoopDirective>(S); 2278 LValue LB = 2279 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2280 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2281 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2282 CapturedVars.push_back(LBCast); 2283 LValue UB = 2284 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2285 2286 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2287 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2288 CapturedVars.push_back(UBCast); 2289 } 2290 2291 static void 2292 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2293 const OMPLoopDirective &S, 2294 CodeGenFunction::JumpDest LoopExit) { 2295 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2296 PrePostActionTy &Action) { 2297 Action.Enter(CGF); 2298 bool HasCancel = false; 2299 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2300 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2301 HasCancel = D->hasCancel(); 2302 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2303 HasCancel = D->hasCancel(); 2304 else if (const auto *D = 2305 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2306 HasCancel = D->hasCancel(); 2307 } 2308 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2309 HasCancel); 2310 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2311 emitDistributeParallelForInnerBounds, 2312 emitDistributeParallelForDispatchBounds); 2313 }; 2314 2315 emitCommonOMPParallelDirective( 2316 CGF, S, 2317 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2318 CGInlinedWorksharingLoop, 2319 emitDistributeParallelForDistributeInnerBoundParams); 2320 } 2321 2322 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2323 const OMPDistributeParallelForDirective &S) { 2324 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2325 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2326 S.getDistInc()); 2327 }; 2328 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2329 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2330 } 2331 2332 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2333 const OMPDistributeParallelForSimdDirective &S) { 2334 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2335 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2336 S.getDistInc()); 2337 }; 2338 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2339 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2340 } 2341 2342 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2343 const OMPDistributeSimdDirective &S) { 2344 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2345 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2346 }; 2347 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2348 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2349 } 2350 2351 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2352 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2353 // Emit SPMD target parallel for region as a standalone region. 2354 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2355 emitOMPSimdRegion(CGF, S, Action); 2356 }; 2357 llvm::Function *Fn; 2358 llvm::Constant *Addr; 2359 // Emit target region as a standalone region. 2360 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2361 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2362 assert(Fn && Addr && "Target device function emission failed."); 2363 } 2364 2365 void CodeGenFunction::EmitOMPTargetSimdDirective( 2366 const OMPTargetSimdDirective &S) { 2367 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2368 emitOMPSimdRegion(CGF, S, Action); 2369 }; 2370 emitCommonOMPTargetDirective(*this, S, CodeGen); 2371 } 2372 2373 namespace { 2374 struct ScheduleKindModifiersTy { 2375 OpenMPScheduleClauseKind Kind; 2376 OpenMPScheduleClauseModifier M1; 2377 OpenMPScheduleClauseModifier M2; 2378 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2379 OpenMPScheduleClauseModifier M1, 2380 OpenMPScheduleClauseModifier M2) 2381 : Kind(Kind), M1(M1), M2(M2) {} 2382 }; 2383 } // namespace 2384 2385 bool CodeGenFunction::EmitOMPWorksharingLoop( 2386 const OMPLoopDirective &S, Expr *EUB, 2387 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2388 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2389 // Emit the loop iteration variable. 2390 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2391 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2392 EmitVarDecl(*IVDecl); 2393 2394 // Emit the iterations count variable. 2395 // If it is not a variable, Sema decided to calculate iterations count on each 2396 // iteration (e.g., it is foldable into a constant). 2397 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2398 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2399 // Emit calculation of the iterations count. 2400 EmitIgnoredExpr(S.getCalcLastIteration()); 2401 } 2402 2403 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2404 2405 bool HasLastprivateClause; 2406 // Check pre-condition. 2407 { 2408 OMPLoopScope PreInitScope(*this, S); 2409 // Skip the entire loop if we don't meet the precondition. 2410 // If the condition constant folds and can be elided, avoid emitting the 2411 // whole loop. 2412 bool CondConstant; 2413 llvm::BasicBlock *ContBlock = nullptr; 2414 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2415 if (!CondConstant) 2416 return false; 2417 } else { 2418 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2419 ContBlock = createBasicBlock("omp.precond.end"); 2420 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2421 getProfileCount(&S)); 2422 EmitBlock(ThenBlock); 2423 incrementProfileCounter(&S); 2424 } 2425 2426 RunCleanupsScope DoacrossCleanupScope(*this); 2427 bool Ordered = false; 2428 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2429 if (OrderedClause->getNumForLoops()) 2430 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2431 else 2432 Ordered = true; 2433 } 2434 2435 llvm::DenseSet<const Expr *> EmittedFinals; 2436 emitAlignedClause(*this, S); 2437 bool HasLinears = EmitOMPLinearClauseInit(S); 2438 // Emit helper vars inits. 2439 2440 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2441 LValue LB = Bounds.first; 2442 LValue UB = Bounds.second; 2443 LValue ST = 2444 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2445 LValue IL = 2446 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2447 2448 // Emit 'then' code. 2449 { 2450 OMPPrivateScope LoopScope(*this); 2451 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2452 // Emit implicit barrier to synchronize threads and avoid data races on 2453 // initialization of firstprivate variables and post-update of 2454 // lastprivate variables. 2455 CGM.getOpenMPRuntime().emitBarrierCall( 2456 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2457 /*ForceSimpleCall=*/true); 2458 } 2459 EmitOMPPrivateClause(S, LoopScope); 2460 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2461 EmitOMPReductionClauseInit(S, LoopScope); 2462 EmitOMPPrivateLoopCounters(S, LoopScope); 2463 EmitOMPLinearClause(S, LoopScope); 2464 (void)LoopScope.Privatize(); 2465 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2466 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2467 2468 // Detect the loop schedule kind and chunk. 2469 const Expr *ChunkExpr = nullptr; 2470 OpenMPScheduleTy ScheduleKind; 2471 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2472 ScheduleKind.Schedule = C->getScheduleKind(); 2473 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2474 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2475 ChunkExpr = C->getChunkSize(); 2476 } else { 2477 // Default behaviour for schedule clause. 2478 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2479 *this, S, ScheduleKind.Schedule, ChunkExpr); 2480 } 2481 bool HasChunkSizeOne = false; 2482 llvm::Value *Chunk = nullptr; 2483 if (ChunkExpr) { 2484 Chunk = EmitScalarExpr(ChunkExpr); 2485 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2486 S.getIterationVariable()->getType(), 2487 S.getBeginLoc()); 2488 Expr::EvalResult Result; 2489 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2490 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2491 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2492 } 2493 } 2494 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2495 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2496 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2497 // If the static schedule kind is specified or if the ordered clause is 2498 // specified, and if no monotonic modifier is specified, the effect will 2499 // be as if the monotonic modifier was specified. 2500 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2501 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2502 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2503 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2504 /* Chunked */ Chunk != nullptr) || 2505 StaticChunkedOne) && 2506 !Ordered) { 2507 JumpDest LoopExit = 2508 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2509 emitCommonSimdLoop( 2510 *this, S, 2511 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2512 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2513 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2514 }, 2515 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 2516 &S, ScheduleKind, LoopExit, 2517 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2518 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2519 // When no chunk_size is specified, the iteration space is divided 2520 // into chunks that are approximately equal in size, and at most 2521 // one chunk is distributed to each thread. Note that the size of 2522 // the chunks is unspecified in this case. 2523 CGOpenMPRuntime::StaticRTInput StaticInit( 2524 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2525 UB.getAddress(), ST.getAddress(), 2526 StaticChunkedOne ? Chunk : nullptr); 2527 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2528 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 2529 StaticInit); 2530 // UB = min(UB, GlobalUB); 2531 if (!StaticChunkedOne) 2532 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 2533 // IV = LB; 2534 CGF.EmitIgnoredExpr(S.getInit()); 2535 // For unchunked static schedule generate: 2536 // 2537 // while (idx <= UB) { 2538 // BODY; 2539 // ++idx; 2540 // } 2541 // 2542 // For static schedule with chunk one: 2543 // 2544 // while (IV <= PrevUB) { 2545 // BODY; 2546 // IV += ST; 2547 // } 2548 CGF.EmitOMPInnerLoop( 2549 S, LoopScope.requiresCleanups(), 2550 StaticChunkedOne ? S.getCombinedParForInDistCond() 2551 : S.getCond(), 2552 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2553 [&S, LoopExit](CodeGenFunction &CGF) { 2554 CGF.EmitOMPLoopBody(S, LoopExit); 2555 CGF.EmitStopPoint(&S); 2556 }, 2557 [](CodeGenFunction &) {}); 2558 }); 2559 EmitBlock(LoopExit.getBlock()); 2560 // Tell the runtime we are done. 2561 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2562 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2563 S.getDirectiveKind()); 2564 }; 2565 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2566 } else { 2567 const bool IsMonotonic = 2568 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2569 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2570 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2571 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2572 // Emit the outer loop, which requests its work chunk [LB..UB] from 2573 // runtime and runs the inner loop to process it. 2574 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2575 ST.getAddress(), IL.getAddress(), 2576 Chunk, EUB); 2577 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2578 LoopArguments, CGDispatchBounds); 2579 } 2580 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2581 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2582 return CGF.Builder.CreateIsNotNull( 2583 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2584 }); 2585 } 2586 EmitOMPReductionClauseFinal( 2587 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2588 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2589 : /*Parallel only*/ OMPD_parallel); 2590 // Emit post-update of the reduction variables if IsLastIter != 0. 2591 emitPostUpdateForReductionClause( 2592 *this, S, [IL, &S](CodeGenFunction &CGF) { 2593 return CGF.Builder.CreateIsNotNull( 2594 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2595 }); 2596 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2597 if (HasLastprivateClause) 2598 EmitOMPLastprivateClauseFinal( 2599 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2600 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2601 } 2602 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2603 return CGF.Builder.CreateIsNotNull( 2604 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2605 }); 2606 DoacrossCleanupScope.ForceCleanup(); 2607 // We're now done with the loop, so jump to the continuation block. 2608 if (ContBlock) { 2609 EmitBranch(ContBlock); 2610 EmitBlock(ContBlock, /*IsFinished=*/true); 2611 } 2612 } 2613 return HasLastprivateClause; 2614 } 2615 2616 /// The following two functions generate expressions for the loop lower 2617 /// and upper bounds in case of static and dynamic (dispatch) schedule 2618 /// of the associated 'for' or 'distribute' loop. 2619 static std::pair<LValue, LValue> 2620 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2621 const auto &LS = cast<OMPLoopDirective>(S); 2622 LValue LB = 2623 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2624 LValue UB = 2625 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2626 return {LB, UB}; 2627 } 2628 2629 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2630 /// consider the lower and upper bound expressions generated by the 2631 /// worksharing loop support, but we use 0 and the iteration space size as 2632 /// constants 2633 static std::pair<llvm::Value *, llvm::Value *> 2634 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2635 Address LB, Address UB) { 2636 const auto &LS = cast<OMPLoopDirective>(S); 2637 const Expr *IVExpr = LS.getIterationVariable(); 2638 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2639 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2640 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2641 return {LBVal, UBVal}; 2642 } 2643 2644 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2645 bool HasLastprivates = false; 2646 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2647 PrePostActionTy &) { 2648 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2649 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2650 emitForLoopBounds, 2651 emitDispatchForLoopBounds); 2652 }; 2653 { 2654 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2655 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2656 S.hasCancel()); 2657 } 2658 2659 // Emit an implicit barrier at the end. 2660 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2661 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2662 } 2663 2664 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2665 bool HasLastprivates = false; 2666 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2667 PrePostActionTy &) { 2668 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2669 emitForLoopBounds, 2670 emitDispatchForLoopBounds); 2671 }; 2672 { 2673 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2674 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2675 } 2676 2677 // Emit an implicit barrier at the end. 2678 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2679 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2680 } 2681 2682 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2683 const Twine &Name, 2684 llvm::Value *Init = nullptr) { 2685 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2686 if (Init) 2687 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2688 return LVal; 2689 } 2690 2691 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2692 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2693 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2694 bool HasLastprivates = false; 2695 auto &&CodeGen = [&S, CapturedStmt, CS, 2696 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2697 ASTContext &C = CGF.getContext(); 2698 QualType KmpInt32Ty = 2699 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2700 // Emit helper vars inits. 2701 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2702 CGF.Builder.getInt32(0)); 2703 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2704 ? CGF.Builder.getInt32(CS->size() - 1) 2705 : CGF.Builder.getInt32(0); 2706 LValue UB = 2707 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2708 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2709 CGF.Builder.getInt32(1)); 2710 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2711 CGF.Builder.getInt32(0)); 2712 // Loop counter. 2713 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2714 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2715 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2716 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2717 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2718 // Generate condition for loop. 2719 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2720 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2721 // Increment for loop counter. 2722 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2723 S.getBeginLoc(), true); 2724 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2725 // Iterate through all sections and emit a switch construct: 2726 // switch (IV) { 2727 // case 0: 2728 // <SectionStmt[0]>; 2729 // break; 2730 // ... 2731 // case <NumSection> - 1: 2732 // <SectionStmt[<NumSection> - 1]>; 2733 // break; 2734 // } 2735 // .omp.sections.exit: 2736 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2737 llvm::SwitchInst *SwitchStmt = 2738 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2739 ExitBB, CS == nullptr ? 1 : CS->size()); 2740 if (CS) { 2741 unsigned CaseNumber = 0; 2742 for (const Stmt *SubStmt : CS->children()) { 2743 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2744 CGF.EmitBlock(CaseBB); 2745 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2746 CGF.EmitStmt(SubStmt); 2747 CGF.EmitBranch(ExitBB); 2748 ++CaseNumber; 2749 } 2750 } else { 2751 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2752 CGF.EmitBlock(CaseBB); 2753 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2754 CGF.EmitStmt(CapturedStmt); 2755 CGF.EmitBranch(ExitBB); 2756 } 2757 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2758 }; 2759 2760 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2761 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2762 // Emit implicit barrier to synchronize threads and avoid data races on 2763 // initialization of firstprivate variables and post-update of lastprivate 2764 // variables. 2765 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2766 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2767 /*ForceSimpleCall=*/true); 2768 } 2769 CGF.EmitOMPPrivateClause(S, LoopScope); 2770 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2771 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2772 (void)LoopScope.Privatize(); 2773 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2774 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2775 2776 // Emit static non-chunked loop. 2777 OpenMPScheduleTy ScheduleKind; 2778 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2779 CGOpenMPRuntime::StaticRTInput StaticInit( 2780 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2781 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2782 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2783 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2784 // UB = min(UB, GlobalUB); 2785 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2786 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2787 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2788 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2789 // IV = LB; 2790 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2791 // while (idx <= UB) { BODY; ++idx; } 2792 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2793 [](CodeGenFunction &) {}); 2794 // Tell the runtime we are done. 2795 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2796 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2797 S.getDirectiveKind()); 2798 }; 2799 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2800 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2801 // Emit post-update of the reduction variables if IsLastIter != 0. 2802 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2803 return CGF.Builder.CreateIsNotNull( 2804 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2805 }); 2806 2807 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2808 if (HasLastprivates) 2809 CGF.EmitOMPLastprivateClauseFinal( 2810 S, /*NoFinals=*/false, 2811 CGF.Builder.CreateIsNotNull( 2812 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2813 }; 2814 2815 bool HasCancel = false; 2816 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2817 HasCancel = OSD->hasCancel(); 2818 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2819 HasCancel = OPSD->hasCancel(); 2820 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2821 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2822 HasCancel); 2823 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2824 // clause. Otherwise the barrier will be generated by the codegen for the 2825 // directive. 2826 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2827 // Emit implicit barrier to synchronize threads and avoid data races on 2828 // initialization of firstprivate variables. 2829 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2830 OMPD_unknown); 2831 } 2832 } 2833 2834 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2835 { 2836 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2837 EmitSections(S); 2838 } 2839 // Emit an implicit barrier at the end. 2840 if (!S.getSingleClause<OMPNowaitClause>()) { 2841 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2842 OMPD_sections); 2843 } 2844 } 2845 2846 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2847 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2848 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2849 }; 2850 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2851 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2852 S.hasCancel()); 2853 } 2854 2855 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2856 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2857 llvm::SmallVector<const Expr *, 8> DestExprs; 2858 llvm::SmallVector<const Expr *, 8> SrcExprs; 2859 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2860 // Check if there are any 'copyprivate' clauses associated with this 2861 // 'single' construct. 2862 // Build a list of copyprivate variables along with helper expressions 2863 // (<source>, <destination>, <destination>=<source> expressions) 2864 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2865 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2866 DestExprs.append(C->destination_exprs().begin(), 2867 C->destination_exprs().end()); 2868 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2869 AssignmentOps.append(C->assignment_ops().begin(), 2870 C->assignment_ops().end()); 2871 } 2872 // Emit code for 'single' region along with 'copyprivate' clauses 2873 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2874 Action.Enter(CGF); 2875 OMPPrivateScope SingleScope(CGF); 2876 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2877 CGF.EmitOMPPrivateClause(S, SingleScope); 2878 (void)SingleScope.Privatize(); 2879 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2880 }; 2881 { 2882 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2883 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2884 CopyprivateVars, DestExprs, 2885 SrcExprs, AssignmentOps); 2886 } 2887 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2888 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2889 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2890 CGM.getOpenMPRuntime().emitBarrierCall( 2891 *this, S.getBeginLoc(), 2892 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2893 } 2894 } 2895 2896 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2897 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2898 Action.Enter(CGF); 2899 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2900 }; 2901 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2902 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2903 } 2904 2905 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2906 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2907 Action.Enter(CGF); 2908 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2909 }; 2910 const Expr *Hint = nullptr; 2911 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2912 Hint = HintClause->getHint(); 2913 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2914 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2915 S.getDirectiveName().getAsString(), 2916 CodeGen, S.getBeginLoc(), Hint); 2917 } 2918 2919 void CodeGenFunction::EmitOMPParallelForDirective( 2920 const OMPParallelForDirective &S) { 2921 // Emit directive as a combined directive that consists of two implicit 2922 // directives: 'parallel' with 'for' directive. 2923 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2924 Action.Enter(CGF); 2925 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2926 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2927 emitDispatchForLoopBounds); 2928 }; 2929 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2930 emitEmptyBoundParameters); 2931 } 2932 2933 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2934 const OMPParallelForSimdDirective &S) { 2935 // Emit directive as a combined directive that consists of two implicit 2936 // directives: 'parallel' with 'for' directive. 2937 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2938 Action.Enter(CGF); 2939 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2940 emitDispatchForLoopBounds); 2941 }; 2942 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2943 emitEmptyBoundParameters); 2944 } 2945 2946 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2947 const OMPParallelSectionsDirective &S) { 2948 // Emit directive as a combined directive that consists of two implicit 2949 // directives: 'parallel' with 'sections' directive. 2950 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2951 Action.Enter(CGF); 2952 CGF.EmitSections(S); 2953 }; 2954 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2955 emitEmptyBoundParameters); 2956 } 2957 2958 void CodeGenFunction::EmitOMPTaskBasedDirective( 2959 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2960 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2961 OMPTaskDataTy &Data) { 2962 // Emit outlined function for task construct. 2963 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2964 auto I = CS->getCapturedDecl()->param_begin(); 2965 auto PartId = std::next(I); 2966 auto TaskT = std::next(I, 4); 2967 // Check if the task is final 2968 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2969 // If the condition constant folds and can be elided, try to avoid emitting 2970 // the condition and the dead arm of the if/else. 2971 const Expr *Cond = Clause->getCondition(); 2972 bool CondConstant; 2973 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2974 Data.Final.setInt(CondConstant); 2975 else 2976 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2977 } else { 2978 // By default the task is not final. 2979 Data.Final.setInt(/*IntVal=*/false); 2980 } 2981 // Check if the task has 'priority' clause. 2982 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2983 const Expr *Prio = Clause->getPriority(); 2984 Data.Priority.setInt(/*IntVal=*/true); 2985 Data.Priority.setPointer(EmitScalarConversion( 2986 EmitScalarExpr(Prio), Prio->getType(), 2987 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2988 Prio->getExprLoc())); 2989 } 2990 // The first function argument for tasks is a thread id, the second one is a 2991 // part id (0 for tied tasks, >=0 for untied task). 2992 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2993 // Get list of private variables. 2994 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2995 auto IRef = C->varlist_begin(); 2996 for (const Expr *IInit : C->private_copies()) { 2997 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2998 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2999 Data.PrivateVars.push_back(*IRef); 3000 Data.PrivateCopies.push_back(IInit); 3001 } 3002 ++IRef; 3003 } 3004 } 3005 EmittedAsPrivate.clear(); 3006 // Get list of firstprivate variables. 3007 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3008 auto IRef = C->varlist_begin(); 3009 auto IElemInitRef = C->inits().begin(); 3010 for (const Expr *IInit : C->private_copies()) { 3011 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3012 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3013 Data.FirstprivateVars.push_back(*IRef); 3014 Data.FirstprivateCopies.push_back(IInit); 3015 Data.FirstprivateInits.push_back(*IElemInitRef); 3016 } 3017 ++IRef; 3018 ++IElemInitRef; 3019 } 3020 } 3021 // Get list of lastprivate variables (for taskloops). 3022 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3023 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3024 auto IRef = C->varlist_begin(); 3025 auto ID = C->destination_exprs().begin(); 3026 for (const Expr *IInit : C->private_copies()) { 3027 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3028 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3029 Data.LastprivateVars.push_back(*IRef); 3030 Data.LastprivateCopies.push_back(IInit); 3031 } 3032 LastprivateDstsOrigs.insert( 3033 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3034 cast<DeclRefExpr>(*IRef)}); 3035 ++IRef; 3036 ++ID; 3037 } 3038 } 3039 SmallVector<const Expr *, 4> LHSs; 3040 SmallVector<const Expr *, 4> RHSs; 3041 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3042 auto IPriv = C->privates().begin(); 3043 auto IRed = C->reduction_ops().begin(); 3044 auto ILHS = C->lhs_exprs().begin(); 3045 auto IRHS = C->rhs_exprs().begin(); 3046 for (const Expr *Ref : C->varlists()) { 3047 Data.ReductionVars.emplace_back(Ref); 3048 Data.ReductionCopies.emplace_back(*IPriv); 3049 Data.ReductionOps.emplace_back(*IRed); 3050 LHSs.emplace_back(*ILHS); 3051 RHSs.emplace_back(*IRHS); 3052 std::advance(IPriv, 1); 3053 std::advance(IRed, 1); 3054 std::advance(ILHS, 1); 3055 std::advance(IRHS, 1); 3056 } 3057 } 3058 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3059 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3060 // Build list of dependences. 3061 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3062 for (const Expr *IRef : C->varlists()) 3063 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3064 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3065 CapturedRegion](CodeGenFunction &CGF, 3066 PrePostActionTy &Action) { 3067 // Set proper addresses for generated private copies. 3068 OMPPrivateScope Scope(CGF); 3069 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3070 !Data.LastprivateVars.empty()) { 3071 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3072 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3073 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3074 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3075 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3076 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3077 CS->getCapturedDecl()->getParam(PrivatesParam))); 3078 // Map privates. 3079 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3080 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3081 CallArgs.push_back(PrivatesPtr); 3082 for (const Expr *E : Data.PrivateVars) { 3083 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3084 Address PrivatePtr = CGF.CreateMemTemp( 3085 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3086 PrivatePtrs.emplace_back(VD, PrivatePtr); 3087 CallArgs.push_back(PrivatePtr.getPointer()); 3088 } 3089 for (const Expr *E : Data.FirstprivateVars) { 3090 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3091 Address PrivatePtr = 3092 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3093 ".firstpriv.ptr.addr"); 3094 PrivatePtrs.emplace_back(VD, PrivatePtr); 3095 CallArgs.push_back(PrivatePtr.getPointer()); 3096 } 3097 for (const Expr *E : Data.LastprivateVars) { 3098 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3099 Address PrivatePtr = 3100 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3101 ".lastpriv.ptr.addr"); 3102 PrivatePtrs.emplace_back(VD, PrivatePtr); 3103 CallArgs.push_back(PrivatePtr.getPointer()); 3104 } 3105 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3106 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3107 for (const auto &Pair : LastprivateDstsOrigs) { 3108 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3109 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3110 /*RefersToEnclosingVariableOrCapture=*/ 3111 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3112 Pair.second->getType(), VK_LValue, 3113 Pair.second->getExprLoc()); 3114 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3115 return CGF.EmitLValue(&DRE).getAddress(); 3116 }); 3117 } 3118 for (const auto &Pair : PrivatePtrs) { 3119 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3120 CGF.getContext().getDeclAlign(Pair.first)); 3121 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3122 } 3123 } 3124 if (Data.Reductions) { 3125 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3126 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 3127 Data.ReductionOps); 3128 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3129 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3130 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3131 RedCG.emitSharedLValue(CGF, Cnt); 3132 RedCG.emitAggregateType(CGF, Cnt); 3133 // FIXME: This must removed once the runtime library is fixed. 3134 // Emit required threadprivate variables for 3135 // initializer/combiner/finalizer. 3136 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3137 RedCG, Cnt); 3138 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3139 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3140 Replacement = 3141 Address(CGF.EmitScalarConversion( 3142 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3143 CGF.getContext().getPointerType( 3144 Data.ReductionCopies[Cnt]->getType()), 3145 Data.ReductionCopies[Cnt]->getExprLoc()), 3146 Replacement.getAlignment()); 3147 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3148 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3149 [Replacement]() { return Replacement; }); 3150 } 3151 } 3152 // Privatize all private variables except for in_reduction items. 3153 (void)Scope.Privatize(); 3154 SmallVector<const Expr *, 4> InRedVars; 3155 SmallVector<const Expr *, 4> InRedPrivs; 3156 SmallVector<const Expr *, 4> InRedOps; 3157 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3158 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3159 auto IPriv = C->privates().begin(); 3160 auto IRed = C->reduction_ops().begin(); 3161 auto ITD = C->taskgroup_descriptors().begin(); 3162 for (const Expr *Ref : C->varlists()) { 3163 InRedVars.emplace_back(Ref); 3164 InRedPrivs.emplace_back(*IPriv); 3165 InRedOps.emplace_back(*IRed); 3166 TaskgroupDescriptors.emplace_back(*ITD); 3167 std::advance(IPriv, 1); 3168 std::advance(IRed, 1); 3169 std::advance(ITD, 1); 3170 } 3171 } 3172 // Privatize in_reduction items here, because taskgroup descriptors must be 3173 // privatized earlier. 3174 OMPPrivateScope InRedScope(CGF); 3175 if (!InRedVars.empty()) { 3176 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3177 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3178 RedCG.emitSharedLValue(CGF, Cnt); 3179 RedCG.emitAggregateType(CGF, Cnt); 3180 // The taskgroup descriptor variable is always implicit firstprivate and 3181 // privatized already during processing of the firstprivates. 3182 // FIXME: This must removed once the runtime library is fixed. 3183 // Emit required threadprivate variables for 3184 // initializer/combiner/finalizer. 3185 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3186 RedCG, Cnt); 3187 llvm::Value *ReductionsPtr = 3188 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3189 TaskgroupDescriptors[Cnt]->getExprLoc()); 3190 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3191 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3192 Replacement = Address( 3193 CGF.EmitScalarConversion( 3194 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3195 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3196 InRedPrivs[Cnt]->getExprLoc()), 3197 Replacement.getAlignment()); 3198 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3199 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3200 [Replacement]() { return Replacement; }); 3201 } 3202 } 3203 (void)InRedScope.Privatize(); 3204 3205 Action.Enter(CGF); 3206 BodyGen(CGF); 3207 }; 3208 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3209 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3210 Data.NumberOfParts); 3211 OMPLexicalScope Scope(*this, S, llvm::None, 3212 !isOpenMPParallelDirective(S.getDirectiveKind())); 3213 TaskGen(*this, OutlinedFn, Data); 3214 } 3215 3216 static ImplicitParamDecl * 3217 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3218 QualType Ty, CapturedDecl *CD, 3219 SourceLocation Loc) { 3220 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3221 ImplicitParamDecl::Other); 3222 auto *OrigRef = DeclRefExpr::Create( 3223 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3224 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3225 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3226 ImplicitParamDecl::Other); 3227 auto *PrivateRef = DeclRefExpr::Create( 3228 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3229 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3230 QualType ElemType = C.getBaseElementType(Ty); 3231 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3232 ImplicitParamDecl::Other); 3233 auto *InitRef = DeclRefExpr::Create( 3234 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3235 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3236 PrivateVD->setInitStyle(VarDecl::CInit); 3237 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3238 InitRef, /*BasePath=*/nullptr, 3239 VK_RValue)); 3240 Data.FirstprivateVars.emplace_back(OrigRef); 3241 Data.FirstprivateCopies.emplace_back(PrivateRef); 3242 Data.FirstprivateInits.emplace_back(InitRef); 3243 return OrigVD; 3244 } 3245 3246 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3247 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3248 OMPTargetDataInfo &InputInfo) { 3249 // Emit outlined function for task construct. 3250 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3251 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3252 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3253 auto I = CS->getCapturedDecl()->param_begin(); 3254 auto PartId = std::next(I); 3255 auto TaskT = std::next(I, 4); 3256 OMPTaskDataTy Data; 3257 // The task is not final. 3258 Data.Final.setInt(/*IntVal=*/false); 3259 // Get list of firstprivate variables. 3260 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3261 auto IRef = C->varlist_begin(); 3262 auto IElemInitRef = C->inits().begin(); 3263 for (auto *IInit : C->private_copies()) { 3264 Data.FirstprivateVars.push_back(*IRef); 3265 Data.FirstprivateCopies.push_back(IInit); 3266 Data.FirstprivateInits.push_back(*IElemInitRef); 3267 ++IRef; 3268 ++IElemInitRef; 3269 } 3270 } 3271 OMPPrivateScope TargetScope(*this); 3272 VarDecl *BPVD = nullptr; 3273 VarDecl *PVD = nullptr; 3274 VarDecl *SVD = nullptr; 3275 if (InputInfo.NumberOfTargetItems > 0) { 3276 auto *CD = CapturedDecl::Create( 3277 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3278 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3279 QualType BaseAndPointersType = getContext().getConstantArrayType( 3280 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 3281 /*IndexTypeQuals=*/0); 3282 BPVD = createImplicitFirstprivateForType( 3283 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3284 PVD = createImplicitFirstprivateForType( 3285 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3286 QualType SizesType = getContext().getConstantArrayType( 3287 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3288 ArrSize, nullptr, ArrayType::Normal, 3289 /*IndexTypeQuals=*/0); 3290 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3291 S.getBeginLoc()); 3292 TargetScope.addPrivate( 3293 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3294 TargetScope.addPrivate(PVD, 3295 [&InputInfo]() { return InputInfo.PointersArray; }); 3296 TargetScope.addPrivate(SVD, 3297 [&InputInfo]() { return InputInfo.SizesArray; }); 3298 } 3299 (void)TargetScope.Privatize(); 3300 // Build list of dependences. 3301 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3302 for (const Expr *IRef : C->varlists()) 3303 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3304 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3305 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3306 // Set proper addresses for generated private copies. 3307 OMPPrivateScope Scope(CGF); 3308 if (!Data.FirstprivateVars.empty()) { 3309 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3310 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3311 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3312 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3313 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3314 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3315 CS->getCapturedDecl()->getParam(PrivatesParam))); 3316 // Map privates. 3317 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3318 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3319 CallArgs.push_back(PrivatesPtr); 3320 for (const Expr *E : Data.FirstprivateVars) { 3321 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3322 Address PrivatePtr = 3323 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3324 ".firstpriv.ptr.addr"); 3325 PrivatePtrs.emplace_back(VD, PrivatePtr); 3326 CallArgs.push_back(PrivatePtr.getPointer()); 3327 } 3328 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3329 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3330 for (const auto &Pair : PrivatePtrs) { 3331 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3332 CGF.getContext().getDeclAlign(Pair.first)); 3333 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3334 } 3335 } 3336 // Privatize all private variables except for in_reduction items. 3337 (void)Scope.Privatize(); 3338 if (InputInfo.NumberOfTargetItems > 0) { 3339 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3340 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3341 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3342 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3343 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3344 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3345 } 3346 3347 Action.Enter(CGF); 3348 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3349 BodyGen(CGF); 3350 }; 3351 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3352 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3353 Data.NumberOfParts); 3354 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3355 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3356 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3357 SourceLocation()); 3358 3359 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3360 SharedsTy, CapturedStruct, &IfCond, Data); 3361 } 3362 3363 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3364 // Emit outlined function for task construct. 3365 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3366 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3367 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3368 const Expr *IfCond = nullptr; 3369 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3370 if (C->getNameModifier() == OMPD_unknown || 3371 C->getNameModifier() == OMPD_task) { 3372 IfCond = C->getCondition(); 3373 break; 3374 } 3375 } 3376 3377 OMPTaskDataTy Data; 3378 // Check if we should emit tied or untied task. 3379 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3380 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3381 CGF.EmitStmt(CS->getCapturedStmt()); 3382 }; 3383 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3384 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3385 const OMPTaskDataTy &Data) { 3386 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3387 SharedsTy, CapturedStruct, IfCond, 3388 Data); 3389 }; 3390 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3391 } 3392 3393 void CodeGenFunction::EmitOMPTaskyieldDirective( 3394 const OMPTaskyieldDirective &S) { 3395 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3396 } 3397 3398 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3399 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3400 } 3401 3402 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3403 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3404 } 3405 3406 void CodeGenFunction::EmitOMPTaskgroupDirective( 3407 const OMPTaskgroupDirective &S) { 3408 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3409 Action.Enter(CGF); 3410 if (const Expr *E = S.getReductionRef()) { 3411 SmallVector<const Expr *, 4> LHSs; 3412 SmallVector<const Expr *, 4> RHSs; 3413 OMPTaskDataTy Data; 3414 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3415 auto IPriv = C->privates().begin(); 3416 auto IRed = C->reduction_ops().begin(); 3417 auto ILHS = C->lhs_exprs().begin(); 3418 auto IRHS = C->rhs_exprs().begin(); 3419 for (const Expr *Ref : C->varlists()) { 3420 Data.ReductionVars.emplace_back(Ref); 3421 Data.ReductionCopies.emplace_back(*IPriv); 3422 Data.ReductionOps.emplace_back(*IRed); 3423 LHSs.emplace_back(*ILHS); 3424 RHSs.emplace_back(*IRHS); 3425 std::advance(IPriv, 1); 3426 std::advance(IRed, 1); 3427 std::advance(ILHS, 1); 3428 std::advance(IRHS, 1); 3429 } 3430 } 3431 llvm::Value *ReductionDesc = 3432 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3433 LHSs, RHSs, Data); 3434 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3435 CGF.EmitVarDecl(*VD); 3436 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3437 /*Volatile=*/false, E->getType()); 3438 } 3439 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3440 }; 3441 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3442 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3443 } 3444 3445 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3446 CGM.getOpenMPRuntime().emitFlush( 3447 *this, 3448 [&S]() -> ArrayRef<const Expr *> { 3449 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3450 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3451 FlushClause->varlist_end()); 3452 return llvm::None; 3453 }(), 3454 S.getBeginLoc()); 3455 } 3456 3457 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3458 const CodeGenLoopTy &CodeGenLoop, 3459 Expr *IncExpr) { 3460 // Emit the loop iteration variable. 3461 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3462 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3463 EmitVarDecl(*IVDecl); 3464 3465 // Emit the iterations count variable. 3466 // If it is not a variable, Sema decided to calculate iterations count on each 3467 // iteration (e.g., it is foldable into a constant). 3468 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3469 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3470 // Emit calculation of the iterations count. 3471 EmitIgnoredExpr(S.getCalcLastIteration()); 3472 } 3473 3474 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3475 3476 bool HasLastprivateClause = false; 3477 // Check pre-condition. 3478 { 3479 OMPLoopScope PreInitScope(*this, S); 3480 // Skip the entire loop if we don't meet the precondition. 3481 // If the condition constant folds and can be elided, avoid emitting the 3482 // whole loop. 3483 bool CondConstant; 3484 llvm::BasicBlock *ContBlock = nullptr; 3485 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3486 if (!CondConstant) 3487 return; 3488 } else { 3489 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3490 ContBlock = createBasicBlock("omp.precond.end"); 3491 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3492 getProfileCount(&S)); 3493 EmitBlock(ThenBlock); 3494 incrementProfileCounter(&S); 3495 } 3496 3497 emitAlignedClause(*this, S); 3498 // Emit 'then' code. 3499 { 3500 // Emit helper vars inits. 3501 3502 LValue LB = EmitOMPHelperVar( 3503 *this, cast<DeclRefExpr>( 3504 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3505 ? S.getCombinedLowerBoundVariable() 3506 : S.getLowerBoundVariable()))); 3507 LValue UB = EmitOMPHelperVar( 3508 *this, cast<DeclRefExpr>( 3509 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3510 ? S.getCombinedUpperBoundVariable() 3511 : S.getUpperBoundVariable()))); 3512 LValue ST = 3513 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3514 LValue IL = 3515 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3516 3517 OMPPrivateScope LoopScope(*this); 3518 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3519 // Emit implicit barrier to synchronize threads and avoid data races 3520 // on initialization of firstprivate variables and post-update of 3521 // lastprivate variables. 3522 CGM.getOpenMPRuntime().emitBarrierCall( 3523 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3524 /*ForceSimpleCall=*/true); 3525 } 3526 EmitOMPPrivateClause(S, LoopScope); 3527 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3528 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3529 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3530 EmitOMPReductionClauseInit(S, LoopScope); 3531 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3532 EmitOMPPrivateLoopCounters(S, LoopScope); 3533 (void)LoopScope.Privatize(); 3534 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3535 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3536 3537 // Detect the distribute schedule kind and chunk. 3538 llvm::Value *Chunk = nullptr; 3539 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3540 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3541 ScheduleKind = C->getDistScheduleKind(); 3542 if (const Expr *Ch = C->getChunkSize()) { 3543 Chunk = EmitScalarExpr(Ch); 3544 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3545 S.getIterationVariable()->getType(), 3546 S.getBeginLoc()); 3547 } 3548 } else { 3549 // Default behaviour for dist_schedule clause. 3550 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3551 *this, S, ScheduleKind, Chunk); 3552 } 3553 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3554 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3555 3556 // OpenMP [2.10.8, distribute Construct, Description] 3557 // If dist_schedule is specified, kind must be static. If specified, 3558 // iterations are divided into chunks of size chunk_size, chunks are 3559 // assigned to the teams of the league in a round-robin fashion in the 3560 // order of the team number. When no chunk_size is specified, the 3561 // iteration space is divided into chunks that are approximately equal 3562 // in size, and at most one chunk is distributed to each team of the 3563 // league. The size of the chunks is unspecified in this case. 3564 bool StaticChunked = RT.isStaticChunked( 3565 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3566 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3567 if (RT.isStaticNonchunked(ScheduleKind, 3568 /* Chunked */ Chunk != nullptr) || 3569 StaticChunked) { 3570 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3571 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3572 CGOpenMPRuntime::StaticRTInput StaticInit( 3573 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3574 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3575 StaticChunked ? Chunk : nullptr); 3576 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3577 StaticInit); 3578 JumpDest LoopExit = 3579 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3580 // UB = min(UB, GlobalUB); 3581 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3582 ? S.getCombinedEnsureUpperBound() 3583 : S.getEnsureUpperBound()); 3584 // IV = LB; 3585 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3586 ? S.getCombinedInit() 3587 : S.getInit()); 3588 3589 const Expr *Cond = 3590 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3591 ? S.getCombinedCond() 3592 : S.getCond(); 3593 3594 if (StaticChunked) 3595 Cond = S.getCombinedDistCond(); 3596 3597 // For static unchunked schedules generate: 3598 // 3599 // 1. For distribute alone, codegen 3600 // while (idx <= UB) { 3601 // BODY; 3602 // ++idx; 3603 // } 3604 // 3605 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3606 // while (idx <= UB) { 3607 // <CodeGen rest of pragma>(LB, UB); 3608 // idx += ST; 3609 // } 3610 // 3611 // For static chunk one schedule generate: 3612 // 3613 // while (IV <= GlobalUB) { 3614 // <CodeGen rest of pragma>(LB, UB); 3615 // LB += ST; 3616 // UB += ST; 3617 // UB = min(UB, GlobalUB); 3618 // IV = LB; 3619 // } 3620 // 3621 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3622 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3623 CodeGenLoop(CGF, S, LoopExit); 3624 }, 3625 [&S, StaticChunked](CodeGenFunction &CGF) { 3626 if (StaticChunked) { 3627 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3628 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3629 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3630 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3631 } 3632 }); 3633 EmitBlock(LoopExit.getBlock()); 3634 // Tell the runtime we are done. 3635 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3636 } else { 3637 // Emit the outer loop, which requests its work chunk [LB..UB] from 3638 // runtime and runs the inner loop to process it. 3639 const OMPLoopArguments LoopArguments = { 3640 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3641 Chunk}; 3642 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3643 CodeGenLoop); 3644 } 3645 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3646 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3647 return CGF.Builder.CreateIsNotNull( 3648 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3649 }); 3650 } 3651 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3652 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3653 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3654 EmitOMPReductionClauseFinal(S, OMPD_simd); 3655 // Emit post-update of the reduction variables if IsLastIter != 0. 3656 emitPostUpdateForReductionClause( 3657 *this, S, [IL, &S](CodeGenFunction &CGF) { 3658 return CGF.Builder.CreateIsNotNull( 3659 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3660 }); 3661 } 3662 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3663 if (HasLastprivateClause) { 3664 EmitOMPLastprivateClauseFinal( 3665 S, /*NoFinals=*/false, 3666 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3667 } 3668 } 3669 3670 // We're now done with the loop, so jump to the continuation block. 3671 if (ContBlock) { 3672 EmitBranch(ContBlock); 3673 EmitBlock(ContBlock, true); 3674 } 3675 } 3676 } 3677 3678 void CodeGenFunction::EmitOMPDistributeDirective( 3679 const OMPDistributeDirective &S) { 3680 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3681 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3682 }; 3683 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3684 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3685 } 3686 3687 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3688 const CapturedStmt *S) { 3689 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3690 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3691 CGF.CapturedStmtInfo = &CapStmtInfo; 3692 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3693 Fn->setDoesNotRecurse(); 3694 return Fn; 3695 } 3696 3697 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3698 if (S.hasClausesOfKind<OMPDependClause>()) { 3699 assert(!S.getAssociatedStmt() && 3700 "No associated statement must be in ordered depend construct."); 3701 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3702 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3703 return; 3704 } 3705 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3706 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3707 PrePostActionTy &Action) { 3708 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3709 if (C) { 3710 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3711 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3712 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3713 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3714 OutlinedFn, CapturedVars); 3715 } else { 3716 Action.Enter(CGF); 3717 CGF.EmitStmt(CS->getCapturedStmt()); 3718 } 3719 }; 3720 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3721 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3722 } 3723 3724 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3725 QualType SrcType, QualType DestType, 3726 SourceLocation Loc) { 3727 assert(CGF.hasScalarEvaluationKind(DestType) && 3728 "DestType must have scalar evaluation kind."); 3729 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3730 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3731 DestType, Loc) 3732 : CGF.EmitComplexToScalarConversion( 3733 Val.getComplexVal(), SrcType, DestType, Loc); 3734 } 3735 3736 static CodeGenFunction::ComplexPairTy 3737 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3738 QualType DestType, SourceLocation Loc) { 3739 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3740 "DestType must have complex evaluation kind."); 3741 CodeGenFunction::ComplexPairTy ComplexVal; 3742 if (Val.isScalar()) { 3743 // Convert the input element to the element type of the complex. 3744 QualType DestElementType = 3745 DestType->castAs<ComplexType>()->getElementType(); 3746 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3747 Val.getScalarVal(), SrcType, DestElementType, Loc); 3748 ComplexVal = CodeGenFunction::ComplexPairTy( 3749 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3750 } else { 3751 assert(Val.isComplex() && "Must be a scalar or complex."); 3752 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3753 QualType DestElementType = 3754 DestType->castAs<ComplexType>()->getElementType(); 3755 ComplexVal.first = CGF.EmitScalarConversion( 3756 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3757 ComplexVal.second = CGF.EmitScalarConversion( 3758 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3759 } 3760 return ComplexVal; 3761 } 3762 3763 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3764 LValue LVal, RValue RVal) { 3765 if (LVal.isGlobalReg()) { 3766 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3767 } else { 3768 CGF.EmitAtomicStore(RVal, LVal, 3769 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3770 : llvm::AtomicOrdering::Monotonic, 3771 LVal.isVolatile(), /*isInit=*/false); 3772 } 3773 } 3774 3775 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3776 QualType RValTy, SourceLocation Loc) { 3777 switch (getEvaluationKind(LVal.getType())) { 3778 case TEK_Scalar: 3779 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3780 *this, RVal, RValTy, LVal.getType(), Loc)), 3781 LVal); 3782 break; 3783 case TEK_Complex: 3784 EmitStoreOfComplex( 3785 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3786 /*isInit=*/false); 3787 break; 3788 case TEK_Aggregate: 3789 llvm_unreachable("Must be a scalar or complex."); 3790 } 3791 } 3792 3793 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3794 const Expr *X, const Expr *V, 3795 SourceLocation Loc) { 3796 // v = x; 3797 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3798 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3799 LValue XLValue = CGF.EmitLValue(X); 3800 LValue VLValue = CGF.EmitLValue(V); 3801 RValue Res = XLValue.isGlobalReg() 3802 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3803 : CGF.EmitAtomicLoad( 3804 XLValue, Loc, 3805 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3806 : llvm::AtomicOrdering::Monotonic, 3807 XLValue.isVolatile()); 3808 // OpenMP, 2.12.6, atomic Construct 3809 // Any atomic construct with a seq_cst clause forces the atomically 3810 // performed operation to include an implicit flush operation without a 3811 // list. 3812 if (IsSeqCst) 3813 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3814 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3815 } 3816 3817 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3818 const Expr *X, const Expr *E, 3819 SourceLocation Loc) { 3820 // x = expr; 3821 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3822 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3823 // OpenMP, 2.12.6, atomic Construct 3824 // Any atomic construct with a seq_cst clause forces the atomically 3825 // performed operation to include an implicit flush operation without a 3826 // list. 3827 if (IsSeqCst) 3828 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3829 } 3830 3831 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3832 RValue Update, 3833 BinaryOperatorKind BO, 3834 llvm::AtomicOrdering AO, 3835 bool IsXLHSInRHSPart) { 3836 ASTContext &Context = CGF.getContext(); 3837 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3838 // expression is simple and atomic is allowed for the given type for the 3839 // target platform. 3840 if (BO == BO_Comma || !Update.isScalar() || 3841 !Update.getScalarVal()->getType()->isIntegerTy() || 3842 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3843 (Update.getScalarVal()->getType() != 3844 X.getAddress().getElementType())) || 3845 !X.getAddress().getElementType()->isIntegerTy() || 3846 !Context.getTargetInfo().hasBuiltinAtomic( 3847 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3848 return std::make_pair(false, RValue::get(nullptr)); 3849 3850 llvm::AtomicRMWInst::BinOp RMWOp; 3851 switch (BO) { 3852 case BO_Add: 3853 RMWOp = llvm::AtomicRMWInst::Add; 3854 break; 3855 case BO_Sub: 3856 if (!IsXLHSInRHSPart) 3857 return std::make_pair(false, RValue::get(nullptr)); 3858 RMWOp = llvm::AtomicRMWInst::Sub; 3859 break; 3860 case BO_And: 3861 RMWOp = llvm::AtomicRMWInst::And; 3862 break; 3863 case BO_Or: 3864 RMWOp = llvm::AtomicRMWInst::Or; 3865 break; 3866 case BO_Xor: 3867 RMWOp = llvm::AtomicRMWInst::Xor; 3868 break; 3869 case BO_LT: 3870 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3871 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3872 : llvm::AtomicRMWInst::Max) 3873 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3874 : llvm::AtomicRMWInst::UMax); 3875 break; 3876 case BO_GT: 3877 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3878 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3879 : llvm::AtomicRMWInst::Min) 3880 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3881 : llvm::AtomicRMWInst::UMin); 3882 break; 3883 case BO_Assign: 3884 RMWOp = llvm::AtomicRMWInst::Xchg; 3885 break; 3886 case BO_Mul: 3887 case BO_Div: 3888 case BO_Rem: 3889 case BO_Shl: 3890 case BO_Shr: 3891 case BO_LAnd: 3892 case BO_LOr: 3893 return std::make_pair(false, RValue::get(nullptr)); 3894 case BO_PtrMemD: 3895 case BO_PtrMemI: 3896 case BO_LE: 3897 case BO_GE: 3898 case BO_EQ: 3899 case BO_NE: 3900 case BO_Cmp: 3901 case BO_AddAssign: 3902 case BO_SubAssign: 3903 case BO_AndAssign: 3904 case BO_OrAssign: 3905 case BO_XorAssign: 3906 case BO_MulAssign: 3907 case BO_DivAssign: 3908 case BO_RemAssign: 3909 case BO_ShlAssign: 3910 case BO_ShrAssign: 3911 case BO_Comma: 3912 llvm_unreachable("Unsupported atomic update operation"); 3913 } 3914 llvm::Value *UpdateVal = Update.getScalarVal(); 3915 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3916 UpdateVal = CGF.Builder.CreateIntCast( 3917 IC, X.getAddress().getElementType(), 3918 X.getType()->hasSignedIntegerRepresentation()); 3919 } 3920 llvm::Value *Res = 3921 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3922 return std::make_pair(true, RValue::get(Res)); 3923 } 3924 3925 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3926 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3927 llvm::AtomicOrdering AO, SourceLocation Loc, 3928 const llvm::function_ref<RValue(RValue)> CommonGen) { 3929 // Update expressions are allowed to have the following forms: 3930 // x binop= expr; -> xrval + expr; 3931 // x++, ++x -> xrval + 1; 3932 // x--, --x -> xrval - 1; 3933 // x = x binop expr; -> xrval binop expr 3934 // x = expr Op x; - > expr binop xrval; 3935 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3936 if (!Res.first) { 3937 if (X.isGlobalReg()) { 3938 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3939 // 'xrval'. 3940 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3941 } else { 3942 // Perform compare-and-swap procedure. 3943 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3944 } 3945 } 3946 return Res; 3947 } 3948 3949 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3950 const Expr *X, const Expr *E, 3951 const Expr *UE, bool IsXLHSInRHSPart, 3952 SourceLocation Loc) { 3953 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3954 "Update expr in 'atomic update' must be a binary operator."); 3955 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3956 // Update expressions are allowed to have the following forms: 3957 // x binop= expr; -> xrval + expr; 3958 // x++, ++x -> xrval + 1; 3959 // x--, --x -> xrval - 1; 3960 // x = x binop expr; -> xrval binop expr 3961 // x = expr Op x; - > expr binop xrval; 3962 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3963 LValue XLValue = CGF.EmitLValue(X); 3964 RValue ExprRValue = CGF.EmitAnyExpr(E); 3965 llvm::AtomicOrdering AO = IsSeqCst 3966 ? llvm::AtomicOrdering::SequentiallyConsistent 3967 : llvm::AtomicOrdering::Monotonic; 3968 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3969 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3970 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3971 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3972 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3973 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3974 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3975 return CGF.EmitAnyExpr(UE); 3976 }; 3977 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3978 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3979 // OpenMP, 2.12.6, atomic Construct 3980 // Any atomic construct with a seq_cst clause forces the atomically 3981 // performed operation to include an implicit flush operation without a 3982 // list. 3983 if (IsSeqCst) 3984 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3985 } 3986 3987 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3988 QualType SourceType, QualType ResType, 3989 SourceLocation Loc) { 3990 switch (CGF.getEvaluationKind(ResType)) { 3991 case TEK_Scalar: 3992 return RValue::get( 3993 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3994 case TEK_Complex: { 3995 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3996 return RValue::getComplex(Res.first, Res.second); 3997 } 3998 case TEK_Aggregate: 3999 break; 4000 } 4001 llvm_unreachable("Must be a scalar or complex."); 4002 } 4003 4004 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 4005 bool IsPostfixUpdate, const Expr *V, 4006 const Expr *X, const Expr *E, 4007 const Expr *UE, bool IsXLHSInRHSPart, 4008 SourceLocation Loc) { 4009 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 4010 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 4011 RValue NewVVal; 4012 LValue VLValue = CGF.EmitLValue(V); 4013 LValue XLValue = CGF.EmitLValue(X); 4014 RValue ExprRValue = CGF.EmitAnyExpr(E); 4015 llvm::AtomicOrdering AO = IsSeqCst 4016 ? llvm::AtomicOrdering::SequentiallyConsistent 4017 : llvm::AtomicOrdering::Monotonic; 4018 QualType NewVValType; 4019 if (UE) { 4020 // 'x' is updated with some additional value. 4021 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4022 "Update expr in 'atomic capture' must be a binary operator."); 4023 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4024 // Update expressions are allowed to have the following forms: 4025 // x binop= expr; -> xrval + expr; 4026 // x++, ++x -> xrval + 1; 4027 // x--, --x -> xrval - 1; 4028 // x = x binop expr; -> xrval binop expr 4029 // x = expr Op x; - > expr binop xrval; 4030 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4031 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4032 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4033 NewVValType = XRValExpr->getType(); 4034 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4035 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 4036 IsPostfixUpdate](RValue XRValue) { 4037 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4038 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4039 RValue Res = CGF.EmitAnyExpr(UE); 4040 NewVVal = IsPostfixUpdate ? XRValue : Res; 4041 return Res; 4042 }; 4043 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4044 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4045 if (Res.first) { 4046 // 'atomicrmw' instruction was generated. 4047 if (IsPostfixUpdate) { 4048 // Use old value from 'atomicrmw'. 4049 NewVVal = Res.second; 4050 } else { 4051 // 'atomicrmw' does not provide new value, so evaluate it using old 4052 // value of 'x'. 4053 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4054 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 4055 NewVVal = CGF.EmitAnyExpr(UE); 4056 } 4057 } 4058 } else { 4059 // 'x' is simply rewritten with some 'expr'. 4060 NewVValType = X->getType().getNonReferenceType(); 4061 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 4062 X->getType().getNonReferenceType(), Loc); 4063 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 4064 NewVVal = XRValue; 4065 return ExprRValue; 4066 }; 4067 // Try to perform atomicrmw xchg, otherwise simple exchange. 4068 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4069 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 4070 Loc, Gen); 4071 if (Res.first) { 4072 // 'atomicrmw' instruction was generated. 4073 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 4074 } 4075 } 4076 // Emit post-update store to 'v' of old/new 'x' value. 4077 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 4078 // OpenMP, 2.12.6, atomic Construct 4079 // Any atomic construct with a seq_cst clause forces the atomically 4080 // performed operation to include an implicit flush operation without a 4081 // list. 4082 if (IsSeqCst) 4083 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4084 } 4085 4086 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 4087 bool IsSeqCst, bool IsPostfixUpdate, 4088 const Expr *X, const Expr *V, const Expr *E, 4089 const Expr *UE, bool IsXLHSInRHSPart, 4090 SourceLocation Loc) { 4091 switch (Kind) { 4092 case OMPC_read: 4093 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 4094 break; 4095 case OMPC_write: 4096 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 4097 break; 4098 case OMPC_unknown: 4099 case OMPC_update: 4100 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 4101 break; 4102 case OMPC_capture: 4103 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 4104 IsXLHSInRHSPart, Loc); 4105 break; 4106 case OMPC_if: 4107 case OMPC_final: 4108 case OMPC_num_threads: 4109 case OMPC_private: 4110 case OMPC_firstprivate: 4111 case OMPC_lastprivate: 4112 case OMPC_reduction: 4113 case OMPC_task_reduction: 4114 case OMPC_in_reduction: 4115 case OMPC_safelen: 4116 case OMPC_simdlen: 4117 case OMPC_allocator: 4118 case OMPC_allocate: 4119 case OMPC_collapse: 4120 case OMPC_default: 4121 case OMPC_seq_cst: 4122 case OMPC_shared: 4123 case OMPC_linear: 4124 case OMPC_aligned: 4125 case OMPC_copyin: 4126 case OMPC_copyprivate: 4127 case OMPC_flush: 4128 case OMPC_proc_bind: 4129 case OMPC_schedule: 4130 case OMPC_ordered: 4131 case OMPC_nowait: 4132 case OMPC_untied: 4133 case OMPC_threadprivate: 4134 case OMPC_depend: 4135 case OMPC_mergeable: 4136 case OMPC_device: 4137 case OMPC_threads: 4138 case OMPC_simd: 4139 case OMPC_map: 4140 case OMPC_num_teams: 4141 case OMPC_thread_limit: 4142 case OMPC_priority: 4143 case OMPC_grainsize: 4144 case OMPC_nogroup: 4145 case OMPC_num_tasks: 4146 case OMPC_hint: 4147 case OMPC_dist_schedule: 4148 case OMPC_defaultmap: 4149 case OMPC_uniform: 4150 case OMPC_to: 4151 case OMPC_from: 4152 case OMPC_use_device_ptr: 4153 case OMPC_is_device_ptr: 4154 case OMPC_unified_address: 4155 case OMPC_unified_shared_memory: 4156 case OMPC_reverse_offload: 4157 case OMPC_dynamic_allocators: 4158 case OMPC_atomic_default_mem_order: 4159 case OMPC_device_type: 4160 case OMPC_match: 4161 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 4162 } 4163 } 4164 4165 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4166 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4167 OpenMPClauseKind Kind = OMPC_unknown; 4168 for (const OMPClause *C : S.clauses()) { 4169 // Find first clause (skip seq_cst clause, if it is first). 4170 if (C->getClauseKind() != OMPC_seq_cst) { 4171 Kind = C->getClauseKind(); 4172 break; 4173 } 4174 } 4175 4176 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4177 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4178 enterFullExpression(FE); 4179 // Processing for statements under 'atomic capture'. 4180 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4181 for (const Stmt *C : Compound->body()) { 4182 if (const auto *FE = dyn_cast<FullExpr>(C)) 4183 enterFullExpression(FE); 4184 } 4185 } 4186 4187 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4188 PrePostActionTy &) { 4189 CGF.EmitStopPoint(CS); 4190 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4191 S.getV(), S.getExpr(), S.getUpdateExpr(), 4192 S.isXLHSInRHSPart(), S.getBeginLoc()); 4193 }; 4194 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4195 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4196 } 4197 4198 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4199 const OMPExecutableDirective &S, 4200 const RegionCodeGenTy &CodeGen) { 4201 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4202 CodeGenModule &CGM = CGF.CGM; 4203 4204 // On device emit this construct as inlined code. 4205 if (CGM.getLangOpts().OpenMPIsDevice) { 4206 OMPLexicalScope Scope(CGF, S, OMPD_target); 4207 CGM.getOpenMPRuntime().emitInlinedDirective( 4208 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4209 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4210 }); 4211 return; 4212 } 4213 4214 llvm::Function *Fn = nullptr; 4215 llvm::Constant *FnID = nullptr; 4216 4217 const Expr *IfCond = nullptr; 4218 // Check for the at most one if clause associated with the target region. 4219 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4220 if (C->getNameModifier() == OMPD_unknown || 4221 C->getNameModifier() == OMPD_target) { 4222 IfCond = C->getCondition(); 4223 break; 4224 } 4225 } 4226 4227 // Check if we have any device clause associated with the directive. 4228 const Expr *Device = nullptr; 4229 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4230 Device = C->getDevice(); 4231 4232 // Check if we have an if clause whose conditional always evaluates to false 4233 // or if we do not have any targets specified. If so the target region is not 4234 // an offload entry point. 4235 bool IsOffloadEntry = true; 4236 if (IfCond) { 4237 bool Val; 4238 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4239 IsOffloadEntry = false; 4240 } 4241 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4242 IsOffloadEntry = false; 4243 4244 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4245 StringRef ParentName; 4246 // In case we have Ctors/Dtors we use the complete type variant to produce 4247 // the mangling of the device outlined kernel. 4248 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4249 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4250 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4251 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4252 else 4253 ParentName = 4254 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4255 4256 // Emit target region as a standalone region. 4257 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4258 IsOffloadEntry, CodeGen); 4259 OMPLexicalScope Scope(CGF, S, OMPD_task); 4260 auto &&SizeEmitter = 4261 [IsOffloadEntry](CodeGenFunction &CGF, 4262 const OMPLoopDirective &D) -> llvm::Value * { 4263 if (IsOffloadEntry) { 4264 OMPLoopScope(CGF, D); 4265 // Emit calculation of the iterations count. 4266 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4267 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4268 /*isSigned=*/false); 4269 return NumIterations; 4270 } 4271 return nullptr; 4272 }; 4273 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 4274 SizeEmitter); 4275 } 4276 4277 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4278 PrePostActionTy &Action) { 4279 Action.Enter(CGF); 4280 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4281 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4282 CGF.EmitOMPPrivateClause(S, PrivateScope); 4283 (void)PrivateScope.Privatize(); 4284 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4285 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4286 4287 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4288 } 4289 4290 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4291 StringRef ParentName, 4292 const OMPTargetDirective &S) { 4293 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4294 emitTargetRegion(CGF, S, Action); 4295 }; 4296 llvm::Function *Fn; 4297 llvm::Constant *Addr; 4298 // Emit target region as a standalone region. 4299 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4300 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4301 assert(Fn && Addr && "Target device function emission failed."); 4302 } 4303 4304 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4305 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4306 emitTargetRegion(CGF, S, Action); 4307 }; 4308 emitCommonOMPTargetDirective(*this, S, CodeGen); 4309 } 4310 4311 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4312 const OMPExecutableDirective &S, 4313 OpenMPDirectiveKind InnermostKind, 4314 const RegionCodeGenTy &CodeGen) { 4315 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4316 llvm::Function *OutlinedFn = 4317 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4318 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4319 4320 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4321 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4322 if (NT || TL) { 4323 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4324 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4325 4326 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4327 S.getBeginLoc()); 4328 } 4329 4330 OMPTeamsScope Scope(CGF, S); 4331 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4332 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4333 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4334 CapturedVars); 4335 } 4336 4337 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4338 // Emit teams region as a standalone region. 4339 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4340 Action.Enter(CGF); 4341 OMPPrivateScope PrivateScope(CGF); 4342 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4343 CGF.EmitOMPPrivateClause(S, PrivateScope); 4344 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4345 (void)PrivateScope.Privatize(); 4346 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4347 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4348 }; 4349 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4350 emitPostUpdateForReductionClause(*this, S, 4351 [](CodeGenFunction &) { return nullptr; }); 4352 } 4353 4354 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4355 const OMPTargetTeamsDirective &S) { 4356 auto *CS = S.getCapturedStmt(OMPD_teams); 4357 Action.Enter(CGF); 4358 // Emit teams region as a standalone region. 4359 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4360 Action.Enter(CGF); 4361 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4362 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4363 CGF.EmitOMPPrivateClause(S, PrivateScope); 4364 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4365 (void)PrivateScope.Privatize(); 4366 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4367 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4368 CGF.EmitStmt(CS->getCapturedStmt()); 4369 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4370 }; 4371 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4372 emitPostUpdateForReductionClause(CGF, S, 4373 [](CodeGenFunction &) { return nullptr; }); 4374 } 4375 4376 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4377 CodeGenModule &CGM, StringRef ParentName, 4378 const OMPTargetTeamsDirective &S) { 4379 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4380 emitTargetTeamsRegion(CGF, Action, S); 4381 }; 4382 llvm::Function *Fn; 4383 llvm::Constant *Addr; 4384 // Emit target region as a standalone region. 4385 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4386 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4387 assert(Fn && Addr && "Target device function emission failed."); 4388 } 4389 4390 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4391 const OMPTargetTeamsDirective &S) { 4392 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4393 emitTargetTeamsRegion(CGF, Action, S); 4394 }; 4395 emitCommonOMPTargetDirective(*this, S, CodeGen); 4396 } 4397 4398 static void 4399 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4400 const OMPTargetTeamsDistributeDirective &S) { 4401 Action.Enter(CGF); 4402 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4403 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4404 }; 4405 4406 // Emit teams region as a standalone region. 4407 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4408 PrePostActionTy &Action) { 4409 Action.Enter(CGF); 4410 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4411 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4412 (void)PrivateScope.Privatize(); 4413 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4414 CodeGenDistribute); 4415 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4416 }; 4417 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4418 emitPostUpdateForReductionClause(CGF, S, 4419 [](CodeGenFunction &) { return nullptr; }); 4420 } 4421 4422 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4423 CodeGenModule &CGM, StringRef ParentName, 4424 const OMPTargetTeamsDistributeDirective &S) { 4425 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4426 emitTargetTeamsDistributeRegion(CGF, Action, S); 4427 }; 4428 llvm::Function *Fn; 4429 llvm::Constant *Addr; 4430 // Emit target region as a standalone region. 4431 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4432 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4433 assert(Fn && Addr && "Target device function emission failed."); 4434 } 4435 4436 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4437 const OMPTargetTeamsDistributeDirective &S) { 4438 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4439 emitTargetTeamsDistributeRegion(CGF, Action, S); 4440 }; 4441 emitCommonOMPTargetDirective(*this, S, CodeGen); 4442 } 4443 4444 static void emitTargetTeamsDistributeSimdRegion( 4445 CodeGenFunction &CGF, PrePostActionTy &Action, 4446 const OMPTargetTeamsDistributeSimdDirective &S) { 4447 Action.Enter(CGF); 4448 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4449 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4450 }; 4451 4452 // Emit teams region as a standalone region. 4453 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4454 PrePostActionTy &Action) { 4455 Action.Enter(CGF); 4456 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4457 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4458 (void)PrivateScope.Privatize(); 4459 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4460 CodeGenDistribute); 4461 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4462 }; 4463 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4464 emitPostUpdateForReductionClause(CGF, S, 4465 [](CodeGenFunction &) { return nullptr; }); 4466 } 4467 4468 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4469 CodeGenModule &CGM, StringRef ParentName, 4470 const OMPTargetTeamsDistributeSimdDirective &S) { 4471 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4472 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4473 }; 4474 llvm::Function *Fn; 4475 llvm::Constant *Addr; 4476 // Emit target region as a standalone region. 4477 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4478 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4479 assert(Fn && Addr && "Target device function emission failed."); 4480 } 4481 4482 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4483 const OMPTargetTeamsDistributeSimdDirective &S) { 4484 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4485 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4486 }; 4487 emitCommonOMPTargetDirective(*this, S, CodeGen); 4488 } 4489 4490 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4491 const OMPTeamsDistributeDirective &S) { 4492 4493 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4494 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4495 }; 4496 4497 // Emit teams region as a standalone region. 4498 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4499 PrePostActionTy &Action) { 4500 Action.Enter(CGF); 4501 OMPPrivateScope PrivateScope(CGF); 4502 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4503 (void)PrivateScope.Privatize(); 4504 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4505 CodeGenDistribute); 4506 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4507 }; 4508 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4509 emitPostUpdateForReductionClause(*this, S, 4510 [](CodeGenFunction &) { return nullptr; }); 4511 } 4512 4513 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4514 const OMPTeamsDistributeSimdDirective &S) { 4515 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4516 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4517 }; 4518 4519 // Emit teams region as a standalone region. 4520 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4521 PrePostActionTy &Action) { 4522 Action.Enter(CGF); 4523 OMPPrivateScope PrivateScope(CGF); 4524 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4525 (void)PrivateScope.Privatize(); 4526 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4527 CodeGenDistribute); 4528 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4529 }; 4530 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4531 emitPostUpdateForReductionClause(*this, S, 4532 [](CodeGenFunction &) { return nullptr; }); 4533 } 4534 4535 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4536 const OMPTeamsDistributeParallelForDirective &S) { 4537 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4538 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4539 S.getDistInc()); 4540 }; 4541 4542 // Emit teams region as a standalone region. 4543 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4544 PrePostActionTy &Action) { 4545 Action.Enter(CGF); 4546 OMPPrivateScope PrivateScope(CGF); 4547 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4548 (void)PrivateScope.Privatize(); 4549 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4550 CodeGenDistribute); 4551 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4552 }; 4553 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4554 emitPostUpdateForReductionClause(*this, S, 4555 [](CodeGenFunction &) { return nullptr; }); 4556 } 4557 4558 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4559 const OMPTeamsDistributeParallelForSimdDirective &S) { 4560 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4561 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4562 S.getDistInc()); 4563 }; 4564 4565 // Emit teams region as a standalone region. 4566 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4567 PrePostActionTy &Action) { 4568 Action.Enter(CGF); 4569 OMPPrivateScope PrivateScope(CGF); 4570 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4571 (void)PrivateScope.Privatize(); 4572 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4573 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4574 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4575 }; 4576 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4577 emitPostUpdateForReductionClause(*this, S, 4578 [](CodeGenFunction &) { return nullptr; }); 4579 } 4580 4581 static void emitTargetTeamsDistributeParallelForRegion( 4582 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4583 PrePostActionTy &Action) { 4584 Action.Enter(CGF); 4585 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4586 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4587 S.getDistInc()); 4588 }; 4589 4590 // Emit teams region as a standalone region. 4591 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4592 PrePostActionTy &Action) { 4593 Action.Enter(CGF); 4594 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4595 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4596 (void)PrivateScope.Privatize(); 4597 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4598 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4599 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4600 }; 4601 4602 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4603 CodeGenTeams); 4604 emitPostUpdateForReductionClause(CGF, S, 4605 [](CodeGenFunction &) { return nullptr; }); 4606 } 4607 4608 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4609 CodeGenModule &CGM, StringRef ParentName, 4610 const OMPTargetTeamsDistributeParallelForDirective &S) { 4611 // Emit SPMD target teams distribute parallel for region as a standalone 4612 // region. 4613 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4614 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4615 }; 4616 llvm::Function *Fn; 4617 llvm::Constant *Addr; 4618 // Emit target region as a standalone region. 4619 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4620 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4621 assert(Fn && Addr && "Target device function emission failed."); 4622 } 4623 4624 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4625 const OMPTargetTeamsDistributeParallelForDirective &S) { 4626 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4627 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4628 }; 4629 emitCommonOMPTargetDirective(*this, S, CodeGen); 4630 } 4631 4632 static void emitTargetTeamsDistributeParallelForSimdRegion( 4633 CodeGenFunction &CGF, 4634 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4635 PrePostActionTy &Action) { 4636 Action.Enter(CGF); 4637 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4638 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4639 S.getDistInc()); 4640 }; 4641 4642 // Emit teams region as a standalone region. 4643 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4644 PrePostActionTy &Action) { 4645 Action.Enter(CGF); 4646 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4647 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4648 (void)PrivateScope.Privatize(); 4649 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4650 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4651 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4652 }; 4653 4654 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4655 CodeGenTeams); 4656 emitPostUpdateForReductionClause(CGF, S, 4657 [](CodeGenFunction &) { return nullptr; }); 4658 } 4659 4660 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4661 CodeGenModule &CGM, StringRef ParentName, 4662 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4663 // Emit SPMD target teams distribute parallel for simd region as a standalone 4664 // region. 4665 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4666 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4667 }; 4668 llvm::Function *Fn; 4669 llvm::Constant *Addr; 4670 // Emit target region as a standalone region. 4671 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4672 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4673 assert(Fn && Addr && "Target device function emission failed."); 4674 } 4675 4676 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4677 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4678 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4679 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4680 }; 4681 emitCommonOMPTargetDirective(*this, S, CodeGen); 4682 } 4683 4684 void CodeGenFunction::EmitOMPCancellationPointDirective( 4685 const OMPCancellationPointDirective &S) { 4686 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4687 S.getCancelRegion()); 4688 } 4689 4690 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4691 const Expr *IfCond = nullptr; 4692 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4693 if (C->getNameModifier() == OMPD_unknown || 4694 C->getNameModifier() == OMPD_cancel) { 4695 IfCond = C->getCondition(); 4696 break; 4697 } 4698 } 4699 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4700 S.getCancelRegion()); 4701 } 4702 4703 CodeGenFunction::JumpDest 4704 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4705 if (Kind == OMPD_parallel || Kind == OMPD_task || 4706 Kind == OMPD_target_parallel) 4707 return ReturnBlock; 4708 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4709 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4710 Kind == OMPD_distribute_parallel_for || 4711 Kind == OMPD_target_parallel_for || 4712 Kind == OMPD_teams_distribute_parallel_for || 4713 Kind == OMPD_target_teams_distribute_parallel_for); 4714 return OMPCancelStack.getExitBlock(); 4715 } 4716 4717 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4718 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4719 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4720 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4721 auto OrigVarIt = C.varlist_begin(); 4722 auto InitIt = C.inits().begin(); 4723 for (const Expr *PvtVarIt : C.private_copies()) { 4724 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4725 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4726 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4727 4728 // In order to identify the right initializer we need to match the 4729 // declaration used by the mapping logic. In some cases we may get 4730 // OMPCapturedExprDecl that refers to the original declaration. 4731 const ValueDecl *MatchingVD = OrigVD; 4732 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4733 // OMPCapturedExprDecl are used to privative fields of the current 4734 // structure. 4735 const auto *ME = cast<MemberExpr>(OED->getInit()); 4736 assert(isa<CXXThisExpr>(ME->getBase()) && 4737 "Base should be the current struct!"); 4738 MatchingVD = ME->getMemberDecl(); 4739 } 4740 4741 // If we don't have information about the current list item, move on to 4742 // the next one. 4743 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4744 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4745 continue; 4746 4747 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4748 InitAddrIt, InitVD, 4749 PvtVD]() { 4750 // Initialize the temporary initialization variable with the address we 4751 // get from the runtime library. We have to cast the source address 4752 // because it is always a void *. References are materialized in the 4753 // privatization scope, so the initialization here disregards the fact 4754 // the original variable is a reference. 4755 QualType AddrQTy = 4756 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4757 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4758 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4759 setAddrOfLocalVar(InitVD, InitAddr); 4760 4761 // Emit private declaration, it will be initialized by the value we 4762 // declaration we just added to the local declarations map. 4763 EmitDecl(*PvtVD); 4764 4765 // The initialization variables reached its purpose in the emission 4766 // of the previous declaration, so we don't need it anymore. 4767 LocalDeclMap.erase(InitVD); 4768 4769 // Return the address of the private variable. 4770 return GetAddrOfLocalVar(PvtVD); 4771 }); 4772 assert(IsRegistered && "firstprivate var already registered as private"); 4773 // Silence the warning about unused variable. 4774 (void)IsRegistered; 4775 4776 ++OrigVarIt; 4777 ++InitIt; 4778 } 4779 } 4780 4781 // Generate the instructions for '#pragma omp target data' directive. 4782 void CodeGenFunction::EmitOMPTargetDataDirective( 4783 const OMPTargetDataDirective &S) { 4784 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4785 4786 // Create a pre/post action to signal the privatization of the device pointer. 4787 // This action can be replaced by the OpenMP runtime code generation to 4788 // deactivate privatization. 4789 bool PrivatizeDevicePointers = false; 4790 class DevicePointerPrivActionTy : public PrePostActionTy { 4791 bool &PrivatizeDevicePointers; 4792 4793 public: 4794 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4795 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4796 void Enter(CodeGenFunction &CGF) override { 4797 PrivatizeDevicePointers = true; 4798 } 4799 }; 4800 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4801 4802 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4803 CodeGenFunction &CGF, PrePostActionTy &Action) { 4804 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4805 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4806 }; 4807 4808 // Codegen that selects whether to generate the privatization code or not. 4809 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4810 &InnermostCodeGen](CodeGenFunction &CGF, 4811 PrePostActionTy &Action) { 4812 RegionCodeGenTy RCG(InnermostCodeGen); 4813 PrivatizeDevicePointers = false; 4814 4815 // Call the pre-action to change the status of PrivatizeDevicePointers if 4816 // needed. 4817 Action.Enter(CGF); 4818 4819 if (PrivatizeDevicePointers) { 4820 OMPPrivateScope PrivateScope(CGF); 4821 // Emit all instances of the use_device_ptr clause. 4822 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4823 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4824 Info.CaptureDeviceAddrMap); 4825 (void)PrivateScope.Privatize(); 4826 RCG(CGF); 4827 } else { 4828 RCG(CGF); 4829 } 4830 }; 4831 4832 // Forward the provided action to the privatization codegen. 4833 RegionCodeGenTy PrivRCG(PrivCodeGen); 4834 PrivRCG.setAction(Action); 4835 4836 // Notwithstanding the body of the region is emitted as inlined directive, 4837 // we don't use an inline scope as changes in the references inside the 4838 // region are expected to be visible outside, so we do not privative them. 4839 OMPLexicalScope Scope(CGF, S); 4840 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4841 PrivRCG); 4842 }; 4843 4844 RegionCodeGenTy RCG(CodeGen); 4845 4846 // If we don't have target devices, don't bother emitting the data mapping 4847 // code. 4848 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4849 RCG(*this); 4850 return; 4851 } 4852 4853 // Check if we have any if clause associated with the directive. 4854 const Expr *IfCond = nullptr; 4855 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4856 IfCond = C->getCondition(); 4857 4858 // Check if we have any device clause associated with the directive. 4859 const Expr *Device = nullptr; 4860 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4861 Device = C->getDevice(); 4862 4863 // Set the action to signal privatization of device pointers. 4864 RCG.setAction(PrivAction); 4865 4866 // Emit region code. 4867 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4868 Info); 4869 } 4870 4871 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4872 const OMPTargetEnterDataDirective &S) { 4873 // If we don't have target devices, don't bother emitting the data mapping 4874 // code. 4875 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4876 return; 4877 4878 // Check if we have any if clause associated with the directive. 4879 const Expr *IfCond = nullptr; 4880 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4881 IfCond = C->getCondition(); 4882 4883 // Check if we have any device clause associated with the directive. 4884 const Expr *Device = nullptr; 4885 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4886 Device = C->getDevice(); 4887 4888 OMPLexicalScope Scope(*this, S, OMPD_task); 4889 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4890 } 4891 4892 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4893 const OMPTargetExitDataDirective &S) { 4894 // If we don't have target devices, don't bother emitting the data mapping 4895 // code. 4896 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4897 return; 4898 4899 // Check if we have any if clause associated with the directive. 4900 const Expr *IfCond = nullptr; 4901 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4902 IfCond = C->getCondition(); 4903 4904 // Check if we have any device clause associated with the directive. 4905 const Expr *Device = nullptr; 4906 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4907 Device = C->getDevice(); 4908 4909 OMPLexicalScope Scope(*this, S, OMPD_task); 4910 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4911 } 4912 4913 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4914 const OMPTargetParallelDirective &S, 4915 PrePostActionTy &Action) { 4916 // Get the captured statement associated with the 'parallel' region. 4917 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4918 Action.Enter(CGF); 4919 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4920 Action.Enter(CGF); 4921 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4922 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4923 CGF.EmitOMPPrivateClause(S, PrivateScope); 4924 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4925 (void)PrivateScope.Privatize(); 4926 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4927 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4928 // TODO: Add support for clauses. 4929 CGF.EmitStmt(CS->getCapturedStmt()); 4930 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4931 }; 4932 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4933 emitEmptyBoundParameters); 4934 emitPostUpdateForReductionClause(CGF, S, 4935 [](CodeGenFunction &) { return nullptr; }); 4936 } 4937 4938 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4939 CodeGenModule &CGM, StringRef ParentName, 4940 const OMPTargetParallelDirective &S) { 4941 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4942 emitTargetParallelRegion(CGF, S, Action); 4943 }; 4944 llvm::Function *Fn; 4945 llvm::Constant *Addr; 4946 // Emit target region as a standalone region. 4947 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4948 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4949 assert(Fn && Addr && "Target device function emission failed."); 4950 } 4951 4952 void CodeGenFunction::EmitOMPTargetParallelDirective( 4953 const OMPTargetParallelDirective &S) { 4954 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4955 emitTargetParallelRegion(CGF, S, Action); 4956 }; 4957 emitCommonOMPTargetDirective(*this, S, CodeGen); 4958 } 4959 4960 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4961 const OMPTargetParallelForDirective &S, 4962 PrePostActionTy &Action) { 4963 Action.Enter(CGF); 4964 // Emit directive as a combined directive that consists of two implicit 4965 // directives: 'parallel' with 'for' directive. 4966 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4967 Action.Enter(CGF); 4968 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4969 CGF, OMPD_target_parallel_for, S.hasCancel()); 4970 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4971 emitDispatchForLoopBounds); 4972 }; 4973 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4974 emitEmptyBoundParameters); 4975 } 4976 4977 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4978 CodeGenModule &CGM, StringRef ParentName, 4979 const OMPTargetParallelForDirective &S) { 4980 // Emit SPMD target parallel for region as a standalone region. 4981 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4982 emitTargetParallelForRegion(CGF, S, Action); 4983 }; 4984 llvm::Function *Fn; 4985 llvm::Constant *Addr; 4986 // Emit target region as a standalone region. 4987 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4988 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4989 assert(Fn && Addr && "Target device function emission failed."); 4990 } 4991 4992 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4993 const OMPTargetParallelForDirective &S) { 4994 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4995 emitTargetParallelForRegion(CGF, S, Action); 4996 }; 4997 emitCommonOMPTargetDirective(*this, S, CodeGen); 4998 } 4999 5000 static void 5001 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 5002 const OMPTargetParallelForSimdDirective &S, 5003 PrePostActionTy &Action) { 5004 Action.Enter(CGF); 5005 // Emit directive as a combined directive that consists of two implicit 5006 // directives: 'parallel' with 'for' directive. 5007 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5008 Action.Enter(CGF); 5009 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5010 emitDispatchForLoopBounds); 5011 }; 5012 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 5013 emitEmptyBoundParameters); 5014 } 5015 5016 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 5017 CodeGenModule &CGM, StringRef ParentName, 5018 const OMPTargetParallelForSimdDirective &S) { 5019 // Emit SPMD target parallel for region as a standalone region. 5020 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5021 emitTargetParallelForSimdRegion(CGF, S, Action); 5022 }; 5023 llvm::Function *Fn; 5024 llvm::Constant *Addr; 5025 // Emit target region as a standalone region. 5026 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5027 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5028 assert(Fn && Addr && "Target device function emission failed."); 5029 } 5030 5031 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 5032 const OMPTargetParallelForSimdDirective &S) { 5033 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5034 emitTargetParallelForSimdRegion(CGF, S, Action); 5035 }; 5036 emitCommonOMPTargetDirective(*this, S, CodeGen); 5037 } 5038 5039 /// Emit a helper variable and return corresponding lvalue. 5040 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 5041 const ImplicitParamDecl *PVD, 5042 CodeGenFunction::OMPPrivateScope &Privates) { 5043 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 5044 Privates.addPrivate(VDecl, 5045 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 5046 } 5047 5048 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 5049 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 5050 // Emit outlined function for task construct. 5051 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 5052 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5053 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5054 const Expr *IfCond = nullptr; 5055 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5056 if (C->getNameModifier() == OMPD_unknown || 5057 C->getNameModifier() == OMPD_taskloop) { 5058 IfCond = C->getCondition(); 5059 break; 5060 } 5061 } 5062 5063 OMPTaskDataTy Data; 5064 // Check if taskloop must be emitted without taskgroup. 5065 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 5066 // TODO: Check if we should emit tied or untied task. 5067 Data.Tied = true; 5068 // Set scheduling for taskloop 5069 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 5070 // grainsize clause 5071 Data.Schedule.setInt(/*IntVal=*/false); 5072 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 5073 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 5074 // num_tasks clause 5075 Data.Schedule.setInt(/*IntVal=*/true); 5076 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 5077 } 5078 5079 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 5080 // if (PreCond) { 5081 // for (IV in 0..LastIteration) BODY; 5082 // <Final counter/linear vars updates>; 5083 // } 5084 // 5085 5086 // Emit: if (PreCond) - begin. 5087 // If the condition constant folds and can be elided, avoid emitting the 5088 // whole loop. 5089 bool CondConstant; 5090 llvm::BasicBlock *ContBlock = nullptr; 5091 OMPLoopScope PreInitScope(CGF, S); 5092 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5093 if (!CondConstant) 5094 return; 5095 } else { 5096 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 5097 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 5098 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 5099 CGF.getProfileCount(&S)); 5100 CGF.EmitBlock(ThenBlock); 5101 CGF.incrementProfileCounter(&S); 5102 } 5103 5104 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5105 CGF.EmitOMPSimdInit(S); 5106 (void)CGF.EmitOMPLinearClauseInit(S); 5107 } 5108 5109 OMPPrivateScope LoopScope(CGF); 5110 // Emit helper vars inits. 5111 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 5112 auto *I = CS->getCapturedDecl()->param_begin(); 5113 auto *LBP = std::next(I, LowerBound); 5114 auto *UBP = std::next(I, UpperBound); 5115 auto *STP = std::next(I, Stride); 5116 auto *LIP = std::next(I, LastIter); 5117 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 5118 LoopScope); 5119 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 5120 LoopScope); 5121 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 5122 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 5123 LoopScope); 5124 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 5125 CGF.EmitOMPLinearClause(S, LoopScope); 5126 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 5127 (void)LoopScope.Privatize(); 5128 // Emit the loop iteration variable. 5129 const Expr *IVExpr = S.getIterationVariable(); 5130 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 5131 CGF.EmitVarDecl(*IVDecl); 5132 CGF.EmitIgnoredExpr(S.getInit()); 5133 5134 // Emit the iterations count variable. 5135 // If it is not a variable, Sema decided to calculate iterations count on 5136 // each iteration (e.g., it is foldable into a constant). 5137 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5138 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5139 // Emit calculation of the iterations count. 5140 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 5141 } 5142 5143 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 5144 S.getInc(), 5145 [&S](CodeGenFunction &CGF) { 5146 CGF.EmitOMPLoopBody(S, JumpDest()); 5147 CGF.EmitStopPoint(&S); 5148 }, 5149 [](CodeGenFunction &) {}); 5150 // Emit: if (PreCond) - end. 5151 if (ContBlock) { 5152 CGF.EmitBranch(ContBlock); 5153 CGF.EmitBlock(ContBlock, true); 5154 } 5155 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5156 if (HasLastprivateClause) { 5157 CGF.EmitOMPLastprivateClauseFinal( 5158 S, isOpenMPSimdDirective(S.getDirectiveKind()), 5159 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 5160 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5161 (*LIP)->getType(), S.getBeginLoc()))); 5162 } 5163 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 5164 return CGF.Builder.CreateIsNotNull( 5165 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5166 (*LIP)->getType(), S.getBeginLoc())); 5167 }); 5168 }; 5169 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5170 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5171 const OMPTaskDataTy &Data) { 5172 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 5173 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 5174 OMPLoopScope PreInitScope(CGF, S); 5175 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5176 OutlinedFn, SharedsTy, 5177 CapturedStruct, IfCond, Data); 5178 }; 5179 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5180 CodeGen); 5181 }; 5182 if (Data.Nogroup) { 5183 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5184 } else { 5185 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5186 *this, 5187 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5188 PrePostActionTy &Action) { 5189 Action.Enter(CGF); 5190 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5191 Data); 5192 }, 5193 S.getBeginLoc()); 5194 } 5195 } 5196 5197 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5198 EmitOMPTaskLoopBasedDirective(S); 5199 } 5200 5201 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5202 const OMPTaskLoopSimdDirective &S) { 5203 EmitOMPTaskLoopBasedDirective(S); 5204 } 5205 5206 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 5207 const OMPMasterTaskLoopDirective &S) { 5208 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5209 Action.Enter(CGF); 5210 EmitOMPTaskLoopBasedDirective(S); 5211 }; 5212 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5213 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5214 } 5215 5216 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 5217 const OMPMasterTaskLoopSimdDirective &S) { 5218 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5219 Action.Enter(CGF); 5220 EmitOMPTaskLoopBasedDirective(S); 5221 }; 5222 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5223 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5224 } 5225 5226 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 5227 const OMPParallelMasterTaskLoopDirective &S) { 5228 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5229 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5230 PrePostActionTy &Action) { 5231 Action.Enter(CGF); 5232 CGF.EmitOMPTaskLoopBasedDirective(S); 5233 }; 5234 OMPLexicalScope Scope(CGF, S, llvm::None, /*EmitPreInitStmt=*/false); 5235 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5236 S.getBeginLoc()); 5237 }; 5238 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 5239 emitEmptyBoundParameters); 5240 } 5241 5242 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 5243 const OMPParallelMasterTaskLoopSimdDirective &S) { 5244 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5245 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5246 PrePostActionTy &Action) { 5247 Action.Enter(CGF); 5248 CGF.EmitOMPTaskLoopBasedDirective(S); 5249 }; 5250 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 5251 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5252 S.getBeginLoc()); 5253 }; 5254 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 5255 emitEmptyBoundParameters); 5256 } 5257 5258 // Generate the instructions for '#pragma omp target update' directive. 5259 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5260 const OMPTargetUpdateDirective &S) { 5261 // If we don't have target devices, don't bother emitting the data mapping 5262 // code. 5263 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5264 return; 5265 5266 // Check if we have any if clause associated with the directive. 5267 const Expr *IfCond = nullptr; 5268 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5269 IfCond = C->getCondition(); 5270 5271 // Check if we have any device clause associated with the directive. 5272 const Expr *Device = nullptr; 5273 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5274 Device = C->getDevice(); 5275 5276 OMPLexicalScope Scope(*this, S, OMPD_task); 5277 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5278 } 5279 5280 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5281 const OMPExecutableDirective &D) { 5282 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5283 return; 5284 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5285 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5286 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5287 } else { 5288 OMPPrivateScope LoopGlobals(CGF); 5289 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5290 for (const Expr *E : LD->counters()) { 5291 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5292 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5293 LValue GlobLVal = CGF.EmitLValue(E); 5294 LoopGlobals.addPrivate( 5295 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5296 } 5297 if (isa<OMPCapturedExprDecl>(VD)) { 5298 // Emit only those that were not explicitly referenced in clauses. 5299 if (!CGF.LocalDeclMap.count(VD)) 5300 CGF.EmitVarDecl(*VD); 5301 } 5302 } 5303 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5304 if (!C->getNumForLoops()) 5305 continue; 5306 for (unsigned I = LD->getCollapsedNumber(), 5307 E = C->getLoopNumIterations().size(); 5308 I < E; ++I) { 5309 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5310 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5311 // Emit only those that were not explicitly referenced in clauses. 5312 if (!CGF.LocalDeclMap.count(VD)) 5313 CGF.EmitVarDecl(*VD); 5314 } 5315 } 5316 } 5317 } 5318 LoopGlobals.Privatize(); 5319 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5320 } 5321 }; 5322 OMPSimdLexicalScope Scope(*this, D); 5323 CGM.getOpenMPRuntime().emitInlinedDirective( 5324 *this, 5325 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5326 : D.getDirectiveKind(), 5327 CodeGen); 5328 } 5329