1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 bool AsInlined = false, bool EmitPreInitStmt = true) 58 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 59 InlinedShareds(CGF) { 60 if (EmitPreInitStmt) 61 emitPreInitStmt(CGF, S); 62 if (AsInlined) { 63 if (S.hasAssociatedStmt()) { 64 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 65 for (auto &C : CS->captures()) { 66 if (C.capturesVariable() || C.capturesVariableByCopy()) { 67 auto *VD = C.getCapturedVar(); 68 assert(VD == VD->getCanonicalDecl() && 69 "Canonical decl must be captured."); 70 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 71 isCapturedVar(CGF, VD) || 72 (CGF.CapturedStmtInfo && 73 InlinedShareds.isGlobalVarCaptured(VD)), 74 VD->getType().getNonReferenceType(), VK_LValue, 75 SourceLocation()); 76 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 77 return CGF.EmitLValue(&DRE).getAddress(); 78 }); 79 } 80 } 81 (void)InlinedShareds.Privatize(); 82 } 83 } 84 } 85 }; 86 87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 88 /// for captured expressions. 89 class OMPParallelScope final : public OMPLexicalScope { 90 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 91 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 92 return !(isOpenMPTargetExecutionDirective(Kind) || 93 isOpenMPLoopBoundSharingDirective(Kind)) && 94 isOpenMPParallelDirective(Kind); 95 } 96 97 public: 98 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 99 : OMPLexicalScope(CGF, S, 100 /*AsInlined=*/false, 101 /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {} 102 }; 103 104 /// Lexical scope for OpenMP teams construct, that handles correct codegen 105 /// for captured expressions. 106 class OMPTeamsScope final : public OMPLexicalScope { 107 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 108 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 109 return !isOpenMPTargetExecutionDirective(Kind) && 110 isOpenMPTeamsDirective(Kind); 111 } 112 113 public: 114 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 115 : OMPLexicalScope(CGF, S, 116 /*AsInlined=*/false, 117 /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {} 118 }; 119 120 /// Private scope for OpenMP loop-based directives, that supports capturing 121 /// of used expression from loop statement. 122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 123 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 124 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 125 for (auto *E : S.counters()) { 126 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 127 (void)PreCondScope.addPrivate(VD, [&CGF, VD]() { 128 return CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 129 }); 130 } 131 (void)PreCondScope.Privatize(); 132 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 133 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 134 for (const auto *I : PreInits->decls()) 135 CGF.EmitVarDecl(cast<VarDecl>(*I)); 136 } 137 } 138 } 139 140 public: 141 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 142 : CodeGenFunction::RunCleanupsScope(CGF) { 143 emitPreInitStmt(CGF, S); 144 } 145 }; 146 147 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 148 CodeGenFunction::OMPPrivateScope InlinedShareds; 149 150 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 151 return CGF.LambdaCaptureFields.lookup(VD) || 152 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 153 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 154 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 155 } 156 157 public: 158 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 159 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 160 InlinedShareds(CGF) { 161 for (const auto *C : S.clauses()) { 162 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 163 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 164 for (const auto *I : PreInit->decls()) { 165 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 166 CGF.EmitVarDecl(cast<VarDecl>(*I)); 167 else { 168 CodeGenFunction::AutoVarEmission Emission = 169 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 170 CGF.EmitAutoVarCleanups(Emission); 171 } 172 } 173 } 174 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 175 for (const Expr *E : UDP->varlists()) { 176 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 177 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 178 CGF.EmitVarDecl(*OED); 179 } 180 } 181 } 182 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 183 CGF.EmitOMPPrivateClause(S, InlinedShareds); 184 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 185 if (const Expr *E = TG->getReductionRef()) 186 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 187 } 188 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 189 while (CS) { 190 for (auto &C : CS->captures()) { 191 if (C.capturesVariable() || C.capturesVariableByCopy()) { 192 auto *VD = C.getCapturedVar(); 193 assert(VD == VD->getCanonicalDecl() && 194 "Canonical decl must be captured."); 195 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 196 isCapturedVar(CGF, VD) || 197 (CGF.CapturedStmtInfo && 198 InlinedShareds.isGlobalVarCaptured(VD)), 199 VD->getType().getNonReferenceType(), VK_LValue, 200 SourceLocation()); 201 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 202 return CGF.EmitLValue(&DRE).getAddress(); 203 }); 204 } 205 } 206 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 207 } 208 (void)InlinedShareds.Privatize(); 209 } 210 }; 211 212 } // namespace 213 214 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 215 const OMPExecutableDirective &S, 216 const RegionCodeGenTy &CodeGen); 217 218 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 219 if (auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 220 if (auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 221 OrigVD = OrigVD->getCanonicalDecl(); 222 bool IsCaptured = 223 LambdaCaptureFields.lookup(OrigVD) || 224 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 225 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 226 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured, 227 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 228 return EmitLValue(&DRE); 229 } 230 } 231 return EmitLValue(E); 232 } 233 234 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 235 auto &C = getContext(); 236 llvm::Value *Size = nullptr; 237 auto SizeInChars = C.getTypeSizeInChars(Ty); 238 if (SizeInChars.isZero()) { 239 // getTypeSizeInChars() returns 0 for a VLA. 240 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 241 llvm::Value *ArraySize; 242 std::tie(ArraySize, Ty) = getVLASize(VAT); 243 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 244 } 245 SizeInChars = C.getTypeSizeInChars(Ty); 246 if (SizeInChars.isZero()) 247 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 248 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 249 } else 250 Size = CGM.getSize(SizeInChars); 251 return Size; 252 } 253 254 void CodeGenFunction::GenerateOpenMPCapturedVars( 255 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 256 const RecordDecl *RD = S.getCapturedRecordDecl(); 257 auto CurField = RD->field_begin(); 258 auto CurCap = S.captures().begin(); 259 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 260 E = S.capture_init_end(); 261 I != E; ++I, ++CurField, ++CurCap) { 262 if (CurField->hasCapturedVLAType()) { 263 auto VAT = CurField->getCapturedVLAType(); 264 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 265 CapturedVars.push_back(Val); 266 } else if (CurCap->capturesThis()) 267 CapturedVars.push_back(CXXThisValue); 268 else if (CurCap->capturesVariableByCopy()) { 269 llvm::Value *CV = 270 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal(); 271 272 // If the field is not a pointer, we need to save the actual value 273 // and load it as a void pointer. 274 if (!CurField->getType()->isAnyPointerType()) { 275 auto &Ctx = getContext(); 276 auto DstAddr = CreateMemTemp( 277 Ctx.getUIntPtrType(), 278 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 279 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 280 281 auto *SrcAddrVal = EmitScalarConversion( 282 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 283 Ctx.getPointerType(CurField->getType()), SourceLocation()); 284 LValue SrcLV = 285 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 286 287 // Store the value using the source type pointer. 288 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 289 290 // Load the value using the destination type pointer. 291 CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal(); 292 } 293 CapturedVars.push_back(CV); 294 } else { 295 assert(CurCap->capturesVariable() && "Expected capture by reference."); 296 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 297 } 298 } 299 } 300 301 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 302 StringRef Name, LValue AddrLV, 303 bool isReferenceType = false) { 304 ASTContext &Ctx = CGF.getContext(); 305 306 auto *CastedPtr = CGF.EmitScalarConversion( 307 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 308 Ctx.getPointerType(DstType), SourceLocation()); 309 auto TmpAddr = 310 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 311 .getAddress(); 312 313 // If we are dealing with references we need to return the address of the 314 // reference instead of the reference of the value. 315 if (isReferenceType) { 316 QualType RefType = Ctx.getLValueReferenceType(DstType); 317 auto *RefVal = TmpAddr.getPointer(); 318 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 319 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 320 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true); 321 } 322 323 return TmpAddr; 324 } 325 326 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 327 if (T->isLValueReferenceType()) { 328 return C.getLValueReferenceType( 329 getCanonicalParamType(C, T.getNonReferenceType()), 330 /*SpelledAsLValue=*/false); 331 } 332 if (T->isPointerType()) 333 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 334 if (auto *A = T->getAsArrayTypeUnsafe()) { 335 if (auto *VLA = dyn_cast<VariableArrayType>(A)) 336 return getCanonicalParamType(C, VLA->getElementType()); 337 else if (!A->isVariablyModifiedType()) 338 return C.getCanonicalType(T); 339 } 340 return C.getCanonicalParamType(T); 341 } 342 343 namespace { 344 /// Contains required data for proper outlined function codegen. 345 struct FunctionOptions { 346 /// Captured statement for which the function is generated. 347 const CapturedStmt *S = nullptr; 348 /// true if cast to/from UIntPtr is required for variables captured by 349 /// value. 350 const bool UIntPtrCastRequired = true; 351 /// true if only casted arguments must be registered as local args or VLA 352 /// sizes. 353 const bool RegisterCastedArgsOnly = false; 354 /// Name of the generated function. 355 const StringRef FunctionName; 356 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 357 bool RegisterCastedArgsOnly, 358 StringRef FunctionName) 359 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 360 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 361 FunctionName(FunctionName) {} 362 }; 363 } 364 365 static llvm::Function *emitOutlinedFunctionPrologue( 366 CodeGenFunction &CGF, FunctionArgList &Args, 367 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 368 &LocalAddrs, 369 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 370 &VLASizes, 371 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 372 const CapturedDecl *CD = FO.S->getCapturedDecl(); 373 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 374 assert(CD->hasBody() && "missing CapturedDecl body"); 375 376 CXXThisValue = nullptr; 377 // Build the argument list. 378 CodeGenModule &CGM = CGF.CGM; 379 ASTContext &Ctx = CGM.getContext(); 380 FunctionArgList TargetArgs; 381 Args.append(CD->param_begin(), 382 std::next(CD->param_begin(), CD->getContextParamPosition())); 383 TargetArgs.append( 384 CD->param_begin(), 385 std::next(CD->param_begin(), CD->getContextParamPosition())); 386 auto I = FO.S->captures().begin(); 387 FunctionDecl *DebugFunctionDecl = nullptr; 388 if (!FO.UIntPtrCastRequired) { 389 FunctionProtoType::ExtProtoInfo EPI; 390 DebugFunctionDecl = FunctionDecl::Create( 391 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getLocStart(), 392 SourceLocation(), DeclarationName(), Ctx.VoidTy, 393 Ctx.getTrivialTypeSourceInfo( 394 Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI)), 395 SC_Static, /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 396 } 397 for (auto *FD : RD->fields()) { 398 QualType ArgType = FD->getType(); 399 IdentifierInfo *II = nullptr; 400 VarDecl *CapVar = nullptr; 401 402 // If this is a capture by copy and the type is not a pointer, the outlined 403 // function argument type should be uintptr and the value properly casted to 404 // uintptr. This is necessary given that the runtime library is only able to 405 // deal with pointers. We can pass in the same way the VLA type sizes to the 406 // outlined function. 407 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 408 I->capturesVariableArrayType()) { 409 if (FO.UIntPtrCastRequired) 410 ArgType = Ctx.getUIntPtrType(); 411 } 412 413 if (I->capturesVariable() || I->capturesVariableByCopy()) { 414 CapVar = I->getCapturedVar(); 415 II = CapVar->getIdentifier(); 416 } else if (I->capturesThis()) 417 II = &Ctx.Idents.get("this"); 418 else { 419 assert(I->capturesVariableArrayType()); 420 II = &Ctx.Idents.get("vla"); 421 } 422 if (ArgType->isVariablyModifiedType()) 423 ArgType = getCanonicalParamType(Ctx, ArgType); 424 VarDecl *Arg; 425 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 426 Arg = ParmVarDecl::Create( 427 Ctx, DebugFunctionDecl, 428 CapVar ? CapVar->getLocStart() : FD->getLocStart(), 429 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 430 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 431 } else { 432 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 433 II, ArgType, ImplicitParamDecl::Other); 434 } 435 Args.emplace_back(Arg); 436 // Do not cast arguments if we emit function with non-original types. 437 TargetArgs.emplace_back( 438 FO.UIntPtrCastRequired 439 ? Arg 440 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 441 ++I; 442 } 443 Args.append( 444 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 445 CD->param_end()); 446 TargetArgs.append( 447 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 448 CD->param_end()); 449 450 // Create the function declaration. 451 const CGFunctionInfo &FuncInfo = 452 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 453 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 454 455 llvm::Function *F = 456 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 457 FO.FunctionName, &CGM.getModule()); 458 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 459 if (CD->isNothrow()) 460 F->setDoesNotThrow(); 461 462 // Generate the function. 463 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 464 FO.S->getLocStart(), CD->getBody()->getLocStart()); 465 unsigned Cnt = CD->getContextParamPosition(); 466 I = FO.S->captures().begin(); 467 for (auto *FD : RD->fields()) { 468 // Do not map arguments if we emit function with non-original types. 469 Address LocalAddr(Address::invalid()); 470 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 471 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 472 TargetArgs[Cnt]); 473 } else { 474 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 475 } 476 // If we are capturing a pointer by copy we don't need to do anything, just 477 // use the value that we get from the arguments. 478 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 479 const VarDecl *CurVD = I->getCapturedVar(); 480 // If the variable is a reference we need to materialize it here. 481 if (CurVD->getType()->isReferenceType()) { 482 Address RefAddr = CGF.CreateMemTemp( 483 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 484 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 485 /*Volatile=*/false, CurVD->getType()); 486 LocalAddr = RefAddr; 487 } 488 if (!FO.RegisterCastedArgsOnly) 489 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 490 ++Cnt; 491 ++I; 492 continue; 493 } 494 495 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 496 AlignmentSource::Decl); 497 if (FD->hasCapturedVLAType()) { 498 if (FO.UIntPtrCastRequired) { 499 ArgLVal = CGF.MakeAddrLValue(castValueFromUintptr(CGF, FD->getType(), 500 Args[Cnt]->getName(), 501 ArgLVal), 502 FD->getType(), AlignmentSource::Decl); 503 } 504 auto *ExprArg = 505 CGF.EmitLoadOfLValue(ArgLVal, SourceLocation()).getScalarVal(); 506 auto VAT = FD->getCapturedVLAType(); 507 VLASizes.insert({Args[Cnt], {VAT->getSizeExpr(), ExprArg}}); 508 } else if (I->capturesVariable()) { 509 auto *Var = I->getCapturedVar(); 510 QualType VarTy = Var->getType(); 511 Address ArgAddr = ArgLVal.getAddress(); 512 if (!VarTy->isReferenceType()) { 513 if (ArgLVal.getType()->isLValueReferenceType()) { 514 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 515 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 516 assert(ArgLVal.getType()->isPointerType()); 517 ArgAddr = CGF.EmitLoadOfPointer( 518 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 519 } 520 } 521 if (!FO.RegisterCastedArgsOnly) { 522 LocalAddrs.insert( 523 {Args[Cnt], 524 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 525 } 526 } else if (I->capturesVariableByCopy()) { 527 assert(!FD->getType()->isAnyPointerType() && 528 "Not expecting a captured pointer."); 529 auto *Var = I->getCapturedVar(); 530 QualType VarTy = Var->getType(); 531 LocalAddrs.insert( 532 {Args[Cnt], 533 {Var, 534 FO.UIntPtrCastRequired 535 ? castValueFromUintptr(CGF, FD->getType(), Args[Cnt]->getName(), 536 ArgLVal, VarTy->isReferenceType()) 537 : ArgLVal.getAddress()}}); 538 } else { 539 // If 'this' is captured, load it into CXXThisValue. 540 assert(I->capturesThis()); 541 CXXThisValue = CGF.EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()) 542 .getScalarVal(); 543 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 544 } 545 ++Cnt; 546 ++I; 547 } 548 549 return F; 550 } 551 552 llvm::Function * 553 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 554 assert( 555 CapturedStmtInfo && 556 "CapturedStmtInfo should be set when generating the captured function"); 557 const CapturedDecl *CD = S.getCapturedDecl(); 558 // Build the argument list. 559 bool NeedWrapperFunction = 560 getDebugInfo() && 561 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 562 FunctionArgList Args; 563 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 564 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 565 SmallString<256> Buffer; 566 llvm::raw_svector_ostream Out(Buffer); 567 Out << CapturedStmtInfo->getHelperName(); 568 if (NeedWrapperFunction) 569 Out << "_debug__"; 570 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 571 Out.str()); 572 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 573 VLASizes, CXXThisValue, FO); 574 for (const auto &LocalAddrPair : LocalAddrs) { 575 if (LocalAddrPair.second.first) { 576 setAddrOfLocalVar(LocalAddrPair.second.first, 577 LocalAddrPair.second.second); 578 } 579 } 580 for (const auto &VLASizePair : VLASizes) 581 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 582 PGO.assignRegionCounters(GlobalDecl(CD), F); 583 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 584 FinishFunction(CD->getBodyRBrace()); 585 if (!NeedWrapperFunction) 586 return F; 587 588 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 589 /*RegisterCastedArgsOnly=*/true, 590 CapturedStmtInfo->getHelperName()); 591 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 592 Args.clear(); 593 LocalAddrs.clear(); 594 VLASizes.clear(); 595 llvm::Function *WrapperF = 596 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 597 WrapperCGF.CXXThisValue, WrapperFO); 598 llvm::SmallVector<llvm::Value *, 4> CallArgs; 599 for (const auto *Arg : Args) { 600 llvm::Value *CallArg; 601 auto I = LocalAddrs.find(Arg); 602 if (I != LocalAddrs.end()) { 603 LValue LV = WrapperCGF.MakeAddrLValue( 604 I->second.second, 605 I->second.first ? I->second.first->getType() : Arg->getType(), 606 AlignmentSource::Decl); 607 CallArg = WrapperCGF.EmitLoadOfScalar(LV, SourceLocation()); 608 } else { 609 auto EI = VLASizes.find(Arg); 610 if (EI != VLASizes.end()) 611 CallArg = EI->second.second; 612 else { 613 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 614 Arg->getType(), 615 AlignmentSource::Decl); 616 CallArg = WrapperCGF.EmitLoadOfScalar(LV, SourceLocation()); 617 } 618 } 619 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 620 } 621 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getLocStart(), 622 F, CallArgs); 623 WrapperCGF.FinishFunction(); 624 return WrapperF; 625 } 626 627 //===----------------------------------------------------------------------===// 628 // OpenMP Directive Emission 629 //===----------------------------------------------------------------------===// 630 void CodeGenFunction::EmitOMPAggregateAssign( 631 Address DestAddr, Address SrcAddr, QualType OriginalType, 632 const llvm::function_ref<void(Address, Address)> &CopyGen) { 633 // Perform element-by-element initialization. 634 QualType ElementTy; 635 636 // Drill down to the base element type on both arrays. 637 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 638 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 639 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 640 641 auto SrcBegin = SrcAddr.getPointer(); 642 auto DestBegin = DestAddr.getPointer(); 643 // Cast from pointer to array type to pointer to single element. 644 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 645 // The basic structure here is a while-do loop. 646 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 647 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 648 auto IsEmpty = 649 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 650 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 651 652 // Enter the loop body, making that address the current address. 653 auto EntryBB = Builder.GetInsertBlock(); 654 EmitBlock(BodyBB); 655 656 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 657 658 llvm::PHINode *SrcElementPHI = 659 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 660 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 661 Address SrcElementCurrent = 662 Address(SrcElementPHI, 663 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 664 665 llvm::PHINode *DestElementPHI = 666 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 667 DestElementPHI->addIncoming(DestBegin, EntryBB); 668 Address DestElementCurrent = 669 Address(DestElementPHI, 670 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 671 672 // Emit copy. 673 CopyGen(DestElementCurrent, SrcElementCurrent); 674 675 // Shift the address forward by one element. 676 auto DestElementNext = Builder.CreateConstGEP1_32( 677 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 678 auto SrcElementNext = Builder.CreateConstGEP1_32( 679 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 680 // Check whether we've reached the end. 681 auto Done = 682 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 683 Builder.CreateCondBr(Done, DoneBB, BodyBB); 684 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 685 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 686 687 // Done. 688 EmitBlock(DoneBB, /*IsFinished=*/true); 689 } 690 691 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 692 Address SrcAddr, const VarDecl *DestVD, 693 const VarDecl *SrcVD, const Expr *Copy) { 694 if (OriginalType->isArrayType()) { 695 auto *BO = dyn_cast<BinaryOperator>(Copy); 696 if (BO && BO->getOpcode() == BO_Assign) { 697 // Perform simple memcpy for simple copying. 698 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 699 } else { 700 // For arrays with complex element types perform element by element 701 // copying. 702 EmitOMPAggregateAssign( 703 DestAddr, SrcAddr, OriginalType, 704 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 705 // Working with the single array element, so have to remap 706 // destination and source variables to corresponding array 707 // elements. 708 CodeGenFunction::OMPPrivateScope Remap(*this); 709 Remap.addPrivate(DestVD, [DestElement]() -> Address { 710 return DestElement; 711 }); 712 Remap.addPrivate( 713 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 714 (void)Remap.Privatize(); 715 EmitIgnoredExpr(Copy); 716 }); 717 } 718 } else { 719 // Remap pseudo source variable to private copy. 720 CodeGenFunction::OMPPrivateScope Remap(*this); 721 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 722 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 723 (void)Remap.Privatize(); 724 // Emit copying of the whole variable. 725 EmitIgnoredExpr(Copy); 726 } 727 } 728 729 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 730 OMPPrivateScope &PrivateScope) { 731 if (!HaveInsertPoint()) 732 return false; 733 bool FirstprivateIsLastprivate = false; 734 llvm::DenseSet<const VarDecl *> Lastprivates; 735 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 736 for (const auto *D : C->varlists()) 737 Lastprivates.insert( 738 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 739 } 740 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 741 CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt())); 742 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 743 auto IRef = C->varlist_begin(); 744 auto InitsRef = C->inits().begin(); 745 for (auto IInit : C->private_copies()) { 746 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 747 bool ThisFirstprivateIsLastprivate = 748 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 749 auto *CapFD = CapturesInfo.lookup(OrigVD); 750 auto *FD = CapturedStmtInfo->lookup(OrigVD); 751 if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) && 752 !FD->getType()->isReferenceType()) { 753 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 754 ++IRef; 755 ++InitsRef; 756 continue; 757 } 758 FirstprivateIsLastprivate = 759 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 760 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 761 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 762 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 763 bool IsRegistered; 764 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 765 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 766 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 767 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 768 QualType Type = VD->getType(); 769 if (Type->isArrayType()) { 770 // Emit VarDecl with copy init for arrays. 771 // Get the address of the original variable captured in current 772 // captured region. 773 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 774 auto Emission = EmitAutoVarAlloca(*VD); 775 auto *Init = VD->getInit(); 776 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 777 // Perform simple memcpy. 778 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 779 Type); 780 } else { 781 EmitOMPAggregateAssign( 782 Emission.getAllocatedAddress(), OriginalAddr, Type, 783 [this, VDInit, Init](Address DestElement, 784 Address SrcElement) { 785 // Clean up any temporaries needed by the initialization. 786 RunCleanupsScope InitScope(*this); 787 // Emit initialization for single element. 788 setAddrOfLocalVar(VDInit, SrcElement); 789 EmitAnyExprToMem(Init, DestElement, 790 Init->getType().getQualifiers(), 791 /*IsInitializer*/ false); 792 LocalDeclMap.erase(VDInit); 793 }); 794 } 795 EmitAutoVarCleanups(Emission); 796 return Emission.getAllocatedAddress(); 797 }); 798 } else { 799 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 800 // Emit private VarDecl with copy init. 801 // Remap temp VDInit variable to the address of the original 802 // variable 803 // (for proper handling of captured global variables). 804 setAddrOfLocalVar(VDInit, OriginalAddr); 805 EmitDecl(*VD); 806 LocalDeclMap.erase(VDInit); 807 return GetAddrOfLocalVar(VD); 808 }); 809 } 810 assert(IsRegistered && 811 "firstprivate var already registered as private"); 812 // Silence the warning about unused variable. 813 (void)IsRegistered; 814 } 815 ++IRef; 816 ++InitsRef; 817 } 818 } 819 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 820 } 821 822 void CodeGenFunction::EmitOMPPrivateClause( 823 const OMPExecutableDirective &D, 824 CodeGenFunction::OMPPrivateScope &PrivateScope) { 825 if (!HaveInsertPoint()) 826 return; 827 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 828 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 829 auto IRef = C->varlist_begin(); 830 for (auto IInit : C->private_copies()) { 831 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 832 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 833 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 834 bool IsRegistered = 835 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 836 // Emit private VarDecl with copy init. 837 EmitDecl(*VD); 838 return GetAddrOfLocalVar(VD); 839 }); 840 assert(IsRegistered && "private var already registered as private"); 841 // Silence the warning about unused variable. 842 (void)IsRegistered; 843 } 844 ++IRef; 845 } 846 } 847 } 848 849 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 850 if (!HaveInsertPoint()) 851 return false; 852 // threadprivate_var1 = master_threadprivate_var1; 853 // operator=(threadprivate_var2, master_threadprivate_var2); 854 // ... 855 // __kmpc_barrier(&loc, global_tid); 856 llvm::DenseSet<const VarDecl *> CopiedVars; 857 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 858 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 859 auto IRef = C->varlist_begin(); 860 auto ISrcRef = C->source_exprs().begin(); 861 auto IDestRef = C->destination_exprs().begin(); 862 for (auto *AssignOp : C->assignment_ops()) { 863 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 864 QualType Type = VD->getType(); 865 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 866 // Get the address of the master variable. If we are emitting code with 867 // TLS support, the address is passed from the master as field in the 868 // captured declaration. 869 Address MasterAddr = Address::invalid(); 870 if (getLangOpts().OpenMPUseTLS && 871 getContext().getTargetInfo().isTLSSupported()) { 872 assert(CapturedStmtInfo->lookup(VD) && 873 "Copyin threadprivates should have been captured!"); 874 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 875 VK_LValue, (*IRef)->getExprLoc()); 876 MasterAddr = EmitLValue(&DRE).getAddress(); 877 LocalDeclMap.erase(VD); 878 } else { 879 MasterAddr = 880 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 881 : CGM.GetAddrOfGlobal(VD), 882 getContext().getDeclAlign(VD)); 883 } 884 // Get the address of the threadprivate variable. 885 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 886 if (CopiedVars.size() == 1) { 887 // At first check if current thread is a master thread. If it is, no 888 // need to copy data. 889 CopyBegin = createBasicBlock("copyin.not.master"); 890 CopyEnd = createBasicBlock("copyin.not.master.end"); 891 Builder.CreateCondBr( 892 Builder.CreateICmpNE( 893 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 894 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 895 CopyBegin, CopyEnd); 896 EmitBlock(CopyBegin); 897 } 898 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 899 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 900 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 901 } 902 ++IRef; 903 ++ISrcRef; 904 ++IDestRef; 905 } 906 } 907 if (CopyEnd) { 908 // Exit out of copying procedure for non-master thread. 909 EmitBlock(CopyEnd, /*IsFinished=*/true); 910 return true; 911 } 912 return false; 913 } 914 915 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 916 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 917 if (!HaveInsertPoint()) 918 return false; 919 bool HasAtLeastOneLastprivate = false; 920 llvm::DenseSet<const VarDecl *> SIMDLCVs; 921 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 922 auto *LoopDirective = cast<OMPLoopDirective>(&D); 923 for (auto *C : LoopDirective->counters()) { 924 SIMDLCVs.insert( 925 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 926 } 927 } 928 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 929 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 930 HasAtLeastOneLastprivate = true; 931 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 932 !getLangOpts().OpenMPSimd) 933 break; 934 auto IRef = C->varlist_begin(); 935 auto IDestRef = C->destination_exprs().begin(); 936 for (auto *IInit : C->private_copies()) { 937 // Keep the address of the original variable for future update at the end 938 // of the loop. 939 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 940 // Taskloops do not require additional initialization, it is done in 941 // runtime support library. 942 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 943 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 944 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 945 DeclRefExpr DRE( 946 const_cast<VarDecl *>(OrigVD), 947 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 948 OrigVD) != nullptr, 949 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 950 return EmitLValue(&DRE).getAddress(); 951 }); 952 // Check if the variable is also a firstprivate: in this case IInit is 953 // not generated. Initialization of this variable will happen in codegen 954 // for 'firstprivate' clause. 955 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 956 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 957 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 958 // Emit private VarDecl with copy init. 959 EmitDecl(*VD); 960 return GetAddrOfLocalVar(VD); 961 }); 962 assert(IsRegistered && 963 "lastprivate var already registered as private"); 964 (void)IsRegistered; 965 } 966 } 967 ++IRef; 968 ++IDestRef; 969 } 970 } 971 return HasAtLeastOneLastprivate; 972 } 973 974 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 975 const OMPExecutableDirective &D, bool NoFinals, 976 llvm::Value *IsLastIterCond) { 977 if (!HaveInsertPoint()) 978 return; 979 // Emit following code: 980 // if (<IsLastIterCond>) { 981 // orig_var1 = private_orig_var1; 982 // ... 983 // orig_varn = private_orig_varn; 984 // } 985 llvm::BasicBlock *ThenBB = nullptr; 986 llvm::BasicBlock *DoneBB = nullptr; 987 if (IsLastIterCond) { 988 ThenBB = createBasicBlock(".omp.lastprivate.then"); 989 DoneBB = createBasicBlock(".omp.lastprivate.done"); 990 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 991 EmitBlock(ThenBB); 992 } 993 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 994 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 995 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 996 auto IC = LoopDirective->counters().begin(); 997 for (auto F : LoopDirective->finals()) { 998 auto *D = 999 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1000 if (NoFinals) 1001 AlreadyEmittedVars.insert(D); 1002 else 1003 LoopCountersAndUpdates[D] = F; 1004 ++IC; 1005 } 1006 } 1007 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1008 auto IRef = C->varlist_begin(); 1009 auto ISrcRef = C->source_exprs().begin(); 1010 auto IDestRef = C->destination_exprs().begin(); 1011 for (auto *AssignOp : C->assignment_ops()) { 1012 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1013 QualType Type = PrivateVD->getType(); 1014 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1015 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1016 // If lastprivate variable is a loop control variable for loop-based 1017 // directive, update its value before copyin back to original 1018 // variable. 1019 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1020 EmitIgnoredExpr(FinalExpr); 1021 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1022 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1023 // Get the address of the original variable. 1024 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1025 // Get the address of the private variable. 1026 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1027 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1028 PrivateAddr = 1029 Address(Builder.CreateLoad(PrivateAddr), 1030 getNaturalTypeAlignment(RefTy->getPointeeType())); 1031 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1032 } 1033 ++IRef; 1034 ++ISrcRef; 1035 ++IDestRef; 1036 } 1037 if (auto *PostUpdate = C->getPostUpdateExpr()) 1038 EmitIgnoredExpr(PostUpdate); 1039 } 1040 if (IsLastIterCond) 1041 EmitBlock(DoneBB, /*IsFinished=*/true); 1042 } 1043 1044 void CodeGenFunction::EmitOMPReductionClauseInit( 1045 const OMPExecutableDirective &D, 1046 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1047 if (!HaveInsertPoint()) 1048 return; 1049 SmallVector<const Expr *, 4> Shareds; 1050 SmallVector<const Expr *, 4> Privates; 1051 SmallVector<const Expr *, 4> ReductionOps; 1052 SmallVector<const Expr *, 4> LHSs; 1053 SmallVector<const Expr *, 4> RHSs; 1054 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1055 auto IPriv = C->privates().begin(); 1056 auto IRed = C->reduction_ops().begin(); 1057 auto ILHS = C->lhs_exprs().begin(); 1058 auto IRHS = C->rhs_exprs().begin(); 1059 for (const auto *Ref : C->varlists()) { 1060 Shareds.emplace_back(Ref); 1061 Privates.emplace_back(*IPriv); 1062 ReductionOps.emplace_back(*IRed); 1063 LHSs.emplace_back(*ILHS); 1064 RHSs.emplace_back(*IRHS); 1065 std::advance(IPriv, 1); 1066 std::advance(IRed, 1); 1067 std::advance(ILHS, 1); 1068 std::advance(IRHS, 1); 1069 } 1070 } 1071 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1072 unsigned Count = 0; 1073 auto ILHS = LHSs.begin(); 1074 auto IRHS = RHSs.begin(); 1075 auto IPriv = Privates.begin(); 1076 for (const auto *IRef : Shareds) { 1077 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1078 // Emit private VarDecl with reduction init. 1079 RedCG.emitSharedLValue(*this, Count); 1080 RedCG.emitAggregateType(*this, Count); 1081 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1082 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1083 RedCG.getSharedLValue(Count), 1084 [&Emission](CodeGenFunction &CGF) { 1085 CGF.EmitAutoVarInit(Emission); 1086 return true; 1087 }); 1088 EmitAutoVarCleanups(Emission); 1089 Address BaseAddr = RedCG.adjustPrivateAddress( 1090 *this, Count, Emission.getAllocatedAddress()); 1091 bool IsRegistered = PrivateScope.addPrivate( 1092 RedCG.getBaseDecl(Count), [BaseAddr]() -> Address { return BaseAddr; }); 1093 assert(IsRegistered && "private var already registered as private"); 1094 // Silence the warning about unused variable. 1095 (void)IsRegistered; 1096 1097 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1098 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1099 QualType Type = PrivateVD->getType(); 1100 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1101 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1102 // Store the address of the original variable associated with the LHS 1103 // implicit variable. 1104 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1105 return RedCG.getSharedLValue(Count).getAddress(); 1106 }); 1107 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1108 return GetAddrOfLocalVar(PrivateVD); 1109 }); 1110 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1111 isa<ArraySubscriptExpr>(IRef)) { 1112 // Store the address of the original variable associated with the LHS 1113 // implicit variable. 1114 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address { 1115 return RedCG.getSharedLValue(Count).getAddress(); 1116 }); 1117 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1118 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1119 ConvertTypeForMem(RHSVD->getType()), 1120 "rhs.begin"); 1121 }); 1122 } else { 1123 QualType Type = PrivateVD->getType(); 1124 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1125 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1126 // Store the address of the original variable associated with the LHS 1127 // implicit variable. 1128 if (IsArray) { 1129 OriginalAddr = Builder.CreateElementBitCast( 1130 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1131 } 1132 PrivateScope.addPrivate( 1133 LHSVD, [OriginalAddr]() -> Address { return OriginalAddr; }); 1134 PrivateScope.addPrivate( 1135 RHSVD, [this, PrivateVD, RHSVD, IsArray]() -> Address { 1136 return IsArray 1137 ? Builder.CreateElementBitCast( 1138 GetAddrOfLocalVar(PrivateVD), 1139 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1140 : GetAddrOfLocalVar(PrivateVD); 1141 }); 1142 } 1143 ++ILHS; 1144 ++IRHS; 1145 ++IPriv; 1146 ++Count; 1147 } 1148 } 1149 1150 void CodeGenFunction::EmitOMPReductionClauseFinal( 1151 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1152 if (!HaveInsertPoint()) 1153 return; 1154 llvm::SmallVector<const Expr *, 8> Privates; 1155 llvm::SmallVector<const Expr *, 8> LHSExprs; 1156 llvm::SmallVector<const Expr *, 8> RHSExprs; 1157 llvm::SmallVector<const Expr *, 8> ReductionOps; 1158 bool HasAtLeastOneReduction = false; 1159 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1160 HasAtLeastOneReduction = true; 1161 Privates.append(C->privates().begin(), C->privates().end()); 1162 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1163 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1164 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1165 } 1166 if (HasAtLeastOneReduction) { 1167 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1168 isOpenMPParallelDirective(D.getDirectiveKind()) || 1169 ReductionKind == OMPD_simd; 1170 bool SimpleReduction = ReductionKind == OMPD_simd; 1171 // Emit nowait reduction if nowait clause is present or directive is a 1172 // parallel directive (it always has implicit barrier). 1173 CGM.getOpenMPRuntime().emitReduction( 1174 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1175 {WithNowait, SimpleReduction, ReductionKind}); 1176 } 1177 } 1178 1179 static void emitPostUpdateForReductionClause( 1180 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1181 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1182 if (!CGF.HaveInsertPoint()) 1183 return; 1184 llvm::BasicBlock *DoneBB = nullptr; 1185 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1186 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1187 if (!DoneBB) { 1188 if (auto *Cond = CondGen(CGF)) { 1189 // If the first post-update expression is found, emit conditional 1190 // block if it was requested. 1191 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1192 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1193 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1194 CGF.EmitBlock(ThenBB); 1195 } 1196 } 1197 CGF.EmitIgnoredExpr(PostUpdate); 1198 } 1199 } 1200 if (DoneBB) 1201 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1202 } 1203 1204 namespace { 1205 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1206 /// parallel function. This is necessary for combined constructs such as 1207 /// 'distribute parallel for' 1208 typedef llvm::function_ref<void(CodeGenFunction &, 1209 const OMPExecutableDirective &, 1210 llvm::SmallVectorImpl<llvm::Value *> &)> 1211 CodeGenBoundParametersTy; 1212 } // anonymous namespace 1213 1214 static void emitCommonOMPParallelDirective( 1215 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1216 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1217 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1218 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1219 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1220 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1221 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1222 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1223 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1224 /*IgnoreResultAssign*/ true); 1225 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1226 CGF, NumThreads, NumThreadsClause->getLocStart()); 1227 } 1228 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1229 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1230 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1231 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1232 } 1233 const Expr *IfCond = nullptr; 1234 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1235 if (C->getNameModifier() == OMPD_unknown || 1236 C->getNameModifier() == OMPD_parallel) { 1237 IfCond = C->getCondition(); 1238 break; 1239 } 1240 } 1241 1242 OMPParallelScope Scope(CGF, S); 1243 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1244 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1245 // lower and upper bounds with the pragma 'for' chunking mechanism. 1246 // The following lambda takes care of appending the lower and upper bound 1247 // parameters when necessary 1248 CodeGenBoundParameters(CGF, S, CapturedVars); 1249 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1250 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1251 CapturedVars, IfCond); 1252 } 1253 1254 static void emitEmptyBoundParameters(CodeGenFunction &, 1255 const OMPExecutableDirective &, 1256 llvm::SmallVectorImpl<llvm::Value *> &) {} 1257 1258 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1259 // Emit parallel region as a standalone region. 1260 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1261 OMPPrivateScope PrivateScope(CGF); 1262 bool Copyins = CGF.EmitOMPCopyinClause(S); 1263 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1264 if (Copyins) { 1265 // Emit implicit barrier to synchronize threads and avoid data races on 1266 // propagation master's thread values of threadprivate variables to local 1267 // instances of that variables of all other implicit threads. 1268 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1269 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1270 /*ForceSimpleCall=*/true); 1271 } 1272 CGF.EmitOMPPrivateClause(S, PrivateScope); 1273 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1274 (void)PrivateScope.Privatize(); 1275 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1276 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1277 }; 1278 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1279 emitEmptyBoundParameters); 1280 emitPostUpdateForReductionClause( 1281 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1282 } 1283 1284 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1285 JumpDest LoopExit) { 1286 RunCleanupsScope BodyScope(*this); 1287 // Update counters values on current iteration. 1288 for (auto I : D.updates()) { 1289 EmitIgnoredExpr(I); 1290 } 1291 // Update the linear variables. 1292 // In distribute directives only loop counters may be marked as linear, no 1293 // need to generate the code for them. 1294 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1295 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1296 for (auto *U : C->updates()) 1297 EmitIgnoredExpr(U); 1298 } 1299 } 1300 1301 // On a continue in the body, jump to the end. 1302 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1303 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1304 // Emit loop body. 1305 EmitStmt(D.getBody()); 1306 // The end (updates/cleanups). 1307 EmitBlock(Continue.getBlock()); 1308 BreakContinueStack.pop_back(); 1309 } 1310 1311 void CodeGenFunction::EmitOMPInnerLoop( 1312 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1313 const Expr *IncExpr, 1314 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1315 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1316 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1317 1318 // Start the loop with a block that tests the condition. 1319 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1320 EmitBlock(CondBlock); 1321 const SourceRange &R = S.getSourceRange(); 1322 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1323 SourceLocToDebugLoc(R.getEnd())); 1324 1325 // If there are any cleanups between here and the loop-exit scope, 1326 // create a block to stage a loop exit along. 1327 auto ExitBlock = LoopExit.getBlock(); 1328 if (RequiresCleanup) 1329 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1330 1331 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1332 1333 // Emit condition. 1334 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1335 if (ExitBlock != LoopExit.getBlock()) { 1336 EmitBlock(ExitBlock); 1337 EmitBranchThroughCleanup(LoopExit); 1338 } 1339 1340 EmitBlock(LoopBody); 1341 incrementProfileCounter(&S); 1342 1343 // Create a block for the increment. 1344 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1345 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1346 1347 BodyGen(*this); 1348 1349 // Emit "IV = IV + 1" and a back-edge to the condition block. 1350 EmitBlock(Continue.getBlock()); 1351 EmitIgnoredExpr(IncExpr); 1352 PostIncGen(*this); 1353 BreakContinueStack.pop_back(); 1354 EmitBranch(CondBlock); 1355 LoopStack.pop(); 1356 // Emit the fall-through block. 1357 EmitBlock(LoopExit.getBlock()); 1358 } 1359 1360 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1361 if (!HaveInsertPoint()) 1362 return false; 1363 // Emit inits for the linear variables. 1364 bool HasLinears = false; 1365 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1366 for (auto *Init : C->inits()) { 1367 HasLinears = true; 1368 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1369 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1370 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1371 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1372 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1373 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1374 VD->getInit()->getType(), VK_LValue, 1375 VD->getInit()->getExprLoc()); 1376 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1377 VD->getType()), 1378 /*capturedByInit=*/false); 1379 EmitAutoVarCleanups(Emission); 1380 } else 1381 EmitVarDecl(*VD); 1382 } 1383 // Emit the linear steps for the linear clauses. 1384 // If a step is not constant, it is pre-calculated before the loop. 1385 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1386 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1387 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1388 // Emit calculation of the linear step. 1389 EmitIgnoredExpr(CS); 1390 } 1391 } 1392 return HasLinears; 1393 } 1394 1395 void CodeGenFunction::EmitOMPLinearClauseFinal( 1396 const OMPLoopDirective &D, 1397 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1398 if (!HaveInsertPoint()) 1399 return; 1400 llvm::BasicBlock *DoneBB = nullptr; 1401 // Emit the final values of the linear variables. 1402 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1403 auto IC = C->varlist_begin(); 1404 for (auto *F : C->finals()) { 1405 if (!DoneBB) { 1406 if (auto *Cond = CondGen(*this)) { 1407 // If the first post-update expression is found, emit conditional 1408 // block if it was requested. 1409 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1410 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1411 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1412 EmitBlock(ThenBB); 1413 } 1414 } 1415 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1416 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1417 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1418 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1419 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1420 CodeGenFunction::OMPPrivateScope VarScope(*this); 1421 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1422 (void)VarScope.Privatize(); 1423 EmitIgnoredExpr(F); 1424 ++IC; 1425 } 1426 if (auto *PostUpdate = C->getPostUpdateExpr()) 1427 EmitIgnoredExpr(PostUpdate); 1428 } 1429 if (DoneBB) 1430 EmitBlock(DoneBB, /*IsFinished=*/true); 1431 } 1432 1433 static void emitAlignedClause(CodeGenFunction &CGF, 1434 const OMPExecutableDirective &D) { 1435 if (!CGF.HaveInsertPoint()) 1436 return; 1437 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1438 unsigned ClauseAlignment = 0; 1439 if (auto AlignmentExpr = Clause->getAlignment()) { 1440 auto AlignmentCI = 1441 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1442 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1443 } 1444 for (auto E : Clause->varlists()) { 1445 unsigned Alignment = ClauseAlignment; 1446 if (Alignment == 0) { 1447 // OpenMP [2.8.1, Description] 1448 // If no optional parameter is specified, implementation-defined default 1449 // alignments for SIMD instructions on the target platforms are assumed. 1450 Alignment = 1451 CGF.getContext() 1452 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1453 E->getType()->getPointeeType())) 1454 .getQuantity(); 1455 } 1456 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1457 "alignment is not power of 2"); 1458 if (Alignment != 0) { 1459 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1460 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1461 } 1462 } 1463 } 1464 } 1465 1466 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1467 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1468 if (!HaveInsertPoint()) 1469 return; 1470 auto I = S.private_counters().begin(); 1471 for (auto *E : S.counters()) { 1472 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1473 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1474 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1475 // Emit var without initialization. 1476 if (!LocalDeclMap.count(PrivateVD)) { 1477 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1478 EmitAutoVarCleanups(VarEmission); 1479 } 1480 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1481 /*RefersToEnclosingVariableOrCapture=*/false, 1482 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1483 return EmitLValue(&DRE).getAddress(); 1484 }); 1485 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1486 VD->hasGlobalStorage()) { 1487 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1488 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1489 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1490 E->getType(), VK_LValue, E->getExprLoc()); 1491 return EmitLValue(&DRE).getAddress(); 1492 }); 1493 } 1494 ++I; 1495 } 1496 } 1497 1498 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1499 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1500 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1501 if (!CGF.HaveInsertPoint()) 1502 return; 1503 { 1504 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1505 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1506 (void)PreCondScope.Privatize(); 1507 // Get initial values of real counters. 1508 for (auto I : S.inits()) { 1509 CGF.EmitIgnoredExpr(I); 1510 } 1511 } 1512 // Check that loop is executed at least one time. 1513 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1514 } 1515 1516 void CodeGenFunction::EmitOMPLinearClause( 1517 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1518 if (!HaveInsertPoint()) 1519 return; 1520 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1521 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1522 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1523 for (auto *C : LoopDirective->counters()) { 1524 SIMDLCVs.insert( 1525 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1526 } 1527 } 1528 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1529 auto CurPrivate = C->privates().begin(); 1530 for (auto *E : C->varlists()) { 1531 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1532 auto *PrivateVD = 1533 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1534 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1535 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1536 // Emit private VarDecl with copy init. 1537 EmitVarDecl(*PrivateVD); 1538 return GetAddrOfLocalVar(PrivateVD); 1539 }); 1540 assert(IsRegistered && "linear var already registered as private"); 1541 // Silence the warning about unused variable. 1542 (void)IsRegistered; 1543 } else 1544 EmitVarDecl(*PrivateVD); 1545 ++CurPrivate; 1546 } 1547 } 1548 } 1549 1550 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1551 const OMPExecutableDirective &D, 1552 bool IsMonotonic) { 1553 if (!CGF.HaveInsertPoint()) 1554 return; 1555 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1556 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1557 /*ignoreResult=*/true); 1558 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1559 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1560 // In presence of finite 'safelen', it may be unsafe to mark all 1561 // the memory instructions parallel, because loop-carried 1562 // dependences of 'safelen' iterations are possible. 1563 if (!IsMonotonic) 1564 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1565 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1566 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1567 /*ignoreResult=*/true); 1568 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1569 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1570 // In presence of finite 'safelen', it may be unsafe to mark all 1571 // the memory instructions parallel, because loop-carried 1572 // dependences of 'safelen' iterations are possible. 1573 CGF.LoopStack.setParallel(false); 1574 } 1575 } 1576 1577 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1578 bool IsMonotonic) { 1579 // Walk clauses and process safelen/lastprivate. 1580 LoopStack.setParallel(!IsMonotonic); 1581 LoopStack.setVectorizeEnable(true); 1582 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1583 } 1584 1585 void CodeGenFunction::EmitOMPSimdFinal( 1586 const OMPLoopDirective &D, 1587 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1588 if (!HaveInsertPoint()) 1589 return; 1590 llvm::BasicBlock *DoneBB = nullptr; 1591 auto IC = D.counters().begin(); 1592 auto IPC = D.private_counters().begin(); 1593 for (auto F : D.finals()) { 1594 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1595 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1596 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1597 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1598 OrigVD->hasGlobalStorage() || CED) { 1599 if (!DoneBB) { 1600 if (auto *Cond = CondGen(*this)) { 1601 // If the first post-update expression is found, emit conditional 1602 // block if it was requested. 1603 auto *ThenBB = createBasicBlock(".omp.final.then"); 1604 DoneBB = createBasicBlock(".omp.final.done"); 1605 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1606 EmitBlock(ThenBB); 1607 } 1608 } 1609 Address OrigAddr = Address::invalid(); 1610 if (CED) 1611 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1612 else { 1613 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1614 /*RefersToEnclosingVariableOrCapture=*/false, 1615 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1616 OrigAddr = EmitLValue(&DRE).getAddress(); 1617 } 1618 OMPPrivateScope VarScope(*this); 1619 VarScope.addPrivate(OrigVD, 1620 [OrigAddr]() -> Address { return OrigAddr; }); 1621 (void)VarScope.Privatize(); 1622 EmitIgnoredExpr(F); 1623 } 1624 ++IC; 1625 ++IPC; 1626 } 1627 if (DoneBB) 1628 EmitBlock(DoneBB, /*IsFinished=*/true); 1629 } 1630 1631 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1632 const OMPLoopDirective &S, 1633 CodeGenFunction::JumpDest LoopExit) { 1634 CGF.EmitOMPLoopBody(S, LoopExit); 1635 CGF.EmitStopPoint(&S); 1636 } 1637 1638 /// Emit a helper variable and return corresponding lvalue. 1639 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1640 const DeclRefExpr *Helper) { 1641 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1642 CGF.EmitVarDecl(*VDecl); 1643 return CGF.EmitLValue(Helper); 1644 } 1645 1646 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1647 PrePostActionTy &Action) { 1648 Action.Enter(CGF); 1649 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1650 "Expected simd directive"); 1651 OMPLoopScope PreInitScope(CGF, S); 1652 // if (PreCond) { 1653 // for (IV in 0..LastIteration) BODY; 1654 // <Final counter/linear vars updates>; 1655 // } 1656 // 1657 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1658 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1659 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1660 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1661 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1662 } 1663 1664 // Emit: if (PreCond) - begin. 1665 // If the condition constant folds and can be elided, avoid emitting the 1666 // whole loop. 1667 bool CondConstant; 1668 llvm::BasicBlock *ContBlock = nullptr; 1669 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1670 if (!CondConstant) 1671 return; 1672 } else { 1673 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1674 ContBlock = CGF.createBasicBlock("simd.if.end"); 1675 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1676 CGF.getProfileCount(&S)); 1677 CGF.EmitBlock(ThenBlock); 1678 CGF.incrementProfileCounter(&S); 1679 } 1680 1681 // Emit the loop iteration variable. 1682 const Expr *IVExpr = S.getIterationVariable(); 1683 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1684 CGF.EmitVarDecl(*IVDecl); 1685 CGF.EmitIgnoredExpr(S.getInit()); 1686 1687 // Emit the iterations count variable. 1688 // If it is not a variable, Sema decided to calculate iterations count on 1689 // each iteration (e.g., it is foldable into a constant). 1690 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1691 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1692 // Emit calculation of the iterations count. 1693 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1694 } 1695 1696 CGF.EmitOMPSimdInit(S); 1697 1698 emitAlignedClause(CGF, S); 1699 (void)CGF.EmitOMPLinearClauseInit(S); 1700 { 1701 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1702 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1703 CGF.EmitOMPLinearClause(S, LoopScope); 1704 CGF.EmitOMPPrivateClause(S, LoopScope); 1705 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1706 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1707 (void)LoopScope.Privatize(); 1708 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1709 S.getInc(), 1710 [&S](CodeGenFunction &CGF) { 1711 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1712 CGF.EmitStopPoint(&S); 1713 }, 1714 [](CodeGenFunction &) {}); 1715 CGF.EmitOMPSimdFinal( 1716 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1717 // Emit final copy of the lastprivate variables at the end of loops. 1718 if (HasLastprivateClause) 1719 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1720 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1721 emitPostUpdateForReductionClause( 1722 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1723 } 1724 CGF.EmitOMPLinearClauseFinal( 1725 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1726 // Emit: if (PreCond) - end. 1727 if (ContBlock) { 1728 CGF.EmitBranch(ContBlock); 1729 CGF.EmitBlock(ContBlock, true); 1730 } 1731 } 1732 1733 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1734 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1735 emitOMPSimdRegion(CGF, S, Action); 1736 }; 1737 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1738 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1739 } 1740 1741 void CodeGenFunction::EmitOMPOuterLoop( 1742 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1743 CodeGenFunction::OMPPrivateScope &LoopScope, 1744 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1745 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1746 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1747 auto &RT = CGM.getOpenMPRuntime(); 1748 1749 const Expr *IVExpr = S.getIterationVariable(); 1750 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1751 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1752 1753 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1754 1755 // Start the loop with a block that tests the condition. 1756 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1757 EmitBlock(CondBlock); 1758 const SourceRange &R = S.getSourceRange(); 1759 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1760 SourceLocToDebugLoc(R.getEnd())); 1761 1762 llvm::Value *BoolCondVal = nullptr; 1763 if (!DynamicOrOrdered) { 1764 // UB = min(UB, GlobalUB) or 1765 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1766 // 'distribute parallel for') 1767 EmitIgnoredExpr(LoopArgs.EUB); 1768 // IV = LB 1769 EmitIgnoredExpr(LoopArgs.Init); 1770 // IV < UB 1771 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1772 } else { 1773 BoolCondVal = 1774 RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, LoopArgs.IL, 1775 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1776 } 1777 1778 // If there are any cleanups between here and the loop-exit scope, 1779 // create a block to stage a loop exit along. 1780 auto ExitBlock = LoopExit.getBlock(); 1781 if (LoopScope.requiresCleanups()) 1782 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1783 1784 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1785 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1786 if (ExitBlock != LoopExit.getBlock()) { 1787 EmitBlock(ExitBlock); 1788 EmitBranchThroughCleanup(LoopExit); 1789 } 1790 EmitBlock(LoopBody); 1791 1792 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1793 // LB for loop condition and emitted it above). 1794 if (DynamicOrOrdered) 1795 EmitIgnoredExpr(LoopArgs.Init); 1796 1797 // Create a block for the increment. 1798 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1799 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1800 1801 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1802 // with dynamic/guided scheduling and without ordered clause. 1803 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1804 LoopStack.setParallel(!IsMonotonic); 1805 else 1806 EmitOMPSimdInit(S, IsMonotonic); 1807 1808 SourceLocation Loc = S.getLocStart(); 1809 1810 // when 'distribute' is not combined with a 'for': 1811 // while (idx <= UB) { BODY; ++idx; } 1812 // when 'distribute' is combined with a 'for' 1813 // (e.g. 'distribute parallel for') 1814 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1815 EmitOMPInnerLoop( 1816 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1817 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1818 CodeGenLoop(CGF, S, LoopExit); 1819 }, 1820 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1821 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1822 }); 1823 1824 EmitBlock(Continue.getBlock()); 1825 BreakContinueStack.pop_back(); 1826 if (!DynamicOrOrdered) { 1827 // Emit "LB = LB + Stride", "UB = UB + Stride". 1828 EmitIgnoredExpr(LoopArgs.NextLB); 1829 EmitIgnoredExpr(LoopArgs.NextUB); 1830 } 1831 1832 EmitBranch(CondBlock); 1833 LoopStack.pop(); 1834 // Emit the fall-through block. 1835 EmitBlock(LoopExit.getBlock()); 1836 1837 // Tell the runtime we are done. 1838 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1839 if (!DynamicOrOrdered) 1840 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 1841 S.getDirectiveKind()); 1842 }; 1843 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1844 } 1845 1846 void CodeGenFunction::EmitOMPForOuterLoop( 1847 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1848 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1849 const OMPLoopArguments &LoopArgs, 1850 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1851 auto &RT = CGM.getOpenMPRuntime(); 1852 1853 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1854 const bool DynamicOrOrdered = 1855 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1856 1857 assert((Ordered || 1858 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1859 LoopArgs.Chunk != nullptr)) && 1860 "static non-chunked schedule does not need outer loop"); 1861 1862 // Emit outer loop. 1863 // 1864 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1865 // When schedule(dynamic,chunk_size) is specified, the iterations are 1866 // distributed to threads in the team in chunks as the threads request them. 1867 // Each thread executes a chunk of iterations, then requests another chunk, 1868 // until no chunks remain to be distributed. Each chunk contains chunk_size 1869 // iterations, except for the last chunk to be distributed, which may have 1870 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1871 // 1872 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1873 // to threads in the team in chunks as the executing threads request them. 1874 // Each thread executes a chunk of iterations, then requests another chunk, 1875 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1876 // each chunk is proportional to the number of unassigned iterations divided 1877 // by the number of threads in the team, decreasing to 1. For a chunk_size 1878 // with value k (greater than 1), the size of each chunk is determined in the 1879 // same way, with the restriction that the chunks do not contain fewer than k 1880 // iterations (except for the last chunk to be assigned, which may have fewer 1881 // than k iterations). 1882 // 1883 // When schedule(auto) is specified, the decision regarding scheduling is 1884 // delegated to the compiler and/or runtime system. The programmer gives the 1885 // implementation the freedom to choose any possible mapping of iterations to 1886 // threads in the team. 1887 // 1888 // When schedule(runtime) is specified, the decision regarding scheduling is 1889 // deferred until run time, and the schedule and chunk size are taken from the 1890 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1891 // implementation defined 1892 // 1893 // while(__kmpc_dispatch_next(&LB, &UB)) { 1894 // idx = LB; 1895 // while (idx <= UB) { BODY; ++idx; 1896 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1897 // } // inner loop 1898 // } 1899 // 1900 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1901 // When schedule(static, chunk_size) is specified, iterations are divided into 1902 // chunks of size chunk_size, and the chunks are assigned to the threads in 1903 // the team in a round-robin fashion in the order of the thread number. 1904 // 1905 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1906 // while (idx <= UB) { BODY; ++idx; } // inner loop 1907 // LB = LB + ST; 1908 // UB = UB + ST; 1909 // } 1910 // 1911 1912 const Expr *IVExpr = S.getIterationVariable(); 1913 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1914 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1915 1916 if (DynamicOrOrdered) { 1917 auto DispatchBounds = CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1918 llvm::Value *LBVal = DispatchBounds.first; 1919 llvm::Value *UBVal = DispatchBounds.second; 1920 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1921 LoopArgs.Chunk}; 1922 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1923 IVSigned, Ordered, DipatchRTInputValues); 1924 } else { 1925 CGOpenMPRuntime::StaticRTInput StaticInit( 1926 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1927 LoopArgs.ST, LoopArgs.Chunk); 1928 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 1929 ScheduleKind, StaticInit); 1930 } 1931 1932 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1933 const unsigned IVSize, 1934 const bool IVSigned) { 1935 if (Ordered) { 1936 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1937 IVSigned); 1938 } 1939 }; 1940 1941 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1942 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1943 OuterLoopArgs.IncExpr = S.getInc(); 1944 OuterLoopArgs.Init = S.getInit(); 1945 OuterLoopArgs.Cond = S.getCond(); 1946 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1947 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1948 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1949 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1950 } 1951 1952 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1953 const unsigned IVSize, const bool IVSigned) {} 1954 1955 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1956 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1957 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1958 const CodeGenLoopTy &CodeGenLoopContent) { 1959 1960 auto &RT = CGM.getOpenMPRuntime(); 1961 1962 // Emit outer loop. 1963 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1964 // dynamic 1965 // 1966 1967 const Expr *IVExpr = S.getIterationVariable(); 1968 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1969 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1970 1971 CGOpenMPRuntime::StaticRTInput StaticInit( 1972 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 1973 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 1974 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, StaticInit); 1975 1976 // for combined 'distribute' and 'for' the increment expression of distribute 1977 // is store in DistInc. For 'distribute' alone, it is in Inc. 1978 Expr *IncExpr; 1979 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 1980 IncExpr = S.getDistInc(); 1981 else 1982 IncExpr = S.getInc(); 1983 1984 // this routine is shared by 'omp distribute parallel for' and 1985 // 'omp distribute': select the right EUB expression depending on the 1986 // directive 1987 OMPLoopArguments OuterLoopArgs; 1988 OuterLoopArgs.LB = LoopArgs.LB; 1989 OuterLoopArgs.UB = LoopArgs.UB; 1990 OuterLoopArgs.ST = LoopArgs.ST; 1991 OuterLoopArgs.IL = LoopArgs.IL; 1992 OuterLoopArgs.Chunk = LoopArgs.Chunk; 1993 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1994 ? S.getCombinedEnsureUpperBound() 1995 : S.getEnsureUpperBound(); 1996 OuterLoopArgs.IncExpr = IncExpr; 1997 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 1998 ? S.getCombinedInit() 1999 : S.getInit(); 2000 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2001 ? S.getCombinedCond() 2002 : S.getCond(); 2003 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2004 ? S.getCombinedNextLowerBound() 2005 : S.getNextLowerBound(); 2006 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2007 ? S.getCombinedNextUpperBound() 2008 : S.getNextUpperBound(); 2009 2010 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2011 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2012 emitEmptyOrdered); 2013 } 2014 2015 static std::pair<LValue, LValue> 2016 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2017 const OMPExecutableDirective &S) { 2018 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2019 LValue LB = 2020 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2021 LValue UB = 2022 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2023 2024 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2025 // parallel for') we need to use the 'distribute' 2026 // chunk lower and upper bounds rather than the whole loop iteration 2027 // space. These are parameters to the outlined function for 'parallel' 2028 // and we copy the bounds of the previous schedule into the 2029 // the current ones. 2030 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2031 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2032 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(PrevLB, SourceLocation()); 2033 PrevLBVal = CGF.EmitScalarConversion( 2034 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2035 LS.getIterationVariable()->getType(), SourceLocation()); 2036 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(PrevUB, SourceLocation()); 2037 PrevUBVal = CGF.EmitScalarConversion( 2038 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2039 LS.getIterationVariable()->getType(), SourceLocation()); 2040 2041 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2042 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2043 2044 return {LB, UB}; 2045 } 2046 2047 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2048 /// we need to use the LB and UB expressions generated by the worksharing 2049 /// code generation support, whereas in non combined situations we would 2050 /// just emit 0 and the LastIteration expression 2051 /// This function is necessary due to the difference of the LB and UB 2052 /// types for the RT emission routines for 'for_static_init' and 2053 /// 'for_dispatch_init' 2054 static std::pair<llvm::Value *, llvm::Value *> 2055 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2056 const OMPExecutableDirective &S, 2057 Address LB, Address UB) { 2058 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2059 const Expr *IVExpr = LS.getIterationVariable(); 2060 // when implementing a dynamic schedule for a 'for' combined with a 2061 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2062 // is not normalized as each team only executes its own assigned 2063 // distribute chunk 2064 QualType IteratorTy = IVExpr->getType(); 2065 llvm::Value *LBVal = CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, 2066 SourceLocation()); 2067 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, 2068 SourceLocation()); 2069 return {LBVal, UBVal}; 2070 } 2071 2072 static void emitDistributeParallelForDistributeInnerBoundParams( 2073 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2074 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2075 const auto &Dir = cast<OMPLoopDirective>(S); 2076 LValue LB = 2077 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2078 auto LBCast = CGF.Builder.CreateIntCast( 2079 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2080 CapturedVars.push_back(LBCast); 2081 LValue UB = 2082 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2083 2084 auto UBCast = CGF.Builder.CreateIntCast( 2085 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2086 CapturedVars.push_back(UBCast); 2087 } 2088 2089 static void 2090 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2091 const OMPLoopDirective &S, 2092 CodeGenFunction::JumpDest LoopExit) { 2093 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2094 PrePostActionTy &) { 2095 bool HasCancel = false; 2096 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2097 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2098 HasCancel = D->hasCancel(); 2099 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2100 HasCancel = D->hasCancel(); 2101 else if (const auto *D = 2102 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2103 HasCancel = D->hasCancel(); 2104 } 2105 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2106 HasCancel); 2107 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2108 emitDistributeParallelForInnerBounds, 2109 emitDistributeParallelForDispatchBounds); 2110 }; 2111 2112 emitCommonOMPParallelDirective( 2113 CGF, S, 2114 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2115 CGInlinedWorksharingLoop, 2116 emitDistributeParallelForDistributeInnerBoundParams); 2117 } 2118 2119 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2120 const OMPDistributeParallelForDirective &S) { 2121 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2122 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2123 S.getDistInc()); 2124 }; 2125 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2126 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2127 } 2128 2129 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2130 const OMPDistributeParallelForSimdDirective &S) { 2131 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2132 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2133 S.getDistInc()); 2134 }; 2135 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2136 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2137 } 2138 2139 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2140 const OMPDistributeSimdDirective &S) { 2141 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2142 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2143 }; 2144 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2145 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2146 } 2147 2148 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2149 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2150 // Emit SPMD target parallel for region as a standalone region. 2151 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2152 emitOMPSimdRegion(CGF, S, Action); 2153 }; 2154 llvm::Function *Fn; 2155 llvm::Constant *Addr; 2156 // Emit target region as a standalone region. 2157 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2158 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2159 assert(Fn && Addr && "Target device function emission failed."); 2160 } 2161 2162 void CodeGenFunction::EmitOMPTargetSimdDirective( 2163 const OMPTargetSimdDirective &S) { 2164 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2165 emitOMPSimdRegion(CGF, S, Action); 2166 }; 2167 emitCommonOMPTargetDirective(*this, S, CodeGen); 2168 } 2169 2170 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2171 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 2172 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2173 CGM.getOpenMPRuntime().emitInlinedDirective( 2174 *this, OMPD_target_teams_distribute_parallel_for_simd, 2175 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2176 CGF.EmitStmt( 2177 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2178 }); 2179 } 2180 2181 namespace { 2182 struct ScheduleKindModifiersTy { 2183 OpenMPScheduleClauseKind Kind; 2184 OpenMPScheduleClauseModifier M1; 2185 OpenMPScheduleClauseModifier M2; 2186 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2187 OpenMPScheduleClauseModifier M1, 2188 OpenMPScheduleClauseModifier M2) 2189 : Kind(Kind), M1(M1), M2(M2) {} 2190 }; 2191 } // namespace 2192 2193 bool CodeGenFunction::EmitOMPWorksharingLoop( 2194 const OMPLoopDirective &S, Expr *EUB, 2195 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2196 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2197 // Emit the loop iteration variable. 2198 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2199 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2200 EmitVarDecl(*IVDecl); 2201 2202 // Emit the iterations count variable. 2203 // If it is not a variable, Sema decided to calculate iterations count on each 2204 // iteration (e.g., it is foldable into a constant). 2205 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2206 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2207 // Emit calculation of the iterations count. 2208 EmitIgnoredExpr(S.getCalcLastIteration()); 2209 } 2210 2211 auto &RT = CGM.getOpenMPRuntime(); 2212 2213 bool HasLastprivateClause; 2214 // Check pre-condition. 2215 { 2216 OMPLoopScope PreInitScope(*this, S); 2217 // Skip the entire loop if we don't meet the precondition. 2218 // If the condition constant folds and can be elided, avoid emitting the 2219 // whole loop. 2220 bool CondConstant; 2221 llvm::BasicBlock *ContBlock = nullptr; 2222 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2223 if (!CondConstant) 2224 return false; 2225 } else { 2226 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2227 ContBlock = createBasicBlock("omp.precond.end"); 2228 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2229 getProfileCount(&S)); 2230 EmitBlock(ThenBlock); 2231 incrementProfileCounter(&S); 2232 } 2233 2234 bool Ordered = false; 2235 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2236 if (OrderedClause->getNumForLoops()) 2237 RT.emitDoacrossInit(*this, S); 2238 else 2239 Ordered = true; 2240 } 2241 2242 llvm::DenseSet<const Expr *> EmittedFinals; 2243 emitAlignedClause(*this, S); 2244 bool HasLinears = EmitOMPLinearClauseInit(S); 2245 // Emit helper vars inits. 2246 2247 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2248 LValue LB = Bounds.first; 2249 LValue UB = Bounds.second; 2250 LValue ST = 2251 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2252 LValue IL = 2253 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2254 2255 // Emit 'then' code. 2256 { 2257 OMPPrivateScope LoopScope(*this); 2258 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2259 // Emit implicit barrier to synchronize threads and avoid data races on 2260 // initialization of firstprivate variables and post-update of 2261 // lastprivate variables. 2262 CGM.getOpenMPRuntime().emitBarrierCall( 2263 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2264 /*ForceSimpleCall=*/true); 2265 } 2266 EmitOMPPrivateClause(S, LoopScope); 2267 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2268 EmitOMPReductionClauseInit(S, LoopScope); 2269 EmitOMPPrivateLoopCounters(S, LoopScope); 2270 EmitOMPLinearClause(S, LoopScope); 2271 (void)LoopScope.Privatize(); 2272 2273 // Detect the loop schedule kind and chunk. 2274 llvm::Value *Chunk = nullptr; 2275 OpenMPScheduleTy ScheduleKind; 2276 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2277 ScheduleKind.Schedule = C->getScheduleKind(); 2278 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2279 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2280 if (const auto *Ch = C->getChunkSize()) { 2281 Chunk = EmitScalarExpr(Ch); 2282 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2283 S.getIterationVariable()->getType(), 2284 S.getLocStart()); 2285 } 2286 } 2287 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2288 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2289 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2290 // If the static schedule kind is specified or if the ordered clause is 2291 // specified, and if no monotonic modifier is specified, the effect will 2292 // be as if the monotonic modifier was specified. 2293 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2294 /* Chunked */ Chunk != nullptr) && 2295 !Ordered) { 2296 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2297 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2298 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2299 // When no chunk_size is specified, the iteration space is divided into 2300 // chunks that are approximately equal in size, and at most one chunk is 2301 // distributed to each thread. Note that the size of the chunks is 2302 // unspecified in this case. 2303 CGOpenMPRuntime::StaticRTInput StaticInit( 2304 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2305 UB.getAddress(), ST.getAddress()); 2306 RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(), 2307 ScheduleKind, StaticInit); 2308 auto LoopExit = 2309 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2310 // UB = min(UB, GlobalUB); 2311 EmitIgnoredExpr(S.getEnsureUpperBound()); 2312 // IV = LB; 2313 EmitIgnoredExpr(S.getInit()); 2314 // while (idx <= UB) { BODY; ++idx; } 2315 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2316 S.getInc(), 2317 [&S, LoopExit](CodeGenFunction &CGF) { 2318 CGF.EmitOMPLoopBody(S, LoopExit); 2319 CGF.EmitStopPoint(&S); 2320 }, 2321 [](CodeGenFunction &) {}); 2322 EmitBlock(LoopExit.getBlock()); 2323 // Tell the runtime we are done. 2324 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2325 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2326 S.getDirectiveKind()); 2327 }; 2328 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2329 } else { 2330 const bool IsMonotonic = 2331 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2332 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2333 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2334 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2335 // Emit the outer loop, which requests its work chunk [LB..UB] from 2336 // runtime and runs the inner loop to process it. 2337 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2338 ST.getAddress(), IL.getAddress(), 2339 Chunk, EUB); 2340 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2341 LoopArguments, CGDispatchBounds); 2342 } 2343 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2344 EmitOMPSimdFinal(S, 2345 [&](CodeGenFunction &CGF) -> llvm::Value * { 2346 return CGF.Builder.CreateIsNotNull( 2347 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2348 }); 2349 } 2350 EmitOMPReductionClauseFinal( 2351 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2352 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2353 : /*Parallel only*/ OMPD_parallel); 2354 // Emit post-update of the reduction variables if IsLastIter != 0. 2355 emitPostUpdateForReductionClause( 2356 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2357 return CGF.Builder.CreateIsNotNull( 2358 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2359 }); 2360 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2361 if (HasLastprivateClause) 2362 EmitOMPLastprivateClauseFinal( 2363 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2364 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2365 } 2366 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2367 return CGF.Builder.CreateIsNotNull( 2368 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2369 }); 2370 // We're now done with the loop, so jump to the continuation block. 2371 if (ContBlock) { 2372 EmitBranch(ContBlock); 2373 EmitBlock(ContBlock, true); 2374 } 2375 } 2376 return HasLastprivateClause; 2377 } 2378 2379 /// The following two functions generate expressions for the loop lower 2380 /// and upper bounds in case of static and dynamic (dispatch) schedule 2381 /// of the associated 'for' or 'distribute' loop. 2382 static std::pair<LValue, LValue> 2383 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2384 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2385 LValue LB = 2386 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2387 LValue UB = 2388 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2389 return {LB, UB}; 2390 } 2391 2392 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2393 /// consider the lower and upper bound expressions generated by the 2394 /// worksharing loop support, but we use 0 and the iteration space size as 2395 /// constants 2396 static std::pair<llvm::Value *, llvm::Value *> 2397 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2398 Address LB, Address UB) { 2399 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2400 const Expr *IVExpr = LS.getIterationVariable(); 2401 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2402 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2403 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2404 return {LBVal, UBVal}; 2405 } 2406 2407 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2408 bool HasLastprivates = false; 2409 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2410 PrePostActionTy &) { 2411 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2412 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2413 emitForLoopBounds, 2414 emitDispatchForLoopBounds); 2415 }; 2416 { 2417 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2418 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2419 S.hasCancel()); 2420 } 2421 2422 // Emit an implicit barrier at the end. 2423 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2424 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2425 } 2426 } 2427 2428 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2429 bool HasLastprivates = false; 2430 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2431 PrePostActionTy &) { 2432 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2433 emitForLoopBounds, 2434 emitDispatchForLoopBounds); 2435 }; 2436 { 2437 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2438 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2439 } 2440 2441 // Emit an implicit barrier at the end. 2442 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2443 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2444 } 2445 } 2446 2447 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2448 const Twine &Name, 2449 llvm::Value *Init = nullptr) { 2450 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2451 if (Init) 2452 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2453 return LVal; 2454 } 2455 2456 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2457 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 2458 auto *CS = dyn_cast<CompoundStmt>(Stmt); 2459 bool HasLastprivates = false; 2460 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2461 PrePostActionTy &) { 2462 auto &C = CGF.CGM.getContext(); 2463 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2464 // Emit helper vars inits. 2465 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2466 CGF.Builder.getInt32(0)); 2467 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2468 : CGF.Builder.getInt32(0); 2469 LValue UB = 2470 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2471 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2472 CGF.Builder.getInt32(1)); 2473 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2474 CGF.Builder.getInt32(0)); 2475 // Loop counter. 2476 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2477 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2478 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2479 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2480 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2481 // Generate condition for loop. 2482 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2483 OK_Ordinary, S.getLocStart(), FPOptions()); 2484 // Increment for loop counter. 2485 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2486 S.getLocStart()); 2487 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2488 // Iterate through all sections and emit a switch construct: 2489 // switch (IV) { 2490 // case 0: 2491 // <SectionStmt[0]>; 2492 // break; 2493 // ... 2494 // case <NumSection> - 1: 2495 // <SectionStmt[<NumSection> - 1]>; 2496 // break; 2497 // } 2498 // .omp.sections.exit: 2499 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2500 auto *SwitchStmt = CGF.Builder.CreateSwitch( 2501 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 2502 CS == nullptr ? 1 : CS->size()); 2503 if (CS) { 2504 unsigned CaseNumber = 0; 2505 for (auto *SubStmt : CS->children()) { 2506 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2507 CGF.EmitBlock(CaseBB); 2508 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2509 CGF.EmitStmt(SubStmt); 2510 CGF.EmitBranch(ExitBB); 2511 ++CaseNumber; 2512 } 2513 } else { 2514 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2515 CGF.EmitBlock(CaseBB); 2516 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2517 CGF.EmitStmt(Stmt); 2518 CGF.EmitBranch(ExitBB); 2519 } 2520 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2521 }; 2522 2523 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2524 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2525 // Emit implicit barrier to synchronize threads and avoid data races on 2526 // initialization of firstprivate variables and post-update of lastprivate 2527 // variables. 2528 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2529 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2530 /*ForceSimpleCall=*/true); 2531 } 2532 CGF.EmitOMPPrivateClause(S, LoopScope); 2533 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2534 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2535 (void)LoopScope.Privatize(); 2536 2537 // Emit static non-chunked loop. 2538 OpenMPScheduleTy ScheduleKind; 2539 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2540 CGOpenMPRuntime::StaticRTInput StaticInit( 2541 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2542 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2543 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2544 CGF, S.getLocStart(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2545 // UB = min(UB, GlobalUB); 2546 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2547 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2548 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2549 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2550 // IV = LB; 2551 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2552 // while (idx <= UB) { BODY; ++idx; } 2553 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2554 [](CodeGenFunction &) {}); 2555 // Tell the runtime we are done. 2556 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2557 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(), 2558 S.getDirectiveKind()); 2559 }; 2560 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2561 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2562 // Emit post-update of the reduction variables if IsLastIter != 0. 2563 emitPostUpdateForReductionClause( 2564 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2565 return CGF.Builder.CreateIsNotNull( 2566 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2567 }); 2568 2569 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2570 if (HasLastprivates) 2571 CGF.EmitOMPLastprivateClauseFinal( 2572 S, /*NoFinals=*/false, 2573 CGF.Builder.CreateIsNotNull( 2574 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2575 }; 2576 2577 bool HasCancel = false; 2578 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2579 HasCancel = OSD->hasCancel(); 2580 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2581 HasCancel = OPSD->hasCancel(); 2582 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2583 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2584 HasCancel); 2585 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2586 // clause. Otherwise the barrier will be generated by the codegen for the 2587 // directive. 2588 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2589 // Emit implicit barrier to synchronize threads and avoid data races on 2590 // initialization of firstprivate variables. 2591 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2592 OMPD_unknown); 2593 } 2594 } 2595 2596 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2597 { 2598 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2599 EmitSections(S); 2600 } 2601 // Emit an implicit barrier at the end. 2602 if (!S.getSingleClause<OMPNowaitClause>()) { 2603 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2604 OMPD_sections); 2605 } 2606 } 2607 2608 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2609 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2610 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2611 }; 2612 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2613 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2614 S.hasCancel()); 2615 } 2616 2617 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2618 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2619 llvm::SmallVector<const Expr *, 8> DestExprs; 2620 llvm::SmallVector<const Expr *, 8> SrcExprs; 2621 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2622 // Check if there are any 'copyprivate' clauses associated with this 2623 // 'single' construct. 2624 // Build a list of copyprivate variables along with helper expressions 2625 // (<source>, <destination>, <destination>=<source> expressions) 2626 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2627 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2628 DestExprs.append(C->destination_exprs().begin(), 2629 C->destination_exprs().end()); 2630 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2631 AssignmentOps.append(C->assignment_ops().begin(), 2632 C->assignment_ops().end()); 2633 } 2634 // Emit code for 'single' region along with 'copyprivate' clauses 2635 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2636 Action.Enter(CGF); 2637 OMPPrivateScope SingleScope(CGF); 2638 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2639 CGF.EmitOMPPrivateClause(S, SingleScope); 2640 (void)SingleScope.Privatize(); 2641 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2642 }; 2643 { 2644 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2645 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2646 CopyprivateVars, DestExprs, 2647 SrcExprs, AssignmentOps); 2648 } 2649 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2650 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2651 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2652 CGM.getOpenMPRuntime().emitBarrierCall( 2653 *this, S.getLocStart(), 2654 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2655 } 2656 } 2657 2658 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2659 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2660 Action.Enter(CGF); 2661 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2662 }; 2663 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2664 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2665 } 2666 2667 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2668 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2669 Action.Enter(CGF); 2670 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2671 }; 2672 Expr *Hint = nullptr; 2673 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2674 Hint = HintClause->getHint(); 2675 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2676 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2677 S.getDirectiveName().getAsString(), 2678 CodeGen, S.getLocStart(), Hint); 2679 } 2680 2681 void CodeGenFunction::EmitOMPParallelForDirective( 2682 const OMPParallelForDirective &S) { 2683 // Emit directive as a combined directive that consists of two implicit 2684 // directives: 'parallel' with 'for' directive. 2685 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2686 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2687 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2688 emitDispatchForLoopBounds); 2689 }; 2690 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2691 emitEmptyBoundParameters); 2692 } 2693 2694 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2695 const OMPParallelForSimdDirective &S) { 2696 // Emit directive as a combined directive that consists of two implicit 2697 // directives: 'parallel' with 'for' directive. 2698 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2699 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2700 emitDispatchForLoopBounds); 2701 }; 2702 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2703 emitEmptyBoundParameters); 2704 } 2705 2706 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2707 const OMPParallelSectionsDirective &S) { 2708 // Emit directive as a combined directive that consists of two implicit 2709 // directives: 'parallel' with 'sections' directive. 2710 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2711 CGF.EmitSections(S); 2712 }; 2713 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2714 emitEmptyBoundParameters); 2715 } 2716 2717 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2718 const RegionCodeGenTy &BodyGen, 2719 const TaskGenTy &TaskGen, 2720 OMPTaskDataTy &Data) { 2721 // Emit outlined function for task construct. 2722 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2723 auto *I = CS->getCapturedDecl()->param_begin(); 2724 auto *PartId = std::next(I); 2725 auto *TaskT = std::next(I, 4); 2726 // Check if the task is final 2727 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2728 // If the condition constant folds and can be elided, try to avoid emitting 2729 // the condition and the dead arm of the if/else. 2730 auto *Cond = Clause->getCondition(); 2731 bool CondConstant; 2732 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2733 Data.Final.setInt(CondConstant); 2734 else 2735 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2736 } else { 2737 // By default the task is not final. 2738 Data.Final.setInt(/*IntVal=*/false); 2739 } 2740 // Check if the task has 'priority' clause. 2741 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2742 auto *Prio = Clause->getPriority(); 2743 Data.Priority.setInt(/*IntVal=*/true); 2744 Data.Priority.setPointer(EmitScalarConversion( 2745 EmitScalarExpr(Prio), Prio->getType(), 2746 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2747 Prio->getExprLoc())); 2748 } 2749 // The first function argument for tasks is a thread id, the second one is a 2750 // part id (0 for tied tasks, >=0 for untied task). 2751 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2752 // Get list of private variables. 2753 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2754 auto IRef = C->varlist_begin(); 2755 for (auto *IInit : C->private_copies()) { 2756 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2757 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2758 Data.PrivateVars.push_back(*IRef); 2759 Data.PrivateCopies.push_back(IInit); 2760 } 2761 ++IRef; 2762 } 2763 } 2764 EmittedAsPrivate.clear(); 2765 // Get list of firstprivate variables. 2766 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2767 auto IRef = C->varlist_begin(); 2768 auto IElemInitRef = C->inits().begin(); 2769 for (auto *IInit : C->private_copies()) { 2770 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2771 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2772 Data.FirstprivateVars.push_back(*IRef); 2773 Data.FirstprivateCopies.push_back(IInit); 2774 Data.FirstprivateInits.push_back(*IElemInitRef); 2775 } 2776 ++IRef; 2777 ++IElemInitRef; 2778 } 2779 } 2780 // Get list of lastprivate variables (for taskloops). 2781 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2782 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2783 auto IRef = C->varlist_begin(); 2784 auto ID = C->destination_exprs().begin(); 2785 for (auto *IInit : C->private_copies()) { 2786 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2787 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2788 Data.LastprivateVars.push_back(*IRef); 2789 Data.LastprivateCopies.push_back(IInit); 2790 } 2791 LastprivateDstsOrigs.insert( 2792 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2793 cast<DeclRefExpr>(*IRef)}); 2794 ++IRef; 2795 ++ID; 2796 } 2797 } 2798 SmallVector<const Expr *, 4> LHSs; 2799 SmallVector<const Expr *, 4> RHSs; 2800 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2801 auto IPriv = C->privates().begin(); 2802 auto IRed = C->reduction_ops().begin(); 2803 auto ILHS = C->lhs_exprs().begin(); 2804 auto IRHS = C->rhs_exprs().begin(); 2805 for (const auto *Ref : C->varlists()) { 2806 Data.ReductionVars.emplace_back(Ref); 2807 Data.ReductionCopies.emplace_back(*IPriv); 2808 Data.ReductionOps.emplace_back(*IRed); 2809 LHSs.emplace_back(*ILHS); 2810 RHSs.emplace_back(*IRHS); 2811 std::advance(IPriv, 1); 2812 std::advance(IRed, 1); 2813 std::advance(ILHS, 1); 2814 std::advance(IRHS, 1); 2815 } 2816 } 2817 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2818 *this, S.getLocStart(), LHSs, RHSs, Data); 2819 // Build list of dependences. 2820 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2821 for (auto *IRef : C->varlists()) 2822 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2823 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs]( 2824 CodeGenFunction &CGF, PrePostActionTy &Action) { 2825 // Set proper addresses for generated private copies. 2826 OMPPrivateScope Scope(CGF); 2827 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2828 !Data.LastprivateVars.empty()) { 2829 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2830 auto *CopyFn = CGF.Builder.CreateLoad( 2831 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2832 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2833 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2834 // Map privates. 2835 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2836 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2837 CallArgs.push_back(PrivatesPtr); 2838 for (auto *E : Data.PrivateVars) { 2839 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2840 Address PrivatePtr = CGF.CreateMemTemp( 2841 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2842 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2843 CallArgs.push_back(PrivatePtr.getPointer()); 2844 } 2845 for (auto *E : Data.FirstprivateVars) { 2846 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2847 Address PrivatePtr = 2848 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2849 ".firstpriv.ptr.addr"); 2850 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2851 CallArgs.push_back(PrivatePtr.getPointer()); 2852 } 2853 for (auto *E : Data.LastprivateVars) { 2854 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2855 Address PrivatePtr = 2856 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2857 ".lastpriv.ptr.addr"); 2858 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2859 CallArgs.push_back(PrivatePtr.getPointer()); 2860 } 2861 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 2862 CopyFn, CallArgs); 2863 for (auto &&Pair : LastprivateDstsOrigs) { 2864 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2865 DeclRefExpr DRE( 2866 const_cast<VarDecl *>(OrigVD), 2867 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2868 OrigVD) != nullptr, 2869 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2870 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2871 return CGF.EmitLValue(&DRE).getAddress(); 2872 }); 2873 } 2874 for (auto &&Pair : PrivatePtrs) { 2875 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2876 CGF.getContext().getDeclAlign(Pair.first)); 2877 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2878 } 2879 } 2880 if (Data.Reductions) { 2881 OMPLexicalScope LexScope(CGF, S, /*AsInlined=*/true); 2882 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2883 Data.ReductionOps); 2884 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2885 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2886 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2887 RedCG.emitSharedLValue(CGF, Cnt); 2888 RedCG.emitAggregateType(CGF, Cnt); 2889 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2890 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2891 Replacement = 2892 Address(CGF.EmitScalarConversion( 2893 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2894 CGF.getContext().getPointerType( 2895 Data.ReductionCopies[Cnt]->getType()), 2896 SourceLocation()), 2897 Replacement.getAlignment()); 2898 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2899 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2900 [Replacement]() { return Replacement; }); 2901 // FIXME: This must removed once the runtime library is fixed. 2902 // Emit required threadprivate variables for 2903 // initilizer/combiner/finalizer. 2904 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2905 RedCG, Cnt); 2906 } 2907 } 2908 // Privatize all private variables except for in_reduction items. 2909 (void)Scope.Privatize(); 2910 SmallVector<const Expr *, 4> InRedVars; 2911 SmallVector<const Expr *, 4> InRedPrivs; 2912 SmallVector<const Expr *, 4> InRedOps; 2913 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2914 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2915 auto IPriv = C->privates().begin(); 2916 auto IRed = C->reduction_ops().begin(); 2917 auto ITD = C->taskgroup_descriptors().begin(); 2918 for (const auto *Ref : C->varlists()) { 2919 InRedVars.emplace_back(Ref); 2920 InRedPrivs.emplace_back(*IPriv); 2921 InRedOps.emplace_back(*IRed); 2922 TaskgroupDescriptors.emplace_back(*ITD); 2923 std::advance(IPriv, 1); 2924 std::advance(IRed, 1); 2925 std::advance(ITD, 1); 2926 } 2927 } 2928 // Privatize in_reduction items here, because taskgroup descriptors must be 2929 // privatized earlier. 2930 OMPPrivateScope InRedScope(CGF); 2931 if (!InRedVars.empty()) { 2932 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 2933 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 2934 RedCG.emitSharedLValue(CGF, Cnt); 2935 RedCG.emitAggregateType(CGF, Cnt); 2936 // The taskgroup descriptor variable is always implicit firstprivate and 2937 // privatized already during procoessing of the firstprivates. 2938 llvm::Value *ReductionsPtr = CGF.EmitLoadOfScalar( 2939 CGF.EmitLValue(TaskgroupDescriptors[Cnt]), SourceLocation()); 2940 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2941 CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2942 Replacement = Address( 2943 CGF.EmitScalarConversion( 2944 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2945 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 2946 SourceLocation()), 2947 Replacement.getAlignment()); 2948 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2949 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 2950 [Replacement]() { return Replacement; }); 2951 // FIXME: This must removed once the runtime library is fixed. 2952 // Emit required threadprivate variables for 2953 // initilizer/combiner/finalizer. 2954 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(), 2955 RedCG, Cnt); 2956 } 2957 } 2958 (void)InRedScope.Privatize(); 2959 2960 Action.Enter(CGF); 2961 BodyGen(CGF); 2962 }; 2963 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2964 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2965 Data.NumberOfParts); 2966 OMPLexicalScope Scope(*this, S); 2967 TaskGen(*this, OutlinedFn, Data); 2968 } 2969 2970 static ImplicitParamDecl * 2971 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 2972 QualType Ty, CapturedDecl *CD) { 2973 auto *OrigVD = ImplicitParamDecl::Create( 2974 C, CD, SourceLocation(), /*Id=*/nullptr, Ty, ImplicitParamDecl::Other); 2975 auto *OrigRef = 2976 DeclRefExpr::Create(C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 2977 /*RefersToEnclosingVariableOrCapture=*/false, 2978 SourceLocation(), Ty, VK_LValue); 2979 auto *PrivateVD = ImplicitParamDecl::Create( 2980 C, CD, SourceLocation(), /*Id=*/nullptr, Ty, ImplicitParamDecl::Other); 2981 auto *PrivateRef = DeclRefExpr::Create( 2982 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 2983 /*RefersToEnclosingVariableOrCapture=*/false, SourceLocation(), Ty, 2984 VK_LValue); 2985 QualType ElemType = C.getBaseElementType(Ty); 2986 auto *InitVD = 2987 ImplicitParamDecl::Create(C, CD, SourceLocation(), /*Id=*/nullptr, 2988 ElemType, ImplicitParamDecl::Other); 2989 auto *InitRef = 2990 DeclRefExpr::Create(C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 2991 /*RefersToEnclosingVariableOrCapture=*/false, 2992 SourceLocation(), ElemType, VK_LValue); 2993 PrivateVD->setInitStyle(VarDecl::CInit); 2994 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 2995 InitRef, /*BasePath=*/nullptr, 2996 VK_RValue)); 2997 Data.FirstprivateVars.emplace_back(OrigRef); 2998 Data.FirstprivateCopies.emplace_back(PrivateRef); 2999 Data.FirstprivateInits.emplace_back(InitRef); 3000 return OrigVD; 3001 } 3002 3003 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3004 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3005 OMPTargetDataInfo &InputInfo) { 3006 // Emit outlined function for task construct. 3007 auto CS = S.getCapturedStmt(OMPD_task); 3008 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3009 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3010 auto *I = CS->getCapturedDecl()->param_begin(); 3011 auto *PartId = std::next(I); 3012 auto *TaskT = std::next(I, 4); 3013 OMPTaskDataTy Data; 3014 // The task is not final. 3015 Data.Final.setInt(/*IntVal=*/false); 3016 // Get list of firstprivate variables. 3017 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3018 auto IRef = C->varlist_begin(); 3019 auto IElemInitRef = C->inits().begin(); 3020 for (auto *IInit : C->private_copies()) { 3021 Data.FirstprivateVars.push_back(*IRef); 3022 Data.FirstprivateCopies.push_back(IInit); 3023 Data.FirstprivateInits.push_back(*IElemInitRef); 3024 ++IRef; 3025 ++IElemInitRef; 3026 } 3027 } 3028 OMPPrivateScope TargetScope(*this); 3029 VarDecl *BPVD = nullptr; 3030 VarDecl *PVD = nullptr; 3031 VarDecl *SVD = nullptr; 3032 if (InputInfo.NumberOfTargetItems > 0) { 3033 auto *CD = CapturedDecl::Create( 3034 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3035 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3036 QualType BaseAndPointersType = getContext().getConstantArrayType( 3037 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3038 /*IndexTypeQuals=*/0); 3039 BPVD = createImplicitFirstprivateForType(getContext(), Data, 3040 BaseAndPointersType, CD); 3041 PVD = createImplicitFirstprivateForType(getContext(), Data, 3042 BaseAndPointersType, CD); 3043 QualType SizesType = getContext().getConstantArrayType( 3044 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3045 /*IndexTypeQuals=*/0); 3046 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD); 3047 TargetScope.addPrivate( 3048 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3049 TargetScope.addPrivate(PVD, 3050 [&InputInfo]() { return InputInfo.PointersArray; }); 3051 TargetScope.addPrivate(SVD, 3052 [&InputInfo]() { return InputInfo.SizesArray; }); 3053 } 3054 (void)TargetScope.Privatize(); 3055 // Build list of dependences. 3056 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3057 for (auto *IRef : C->varlists()) 3058 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 3059 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3060 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3061 // Set proper addresses for generated private copies. 3062 OMPPrivateScope Scope(CGF); 3063 if (!Data.FirstprivateVars.empty()) { 3064 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3065 auto *CopyFn = CGF.Builder.CreateLoad( 3066 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 3067 auto *PrivatesPtr = CGF.Builder.CreateLoad( 3068 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 3069 // Map privates. 3070 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3071 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3072 CallArgs.push_back(PrivatesPtr); 3073 for (auto *E : Data.FirstprivateVars) { 3074 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3075 Address PrivatePtr = 3076 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3077 ".firstpriv.ptr.addr"); 3078 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 3079 CallArgs.push_back(PrivatePtr.getPointer()); 3080 } 3081 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 3082 CopyFn, CallArgs); 3083 for (auto &&Pair : PrivatePtrs) { 3084 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3085 CGF.getContext().getDeclAlign(Pair.first)); 3086 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3087 } 3088 } 3089 // Privatize all private variables except for in_reduction items. 3090 (void)Scope.Privatize(); 3091 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3092 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize()); 3093 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3094 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize()); 3095 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3096 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize()); 3097 3098 Action.Enter(CGF); 3099 OMPLexicalScope LexScope(CGF, S, /*AsInlined=*/true, 3100 /*EmitPreInitStmt=*/false); 3101 BodyGen(CGF); 3102 }; 3103 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3104 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3105 Data.NumberOfParts); 3106 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3107 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3108 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3109 SourceLocation()); 3110 3111 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getLocStart(), S, OutlinedFn, 3112 SharedsTy, CapturedStruct, &IfCond, Data); 3113 } 3114 3115 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3116 // Emit outlined function for task construct. 3117 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3118 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3119 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3120 const Expr *IfCond = nullptr; 3121 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3122 if (C->getNameModifier() == OMPD_unknown || 3123 C->getNameModifier() == OMPD_task) { 3124 IfCond = C->getCondition(); 3125 break; 3126 } 3127 } 3128 3129 OMPTaskDataTy Data; 3130 // Check if we should emit tied or untied task. 3131 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3132 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3133 CGF.EmitStmt(CS->getCapturedStmt()); 3134 }; 3135 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3136 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3137 const OMPTaskDataTy &Data) { 3138 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 3139 SharedsTy, CapturedStruct, IfCond, 3140 Data); 3141 }; 3142 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 3143 } 3144 3145 void CodeGenFunction::EmitOMPTaskyieldDirective( 3146 const OMPTaskyieldDirective &S) { 3147 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 3148 } 3149 3150 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3151 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 3152 } 3153 3154 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3155 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 3156 } 3157 3158 void CodeGenFunction::EmitOMPTaskgroupDirective( 3159 const OMPTaskgroupDirective &S) { 3160 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3161 Action.Enter(CGF); 3162 if (const Expr *E = S.getReductionRef()) { 3163 SmallVector<const Expr *, 4> LHSs; 3164 SmallVector<const Expr *, 4> RHSs; 3165 OMPTaskDataTy Data; 3166 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3167 auto IPriv = C->privates().begin(); 3168 auto IRed = C->reduction_ops().begin(); 3169 auto ILHS = C->lhs_exprs().begin(); 3170 auto IRHS = C->rhs_exprs().begin(); 3171 for (const auto *Ref : C->varlists()) { 3172 Data.ReductionVars.emplace_back(Ref); 3173 Data.ReductionCopies.emplace_back(*IPriv); 3174 Data.ReductionOps.emplace_back(*IRed); 3175 LHSs.emplace_back(*ILHS); 3176 RHSs.emplace_back(*IRHS); 3177 std::advance(IPriv, 1); 3178 std::advance(IRed, 1); 3179 std::advance(ILHS, 1); 3180 std::advance(IRHS, 1); 3181 } 3182 } 3183 llvm::Value *ReductionDesc = 3184 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getLocStart(), 3185 LHSs, RHSs, Data); 3186 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3187 CGF.EmitVarDecl(*VD); 3188 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3189 /*Volatile=*/false, E->getType()); 3190 } 3191 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3192 }; 3193 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3194 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 3195 } 3196 3197 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3198 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 3199 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 3200 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3201 FlushClause->varlist_end()); 3202 } 3203 return llvm::None; 3204 }(), S.getLocStart()); 3205 } 3206 3207 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3208 const CodeGenLoopTy &CodeGenLoop, 3209 Expr *IncExpr) { 3210 // Emit the loop iteration variable. 3211 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3212 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3213 EmitVarDecl(*IVDecl); 3214 3215 // Emit the iterations count variable. 3216 // If it is not a variable, Sema decided to calculate iterations count on each 3217 // iteration (e.g., it is foldable into a constant). 3218 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3219 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3220 // Emit calculation of the iterations count. 3221 EmitIgnoredExpr(S.getCalcLastIteration()); 3222 } 3223 3224 auto &RT = CGM.getOpenMPRuntime(); 3225 3226 bool HasLastprivateClause = false; 3227 // Check pre-condition. 3228 { 3229 OMPLoopScope PreInitScope(*this, S); 3230 // Skip the entire loop if we don't meet the precondition. 3231 // If the condition constant folds and can be elided, avoid emitting the 3232 // whole loop. 3233 bool CondConstant; 3234 llvm::BasicBlock *ContBlock = nullptr; 3235 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3236 if (!CondConstant) 3237 return; 3238 } else { 3239 auto *ThenBlock = createBasicBlock("omp.precond.then"); 3240 ContBlock = createBasicBlock("omp.precond.end"); 3241 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3242 getProfileCount(&S)); 3243 EmitBlock(ThenBlock); 3244 incrementProfileCounter(&S); 3245 } 3246 3247 emitAlignedClause(*this, S); 3248 // Emit 'then' code. 3249 { 3250 // Emit helper vars inits. 3251 3252 LValue LB = EmitOMPHelperVar( 3253 *this, cast<DeclRefExpr>( 3254 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3255 ? S.getCombinedLowerBoundVariable() 3256 : S.getLowerBoundVariable()))); 3257 LValue UB = EmitOMPHelperVar( 3258 *this, cast<DeclRefExpr>( 3259 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3260 ? S.getCombinedUpperBoundVariable() 3261 : S.getUpperBoundVariable()))); 3262 LValue ST = 3263 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3264 LValue IL = 3265 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3266 3267 OMPPrivateScope LoopScope(*this); 3268 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3269 // Emit implicit barrier to synchronize threads and avoid data races 3270 // on initialization of firstprivate variables and post-update of 3271 // lastprivate variables. 3272 CGM.getOpenMPRuntime().emitBarrierCall( 3273 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 3274 /*ForceSimpleCall=*/true); 3275 } 3276 EmitOMPPrivateClause(S, LoopScope); 3277 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3278 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3279 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3280 EmitOMPReductionClauseInit(S, LoopScope); 3281 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3282 EmitOMPPrivateLoopCounters(S, LoopScope); 3283 (void)LoopScope.Privatize(); 3284 3285 // Detect the distribute schedule kind and chunk. 3286 llvm::Value *Chunk = nullptr; 3287 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3288 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3289 ScheduleKind = C->getDistScheduleKind(); 3290 if (const auto *Ch = C->getChunkSize()) { 3291 Chunk = EmitScalarExpr(Ch); 3292 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3293 S.getIterationVariable()->getType(), 3294 S.getLocStart()); 3295 } 3296 } 3297 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3298 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3299 3300 // OpenMP [2.10.8, distribute Construct, Description] 3301 // If dist_schedule is specified, kind must be static. If specified, 3302 // iterations are divided into chunks of size chunk_size, chunks are 3303 // assigned to the teams of the league in a round-robin fashion in the 3304 // order of the team number. When no chunk_size is specified, the 3305 // iteration space is divided into chunks that are approximately equal 3306 // in size, and at most one chunk is distributed to each team of the 3307 // league. The size of the chunks is unspecified in this case. 3308 if (RT.isStaticNonchunked(ScheduleKind, 3309 /* Chunked */ Chunk != nullptr)) { 3310 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3311 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3312 CGOpenMPRuntime::StaticRTInput StaticInit( 3313 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3314 LB.getAddress(), UB.getAddress(), ST.getAddress()); 3315 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 3316 StaticInit); 3317 auto LoopExit = 3318 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3319 // UB = min(UB, GlobalUB); 3320 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3321 ? S.getCombinedEnsureUpperBound() 3322 : S.getEnsureUpperBound()); 3323 // IV = LB; 3324 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3325 ? S.getCombinedInit() 3326 : S.getInit()); 3327 3328 Expr *Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3329 ? S.getCombinedCond() 3330 : S.getCond(); 3331 3332 // for distribute alone, codegen 3333 // while (idx <= UB) { BODY; ++idx; } 3334 // when combined with 'for' (e.g. as in 'distribute parallel for') 3335 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 3336 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3337 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3338 CodeGenLoop(CGF, S, LoopExit); 3339 }, 3340 [](CodeGenFunction &) {}); 3341 EmitBlock(LoopExit.getBlock()); 3342 // Tell the runtime we are done. 3343 RT.emitForStaticFinish(*this, S.getLocStart(), S.getDirectiveKind()); 3344 } else { 3345 // Emit the outer loop, which requests its work chunk [LB..UB] from 3346 // runtime and runs the inner loop to process it. 3347 const OMPLoopArguments LoopArguments = { 3348 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3349 Chunk}; 3350 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3351 CodeGenLoop); 3352 } 3353 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3354 EmitOMPSimdFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 3355 return CGF.Builder.CreateIsNotNull( 3356 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 3357 }); 3358 } 3359 OpenMPDirectiveKind ReductionKind = OMPD_unknown; 3360 if (isOpenMPParallelDirective(S.getDirectiveKind()) && 3361 isOpenMPSimdDirective(S.getDirectiveKind())) { 3362 ReductionKind = OMPD_parallel_for_simd; 3363 } else if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3364 ReductionKind = OMPD_parallel_for; 3365 } else if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3366 ReductionKind = OMPD_simd; 3367 } else if (!isOpenMPTeamsDirective(S.getDirectiveKind()) && 3368 S.hasClausesOfKind<OMPReductionClause>()) { 3369 llvm_unreachable( 3370 "No reduction clauses is allowed in distribute directive."); 3371 } 3372 EmitOMPReductionClauseFinal(S, ReductionKind); 3373 // Emit post-update of the reduction variables if IsLastIter != 0. 3374 emitPostUpdateForReductionClause( 3375 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 3376 return CGF.Builder.CreateIsNotNull( 3377 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 3378 }); 3379 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3380 if (HasLastprivateClause) { 3381 EmitOMPLastprivateClauseFinal( 3382 S, /*NoFinals=*/false, 3383 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 3384 } 3385 } 3386 3387 // We're now done with the loop, so jump to the continuation block. 3388 if (ContBlock) { 3389 EmitBranch(ContBlock); 3390 EmitBlock(ContBlock, true); 3391 } 3392 } 3393 } 3394 3395 void CodeGenFunction::EmitOMPDistributeDirective( 3396 const OMPDistributeDirective &S) { 3397 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3398 3399 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3400 }; 3401 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3402 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3403 } 3404 3405 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3406 const CapturedStmt *S) { 3407 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3408 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3409 CGF.CapturedStmtInfo = &CapStmtInfo; 3410 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3411 Fn->addFnAttr(llvm::Attribute::NoInline); 3412 return Fn; 3413 } 3414 3415 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3416 if (!S.getAssociatedStmt()) { 3417 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3418 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3419 return; 3420 } 3421 auto *C = S.getSingleClause<OMPSIMDClause>(); 3422 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3423 PrePostActionTy &Action) { 3424 if (C) { 3425 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3426 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3427 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3428 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3429 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(), 3430 OutlinedFn, CapturedVars); 3431 } else { 3432 Action.Enter(CGF); 3433 CGF.EmitStmt( 3434 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3435 } 3436 }; 3437 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3438 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 3439 } 3440 3441 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3442 QualType SrcType, QualType DestType, 3443 SourceLocation Loc) { 3444 assert(CGF.hasScalarEvaluationKind(DestType) && 3445 "DestType must have scalar evaluation kind."); 3446 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3447 return Val.isScalar() 3448 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 3449 Loc) 3450 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 3451 DestType, Loc); 3452 } 3453 3454 static CodeGenFunction::ComplexPairTy 3455 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3456 QualType DestType, SourceLocation Loc) { 3457 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3458 "DestType must have complex evaluation kind."); 3459 CodeGenFunction::ComplexPairTy ComplexVal; 3460 if (Val.isScalar()) { 3461 // Convert the input element to the element type of the complex. 3462 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3463 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3464 DestElementType, Loc); 3465 ComplexVal = CodeGenFunction::ComplexPairTy( 3466 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3467 } else { 3468 assert(Val.isComplex() && "Must be a scalar or complex."); 3469 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3470 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 3471 ComplexVal.first = CGF.EmitScalarConversion( 3472 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3473 ComplexVal.second = CGF.EmitScalarConversion( 3474 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3475 } 3476 return ComplexVal; 3477 } 3478 3479 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3480 LValue LVal, RValue RVal) { 3481 if (LVal.isGlobalReg()) { 3482 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3483 } else { 3484 CGF.EmitAtomicStore(RVal, LVal, 3485 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3486 : llvm::AtomicOrdering::Monotonic, 3487 LVal.isVolatile(), /*IsInit=*/false); 3488 } 3489 } 3490 3491 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3492 QualType RValTy, SourceLocation Loc) { 3493 switch (getEvaluationKind(LVal.getType())) { 3494 case TEK_Scalar: 3495 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3496 *this, RVal, RValTy, LVal.getType(), Loc)), 3497 LVal); 3498 break; 3499 case TEK_Complex: 3500 EmitStoreOfComplex( 3501 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3502 /*isInit=*/false); 3503 break; 3504 case TEK_Aggregate: 3505 llvm_unreachable("Must be a scalar or complex."); 3506 } 3507 } 3508 3509 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3510 const Expr *X, const Expr *V, 3511 SourceLocation Loc) { 3512 // v = x; 3513 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3514 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3515 LValue XLValue = CGF.EmitLValue(X); 3516 LValue VLValue = CGF.EmitLValue(V); 3517 RValue Res = XLValue.isGlobalReg() 3518 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3519 : CGF.EmitAtomicLoad( 3520 XLValue, Loc, 3521 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3522 : llvm::AtomicOrdering::Monotonic, 3523 XLValue.isVolatile()); 3524 // OpenMP, 2.12.6, atomic Construct 3525 // Any atomic construct with a seq_cst clause forces the atomically 3526 // performed operation to include an implicit flush operation without a 3527 // list. 3528 if (IsSeqCst) 3529 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3530 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3531 } 3532 3533 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3534 const Expr *X, const Expr *E, 3535 SourceLocation Loc) { 3536 // x = expr; 3537 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3538 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3539 // OpenMP, 2.12.6, atomic Construct 3540 // Any atomic construct with a seq_cst clause forces the atomically 3541 // performed operation to include an implicit flush operation without a 3542 // list. 3543 if (IsSeqCst) 3544 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3545 } 3546 3547 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3548 RValue Update, 3549 BinaryOperatorKind BO, 3550 llvm::AtomicOrdering AO, 3551 bool IsXLHSInRHSPart) { 3552 auto &Context = CGF.CGM.getContext(); 3553 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3554 // expression is simple and atomic is allowed for the given type for the 3555 // target platform. 3556 if (BO == BO_Comma || !Update.isScalar() || 3557 !Update.getScalarVal()->getType()->isIntegerTy() || 3558 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3559 (Update.getScalarVal()->getType() != 3560 X.getAddress().getElementType())) || 3561 !X.getAddress().getElementType()->isIntegerTy() || 3562 !Context.getTargetInfo().hasBuiltinAtomic( 3563 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3564 return std::make_pair(false, RValue::get(nullptr)); 3565 3566 llvm::AtomicRMWInst::BinOp RMWOp; 3567 switch (BO) { 3568 case BO_Add: 3569 RMWOp = llvm::AtomicRMWInst::Add; 3570 break; 3571 case BO_Sub: 3572 if (!IsXLHSInRHSPart) 3573 return std::make_pair(false, RValue::get(nullptr)); 3574 RMWOp = llvm::AtomicRMWInst::Sub; 3575 break; 3576 case BO_And: 3577 RMWOp = llvm::AtomicRMWInst::And; 3578 break; 3579 case BO_Or: 3580 RMWOp = llvm::AtomicRMWInst::Or; 3581 break; 3582 case BO_Xor: 3583 RMWOp = llvm::AtomicRMWInst::Xor; 3584 break; 3585 case BO_LT: 3586 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3587 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3588 : llvm::AtomicRMWInst::Max) 3589 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3590 : llvm::AtomicRMWInst::UMax); 3591 break; 3592 case BO_GT: 3593 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3594 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3595 : llvm::AtomicRMWInst::Min) 3596 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3597 : llvm::AtomicRMWInst::UMin); 3598 break; 3599 case BO_Assign: 3600 RMWOp = llvm::AtomicRMWInst::Xchg; 3601 break; 3602 case BO_Mul: 3603 case BO_Div: 3604 case BO_Rem: 3605 case BO_Shl: 3606 case BO_Shr: 3607 case BO_LAnd: 3608 case BO_LOr: 3609 return std::make_pair(false, RValue::get(nullptr)); 3610 case BO_PtrMemD: 3611 case BO_PtrMemI: 3612 case BO_LE: 3613 case BO_GE: 3614 case BO_EQ: 3615 case BO_NE: 3616 case BO_Cmp: 3617 case BO_AddAssign: 3618 case BO_SubAssign: 3619 case BO_AndAssign: 3620 case BO_OrAssign: 3621 case BO_XorAssign: 3622 case BO_MulAssign: 3623 case BO_DivAssign: 3624 case BO_RemAssign: 3625 case BO_ShlAssign: 3626 case BO_ShrAssign: 3627 case BO_Comma: 3628 llvm_unreachable("Unsupported atomic update operation"); 3629 } 3630 auto *UpdateVal = Update.getScalarVal(); 3631 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3632 UpdateVal = CGF.Builder.CreateIntCast( 3633 IC, X.getAddress().getElementType(), 3634 X.getType()->hasSignedIntegerRepresentation()); 3635 } 3636 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3637 return std::make_pair(true, RValue::get(Res)); 3638 } 3639 3640 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3641 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3642 llvm::AtomicOrdering AO, SourceLocation Loc, 3643 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3644 // Update expressions are allowed to have the following forms: 3645 // x binop= expr; -> xrval + expr; 3646 // x++, ++x -> xrval + 1; 3647 // x--, --x -> xrval - 1; 3648 // x = x binop expr; -> xrval binop expr 3649 // x = expr Op x; - > expr binop xrval; 3650 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3651 if (!Res.first) { 3652 if (X.isGlobalReg()) { 3653 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3654 // 'xrval'. 3655 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3656 } else { 3657 // Perform compare-and-swap procedure. 3658 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3659 } 3660 } 3661 return Res; 3662 } 3663 3664 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3665 const Expr *X, const Expr *E, 3666 const Expr *UE, bool IsXLHSInRHSPart, 3667 SourceLocation Loc) { 3668 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3669 "Update expr in 'atomic update' must be a binary operator."); 3670 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3671 // Update expressions are allowed to have the following forms: 3672 // x binop= expr; -> xrval + expr; 3673 // x++, ++x -> xrval + 1; 3674 // x--, --x -> xrval - 1; 3675 // x = x binop expr; -> xrval binop expr 3676 // x = expr Op x; - > expr binop xrval; 3677 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3678 LValue XLValue = CGF.EmitLValue(X); 3679 RValue ExprRValue = CGF.EmitAnyExpr(E); 3680 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3681 : llvm::AtomicOrdering::Monotonic; 3682 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3683 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3684 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3685 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3686 auto Gen = 3687 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3688 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3689 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3690 return CGF.EmitAnyExpr(UE); 3691 }; 3692 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3693 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3694 // OpenMP, 2.12.6, atomic Construct 3695 // Any atomic construct with a seq_cst clause forces the atomically 3696 // performed operation to include an implicit flush operation without a 3697 // list. 3698 if (IsSeqCst) 3699 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3700 } 3701 3702 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3703 QualType SourceType, QualType ResType, 3704 SourceLocation Loc) { 3705 switch (CGF.getEvaluationKind(ResType)) { 3706 case TEK_Scalar: 3707 return RValue::get( 3708 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3709 case TEK_Complex: { 3710 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3711 return RValue::getComplex(Res.first, Res.second); 3712 } 3713 case TEK_Aggregate: 3714 break; 3715 } 3716 llvm_unreachable("Must be a scalar or complex."); 3717 } 3718 3719 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3720 bool IsPostfixUpdate, const Expr *V, 3721 const Expr *X, const Expr *E, 3722 const Expr *UE, bool IsXLHSInRHSPart, 3723 SourceLocation Loc) { 3724 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3725 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3726 RValue NewVVal; 3727 LValue VLValue = CGF.EmitLValue(V); 3728 LValue XLValue = CGF.EmitLValue(X); 3729 RValue ExprRValue = CGF.EmitAnyExpr(E); 3730 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3731 : llvm::AtomicOrdering::Monotonic; 3732 QualType NewVValType; 3733 if (UE) { 3734 // 'x' is updated with some additional value. 3735 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3736 "Update expr in 'atomic capture' must be a binary operator."); 3737 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3738 // Update expressions are allowed to have the following forms: 3739 // x binop= expr; -> xrval + expr; 3740 // x++, ++x -> xrval + 1; 3741 // x--, --x -> xrval - 1; 3742 // x = x binop expr; -> xrval binop expr 3743 // x = expr Op x; - > expr binop xrval; 3744 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3745 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3746 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3747 NewVValType = XRValExpr->getType(); 3748 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3749 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3750 IsPostfixUpdate](RValue XRValue) -> RValue { 3751 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3752 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3753 RValue Res = CGF.EmitAnyExpr(UE); 3754 NewVVal = IsPostfixUpdate ? XRValue : Res; 3755 return Res; 3756 }; 3757 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3758 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3759 if (Res.first) { 3760 // 'atomicrmw' instruction was generated. 3761 if (IsPostfixUpdate) { 3762 // Use old value from 'atomicrmw'. 3763 NewVVal = Res.second; 3764 } else { 3765 // 'atomicrmw' does not provide new value, so evaluate it using old 3766 // value of 'x'. 3767 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3768 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3769 NewVVal = CGF.EmitAnyExpr(UE); 3770 } 3771 } 3772 } else { 3773 // 'x' is simply rewritten with some 'expr'. 3774 NewVValType = X->getType().getNonReferenceType(); 3775 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3776 X->getType().getNonReferenceType(), Loc); 3777 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) -> RValue { 3778 NewVVal = XRValue; 3779 return ExprRValue; 3780 }; 3781 // Try to perform atomicrmw xchg, otherwise simple exchange. 3782 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3783 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3784 Loc, Gen); 3785 if (Res.first) { 3786 // 'atomicrmw' instruction was generated. 3787 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3788 } 3789 } 3790 // Emit post-update store to 'v' of old/new 'x' value. 3791 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3792 // OpenMP, 2.12.6, atomic Construct 3793 // Any atomic construct with a seq_cst clause forces the atomically 3794 // performed operation to include an implicit flush operation without a 3795 // list. 3796 if (IsSeqCst) 3797 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3798 } 3799 3800 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3801 bool IsSeqCst, bool IsPostfixUpdate, 3802 const Expr *X, const Expr *V, const Expr *E, 3803 const Expr *UE, bool IsXLHSInRHSPart, 3804 SourceLocation Loc) { 3805 switch (Kind) { 3806 case OMPC_read: 3807 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3808 break; 3809 case OMPC_write: 3810 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3811 break; 3812 case OMPC_unknown: 3813 case OMPC_update: 3814 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3815 break; 3816 case OMPC_capture: 3817 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3818 IsXLHSInRHSPart, Loc); 3819 break; 3820 case OMPC_if: 3821 case OMPC_final: 3822 case OMPC_num_threads: 3823 case OMPC_private: 3824 case OMPC_firstprivate: 3825 case OMPC_lastprivate: 3826 case OMPC_reduction: 3827 case OMPC_task_reduction: 3828 case OMPC_in_reduction: 3829 case OMPC_safelen: 3830 case OMPC_simdlen: 3831 case OMPC_collapse: 3832 case OMPC_default: 3833 case OMPC_seq_cst: 3834 case OMPC_shared: 3835 case OMPC_linear: 3836 case OMPC_aligned: 3837 case OMPC_copyin: 3838 case OMPC_copyprivate: 3839 case OMPC_flush: 3840 case OMPC_proc_bind: 3841 case OMPC_schedule: 3842 case OMPC_ordered: 3843 case OMPC_nowait: 3844 case OMPC_untied: 3845 case OMPC_threadprivate: 3846 case OMPC_depend: 3847 case OMPC_mergeable: 3848 case OMPC_device: 3849 case OMPC_threads: 3850 case OMPC_simd: 3851 case OMPC_map: 3852 case OMPC_num_teams: 3853 case OMPC_thread_limit: 3854 case OMPC_priority: 3855 case OMPC_grainsize: 3856 case OMPC_nogroup: 3857 case OMPC_num_tasks: 3858 case OMPC_hint: 3859 case OMPC_dist_schedule: 3860 case OMPC_defaultmap: 3861 case OMPC_uniform: 3862 case OMPC_to: 3863 case OMPC_from: 3864 case OMPC_use_device_ptr: 3865 case OMPC_is_device_ptr: 3866 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3867 } 3868 } 3869 3870 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3871 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3872 OpenMPClauseKind Kind = OMPC_unknown; 3873 for (auto *C : S.clauses()) { 3874 // Find first clause (skip seq_cst clause, if it is first). 3875 if (C->getClauseKind() != OMPC_seq_cst) { 3876 Kind = C->getClauseKind(); 3877 break; 3878 } 3879 } 3880 3881 const auto *CS = 3882 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 3883 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3884 enterFullExpression(EWC); 3885 } 3886 // Processing for statements under 'atomic capture'. 3887 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3888 for (const auto *C : Compound->body()) { 3889 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3890 enterFullExpression(EWC); 3891 } 3892 } 3893 } 3894 3895 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3896 PrePostActionTy &) { 3897 CGF.EmitStopPoint(CS); 3898 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3899 S.getV(), S.getExpr(), S.getUpdateExpr(), 3900 S.isXLHSInRHSPart(), S.getLocStart()); 3901 }; 3902 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3903 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3904 } 3905 3906 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 3907 const OMPExecutableDirective &S, 3908 const RegionCodeGenTy &CodeGen) { 3909 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 3910 CodeGenModule &CGM = CGF.CGM; 3911 const CapturedStmt &CS = *S.getCapturedStmt(OMPD_target); 3912 3913 llvm::Function *Fn = nullptr; 3914 llvm::Constant *FnID = nullptr; 3915 3916 const Expr *IfCond = nullptr; 3917 // Check for the at most one if clause associated with the target region. 3918 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3919 if (C->getNameModifier() == OMPD_unknown || 3920 C->getNameModifier() == OMPD_target) { 3921 IfCond = C->getCondition(); 3922 break; 3923 } 3924 } 3925 3926 // Check if we have any device clause associated with the directive. 3927 const Expr *Device = nullptr; 3928 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3929 Device = C->getDevice(); 3930 } 3931 3932 // Check if we have an if clause whose conditional always evaluates to false 3933 // or if we do not have any targets specified. If so the target region is not 3934 // an offload entry point. 3935 bool IsOffloadEntry = true; 3936 if (IfCond) { 3937 bool Val; 3938 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3939 IsOffloadEntry = false; 3940 } 3941 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3942 IsOffloadEntry = false; 3943 3944 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 3945 StringRef ParentName; 3946 // In case we have Ctors/Dtors we use the complete type variant to produce 3947 // the mangling of the device outlined kernel. 3948 if (auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 3949 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3950 else if (auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 3951 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3952 else 3953 ParentName = 3954 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 3955 3956 // Emit target region as a standalone region. 3957 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 3958 IsOffloadEntry, CodeGen); 3959 OMPLexicalScope Scope(CGF, S); 3960 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3961 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); 3962 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 3963 CapturedVars); 3964 } 3965 3966 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 3967 PrePostActionTy &Action) { 3968 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3969 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3970 CGF.EmitOMPPrivateClause(S, PrivateScope); 3971 (void)PrivateScope.Privatize(); 3972 3973 Action.Enter(CGF); 3974 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3975 } 3976 3977 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3978 StringRef ParentName, 3979 const OMPTargetDirective &S) { 3980 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3981 emitTargetRegion(CGF, S, Action); 3982 }; 3983 llvm::Function *Fn; 3984 llvm::Constant *Addr; 3985 // Emit target region as a standalone region. 3986 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3987 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3988 assert(Fn && Addr && "Target device function emission failed."); 3989 } 3990 3991 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3992 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3993 emitTargetRegion(CGF, S, Action); 3994 }; 3995 emitCommonOMPTargetDirective(*this, S, CodeGen); 3996 } 3997 3998 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3999 const OMPExecutableDirective &S, 4000 OpenMPDirectiveKind InnermostKind, 4001 const RegionCodeGenTy &CodeGen) { 4002 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4003 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4004 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4005 4006 const OMPNumTeamsClause *NT = S.getSingleClause<OMPNumTeamsClause>(); 4007 const OMPThreadLimitClause *TL = S.getSingleClause<OMPThreadLimitClause>(); 4008 if (NT || TL) { 4009 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 4010 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 4011 4012 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4013 S.getLocStart()); 4014 } 4015 4016 OMPTeamsScope Scope(CGF, S); 4017 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4018 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4019 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 4020 CapturedVars); 4021 } 4022 4023 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4024 // Emit teams region as a standalone region. 4025 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4026 OMPPrivateScope PrivateScope(CGF); 4027 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4028 CGF.EmitOMPPrivateClause(S, PrivateScope); 4029 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4030 (void)PrivateScope.Privatize(); 4031 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 4032 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4033 }; 4034 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4035 emitPostUpdateForReductionClause( 4036 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4037 } 4038 4039 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4040 const OMPTargetTeamsDirective &S) { 4041 auto *CS = S.getCapturedStmt(OMPD_teams); 4042 Action.Enter(CGF); 4043 // Emit teams region as a standalone region. 4044 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4045 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4046 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4047 CGF.EmitOMPPrivateClause(S, PrivateScope); 4048 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4049 (void)PrivateScope.Privatize(); 4050 Action.Enter(CGF); 4051 CGF.EmitStmt(CS->getCapturedStmt()); 4052 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4053 }; 4054 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4055 emitPostUpdateForReductionClause( 4056 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4057 } 4058 4059 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4060 CodeGenModule &CGM, StringRef ParentName, 4061 const OMPTargetTeamsDirective &S) { 4062 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4063 emitTargetTeamsRegion(CGF, Action, S); 4064 }; 4065 llvm::Function *Fn; 4066 llvm::Constant *Addr; 4067 // Emit target region as a standalone region. 4068 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4069 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4070 assert(Fn && Addr && "Target device function emission failed."); 4071 } 4072 4073 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4074 const OMPTargetTeamsDirective &S) { 4075 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4076 emitTargetTeamsRegion(CGF, Action, S); 4077 }; 4078 emitCommonOMPTargetDirective(*this, S, CodeGen); 4079 } 4080 4081 static void 4082 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4083 const OMPTargetTeamsDistributeDirective &S) { 4084 Action.Enter(CGF); 4085 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4086 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4087 }; 4088 4089 // Emit teams region as a standalone region. 4090 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4091 PrePostActionTy &) { 4092 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4093 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4094 (void)PrivateScope.Privatize(); 4095 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4096 CodeGenDistribute); 4097 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4098 }; 4099 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4100 emitPostUpdateForReductionClause(CGF, S, 4101 [](CodeGenFunction &) { return nullptr; }); 4102 } 4103 4104 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4105 CodeGenModule &CGM, StringRef ParentName, 4106 const OMPTargetTeamsDistributeDirective &S) { 4107 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4108 emitTargetTeamsDistributeRegion(CGF, Action, S); 4109 }; 4110 llvm::Function *Fn; 4111 llvm::Constant *Addr; 4112 // Emit target region as a standalone region. 4113 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4114 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4115 assert(Fn && Addr && "Target device function emission failed."); 4116 } 4117 4118 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4119 const OMPTargetTeamsDistributeDirective &S) { 4120 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4121 emitTargetTeamsDistributeRegion(CGF, Action, S); 4122 }; 4123 emitCommonOMPTargetDirective(*this, S, CodeGen); 4124 } 4125 4126 static void emitTargetTeamsDistributeSimdRegion( 4127 CodeGenFunction &CGF, PrePostActionTy &Action, 4128 const OMPTargetTeamsDistributeSimdDirective &S) { 4129 Action.Enter(CGF); 4130 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4131 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4132 }; 4133 4134 // Emit teams region as a standalone region. 4135 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4136 PrePostActionTy &) { 4137 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4138 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4139 (void)PrivateScope.Privatize(); 4140 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4141 CodeGenDistribute); 4142 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4143 }; 4144 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4145 emitPostUpdateForReductionClause(CGF, S, 4146 [](CodeGenFunction &) { return nullptr; }); 4147 } 4148 4149 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4150 CodeGenModule &CGM, StringRef ParentName, 4151 const OMPTargetTeamsDistributeSimdDirective &S) { 4152 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4153 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4154 }; 4155 llvm::Function *Fn; 4156 llvm::Constant *Addr; 4157 // Emit target region as a standalone region. 4158 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4159 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4160 assert(Fn && Addr && "Target device function emission failed."); 4161 } 4162 4163 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4164 const OMPTargetTeamsDistributeSimdDirective &S) { 4165 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4166 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4167 }; 4168 emitCommonOMPTargetDirective(*this, S, CodeGen); 4169 } 4170 4171 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4172 const OMPTeamsDistributeDirective &S) { 4173 4174 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4175 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4176 }; 4177 4178 // Emit teams region as a standalone region. 4179 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4180 PrePostActionTy &) { 4181 OMPPrivateScope PrivateScope(CGF); 4182 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4183 (void)PrivateScope.Privatize(); 4184 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4185 CodeGenDistribute); 4186 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4187 }; 4188 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4189 emitPostUpdateForReductionClause(*this, S, 4190 [](CodeGenFunction &) { return nullptr; }); 4191 } 4192 4193 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4194 const OMPTeamsDistributeSimdDirective &S) { 4195 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4196 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4197 }; 4198 4199 // Emit teams region as a standalone region. 4200 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4201 PrePostActionTy &) { 4202 OMPPrivateScope PrivateScope(CGF); 4203 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4204 (void)PrivateScope.Privatize(); 4205 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4206 CodeGenDistribute); 4207 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4208 }; 4209 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4210 emitPostUpdateForReductionClause(*this, S, 4211 [](CodeGenFunction &) { return nullptr; }); 4212 } 4213 4214 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4215 const OMPTeamsDistributeParallelForDirective &S) { 4216 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4217 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4218 S.getDistInc()); 4219 }; 4220 4221 // Emit teams region as a standalone region. 4222 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4223 PrePostActionTy &) { 4224 OMPPrivateScope PrivateScope(CGF); 4225 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4226 (void)PrivateScope.Privatize(); 4227 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4228 CodeGenDistribute); 4229 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4230 }; 4231 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4232 emitPostUpdateForReductionClause(*this, S, 4233 [](CodeGenFunction &) { return nullptr; }); 4234 } 4235 4236 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4237 const OMPTeamsDistributeParallelForSimdDirective &S) { 4238 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4239 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4240 S.getDistInc()); 4241 }; 4242 4243 // Emit teams region as a standalone region. 4244 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4245 PrePostActionTy &) { 4246 OMPPrivateScope PrivateScope(CGF); 4247 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4248 (void)PrivateScope.Privatize(); 4249 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4250 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4251 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4252 }; 4253 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4254 emitPostUpdateForReductionClause(*this, S, 4255 [](CodeGenFunction &) { return nullptr; }); 4256 } 4257 4258 static void emitTargetTeamsDistributeParallelForRegion( 4259 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4260 PrePostActionTy &Action) { 4261 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4262 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4263 S.getDistInc()); 4264 }; 4265 4266 // Emit teams region as a standalone region. 4267 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4268 PrePostActionTy &) { 4269 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4270 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4271 (void)PrivateScope.Privatize(); 4272 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4273 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4274 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4275 }; 4276 4277 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4278 CodeGenTeams); 4279 emitPostUpdateForReductionClause(CGF, S, 4280 [](CodeGenFunction &) { return nullptr; }); 4281 } 4282 4283 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4284 CodeGenModule &CGM, StringRef ParentName, 4285 const OMPTargetTeamsDistributeParallelForDirective &S) { 4286 // Emit SPMD target teams distribute parallel for region as a standalone 4287 // region. 4288 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4289 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4290 }; 4291 llvm::Function *Fn; 4292 llvm::Constant *Addr; 4293 // Emit target region as a standalone region. 4294 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4295 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4296 assert(Fn && Addr && "Target device function emission failed."); 4297 } 4298 4299 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4300 const OMPTargetTeamsDistributeParallelForDirective &S) { 4301 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4302 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4303 }; 4304 emitCommonOMPTargetDirective(*this, S, CodeGen); 4305 } 4306 4307 void CodeGenFunction::EmitOMPCancellationPointDirective( 4308 const OMPCancellationPointDirective &S) { 4309 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 4310 S.getCancelRegion()); 4311 } 4312 4313 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4314 const Expr *IfCond = nullptr; 4315 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4316 if (C->getNameModifier() == OMPD_unknown || 4317 C->getNameModifier() == OMPD_cancel) { 4318 IfCond = C->getCondition(); 4319 break; 4320 } 4321 } 4322 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 4323 S.getCancelRegion()); 4324 } 4325 4326 CodeGenFunction::JumpDest 4327 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4328 if (Kind == OMPD_parallel || Kind == OMPD_task || 4329 Kind == OMPD_target_parallel) 4330 return ReturnBlock; 4331 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4332 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4333 Kind == OMPD_distribute_parallel_for || 4334 Kind == OMPD_target_parallel_for || 4335 Kind == OMPD_teams_distribute_parallel_for || 4336 Kind == OMPD_target_teams_distribute_parallel_for); 4337 return OMPCancelStack.getExitBlock(); 4338 } 4339 4340 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4341 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4342 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4343 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4344 auto OrigVarIt = C.varlist_begin(); 4345 auto InitIt = C.inits().begin(); 4346 for (auto PvtVarIt : C.private_copies()) { 4347 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4348 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4349 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4350 4351 // In order to identify the right initializer we need to match the 4352 // declaration used by the mapping logic. In some cases we may get 4353 // OMPCapturedExprDecl that refers to the original declaration. 4354 const ValueDecl *MatchingVD = OrigVD; 4355 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4356 // OMPCapturedExprDecl are used to privative fields of the current 4357 // structure. 4358 auto *ME = cast<MemberExpr>(OED->getInit()); 4359 assert(isa<CXXThisExpr>(ME->getBase()) && 4360 "Base should be the current struct!"); 4361 MatchingVD = ME->getMemberDecl(); 4362 } 4363 4364 // If we don't have information about the current list item, move on to 4365 // the next one. 4366 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4367 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4368 continue; 4369 4370 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 4371 // Initialize the temporary initialization variable with the address we 4372 // get from the runtime library. We have to cast the source address 4373 // because it is always a void *. References are materialized in the 4374 // privatization scope, so the initialization here disregards the fact 4375 // the original variable is a reference. 4376 QualType AddrQTy = 4377 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4378 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4379 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4380 setAddrOfLocalVar(InitVD, InitAddr); 4381 4382 // Emit private declaration, it will be initialized by the value we 4383 // declaration we just added to the local declarations map. 4384 EmitDecl(*PvtVD); 4385 4386 // The initialization variables reached its purpose in the emission 4387 // ofthe previous declaration, so we don't need it anymore. 4388 LocalDeclMap.erase(InitVD); 4389 4390 // Return the address of the private variable. 4391 return GetAddrOfLocalVar(PvtVD); 4392 }); 4393 assert(IsRegistered && "firstprivate var already registered as private"); 4394 // Silence the warning about unused variable. 4395 (void)IsRegistered; 4396 4397 ++OrigVarIt; 4398 ++InitIt; 4399 } 4400 } 4401 4402 // Generate the instructions for '#pragma omp target data' directive. 4403 void CodeGenFunction::EmitOMPTargetDataDirective( 4404 const OMPTargetDataDirective &S) { 4405 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4406 4407 // Create a pre/post action to signal the privatization of the device pointer. 4408 // This action can be replaced by the OpenMP runtime code generation to 4409 // deactivate privatization. 4410 bool PrivatizeDevicePointers = false; 4411 class DevicePointerPrivActionTy : public PrePostActionTy { 4412 bool &PrivatizeDevicePointers; 4413 4414 public: 4415 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4416 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4417 void Enter(CodeGenFunction &CGF) override { 4418 PrivatizeDevicePointers = true; 4419 } 4420 }; 4421 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4422 4423 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4424 CodeGenFunction &CGF, PrePostActionTy &Action) { 4425 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4426 CGF.EmitStmt( 4427 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 4428 }; 4429 4430 // Codegen that selects wheather to generate the privatization code or not. 4431 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4432 &InnermostCodeGen](CodeGenFunction &CGF, 4433 PrePostActionTy &Action) { 4434 RegionCodeGenTy RCG(InnermostCodeGen); 4435 PrivatizeDevicePointers = false; 4436 4437 // Call the pre-action to change the status of PrivatizeDevicePointers if 4438 // needed. 4439 Action.Enter(CGF); 4440 4441 if (PrivatizeDevicePointers) { 4442 OMPPrivateScope PrivateScope(CGF); 4443 // Emit all instances of the use_device_ptr clause. 4444 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4445 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4446 Info.CaptureDeviceAddrMap); 4447 (void)PrivateScope.Privatize(); 4448 RCG(CGF); 4449 } else 4450 RCG(CGF); 4451 }; 4452 4453 // Forward the provided action to the privatization codegen. 4454 RegionCodeGenTy PrivRCG(PrivCodeGen); 4455 PrivRCG.setAction(Action); 4456 4457 // Notwithstanding the body of the region is emitted as inlined directive, 4458 // we don't use an inline scope as changes in the references inside the 4459 // region are expected to be visible outside, so we do not privative them. 4460 OMPLexicalScope Scope(CGF, S); 4461 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4462 PrivRCG); 4463 }; 4464 4465 RegionCodeGenTy RCG(CodeGen); 4466 4467 // If we don't have target devices, don't bother emitting the data mapping 4468 // code. 4469 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4470 RCG(*this); 4471 return; 4472 } 4473 4474 // Check if we have any if clause associated with the directive. 4475 const Expr *IfCond = nullptr; 4476 if (auto *C = S.getSingleClause<OMPIfClause>()) 4477 IfCond = C->getCondition(); 4478 4479 // Check if we have any device clause associated with the directive. 4480 const Expr *Device = nullptr; 4481 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4482 Device = C->getDevice(); 4483 4484 // Set the action to signal privatization of device pointers. 4485 RCG.setAction(PrivAction); 4486 4487 // Emit region code. 4488 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4489 Info); 4490 } 4491 4492 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4493 const OMPTargetEnterDataDirective &S) { 4494 // If we don't have target devices, don't bother emitting the data mapping 4495 // code. 4496 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4497 return; 4498 4499 // Check if we have any if clause associated with the directive. 4500 const Expr *IfCond = nullptr; 4501 if (auto *C = S.getSingleClause<OMPIfClause>()) 4502 IfCond = C->getCondition(); 4503 4504 // Check if we have any device clause associated with the directive. 4505 const Expr *Device = nullptr; 4506 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4507 Device = C->getDevice(); 4508 4509 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 4510 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4511 } 4512 4513 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4514 const OMPTargetExitDataDirective &S) { 4515 // If we don't have target devices, don't bother emitting the data mapping 4516 // code. 4517 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4518 return; 4519 4520 // Check if we have any if clause associated with the directive. 4521 const Expr *IfCond = nullptr; 4522 if (auto *C = S.getSingleClause<OMPIfClause>()) 4523 IfCond = C->getCondition(); 4524 4525 // Check if we have any device clause associated with the directive. 4526 const Expr *Device = nullptr; 4527 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4528 Device = C->getDevice(); 4529 4530 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 4531 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4532 } 4533 4534 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4535 const OMPTargetParallelDirective &S, 4536 PrePostActionTy &Action) { 4537 // Get the captured statement associated with the 'parallel' region. 4538 auto *CS = S.getCapturedStmt(OMPD_parallel); 4539 Action.Enter(CGF); 4540 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &) { 4541 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4542 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4543 CGF.EmitOMPPrivateClause(S, PrivateScope); 4544 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4545 (void)PrivateScope.Privatize(); 4546 // TODO: Add support for clauses. 4547 CGF.EmitStmt(CS->getCapturedStmt()); 4548 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4549 }; 4550 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4551 emitEmptyBoundParameters); 4552 emitPostUpdateForReductionClause( 4553 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 4554 } 4555 4556 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4557 CodeGenModule &CGM, StringRef ParentName, 4558 const OMPTargetParallelDirective &S) { 4559 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4560 emitTargetParallelRegion(CGF, S, Action); 4561 }; 4562 llvm::Function *Fn; 4563 llvm::Constant *Addr; 4564 // Emit target region as a standalone region. 4565 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4566 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4567 assert(Fn && Addr && "Target device function emission failed."); 4568 } 4569 4570 void CodeGenFunction::EmitOMPTargetParallelDirective( 4571 const OMPTargetParallelDirective &S) { 4572 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4573 emitTargetParallelRegion(CGF, S, Action); 4574 }; 4575 emitCommonOMPTargetDirective(*this, S, CodeGen); 4576 } 4577 4578 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4579 const OMPTargetParallelForDirective &S, 4580 PrePostActionTy &Action) { 4581 Action.Enter(CGF); 4582 // Emit directive as a combined directive that consists of two implicit 4583 // directives: 'parallel' with 'for' directive. 4584 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4585 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4586 CGF, OMPD_target_parallel_for, S.hasCancel()); 4587 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4588 emitDispatchForLoopBounds); 4589 }; 4590 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4591 emitEmptyBoundParameters); 4592 } 4593 4594 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4595 CodeGenModule &CGM, StringRef ParentName, 4596 const OMPTargetParallelForDirective &S) { 4597 // Emit SPMD target parallel for region as a standalone region. 4598 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4599 emitTargetParallelForRegion(CGF, S, Action); 4600 }; 4601 llvm::Function *Fn; 4602 llvm::Constant *Addr; 4603 // Emit target region as a standalone region. 4604 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4605 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4606 assert(Fn && Addr && "Target device function emission failed."); 4607 } 4608 4609 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4610 const OMPTargetParallelForDirective &S) { 4611 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4612 emitTargetParallelForRegion(CGF, S, Action); 4613 }; 4614 emitCommonOMPTargetDirective(*this, S, CodeGen); 4615 } 4616 4617 static void 4618 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4619 const OMPTargetParallelForSimdDirective &S, 4620 PrePostActionTy &Action) { 4621 Action.Enter(CGF); 4622 // Emit directive as a combined directive that consists of two implicit 4623 // directives: 'parallel' with 'for' directive. 4624 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4625 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4626 emitDispatchForLoopBounds); 4627 }; 4628 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4629 emitEmptyBoundParameters); 4630 } 4631 4632 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4633 CodeGenModule &CGM, StringRef ParentName, 4634 const OMPTargetParallelForSimdDirective &S) { 4635 // Emit SPMD target parallel for region as a standalone region. 4636 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4637 emitTargetParallelForSimdRegion(CGF, S, Action); 4638 }; 4639 llvm::Function *Fn; 4640 llvm::Constant *Addr; 4641 // Emit target region as a standalone region. 4642 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4643 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4644 assert(Fn && Addr && "Target device function emission failed."); 4645 } 4646 4647 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4648 const OMPTargetParallelForSimdDirective &S) { 4649 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4650 emitTargetParallelForSimdRegion(CGF, S, Action); 4651 }; 4652 emitCommonOMPTargetDirective(*this, S, CodeGen); 4653 } 4654 4655 /// Emit a helper variable and return corresponding lvalue. 4656 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4657 const ImplicitParamDecl *PVD, 4658 CodeGenFunction::OMPPrivateScope &Privates) { 4659 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4660 Privates.addPrivate( 4661 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 4662 } 4663 4664 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4665 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4666 // Emit outlined function for task construct. 4667 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 4668 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 4669 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4670 const Expr *IfCond = nullptr; 4671 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4672 if (C->getNameModifier() == OMPD_unknown || 4673 C->getNameModifier() == OMPD_taskloop) { 4674 IfCond = C->getCondition(); 4675 break; 4676 } 4677 } 4678 4679 OMPTaskDataTy Data; 4680 // Check if taskloop must be emitted without taskgroup. 4681 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4682 // TODO: Check if we should emit tied or untied task. 4683 Data.Tied = true; 4684 // Set scheduling for taskloop 4685 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4686 // grainsize clause 4687 Data.Schedule.setInt(/*IntVal=*/false); 4688 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4689 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4690 // num_tasks clause 4691 Data.Schedule.setInt(/*IntVal=*/true); 4692 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4693 } 4694 4695 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4696 // if (PreCond) { 4697 // for (IV in 0..LastIteration) BODY; 4698 // <Final counter/linear vars updates>; 4699 // } 4700 // 4701 4702 // Emit: if (PreCond) - begin. 4703 // If the condition constant folds and can be elided, avoid emitting the 4704 // whole loop. 4705 bool CondConstant; 4706 llvm::BasicBlock *ContBlock = nullptr; 4707 OMPLoopScope PreInitScope(CGF, S); 4708 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4709 if (!CondConstant) 4710 return; 4711 } else { 4712 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4713 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4714 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4715 CGF.getProfileCount(&S)); 4716 CGF.EmitBlock(ThenBlock); 4717 CGF.incrementProfileCounter(&S); 4718 } 4719 4720 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4721 CGF.EmitOMPSimdInit(S); 4722 4723 OMPPrivateScope LoopScope(CGF); 4724 // Emit helper vars inits. 4725 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4726 auto *I = CS->getCapturedDecl()->param_begin(); 4727 auto *LBP = std::next(I, LowerBound); 4728 auto *UBP = std::next(I, UpperBound); 4729 auto *STP = std::next(I, Stride); 4730 auto *LIP = std::next(I, LastIter); 4731 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4732 LoopScope); 4733 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4734 LoopScope); 4735 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4736 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4737 LoopScope); 4738 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4739 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4740 (void)LoopScope.Privatize(); 4741 // Emit the loop iteration variable. 4742 const Expr *IVExpr = S.getIterationVariable(); 4743 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4744 CGF.EmitVarDecl(*IVDecl); 4745 CGF.EmitIgnoredExpr(S.getInit()); 4746 4747 // Emit the iterations count variable. 4748 // If it is not a variable, Sema decided to calculate iterations count on 4749 // each iteration (e.g., it is foldable into a constant). 4750 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4751 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4752 // Emit calculation of the iterations count. 4753 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4754 } 4755 4756 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4757 S.getInc(), 4758 [&S](CodeGenFunction &CGF) { 4759 CGF.EmitOMPLoopBody(S, JumpDest()); 4760 CGF.EmitStopPoint(&S); 4761 }, 4762 [](CodeGenFunction &) {}); 4763 // Emit: if (PreCond) - end. 4764 if (ContBlock) { 4765 CGF.EmitBranch(ContBlock); 4766 CGF.EmitBlock(ContBlock, true); 4767 } 4768 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4769 if (HasLastprivateClause) { 4770 CGF.EmitOMPLastprivateClauseFinal( 4771 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4772 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4773 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4774 (*LIP)->getType(), S.getLocStart()))); 4775 } 4776 }; 4777 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4778 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 4779 const OMPTaskDataTy &Data) { 4780 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 4781 OMPLoopScope PreInitScope(CGF, S); 4782 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 4783 OutlinedFn, SharedsTy, 4784 CapturedStruct, IfCond, Data); 4785 }; 4786 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4787 CodeGen); 4788 }; 4789 if (Data.Nogroup) 4790 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 4791 else { 4792 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4793 *this, 4794 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4795 PrePostActionTy &Action) { 4796 Action.Enter(CGF); 4797 CGF.EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 4798 }, 4799 S.getLocStart()); 4800 } 4801 } 4802 4803 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 4804 EmitOMPTaskLoopBasedDirective(S); 4805 } 4806 4807 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 4808 const OMPTaskLoopSimdDirective &S) { 4809 EmitOMPTaskLoopBasedDirective(S); 4810 } 4811 4812 // Generate the instructions for '#pragma omp target update' directive. 4813 void CodeGenFunction::EmitOMPTargetUpdateDirective( 4814 const OMPTargetUpdateDirective &S) { 4815 // If we don't have target devices, don't bother emitting the data mapping 4816 // code. 4817 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4818 return; 4819 4820 // Check if we have any if clause associated with the directive. 4821 const Expr *IfCond = nullptr; 4822 if (auto *C = S.getSingleClause<OMPIfClause>()) 4823 IfCond = C->getCondition(); 4824 4825 // Check if we have any device clause associated with the directive. 4826 const Expr *Device = nullptr; 4827 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4828 Device = C->getDevice(); 4829 4830 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 4831 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4832 } 4833 4834 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 4835 const OMPExecutableDirective &D) { 4836 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 4837 return; 4838 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 4839 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 4840 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 4841 } else { 4842 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 4843 for (const auto *E : LD->counters()) { 4844 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 4845 cast<DeclRefExpr>(E)->getDecl())) { 4846 // Emit only those that were not explicitly referenced in clauses. 4847 if (!CGF.LocalDeclMap.count(VD)) 4848 CGF.EmitVarDecl(*VD); 4849 } 4850 } 4851 } 4852 const auto *CS = cast<CapturedStmt>(D.getAssociatedStmt()); 4853 while (const auto *CCS = dyn_cast<CapturedStmt>(CS->getCapturedStmt())) 4854 CS = CCS; 4855 CGF.EmitStmt(CS->getCapturedStmt()); 4856 } 4857 }; 4858 OMPSimdLexicalScope Scope(*this, D); 4859 CGM.getOpenMPRuntime().emitInlinedDirective( 4860 *this, 4861 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 4862 : D.getDirectiveKind(), 4863 CodeGen); 4864 } 4865