1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/Basic/OpenMPKinds.h" 25 #include "clang/Basic/PrettyStackTrace.h" 26 #include "llvm/Frontend/OpenMP/OMPConstants.h" 27 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/Support/AtomicOrdering.h" 31 using namespace clang; 32 using namespace CodeGen; 33 using namespace llvm::omp; 34 35 static const VarDecl *getBaseDecl(const Expr *Ref); 36 37 namespace { 38 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 39 /// for captured expressions. 40 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 41 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 42 for (const auto *C : S.clauses()) { 43 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 44 if (const auto *PreInit = 45 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 46 for (const auto *I : PreInit->decls()) { 47 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 48 CGF.EmitVarDecl(cast<VarDecl>(*I)); 49 } else { 50 CodeGenFunction::AutoVarEmission Emission = 51 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 52 CGF.EmitAutoVarCleanups(Emission); 53 } 54 } 55 } 56 } 57 } 58 } 59 CodeGenFunction::OMPPrivateScope InlinedShareds; 60 61 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 62 return CGF.LambdaCaptureFields.lookup(VD) || 63 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 64 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 65 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 66 } 67 68 public: 69 OMPLexicalScope( 70 CodeGenFunction &CGF, const OMPExecutableDirective &S, 71 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 72 const bool EmitPreInitStmt = true) 73 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 74 InlinedShareds(CGF) { 75 if (EmitPreInitStmt) 76 emitPreInitStmt(CGF, S); 77 if (!CapturedRegion.hasValue()) 78 return; 79 assert(S.hasAssociatedStmt() && 80 "Expected associated statement for inlined directive."); 81 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 82 for (const auto &C : CS->captures()) { 83 if (C.capturesVariable() || C.capturesVariableByCopy()) { 84 auto *VD = C.getCapturedVar(); 85 assert(VD == VD->getCanonicalDecl() && 86 "Canonical decl must be captured."); 87 DeclRefExpr DRE( 88 CGF.getContext(), const_cast<VarDecl *>(VD), 89 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 90 InlinedShareds.isGlobalVarCaptured(VD)), 91 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 92 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 93 return CGF.EmitLValue(&DRE).getAddress(CGF); 94 }); 95 } 96 } 97 (void)InlinedShareds.Privatize(); 98 } 99 }; 100 101 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 102 /// for captured expressions. 103 class OMPParallelScope final : public OMPLexicalScope { 104 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 105 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 106 return !(isOpenMPTargetExecutionDirective(Kind) || 107 isOpenMPLoopBoundSharingDirective(Kind)) && 108 isOpenMPParallelDirective(Kind); 109 } 110 111 public: 112 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 113 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 114 EmitPreInitStmt(S)) {} 115 }; 116 117 /// Lexical scope for OpenMP teams construct, that handles correct codegen 118 /// for captured expressions. 119 class OMPTeamsScope final : public OMPLexicalScope { 120 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 121 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 122 return !isOpenMPTargetExecutionDirective(Kind) && 123 isOpenMPTeamsDirective(Kind); 124 } 125 126 public: 127 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 128 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 129 EmitPreInitStmt(S)) {} 130 }; 131 132 /// Private scope for OpenMP loop-based directives, that supports capturing 133 /// of used expression from loop statement. 134 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 135 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 136 CodeGenFunction::OMPMapVars PreCondVars; 137 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 138 for (const auto *E : S.counters()) { 139 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 140 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 141 (void)PreCondVars.setVarAddr( 142 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 143 } 144 // Mark private vars as undefs. 145 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 146 for (const Expr *IRef : C->varlists()) { 147 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 148 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 149 (void)PreCondVars.setVarAddr( 150 CGF, OrigVD, 151 Address(llvm::UndefValue::get( 152 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 153 OrigVD->getType().getNonReferenceType()))), 154 CGF.getContext().getDeclAlign(OrigVD))); 155 } 156 } 157 } 158 (void)PreCondVars.apply(CGF); 159 // Emit init, __range and __end variables for C++ range loops. 160 const Stmt *Body = 161 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 162 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 163 Body = OMPLoopDirective::tryToFindNextInnerLoop( 164 Body, /*TryImperfectlyNestedLoops=*/true); 165 if (auto *For = dyn_cast<ForStmt>(Body)) { 166 Body = For->getBody(); 167 } else { 168 assert(isa<CXXForRangeStmt>(Body) && 169 "Expected canonical for loop or range-based for loop."); 170 auto *CXXFor = cast<CXXForRangeStmt>(Body); 171 if (const Stmt *Init = CXXFor->getInit()) 172 CGF.EmitStmt(Init); 173 CGF.EmitStmt(CXXFor->getRangeStmt()); 174 CGF.EmitStmt(CXXFor->getEndStmt()); 175 Body = CXXFor->getBody(); 176 } 177 } 178 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 179 for (const auto *I : PreInits->decls()) 180 CGF.EmitVarDecl(cast<VarDecl>(*I)); 181 } 182 PreCondVars.restore(CGF); 183 } 184 185 public: 186 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 187 : CodeGenFunction::RunCleanupsScope(CGF) { 188 emitPreInitStmt(CGF, S); 189 } 190 }; 191 192 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 193 CodeGenFunction::OMPPrivateScope InlinedShareds; 194 195 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 196 return CGF.LambdaCaptureFields.lookup(VD) || 197 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 198 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 199 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 200 } 201 202 public: 203 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 204 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 205 InlinedShareds(CGF) { 206 for (const auto *C : S.clauses()) { 207 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 208 if (const auto *PreInit = 209 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 210 for (const auto *I : PreInit->decls()) { 211 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 212 CGF.EmitVarDecl(cast<VarDecl>(*I)); 213 } else { 214 CodeGenFunction::AutoVarEmission Emission = 215 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 216 CGF.EmitAutoVarCleanups(Emission); 217 } 218 } 219 } 220 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 221 for (const Expr *E : UDP->varlists()) { 222 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 223 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 224 CGF.EmitVarDecl(*OED); 225 } 226 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 227 for (const Expr *E : UDP->varlists()) { 228 const Decl *D = getBaseDecl(E); 229 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 230 CGF.EmitVarDecl(*OED); 231 } 232 } 233 } 234 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 235 CGF.EmitOMPPrivateClause(S, InlinedShareds); 236 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 237 if (const Expr *E = TG->getReductionRef()) 238 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 239 } 240 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 241 while (CS) { 242 for (auto &C : CS->captures()) { 243 if (C.capturesVariable() || C.capturesVariableByCopy()) { 244 auto *VD = C.getCapturedVar(); 245 assert(VD == VD->getCanonicalDecl() && 246 "Canonical decl must be captured."); 247 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 248 isCapturedVar(CGF, VD) || 249 (CGF.CapturedStmtInfo && 250 InlinedShareds.isGlobalVarCaptured(VD)), 251 VD->getType().getNonReferenceType(), VK_LValue, 252 C.getLocation()); 253 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 254 return CGF.EmitLValue(&DRE).getAddress(CGF); 255 }); 256 } 257 } 258 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 259 } 260 (void)InlinedShareds.Privatize(); 261 } 262 }; 263 264 } // namespace 265 266 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 267 const OMPExecutableDirective &S, 268 const RegionCodeGenTy &CodeGen); 269 270 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 271 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 272 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 273 OrigVD = OrigVD->getCanonicalDecl(); 274 bool IsCaptured = 275 LambdaCaptureFields.lookup(OrigVD) || 276 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 277 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 278 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 279 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 280 return EmitLValue(&DRE); 281 } 282 } 283 return EmitLValue(E); 284 } 285 286 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 287 ASTContext &C = getContext(); 288 llvm::Value *Size = nullptr; 289 auto SizeInChars = C.getTypeSizeInChars(Ty); 290 if (SizeInChars.isZero()) { 291 // getTypeSizeInChars() returns 0 for a VLA. 292 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 293 VlaSizePair VlaSize = getVLASize(VAT); 294 Ty = VlaSize.Type; 295 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 296 : VlaSize.NumElts; 297 } 298 SizeInChars = C.getTypeSizeInChars(Ty); 299 if (SizeInChars.isZero()) 300 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 301 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 302 } 303 return CGM.getSize(SizeInChars); 304 } 305 306 void CodeGenFunction::GenerateOpenMPCapturedVars( 307 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 308 const RecordDecl *RD = S.getCapturedRecordDecl(); 309 auto CurField = RD->field_begin(); 310 auto CurCap = S.captures().begin(); 311 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 312 E = S.capture_init_end(); 313 I != E; ++I, ++CurField, ++CurCap) { 314 if (CurField->hasCapturedVLAType()) { 315 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 316 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 317 CapturedVars.push_back(Val); 318 } else if (CurCap->capturesThis()) { 319 CapturedVars.push_back(CXXThisValue); 320 } else if (CurCap->capturesVariableByCopy()) { 321 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 322 323 // If the field is not a pointer, we need to save the actual value 324 // and load it as a void pointer. 325 if (!CurField->getType()->isAnyPointerType()) { 326 ASTContext &Ctx = getContext(); 327 Address DstAddr = CreateMemTemp( 328 Ctx.getUIntPtrType(), 329 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 330 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 331 332 llvm::Value *SrcAddrVal = EmitScalarConversion( 333 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 334 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 335 LValue SrcLV = 336 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 337 338 // Store the value using the source type pointer. 339 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 340 341 // Load the value using the destination type pointer. 342 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 343 } 344 CapturedVars.push_back(CV); 345 } else { 346 assert(CurCap->capturesVariable() && "Expected capture by reference."); 347 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 348 } 349 } 350 } 351 352 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 353 QualType DstType, StringRef Name, 354 LValue AddrLV) { 355 ASTContext &Ctx = CGF.getContext(); 356 357 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 358 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 359 Ctx.getPointerType(DstType), Loc); 360 Address TmpAddr = 361 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 362 .getAddress(CGF); 363 return TmpAddr; 364 } 365 366 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 367 if (T->isLValueReferenceType()) 368 return C.getLValueReferenceType( 369 getCanonicalParamType(C, T.getNonReferenceType()), 370 /*SpelledAsLValue=*/false); 371 if (T->isPointerType()) 372 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 373 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 374 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 375 return getCanonicalParamType(C, VLA->getElementType()); 376 if (!A->isVariablyModifiedType()) 377 return C.getCanonicalType(T); 378 } 379 return C.getCanonicalParamType(T); 380 } 381 382 namespace { 383 /// Contains required data for proper outlined function codegen. 384 struct FunctionOptions { 385 /// Captured statement for which the function is generated. 386 const CapturedStmt *S = nullptr; 387 /// true if cast to/from UIntPtr is required for variables captured by 388 /// value. 389 const bool UIntPtrCastRequired = true; 390 /// true if only casted arguments must be registered as local args or VLA 391 /// sizes. 392 const bool RegisterCastedArgsOnly = false; 393 /// Name of the generated function. 394 const StringRef FunctionName; 395 /// Location of the non-debug version of the outlined function. 396 SourceLocation Loc; 397 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 398 bool RegisterCastedArgsOnly, StringRef FunctionName, 399 SourceLocation Loc) 400 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 401 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 402 FunctionName(FunctionName), Loc(Loc) {} 403 }; 404 } // namespace 405 406 static llvm::Function *emitOutlinedFunctionPrologue( 407 CodeGenFunction &CGF, FunctionArgList &Args, 408 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 409 &LocalAddrs, 410 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 411 &VLASizes, 412 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 413 const CapturedDecl *CD = FO.S->getCapturedDecl(); 414 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 415 assert(CD->hasBody() && "missing CapturedDecl body"); 416 417 CXXThisValue = nullptr; 418 // Build the argument list. 419 CodeGenModule &CGM = CGF.CGM; 420 ASTContext &Ctx = CGM.getContext(); 421 FunctionArgList TargetArgs; 422 Args.append(CD->param_begin(), 423 std::next(CD->param_begin(), CD->getContextParamPosition())); 424 TargetArgs.append( 425 CD->param_begin(), 426 std::next(CD->param_begin(), CD->getContextParamPosition())); 427 auto I = FO.S->captures().begin(); 428 FunctionDecl *DebugFunctionDecl = nullptr; 429 if (!FO.UIntPtrCastRequired) { 430 FunctionProtoType::ExtProtoInfo EPI; 431 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 432 DebugFunctionDecl = FunctionDecl::Create( 433 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 434 SourceLocation(), DeclarationName(), FunctionTy, 435 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 436 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 437 } 438 for (const FieldDecl *FD : RD->fields()) { 439 QualType ArgType = FD->getType(); 440 IdentifierInfo *II = nullptr; 441 VarDecl *CapVar = nullptr; 442 443 // If this is a capture by copy and the type is not a pointer, the outlined 444 // function argument type should be uintptr and the value properly casted to 445 // uintptr. This is necessary given that the runtime library is only able to 446 // deal with pointers. We can pass in the same way the VLA type sizes to the 447 // outlined function. 448 if (FO.UIntPtrCastRequired && 449 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 450 I->capturesVariableArrayType())) 451 ArgType = Ctx.getUIntPtrType(); 452 453 if (I->capturesVariable() || I->capturesVariableByCopy()) { 454 CapVar = I->getCapturedVar(); 455 II = CapVar->getIdentifier(); 456 } else if (I->capturesThis()) { 457 II = &Ctx.Idents.get("this"); 458 } else { 459 assert(I->capturesVariableArrayType()); 460 II = &Ctx.Idents.get("vla"); 461 } 462 if (ArgType->isVariablyModifiedType()) 463 ArgType = getCanonicalParamType(Ctx, ArgType); 464 VarDecl *Arg; 465 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 466 Arg = ParmVarDecl::Create( 467 Ctx, DebugFunctionDecl, 468 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 469 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 470 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 471 } else { 472 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 473 II, ArgType, ImplicitParamDecl::Other); 474 } 475 Args.emplace_back(Arg); 476 // Do not cast arguments if we emit function with non-original types. 477 TargetArgs.emplace_back( 478 FO.UIntPtrCastRequired 479 ? Arg 480 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 481 ++I; 482 } 483 Args.append( 484 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 485 CD->param_end()); 486 TargetArgs.append( 487 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 488 CD->param_end()); 489 490 // Create the function declaration. 491 const CGFunctionInfo &FuncInfo = 492 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 493 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 494 495 auto *F = 496 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 497 FO.FunctionName, &CGM.getModule()); 498 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 499 if (CD->isNothrow()) 500 F->setDoesNotThrow(); 501 F->setDoesNotRecurse(); 502 503 // Generate the function. 504 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 505 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 506 FO.UIntPtrCastRequired ? FO.Loc 507 : CD->getBody()->getBeginLoc()); 508 unsigned Cnt = CD->getContextParamPosition(); 509 I = FO.S->captures().begin(); 510 for (const FieldDecl *FD : RD->fields()) { 511 // Do not map arguments if we emit function with non-original types. 512 Address LocalAddr(Address::invalid()); 513 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 514 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 515 TargetArgs[Cnt]); 516 } else { 517 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 518 } 519 // If we are capturing a pointer by copy we don't need to do anything, just 520 // use the value that we get from the arguments. 521 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 522 const VarDecl *CurVD = I->getCapturedVar(); 523 if (!FO.RegisterCastedArgsOnly) 524 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 525 ++Cnt; 526 ++I; 527 continue; 528 } 529 530 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 531 AlignmentSource::Decl); 532 if (FD->hasCapturedVLAType()) { 533 if (FO.UIntPtrCastRequired) { 534 ArgLVal = CGF.MakeAddrLValue( 535 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 536 Args[Cnt]->getName(), ArgLVal), 537 FD->getType(), AlignmentSource::Decl); 538 } 539 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 540 const VariableArrayType *VAT = FD->getCapturedVLAType(); 541 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 542 } else if (I->capturesVariable()) { 543 const VarDecl *Var = I->getCapturedVar(); 544 QualType VarTy = Var->getType(); 545 Address ArgAddr = ArgLVal.getAddress(CGF); 546 if (ArgLVal.getType()->isLValueReferenceType()) { 547 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 548 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 549 assert(ArgLVal.getType()->isPointerType()); 550 ArgAddr = CGF.EmitLoadOfPointer( 551 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 552 } 553 if (!FO.RegisterCastedArgsOnly) { 554 LocalAddrs.insert( 555 {Args[Cnt], 556 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 557 } 558 } else if (I->capturesVariableByCopy()) { 559 assert(!FD->getType()->isAnyPointerType() && 560 "Not expecting a captured pointer."); 561 const VarDecl *Var = I->getCapturedVar(); 562 LocalAddrs.insert({Args[Cnt], 563 {Var, FO.UIntPtrCastRequired 564 ? castValueFromUintptr( 565 CGF, I->getLocation(), FD->getType(), 566 Args[Cnt]->getName(), ArgLVal) 567 : ArgLVal.getAddress(CGF)}}); 568 } else { 569 // If 'this' is captured, load it into CXXThisValue. 570 assert(I->capturesThis()); 571 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 572 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 573 } 574 ++Cnt; 575 ++I; 576 } 577 578 return F; 579 } 580 581 llvm::Function * 582 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 583 SourceLocation Loc) { 584 assert( 585 CapturedStmtInfo && 586 "CapturedStmtInfo should be set when generating the captured function"); 587 const CapturedDecl *CD = S.getCapturedDecl(); 588 // Build the argument list. 589 bool NeedWrapperFunction = 590 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 591 FunctionArgList Args; 592 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 593 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 594 SmallString<256> Buffer; 595 llvm::raw_svector_ostream Out(Buffer); 596 Out << CapturedStmtInfo->getHelperName(); 597 if (NeedWrapperFunction) 598 Out << "_debug__"; 599 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 600 Out.str(), Loc); 601 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 602 VLASizes, CXXThisValue, FO); 603 CodeGenFunction::OMPPrivateScope LocalScope(*this); 604 for (const auto &LocalAddrPair : LocalAddrs) { 605 if (LocalAddrPair.second.first) { 606 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 607 return LocalAddrPair.second.second; 608 }); 609 } 610 } 611 (void)LocalScope.Privatize(); 612 for (const auto &VLASizePair : VLASizes) 613 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 614 PGO.assignRegionCounters(GlobalDecl(CD), F); 615 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 616 (void)LocalScope.ForceCleanup(); 617 FinishFunction(CD->getBodyRBrace()); 618 if (!NeedWrapperFunction) 619 return F; 620 621 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 622 /*RegisterCastedArgsOnly=*/true, 623 CapturedStmtInfo->getHelperName(), Loc); 624 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 625 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 626 Args.clear(); 627 LocalAddrs.clear(); 628 VLASizes.clear(); 629 llvm::Function *WrapperF = 630 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 631 WrapperCGF.CXXThisValue, WrapperFO); 632 llvm::SmallVector<llvm::Value *, 4> CallArgs; 633 for (const auto *Arg : Args) { 634 llvm::Value *CallArg; 635 auto I = LocalAddrs.find(Arg); 636 if (I != LocalAddrs.end()) { 637 LValue LV = WrapperCGF.MakeAddrLValue( 638 I->second.second, 639 I->second.first ? I->second.first->getType() : Arg->getType(), 640 AlignmentSource::Decl); 641 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 642 } else { 643 auto EI = VLASizes.find(Arg); 644 if (EI != VLASizes.end()) { 645 CallArg = EI->second.second; 646 } else { 647 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 648 Arg->getType(), 649 AlignmentSource::Decl); 650 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 651 } 652 } 653 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 654 } 655 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 656 WrapperCGF.FinishFunction(); 657 return WrapperF; 658 } 659 660 //===----------------------------------------------------------------------===// 661 // OpenMP Directive Emission 662 //===----------------------------------------------------------------------===// 663 void CodeGenFunction::EmitOMPAggregateAssign( 664 Address DestAddr, Address SrcAddr, QualType OriginalType, 665 const llvm::function_ref<void(Address, Address)> CopyGen) { 666 // Perform element-by-element initialization. 667 QualType ElementTy; 668 669 // Drill down to the base element type on both arrays. 670 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 671 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 672 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 673 674 llvm::Value *SrcBegin = SrcAddr.getPointer(); 675 llvm::Value *DestBegin = DestAddr.getPointer(); 676 // Cast from pointer to array type to pointer to single element. 677 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 678 // The basic structure here is a while-do loop. 679 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 680 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 681 llvm::Value *IsEmpty = 682 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 683 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 684 685 // Enter the loop body, making that address the current address. 686 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 687 EmitBlock(BodyBB); 688 689 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 690 691 llvm::PHINode *SrcElementPHI = 692 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 693 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 694 Address SrcElementCurrent = 695 Address(SrcElementPHI, 696 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 697 698 llvm::PHINode *DestElementPHI = 699 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 700 DestElementPHI->addIncoming(DestBegin, EntryBB); 701 Address DestElementCurrent = 702 Address(DestElementPHI, 703 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 704 705 // Emit copy. 706 CopyGen(DestElementCurrent, SrcElementCurrent); 707 708 // Shift the address forward by one element. 709 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 710 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 711 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 712 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 713 // Check whether we've reached the end. 714 llvm::Value *Done = 715 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 716 Builder.CreateCondBr(Done, DoneBB, BodyBB); 717 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 718 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 719 720 // Done. 721 EmitBlock(DoneBB, /*IsFinished=*/true); 722 } 723 724 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 725 Address SrcAddr, const VarDecl *DestVD, 726 const VarDecl *SrcVD, const Expr *Copy) { 727 if (OriginalType->isArrayType()) { 728 const auto *BO = dyn_cast<BinaryOperator>(Copy); 729 if (BO && BO->getOpcode() == BO_Assign) { 730 // Perform simple memcpy for simple copying. 731 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 732 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 733 EmitAggregateAssign(Dest, Src, OriginalType); 734 } else { 735 // For arrays with complex element types perform element by element 736 // copying. 737 EmitOMPAggregateAssign( 738 DestAddr, SrcAddr, OriginalType, 739 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 740 // Working with the single array element, so have to remap 741 // destination and source variables to corresponding array 742 // elements. 743 CodeGenFunction::OMPPrivateScope Remap(*this); 744 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 745 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 746 (void)Remap.Privatize(); 747 EmitIgnoredExpr(Copy); 748 }); 749 } 750 } else { 751 // Remap pseudo source variable to private copy. 752 CodeGenFunction::OMPPrivateScope Remap(*this); 753 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 754 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 755 (void)Remap.Privatize(); 756 // Emit copying of the whole variable. 757 EmitIgnoredExpr(Copy); 758 } 759 } 760 761 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 762 OMPPrivateScope &PrivateScope) { 763 if (!HaveInsertPoint()) 764 return false; 765 bool DeviceConstTarget = 766 getLangOpts().OpenMPIsDevice && 767 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 768 bool FirstprivateIsLastprivate = false; 769 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 770 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 771 for (const auto *D : C->varlists()) 772 Lastprivates.try_emplace( 773 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 774 C->getKind()); 775 } 776 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 777 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 778 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 779 // Force emission of the firstprivate copy if the directive does not emit 780 // outlined function, like omp for, omp simd, omp distribute etc. 781 bool MustEmitFirstprivateCopy = 782 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 783 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 784 const auto *IRef = C->varlist_begin(); 785 const auto *InitsRef = C->inits().begin(); 786 for (const Expr *IInit : C->private_copies()) { 787 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 788 bool ThisFirstprivateIsLastprivate = 789 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 790 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 791 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 792 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 793 !FD->getType()->isReferenceType() && 794 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 795 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 796 ++IRef; 797 ++InitsRef; 798 continue; 799 } 800 // Do not emit copy for firstprivate constant variables in target regions, 801 // captured by reference. 802 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 803 FD && FD->getType()->isReferenceType() && 804 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 805 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 806 OrigVD); 807 ++IRef; 808 ++InitsRef; 809 continue; 810 } 811 FirstprivateIsLastprivate = 812 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 813 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 814 const auto *VDInit = 815 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 816 bool IsRegistered; 817 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 818 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 819 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 820 LValue OriginalLVal; 821 if (!FD) { 822 // Check if the firstprivate variable is just a constant value. 823 ConstantEmission CE = tryEmitAsConstant(&DRE); 824 if (CE && !CE.isReference()) { 825 // Constant value, no need to create a copy. 826 ++IRef; 827 ++InitsRef; 828 continue; 829 } 830 if (CE && CE.isReference()) { 831 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 832 } else { 833 assert(!CE && "Expected non-constant firstprivate."); 834 OriginalLVal = EmitLValue(&DRE); 835 } 836 } else { 837 OriginalLVal = EmitLValue(&DRE); 838 } 839 QualType Type = VD->getType(); 840 if (Type->isArrayType()) { 841 // Emit VarDecl with copy init for arrays. 842 // Get the address of the original variable captured in current 843 // captured region. 844 IsRegistered = PrivateScope.addPrivate( 845 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 846 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 847 const Expr *Init = VD->getInit(); 848 if (!isa<CXXConstructExpr>(Init) || 849 isTrivialInitializer(Init)) { 850 // Perform simple memcpy. 851 LValue Dest = 852 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 853 EmitAggregateAssign(Dest, OriginalLVal, Type); 854 } else { 855 EmitOMPAggregateAssign( 856 Emission.getAllocatedAddress(), 857 OriginalLVal.getAddress(*this), Type, 858 [this, VDInit, Init](Address DestElement, 859 Address SrcElement) { 860 // Clean up any temporaries needed by the 861 // initialization. 862 RunCleanupsScope InitScope(*this); 863 // Emit initialization for single element. 864 setAddrOfLocalVar(VDInit, SrcElement); 865 EmitAnyExprToMem(Init, DestElement, 866 Init->getType().getQualifiers(), 867 /*IsInitializer*/ false); 868 LocalDeclMap.erase(VDInit); 869 }); 870 } 871 EmitAutoVarCleanups(Emission); 872 return Emission.getAllocatedAddress(); 873 }); 874 } else { 875 Address OriginalAddr = OriginalLVal.getAddress(*this); 876 IsRegistered = 877 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 878 ThisFirstprivateIsLastprivate, 879 OrigVD, &Lastprivates, IRef]() { 880 // Emit private VarDecl with copy init. 881 // Remap temp VDInit variable to the address of the original 882 // variable (for proper handling of captured global variables). 883 setAddrOfLocalVar(VDInit, OriginalAddr); 884 EmitDecl(*VD); 885 LocalDeclMap.erase(VDInit); 886 if (ThisFirstprivateIsLastprivate && 887 Lastprivates[OrigVD->getCanonicalDecl()] == 888 OMPC_LASTPRIVATE_conditional) { 889 // Create/init special variable for lastprivate conditionals. 890 Address VDAddr = 891 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 892 *this, OrigVD); 893 llvm::Value *V = EmitLoadOfScalar( 894 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 895 AlignmentSource::Decl), 896 (*IRef)->getExprLoc()); 897 EmitStoreOfScalar(V, 898 MakeAddrLValue(VDAddr, (*IRef)->getType(), 899 AlignmentSource::Decl)); 900 LocalDeclMap.erase(VD); 901 setAddrOfLocalVar(VD, VDAddr); 902 return VDAddr; 903 } 904 return GetAddrOfLocalVar(VD); 905 }); 906 } 907 assert(IsRegistered && 908 "firstprivate var already registered as private"); 909 // Silence the warning about unused variable. 910 (void)IsRegistered; 911 } 912 ++IRef; 913 ++InitsRef; 914 } 915 } 916 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 917 } 918 919 void CodeGenFunction::EmitOMPPrivateClause( 920 const OMPExecutableDirective &D, 921 CodeGenFunction::OMPPrivateScope &PrivateScope) { 922 if (!HaveInsertPoint()) 923 return; 924 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 925 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 926 auto IRef = C->varlist_begin(); 927 for (const Expr *IInit : C->private_copies()) { 928 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 929 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 930 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 931 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 932 // Emit private VarDecl with copy init. 933 EmitDecl(*VD); 934 return GetAddrOfLocalVar(VD); 935 }); 936 assert(IsRegistered && "private var already registered as private"); 937 // Silence the warning about unused variable. 938 (void)IsRegistered; 939 } 940 ++IRef; 941 } 942 } 943 } 944 945 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 946 if (!HaveInsertPoint()) 947 return false; 948 // threadprivate_var1 = master_threadprivate_var1; 949 // operator=(threadprivate_var2, master_threadprivate_var2); 950 // ... 951 // __kmpc_barrier(&loc, global_tid); 952 llvm::DenseSet<const VarDecl *> CopiedVars; 953 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 954 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 955 auto IRef = C->varlist_begin(); 956 auto ISrcRef = C->source_exprs().begin(); 957 auto IDestRef = C->destination_exprs().begin(); 958 for (const Expr *AssignOp : C->assignment_ops()) { 959 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 960 QualType Type = VD->getType(); 961 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 962 // Get the address of the master variable. If we are emitting code with 963 // TLS support, the address is passed from the master as field in the 964 // captured declaration. 965 Address MasterAddr = Address::invalid(); 966 if (getLangOpts().OpenMPUseTLS && 967 getContext().getTargetInfo().isTLSSupported()) { 968 assert(CapturedStmtInfo->lookup(VD) && 969 "Copyin threadprivates should have been captured!"); 970 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 971 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 972 MasterAddr = EmitLValue(&DRE).getAddress(*this); 973 LocalDeclMap.erase(VD); 974 } else { 975 MasterAddr = 976 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 977 : CGM.GetAddrOfGlobal(VD), 978 getContext().getDeclAlign(VD)); 979 } 980 // Get the address of the threadprivate variable. 981 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 982 if (CopiedVars.size() == 1) { 983 // At first check if current thread is a master thread. If it is, no 984 // need to copy data. 985 CopyBegin = createBasicBlock("copyin.not.master"); 986 CopyEnd = createBasicBlock("copyin.not.master.end"); 987 Builder.CreateCondBr( 988 Builder.CreateICmpNE( 989 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 990 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 991 CGM.IntPtrTy)), 992 CopyBegin, CopyEnd); 993 EmitBlock(CopyBegin); 994 } 995 const auto *SrcVD = 996 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 997 const auto *DestVD = 998 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 999 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1000 } 1001 ++IRef; 1002 ++ISrcRef; 1003 ++IDestRef; 1004 } 1005 } 1006 if (CopyEnd) { 1007 // Exit out of copying procedure for non-master thread. 1008 EmitBlock(CopyEnd, /*IsFinished=*/true); 1009 return true; 1010 } 1011 return false; 1012 } 1013 1014 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1015 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1016 if (!HaveInsertPoint()) 1017 return false; 1018 bool HasAtLeastOneLastprivate = false; 1019 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1020 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1021 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1022 for (const Expr *C : LoopDirective->counters()) { 1023 SIMDLCVs.insert( 1024 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1025 } 1026 } 1027 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1028 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1029 HasAtLeastOneLastprivate = true; 1030 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1031 !getLangOpts().OpenMPSimd) 1032 break; 1033 const auto *IRef = C->varlist_begin(); 1034 const auto *IDestRef = C->destination_exprs().begin(); 1035 for (const Expr *IInit : C->private_copies()) { 1036 // Keep the address of the original variable for future update at the end 1037 // of the loop. 1038 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1039 // Taskloops do not require additional initialization, it is done in 1040 // runtime support library. 1041 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1042 const auto *DestVD = 1043 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1044 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1045 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1046 /*RefersToEnclosingVariableOrCapture=*/ 1047 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1048 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1049 return EmitLValue(&DRE).getAddress(*this); 1050 }); 1051 // Check if the variable is also a firstprivate: in this case IInit is 1052 // not generated. Initialization of this variable will happen in codegen 1053 // for 'firstprivate' clause. 1054 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1055 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1056 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1057 OrigVD]() { 1058 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1059 Address VDAddr = 1060 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1061 OrigVD); 1062 setAddrOfLocalVar(VD, VDAddr); 1063 return VDAddr; 1064 } 1065 // Emit private VarDecl with copy init. 1066 EmitDecl(*VD); 1067 return GetAddrOfLocalVar(VD); 1068 }); 1069 assert(IsRegistered && 1070 "lastprivate var already registered as private"); 1071 (void)IsRegistered; 1072 } 1073 } 1074 ++IRef; 1075 ++IDestRef; 1076 } 1077 } 1078 return HasAtLeastOneLastprivate; 1079 } 1080 1081 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1082 const OMPExecutableDirective &D, bool NoFinals, 1083 llvm::Value *IsLastIterCond) { 1084 if (!HaveInsertPoint()) 1085 return; 1086 // Emit following code: 1087 // if (<IsLastIterCond>) { 1088 // orig_var1 = private_orig_var1; 1089 // ... 1090 // orig_varn = private_orig_varn; 1091 // } 1092 llvm::BasicBlock *ThenBB = nullptr; 1093 llvm::BasicBlock *DoneBB = nullptr; 1094 if (IsLastIterCond) { 1095 // Emit implicit barrier if at least one lastprivate conditional is found 1096 // and this is not a simd mode. 1097 if (!getLangOpts().OpenMPSimd && 1098 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1099 [](const OMPLastprivateClause *C) { 1100 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1101 })) { 1102 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1103 OMPD_unknown, 1104 /*EmitChecks=*/false, 1105 /*ForceSimpleCall=*/true); 1106 } 1107 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1108 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1109 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1110 EmitBlock(ThenBB); 1111 } 1112 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1113 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1114 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1115 auto IC = LoopDirective->counters().begin(); 1116 for (const Expr *F : LoopDirective->finals()) { 1117 const auto *D = 1118 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1119 if (NoFinals) 1120 AlreadyEmittedVars.insert(D); 1121 else 1122 LoopCountersAndUpdates[D] = F; 1123 ++IC; 1124 } 1125 } 1126 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1127 auto IRef = C->varlist_begin(); 1128 auto ISrcRef = C->source_exprs().begin(); 1129 auto IDestRef = C->destination_exprs().begin(); 1130 for (const Expr *AssignOp : C->assignment_ops()) { 1131 const auto *PrivateVD = 1132 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1133 QualType Type = PrivateVD->getType(); 1134 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1135 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1136 // If lastprivate variable is a loop control variable for loop-based 1137 // directive, update its value before copyin back to original 1138 // variable. 1139 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1140 EmitIgnoredExpr(FinalExpr); 1141 const auto *SrcVD = 1142 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1143 const auto *DestVD = 1144 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1145 // Get the address of the private variable. 1146 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1147 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1148 PrivateAddr = 1149 Address(Builder.CreateLoad(PrivateAddr), 1150 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1151 // Store the last value to the private copy in the last iteration. 1152 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1153 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1154 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1155 (*IRef)->getExprLoc()); 1156 // Get the address of the original variable. 1157 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1158 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1159 } 1160 ++IRef; 1161 ++ISrcRef; 1162 ++IDestRef; 1163 } 1164 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1165 EmitIgnoredExpr(PostUpdate); 1166 } 1167 if (IsLastIterCond) 1168 EmitBlock(DoneBB, /*IsFinished=*/true); 1169 } 1170 1171 void CodeGenFunction::EmitOMPReductionClauseInit( 1172 const OMPExecutableDirective &D, 1173 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1174 if (!HaveInsertPoint()) 1175 return; 1176 SmallVector<const Expr *, 4> Shareds; 1177 SmallVector<const Expr *, 4> Privates; 1178 SmallVector<const Expr *, 4> ReductionOps; 1179 SmallVector<const Expr *, 4> LHSs; 1180 SmallVector<const Expr *, 4> RHSs; 1181 OMPTaskDataTy Data; 1182 SmallVector<const Expr *, 4> TaskLHSs; 1183 SmallVector<const Expr *, 4> TaskRHSs; 1184 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1185 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1186 continue; 1187 Shareds.append(C->varlist_begin(), C->varlist_end()); 1188 Privates.append(C->privates().begin(), C->privates().end()); 1189 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1190 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1191 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1192 if (C->getModifier() == OMPC_REDUCTION_task) { 1193 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1194 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1195 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1196 Data.ReductionOps.append(C->reduction_ops().begin(), 1197 C->reduction_ops().end()); 1198 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1199 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1200 } 1201 } 1202 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1203 unsigned Count = 0; 1204 auto *ILHS = LHSs.begin(); 1205 auto *IRHS = RHSs.begin(); 1206 auto *IPriv = Privates.begin(); 1207 for (const Expr *IRef : Shareds) { 1208 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1209 // Emit private VarDecl with reduction init. 1210 RedCG.emitSharedOrigLValue(*this, Count); 1211 RedCG.emitAggregateType(*this, Count); 1212 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1213 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1214 RedCG.getSharedLValue(Count), 1215 [&Emission](CodeGenFunction &CGF) { 1216 CGF.EmitAutoVarInit(Emission); 1217 return true; 1218 }); 1219 EmitAutoVarCleanups(Emission); 1220 Address BaseAddr = RedCG.adjustPrivateAddress( 1221 *this, Count, Emission.getAllocatedAddress()); 1222 bool IsRegistered = PrivateScope.addPrivate( 1223 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1224 assert(IsRegistered && "private var already registered as private"); 1225 // Silence the warning about unused variable. 1226 (void)IsRegistered; 1227 1228 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1229 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1230 QualType Type = PrivateVD->getType(); 1231 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1232 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1233 // Store the address of the original variable associated with the LHS 1234 // implicit variable. 1235 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1236 return RedCG.getSharedLValue(Count).getAddress(*this); 1237 }); 1238 PrivateScope.addPrivate( 1239 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1240 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1241 isa<ArraySubscriptExpr>(IRef)) { 1242 // Store the address of the original variable associated with the LHS 1243 // implicit variable. 1244 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1245 return RedCG.getSharedLValue(Count).getAddress(*this); 1246 }); 1247 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1248 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1249 ConvertTypeForMem(RHSVD->getType()), 1250 "rhs.begin"); 1251 }); 1252 } else { 1253 QualType Type = PrivateVD->getType(); 1254 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1255 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1256 // Store the address of the original variable associated with the LHS 1257 // implicit variable. 1258 if (IsArray) { 1259 OriginalAddr = Builder.CreateElementBitCast( 1260 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1261 } 1262 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1263 PrivateScope.addPrivate( 1264 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1265 return IsArray 1266 ? Builder.CreateElementBitCast( 1267 GetAddrOfLocalVar(PrivateVD), 1268 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1269 : GetAddrOfLocalVar(PrivateVD); 1270 }); 1271 } 1272 ++ILHS; 1273 ++IRHS; 1274 ++IPriv; 1275 ++Count; 1276 } 1277 if (!Data.ReductionVars.empty()) { 1278 Data.IsReductionWithTaskMod = true; 1279 Data.IsWorksharingReduction = 1280 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1281 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1282 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1283 const Expr *TaskRedRef = nullptr; 1284 switch (D.getDirectiveKind()) { 1285 case OMPD_parallel: 1286 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1287 break; 1288 case OMPD_for: 1289 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1290 break; 1291 case OMPD_sections: 1292 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1293 break; 1294 case OMPD_parallel_for: 1295 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1296 break; 1297 case OMPD_parallel_master: 1298 TaskRedRef = 1299 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1300 break; 1301 case OMPD_parallel_sections: 1302 TaskRedRef = 1303 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1304 break; 1305 case OMPD_target_parallel: 1306 TaskRedRef = 1307 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1308 break; 1309 case OMPD_target_parallel_for: 1310 TaskRedRef = 1311 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1312 break; 1313 case OMPD_distribute_parallel_for: 1314 TaskRedRef = 1315 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1316 break; 1317 case OMPD_teams_distribute_parallel_for: 1318 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1319 .getTaskReductionRefExpr(); 1320 break; 1321 case OMPD_target_teams_distribute_parallel_for: 1322 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1323 .getTaskReductionRefExpr(); 1324 break; 1325 case OMPD_simd: 1326 case OMPD_for_simd: 1327 case OMPD_section: 1328 case OMPD_single: 1329 case OMPD_master: 1330 case OMPD_critical: 1331 case OMPD_parallel_for_simd: 1332 case OMPD_task: 1333 case OMPD_taskyield: 1334 case OMPD_barrier: 1335 case OMPD_taskwait: 1336 case OMPD_taskgroup: 1337 case OMPD_flush: 1338 case OMPD_depobj: 1339 case OMPD_scan: 1340 case OMPD_ordered: 1341 case OMPD_atomic: 1342 case OMPD_teams: 1343 case OMPD_target: 1344 case OMPD_cancellation_point: 1345 case OMPD_cancel: 1346 case OMPD_target_data: 1347 case OMPD_target_enter_data: 1348 case OMPD_target_exit_data: 1349 case OMPD_taskloop: 1350 case OMPD_taskloop_simd: 1351 case OMPD_master_taskloop: 1352 case OMPD_master_taskloop_simd: 1353 case OMPD_parallel_master_taskloop: 1354 case OMPD_parallel_master_taskloop_simd: 1355 case OMPD_distribute: 1356 case OMPD_target_update: 1357 case OMPD_distribute_parallel_for_simd: 1358 case OMPD_distribute_simd: 1359 case OMPD_target_parallel_for_simd: 1360 case OMPD_target_simd: 1361 case OMPD_teams_distribute: 1362 case OMPD_teams_distribute_simd: 1363 case OMPD_teams_distribute_parallel_for_simd: 1364 case OMPD_target_teams: 1365 case OMPD_target_teams_distribute: 1366 case OMPD_target_teams_distribute_parallel_for_simd: 1367 case OMPD_target_teams_distribute_simd: 1368 case OMPD_declare_target: 1369 case OMPD_end_declare_target: 1370 case OMPD_threadprivate: 1371 case OMPD_allocate: 1372 case OMPD_declare_reduction: 1373 case OMPD_declare_mapper: 1374 case OMPD_declare_simd: 1375 case OMPD_requires: 1376 case OMPD_declare_variant: 1377 case OMPD_begin_declare_variant: 1378 case OMPD_end_declare_variant: 1379 case OMPD_unknown: 1380 default: 1381 llvm_unreachable("Enexpected directive with task reductions."); 1382 } 1383 1384 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1385 EmitVarDecl(*VD); 1386 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1387 /*Volatile=*/false, TaskRedRef->getType()); 1388 } 1389 } 1390 1391 void CodeGenFunction::EmitOMPReductionClauseFinal( 1392 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1393 if (!HaveInsertPoint()) 1394 return; 1395 llvm::SmallVector<const Expr *, 8> Privates; 1396 llvm::SmallVector<const Expr *, 8> LHSExprs; 1397 llvm::SmallVector<const Expr *, 8> RHSExprs; 1398 llvm::SmallVector<const Expr *, 8> ReductionOps; 1399 bool HasAtLeastOneReduction = false; 1400 bool IsReductionWithTaskMod = false; 1401 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1402 // Do not emit for inscan reductions. 1403 if (C->getModifier() == OMPC_REDUCTION_inscan) 1404 continue; 1405 HasAtLeastOneReduction = true; 1406 Privates.append(C->privates().begin(), C->privates().end()); 1407 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1408 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1409 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1410 IsReductionWithTaskMod = 1411 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1412 } 1413 if (HasAtLeastOneReduction) { 1414 if (IsReductionWithTaskMod) { 1415 CGM.getOpenMPRuntime().emitTaskReductionFini( 1416 *this, D.getBeginLoc(), 1417 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1418 } 1419 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1420 isOpenMPParallelDirective(D.getDirectiveKind()) || 1421 ReductionKind == OMPD_simd; 1422 bool SimpleReduction = ReductionKind == OMPD_simd; 1423 // Emit nowait reduction if nowait clause is present or directive is a 1424 // parallel directive (it always has implicit barrier). 1425 CGM.getOpenMPRuntime().emitReduction( 1426 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1427 {WithNowait, SimpleReduction, ReductionKind}); 1428 } 1429 } 1430 1431 static void emitPostUpdateForReductionClause( 1432 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1433 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1434 if (!CGF.HaveInsertPoint()) 1435 return; 1436 llvm::BasicBlock *DoneBB = nullptr; 1437 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1438 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1439 if (!DoneBB) { 1440 if (llvm::Value *Cond = CondGen(CGF)) { 1441 // If the first post-update expression is found, emit conditional 1442 // block if it was requested. 1443 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1444 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1445 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1446 CGF.EmitBlock(ThenBB); 1447 } 1448 } 1449 CGF.EmitIgnoredExpr(PostUpdate); 1450 } 1451 } 1452 if (DoneBB) 1453 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1454 } 1455 1456 namespace { 1457 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1458 /// parallel function. This is necessary for combined constructs such as 1459 /// 'distribute parallel for' 1460 typedef llvm::function_ref<void(CodeGenFunction &, 1461 const OMPExecutableDirective &, 1462 llvm::SmallVectorImpl<llvm::Value *> &)> 1463 CodeGenBoundParametersTy; 1464 } // anonymous namespace 1465 1466 static void 1467 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1468 const OMPExecutableDirective &S) { 1469 if (CGF.getLangOpts().OpenMP < 50) 1470 return; 1471 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1472 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1473 for (const Expr *Ref : C->varlists()) { 1474 if (!Ref->getType()->isScalarType()) 1475 continue; 1476 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1477 if (!DRE) 1478 continue; 1479 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1480 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1481 } 1482 } 1483 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1484 for (const Expr *Ref : C->varlists()) { 1485 if (!Ref->getType()->isScalarType()) 1486 continue; 1487 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1488 if (!DRE) 1489 continue; 1490 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1491 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1492 } 1493 } 1494 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1495 for (const Expr *Ref : C->varlists()) { 1496 if (!Ref->getType()->isScalarType()) 1497 continue; 1498 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1499 if (!DRE) 1500 continue; 1501 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1502 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1503 } 1504 } 1505 // Privates should ne analyzed since they are not captured at all. 1506 // Task reductions may be skipped - tasks are ignored. 1507 // Firstprivates do not return value but may be passed by reference - no need 1508 // to check for updated lastprivate conditional. 1509 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1510 for (const Expr *Ref : C->varlists()) { 1511 if (!Ref->getType()->isScalarType()) 1512 continue; 1513 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1514 if (!DRE) 1515 continue; 1516 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1517 } 1518 } 1519 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1520 CGF, S, PrivateDecls); 1521 } 1522 1523 static void emitCommonOMPParallelDirective( 1524 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1525 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1526 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1527 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1528 llvm::Function *OutlinedFn = 1529 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1530 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1531 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1532 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1533 llvm::Value *NumThreads = 1534 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1535 /*IgnoreResultAssign=*/true); 1536 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1537 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1538 } 1539 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1540 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1541 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1542 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1543 } 1544 const Expr *IfCond = nullptr; 1545 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1546 if (C->getNameModifier() == OMPD_unknown || 1547 C->getNameModifier() == OMPD_parallel) { 1548 IfCond = C->getCondition(); 1549 break; 1550 } 1551 } 1552 1553 OMPParallelScope Scope(CGF, S); 1554 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1555 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1556 // lower and upper bounds with the pragma 'for' chunking mechanism. 1557 // The following lambda takes care of appending the lower and upper bound 1558 // parameters when necessary 1559 CodeGenBoundParameters(CGF, S, CapturedVars); 1560 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1561 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1562 CapturedVars, IfCond); 1563 } 1564 1565 static void emitEmptyBoundParameters(CodeGenFunction &, 1566 const OMPExecutableDirective &, 1567 llvm::SmallVectorImpl<llvm::Value *> &) {} 1568 1569 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1570 CodeGenFunction &CGF, const VarDecl *VD) { 1571 CodeGenModule &CGM = CGF.CGM; 1572 auto OMPBuilder = CGM.getOpenMPIRBuilder(); 1573 assert(OMPBuilder && "OMPIRBuilder does not exist!"); 1574 1575 if (!VD) 1576 return Address::invalid(); 1577 const VarDecl *CVD = VD->getCanonicalDecl(); 1578 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1579 return Address::invalid(); 1580 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1581 // Use the default allocation. 1582 if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc && 1583 !AA->getAllocator()) 1584 return Address::invalid(); 1585 llvm::Value *Size; 1586 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1587 if (CVD->getType()->isVariablyModifiedType()) { 1588 Size = CGF.getTypeSize(CVD->getType()); 1589 // Align the size: ((size + align - 1) / align) * align 1590 Size = CGF.Builder.CreateNUWAdd( 1591 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1592 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1593 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1594 } else { 1595 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1596 Size = CGM.getSize(Sz.alignTo(Align)); 1597 } 1598 1599 assert(AA->getAllocator() && 1600 "Expected allocator expression for non-default allocator."); 1601 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1602 // According to the standard, the original allocator type is a enum (integer). 1603 // Convert to pointer type, if required. 1604 if (Allocator->getType()->isIntegerTy()) 1605 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1606 else if (Allocator->getType()->isPointerTy()) 1607 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1608 CGM.VoidPtrTy); 1609 1610 llvm::Value *Addr = OMPBuilder->CreateOMPAlloc( 1611 CGF.Builder, Size, Allocator, 1612 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1613 llvm::CallInst *FreeCI = 1614 OMPBuilder->CreateOMPFree(CGF.Builder, Addr, Allocator); 1615 1616 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1617 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1618 Addr, 1619 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1620 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1621 return Address(Addr, Align); 1622 } 1623 1624 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1625 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1626 SourceLocation Loc) { 1627 CodeGenModule &CGM = CGF.CGM; 1628 if (CGM.getLangOpts().OpenMPUseTLS && 1629 CGM.getContext().getTargetInfo().isTLSSupported()) 1630 return VDAddr; 1631 1632 llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder(); 1633 assert(OMPBuilder && "OpenMPIRBuilder is not initialized or used."); 1634 1635 llvm::Type *VarTy = VDAddr.getElementType(); 1636 llvm::Value *Data = 1637 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1638 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1639 std::string Suffix = getNameWithSeparators({"cache", ""}); 1640 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1641 1642 llvm::CallInst *ThreadPrivateCacheCall = 1643 OMPBuilder->CreateCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1644 1645 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1646 } 1647 1648 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1649 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1650 SmallString<128> Buffer; 1651 llvm::raw_svector_ostream OS(Buffer); 1652 StringRef Sep = FirstSeparator; 1653 for (StringRef Part : Parts) { 1654 OS << Sep << Part; 1655 Sep = Separator; 1656 } 1657 return OS.str().str(); 1658 } 1659 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1660 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 1661 // Check if we have any if clause associated with the directive. 1662 llvm::Value *IfCond = nullptr; 1663 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1664 IfCond = EmitScalarExpr(C->getCondition(), 1665 /*IgnoreResultAssign=*/true); 1666 1667 llvm::Value *NumThreads = nullptr; 1668 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1669 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1670 /*IgnoreResultAssign=*/true); 1671 1672 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1673 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1674 ProcBind = ProcBindClause->getProcBindKind(); 1675 1676 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1677 1678 // The cleanup callback that finalizes all variabels at the given location, 1679 // thus calls destructors etc. 1680 auto FiniCB = [this](InsertPointTy IP) { 1681 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1682 }; 1683 1684 // Privatization callback that performs appropriate action for 1685 // shared/private/firstprivate/lastprivate/copyin/... variables. 1686 // 1687 // TODO: This defaults to shared right now. 1688 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1689 llvm::Value &Val, llvm::Value *&ReplVal) { 1690 // The next line is appropriate only for variables (Val) with the 1691 // data-sharing attribute "shared". 1692 ReplVal = &Val; 1693 1694 return CodeGenIP; 1695 }; 1696 1697 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1698 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1699 1700 auto BodyGenCB = [ParallelRegionBodyStmt, 1701 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1702 llvm::BasicBlock &ContinuationBB) { 1703 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1704 ContinuationBB); 1705 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1706 CodeGenIP, ContinuationBB); 1707 }; 1708 1709 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1710 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1711 Builder.restoreIP(OMPBuilder->CreateParallel(Builder, BodyGenCB, PrivCB, 1712 FiniCB, IfCond, NumThreads, 1713 ProcBind, S.hasCancel())); 1714 return; 1715 } 1716 1717 // Emit parallel region as a standalone region. 1718 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1719 Action.Enter(CGF); 1720 OMPPrivateScope PrivateScope(CGF); 1721 bool Copyins = CGF.EmitOMPCopyinClause(S); 1722 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1723 if (Copyins) { 1724 // Emit implicit barrier to synchronize threads and avoid data races on 1725 // propagation master's thread values of threadprivate variables to local 1726 // instances of that variables of all other implicit threads. 1727 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1728 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1729 /*ForceSimpleCall=*/true); 1730 } 1731 CGF.EmitOMPPrivateClause(S, PrivateScope); 1732 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1733 (void)PrivateScope.Privatize(); 1734 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1735 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1736 }; 1737 { 1738 auto LPCRegion = 1739 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1740 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1741 emitEmptyBoundParameters); 1742 emitPostUpdateForReductionClause(*this, S, 1743 [](CodeGenFunction &) { return nullptr; }); 1744 } 1745 // Check for outer lastprivate conditional update. 1746 checkForLastprivateConditionalUpdate(*this, S); 1747 } 1748 1749 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1750 int MaxLevel, int Level = 0) { 1751 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1752 const Stmt *SimplifiedS = S->IgnoreContainers(); 1753 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1754 PrettyStackTraceLoc CrashInfo( 1755 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1756 "LLVM IR generation of compound statement ('{}')"); 1757 1758 // Keep track of the current cleanup stack depth, including debug scopes. 1759 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1760 for (const Stmt *CurStmt : CS->body()) 1761 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1762 return; 1763 } 1764 if (SimplifiedS == NextLoop) { 1765 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1766 S = For->getBody(); 1767 } else { 1768 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1769 "Expected canonical for loop or range-based for loop."); 1770 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1771 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1772 S = CXXFor->getBody(); 1773 } 1774 if (Level + 1 < MaxLevel) { 1775 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1776 S, /*TryImperfectlyNestedLoops=*/true); 1777 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1778 return; 1779 } 1780 } 1781 CGF.EmitStmt(S); 1782 } 1783 1784 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1785 JumpDest LoopExit) { 1786 RunCleanupsScope BodyScope(*this); 1787 // Update counters values on current iteration. 1788 for (const Expr *UE : D.updates()) 1789 EmitIgnoredExpr(UE); 1790 // Update the linear variables. 1791 // In distribute directives only loop counters may be marked as linear, no 1792 // need to generate the code for them. 1793 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1794 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1795 for (const Expr *UE : C->updates()) 1796 EmitIgnoredExpr(UE); 1797 } 1798 } 1799 1800 // On a continue in the body, jump to the end. 1801 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1802 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1803 for (const Expr *E : D.finals_conditions()) { 1804 if (!E) 1805 continue; 1806 // Check that loop counter in non-rectangular nest fits into the iteration 1807 // space. 1808 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1809 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1810 getProfileCount(D.getBody())); 1811 EmitBlock(NextBB); 1812 } 1813 1814 OMPPrivateScope InscanScope(*this); 1815 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1816 bool IsInscanRegion = InscanScope.Privatize(); 1817 if (IsInscanRegion) { 1818 // Need to remember the block before and after scan directive 1819 // to dispatch them correctly depending on the clause used in 1820 // this directive, inclusive or exclusive. For inclusive scan the natural 1821 // order of the blocks is used, for exclusive clause the blocks must be 1822 // executed in reverse order. 1823 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1824 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1825 // No need to allocate inscan exit block, in simd mode it is selected in the 1826 // codegen for the scan directive. 1827 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1828 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1829 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1830 EmitBranch(OMPScanDispatch); 1831 EmitBlock(OMPBeforeScanBlock); 1832 } 1833 1834 // Emit loop variables for C++ range loops. 1835 const Stmt *Body = 1836 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1837 // Emit loop body. 1838 emitBody(*this, Body, 1839 OMPLoopDirective::tryToFindNextInnerLoop( 1840 Body, /*TryImperfectlyNestedLoops=*/true), 1841 D.getCollapsedNumber()); 1842 1843 // Jump to the dispatcher at the end of the loop body. 1844 if (IsInscanRegion) 1845 EmitBranch(OMPScanExitBlock); 1846 1847 // The end (updates/cleanups). 1848 EmitBlock(Continue.getBlock()); 1849 BreakContinueStack.pop_back(); 1850 } 1851 1852 void CodeGenFunction::EmitOMPInnerLoop( 1853 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 1854 const Expr *IncExpr, 1855 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1856 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1857 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1858 1859 // Start the loop with a block that tests the condition. 1860 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1861 EmitBlock(CondBlock); 1862 const SourceRange R = S.getSourceRange(); 1863 1864 // If attributes are attached, push to the basic block with them. 1865 const auto &OMPED = cast<OMPExecutableDirective>(S); 1866 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 1867 const Stmt *SS = ICS->getCapturedStmt(); 1868 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 1869 if (AS) 1870 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 1871 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 1872 SourceLocToDebugLoc(R.getEnd())); 1873 else 1874 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1875 SourceLocToDebugLoc(R.getEnd())); 1876 1877 // If there are any cleanups between here and the loop-exit scope, 1878 // create a block to stage a loop exit along. 1879 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1880 if (RequiresCleanup) 1881 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1882 1883 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1884 1885 // Emit condition. 1886 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1887 if (ExitBlock != LoopExit.getBlock()) { 1888 EmitBlock(ExitBlock); 1889 EmitBranchThroughCleanup(LoopExit); 1890 } 1891 1892 EmitBlock(LoopBody); 1893 incrementProfileCounter(&S); 1894 1895 // Create a block for the increment. 1896 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1897 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1898 1899 BodyGen(*this); 1900 1901 // Emit "IV = IV + 1" and a back-edge to the condition block. 1902 EmitBlock(Continue.getBlock()); 1903 EmitIgnoredExpr(IncExpr); 1904 PostIncGen(*this); 1905 BreakContinueStack.pop_back(); 1906 EmitBranch(CondBlock); 1907 LoopStack.pop(); 1908 // Emit the fall-through block. 1909 EmitBlock(LoopExit.getBlock()); 1910 } 1911 1912 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1913 if (!HaveInsertPoint()) 1914 return false; 1915 // Emit inits for the linear variables. 1916 bool HasLinears = false; 1917 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1918 for (const Expr *Init : C->inits()) { 1919 HasLinears = true; 1920 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1921 if (const auto *Ref = 1922 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1923 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1924 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1925 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1926 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1927 VD->getInit()->getType(), VK_LValue, 1928 VD->getInit()->getExprLoc()); 1929 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1930 VD->getType()), 1931 /*capturedByInit=*/false); 1932 EmitAutoVarCleanups(Emission); 1933 } else { 1934 EmitVarDecl(*VD); 1935 } 1936 } 1937 // Emit the linear steps for the linear clauses. 1938 // If a step is not constant, it is pre-calculated before the loop. 1939 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1940 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1941 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1942 // Emit calculation of the linear step. 1943 EmitIgnoredExpr(CS); 1944 } 1945 } 1946 return HasLinears; 1947 } 1948 1949 void CodeGenFunction::EmitOMPLinearClauseFinal( 1950 const OMPLoopDirective &D, 1951 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1952 if (!HaveInsertPoint()) 1953 return; 1954 llvm::BasicBlock *DoneBB = nullptr; 1955 // Emit the final values of the linear variables. 1956 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1957 auto IC = C->varlist_begin(); 1958 for (const Expr *F : C->finals()) { 1959 if (!DoneBB) { 1960 if (llvm::Value *Cond = CondGen(*this)) { 1961 // If the first post-update expression is found, emit conditional 1962 // block if it was requested. 1963 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1964 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1965 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1966 EmitBlock(ThenBB); 1967 } 1968 } 1969 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1970 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1971 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1972 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1973 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1974 CodeGenFunction::OMPPrivateScope VarScope(*this); 1975 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1976 (void)VarScope.Privatize(); 1977 EmitIgnoredExpr(F); 1978 ++IC; 1979 } 1980 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1981 EmitIgnoredExpr(PostUpdate); 1982 } 1983 if (DoneBB) 1984 EmitBlock(DoneBB, /*IsFinished=*/true); 1985 } 1986 1987 static void emitAlignedClause(CodeGenFunction &CGF, 1988 const OMPExecutableDirective &D) { 1989 if (!CGF.HaveInsertPoint()) 1990 return; 1991 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1992 llvm::APInt ClauseAlignment(64, 0); 1993 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1994 auto *AlignmentCI = 1995 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1996 ClauseAlignment = AlignmentCI->getValue(); 1997 } 1998 for (const Expr *E : Clause->varlists()) { 1999 llvm::APInt Alignment(ClauseAlignment); 2000 if (Alignment == 0) { 2001 // OpenMP [2.8.1, Description] 2002 // If no optional parameter is specified, implementation-defined default 2003 // alignments for SIMD instructions on the target platforms are assumed. 2004 Alignment = 2005 CGF.getContext() 2006 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2007 E->getType()->getPointeeType())) 2008 .getQuantity(); 2009 } 2010 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2011 "alignment is not power of 2"); 2012 if (Alignment != 0) { 2013 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2014 CGF.emitAlignmentAssumption( 2015 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2016 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2017 } 2018 } 2019 } 2020 } 2021 2022 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2023 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2024 if (!HaveInsertPoint()) 2025 return; 2026 auto I = S.private_counters().begin(); 2027 for (const Expr *E : S.counters()) { 2028 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2029 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2030 // Emit var without initialization. 2031 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2032 EmitAutoVarCleanups(VarEmission); 2033 LocalDeclMap.erase(PrivateVD); 2034 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 2035 return VarEmission.getAllocatedAddress(); 2036 }); 2037 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2038 VD->hasGlobalStorage()) { 2039 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2040 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2041 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2042 E->getType(), VK_LValue, E->getExprLoc()); 2043 return EmitLValue(&DRE).getAddress(*this); 2044 }); 2045 } else { 2046 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2047 return VarEmission.getAllocatedAddress(); 2048 }); 2049 } 2050 ++I; 2051 } 2052 // Privatize extra loop counters used in loops for ordered(n) clauses. 2053 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2054 if (!C->getNumForLoops()) 2055 continue; 2056 for (unsigned I = S.getCollapsedNumber(), 2057 E = C->getLoopNumIterations().size(); 2058 I < E; ++I) { 2059 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2060 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2061 // Override only those variables that can be captured to avoid re-emission 2062 // of the variables declared within the loops. 2063 if (DRE->refersToEnclosingVariableOrCapture()) { 2064 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2065 return CreateMemTemp(DRE->getType(), VD->getName()); 2066 }); 2067 } 2068 } 2069 } 2070 } 2071 2072 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2073 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2074 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2075 if (!CGF.HaveInsertPoint()) 2076 return; 2077 { 2078 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2079 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2080 (void)PreCondScope.Privatize(); 2081 // Get initial values of real counters. 2082 for (const Expr *I : S.inits()) { 2083 CGF.EmitIgnoredExpr(I); 2084 } 2085 } 2086 // Create temp loop control variables with their init values to support 2087 // non-rectangular loops. 2088 CodeGenFunction::OMPMapVars PreCondVars; 2089 for (const Expr * E: S.dependent_counters()) { 2090 if (!E) 2091 continue; 2092 assert(!E->getType().getNonReferenceType()->isRecordType() && 2093 "dependent counter must not be an iterator."); 2094 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2095 Address CounterAddr = 2096 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2097 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2098 } 2099 (void)PreCondVars.apply(CGF); 2100 for (const Expr *E : S.dependent_inits()) { 2101 if (!E) 2102 continue; 2103 CGF.EmitIgnoredExpr(E); 2104 } 2105 // Check that loop is executed at least one time. 2106 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2107 PreCondVars.restore(CGF); 2108 } 2109 2110 void CodeGenFunction::EmitOMPLinearClause( 2111 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2112 if (!HaveInsertPoint()) 2113 return; 2114 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2115 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2116 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2117 for (const Expr *C : LoopDirective->counters()) { 2118 SIMDLCVs.insert( 2119 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2120 } 2121 } 2122 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2123 auto CurPrivate = C->privates().begin(); 2124 for (const Expr *E : C->varlists()) { 2125 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2126 const auto *PrivateVD = 2127 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2128 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2129 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2130 // Emit private VarDecl with copy init. 2131 EmitVarDecl(*PrivateVD); 2132 return GetAddrOfLocalVar(PrivateVD); 2133 }); 2134 assert(IsRegistered && "linear var already registered as private"); 2135 // Silence the warning about unused variable. 2136 (void)IsRegistered; 2137 } else { 2138 EmitVarDecl(*PrivateVD); 2139 } 2140 ++CurPrivate; 2141 } 2142 } 2143 } 2144 2145 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2146 const OMPExecutableDirective &D, 2147 bool IsMonotonic) { 2148 if (!CGF.HaveInsertPoint()) 2149 return; 2150 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2151 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2152 /*ignoreResult=*/true); 2153 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2154 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2155 // In presence of finite 'safelen', it may be unsafe to mark all 2156 // the memory instructions parallel, because loop-carried 2157 // dependences of 'safelen' iterations are possible. 2158 if (!IsMonotonic) 2159 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2160 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2161 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2162 /*ignoreResult=*/true); 2163 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2164 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2165 // In presence of finite 'safelen', it may be unsafe to mark all 2166 // the memory instructions parallel, because loop-carried 2167 // dependences of 'safelen' iterations are possible. 2168 CGF.LoopStack.setParallel(/*Enable=*/false); 2169 } 2170 } 2171 2172 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 2173 bool IsMonotonic) { 2174 // Walk clauses and process safelen/lastprivate. 2175 LoopStack.setParallel(!IsMonotonic); 2176 LoopStack.setVectorizeEnable(); 2177 emitSimdlenSafelenClause(*this, D, IsMonotonic); 2178 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2179 if (C->getKind() == OMPC_ORDER_concurrent) 2180 LoopStack.setParallel(/*Enable=*/true); 2181 if ((D.getDirectiveKind() == OMPD_simd || 2182 (getLangOpts().OpenMPSimd && 2183 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2184 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2185 [](const OMPReductionClause *C) { 2186 return C->getModifier() == OMPC_REDUCTION_inscan; 2187 })) 2188 // Disable parallel access in case of prefix sum. 2189 LoopStack.setParallel(/*Enable=*/false); 2190 } 2191 2192 void CodeGenFunction::EmitOMPSimdFinal( 2193 const OMPLoopDirective &D, 2194 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2195 if (!HaveInsertPoint()) 2196 return; 2197 llvm::BasicBlock *DoneBB = nullptr; 2198 auto IC = D.counters().begin(); 2199 auto IPC = D.private_counters().begin(); 2200 for (const Expr *F : D.finals()) { 2201 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2202 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2203 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2204 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2205 OrigVD->hasGlobalStorage() || CED) { 2206 if (!DoneBB) { 2207 if (llvm::Value *Cond = CondGen(*this)) { 2208 // If the first post-update expression is found, emit conditional 2209 // block if it was requested. 2210 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2211 DoneBB = createBasicBlock(".omp.final.done"); 2212 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2213 EmitBlock(ThenBB); 2214 } 2215 } 2216 Address OrigAddr = Address::invalid(); 2217 if (CED) { 2218 OrigAddr = 2219 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2220 } else { 2221 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2222 /*RefersToEnclosingVariableOrCapture=*/false, 2223 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2224 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2225 } 2226 OMPPrivateScope VarScope(*this); 2227 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2228 (void)VarScope.Privatize(); 2229 EmitIgnoredExpr(F); 2230 } 2231 ++IC; 2232 ++IPC; 2233 } 2234 if (DoneBB) 2235 EmitBlock(DoneBB, /*IsFinished=*/true); 2236 } 2237 2238 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2239 const OMPLoopDirective &S, 2240 CodeGenFunction::JumpDest LoopExit) { 2241 CGF.EmitOMPLoopBody(S, LoopExit); 2242 CGF.EmitStopPoint(&S); 2243 } 2244 2245 /// Emit a helper variable and return corresponding lvalue. 2246 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2247 const DeclRefExpr *Helper) { 2248 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2249 CGF.EmitVarDecl(*VDecl); 2250 return CGF.EmitLValue(Helper); 2251 } 2252 2253 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2254 const RegionCodeGenTy &SimdInitGen, 2255 const RegionCodeGenTy &BodyCodeGen) { 2256 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2257 PrePostActionTy &) { 2258 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2259 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2260 SimdInitGen(CGF); 2261 2262 BodyCodeGen(CGF); 2263 }; 2264 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2265 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2266 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2267 2268 BodyCodeGen(CGF); 2269 }; 2270 const Expr *IfCond = nullptr; 2271 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2272 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2273 if (CGF.getLangOpts().OpenMP >= 50 && 2274 (C->getNameModifier() == OMPD_unknown || 2275 C->getNameModifier() == OMPD_simd)) { 2276 IfCond = C->getCondition(); 2277 break; 2278 } 2279 } 2280 } 2281 if (IfCond) { 2282 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2283 } else { 2284 RegionCodeGenTy ThenRCG(ThenGen); 2285 ThenRCG(CGF); 2286 } 2287 } 2288 2289 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2290 PrePostActionTy &Action) { 2291 Action.Enter(CGF); 2292 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2293 "Expected simd directive"); 2294 OMPLoopScope PreInitScope(CGF, S); 2295 // if (PreCond) { 2296 // for (IV in 0..LastIteration) BODY; 2297 // <Final counter/linear vars updates>; 2298 // } 2299 // 2300 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2301 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2302 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2303 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2304 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2305 } 2306 2307 // Emit: if (PreCond) - begin. 2308 // If the condition constant folds and can be elided, avoid emitting the 2309 // whole loop. 2310 bool CondConstant; 2311 llvm::BasicBlock *ContBlock = nullptr; 2312 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2313 if (!CondConstant) 2314 return; 2315 } else { 2316 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2317 ContBlock = CGF.createBasicBlock("simd.if.end"); 2318 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2319 CGF.getProfileCount(&S)); 2320 CGF.EmitBlock(ThenBlock); 2321 CGF.incrementProfileCounter(&S); 2322 } 2323 2324 // Emit the loop iteration variable. 2325 const Expr *IVExpr = S.getIterationVariable(); 2326 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2327 CGF.EmitVarDecl(*IVDecl); 2328 CGF.EmitIgnoredExpr(S.getInit()); 2329 2330 // Emit the iterations count variable. 2331 // If it is not a variable, Sema decided to calculate iterations count on 2332 // each iteration (e.g., it is foldable into a constant). 2333 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2334 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2335 // Emit calculation of the iterations count. 2336 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2337 } 2338 2339 emitAlignedClause(CGF, S); 2340 (void)CGF.EmitOMPLinearClauseInit(S); 2341 { 2342 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2343 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2344 CGF.EmitOMPLinearClause(S, LoopScope); 2345 CGF.EmitOMPPrivateClause(S, LoopScope); 2346 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2347 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2348 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2349 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2350 (void)LoopScope.Privatize(); 2351 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2352 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2353 2354 emitCommonSimdLoop( 2355 CGF, S, 2356 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2357 CGF.EmitOMPSimdInit(S); 2358 }, 2359 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2360 CGF.EmitOMPInnerLoop( 2361 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2362 [&S](CodeGenFunction &CGF) { 2363 emitOMPLoopBodyWithStopPoint(CGF, S, 2364 CodeGenFunction::JumpDest()); 2365 }, 2366 [](CodeGenFunction &) {}); 2367 }); 2368 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2369 // Emit final copy of the lastprivate variables at the end of loops. 2370 if (HasLastprivateClause) 2371 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2372 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2373 emitPostUpdateForReductionClause(CGF, S, 2374 [](CodeGenFunction &) { return nullptr; }); 2375 } 2376 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2377 // Emit: if (PreCond) - end. 2378 if (ContBlock) { 2379 CGF.EmitBranch(ContBlock); 2380 CGF.EmitBlock(ContBlock, true); 2381 } 2382 } 2383 2384 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2385 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2386 OMPFirstScanLoop = true; 2387 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2388 emitOMPSimdRegion(CGF, S, Action); 2389 }; 2390 { 2391 auto LPCRegion = 2392 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2393 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2394 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2395 } 2396 // Check for outer lastprivate conditional update. 2397 checkForLastprivateConditionalUpdate(*this, S); 2398 } 2399 2400 void CodeGenFunction::EmitOMPOuterLoop( 2401 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2402 CodeGenFunction::OMPPrivateScope &LoopScope, 2403 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2404 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2405 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2406 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2407 2408 const Expr *IVExpr = S.getIterationVariable(); 2409 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2410 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2411 2412 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2413 2414 // Start the loop with a block that tests the condition. 2415 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2416 EmitBlock(CondBlock); 2417 const SourceRange R = S.getSourceRange(); 2418 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2419 SourceLocToDebugLoc(R.getEnd())); 2420 2421 llvm::Value *BoolCondVal = nullptr; 2422 if (!DynamicOrOrdered) { 2423 // UB = min(UB, GlobalUB) or 2424 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2425 // 'distribute parallel for') 2426 EmitIgnoredExpr(LoopArgs.EUB); 2427 // IV = LB 2428 EmitIgnoredExpr(LoopArgs.Init); 2429 // IV < UB 2430 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2431 } else { 2432 BoolCondVal = 2433 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2434 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2435 } 2436 2437 // If there are any cleanups between here and the loop-exit scope, 2438 // create a block to stage a loop exit along. 2439 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2440 if (LoopScope.requiresCleanups()) 2441 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2442 2443 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2444 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2445 if (ExitBlock != LoopExit.getBlock()) { 2446 EmitBlock(ExitBlock); 2447 EmitBranchThroughCleanup(LoopExit); 2448 } 2449 EmitBlock(LoopBody); 2450 2451 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2452 // LB for loop condition and emitted it above). 2453 if (DynamicOrOrdered) 2454 EmitIgnoredExpr(LoopArgs.Init); 2455 2456 // Create a block for the increment. 2457 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2458 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2459 2460 emitCommonSimdLoop( 2461 *this, S, 2462 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2463 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2464 // with dynamic/guided scheduling and without ordered clause. 2465 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2466 CGF.LoopStack.setParallel(!IsMonotonic); 2467 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2468 if (C->getKind() == OMPC_ORDER_concurrent) 2469 CGF.LoopStack.setParallel(/*Enable=*/true); 2470 } else { 2471 CGF.EmitOMPSimdInit(S, IsMonotonic); 2472 } 2473 }, 2474 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2475 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2476 SourceLocation Loc = S.getBeginLoc(); 2477 // when 'distribute' is not combined with a 'for': 2478 // while (idx <= UB) { BODY; ++idx; } 2479 // when 'distribute' is combined with a 'for' 2480 // (e.g. 'distribute parallel for') 2481 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2482 CGF.EmitOMPInnerLoop( 2483 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2484 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2485 CodeGenLoop(CGF, S, LoopExit); 2486 }, 2487 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2488 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2489 }); 2490 }); 2491 2492 EmitBlock(Continue.getBlock()); 2493 BreakContinueStack.pop_back(); 2494 if (!DynamicOrOrdered) { 2495 // Emit "LB = LB + Stride", "UB = UB + Stride". 2496 EmitIgnoredExpr(LoopArgs.NextLB); 2497 EmitIgnoredExpr(LoopArgs.NextUB); 2498 } 2499 2500 EmitBranch(CondBlock); 2501 LoopStack.pop(); 2502 // Emit the fall-through block. 2503 EmitBlock(LoopExit.getBlock()); 2504 2505 // Tell the runtime we are done. 2506 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2507 if (!DynamicOrOrdered) 2508 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2509 S.getDirectiveKind()); 2510 }; 2511 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2512 } 2513 2514 void CodeGenFunction::EmitOMPForOuterLoop( 2515 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2516 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2517 const OMPLoopArguments &LoopArgs, 2518 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2519 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2520 2521 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2522 const bool DynamicOrOrdered = 2523 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2524 2525 assert((Ordered || 2526 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2527 LoopArgs.Chunk != nullptr)) && 2528 "static non-chunked schedule does not need outer loop"); 2529 2530 // Emit outer loop. 2531 // 2532 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2533 // When schedule(dynamic,chunk_size) is specified, the iterations are 2534 // distributed to threads in the team in chunks as the threads request them. 2535 // Each thread executes a chunk of iterations, then requests another chunk, 2536 // until no chunks remain to be distributed. Each chunk contains chunk_size 2537 // iterations, except for the last chunk to be distributed, which may have 2538 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2539 // 2540 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2541 // to threads in the team in chunks as the executing threads request them. 2542 // Each thread executes a chunk of iterations, then requests another chunk, 2543 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2544 // each chunk is proportional to the number of unassigned iterations divided 2545 // by the number of threads in the team, decreasing to 1. For a chunk_size 2546 // with value k (greater than 1), the size of each chunk is determined in the 2547 // same way, with the restriction that the chunks do not contain fewer than k 2548 // iterations (except for the last chunk to be assigned, which may have fewer 2549 // than k iterations). 2550 // 2551 // When schedule(auto) is specified, the decision regarding scheduling is 2552 // delegated to the compiler and/or runtime system. The programmer gives the 2553 // implementation the freedom to choose any possible mapping of iterations to 2554 // threads in the team. 2555 // 2556 // When schedule(runtime) is specified, the decision regarding scheduling is 2557 // deferred until run time, and the schedule and chunk size are taken from the 2558 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2559 // implementation defined 2560 // 2561 // while(__kmpc_dispatch_next(&LB, &UB)) { 2562 // idx = LB; 2563 // while (idx <= UB) { BODY; ++idx; 2564 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2565 // } // inner loop 2566 // } 2567 // 2568 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2569 // When schedule(static, chunk_size) is specified, iterations are divided into 2570 // chunks of size chunk_size, and the chunks are assigned to the threads in 2571 // the team in a round-robin fashion in the order of the thread number. 2572 // 2573 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2574 // while (idx <= UB) { BODY; ++idx; } // inner loop 2575 // LB = LB + ST; 2576 // UB = UB + ST; 2577 // } 2578 // 2579 2580 const Expr *IVExpr = S.getIterationVariable(); 2581 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2582 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2583 2584 if (DynamicOrOrdered) { 2585 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2586 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2587 llvm::Value *LBVal = DispatchBounds.first; 2588 llvm::Value *UBVal = DispatchBounds.second; 2589 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2590 LoopArgs.Chunk}; 2591 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2592 IVSigned, Ordered, DipatchRTInputValues); 2593 } else { 2594 CGOpenMPRuntime::StaticRTInput StaticInit( 2595 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2596 LoopArgs.ST, LoopArgs.Chunk); 2597 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2598 ScheduleKind, StaticInit); 2599 } 2600 2601 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2602 const unsigned IVSize, 2603 const bool IVSigned) { 2604 if (Ordered) { 2605 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2606 IVSigned); 2607 } 2608 }; 2609 2610 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2611 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2612 OuterLoopArgs.IncExpr = S.getInc(); 2613 OuterLoopArgs.Init = S.getInit(); 2614 OuterLoopArgs.Cond = S.getCond(); 2615 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2616 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2617 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2618 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2619 } 2620 2621 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2622 const unsigned IVSize, const bool IVSigned) {} 2623 2624 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2625 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2626 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2627 const CodeGenLoopTy &CodeGenLoopContent) { 2628 2629 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2630 2631 // Emit outer loop. 2632 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2633 // dynamic 2634 // 2635 2636 const Expr *IVExpr = S.getIterationVariable(); 2637 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2638 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2639 2640 CGOpenMPRuntime::StaticRTInput StaticInit( 2641 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2642 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2643 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2644 2645 // for combined 'distribute' and 'for' the increment expression of distribute 2646 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2647 Expr *IncExpr; 2648 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2649 IncExpr = S.getDistInc(); 2650 else 2651 IncExpr = S.getInc(); 2652 2653 // this routine is shared by 'omp distribute parallel for' and 2654 // 'omp distribute': select the right EUB expression depending on the 2655 // directive 2656 OMPLoopArguments OuterLoopArgs; 2657 OuterLoopArgs.LB = LoopArgs.LB; 2658 OuterLoopArgs.UB = LoopArgs.UB; 2659 OuterLoopArgs.ST = LoopArgs.ST; 2660 OuterLoopArgs.IL = LoopArgs.IL; 2661 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2662 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2663 ? S.getCombinedEnsureUpperBound() 2664 : S.getEnsureUpperBound(); 2665 OuterLoopArgs.IncExpr = IncExpr; 2666 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2667 ? S.getCombinedInit() 2668 : S.getInit(); 2669 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2670 ? S.getCombinedCond() 2671 : S.getCond(); 2672 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2673 ? S.getCombinedNextLowerBound() 2674 : S.getNextLowerBound(); 2675 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2676 ? S.getCombinedNextUpperBound() 2677 : S.getNextUpperBound(); 2678 2679 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2680 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2681 emitEmptyOrdered); 2682 } 2683 2684 static std::pair<LValue, LValue> 2685 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2686 const OMPExecutableDirective &S) { 2687 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2688 LValue LB = 2689 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2690 LValue UB = 2691 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2692 2693 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2694 // parallel for') we need to use the 'distribute' 2695 // chunk lower and upper bounds rather than the whole loop iteration 2696 // space. These are parameters to the outlined function for 'parallel' 2697 // and we copy the bounds of the previous schedule into the 2698 // the current ones. 2699 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2700 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2701 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2702 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2703 PrevLBVal = CGF.EmitScalarConversion( 2704 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2705 LS.getIterationVariable()->getType(), 2706 LS.getPrevLowerBoundVariable()->getExprLoc()); 2707 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2708 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2709 PrevUBVal = CGF.EmitScalarConversion( 2710 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2711 LS.getIterationVariable()->getType(), 2712 LS.getPrevUpperBoundVariable()->getExprLoc()); 2713 2714 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2715 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2716 2717 return {LB, UB}; 2718 } 2719 2720 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2721 /// we need to use the LB and UB expressions generated by the worksharing 2722 /// code generation support, whereas in non combined situations we would 2723 /// just emit 0 and the LastIteration expression 2724 /// This function is necessary due to the difference of the LB and UB 2725 /// types for the RT emission routines for 'for_static_init' and 2726 /// 'for_dispatch_init' 2727 static std::pair<llvm::Value *, llvm::Value *> 2728 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2729 const OMPExecutableDirective &S, 2730 Address LB, Address UB) { 2731 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2732 const Expr *IVExpr = LS.getIterationVariable(); 2733 // when implementing a dynamic schedule for a 'for' combined with a 2734 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2735 // is not normalized as each team only executes its own assigned 2736 // distribute chunk 2737 QualType IteratorTy = IVExpr->getType(); 2738 llvm::Value *LBVal = 2739 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2740 llvm::Value *UBVal = 2741 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2742 return {LBVal, UBVal}; 2743 } 2744 2745 static void emitDistributeParallelForDistributeInnerBoundParams( 2746 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2747 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2748 const auto &Dir = cast<OMPLoopDirective>(S); 2749 LValue LB = 2750 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2751 llvm::Value *LBCast = 2752 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2753 CGF.SizeTy, /*isSigned=*/false); 2754 CapturedVars.push_back(LBCast); 2755 LValue UB = 2756 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2757 2758 llvm::Value *UBCast = 2759 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2760 CGF.SizeTy, /*isSigned=*/false); 2761 CapturedVars.push_back(UBCast); 2762 } 2763 2764 static void 2765 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2766 const OMPLoopDirective &S, 2767 CodeGenFunction::JumpDest LoopExit) { 2768 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2769 PrePostActionTy &Action) { 2770 Action.Enter(CGF); 2771 bool HasCancel = false; 2772 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2773 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2774 HasCancel = D->hasCancel(); 2775 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2776 HasCancel = D->hasCancel(); 2777 else if (const auto *D = 2778 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2779 HasCancel = D->hasCancel(); 2780 } 2781 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2782 HasCancel); 2783 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2784 emitDistributeParallelForInnerBounds, 2785 emitDistributeParallelForDispatchBounds); 2786 }; 2787 2788 emitCommonOMPParallelDirective( 2789 CGF, S, 2790 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2791 CGInlinedWorksharingLoop, 2792 emitDistributeParallelForDistributeInnerBoundParams); 2793 } 2794 2795 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2796 const OMPDistributeParallelForDirective &S) { 2797 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2798 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2799 S.getDistInc()); 2800 }; 2801 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2802 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2803 } 2804 2805 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2806 const OMPDistributeParallelForSimdDirective &S) { 2807 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2808 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2809 S.getDistInc()); 2810 }; 2811 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2812 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2813 } 2814 2815 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2816 const OMPDistributeSimdDirective &S) { 2817 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2818 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2819 }; 2820 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2821 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2822 } 2823 2824 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2825 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2826 // Emit SPMD target parallel for region as a standalone region. 2827 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2828 emitOMPSimdRegion(CGF, S, Action); 2829 }; 2830 llvm::Function *Fn; 2831 llvm::Constant *Addr; 2832 // Emit target region as a standalone region. 2833 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2834 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2835 assert(Fn && Addr && "Target device function emission failed."); 2836 } 2837 2838 void CodeGenFunction::EmitOMPTargetSimdDirective( 2839 const OMPTargetSimdDirective &S) { 2840 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2841 emitOMPSimdRegion(CGF, S, Action); 2842 }; 2843 emitCommonOMPTargetDirective(*this, S, CodeGen); 2844 } 2845 2846 namespace { 2847 struct ScheduleKindModifiersTy { 2848 OpenMPScheduleClauseKind Kind; 2849 OpenMPScheduleClauseModifier M1; 2850 OpenMPScheduleClauseModifier M2; 2851 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2852 OpenMPScheduleClauseModifier M1, 2853 OpenMPScheduleClauseModifier M2) 2854 : Kind(Kind), M1(M1), M2(M2) {} 2855 }; 2856 } // namespace 2857 2858 bool CodeGenFunction::EmitOMPWorksharingLoop( 2859 const OMPLoopDirective &S, Expr *EUB, 2860 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2861 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2862 // Emit the loop iteration variable. 2863 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2864 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2865 EmitVarDecl(*IVDecl); 2866 2867 // Emit the iterations count variable. 2868 // If it is not a variable, Sema decided to calculate iterations count on each 2869 // iteration (e.g., it is foldable into a constant). 2870 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2871 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2872 // Emit calculation of the iterations count. 2873 EmitIgnoredExpr(S.getCalcLastIteration()); 2874 } 2875 2876 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2877 2878 bool HasLastprivateClause; 2879 // Check pre-condition. 2880 { 2881 OMPLoopScope PreInitScope(*this, S); 2882 // Skip the entire loop if we don't meet the precondition. 2883 // If the condition constant folds and can be elided, avoid emitting the 2884 // whole loop. 2885 bool CondConstant; 2886 llvm::BasicBlock *ContBlock = nullptr; 2887 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2888 if (!CondConstant) 2889 return false; 2890 } else { 2891 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2892 ContBlock = createBasicBlock("omp.precond.end"); 2893 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2894 getProfileCount(&S)); 2895 EmitBlock(ThenBlock); 2896 incrementProfileCounter(&S); 2897 } 2898 2899 RunCleanupsScope DoacrossCleanupScope(*this); 2900 bool Ordered = false; 2901 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2902 if (OrderedClause->getNumForLoops()) 2903 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2904 else 2905 Ordered = true; 2906 } 2907 2908 llvm::DenseSet<const Expr *> EmittedFinals; 2909 emitAlignedClause(*this, S); 2910 bool HasLinears = EmitOMPLinearClauseInit(S); 2911 // Emit helper vars inits. 2912 2913 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2914 LValue LB = Bounds.first; 2915 LValue UB = Bounds.second; 2916 LValue ST = 2917 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2918 LValue IL = 2919 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2920 2921 // Emit 'then' code. 2922 { 2923 OMPPrivateScope LoopScope(*this); 2924 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2925 // Emit implicit barrier to synchronize threads and avoid data races on 2926 // initialization of firstprivate variables and post-update of 2927 // lastprivate variables. 2928 CGM.getOpenMPRuntime().emitBarrierCall( 2929 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2930 /*ForceSimpleCall=*/true); 2931 } 2932 EmitOMPPrivateClause(S, LoopScope); 2933 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2934 *this, S, EmitLValue(S.getIterationVariable())); 2935 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2936 EmitOMPReductionClauseInit(S, LoopScope); 2937 EmitOMPPrivateLoopCounters(S, LoopScope); 2938 EmitOMPLinearClause(S, LoopScope); 2939 (void)LoopScope.Privatize(); 2940 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2941 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2942 2943 // Detect the loop schedule kind and chunk. 2944 const Expr *ChunkExpr = nullptr; 2945 OpenMPScheduleTy ScheduleKind; 2946 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2947 ScheduleKind.Schedule = C->getScheduleKind(); 2948 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2949 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2950 ChunkExpr = C->getChunkSize(); 2951 } else { 2952 // Default behaviour for schedule clause. 2953 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2954 *this, S, ScheduleKind.Schedule, ChunkExpr); 2955 } 2956 bool HasChunkSizeOne = false; 2957 llvm::Value *Chunk = nullptr; 2958 if (ChunkExpr) { 2959 Chunk = EmitScalarExpr(ChunkExpr); 2960 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2961 S.getIterationVariable()->getType(), 2962 S.getBeginLoc()); 2963 Expr::EvalResult Result; 2964 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2965 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2966 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2967 } 2968 } 2969 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2970 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2971 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2972 // If the static schedule kind is specified or if the ordered clause is 2973 // specified, and if no monotonic modifier is specified, the effect will 2974 // be as if the monotonic modifier was specified. 2975 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2976 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2977 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2978 bool IsMonotonic = 2979 Ordered || 2980 ((ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2981 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown) && 2982 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 2983 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 2984 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2985 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2986 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2987 /* Chunked */ Chunk != nullptr) || 2988 StaticChunkedOne) && 2989 !Ordered) { 2990 JumpDest LoopExit = 2991 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2992 emitCommonSimdLoop( 2993 *this, S, 2994 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2995 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2996 CGF.EmitOMPSimdInit(S, IsMonotonic); 2997 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 2998 if (C->getKind() == OMPC_ORDER_concurrent) 2999 CGF.LoopStack.setParallel(/*Enable=*/true); 3000 } 3001 }, 3002 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3003 &S, ScheduleKind, LoopExit, 3004 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3005 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3006 // When no chunk_size is specified, the iteration space is divided 3007 // into chunks that are approximately equal in size, and at most 3008 // one chunk is distributed to each thread. Note that the size of 3009 // the chunks is unspecified in this case. 3010 CGOpenMPRuntime::StaticRTInput StaticInit( 3011 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3012 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3013 StaticChunkedOne ? Chunk : nullptr); 3014 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3015 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3016 StaticInit); 3017 // UB = min(UB, GlobalUB); 3018 if (!StaticChunkedOne) 3019 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3020 // IV = LB; 3021 CGF.EmitIgnoredExpr(S.getInit()); 3022 // For unchunked static schedule generate: 3023 // 3024 // while (idx <= UB) { 3025 // BODY; 3026 // ++idx; 3027 // } 3028 // 3029 // For static schedule with chunk one: 3030 // 3031 // while (IV <= PrevUB) { 3032 // BODY; 3033 // IV += ST; 3034 // } 3035 CGF.EmitOMPInnerLoop( 3036 S, LoopScope.requiresCleanups(), 3037 StaticChunkedOne ? S.getCombinedParForInDistCond() 3038 : S.getCond(), 3039 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3040 [&S, LoopExit](CodeGenFunction &CGF) { 3041 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3042 }, 3043 [](CodeGenFunction &) {}); 3044 }); 3045 EmitBlock(LoopExit.getBlock()); 3046 // Tell the runtime we are done. 3047 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3048 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3049 S.getDirectiveKind()); 3050 }; 3051 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3052 } else { 3053 // Emit the outer loop, which requests its work chunk [LB..UB] from 3054 // runtime and runs the inner loop to process it. 3055 const OMPLoopArguments LoopArguments( 3056 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3057 IL.getAddress(*this), Chunk, EUB); 3058 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3059 LoopArguments, CGDispatchBounds); 3060 } 3061 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3062 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3063 return CGF.Builder.CreateIsNotNull( 3064 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3065 }); 3066 } 3067 EmitOMPReductionClauseFinal( 3068 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3069 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3070 : /*Parallel only*/ OMPD_parallel); 3071 // Emit post-update of the reduction variables if IsLastIter != 0. 3072 emitPostUpdateForReductionClause( 3073 *this, S, [IL, &S](CodeGenFunction &CGF) { 3074 return CGF.Builder.CreateIsNotNull( 3075 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3076 }); 3077 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3078 if (HasLastprivateClause) 3079 EmitOMPLastprivateClauseFinal( 3080 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3081 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3082 } 3083 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3084 return CGF.Builder.CreateIsNotNull( 3085 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3086 }); 3087 DoacrossCleanupScope.ForceCleanup(); 3088 // We're now done with the loop, so jump to the continuation block. 3089 if (ContBlock) { 3090 EmitBranch(ContBlock); 3091 EmitBlock(ContBlock, /*IsFinished=*/true); 3092 } 3093 } 3094 return HasLastprivateClause; 3095 } 3096 3097 /// The following two functions generate expressions for the loop lower 3098 /// and upper bounds in case of static and dynamic (dispatch) schedule 3099 /// of the associated 'for' or 'distribute' loop. 3100 static std::pair<LValue, LValue> 3101 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3102 const auto &LS = cast<OMPLoopDirective>(S); 3103 LValue LB = 3104 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3105 LValue UB = 3106 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3107 return {LB, UB}; 3108 } 3109 3110 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3111 /// consider the lower and upper bound expressions generated by the 3112 /// worksharing loop support, but we use 0 and the iteration space size as 3113 /// constants 3114 static std::pair<llvm::Value *, llvm::Value *> 3115 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3116 Address LB, Address UB) { 3117 const auto &LS = cast<OMPLoopDirective>(S); 3118 const Expr *IVExpr = LS.getIterationVariable(); 3119 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3120 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3121 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3122 return {LBVal, UBVal}; 3123 } 3124 3125 /// Emits the code for the directive with inscan reductions. 3126 /// The code is the following: 3127 /// \code 3128 /// size num_iters = <num_iters>; 3129 /// <type> buffer[num_iters]; 3130 /// #pragma omp ... 3131 /// for (i: 0..<num_iters>) { 3132 /// <input phase>; 3133 /// buffer[i] = red; 3134 /// } 3135 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3136 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3137 /// buffer[i] op= buffer[i-pow(2,k)]; 3138 /// #pragma omp ... 3139 /// for (0..<num_iters>) { 3140 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3141 /// <scan phase>; 3142 /// } 3143 /// \endcode 3144 static void emitScanBasedDirective( 3145 CodeGenFunction &CGF, const OMPLoopDirective &S, 3146 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3147 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3148 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3149 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3150 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3151 SmallVector<const Expr *, 4> Shareds; 3152 SmallVector<const Expr *, 4> Privates; 3153 SmallVector<const Expr *, 4> ReductionOps; 3154 SmallVector<const Expr *, 4> LHSs; 3155 SmallVector<const Expr *, 4> RHSs; 3156 SmallVector<const Expr *, 4> CopyOps; 3157 SmallVector<const Expr *, 4> CopyArrayTemps; 3158 SmallVector<const Expr *, 4> CopyArrayElems; 3159 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3160 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3161 "Only inscan reductions are expected."); 3162 Shareds.append(C->varlist_begin(), C->varlist_end()); 3163 Privates.append(C->privates().begin(), C->privates().end()); 3164 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3165 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3166 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3167 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 3168 CopyArrayTemps.append(C->copy_array_temps().begin(), 3169 C->copy_array_temps().end()); 3170 CopyArrayElems.append(C->copy_array_elems().begin(), 3171 C->copy_array_elems().end()); 3172 } 3173 { 3174 // Emit buffers for each reduction variables. 3175 // ReductionCodeGen is required to emit correctly the code for array 3176 // reductions. 3177 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3178 unsigned Count = 0; 3179 auto *ITA = CopyArrayTemps.begin(); 3180 for (const Expr *IRef : Privates) { 3181 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3182 // Emit variably modified arrays, used for arrays/array sections 3183 // reductions. 3184 if (PrivateVD->getType()->isVariablyModifiedType()) { 3185 RedCG.emitSharedOrigLValue(CGF, Count); 3186 RedCG.emitAggregateType(CGF, Count); 3187 } 3188 CodeGenFunction::OpaqueValueMapping DimMapping( 3189 CGF, 3190 cast<OpaqueValueExpr>( 3191 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3192 ->getSizeExpr()), 3193 RValue::get(OMPScanNumIterations)); 3194 // Emit temp buffer. 3195 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3196 ++ITA; 3197 ++Count; 3198 } 3199 } 3200 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3201 { 3202 // Emit loop with input phase: 3203 // #pragma omp ... 3204 // for (i: 0..<num_iters>) { 3205 // <input phase>; 3206 // buffer[i] = red; 3207 // } 3208 CGF.OMPFirstScanLoop = true; 3209 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3210 FirstGen(CGF); 3211 } 3212 // Emit prefix reduction: 3213 // for (int k = 0; k <= ceil(log2(n)); ++k) 3214 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3215 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3216 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3217 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3218 llvm::Value *Arg = 3219 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3220 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3221 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3222 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3223 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3224 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3225 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3226 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3227 CGF.EmitBlock(LoopBB); 3228 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3229 // size pow2k = 1; 3230 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3231 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3232 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3233 // for (size i = n - 1; i >= 2 ^ k; --i) 3234 // tmp[i] op= tmp[i-pow2k]; 3235 llvm::BasicBlock *InnerLoopBB = 3236 CGF.createBasicBlock("omp.inner.log.scan.body"); 3237 llvm::BasicBlock *InnerExitBB = 3238 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3239 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3240 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3241 CGF.EmitBlock(InnerLoopBB); 3242 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3243 IVal->addIncoming(NMin1, LoopBB); 3244 { 3245 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3246 auto *ILHS = LHSs.begin(); 3247 auto *IRHS = RHSs.begin(); 3248 for (const Expr *CopyArrayElem : CopyArrayElems) { 3249 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3250 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3251 Address LHSAddr = Address::invalid(); 3252 { 3253 CodeGenFunction::OpaqueValueMapping IdxMapping( 3254 CGF, 3255 cast<OpaqueValueExpr>( 3256 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3257 RValue::get(IVal)); 3258 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3259 } 3260 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3261 Address RHSAddr = Address::invalid(); 3262 { 3263 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3264 CodeGenFunction::OpaqueValueMapping IdxMapping( 3265 CGF, 3266 cast<OpaqueValueExpr>( 3267 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3268 RValue::get(OffsetIVal)); 3269 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3270 } 3271 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3272 ++ILHS; 3273 ++IRHS; 3274 } 3275 PrivScope.Privatize(); 3276 CGF.CGM.getOpenMPRuntime().emitReduction( 3277 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3278 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3279 } 3280 llvm::Value *NextIVal = 3281 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3282 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3283 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3284 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3285 CGF.EmitBlock(InnerExitBB); 3286 llvm::Value *Next = 3287 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3288 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3289 // pow2k <<= 1; 3290 llvm::Value *NextPow2K = CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3291 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3292 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3293 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3294 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3295 CGF.EmitBlock(ExitBB); 3296 3297 CGF.OMPFirstScanLoop = false; 3298 SecondGen(CGF); 3299 } 3300 3301 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3302 const OMPLoopDirective &S, 3303 bool HasCancel) { 3304 bool HasLastprivates; 3305 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3306 [](const OMPReductionClause *C) { 3307 return C->getModifier() == OMPC_REDUCTION_inscan; 3308 })) { 3309 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3310 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3311 OMPLoopScope LoopScope(CGF, S); 3312 return CGF.EmitScalarExpr(S.getNumIterations()); 3313 }; 3314 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3315 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3316 CGF, S.getDirectiveKind(), HasCancel); 3317 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3318 emitForLoopBounds, 3319 emitDispatchForLoopBounds); 3320 // Emit an implicit barrier at the end. 3321 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3322 OMPD_for); 3323 }; 3324 const auto &&SecondGen = [&S, HasCancel, 3325 &HasLastprivates](CodeGenFunction &CGF) { 3326 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3327 CGF, S.getDirectiveKind(), HasCancel); 3328 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3329 emitForLoopBounds, 3330 emitDispatchForLoopBounds); 3331 }; 3332 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3333 } else { 3334 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3335 HasCancel); 3336 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3337 emitForLoopBounds, 3338 emitDispatchForLoopBounds); 3339 } 3340 return HasLastprivates; 3341 } 3342 3343 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3344 bool HasLastprivates = false; 3345 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3346 PrePostActionTy &) { 3347 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3348 }; 3349 { 3350 auto LPCRegion = 3351 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3352 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3353 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3354 S.hasCancel()); 3355 } 3356 3357 // Emit an implicit barrier at the end. 3358 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3359 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3360 // Check for outer lastprivate conditional update. 3361 checkForLastprivateConditionalUpdate(*this, S); 3362 } 3363 3364 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3365 bool HasLastprivates = false; 3366 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3367 PrePostActionTy &) { 3368 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3369 }; 3370 { 3371 auto LPCRegion = 3372 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3373 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3374 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3375 } 3376 3377 // Emit an implicit barrier at the end. 3378 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3379 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3380 // Check for outer lastprivate conditional update. 3381 checkForLastprivateConditionalUpdate(*this, S); 3382 } 3383 3384 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3385 const Twine &Name, 3386 llvm::Value *Init = nullptr) { 3387 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3388 if (Init) 3389 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3390 return LVal; 3391 } 3392 3393 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3394 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3395 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3396 bool HasLastprivates = false; 3397 auto &&CodeGen = [&S, CapturedStmt, CS, 3398 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3399 const ASTContext &C = CGF.getContext(); 3400 QualType KmpInt32Ty = 3401 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3402 // Emit helper vars inits. 3403 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3404 CGF.Builder.getInt32(0)); 3405 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3406 ? CGF.Builder.getInt32(CS->size() - 1) 3407 : CGF.Builder.getInt32(0); 3408 LValue UB = 3409 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3410 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3411 CGF.Builder.getInt32(1)); 3412 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3413 CGF.Builder.getInt32(0)); 3414 // Loop counter. 3415 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3416 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3417 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3418 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3419 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3420 // Generate condition for loop. 3421 BinaryOperator *Cond = BinaryOperator::Create( 3422 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, OK_Ordinary, 3423 S.getBeginLoc(), FPOptionsOverride()); 3424 // Increment for loop counter. 3425 UnaryOperator *Inc = UnaryOperator::Create( 3426 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 3427 S.getBeginLoc(), true, FPOptionsOverride()); 3428 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3429 // Iterate through all sections and emit a switch construct: 3430 // switch (IV) { 3431 // case 0: 3432 // <SectionStmt[0]>; 3433 // break; 3434 // ... 3435 // case <NumSection> - 1: 3436 // <SectionStmt[<NumSection> - 1]>; 3437 // break; 3438 // } 3439 // .omp.sections.exit: 3440 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3441 llvm::SwitchInst *SwitchStmt = 3442 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3443 ExitBB, CS == nullptr ? 1 : CS->size()); 3444 if (CS) { 3445 unsigned CaseNumber = 0; 3446 for (const Stmt *SubStmt : CS->children()) { 3447 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3448 CGF.EmitBlock(CaseBB); 3449 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3450 CGF.EmitStmt(SubStmt); 3451 CGF.EmitBranch(ExitBB); 3452 ++CaseNumber; 3453 } 3454 } else { 3455 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3456 CGF.EmitBlock(CaseBB); 3457 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3458 CGF.EmitStmt(CapturedStmt); 3459 CGF.EmitBranch(ExitBB); 3460 } 3461 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3462 }; 3463 3464 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3465 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3466 // Emit implicit barrier to synchronize threads and avoid data races on 3467 // initialization of firstprivate variables and post-update of lastprivate 3468 // variables. 3469 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3470 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3471 /*ForceSimpleCall=*/true); 3472 } 3473 CGF.EmitOMPPrivateClause(S, LoopScope); 3474 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3475 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3476 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3477 (void)LoopScope.Privatize(); 3478 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3479 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3480 3481 // Emit static non-chunked loop. 3482 OpenMPScheduleTy ScheduleKind; 3483 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3484 CGOpenMPRuntime::StaticRTInput StaticInit( 3485 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3486 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3487 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3488 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3489 // UB = min(UB, GlobalUB); 3490 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3491 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3492 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3493 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3494 // IV = LB; 3495 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3496 // while (idx <= UB) { BODY; ++idx; } 3497 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3498 [](CodeGenFunction &) {}); 3499 // Tell the runtime we are done. 3500 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3501 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3502 S.getDirectiveKind()); 3503 }; 3504 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3505 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3506 // Emit post-update of the reduction variables if IsLastIter != 0. 3507 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3508 return CGF.Builder.CreateIsNotNull( 3509 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3510 }); 3511 3512 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3513 if (HasLastprivates) 3514 CGF.EmitOMPLastprivateClauseFinal( 3515 S, /*NoFinals=*/false, 3516 CGF.Builder.CreateIsNotNull( 3517 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3518 }; 3519 3520 bool HasCancel = false; 3521 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3522 HasCancel = OSD->hasCancel(); 3523 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3524 HasCancel = OPSD->hasCancel(); 3525 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3526 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3527 HasCancel); 3528 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3529 // clause. Otherwise the barrier will be generated by the codegen for the 3530 // directive. 3531 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3532 // Emit implicit barrier to synchronize threads and avoid data races on 3533 // initialization of firstprivate variables. 3534 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3535 OMPD_unknown); 3536 } 3537 } 3538 3539 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3540 { 3541 auto LPCRegion = 3542 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3543 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3544 EmitSections(S); 3545 } 3546 // Emit an implicit barrier at the end. 3547 if (!S.getSingleClause<OMPNowaitClause>()) { 3548 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3549 OMPD_sections); 3550 } 3551 // Check for outer lastprivate conditional update. 3552 checkForLastprivateConditionalUpdate(*this, S); 3553 } 3554 3555 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3556 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3557 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3558 }; 3559 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3560 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 3561 S.hasCancel()); 3562 } 3563 3564 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3565 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3566 llvm::SmallVector<const Expr *, 8> DestExprs; 3567 llvm::SmallVector<const Expr *, 8> SrcExprs; 3568 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3569 // Check if there are any 'copyprivate' clauses associated with this 3570 // 'single' construct. 3571 // Build a list of copyprivate variables along with helper expressions 3572 // (<source>, <destination>, <destination>=<source> expressions) 3573 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3574 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3575 DestExprs.append(C->destination_exprs().begin(), 3576 C->destination_exprs().end()); 3577 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3578 AssignmentOps.append(C->assignment_ops().begin(), 3579 C->assignment_ops().end()); 3580 } 3581 // Emit code for 'single' region along with 'copyprivate' clauses 3582 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3583 Action.Enter(CGF); 3584 OMPPrivateScope SingleScope(CGF); 3585 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3586 CGF.EmitOMPPrivateClause(S, SingleScope); 3587 (void)SingleScope.Privatize(); 3588 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3589 }; 3590 { 3591 auto LPCRegion = 3592 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3593 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3594 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3595 CopyprivateVars, DestExprs, 3596 SrcExprs, AssignmentOps); 3597 } 3598 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3599 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3600 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3601 CGM.getOpenMPRuntime().emitBarrierCall( 3602 *this, S.getBeginLoc(), 3603 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3604 } 3605 // Check for outer lastprivate conditional update. 3606 checkForLastprivateConditionalUpdate(*this, S); 3607 } 3608 3609 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3610 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3611 Action.Enter(CGF); 3612 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3613 }; 3614 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3615 } 3616 3617 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3618 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 3619 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3620 3621 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3622 const Stmt *MasterRegionBodyStmt = CS->getCapturedStmt(); 3623 3624 auto FiniCB = [this](InsertPointTy IP) { 3625 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3626 }; 3627 3628 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 3629 InsertPointTy CodeGenIP, 3630 llvm::BasicBlock &FiniBB) { 3631 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3632 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 3633 CodeGenIP, FiniBB); 3634 }; 3635 3636 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 3637 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3638 Builder.restoreIP(OMPBuilder->CreateMaster(Builder, BodyGenCB, FiniCB)); 3639 3640 return; 3641 } 3642 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3643 emitMaster(*this, S); 3644 } 3645 3646 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 3647 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 3648 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3649 3650 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3651 const Stmt *CriticalRegionBodyStmt = CS->getCapturedStmt(); 3652 const Expr *Hint = nullptr; 3653 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3654 Hint = HintClause->getHint(); 3655 3656 // TODO: This is slightly different from what's currently being done in 3657 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 3658 // about typing is final. 3659 llvm::Value *HintInst = nullptr; 3660 if (Hint) 3661 HintInst = 3662 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 3663 3664 auto FiniCB = [this](InsertPointTy IP) { 3665 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3666 }; 3667 3668 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 3669 InsertPointTy CodeGenIP, 3670 llvm::BasicBlock &FiniBB) { 3671 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3672 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 3673 CodeGenIP, FiniBB); 3674 }; 3675 3676 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 3677 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3678 Builder.restoreIP(OMPBuilder->CreateCritical( 3679 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 3680 HintInst)); 3681 3682 return; 3683 } 3684 3685 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3686 Action.Enter(CGF); 3687 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3688 }; 3689 const Expr *Hint = nullptr; 3690 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3691 Hint = HintClause->getHint(); 3692 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3693 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 3694 S.getDirectiveName().getAsString(), 3695 CodeGen, S.getBeginLoc(), Hint); 3696 } 3697 3698 void CodeGenFunction::EmitOMPParallelForDirective( 3699 const OMPParallelForDirective &S) { 3700 // Emit directive as a combined directive that consists of two implicit 3701 // directives: 'parallel' with 'for' directive. 3702 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3703 Action.Enter(CGF); 3704 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 3705 }; 3706 { 3707 auto LPCRegion = 3708 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3709 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 3710 emitEmptyBoundParameters); 3711 } 3712 // Check for outer lastprivate conditional update. 3713 checkForLastprivateConditionalUpdate(*this, S); 3714 } 3715 3716 void CodeGenFunction::EmitOMPParallelForSimdDirective( 3717 const OMPParallelForSimdDirective &S) { 3718 // Emit directive as a combined directive that consists of two implicit 3719 // directives: 'parallel' with 'for' directive. 3720 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3721 Action.Enter(CGF); 3722 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3723 }; 3724 { 3725 auto LPCRegion = 3726 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3727 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 3728 emitEmptyBoundParameters); 3729 } 3730 // Check for outer lastprivate conditional update. 3731 checkForLastprivateConditionalUpdate(*this, S); 3732 } 3733 3734 void CodeGenFunction::EmitOMPParallelMasterDirective( 3735 const OMPParallelMasterDirective &S) { 3736 // Emit directive as a combined directive that consists of two implicit 3737 // directives: 'parallel' with 'master' directive. 3738 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3739 Action.Enter(CGF); 3740 OMPPrivateScope PrivateScope(CGF); 3741 bool Copyins = CGF.EmitOMPCopyinClause(S); 3742 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3743 if (Copyins) { 3744 // Emit implicit barrier to synchronize threads and avoid data races on 3745 // propagation master's thread values of threadprivate variables to local 3746 // instances of that variables of all other implicit threads. 3747 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3748 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3749 /*ForceSimpleCall=*/true); 3750 } 3751 CGF.EmitOMPPrivateClause(S, PrivateScope); 3752 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3753 (void)PrivateScope.Privatize(); 3754 emitMaster(CGF, S); 3755 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3756 }; 3757 { 3758 auto LPCRegion = 3759 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3760 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 3761 emitEmptyBoundParameters); 3762 emitPostUpdateForReductionClause(*this, S, 3763 [](CodeGenFunction &) { return nullptr; }); 3764 } 3765 // Check for outer lastprivate conditional update. 3766 checkForLastprivateConditionalUpdate(*this, S); 3767 } 3768 3769 void CodeGenFunction::EmitOMPParallelSectionsDirective( 3770 const OMPParallelSectionsDirective &S) { 3771 // Emit directive as a combined directive that consists of two implicit 3772 // directives: 'parallel' with 'sections' directive. 3773 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3774 Action.Enter(CGF); 3775 CGF.EmitSections(S); 3776 }; 3777 { 3778 auto LPCRegion = 3779 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3780 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 3781 emitEmptyBoundParameters); 3782 } 3783 // Check for outer lastprivate conditional update. 3784 checkForLastprivateConditionalUpdate(*this, S); 3785 } 3786 3787 void CodeGenFunction::EmitOMPTaskBasedDirective( 3788 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3789 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3790 OMPTaskDataTy &Data) { 3791 // Emit outlined function for task construct. 3792 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3793 auto I = CS->getCapturedDecl()->param_begin(); 3794 auto PartId = std::next(I); 3795 auto TaskT = std::next(I, 4); 3796 // Check if the task is final 3797 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3798 // If the condition constant folds and can be elided, try to avoid emitting 3799 // the condition and the dead arm of the if/else. 3800 const Expr *Cond = Clause->getCondition(); 3801 bool CondConstant; 3802 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3803 Data.Final.setInt(CondConstant); 3804 else 3805 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3806 } else { 3807 // By default the task is not final. 3808 Data.Final.setInt(/*IntVal=*/false); 3809 } 3810 // Check if the task has 'priority' clause. 3811 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3812 const Expr *Prio = Clause->getPriority(); 3813 Data.Priority.setInt(/*IntVal=*/true); 3814 Data.Priority.setPointer(EmitScalarConversion( 3815 EmitScalarExpr(Prio), Prio->getType(), 3816 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3817 Prio->getExprLoc())); 3818 } 3819 // The first function argument for tasks is a thread id, the second one is a 3820 // part id (0 for tied tasks, >=0 for untied task). 3821 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3822 // Get list of private variables. 3823 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3824 auto IRef = C->varlist_begin(); 3825 for (const Expr *IInit : C->private_copies()) { 3826 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3827 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3828 Data.PrivateVars.push_back(*IRef); 3829 Data.PrivateCopies.push_back(IInit); 3830 } 3831 ++IRef; 3832 } 3833 } 3834 EmittedAsPrivate.clear(); 3835 // Get list of firstprivate variables. 3836 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3837 auto IRef = C->varlist_begin(); 3838 auto IElemInitRef = C->inits().begin(); 3839 for (const Expr *IInit : C->private_copies()) { 3840 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3841 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3842 Data.FirstprivateVars.push_back(*IRef); 3843 Data.FirstprivateCopies.push_back(IInit); 3844 Data.FirstprivateInits.push_back(*IElemInitRef); 3845 } 3846 ++IRef; 3847 ++IElemInitRef; 3848 } 3849 } 3850 // Get list of lastprivate variables (for taskloops). 3851 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3852 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3853 auto IRef = C->varlist_begin(); 3854 auto ID = C->destination_exprs().begin(); 3855 for (const Expr *IInit : C->private_copies()) { 3856 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3857 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3858 Data.LastprivateVars.push_back(*IRef); 3859 Data.LastprivateCopies.push_back(IInit); 3860 } 3861 LastprivateDstsOrigs.insert( 3862 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3863 cast<DeclRefExpr>(*IRef)}); 3864 ++IRef; 3865 ++ID; 3866 } 3867 } 3868 SmallVector<const Expr *, 4> LHSs; 3869 SmallVector<const Expr *, 4> RHSs; 3870 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3871 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 3872 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 3873 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 3874 Data.ReductionOps.append(C->reduction_ops().begin(), 3875 C->reduction_ops().end()); 3876 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3877 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3878 } 3879 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3880 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3881 // Build list of dependences. 3882 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 3883 OMPTaskDataTy::DependData &DD = 3884 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 3885 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 3886 } 3887 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3888 CapturedRegion](CodeGenFunction &CGF, 3889 PrePostActionTy &Action) { 3890 // Set proper addresses for generated private copies. 3891 OMPPrivateScope Scope(CGF); 3892 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 3893 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3894 !Data.LastprivateVars.empty()) { 3895 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3896 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3897 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3898 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3899 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3900 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3901 CS->getCapturedDecl()->getParam(PrivatesParam))); 3902 // Map privates. 3903 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3904 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3905 CallArgs.push_back(PrivatesPtr); 3906 for (const Expr *E : Data.PrivateVars) { 3907 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3908 Address PrivatePtr = CGF.CreateMemTemp( 3909 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3910 PrivatePtrs.emplace_back(VD, PrivatePtr); 3911 CallArgs.push_back(PrivatePtr.getPointer()); 3912 } 3913 for (const Expr *E : Data.FirstprivateVars) { 3914 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3915 Address PrivatePtr = 3916 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3917 ".firstpriv.ptr.addr"); 3918 PrivatePtrs.emplace_back(VD, PrivatePtr); 3919 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 3920 CallArgs.push_back(PrivatePtr.getPointer()); 3921 } 3922 for (const Expr *E : Data.LastprivateVars) { 3923 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3924 Address PrivatePtr = 3925 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3926 ".lastpriv.ptr.addr"); 3927 PrivatePtrs.emplace_back(VD, PrivatePtr); 3928 CallArgs.push_back(PrivatePtr.getPointer()); 3929 } 3930 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3931 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3932 for (const auto &Pair : LastprivateDstsOrigs) { 3933 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3934 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3935 /*RefersToEnclosingVariableOrCapture=*/ 3936 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3937 Pair.second->getType(), VK_LValue, 3938 Pair.second->getExprLoc()); 3939 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3940 return CGF.EmitLValue(&DRE).getAddress(CGF); 3941 }); 3942 } 3943 for (const auto &Pair : PrivatePtrs) { 3944 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3945 CGF.getContext().getDeclAlign(Pair.first)); 3946 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3947 } 3948 } 3949 if (Data.Reductions) { 3950 OMPPrivateScope FirstprivateScope(CGF); 3951 for (const auto &Pair : FirstprivatePtrs) { 3952 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3953 CGF.getContext().getDeclAlign(Pair.first)); 3954 FirstprivateScope.addPrivate(Pair.first, 3955 [Replacement]() { return Replacement; }); 3956 } 3957 (void)FirstprivateScope.Privatize(); 3958 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3959 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 3960 Data.ReductionCopies, Data.ReductionOps); 3961 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3962 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3963 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3964 RedCG.emitSharedOrigLValue(CGF, Cnt); 3965 RedCG.emitAggregateType(CGF, Cnt); 3966 // FIXME: This must removed once the runtime library is fixed. 3967 // Emit required threadprivate variables for 3968 // initializer/combiner/finalizer. 3969 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3970 RedCG, Cnt); 3971 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3972 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3973 Replacement = 3974 Address(CGF.EmitScalarConversion( 3975 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3976 CGF.getContext().getPointerType( 3977 Data.ReductionCopies[Cnt]->getType()), 3978 Data.ReductionCopies[Cnt]->getExprLoc()), 3979 Replacement.getAlignment()); 3980 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3981 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3982 [Replacement]() { return Replacement; }); 3983 } 3984 } 3985 // Privatize all private variables except for in_reduction items. 3986 (void)Scope.Privatize(); 3987 SmallVector<const Expr *, 4> InRedVars; 3988 SmallVector<const Expr *, 4> InRedPrivs; 3989 SmallVector<const Expr *, 4> InRedOps; 3990 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3991 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3992 auto IPriv = C->privates().begin(); 3993 auto IRed = C->reduction_ops().begin(); 3994 auto ITD = C->taskgroup_descriptors().begin(); 3995 for (const Expr *Ref : C->varlists()) { 3996 InRedVars.emplace_back(Ref); 3997 InRedPrivs.emplace_back(*IPriv); 3998 InRedOps.emplace_back(*IRed); 3999 TaskgroupDescriptors.emplace_back(*ITD); 4000 std::advance(IPriv, 1); 4001 std::advance(IRed, 1); 4002 std::advance(ITD, 1); 4003 } 4004 } 4005 // Privatize in_reduction items here, because taskgroup descriptors must be 4006 // privatized earlier. 4007 OMPPrivateScope InRedScope(CGF); 4008 if (!InRedVars.empty()) { 4009 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4010 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4011 RedCG.emitSharedOrigLValue(CGF, Cnt); 4012 RedCG.emitAggregateType(CGF, Cnt); 4013 // The taskgroup descriptor variable is always implicit firstprivate and 4014 // privatized already during processing of the firstprivates. 4015 // FIXME: This must removed once the runtime library is fixed. 4016 // Emit required threadprivate variables for 4017 // initializer/combiner/finalizer. 4018 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4019 RedCG, Cnt); 4020 llvm::Value *ReductionsPtr; 4021 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4022 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4023 TRExpr->getExprLoc()); 4024 } else { 4025 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4026 } 4027 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4028 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4029 Replacement = Address( 4030 CGF.EmitScalarConversion( 4031 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4032 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4033 InRedPrivs[Cnt]->getExprLoc()), 4034 Replacement.getAlignment()); 4035 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4036 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4037 [Replacement]() { return Replacement; }); 4038 } 4039 } 4040 (void)InRedScope.Privatize(); 4041 4042 Action.Enter(CGF); 4043 BodyGen(CGF); 4044 }; 4045 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4046 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4047 Data.NumberOfParts); 4048 OMPLexicalScope Scope(*this, S, llvm::None, 4049 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4050 !isOpenMPSimdDirective(S.getDirectiveKind())); 4051 TaskGen(*this, OutlinedFn, Data); 4052 } 4053 4054 static ImplicitParamDecl * 4055 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4056 QualType Ty, CapturedDecl *CD, 4057 SourceLocation Loc) { 4058 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4059 ImplicitParamDecl::Other); 4060 auto *OrigRef = DeclRefExpr::Create( 4061 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4062 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4063 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4064 ImplicitParamDecl::Other); 4065 auto *PrivateRef = DeclRefExpr::Create( 4066 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4067 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4068 QualType ElemType = C.getBaseElementType(Ty); 4069 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4070 ImplicitParamDecl::Other); 4071 auto *InitRef = DeclRefExpr::Create( 4072 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4073 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4074 PrivateVD->setInitStyle(VarDecl::CInit); 4075 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4076 InitRef, /*BasePath=*/nullptr, 4077 VK_RValue)); 4078 Data.FirstprivateVars.emplace_back(OrigRef); 4079 Data.FirstprivateCopies.emplace_back(PrivateRef); 4080 Data.FirstprivateInits.emplace_back(InitRef); 4081 return OrigVD; 4082 } 4083 4084 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4085 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4086 OMPTargetDataInfo &InputInfo) { 4087 // Emit outlined function for task construct. 4088 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4089 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4090 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4091 auto I = CS->getCapturedDecl()->param_begin(); 4092 auto PartId = std::next(I); 4093 auto TaskT = std::next(I, 4); 4094 OMPTaskDataTy Data; 4095 // The task is not final. 4096 Data.Final.setInt(/*IntVal=*/false); 4097 // Get list of firstprivate variables. 4098 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4099 auto IRef = C->varlist_begin(); 4100 auto IElemInitRef = C->inits().begin(); 4101 for (auto *IInit : C->private_copies()) { 4102 Data.FirstprivateVars.push_back(*IRef); 4103 Data.FirstprivateCopies.push_back(IInit); 4104 Data.FirstprivateInits.push_back(*IElemInitRef); 4105 ++IRef; 4106 ++IElemInitRef; 4107 } 4108 } 4109 OMPPrivateScope TargetScope(*this); 4110 VarDecl *BPVD = nullptr; 4111 VarDecl *PVD = nullptr; 4112 VarDecl *SVD = nullptr; 4113 if (InputInfo.NumberOfTargetItems > 0) { 4114 auto *CD = CapturedDecl::Create( 4115 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4116 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4117 QualType BaseAndPointersType = getContext().getConstantArrayType( 4118 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4119 /*IndexTypeQuals=*/0); 4120 BPVD = createImplicitFirstprivateForType( 4121 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 4122 PVD = createImplicitFirstprivateForType( 4123 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 4124 QualType SizesType = getContext().getConstantArrayType( 4125 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4126 ArrSize, nullptr, ArrayType::Normal, 4127 /*IndexTypeQuals=*/0); 4128 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4129 S.getBeginLoc()); 4130 TargetScope.addPrivate( 4131 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4132 TargetScope.addPrivate(PVD, 4133 [&InputInfo]() { return InputInfo.PointersArray; }); 4134 TargetScope.addPrivate(SVD, 4135 [&InputInfo]() { return InputInfo.SizesArray; }); 4136 } 4137 (void)TargetScope.Privatize(); 4138 // Build list of dependences. 4139 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4140 OMPTaskDataTy::DependData &DD = 4141 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4142 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4143 } 4144 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 4145 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4146 // Set proper addresses for generated private copies. 4147 OMPPrivateScope Scope(CGF); 4148 if (!Data.FirstprivateVars.empty()) { 4149 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 4150 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 4151 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4152 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4153 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4154 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4155 CS->getCapturedDecl()->getParam(PrivatesParam))); 4156 // Map privates. 4157 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4158 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4159 CallArgs.push_back(PrivatesPtr); 4160 for (const Expr *E : Data.FirstprivateVars) { 4161 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4162 Address PrivatePtr = 4163 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4164 ".firstpriv.ptr.addr"); 4165 PrivatePtrs.emplace_back(VD, PrivatePtr); 4166 CallArgs.push_back(PrivatePtr.getPointer()); 4167 } 4168 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4169 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4170 for (const auto &Pair : PrivatePtrs) { 4171 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4172 CGF.getContext().getDeclAlign(Pair.first)); 4173 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4174 } 4175 } 4176 // Privatize all private variables except for in_reduction items. 4177 (void)Scope.Privatize(); 4178 if (InputInfo.NumberOfTargetItems > 0) { 4179 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4180 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4181 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4182 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4183 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4184 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4185 } 4186 4187 Action.Enter(CGF); 4188 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4189 BodyGen(CGF); 4190 }; 4191 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4192 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4193 Data.NumberOfParts); 4194 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4195 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4196 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4197 SourceLocation()); 4198 4199 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4200 SharedsTy, CapturedStruct, &IfCond, Data); 4201 } 4202 4203 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4204 // Emit outlined function for task construct. 4205 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4206 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4207 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4208 const Expr *IfCond = nullptr; 4209 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4210 if (C->getNameModifier() == OMPD_unknown || 4211 C->getNameModifier() == OMPD_task) { 4212 IfCond = C->getCondition(); 4213 break; 4214 } 4215 } 4216 4217 OMPTaskDataTy Data; 4218 // Check if we should emit tied or untied task. 4219 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4220 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4221 CGF.EmitStmt(CS->getCapturedStmt()); 4222 }; 4223 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4224 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4225 const OMPTaskDataTy &Data) { 4226 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4227 SharedsTy, CapturedStruct, IfCond, 4228 Data); 4229 }; 4230 auto LPCRegion = 4231 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4232 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4233 } 4234 4235 void CodeGenFunction::EmitOMPTaskyieldDirective( 4236 const OMPTaskyieldDirective &S) { 4237 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4238 } 4239 4240 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4241 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4242 } 4243 4244 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4245 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 4246 } 4247 4248 void CodeGenFunction::EmitOMPTaskgroupDirective( 4249 const OMPTaskgroupDirective &S) { 4250 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4251 Action.Enter(CGF); 4252 if (const Expr *E = S.getReductionRef()) { 4253 SmallVector<const Expr *, 4> LHSs; 4254 SmallVector<const Expr *, 4> RHSs; 4255 OMPTaskDataTy Data; 4256 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4257 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4258 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4259 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4260 Data.ReductionOps.append(C->reduction_ops().begin(), 4261 C->reduction_ops().end()); 4262 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4263 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4264 } 4265 llvm::Value *ReductionDesc = 4266 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4267 LHSs, RHSs, Data); 4268 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4269 CGF.EmitVarDecl(*VD); 4270 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4271 /*Volatile=*/false, E->getType()); 4272 } 4273 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4274 }; 4275 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4276 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4277 } 4278 4279 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4280 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4281 ? llvm::AtomicOrdering::NotAtomic 4282 : llvm::AtomicOrdering::AcquireRelease; 4283 CGM.getOpenMPRuntime().emitFlush( 4284 *this, 4285 [&S]() -> ArrayRef<const Expr *> { 4286 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4287 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4288 FlushClause->varlist_end()); 4289 return llvm::None; 4290 }(), 4291 S.getBeginLoc(), AO); 4292 } 4293 4294 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4295 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4296 LValue DOLVal = EmitLValue(DO->getDepobj()); 4297 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4298 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4299 DC->getModifier()); 4300 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4301 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4302 *this, Dependencies, DC->getBeginLoc()); 4303 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4304 return; 4305 } 4306 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4307 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4308 return; 4309 } 4310 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4311 CGM.getOpenMPRuntime().emitUpdateClause( 4312 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4313 return; 4314 } 4315 } 4316 4317 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4318 if (!OMPParentLoopDirectiveForScan) 4319 return; 4320 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4321 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4322 SmallVector<const Expr *, 4> Shareds; 4323 SmallVector<const Expr *, 4> Privates; 4324 SmallVector<const Expr *, 4> LHSs; 4325 SmallVector<const Expr *, 4> RHSs; 4326 SmallVector<const Expr *, 4> ReductionOps; 4327 SmallVector<const Expr *, 4> CopyOps; 4328 SmallVector<const Expr *, 4> CopyArrayTemps; 4329 SmallVector<const Expr *, 4> CopyArrayElems; 4330 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4331 if (C->getModifier() != OMPC_REDUCTION_inscan) 4332 continue; 4333 Shareds.append(C->varlist_begin(), C->varlist_end()); 4334 Privates.append(C->privates().begin(), C->privates().end()); 4335 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4336 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4337 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 4338 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 4339 CopyArrayTemps.append(C->copy_array_temps().begin(), 4340 C->copy_array_temps().end()); 4341 CopyArrayElems.append(C->copy_array_elems().begin(), 4342 C->copy_array_elems().end()); 4343 } 4344 if (ParentDir.getDirectiveKind() == OMPD_simd || 4345 (getLangOpts().OpenMPSimd && 4346 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 4347 // For simd directive and simd-based directives in simd only mode, use the 4348 // following codegen: 4349 // int x = 0; 4350 // #pragma omp simd reduction(inscan, +: x) 4351 // for (..) { 4352 // <first part> 4353 // #pragma omp scan inclusive(x) 4354 // <second part> 4355 // } 4356 // is transformed to: 4357 // int x = 0; 4358 // for (..) { 4359 // int x_priv = 0; 4360 // <first part> 4361 // x = x_priv + x; 4362 // x_priv = x; 4363 // <second part> 4364 // } 4365 // and 4366 // int x = 0; 4367 // #pragma omp simd reduction(inscan, +: x) 4368 // for (..) { 4369 // <first part> 4370 // #pragma omp scan exclusive(x) 4371 // <second part> 4372 // } 4373 // to 4374 // int x = 0; 4375 // for (..) { 4376 // int x_priv = 0; 4377 // <second part> 4378 // int temp = x; 4379 // x = x_priv + x; 4380 // x_priv = temp; 4381 // <first part> 4382 // } 4383 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 4384 EmitBranch(IsInclusive 4385 ? OMPScanReduce 4386 : BreakContinueStack.back().ContinueBlock.getBlock()); 4387 EmitBlock(OMPScanDispatch); 4388 { 4389 // New scope for correct construction/destruction of temp variables for 4390 // exclusive scan. 4391 LexicalScope Scope(*this, S.getSourceRange()); 4392 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 4393 EmitBlock(OMPScanReduce); 4394 if (!IsInclusive) { 4395 // Create temp var and copy LHS value to this temp value. 4396 // TMP = LHS; 4397 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4398 const Expr *PrivateExpr = Privates[I]; 4399 const Expr *TempExpr = CopyArrayTemps[I]; 4400 EmitAutoVarDecl( 4401 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 4402 LValue DestLVal = EmitLValue(TempExpr); 4403 LValue SrcLVal = EmitLValue(LHSs[I]); 4404 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4405 SrcLVal.getAddress(*this), 4406 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4407 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4408 CopyOps[I]); 4409 } 4410 } 4411 CGM.getOpenMPRuntime().emitReduction( 4412 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 4413 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 4414 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4415 const Expr *PrivateExpr = Privates[I]; 4416 LValue DestLVal; 4417 LValue SrcLVal; 4418 if (IsInclusive) { 4419 DestLVal = EmitLValue(RHSs[I]); 4420 SrcLVal = EmitLValue(LHSs[I]); 4421 } else { 4422 const Expr *TempExpr = CopyArrayTemps[I]; 4423 DestLVal = EmitLValue(RHSs[I]); 4424 SrcLVal = EmitLValue(TempExpr); 4425 } 4426 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4427 SrcLVal.getAddress(*this), 4428 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4429 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4430 CopyOps[I]); 4431 } 4432 } 4433 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 4434 OMPScanExitBlock = IsInclusive 4435 ? BreakContinueStack.back().ContinueBlock.getBlock() 4436 : OMPScanReduce; 4437 EmitBlock(OMPAfterScanBlock); 4438 return; 4439 } 4440 if (!IsInclusive) { 4441 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4442 EmitBlock(OMPScanExitBlock); 4443 } 4444 if (OMPFirstScanLoop) { 4445 // Emit buffer[i] = red; at the end of the input phase. 4446 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4447 .getIterationVariable() 4448 ->IgnoreParenImpCasts(); 4449 LValue IdxLVal = EmitLValue(IVExpr); 4450 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4451 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4452 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4453 const Expr *PrivateExpr = Privates[I]; 4454 const Expr *OrigExpr = Shareds[I]; 4455 const Expr *CopyArrayElem = CopyArrayElems[I]; 4456 OpaqueValueMapping IdxMapping( 4457 *this, 4458 cast<OpaqueValueExpr>( 4459 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 4460 RValue::get(IdxVal)); 4461 LValue DestLVal = EmitLValue(CopyArrayElem); 4462 LValue SrcLVal = EmitLValue(OrigExpr); 4463 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4464 SrcLVal.getAddress(*this), 4465 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4466 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4467 CopyOps[I]); 4468 } 4469 } 4470 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4471 if (IsInclusive) { 4472 EmitBlock(OMPScanExitBlock); 4473 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4474 } 4475 EmitBlock(OMPScanDispatch); 4476 if (!OMPFirstScanLoop) { 4477 // Emit red = buffer[i]; at the entrance to the scan phase. 4478 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4479 .getIterationVariable() 4480 ->IgnoreParenImpCasts(); 4481 LValue IdxLVal = EmitLValue(IVExpr); 4482 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4483 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4484 llvm::BasicBlock *ExclusiveExitBB = nullptr; 4485 if (!IsInclusive) { 4486 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 4487 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 4488 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 4489 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 4490 EmitBlock(ContBB); 4491 // Use idx - 1 iteration for exclusive scan. 4492 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 4493 } 4494 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4495 const Expr *PrivateExpr = Privates[I]; 4496 const Expr *OrigExpr = Shareds[I]; 4497 const Expr *CopyArrayElem = CopyArrayElems[I]; 4498 OpaqueValueMapping IdxMapping( 4499 *this, 4500 cast<OpaqueValueExpr>( 4501 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 4502 RValue::get(IdxVal)); 4503 LValue SrcLVal = EmitLValue(CopyArrayElem); 4504 LValue DestLVal = EmitLValue(OrigExpr); 4505 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4506 SrcLVal.getAddress(*this), 4507 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4508 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4509 CopyOps[I]); 4510 } 4511 if (!IsInclusive) { 4512 EmitBlock(ExclusiveExitBB); 4513 } 4514 } 4515 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 4516 : OMPAfterScanBlock); 4517 EmitBlock(OMPAfterScanBlock); 4518 } 4519 4520 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 4521 const CodeGenLoopTy &CodeGenLoop, 4522 Expr *IncExpr) { 4523 // Emit the loop iteration variable. 4524 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 4525 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 4526 EmitVarDecl(*IVDecl); 4527 4528 // Emit the iterations count variable. 4529 // If it is not a variable, Sema decided to calculate iterations count on each 4530 // iteration (e.g., it is foldable into a constant). 4531 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4532 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4533 // Emit calculation of the iterations count. 4534 EmitIgnoredExpr(S.getCalcLastIteration()); 4535 } 4536 4537 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 4538 4539 bool HasLastprivateClause = false; 4540 // Check pre-condition. 4541 { 4542 OMPLoopScope PreInitScope(*this, S); 4543 // Skip the entire loop if we don't meet the precondition. 4544 // If the condition constant folds and can be elided, avoid emitting the 4545 // whole loop. 4546 bool CondConstant; 4547 llvm::BasicBlock *ContBlock = nullptr; 4548 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4549 if (!CondConstant) 4550 return; 4551 } else { 4552 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 4553 ContBlock = createBasicBlock("omp.precond.end"); 4554 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 4555 getProfileCount(&S)); 4556 EmitBlock(ThenBlock); 4557 incrementProfileCounter(&S); 4558 } 4559 4560 emitAlignedClause(*this, S); 4561 // Emit 'then' code. 4562 { 4563 // Emit helper vars inits. 4564 4565 LValue LB = EmitOMPHelperVar( 4566 *this, cast<DeclRefExpr>( 4567 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4568 ? S.getCombinedLowerBoundVariable() 4569 : S.getLowerBoundVariable()))); 4570 LValue UB = EmitOMPHelperVar( 4571 *this, cast<DeclRefExpr>( 4572 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4573 ? S.getCombinedUpperBoundVariable() 4574 : S.getUpperBoundVariable()))); 4575 LValue ST = 4576 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 4577 LValue IL = 4578 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 4579 4580 OMPPrivateScope LoopScope(*this); 4581 if (EmitOMPFirstprivateClause(S, LoopScope)) { 4582 // Emit implicit barrier to synchronize threads and avoid data races 4583 // on initialization of firstprivate variables and post-update of 4584 // lastprivate variables. 4585 CGM.getOpenMPRuntime().emitBarrierCall( 4586 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4587 /*ForceSimpleCall=*/true); 4588 } 4589 EmitOMPPrivateClause(S, LoopScope); 4590 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4591 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4592 !isOpenMPTeamsDirective(S.getDirectiveKind())) 4593 EmitOMPReductionClauseInit(S, LoopScope); 4594 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 4595 EmitOMPPrivateLoopCounters(S, LoopScope); 4596 (void)LoopScope.Privatize(); 4597 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4598 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 4599 4600 // Detect the distribute schedule kind and chunk. 4601 llvm::Value *Chunk = nullptr; 4602 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 4603 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 4604 ScheduleKind = C->getDistScheduleKind(); 4605 if (const Expr *Ch = C->getChunkSize()) { 4606 Chunk = EmitScalarExpr(Ch); 4607 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 4608 S.getIterationVariable()->getType(), 4609 S.getBeginLoc()); 4610 } 4611 } else { 4612 // Default behaviour for dist_schedule clause. 4613 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 4614 *this, S, ScheduleKind, Chunk); 4615 } 4616 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 4617 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 4618 4619 // OpenMP [2.10.8, distribute Construct, Description] 4620 // If dist_schedule is specified, kind must be static. If specified, 4621 // iterations are divided into chunks of size chunk_size, chunks are 4622 // assigned to the teams of the league in a round-robin fashion in the 4623 // order of the team number. When no chunk_size is specified, the 4624 // iteration space is divided into chunks that are approximately equal 4625 // in size, and at most one chunk is distributed to each team of the 4626 // league. The size of the chunks is unspecified in this case. 4627 bool StaticChunked = RT.isStaticChunked( 4628 ScheduleKind, /* Chunked */ Chunk != nullptr) && 4629 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 4630 if (RT.isStaticNonchunked(ScheduleKind, 4631 /* Chunked */ Chunk != nullptr) || 4632 StaticChunked) { 4633 CGOpenMPRuntime::StaticRTInput StaticInit( 4634 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 4635 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4636 StaticChunked ? Chunk : nullptr); 4637 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 4638 StaticInit); 4639 JumpDest LoopExit = 4640 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 4641 // UB = min(UB, GlobalUB); 4642 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4643 ? S.getCombinedEnsureUpperBound() 4644 : S.getEnsureUpperBound()); 4645 // IV = LB; 4646 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4647 ? S.getCombinedInit() 4648 : S.getInit()); 4649 4650 const Expr *Cond = 4651 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4652 ? S.getCombinedCond() 4653 : S.getCond(); 4654 4655 if (StaticChunked) 4656 Cond = S.getCombinedDistCond(); 4657 4658 // For static unchunked schedules generate: 4659 // 4660 // 1. For distribute alone, codegen 4661 // while (idx <= UB) { 4662 // BODY; 4663 // ++idx; 4664 // } 4665 // 4666 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 4667 // while (idx <= UB) { 4668 // <CodeGen rest of pragma>(LB, UB); 4669 // idx += ST; 4670 // } 4671 // 4672 // For static chunk one schedule generate: 4673 // 4674 // while (IV <= GlobalUB) { 4675 // <CodeGen rest of pragma>(LB, UB); 4676 // LB += ST; 4677 // UB += ST; 4678 // UB = min(UB, GlobalUB); 4679 // IV = LB; 4680 // } 4681 // 4682 emitCommonSimdLoop( 4683 *this, S, 4684 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4685 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4686 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 4687 }, 4688 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 4689 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 4690 CGF.EmitOMPInnerLoop( 4691 S, LoopScope.requiresCleanups(), Cond, IncExpr, 4692 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 4693 CodeGenLoop(CGF, S, LoopExit); 4694 }, 4695 [&S, StaticChunked](CodeGenFunction &CGF) { 4696 if (StaticChunked) { 4697 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 4698 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 4699 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 4700 CGF.EmitIgnoredExpr(S.getCombinedInit()); 4701 } 4702 }); 4703 }); 4704 EmitBlock(LoopExit.getBlock()); 4705 // Tell the runtime we are done. 4706 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 4707 } else { 4708 // Emit the outer loop, which requests its work chunk [LB..UB] from 4709 // runtime and runs the inner loop to process it. 4710 const OMPLoopArguments LoopArguments = { 4711 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4712 IL.getAddress(*this), Chunk}; 4713 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 4714 CodeGenLoop); 4715 } 4716 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 4717 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 4718 return CGF.Builder.CreateIsNotNull( 4719 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4720 }); 4721 } 4722 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4723 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4724 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 4725 EmitOMPReductionClauseFinal(S, OMPD_simd); 4726 // Emit post-update of the reduction variables if IsLastIter != 0. 4727 emitPostUpdateForReductionClause( 4728 *this, S, [IL, &S](CodeGenFunction &CGF) { 4729 return CGF.Builder.CreateIsNotNull( 4730 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4731 }); 4732 } 4733 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4734 if (HasLastprivateClause) { 4735 EmitOMPLastprivateClauseFinal( 4736 S, /*NoFinals=*/false, 4737 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 4738 } 4739 } 4740 4741 // We're now done with the loop, so jump to the continuation block. 4742 if (ContBlock) { 4743 EmitBranch(ContBlock); 4744 EmitBlock(ContBlock, true); 4745 } 4746 } 4747 } 4748 4749 void CodeGenFunction::EmitOMPDistributeDirective( 4750 const OMPDistributeDirective &S) { 4751 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4752 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4753 }; 4754 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4755 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 4756 } 4757 4758 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 4759 const CapturedStmt *S, 4760 SourceLocation Loc) { 4761 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 4762 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 4763 CGF.CapturedStmtInfo = &CapStmtInfo; 4764 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 4765 Fn->setDoesNotRecurse(); 4766 return Fn; 4767 } 4768 4769 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 4770 if (S.hasClausesOfKind<OMPDependClause>()) { 4771 assert(!S.getAssociatedStmt() && 4772 "No associated statement must be in ordered depend construct."); 4773 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 4774 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 4775 return; 4776 } 4777 const auto *C = S.getSingleClause<OMPSIMDClause>(); 4778 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 4779 PrePostActionTy &Action) { 4780 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 4781 if (C) { 4782 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4783 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4784 llvm::Function *OutlinedFn = 4785 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 4786 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 4787 OutlinedFn, CapturedVars); 4788 } else { 4789 Action.Enter(CGF); 4790 CGF.EmitStmt(CS->getCapturedStmt()); 4791 } 4792 }; 4793 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4794 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 4795 } 4796 4797 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 4798 QualType SrcType, QualType DestType, 4799 SourceLocation Loc) { 4800 assert(CGF.hasScalarEvaluationKind(DestType) && 4801 "DestType must have scalar evaluation kind."); 4802 assert(!Val.isAggregate() && "Must be a scalar or complex."); 4803 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 4804 DestType, Loc) 4805 : CGF.EmitComplexToScalarConversion( 4806 Val.getComplexVal(), SrcType, DestType, Loc); 4807 } 4808 4809 static CodeGenFunction::ComplexPairTy 4810 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 4811 QualType DestType, SourceLocation Loc) { 4812 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 4813 "DestType must have complex evaluation kind."); 4814 CodeGenFunction::ComplexPairTy ComplexVal; 4815 if (Val.isScalar()) { 4816 // Convert the input element to the element type of the complex. 4817 QualType DestElementType = 4818 DestType->castAs<ComplexType>()->getElementType(); 4819 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 4820 Val.getScalarVal(), SrcType, DestElementType, Loc); 4821 ComplexVal = CodeGenFunction::ComplexPairTy( 4822 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 4823 } else { 4824 assert(Val.isComplex() && "Must be a scalar or complex."); 4825 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 4826 QualType DestElementType = 4827 DestType->castAs<ComplexType>()->getElementType(); 4828 ComplexVal.first = CGF.EmitScalarConversion( 4829 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 4830 ComplexVal.second = CGF.EmitScalarConversion( 4831 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 4832 } 4833 return ComplexVal; 4834 } 4835 4836 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4837 LValue LVal, RValue RVal) { 4838 if (LVal.isGlobalReg()) 4839 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 4840 else 4841 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 4842 } 4843 4844 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 4845 llvm::AtomicOrdering AO, LValue LVal, 4846 SourceLocation Loc) { 4847 if (LVal.isGlobalReg()) 4848 return CGF.EmitLoadOfLValue(LVal, Loc); 4849 return CGF.EmitAtomicLoad( 4850 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 4851 LVal.isVolatile()); 4852 } 4853 4854 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 4855 QualType RValTy, SourceLocation Loc) { 4856 switch (getEvaluationKind(LVal.getType())) { 4857 case TEK_Scalar: 4858 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 4859 *this, RVal, RValTy, LVal.getType(), Loc)), 4860 LVal); 4861 break; 4862 case TEK_Complex: 4863 EmitStoreOfComplex( 4864 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 4865 /*isInit=*/false); 4866 break; 4867 case TEK_Aggregate: 4868 llvm_unreachable("Must be a scalar or complex."); 4869 } 4870 } 4871 4872 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4873 const Expr *X, const Expr *V, 4874 SourceLocation Loc) { 4875 // v = x; 4876 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 4877 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 4878 LValue XLValue = CGF.EmitLValue(X); 4879 LValue VLValue = CGF.EmitLValue(V); 4880 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 4881 // OpenMP, 2.17.7, atomic Construct 4882 // If the read or capture clause is specified and the acquire, acq_rel, or 4883 // seq_cst clause is specified then the strong flush on exit from the atomic 4884 // operation is also an acquire flush. 4885 switch (AO) { 4886 case llvm::AtomicOrdering::Acquire: 4887 case llvm::AtomicOrdering::AcquireRelease: 4888 case llvm::AtomicOrdering::SequentiallyConsistent: 4889 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4890 llvm::AtomicOrdering::Acquire); 4891 break; 4892 case llvm::AtomicOrdering::Monotonic: 4893 case llvm::AtomicOrdering::Release: 4894 break; 4895 case llvm::AtomicOrdering::NotAtomic: 4896 case llvm::AtomicOrdering::Unordered: 4897 llvm_unreachable("Unexpected ordering."); 4898 } 4899 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 4900 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 4901 } 4902 4903 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 4904 llvm::AtomicOrdering AO, const Expr *X, 4905 const Expr *E, SourceLocation Loc) { 4906 // x = expr; 4907 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 4908 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 4909 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4910 // OpenMP, 2.17.7, atomic Construct 4911 // If the write, update, or capture clause is specified and the release, 4912 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 4913 // the atomic operation is also a release flush. 4914 switch (AO) { 4915 case llvm::AtomicOrdering::Release: 4916 case llvm::AtomicOrdering::AcquireRelease: 4917 case llvm::AtomicOrdering::SequentiallyConsistent: 4918 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4919 llvm::AtomicOrdering::Release); 4920 break; 4921 case llvm::AtomicOrdering::Acquire: 4922 case llvm::AtomicOrdering::Monotonic: 4923 break; 4924 case llvm::AtomicOrdering::NotAtomic: 4925 case llvm::AtomicOrdering::Unordered: 4926 llvm_unreachable("Unexpected ordering."); 4927 } 4928 } 4929 4930 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 4931 RValue Update, 4932 BinaryOperatorKind BO, 4933 llvm::AtomicOrdering AO, 4934 bool IsXLHSInRHSPart) { 4935 ASTContext &Context = CGF.getContext(); 4936 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 4937 // expression is simple and atomic is allowed for the given type for the 4938 // target platform. 4939 if (BO == BO_Comma || !Update.isScalar() || 4940 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 4941 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 4942 (Update.getScalarVal()->getType() != 4943 X.getAddress(CGF).getElementType())) || 4944 !X.getAddress(CGF).getElementType()->isIntegerTy() || 4945 !Context.getTargetInfo().hasBuiltinAtomic( 4946 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 4947 return std::make_pair(false, RValue::get(nullptr)); 4948 4949 llvm::AtomicRMWInst::BinOp RMWOp; 4950 switch (BO) { 4951 case BO_Add: 4952 RMWOp = llvm::AtomicRMWInst::Add; 4953 break; 4954 case BO_Sub: 4955 if (!IsXLHSInRHSPart) 4956 return std::make_pair(false, RValue::get(nullptr)); 4957 RMWOp = llvm::AtomicRMWInst::Sub; 4958 break; 4959 case BO_And: 4960 RMWOp = llvm::AtomicRMWInst::And; 4961 break; 4962 case BO_Or: 4963 RMWOp = llvm::AtomicRMWInst::Or; 4964 break; 4965 case BO_Xor: 4966 RMWOp = llvm::AtomicRMWInst::Xor; 4967 break; 4968 case BO_LT: 4969 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4970 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 4971 : llvm::AtomicRMWInst::Max) 4972 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 4973 : llvm::AtomicRMWInst::UMax); 4974 break; 4975 case BO_GT: 4976 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4977 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 4978 : llvm::AtomicRMWInst::Min) 4979 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 4980 : llvm::AtomicRMWInst::UMin); 4981 break; 4982 case BO_Assign: 4983 RMWOp = llvm::AtomicRMWInst::Xchg; 4984 break; 4985 case BO_Mul: 4986 case BO_Div: 4987 case BO_Rem: 4988 case BO_Shl: 4989 case BO_Shr: 4990 case BO_LAnd: 4991 case BO_LOr: 4992 return std::make_pair(false, RValue::get(nullptr)); 4993 case BO_PtrMemD: 4994 case BO_PtrMemI: 4995 case BO_LE: 4996 case BO_GE: 4997 case BO_EQ: 4998 case BO_NE: 4999 case BO_Cmp: 5000 case BO_AddAssign: 5001 case BO_SubAssign: 5002 case BO_AndAssign: 5003 case BO_OrAssign: 5004 case BO_XorAssign: 5005 case BO_MulAssign: 5006 case BO_DivAssign: 5007 case BO_RemAssign: 5008 case BO_ShlAssign: 5009 case BO_ShrAssign: 5010 case BO_Comma: 5011 llvm_unreachable("Unsupported atomic update operation"); 5012 } 5013 llvm::Value *UpdateVal = Update.getScalarVal(); 5014 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5015 UpdateVal = CGF.Builder.CreateIntCast( 5016 IC, X.getAddress(CGF).getElementType(), 5017 X.getType()->hasSignedIntegerRepresentation()); 5018 } 5019 llvm::Value *Res = 5020 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5021 return std::make_pair(true, RValue::get(Res)); 5022 } 5023 5024 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5025 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5026 llvm::AtomicOrdering AO, SourceLocation Loc, 5027 const llvm::function_ref<RValue(RValue)> CommonGen) { 5028 // Update expressions are allowed to have the following forms: 5029 // x binop= expr; -> xrval + expr; 5030 // x++, ++x -> xrval + 1; 5031 // x--, --x -> xrval - 1; 5032 // x = x binop expr; -> xrval binop expr 5033 // x = expr Op x; - > expr binop xrval; 5034 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5035 if (!Res.first) { 5036 if (X.isGlobalReg()) { 5037 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5038 // 'xrval'. 5039 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5040 } else { 5041 // Perform compare-and-swap procedure. 5042 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5043 } 5044 } 5045 return Res; 5046 } 5047 5048 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5049 llvm::AtomicOrdering AO, const Expr *X, 5050 const Expr *E, const Expr *UE, 5051 bool IsXLHSInRHSPart, SourceLocation Loc) { 5052 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5053 "Update expr in 'atomic update' must be a binary operator."); 5054 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5055 // Update expressions are allowed to have the following forms: 5056 // x binop= expr; -> xrval + expr; 5057 // x++, ++x -> xrval + 1; 5058 // x--, --x -> xrval - 1; 5059 // x = x binop expr; -> xrval binop expr 5060 // x = expr Op x; - > expr binop xrval; 5061 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5062 LValue XLValue = CGF.EmitLValue(X); 5063 RValue ExprRValue = CGF.EmitAnyExpr(E); 5064 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5065 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5066 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5067 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5068 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5069 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5070 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5071 return CGF.EmitAnyExpr(UE); 5072 }; 5073 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5074 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5075 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5076 // OpenMP, 2.17.7, atomic Construct 5077 // If the write, update, or capture clause is specified and the release, 5078 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5079 // the atomic operation is also a release flush. 5080 switch (AO) { 5081 case llvm::AtomicOrdering::Release: 5082 case llvm::AtomicOrdering::AcquireRelease: 5083 case llvm::AtomicOrdering::SequentiallyConsistent: 5084 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5085 llvm::AtomicOrdering::Release); 5086 break; 5087 case llvm::AtomicOrdering::Acquire: 5088 case llvm::AtomicOrdering::Monotonic: 5089 break; 5090 case llvm::AtomicOrdering::NotAtomic: 5091 case llvm::AtomicOrdering::Unordered: 5092 llvm_unreachable("Unexpected ordering."); 5093 } 5094 } 5095 5096 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5097 QualType SourceType, QualType ResType, 5098 SourceLocation Loc) { 5099 switch (CGF.getEvaluationKind(ResType)) { 5100 case TEK_Scalar: 5101 return RValue::get( 5102 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5103 case TEK_Complex: { 5104 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5105 return RValue::getComplex(Res.first, Res.second); 5106 } 5107 case TEK_Aggregate: 5108 break; 5109 } 5110 llvm_unreachable("Must be a scalar or complex."); 5111 } 5112 5113 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5114 llvm::AtomicOrdering AO, 5115 bool IsPostfixUpdate, const Expr *V, 5116 const Expr *X, const Expr *E, 5117 const Expr *UE, bool IsXLHSInRHSPart, 5118 SourceLocation Loc) { 5119 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5120 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5121 RValue NewVVal; 5122 LValue VLValue = CGF.EmitLValue(V); 5123 LValue XLValue = CGF.EmitLValue(X); 5124 RValue ExprRValue = CGF.EmitAnyExpr(E); 5125 QualType NewVValType; 5126 if (UE) { 5127 // 'x' is updated with some additional value. 5128 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5129 "Update expr in 'atomic capture' must be a binary operator."); 5130 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5131 // Update expressions are allowed to have the following forms: 5132 // x binop= expr; -> xrval + expr; 5133 // x++, ++x -> xrval + 1; 5134 // x--, --x -> xrval - 1; 5135 // x = x binop expr; -> xrval binop expr 5136 // x = expr Op x; - > expr binop xrval; 5137 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5138 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5139 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5140 NewVValType = XRValExpr->getType(); 5141 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5142 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5143 IsPostfixUpdate](RValue XRValue) { 5144 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5145 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5146 RValue Res = CGF.EmitAnyExpr(UE); 5147 NewVVal = IsPostfixUpdate ? XRValue : Res; 5148 return Res; 5149 }; 5150 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5151 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5152 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5153 if (Res.first) { 5154 // 'atomicrmw' instruction was generated. 5155 if (IsPostfixUpdate) { 5156 // Use old value from 'atomicrmw'. 5157 NewVVal = Res.second; 5158 } else { 5159 // 'atomicrmw' does not provide new value, so evaluate it using old 5160 // value of 'x'. 5161 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5162 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5163 NewVVal = CGF.EmitAnyExpr(UE); 5164 } 5165 } 5166 } else { 5167 // 'x' is simply rewritten with some 'expr'. 5168 NewVValType = X->getType().getNonReferenceType(); 5169 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5170 X->getType().getNonReferenceType(), Loc); 5171 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5172 NewVVal = XRValue; 5173 return ExprRValue; 5174 }; 5175 // Try to perform atomicrmw xchg, otherwise simple exchange. 5176 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5177 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5178 Loc, Gen); 5179 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5180 if (Res.first) { 5181 // 'atomicrmw' instruction was generated. 5182 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5183 } 5184 } 5185 // Emit post-update store to 'v' of old/new 'x' value. 5186 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5187 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5188 // OpenMP, 2.17.7, atomic Construct 5189 // If the write, update, or capture clause is specified and the release, 5190 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5191 // the atomic operation is also a release flush. 5192 // If the read or capture clause is specified and the acquire, acq_rel, or 5193 // seq_cst clause is specified then the strong flush on exit from the atomic 5194 // operation is also an acquire flush. 5195 switch (AO) { 5196 case llvm::AtomicOrdering::Release: 5197 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5198 llvm::AtomicOrdering::Release); 5199 break; 5200 case llvm::AtomicOrdering::Acquire: 5201 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5202 llvm::AtomicOrdering::Acquire); 5203 break; 5204 case llvm::AtomicOrdering::AcquireRelease: 5205 case llvm::AtomicOrdering::SequentiallyConsistent: 5206 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5207 llvm::AtomicOrdering::AcquireRelease); 5208 break; 5209 case llvm::AtomicOrdering::Monotonic: 5210 break; 5211 case llvm::AtomicOrdering::NotAtomic: 5212 case llvm::AtomicOrdering::Unordered: 5213 llvm_unreachable("Unexpected ordering."); 5214 } 5215 } 5216 5217 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5218 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5219 const Expr *X, const Expr *V, const Expr *E, 5220 const Expr *UE, bool IsXLHSInRHSPart, 5221 SourceLocation Loc) { 5222 switch (Kind) { 5223 case OMPC_read: 5224 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5225 break; 5226 case OMPC_write: 5227 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5228 break; 5229 case OMPC_unknown: 5230 case OMPC_update: 5231 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5232 break; 5233 case OMPC_capture: 5234 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5235 IsXLHSInRHSPart, Loc); 5236 break; 5237 case OMPC_if: 5238 case OMPC_final: 5239 case OMPC_num_threads: 5240 case OMPC_private: 5241 case OMPC_firstprivate: 5242 case OMPC_lastprivate: 5243 case OMPC_reduction: 5244 case OMPC_task_reduction: 5245 case OMPC_in_reduction: 5246 case OMPC_safelen: 5247 case OMPC_simdlen: 5248 case OMPC_allocator: 5249 case OMPC_allocate: 5250 case OMPC_collapse: 5251 case OMPC_default: 5252 case OMPC_seq_cst: 5253 case OMPC_acq_rel: 5254 case OMPC_acquire: 5255 case OMPC_release: 5256 case OMPC_relaxed: 5257 case OMPC_shared: 5258 case OMPC_linear: 5259 case OMPC_aligned: 5260 case OMPC_copyin: 5261 case OMPC_copyprivate: 5262 case OMPC_flush: 5263 case OMPC_depobj: 5264 case OMPC_proc_bind: 5265 case OMPC_schedule: 5266 case OMPC_ordered: 5267 case OMPC_nowait: 5268 case OMPC_untied: 5269 case OMPC_threadprivate: 5270 case OMPC_depend: 5271 case OMPC_mergeable: 5272 case OMPC_device: 5273 case OMPC_threads: 5274 case OMPC_simd: 5275 case OMPC_map: 5276 case OMPC_num_teams: 5277 case OMPC_thread_limit: 5278 case OMPC_priority: 5279 case OMPC_grainsize: 5280 case OMPC_nogroup: 5281 case OMPC_num_tasks: 5282 case OMPC_hint: 5283 case OMPC_dist_schedule: 5284 case OMPC_defaultmap: 5285 case OMPC_uniform: 5286 case OMPC_to: 5287 case OMPC_from: 5288 case OMPC_use_device_ptr: 5289 case OMPC_use_device_addr: 5290 case OMPC_is_device_ptr: 5291 case OMPC_unified_address: 5292 case OMPC_unified_shared_memory: 5293 case OMPC_reverse_offload: 5294 case OMPC_dynamic_allocators: 5295 case OMPC_atomic_default_mem_order: 5296 case OMPC_device_type: 5297 case OMPC_match: 5298 case OMPC_nontemporal: 5299 case OMPC_order: 5300 case OMPC_destroy: 5301 case OMPC_detach: 5302 case OMPC_inclusive: 5303 case OMPC_exclusive: 5304 case OMPC_uses_allocators: 5305 case OMPC_affinity: 5306 default: 5307 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 5308 } 5309 } 5310 5311 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 5312 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 5313 bool MemOrderingSpecified = false; 5314 if (S.getSingleClause<OMPSeqCstClause>()) { 5315 AO = llvm::AtomicOrdering::SequentiallyConsistent; 5316 MemOrderingSpecified = true; 5317 } else if (S.getSingleClause<OMPAcqRelClause>()) { 5318 AO = llvm::AtomicOrdering::AcquireRelease; 5319 MemOrderingSpecified = true; 5320 } else if (S.getSingleClause<OMPAcquireClause>()) { 5321 AO = llvm::AtomicOrdering::Acquire; 5322 MemOrderingSpecified = true; 5323 } else if (S.getSingleClause<OMPReleaseClause>()) { 5324 AO = llvm::AtomicOrdering::Release; 5325 MemOrderingSpecified = true; 5326 } else if (S.getSingleClause<OMPRelaxedClause>()) { 5327 AO = llvm::AtomicOrdering::Monotonic; 5328 MemOrderingSpecified = true; 5329 } 5330 OpenMPClauseKind Kind = OMPC_unknown; 5331 for (const OMPClause *C : S.clauses()) { 5332 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 5333 // if it is first). 5334 if (C->getClauseKind() != OMPC_seq_cst && 5335 C->getClauseKind() != OMPC_acq_rel && 5336 C->getClauseKind() != OMPC_acquire && 5337 C->getClauseKind() != OMPC_release && 5338 C->getClauseKind() != OMPC_relaxed) { 5339 Kind = C->getClauseKind(); 5340 break; 5341 } 5342 } 5343 if (!MemOrderingSpecified) { 5344 llvm::AtomicOrdering DefaultOrder = 5345 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 5346 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 5347 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 5348 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 5349 Kind == OMPC_capture)) { 5350 AO = DefaultOrder; 5351 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 5352 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 5353 AO = llvm::AtomicOrdering::Release; 5354 } else if (Kind == OMPC_read) { 5355 assert(Kind == OMPC_read && "Unexpected atomic kind."); 5356 AO = llvm::AtomicOrdering::Acquire; 5357 } 5358 } 5359 } 5360 5361 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 5362 5363 auto &&CodeGen = [&S, Kind, AO, CS](CodeGenFunction &CGF, 5364 PrePostActionTy &) { 5365 CGF.EmitStopPoint(CS); 5366 emitOMPAtomicExpr(CGF, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 5367 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 5368 S.getBeginLoc()); 5369 }; 5370 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5371 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 5372 } 5373 5374 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 5375 const OMPExecutableDirective &S, 5376 const RegionCodeGenTy &CodeGen) { 5377 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 5378 CodeGenModule &CGM = CGF.CGM; 5379 5380 // On device emit this construct as inlined code. 5381 if (CGM.getLangOpts().OpenMPIsDevice) { 5382 OMPLexicalScope Scope(CGF, S, OMPD_target); 5383 CGM.getOpenMPRuntime().emitInlinedDirective( 5384 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5385 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5386 }); 5387 return; 5388 } 5389 5390 auto LPCRegion = 5391 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 5392 llvm::Function *Fn = nullptr; 5393 llvm::Constant *FnID = nullptr; 5394 5395 const Expr *IfCond = nullptr; 5396 // Check for the at most one if clause associated with the target region. 5397 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5398 if (C->getNameModifier() == OMPD_unknown || 5399 C->getNameModifier() == OMPD_target) { 5400 IfCond = C->getCondition(); 5401 break; 5402 } 5403 } 5404 5405 // Check if we have any device clause associated with the directive. 5406 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 5407 nullptr, OMPC_DEVICE_unknown); 5408 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 5409 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 5410 5411 // Check if we have an if clause whose conditional always evaluates to false 5412 // or if we do not have any targets specified. If so the target region is not 5413 // an offload entry point. 5414 bool IsOffloadEntry = true; 5415 if (IfCond) { 5416 bool Val; 5417 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 5418 IsOffloadEntry = false; 5419 } 5420 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5421 IsOffloadEntry = false; 5422 5423 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 5424 StringRef ParentName; 5425 // In case we have Ctors/Dtors we use the complete type variant to produce 5426 // the mangling of the device outlined kernel. 5427 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 5428 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 5429 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 5430 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 5431 else 5432 ParentName = 5433 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 5434 5435 // Emit target region as a standalone region. 5436 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 5437 IsOffloadEntry, CodeGen); 5438 OMPLexicalScope Scope(CGF, S, OMPD_task); 5439 auto &&SizeEmitter = 5440 [IsOffloadEntry](CodeGenFunction &CGF, 5441 const OMPLoopDirective &D) -> llvm::Value * { 5442 if (IsOffloadEntry) { 5443 OMPLoopScope(CGF, D); 5444 // Emit calculation of the iterations count. 5445 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 5446 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 5447 /*isSigned=*/false); 5448 return NumIterations; 5449 } 5450 return nullptr; 5451 }; 5452 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 5453 SizeEmitter); 5454 } 5455 5456 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 5457 PrePostActionTy &Action) { 5458 Action.Enter(CGF); 5459 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5460 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5461 CGF.EmitOMPPrivateClause(S, PrivateScope); 5462 (void)PrivateScope.Privatize(); 5463 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5464 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5465 5466 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 5467 } 5468 5469 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 5470 StringRef ParentName, 5471 const OMPTargetDirective &S) { 5472 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5473 emitTargetRegion(CGF, S, Action); 5474 }; 5475 llvm::Function *Fn; 5476 llvm::Constant *Addr; 5477 // Emit target region as a standalone region. 5478 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5479 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5480 assert(Fn && Addr && "Target device function emission failed."); 5481 } 5482 5483 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 5484 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5485 emitTargetRegion(CGF, S, Action); 5486 }; 5487 emitCommonOMPTargetDirective(*this, S, CodeGen); 5488 } 5489 5490 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 5491 const OMPExecutableDirective &S, 5492 OpenMPDirectiveKind InnermostKind, 5493 const RegionCodeGenTy &CodeGen) { 5494 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 5495 llvm::Function *OutlinedFn = 5496 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 5497 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 5498 5499 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 5500 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 5501 if (NT || TL) { 5502 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 5503 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 5504 5505 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 5506 S.getBeginLoc()); 5507 } 5508 5509 OMPTeamsScope Scope(CGF, S); 5510 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5511 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5512 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 5513 CapturedVars); 5514 } 5515 5516 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 5517 // Emit teams region as a standalone region. 5518 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5519 Action.Enter(CGF); 5520 OMPPrivateScope PrivateScope(CGF); 5521 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5522 CGF.EmitOMPPrivateClause(S, PrivateScope); 5523 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5524 (void)PrivateScope.Privatize(); 5525 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 5526 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5527 }; 5528 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5529 emitPostUpdateForReductionClause(*this, S, 5530 [](CodeGenFunction &) { return nullptr; }); 5531 } 5532 5533 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5534 const OMPTargetTeamsDirective &S) { 5535 auto *CS = S.getCapturedStmt(OMPD_teams); 5536 Action.Enter(CGF); 5537 // Emit teams region as a standalone region. 5538 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 5539 Action.Enter(CGF); 5540 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5541 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5542 CGF.EmitOMPPrivateClause(S, PrivateScope); 5543 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5544 (void)PrivateScope.Privatize(); 5545 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5546 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5547 CGF.EmitStmt(CS->getCapturedStmt()); 5548 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5549 }; 5550 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 5551 emitPostUpdateForReductionClause(CGF, S, 5552 [](CodeGenFunction &) { return nullptr; }); 5553 } 5554 5555 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 5556 CodeGenModule &CGM, StringRef ParentName, 5557 const OMPTargetTeamsDirective &S) { 5558 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5559 emitTargetTeamsRegion(CGF, Action, S); 5560 }; 5561 llvm::Function *Fn; 5562 llvm::Constant *Addr; 5563 // Emit target region as a standalone region. 5564 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5565 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5566 assert(Fn && Addr && "Target device function emission failed."); 5567 } 5568 5569 void CodeGenFunction::EmitOMPTargetTeamsDirective( 5570 const OMPTargetTeamsDirective &S) { 5571 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5572 emitTargetTeamsRegion(CGF, Action, S); 5573 }; 5574 emitCommonOMPTargetDirective(*this, S, CodeGen); 5575 } 5576 5577 static void 5578 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5579 const OMPTargetTeamsDistributeDirective &S) { 5580 Action.Enter(CGF); 5581 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5582 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5583 }; 5584 5585 // Emit teams region as a standalone region. 5586 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5587 PrePostActionTy &Action) { 5588 Action.Enter(CGF); 5589 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5590 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5591 (void)PrivateScope.Privatize(); 5592 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5593 CodeGenDistribute); 5594 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5595 }; 5596 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 5597 emitPostUpdateForReductionClause(CGF, S, 5598 [](CodeGenFunction &) { return nullptr; }); 5599 } 5600 5601 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 5602 CodeGenModule &CGM, StringRef ParentName, 5603 const OMPTargetTeamsDistributeDirective &S) { 5604 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5605 emitTargetTeamsDistributeRegion(CGF, Action, S); 5606 }; 5607 llvm::Function *Fn; 5608 llvm::Constant *Addr; 5609 // Emit target region as a standalone region. 5610 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5611 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5612 assert(Fn && Addr && "Target device function emission failed."); 5613 } 5614 5615 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 5616 const OMPTargetTeamsDistributeDirective &S) { 5617 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5618 emitTargetTeamsDistributeRegion(CGF, Action, S); 5619 }; 5620 emitCommonOMPTargetDirective(*this, S, CodeGen); 5621 } 5622 5623 static void emitTargetTeamsDistributeSimdRegion( 5624 CodeGenFunction &CGF, PrePostActionTy &Action, 5625 const OMPTargetTeamsDistributeSimdDirective &S) { 5626 Action.Enter(CGF); 5627 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5628 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5629 }; 5630 5631 // Emit teams region as a standalone region. 5632 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5633 PrePostActionTy &Action) { 5634 Action.Enter(CGF); 5635 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5636 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5637 (void)PrivateScope.Privatize(); 5638 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5639 CodeGenDistribute); 5640 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5641 }; 5642 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 5643 emitPostUpdateForReductionClause(CGF, S, 5644 [](CodeGenFunction &) { return nullptr; }); 5645 } 5646 5647 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 5648 CodeGenModule &CGM, StringRef ParentName, 5649 const OMPTargetTeamsDistributeSimdDirective &S) { 5650 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5651 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5652 }; 5653 llvm::Function *Fn; 5654 llvm::Constant *Addr; 5655 // Emit target region as a standalone region. 5656 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5657 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5658 assert(Fn && Addr && "Target device function emission failed."); 5659 } 5660 5661 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 5662 const OMPTargetTeamsDistributeSimdDirective &S) { 5663 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5664 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5665 }; 5666 emitCommonOMPTargetDirective(*this, S, CodeGen); 5667 } 5668 5669 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 5670 const OMPTeamsDistributeDirective &S) { 5671 5672 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5673 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5674 }; 5675 5676 // Emit teams region as a standalone region. 5677 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5678 PrePostActionTy &Action) { 5679 Action.Enter(CGF); 5680 OMPPrivateScope PrivateScope(CGF); 5681 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5682 (void)PrivateScope.Privatize(); 5683 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5684 CodeGenDistribute); 5685 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5686 }; 5687 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5688 emitPostUpdateForReductionClause(*this, S, 5689 [](CodeGenFunction &) { return nullptr; }); 5690 } 5691 5692 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 5693 const OMPTeamsDistributeSimdDirective &S) { 5694 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5695 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5696 }; 5697 5698 // Emit teams region as a standalone region. 5699 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5700 PrePostActionTy &Action) { 5701 Action.Enter(CGF); 5702 OMPPrivateScope PrivateScope(CGF); 5703 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5704 (void)PrivateScope.Privatize(); 5705 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 5706 CodeGenDistribute); 5707 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5708 }; 5709 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 5710 emitPostUpdateForReductionClause(*this, S, 5711 [](CodeGenFunction &) { return nullptr; }); 5712 } 5713 5714 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 5715 const OMPTeamsDistributeParallelForDirective &S) { 5716 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5717 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5718 S.getDistInc()); 5719 }; 5720 5721 // Emit teams region as a standalone region. 5722 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5723 PrePostActionTy &Action) { 5724 Action.Enter(CGF); 5725 OMPPrivateScope PrivateScope(CGF); 5726 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5727 (void)PrivateScope.Privatize(); 5728 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5729 CodeGenDistribute); 5730 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5731 }; 5732 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 5733 emitPostUpdateForReductionClause(*this, S, 5734 [](CodeGenFunction &) { return nullptr; }); 5735 } 5736 5737 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 5738 const OMPTeamsDistributeParallelForSimdDirective &S) { 5739 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5740 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5741 S.getDistInc()); 5742 }; 5743 5744 // Emit teams region as a standalone region. 5745 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5746 PrePostActionTy &Action) { 5747 Action.Enter(CGF); 5748 OMPPrivateScope PrivateScope(CGF); 5749 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5750 (void)PrivateScope.Privatize(); 5751 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5752 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5753 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5754 }; 5755 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 5756 CodeGen); 5757 emitPostUpdateForReductionClause(*this, S, 5758 [](CodeGenFunction &) { return nullptr; }); 5759 } 5760 5761 static void emitTargetTeamsDistributeParallelForRegion( 5762 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 5763 PrePostActionTy &Action) { 5764 Action.Enter(CGF); 5765 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5766 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5767 S.getDistInc()); 5768 }; 5769 5770 // Emit teams region as a standalone region. 5771 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5772 PrePostActionTy &Action) { 5773 Action.Enter(CGF); 5774 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5775 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5776 (void)PrivateScope.Privatize(); 5777 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5778 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5779 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5780 }; 5781 5782 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 5783 CodeGenTeams); 5784 emitPostUpdateForReductionClause(CGF, S, 5785 [](CodeGenFunction &) { return nullptr; }); 5786 } 5787 5788 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 5789 CodeGenModule &CGM, StringRef ParentName, 5790 const OMPTargetTeamsDistributeParallelForDirective &S) { 5791 // Emit SPMD target teams distribute parallel for region as a standalone 5792 // region. 5793 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5794 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5795 }; 5796 llvm::Function *Fn; 5797 llvm::Constant *Addr; 5798 // Emit target region as a standalone region. 5799 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5800 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5801 assert(Fn && Addr && "Target device function emission failed."); 5802 } 5803 5804 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 5805 const OMPTargetTeamsDistributeParallelForDirective &S) { 5806 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5807 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5808 }; 5809 emitCommonOMPTargetDirective(*this, S, CodeGen); 5810 } 5811 5812 static void emitTargetTeamsDistributeParallelForSimdRegion( 5813 CodeGenFunction &CGF, 5814 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 5815 PrePostActionTy &Action) { 5816 Action.Enter(CGF); 5817 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5818 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5819 S.getDistInc()); 5820 }; 5821 5822 // Emit teams region as a standalone region. 5823 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5824 PrePostActionTy &Action) { 5825 Action.Enter(CGF); 5826 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5827 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5828 (void)PrivateScope.Privatize(); 5829 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5830 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5831 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5832 }; 5833 5834 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 5835 CodeGenTeams); 5836 emitPostUpdateForReductionClause(CGF, S, 5837 [](CodeGenFunction &) { return nullptr; }); 5838 } 5839 5840 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 5841 CodeGenModule &CGM, StringRef ParentName, 5842 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5843 // Emit SPMD target teams distribute parallel for simd region as a standalone 5844 // region. 5845 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5846 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5847 }; 5848 llvm::Function *Fn; 5849 llvm::Constant *Addr; 5850 // Emit target region as a standalone region. 5851 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5852 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5853 assert(Fn && Addr && "Target device function emission failed."); 5854 } 5855 5856 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 5857 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5858 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5859 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5860 }; 5861 emitCommonOMPTargetDirective(*this, S, CodeGen); 5862 } 5863 5864 void CodeGenFunction::EmitOMPCancellationPointDirective( 5865 const OMPCancellationPointDirective &S) { 5866 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 5867 S.getCancelRegion()); 5868 } 5869 5870 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 5871 const Expr *IfCond = nullptr; 5872 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5873 if (C->getNameModifier() == OMPD_unknown || 5874 C->getNameModifier() == OMPD_cancel) { 5875 IfCond = C->getCondition(); 5876 break; 5877 } 5878 } 5879 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 5880 // TODO: This check is necessary as we only generate `omp parallel` through 5881 // the OpenMPIRBuilder for now. 5882 if (S.getCancelRegion() == OMPD_parallel) { 5883 llvm::Value *IfCondition = nullptr; 5884 if (IfCond) 5885 IfCondition = EmitScalarExpr(IfCond, 5886 /*IgnoreResultAssign=*/true); 5887 return Builder.restoreIP( 5888 OMPBuilder->CreateCancel(Builder, IfCondition, S.getCancelRegion())); 5889 } 5890 } 5891 5892 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 5893 S.getCancelRegion()); 5894 } 5895 5896 CodeGenFunction::JumpDest 5897 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 5898 if (Kind == OMPD_parallel || Kind == OMPD_task || 5899 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 5900 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 5901 return ReturnBlock; 5902 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 5903 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 5904 Kind == OMPD_distribute_parallel_for || 5905 Kind == OMPD_target_parallel_for || 5906 Kind == OMPD_teams_distribute_parallel_for || 5907 Kind == OMPD_target_teams_distribute_parallel_for); 5908 return OMPCancelStack.getExitBlock(); 5909 } 5910 5911 void CodeGenFunction::EmitOMPUseDevicePtrClause( 5912 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 5913 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 5914 auto OrigVarIt = C.varlist_begin(); 5915 auto InitIt = C.inits().begin(); 5916 for (const Expr *PvtVarIt : C.private_copies()) { 5917 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 5918 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 5919 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 5920 5921 // In order to identify the right initializer we need to match the 5922 // declaration used by the mapping logic. In some cases we may get 5923 // OMPCapturedExprDecl that refers to the original declaration. 5924 const ValueDecl *MatchingVD = OrigVD; 5925 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 5926 // OMPCapturedExprDecl are used to privative fields of the current 5927 // structure. 5928 const auto *ME = cast<MemberExpr>(OED->getInit()); 5929 assert(isa<CXXThisExpr>(ME->getBase()) && 5930 "Base should be the current struct!"); 5931 MatchingVD = ME->getMemberDecl(); 5932 } 5933 5934 // If we don't have information about the current list item, move on to 5935 // the next one. 5936 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 5937 if (InitAddrIt == CaptureDeviceAddrMap.end()) 5938 continue; 5939 5940 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 5941 InitAddrIt, InitVD, 5942 PvtVD]() { 5943 // Initialize the temporary initialization variable with the address we 5944 // get from the runtime library. We have to cast the source address 5945 // because it is always a void *. References are materialized in the 5946 // privatization scope, so the initialization here disregards the fact 5947 // the original variable is a reference. 5948 QualType AddrQTy = 5949 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 5950 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 5951 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 5952 setAddrOfLocalVar(InitVD, InitAddr); 5953 5954 // Emit private declaration, it will be initialized by the value we 5955 // declaration we just added to the local declarations map. 5956 EmitDecl(*PvtVD); 5957 5958 // The initialization variables reached its purpose in the emission 5959 // of the previous declaration, so we don't need it anymore. 5960 LocalDeclMap.erase(InitVD); 5961 5962 // Return the address of the private variable. 5963 return GetAddrOfLocalVar(PvtVD); 5964 }); 5965 assert(IsRegistered && "firstprivate var already registered as private"); 5966 // Silence the warning about unused variable. 5967 (void)IsRegistered; 5968 5969 ++OrigVarIt; 5970 ++InitIt; 5971 } 5972 } 5973 5974 static const VarDecl *getBaseDecl(const Expr *Ref) { 5975 const Expr *Base = Ref->IgnoreParenImpCasts(); 5976 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 5977 Base = OASE->getBase()->IgnoreParenImpCasts(); 5978 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 5979 Base = ASE->getBase()->IgnoreParenImpCasts(); 5980 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 5981 } 5982 5983 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 5984 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 5985 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 5986 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 5987 for (const Expr *Ref : C.varlists()) { 5988 const VarDecl *OrigVD = getBaseDecl(Ref); 5989 if (!Processed.insert(OrigVD).second) 5990 continue; 5991 // In order to identify the right initializer we need to match the 5992 // declaration used by the mapping logic. In some cases we may get 5993 // OMPCapturedExprDecl that refers to the original declaration. 5994 const ValueDecl *MatchingVD = OrigVD; 5995 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 5996 // OMPCapturedExprDecl are used to privative fields of the current 5997 // structure. 5998 const auto *ME = cast<MemberExpr>(OED->getInit()); 5999 assert(isa<CXXThisExpr>(ME->getBase()) && 6000 "Base should be the current struct!"); 6001 MatchingVD = ME->getMemberDecl(); 6002 } 6003 6004 // If we don't have information about the current list item, move on to 6005 // the next one. 6006 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6007 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6008 continue; 6009 6010 Address PrivAddr = InitAddrIt->getSecond(); 6011 // For declrefs and variable length array need to load the pointer for 6012 // correct mapping, since the pointer to the data was passed to the runtime. 6013 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6014 MatchingVD->getType()->isArrayType()) 6015 PrivAddr = 6016 EmitLoadOfPointer(PrivAddr, getContext() 6017 .getPointerType(OrigVD->getType()) 6018 ->castAs<PointerType>()); 6019 llvm::Type *RealTy = 6020 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6021 ->getPointerTo(); 6022 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6023 6024 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6025 } 6026 } 6027 6028 // Generate the instructions for '#pragma omp target data' directive. 6029 void CodeGenFunction::EmitOMPTargetDataDirective( 6030 const OMPTargetDataDirective &S) { 6031 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 6032 6033 // Create a pre/post action to signal the privatization of the device pointer. 6034 // This action can be replaced by the OpenMP runtime code generation to 6035 // deactivate privatization. 6036 bool PrivatizeDevicePointers = false; 6037 class DevicePointerPrivActionTy : public PrePostActionTy { 6038 bool &PrivatizeDevicePointers; 6039 6040 public: 6041 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6042 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6043 void Enter(CodeGenFunction &CGF) override { 6044 PrivatizeDevicePointers = true; 6045 } 6046 }; 6047 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6048 6049 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6050 CodeGenFunction &CGF, PrePostActionTy &Action) { 6051 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6052 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6053 }; 6054 6055 // Codegen that selects whether to generate the privatization code or not. 6056 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6057 &InnermostCodeGen](CodeGenFunction &CGF, 6058 PrePostActionTy &Action) { 6059 RegionCodeGenTy RCG(InnermostCodeGen); 6060 PrivatizeDevicePointers = false; 6061 6062 // Call the pre-action to change the status of PrivatizeDevicePointers if 6063 // needed. 6064 Action.Enter(CGF); 6065 6066 if (PrivatizeDevicePointers) { 6067 OMPPrivateScope PrivateScope(CGF); 6068 // Emit all instances of the use_device_ptr clause. 6069 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6070 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6071 Info.CaptureDeviceAddrMap); 6072 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6073 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6074 Info.CaptureDeviceAddrMap); 6075 (void)PrivateScope.Privatize(); 6076 RCG(CGF); 6077 } else { 6078 RCG(CGF); 6079 } 6080 }; 6081 6082 // Forward the provided action to the privatization codegen. 6083 RegionCodeGenTy PrivRCG(PrivCodeGen); 6084 PrivRCG.setAction(Action); 6085 6086 // Notwithstanding the body of the region is emitted as inlined directive, 6087 // we don't use an inline scope as changes in the references inside the 6088 // region are expected to be visible outside, so we do not privative them. 6089 OMPLexicalScope Scope(CGF, S); 6090 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6091 PrivRCG); 6092 }; 6093 6094 RegionCodeGenTy RCG(CodeGen); 6095 6096 // If we don't have target devices, don't bother emitting the data mapping 6097 // code. 6098 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6099 RCG(*this); 6100 return; 6101 } 6102 6103 // Check if we have any if clause associated with the directive. 6104 const Expr *IfCond = nullptr; 6105 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6106 IfCond = C->getCondition(); 6107 6108 // Check if we have any device clause associated with the directive. 6109 const Expr *Device = nullptr; 6110 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6111 Device = C->getDevice(); 6112 6113 // Set the action to signal privatization of device pointers. 6114 RCG.setAction(PrivAction); 6115 6116 // Emit region code. 6117 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6118 Info); 6119 } 6120 6121 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6122 const OMPTargetEnterDataDirective &S) { 6123 // If we don't have target devices, don't bother emitting the data mapping 6124 // code. 6125 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6126 return; 6127 6128 // Check if we have any if clause associated with the directive. 6129 const Expr *IfCond = nullptr; 6130 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6131 IfCond = C->getCondition(); 6132 6133 // Check if we have any device clause associated with the directive. 6134 const Expr *Device = nullptr; 6135 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6136 Device = C->getDevice(); 6137 6138 OMPLexicalScope Scope(*this, S, OMPD_task); 6139 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6140 } 6141 6142 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6143 const OMPTargetExitDataDirective &S) { 6144 // If we don't have target devices, don't bother emitting the data mapping 6145 // code. 6146 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6147 return; 6148 6149 // Check if we have any if clause associated with the directive. 6150 const Expr *IfCond = nullptr; 6151 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6152 IfCond = C->getCondition(); 6153 6154 // Check if we have any device clause associated with the directive. 6155 const Expr *Device = nullptr; 6156 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6157 Device = C->getDevice(); 6158 6159 OMPLexicalScope Scope(*this, S, OMPD_task); 6160 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6161 } 6162 6163 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6164 const OMPTargetParallelDirective &S, 6165 PrePostActionTy &Action) { 6166 // Get the captured statement associated with the 'parallel' region. 6167 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6168 Action.Enter(CGF); 6169 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6170 Action.Enter(CGF); 6171 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6172 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6173 CGF.EmitOMPPrivateClause(S, PrivateScope); 6174 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6175 (void)PrivateScope.Privatize(); 6176 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6177 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6178 // TODO: Add support for clauses. 6179 CGF.EmitStmt(CS->getCapturedStmt()); 6180 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6181 }; 6182 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6183 emitEmptyBoundParameters); 6184 emitPostUpdateForReductionClause(CGF, S, 6185 [](CodeGenFunction &) { return nullptr; }); 6186 } 6187 6188 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6189 CodeGenModule &CGM, StringRef ParentName, 6190 const OMPTargetParallelDirective &S) { 6191 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6192 emitTargetParallelRegion(CGF, S, Action); 6193 }; 6194 llvm::Function *Fn; 6195 llvm::Constant *Addr; 6196 // Emit target region as a standalone region. 6197 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6198 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6199 assert(Fn && Addr && "Target device function emission failed."); 6200 } 6201 6202 void CodeGenFunction::EmitOMPTargetParallelDirective( 6203 const OMPTargetParallelDirective &S) { 6204 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6205 emitTargetParallelRegion(CGF, S, Action); 6206 }; 6207 emitCommonOMPTargetDirective(*this, S, CodeGen); 6208 } 6209 6210 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6211 const OMPTargetParallelForDirective &S, 6212 PrePostActionTy &Action) { 6213 Action.Enter(CGF); 6214 // Emit directive as a combined directive that consists of two implicit 6215 // directives: 'parallel' with 'for' directive. 6216 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6217 Action.Enter(CGF); 6218 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6219 CGF, OMPD_target_parallel_for, S.hasCancel()); 6220 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6221 emitDispatchForLoopBounds); 6222 }; 6223 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6224 emitEmptyBoundParameters); 6225 } 6226 6227 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6228 CodeGenModule &CGM, StringRef ParentName, 6229 const OMPTargetParallelForDirective &S) { 6230 // Emit SPMD target parallel for region as a standalone region. 6231 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6232 emitTargetParallelForRegion(CGF, S, Action); 6233 }; 6234 llvm::Function *Fn; 6235 llvm::Constant *Addr; 6236 // Emit target region as a standalone region. 6237 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6238 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6239 assert(Fn && Addr && "Target device function emission failed."); 6240 } 6241 6242 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6243 const OMPTargetParallelForDirective &S) { 6244 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6245 emitTargetParallelForRegion(CGF, S, Action); 6246 }; 6247 emitCommonOMPTargetDirective(*this, S, CodeGen); 6248 } 6249 6250 static void 6251 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 6252 const OMPTargetParallelForSimdDirective &S, 6253 PrePostActionTy &Action) { 6254 Action.Enter(CGF); 6255 // Emit directive as a combined directive that consists of two implicit 6256 // directives: 'parallel' with 'for' directive. 6257 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6258 Action.Enter(CGF); 6259 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6260 emitDispatchForLoopBounds); 6261 }; 6262 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 6263 emitEmptyBoundParameters); 6264 } 6265 6266 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 6267 CodeGenModule &CGM, StringRef ParentName, 6268 const OMPTargetParallelForSimdDirective &S) { 6269 // Emit SPMD target parallel for region as a standalone region. 6270 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6271 emitTargetParallelForSimdRegion(CGF, S, Action); 6272 }; 6273 llvm::Function *Fn; 6274 llvm::Constant *Addr; 6275 // Emit target region as a standalone region. 6276 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6277 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6278 assert(Fn && Addr && "Target device function emission failed."); 6279 } 6280 6281 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 6282 const OMPTargetParallelForSimdDirective &S) { 6283 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6284 emitTargetParallelForSimdRegion(CGF, S, Action); 6285 }; 6286 emitCommonOMPTargetDirective(*this, S, CodeGen); 6287 } 6288 6289 /// Emit a helper variable and return corresponding lvalue. 6290 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 6291 const ImplicitParamDecl *PVD, 6292 CodeGenFunction::OMPPrivateScope &Privates) { 6293 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 6294 Privates.addPrivate(VDecl, 6295 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 6296 } 6297 6298 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 6299 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 6300 // Emit outlined function for task construct. 6301 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 6302 Address CapturedStruct = Address::invalid(); 6303 { 6304 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6305 CapturedStruct = GenerateCapturedStmtArgument(*CS); 6306 } 6307 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 6308 const Expr *IfCond = nullptr; 6309 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6310 if (C->getNameModifier() == OMPD_unknown || 6311 C->getNameModifier() == OMPD_taskloop) { 6312 IfCond = C->getCondition(); 6313 break; 6314 } 6315 } 6316 6317 OMPTaskDataTy Data; 6318 // Check if taskloop must be emitted without taskgroup. 6319 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 6320 // TODO: Check if we should emit tied or untied task. 6321 Data.Tied = true; 6322 // Set scheduling for taskloop 6323 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 6324 // grainsize clause 6325 Data.Schedule.setInt(/*IntVal=*/false); 6326 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 6327 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 6328 // num_tasks clause 6329 Data.Schedule.setInt(/*IntVal=*/true); 6330 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 6331 } 6332 6333 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 6334 // if (PreCond) { 6335 // for (IV in 0..LastIteration) BODY; 6336 // <Final counter/linear vars updates>; 6337 // } 6338 // 6339 6340 // Emit: if (PreCond) - begin. 6341 // If the condition constant folds and can be elided, avoid emitting the 6342 // whole loop. 6343 bool CondConstant; 6344 llvm::BasicBlock *ContBlock = nullptr; 6345 OMPLoopScope PreInitScope(CGF, S); 6346 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 6347 if (!CondConstant) 6348 return; 6349 } else { 6350 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 6351 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 6352 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 6353 CGF.getProfileCount(&S)); 6354 CGF.EmitBlock(ThenBlock); 6355 CGF.incrementProfileCounter(&S); 6356 } 6357 6358 (void)CGF.EmitOMPLinearClauseInit(S); 6359 6360 OMPPrivateScope LoopScope(CGF); 6361 // Emit helper vars inits. 6362 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 6363 auto *I = CS->getCapturedDecl()->param_begin(); 6364 auto *LBP = std::next(I, LowerBound); 6365 auto *UBP = std::next(I, UpperBound); 6366 auto *STP = std::next(I, Stride); 6367 auto *LIP = std::next(I, LastIter); 6368 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 6369 LoopScope); 6370 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 6371 LoopScope); 6372 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 6373 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 6374 LoopScope); 6375 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 6376 CGF.EmitOMPLinearClause(S, LoopScope); 6377 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 6378 (void)LoopScope.Privatize(); 6379 // Emit the loop iteration variable. 6380 const Expr *IVExpr = S.getIterationVariable(); 6381 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 6382 CGF.EmitVarDecl(*IVDecl); 6383 CGF.EmitIgnoredExpr(S.getInit()); 6384 6385 // Emit the iterations count variable. 6386 // If it is not a variable, Sema decided to calculate iterations count on 6387 // each iteration (e.g., it is foldable into a constant). 6388 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 6389 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 6390 // Emit calculation of the iterations count. 6391 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 6392 } 6393 6394 { 6395 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6396 emitCommonSimdLoop( 6397 CGF, S, 6398 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6399 if (isOpenMPSimdDirective(S.getDirectiveKind())) 6400 CGF.EmitOMPSimdInit(S); 6401 }, 6402 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 6403 CGF.EmitOMPInnerLoop( 6404 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 6405 [&S](CodeGenFunction &CGF) { 6406 emitOMPLoopBodyWithStopPoint(CGF, S, 6407 CodeGenFunction::JumpDest()); 6408 }, 6409 [](CodeGenFunction &) {}); 6410 }); 6411 } 6412 // Emit: if (PreCond) - end. 6413 if (ContBlock) { 6414 CGF.EmitBranch(ContBlock); 6415 CGF.EmitBlock(ContBlock, true); 6416 } 6417 // Emit final copy of the lastprivate variables if IsLastIter != 0. 6418 if (HasLastprivateClause) { 6419 CGF.EmitOMPLastprivateClauseFinal( 6420 S, isOpenMPSimdDirective(S.getDirectiveKind()), 6421 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 6422 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6423 (*LIP)->getType(), S.getBeginLoc()))); 6424 } 6425 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 6426 return CGF.Builder.CreateIsNotNull( 6427 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6428 (*LIP)->getType(), S.getBeginLoc())); 6429 }); 6430 }; 6431 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 6432 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 6433 const OMPTaskDataTy &Data) { 6434 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 6435 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 6436 OMPLoopScope PreInitScope(CGF, S); 6437 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 6438 OutlinedFn, SharedsTy, 6439 CapturedStruct, IfCond, Data); 6440 }; 6441 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 6442 CodeGen); 6443 }; 6444 if (Data.Nogroup) { 6445 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 6446 } else { 6447 CGM.getOpenMPRuntime().emitTaskgroupRegion( 6448 *this, 6449 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 6450 PrePostActionTy &Action) { 6451 Action.Enter(CGF); 6452 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 6453 Data); 6454 }, 6455 S.getBeginLoc()); 6456 } 6457 } 6458 6459 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 6460 auto LPCRegion = 6461 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6462 EmitOMPTaskLoopBasedDirective(S); 6463 } 6464 6465 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 6466 const OMPTaskLoopSimdDirective &S) { 6467 auto LPCRegion = 6468 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6469 OMPLexicalScope Scope(*this, S); 6470 EmitOMPTaskLoopBasedDirective(S); 6471 } 6472 6473 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 6474 const OMPMasterTaskLoopDirective &S) { 6475 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6476 Action.Enter(CGF); 6477 EmitOMPTaskLoopBasedDirective(S); 6478 }; 6479 auto LPCRegion = 6480 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6481 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 6482 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 6483 } 6484 6485 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 6486 const OMPMasterTaskLoopSimdDirective &S) { 6487 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6488 Action.Enter(CGF); 6489 EmitOMPTaskLoopBasedDirective(S); 6490 }; 6491 auto LPCRegion = 6492 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6493 OMPLexicalScope Scope(*this, S); 6494 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 6495 } 6496 6497 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 6498 const OMPParallelMasterTaskLoopDirective &S) { 6499 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6500 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 6501 PrePostActionTy &Action) { 6502 Action.Enter(CGF); 6503 CGF.EmitOMPTaskLoopBasedDirective(S); 6504 }; 6505 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 6506 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 6507 S.getBeginLoc()); 6508 }; 6509 auto LPCRegion = 6510 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6511 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 6512 emitEmptyBoundParameters); 6513 } 6514 6515 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 6516 const OMPParallelMasterTaskLoopSimdDirective &S) { 6517 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6518 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 6519 PrePostActionTy &Action) { 6520 Action.Enter(CGF); 6521 CGF.EmitOMPTaskLoopBasedDirective(S); 6522 }; 6523 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 6524 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 6525 S.getBeginLoc()); 6526 }; 6527 auto LPCRegion = 6528 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6529 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 6530 emitEmptyBoundParameters); 6531 } 6532 6533 // Generate the instructions for '#pragma omp target update' directive. 6534 void CodeGenFunction::EmitOMPTargetUpdateDirective( 6535 const OMPTargetUpdateDirective &S) { 6536 // If we don't have target devices, don't bother emitting the data mapping 6537 // code. 6538 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6539 return; 6540 6541 // Check if we have any if clause associated with the directive. 6542 const Expr *IfCond = nullptr; 6543 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6544 IfCond = C->getCondition(); 6545 6546 // Check if we have any device clause associated with the directive. 6547 const Expr *Device = nullptr; 6548 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6549 Device = C->getDevice(); 6550 6551 OMPLexicalScope Scope(*this, S, OMPD_task); 6552 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6553 } 6554 6555 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 6556 const OMPExecutableDirective &D) { 6557 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 6558 EmitOMPScanDirective(*SD); 6559 return; 6560 } 6561 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 6562 return; 6563 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 6564 OMPPrivateScope GlobalsScope(CGF); 6565 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 6566 // Capture global firstprivates to avoid crash. 6567 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 6568 for (const Expr *Ref : C->varlists()) { 6569 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 6570 if (!DRE) 6571 continue; 6572 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6573 if (!VD || VD->hasLocalStorage()) 6574 continue; 6575 if (!CGF.LocalDeclMap.count(VD)) { 6576 LValue GlobLVal = CGF.EmitLValue(Ref); 6577 GlobalsScope.addPrivate( 6578 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 6579 } 6580 } 6581 } 6582 } 6583 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 6584 (void)GlobalsScope.Privatize(); 6585 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 6586 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 6587 } else { 6588 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 6589 for (const Expr *E : LD->counters()) { 6590 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 6591 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 6592 LValue GlobLVal = CGF.EmitLValue(E); 6593 GlobalsScope.addPrivate( 6594 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 6595 } 6596 if (isa<OMPCapturedExprDecl>(VD)) { 6597 // Emit only those that were not explicitly referenced in clauses. 6598 if (!CGF.LocalDeclMap.count(VD)) 6599 CGF.EmitVarDecl(*VD); 6600 } 6601 } 6602 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 6603 if (!C->getNumForLoops()) 6604 continue; 6605 for (unsigned I = LD->getCollapsedNumber(), 6606 E = C->getLoopNumIterations().size(); 6607 I < E; ++I) { 6608 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 6609 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 6610 // Emit only those that were not explicitly referenced in clauses. 6611 if (!CGF.LocalDeclMap.count(VD)) 6612 CGF.EmitVarDecl(*VD); 6613 } 6614 } 6615 } 6616 } 6617 (void)GlobalsScope.Privatize(); 6618 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 6619 } 6620 }; 6621 { 6622 auto LPCRegion = 6623 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 6624 OMPSimdLexicalScope Scope(*this, D); 6625 CGM.getOpenMPRuntime().emitInlinedDirective( 6626 *this, 6627 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 6628 : D.getDirectiveKind(), 6629 CodeGen); 6630 } 6631 // Check for outer lastprivate conditional update. 6632 checkForLastprivateConditionalUpdate(*this, D); 6633 } 6634