1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (const auto *PreInit = 34 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 35 for (const auto *I : PreInit->decls()) { 36 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 37 CGF.EmitVarDecl(cast<VarDecl>(*I)); 38 } else { 39 CodeGenFunction::AutoVarEmission Emission = 40 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 41 CGF.EmitAutoVarCleanups(Emission); 42 } 43 } 44 } 45 } 46 } 47 } 48 CodeGenFunction::OMPPrivateScope InlinedShareds; 49 50 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 51 return CGF.LambdaCaptureFields.lookup(VD) || 52 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 53 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 54 } 55 56 public: 57 OMPLexicalScope( 58 CodeGenFunction &CGF, const OMPExecutableDirective &S, 59 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 60 const bool EmitPreInitStmt = true) 61 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 62 InlinedShareds(CGF) { 63 if (EmitPreInitStmt) 64 emitPreInitStmt(CGF, S); 65 if (!CapturedRegion.hasValue()) 66 return; 67 assert(S.hasAssociatedStmt() && 68 "Expected associated statement for inlined directive."); 69 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 70 for (const auto &C : CS->captures()) { 71 if (C.capturesVariable() || C.capturesVariableByCopy()) { 72 auto *VD = C.getCapturedVar(); 73 assert(VD == VD->getCanonicalDecl() && 74 "Canonical decl must be captured."); 75 DeclRefExpr DRE( 76 const_cast<VarDecl *>(VD), 77 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 78 InlinedShareds.isGlobalVarCaptured(VD)), 79 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 80 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 81 return CGF.EmitLValue(&DRE).getAddress(); 82 }); 83 } 84 } 85 (void)InlinedShareds.Privatize(); 86 } 87 }; 88 89 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 90 /// for captured expressions. 91 class OMPParallelScope final : public OMPLexicalScope { 92 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 93 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 94 return !(isOpenMPTargetExecutionDirective(Kind) || 95 isOpenMPLoopBoundSharingDirective(Kind)) && 96 isOpenMPParallelDirective(Kind); 97 } 98 99 public: 100 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 101 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 102 EmitPreInitStmt(S)) {} 103 }; 104 105 /// Lexical scope for OpenMP teams construct, that handles correct codegen 106 /// for captured expressions. 107 class OMPTeamsScope final : public OMPLexicalScope { 108 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 109 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 110 return !isOpenMPTargetExecutionDirective(Kind) && 111 isOpenMPTeamsDirective(Kind); 112 } 113 114 public: 115 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 116 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 117 EmitPreInitStmt(S)) {} 118 }; 119 120 /// Private scope for OpenMP loop-based directives, that supports capturing 121 /// of used expression from loop statement. 122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 123 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 124 CodeGenFunction::OMPMapVars PreCondVars; 125 for (const auto *E : S.counters()) { 126 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 127 (void)PreCondVars.setVarAddr( 128 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 129 } 130 (void)PreCondVars.apply(CGF); 131 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 132 for (const auto *I : PreInits->decls()) 133 CGF.EmitVarDecl(cast<VarDecl>(*I)); 134 } 135 PreCondVars.restore(CGF); 136 } 137 138 public: 139 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 140 : CodeGenFunction::RunCleanupsScope(CGF) { 141 emitPreInitStmt(CGF, S); 142 } 143 }; 144 145 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 146 CodeGenFunction::OMPPrivateScope InlinedShareds; 147 148 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 149 return CGF.LambdaCaptureFields.lookup(VD) || 150 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 151 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 152 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 153 } 154 155 public: 156 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 157 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 158 InlinedShareds(CGF) { 159 for (const auto *C : S.clauses()) { 160 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 161 if (const auto *PreInit = 162 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 163 for (const auto *I : PreInit->decls()) { 164 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 165 CGF.EmitVarDecl(cast<VarDecl>(*I)); 166 } else { 167 CodeGenFunction::AutoVarEmission Emission = 168 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 169 CGF.EmitAutoVarCleanups(Emission); 170 } 171 } 172 } 173 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 174 for (const Expr *E : UDP->varlists()) { 175 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 176 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 177 CGF.EmitVarDecl(*OED); 178 } 179 } 180 } 181 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 182 CGF.EmitOMPPrivateClause(S, InlinedShareds); 183 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 184 if (const Expr *E = TG->getReductionRef()) 185 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 186 } 187 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 188 while (CS) { 189 for (auto &C : CS->captures()) { 190 if (C.capturesVariable() || C.capturesVariableByCopy()) { 191 auto *VD = C.getCapturedVar(); 192 assert(VD == VD->getCanonicalDecl() && 193 "Canonical decl must be captured."); 194 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 195 isCapturedVar(CGF, VD) || 196 (CGF.CapturedStmtInfo && 197 InlinedShareds.isGlobalVarCaptured(VD)), 198 VD->getType().getNonReferenceType(), VK_LValue, 199 C.getLocation()); 200 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 201 return CGF.EmitLValue(&DRE).getAddress(); 202 }); 203 } 204 } 205 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 206 } 207 (void)InlinedShareds.Privatize(); 208 } 209 }; 210 211 } // namespace 212 213 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 214 const OMPExecutableDirective &S, 215 const RegionCodeGenTy &CodeGen); 216 217 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 218 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 219 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 220 OrigVD = OrigVD->getCanonicalDecl(); 221 bool IsCaptured = 222 LambdaCaptureFields.lookup(OrigVD) || 223 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 224 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 225 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured, 226 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 227 return EmitLValue(&DRE); 228 } 229 } 230 return EmitLValue(E); 231 } 232 233 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 234 ASTContext &C = getContext(); 235 llvm::Value *Size = nullptr; 236 auto SizeInChars = C.getTypeSizeInChars(Ty); 237 if (SizeInChars.isZero()) { 238 // getTypeSizeInChars() returns 0 for a VLA. 239 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 240 VlaSizePair VlaSize = getVLASize(VAT); 241 Ty = VlaSize.Type; 242 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 243 : VlaSize.NumElts; 244 } 245 SizeInChars = C.getTypeSizeInChars(Ty); 246 if (SizeInChars.isZero()) 247 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 248 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 249 } 250 return CGM.getSize(SizeInChars); 251 } 252 253 void CodeGenFunction::GenerateOpenMPCapturedVars( 254 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 255 const RecordDecl *RD = S.getCapturedRecordDecl(); 256 auto CurField = RD->field_begin(); 257 auto CurCap = S.captures().begin(); 258 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 259 E = S.capture_init_end(); 260 I != E; ++I, ++CurField, ++CurCap) { 261 if (CurField->hasCapturedVLAType()) { 262 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 263 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 264 CapturedVars.push_back(Val); 265 } else if (CurCap->capturesThis()) { 266 CapturedVars.push_back(CXXThisValue); 267 } else if (CurCap->capturesVariableByCopy()) { 268 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 269 270 // If the field is not a pointer, we need to save the actual value 271 // and load it as a void pointer. 272 if (!CurField->getType()->isAnyPointerType()) { 273 ASTContext &Ctx = getContext(); 274 Address DstAddr = CreateMemTemp( 275 Ctx.getUIntPtrType(), 276 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 277 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 278 279 llvm::Value *SrcAddrVal = EmitScalarConversion( 280 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 281 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 282 LValue SrcLV = 283 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 284 285 // Store the value using the source type pointer. 286 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 287 288 // Load the value using the destination type pointer. 289 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 290 } 291 CapturedVars.push_back(CV); 292 } else { 293 assert(CurCap->capturesVariable() && "Expected capture by reference."); 294 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 295 } 296 } 297 } 298 299 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 300 QualType DstType, StringRef Name, 301 LValue AddrLV, 302 bool isReferenceType = false) { 303 ASTContext &Ctx = CGF.getContext(); 304 305 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 306 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 307 Ctx.getPointerType(DstType), Loc); 308 Address TmpAddr = 309 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 310 .getAddress(); 311 312 // If we are dealing with references we need to return the address of the 313 // reference instead of the reference of the value. 314 if (isReferenceType) { 315 QualType RefType = Ctx.getLValueReferenceType(DstType); 316 llvm::Value *RefVal = TmpAddr.getPointer(); 317 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref")); 318 LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 319 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true); 320 } 321 322 return TmpAddr; 323 } 324 325 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 326 if (T->isLValueReferenceType()) 327 return C.getLValueReferenceType( 328 getCanonicalParamType(C, T.getNonReferenceType()), 329 /*SpelledAsLValue=*/false); 330 if (T->isPointerType()) 331 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 332 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 333 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 334 return getCanonicalParamType(C, VLA->getElementType()); 335 if (!A->isVariablyModifiedType()) 336 return C.getCanonicalType(T); 337 } 338 return C.getCanonicalParamType(T); 339 } 340 341 namespace { 342 /// Contains required data for proper outlined function codegen. 343 struct FunctionOptions { 344 /// Captured statement for which the function is generated. 345 const CapturedStmt *S = nullptr; 346 /// true if cast to/from UIntPtr is required for variables captured by 347 /// value. 348 const bool UIntPtrCastRequired = true; 349 /// true if only casted arguments must be registered as local args or VLA 350 /// sizes. 351 const bool RegisterCastedArgsOnly = false; 352 /// Name of the generated function. 353 const StringRef FunctionName; 354 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 355 bool RegisterCastedArgsOnly, 356 StringRef FunctionName) 357 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 358 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 359 FunctionName(FunctionName) {} 360 }; 361 } 362 363 static llvm::Function *emitOutlinedFunctionPrologue( 364 CodeGenFunction &CGF, FunctionArgList &Args, 365 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 366 &LocalAddrs, 367 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 368 &VLASizes, 369 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 370 const CapturedDecl *CD = FO.S->getCapturedDecl(); 371 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 372 assert(CD->hasBody() && "missing CapturedDecl body"); 373 374 CXXThisValue = nullptr; 375 // Build the argument list. 376 CodeGenModule &CGM = CGF.CGM; 377 ASTContext &Ctx = CGM.getContext(); 378 FunctionArgList TargetArgs; 379 Args.append(CD->param_begin(), 380 std::next(CD->param_begin(), CD->getContextParamPosition())); 381 TargetArgs.append( 382 CD->param_begin(), 383 std::next(CD->param_begin(), CD->getContextParamPosition())); 384 auto I = FO.S->captures().begin(); 385 FunctionDecl *DebugFunctionDecl = nullptr; 386 if (!FO.UIntPtrCastRequired) { 387 FunctionProtoType::ExtProtoInfo EPI; 388 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 389 DebugFunctionDecl = FunctionDecl::Create( 390 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 391 SourceLocation(), DeclarationName(), FunctionTy, 392 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 393 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 394 } 395 for (const FieldDecl *FD : RD->fields()) { 396 QualType ArgType = FD->getType(); 397 IdentifierInfo *II = nullptr; 398 VarDecl *CapVar = nullptr; 399 400 // If this is a capture by copy and the type is not a pointer, the outlined 401 // function argument type should be uintptr and the value properly casted to 402 // uintptr. This is necessary given that the runtime library is only able to 403 // deal with pointers. We can pass in the same way the VLA type sizes to the 404 // outlined function. 405 if (FO.UIntPtrCastRequired && 406 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 407 I->capturesVariableArrayType())) 408 ArgType = Ctx.getUIntPtrType(); 409 410 if (I->capturesVariable() || I->capturesVariableByCopy()) { 411 CapVar = I->getCapturedVar(); 412 II = CapVar->getIdentifier(); 413 } else if (I->capturesThis()) { 414 II = &Ctx.Idents.get("this"); 415 } else { 416 assert(I->capturesVariableArrayType()); 417 II = &Ctx.Idents.get("vla"); 418 } 419 if (ArgType->isVariablyModifiedType()) 420 ArgType = getCanonicalParamType(Ctx, ArgType); 421 VarDecl *Arg; 422 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 423 Arg = ParmVarDecl::Create( 424 Ctx, DebugFunctionDecl, 425 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 426 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 427 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 428 } else { 429 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 430 II, ArgType, ImplicitParamDecl::Other); 431 } 432 Args.emplace_back(Arg); 433 // Do not cast arguments if we emit function with non-original types. 434 TargetArgs.emplace_back( 435 FO.UIntPtrCastRequired 436 ? Arg 437 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 438 ++I; 439 } 440 Args.append( 441 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 442 CD->param_end()); 443 TargetArgs.append( 444 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 445 CD->param_end()); 446 447 // Create the function declaration. 448 const CGFunctionInfo &FuncInfo = 449 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 450 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 451 452 auto *F = 453 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 454 FO.FunctionName, &CGM.getModule()); 455 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 456 if (CD->isNothrow()) 457 F->setDoesNotThrow(); 458 F->setDoesNotRecurse(); 459 460 // Generate the function. 461 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 462 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 463 unsigned Cnt = CD->getContextParamPosition(); 464 I = FO.S->captures().begin(); 465 for (const FieldDecl *FD : RD->fields()) { 466 // Do not map arguments if we emit function with non-original types. 467 Address LocalAddr(Address::invalid()); 468 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 469 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 470 TargetArgs[Cnt]); 471 } else { 472 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 473 } 474 // If we are capturing a pointer by copy we don't need to do anything, just 475 // use the value that we get from the arguments. 476 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 477 const VarDecl *CurVD = I->getCapturedVar(); 478 // If the variable is a reference we need to materialize it here. 479 if (CurVD->getType()->isReferenceType()) { 480 Address RefAddr = CGF.CreateMemTemp( 481 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 482 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 483 /*Volatile=*/false, CurVD->getType()); 484 LocalAddr = RefAddr; 485 } 486 if (!FO.RegisterCastedArgsOnly) 487 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 488 ++Cnt; 489 ++I; 490 continue; 491 } 492 493 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 494 AlignmentSource::Decl); 495 if (FD->hasCapturedVLAType()) { 496 if (FO.UIntPtrCastRequired) { 497 ArgLVal = CGF.MakeAddrLValue( 498 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 499 Args[Cnt]->getName(), ArgLVal), 500 FD->getType(), AlignmentSource::Decl); 501 } 502 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 503 const VariableArrayType *VAT = FD->getCapturedVLAType(); 504 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 505 } else if (I->capturesVariable()) { 506 const VarDecl *Var = I->getCapturedVar(); 507 QualType VarTy = Var->getType(); 508 Address ArgAddr = ArgLVal.getAddress(); 509 if (!VarTy->isReferenceType()) { 510 if (ArgLVal.getType()->isLValueReferenceType()) { 511 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 512 } else if (!VarTy->isVariablyModifiedType() || 513 !VarTy->isPointerType()) { 514 assert(ArgLVal.getType()->isPointerType()); 515 ArgAddr = CGF.EmitLoadOfPointer( 516 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 517 } 518 } 519 if (!FO.RegisterCastedArgsOnly) { 520 LocalAddrs.insert( 521 {Args[Cnt], 522 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 523 } 524 } else if (I->capturesVariableByCopy()) { 525 assert(!FD->getType()->isAnyPointerType() && 526 "Not expecting a captured pointer."); 527 const VarDecl *Var = I->getCapturedVar(); 528 QualType VarTy = Var->getType(); 529 LocalAddrs.insert( 530 {Args[Cnt], 531 {Var, FO.UIntPtrCastRequired 532 ? castValueFromUintptr(CGF, I->getLocation(), 533 FD->getType(), Args[Cnt]->getName(), 534 ArgLVal, VarTy->isReferenceType()) 535 : ArgLVal.getAddress()}}); 536 } else { 537 // If 'this' is captured, load it into CXXThisValue. 538 assert(I->capturesThis()); 539 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 540 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 541 } 542 ++Cnt; 543 ++I; 544 } 545 546 return F; 547 } 548 549 llvm::Function * 550 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 551 assert( 552 CapturedStmtInfo && 553 "CapturedStmtInfo should be set when generating the captured function"); 554 const CapturedDecl *CD = S.getCapturedDecl(); 555 // Build the argument list. 556 bool NeedWrapperFunction = 557 getDebugInfo() && 558 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 559 FunctionArgList Args; 560 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 561 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 562 SmallString<256> Buffer; 563 llvm::raw_svector_ostream Out(Buffer); 564 Out << CapturedStmtInfo->getHelperName(); 565 if (NeedWrapperFunction) 566 Out << "_debug__"; 567 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 568 Out.str()); 569 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 570 VLASizes, CXXThisValue, FO); 571 for (const auto &LocalAddrPair : LocalAddrs) { 572 if (LocalAddrPair.second.first) { 573 setAddrOfLocalVar(LocalAddrPair.second.first, 574 LocalAddrPair.second.second); 575 } 576 } 577 for (const auto &VLASizePair : VLASizes) 578 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 579 PGO.assignRegionCounters(GlobalDecl(CD), F); 580 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 581 FinishFunction(CD->getBodyRBrace()); 582 if (!NeedWrapperFunction) 583 return F; 584 585 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 586 /*RegisterCastedArgsOnly=*/true, 587 CapturedStmtInfo->getHelperName()); 588 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 589 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 590 Args.clear(); 591 LocalAddrs.clear(); 592 VLASizes.clear(); 593 llvm::Function *WrapperF = 594 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 595 WrapperCGF.CXXThisValue, WrapperFO); 596 llvm::SmallVector<llvm::Value *, 4> CallArgs; 597 for (const auto *Arg : Args) { 598 llvm::Value *CallArg; 599 auto I = LocalAddrs.find(Arg); 600 if (I != LocalAddrs.end()) { 601 LValue LV = WrapperCGF.MakeAddrLValue( 602 I->second.second, 603 I->second.first ? I->second.first->getType() : Arg->getType(), 604 AlignmentSource::Decl); 605 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 606 } else { 607 auto EI = VLASizes.find(Arg); 608 if (EI != VLASizes.end()) { 609 CallArg = EI->second.second; 610 } else { 611 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 612 Arg->getType(), 613 AlignmentSource::Decl); 614 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 615 } 616 } 617 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 618 } 619 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 620 F, CallArgs); 621 WrapperCGF.FinishFunction(); 622 return WrapperF; 623 } 624 625 //===----------------------------------------------------------------------===// 626 // OpenMP Directive Emission 627 //===----------------------------------------------------------------------===// 628 void CodeGenFunction::EmitOMPAggregateAssign( 629 Address DestAddr, Address SrcAddr, QualType OriginalType, 630 const llvm::function_ref<void(Address, Address)> CopyGen) { 631 // Perform element-by-element initialization. 632 QualType ElementTy; 633 634 // Drill down to the base element type on both arrays. 635 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 636 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 637 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 638 639 llvm::Value *SrcBegin = SrcAddr.getPointer(); 640 llvm::Value *DestBegin = DestAddr.getPointer(); 641 // Cast from pointer to array type to pointer to single element. 642 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 643 // The basic structure here is a while-do loop. 644 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 645 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 646 llvm::Value *IsEmpty = 647 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 648 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 649 650 // Enter the loop body, making that address the current address. 651 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 652 EmitBlock(BodyBB); 653 654 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 655 656 llvm::PHINode *SrcElementPHI = 657 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 658 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 659 Address SrcElementCurrent = 660 Address(SrcElementPHI, 661 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 662 663 llvm::PHINode *DestElementPHI = 664 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 665 DestElementPHI->addIncoming(DestBegin, EntryBB); 666 Address DestElementCurrent = 667 Address(DestElementPHI, 668 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 669 670 // Emit copy. 671 CopyGen(DestElementCurrent, SrcElementCurrent); 672 673 // Shift the address forward by one element. 674 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 675 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 676 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 677 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 678 // Check whether we've reached the end. 679 llvm::Value *Done = 680 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 681 Builder.CreateCondBr(Done, DoneBB, BodyBB); 682 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 683 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 684 685 // Done. 686 EmitBlock(DoneBB, /*IsFinished=*/true); 687 } 688 689 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 690 Address SrcAddr, const VarDecl *DestVD, 691 const VarDecl *SrcVD, const Expr *Copy) { 692 if (OriginalType->isArrayType()) { 693 const auto *BO = dyn_cast<BinaryOperator>(Copy); 694 if (BO && BO->getOpcode() == BO_Assign) { 695 // Perform simple memcpy for simple copying. 696 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 697 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 698 EmitAggregateAssign(Dest, Src, OriginalType); 699 } else { 700 // For arrays with complex element types perform element by element 701 // copying. 702 EmitOMPAggregateAssign( 703 DestAddr, SrcAddr, OriginalType, 704 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 705 // Working with the single array element, so have to remap 706 // destination and source variables to corresponding array 707 // elements. 708 CodeGenFunction::OMPPrivateScope Remap(*this); 709 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 710 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 711 (void)Remap.Privatize(); 712 EmitIgnoredExpr(Copy); 713 }); 714 } 715 } else { 716 // Remap pseudo source variable to private copy. 717 CodeGenFunction::OMPPrivateScope Remap(*this); 718 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 719 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 720 (void)Remap.Privatize(); 721 // Emit copying of the whole variable. 722 EmitIgnoredExpr(Copy); 723 } 724 } 725 726 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 727 OMPPrivateScope &PrivateScope) { 728 if (!HaveInsertPoint()) 729 return false; 730 bool FirstprivateIsLastprivate = false; 731 llvm::DenseSet<const VarDecl *> Lastprivates; 732 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 733 for (const auto *D : C->varlists()) 734 Lastprivates.insert( 735 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 736 } 737 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 738 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 739 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 740 // Force emission of the firstprivate copy if the directive does not emit 741 // outlined function, like omp for, omp simd, omp distribute etc. 742 bool MustEmitFirstprivateCopy = 743 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 744 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 745 auto IRef = C->varlist_begin(); 746 auto InitsRef = C->inits().begin(); 747 for (const Expr *IInit : C->private_copies()) { 748 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 749 bool ThisFirstprivateIsLastprivate = 750 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 751 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 752 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 753 !FD->getType()->isReferenceType()) { 754 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 755 ++IRef; 756 ++InitsRef; 757 continue; 758 } 759 FirstprivateIsLastprivate = 760 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 761 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 762 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 763 const auto *VDInit = 764 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 765 bool IsRegistered; 766 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 767 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 768 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 769 LValue OriginalLVal = EmitLValue(&DRE); 770 QualType Type = VD->getType(); 771 if (Type->isArrayType()) { 772 // Emit VarDecl with copy init for arrays. 773 // Get the address of the original variable captured in current 774 // captured region. 775 IsRegistered = PrivateScope.addPrivate( 776 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 777 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 778 const Expr *Init = VD->getInit(); 779 if (!isa<CXXConstructExpr>(Init) || 780 isTrivialInitializer(Init)) { 781 // Perform simple memcpy. 782 LValue Dest = 783 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 784 EmitAggregateAssign(Dest, OriginalLVal, Type); 785 } else { 786 EmitOMPAggregateAssign( 787 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 788 Type, 789 [this, VDInit, Init](Address DestElement, 790 Address SrcElement) { 791 // Clean up any temporaries needed by the 792 // initialization. 793 RunCleanupsScope InitScope(*this); 794 // Emit initialization for single element. 795 setAddrOfLocalVar(VDInit, SrcElement); 796 EmitAnyExprToMem(Init, DestElement, 797 Init->getType().getQualifiers(), 798 /*IsInitializer*/ false); 799 LocalDeclMap.erase(VDInit); 800 }); 801 } 802 EmitAutoVarCleanups(Emission); 803 return Emission.getAllocatedAddress(); 804 }); 805 } else { 806 Address OriginalAddr = OriginalLVal.getAddress(); 807 IsRegistered = PrivateScope.addPrivate( 808 OrigVD, [this, VDInit, OriginalAddr, VD]() { 809 // Emit private VarDecl with copy init. 810 // Remap temp VDInit variable to the address of the original 811 // variable (for proper handling of captured global variables). 812 setAddrOfLocalVar(VDInit, OriginalAddr); 813 EmitDecl(*VD); 814 LocalDeclMap.erase(VDInit); 815 return GetAddrOfLocalVar(VD); 816 }); 817 } 818 assert(IsRegistered && 819 "firstprivate var already registered as private"); 820 // Silence the warning about unused variable. 821 (void)IsRegistered; 822 } 823 ++IRef; 824 ++InitsRef; 825 } 826 } 827 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 828 } 829 830 void CodeGenFunction::EmitOMPPrivateClause( 831 const OMPExecutableDirective &D, 832 CodeGenFunction::OMPPrivateScope &PrivateScope) { 833 if (!HaveInsertPoint()) 834 return; 835 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 836 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 837 auto IRef = C->varlist_begin(); 838 for (const Expr *IInit : C->private_copies()) { 839 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 840 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 841 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 842 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 843 // Emit private VarDecl with copy init. 844 EmitDecl(*VD); 845 return GetAddrOfLocalVar(VD); 846 }); 847 assert(IsRegistered && "private var already registered as private"); 848 // Silence the warning about unused variable. 849 (void)IsRegistered; 850 } 851 ++IRef; 852 } 853 } 854 } 855 856 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 857 if (!HaveInsertPoint()) 858 return false; 859 // threadprivate_var1 = master_threadprivate_var1; 860 // operator=(threadprivate_var2, master_threadprivate_var2); 861 // ... 862 // __kmpc_barrier(&loc, global_tid); 863 llvm::DenseSet<const VarDecl *> CopiedVars; 864 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 865 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 866 auto IRef = C->varlist_begin(); 867 auto ISrcRef = C->source_exprs().begin(); 868 auto IDestRef = C->destination_exprs().begin(); 869 for (const Expr *AssignOp : C->assignment_ops()) { 870 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 871 QualType Type = VD->getType(); 872 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 873 // Get the address of the master variable. If we are emitting code with 874 // TLS support, the address is passed from the master as field in the 875 // captured declaration. 876 Address MasterAddr = Address::invalid(); 877 if (getLangOpts().OpenMPUseTLS && 878 getContext().getTargetInfo().isTLSSupported()) { 879 assert(CapturedStmtInfo->lookup(VD) && 880 "Copyin threadprivates should have been captured!"); 881 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 882 VK_LValue, (*IRef)->getExprLoc()); 883 MasterAddr = EmitLValue(&DRE).getAddress(); 884 LocalDeclMap.erase(VD); 885 } else { 886 MasterAddr = 887 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 888 : CGM.GetAddrOfGlobal(VD), 889 getContext().getDeclAlign(VD)); 890 } 891 // Get the address of the threadprivate variable. 892 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 893 if (CopiedVars.size() == 1) { 894 // At first check if current thread is a master thread. If it is, no 895 // need to copy data. 896 CopyBegin = createBasicBlock("copyin.not.master"); 897 CopyEnd = createBasicBlock("copyin.not.master.end"); 898 Builder.CreateCondBr( 899 Builder.CreateICmpNE( 900 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 901 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 902 CGM.IntPtrTy)), 903 CopyBegin, CopyEnd); 904 EmitBlock(CopyBegin); 905 } 906 const auto *SrcVD = 907 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 908 const auto *DestVD = 909 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 910 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 911 } 912 ++IRef; 913 ++ISrcRef; 914 ++IDestRef; 915 } 916 } 917 if (CopyEnd) { 918 // Exit out of copying procedure for non-master thread. 919 EmitBlock(CopyEnd, /*IsFinished=*/true); 920 return true; 921 } 922 return false; 923 } 924 925 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 926 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 927 if (!HaveInsertPoint()) 928 return false; 929 bool HasAtLeastOneLastprivate = false; 930 llvm::DenseSet<const VarDecl *> SIMDLCVs; 931 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 932 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 933 for (const Expr *C : LoopDirective->counters()) { 934 SIMDLCVs.insert( 935 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 936 } 937 } 938 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 939 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 940 HasAtLeastOneLastprivate = true; 941 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 942 !getLangOpts().OpenMPSimd) 943 break; 944 auto IRef = C->varlist_begin(); 945 auto IDestRef = C->destination_exprs().begin(); 946 for (const Expr *IInit : C->private_copies()) { 947 // Keep the address of the original variable for future update at the end 948 // of the loop. 949 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 950 // Taskloops do not require additional initialization, it is done in 951 // runtime support library. 952 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 953 const auto *DestVD = 954 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 955 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 956 DeclRefExpr DRE( 957 const_cast<VarDecl *>(OrigVD), 958 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 959 OrigVD) != nullptr, 960 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 961 return EmitLValue(&DRE).getAddress(); 962 }); 963 // Check if the variable is also a firstprivate: in this case IInit is 964 // not generated. Initialization of this variable will happen in codegen 965 // for 'firstprivate' clause. 966 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 967 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 968 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 969 // Emit private VarDecl with copy init. 970 EmitDecl(*VD); 971 return GetAddrOfLocalVar(VD); 972 }); 973 assert(IsRegistered && 974 "lastprivate var already registered as private"); 975 (void)IsRegistered; 976 } 977 } 978 ++IRef; 979 ++IDestRef; 980 } 981 } 982 return HasAtLeastOneLastprivate; 983 } 984 985 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 986 const OMPExecutableDirective &D, bool NoFinals, 987 llvm::Value *IsLastIterCond) { 988 if (!HaveInsertPoint()) 989 return; 990 // Emit following code: 991 // if (<IsLastIterCond>) { 992 // orig_var1 = private_orig_var1; 993 // ... 994 // orig_varn = private_orig_varn; 995 // } 996 llvm::BasicBlock *ThenBB = nullptr; 997 llvm::BasicBlock *DoneBB = nullptr; 998 if (IsLastIterCond) { 999 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1000 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1001 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1002 EmitBlock(ThenBB); 1003 } 1004 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1005 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1006 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1007 auto IC = LoopDirective->counters().begin(); 1008 for (const Expr *F : LoopDirective->finals()) { 1009 const auto *D = 1010 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1011 if (NoFinals) 1012 AlreadyEmittedVars.insert(D); 1013 else 1014 LoopCountersAndUpdates[D] = F; 1015 ++IC; 1016 } 1017 } 1018 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1019 auto IRef = C->varlist_begin(); 1020 auto ISrcRef = C->source_exprs().begin(); 1021 auto IDestRef = C->destination_exprs().begin(); 1022 for (const Expr *AssignOp : C->assignment_ops()) { 1023 const auto *PrivateVD = 1024 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1025 QualType Type = PrivateVD->getType(); 1026 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1027 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1028 // If lastprivate variable is a loop control variable for loop-based 1029 // directive, update its value before copyin back to original 1030 // variable. 1031 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1032 EmitIgnoredExpr(FinalExpr); 1033 const auto *SrcVD = 1034 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1035 const auto *DestVD = 1036 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1037 // Get the address of the original variable. 1038 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1039 // Get the address of the private variable. 1040 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1041 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1042 PrivateAddr = 1043 Address(Builder.CreateLoad(PrivateAddr), 1044 getNaturalTypeAlignment(RefTy->getPointeeType())); 1045 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1046 } 1047 ++IRef; 1048 ++ISrcRef; 1049 ++IDestRef; 1050 } 1051 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1052 EmitIgnoredExpr(PostUpdate); 1053 } 1054 if (IsLastIterCond) 1055 EmitBlock(DoneBB, /*IsFinished=*/true); 1056 } 1057 1058 void CodeGenFunction::EmitOMPReductionClauseInit( 1059 const OMPExecutableDirective &D, 1060 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1061 if (!HaveInsertPoint()) 1062 return; 1063 SmallVector<const Expr *, 4> Shareds; 1064 SmallVector<const Expr *, 4> Privates; 1065 SmallVector<const Expr *, 4> ReductionOps; 1066 SmallVector<const Expr *, 4> LHSs; 1067 SmallVector<const Expr *, 4> RHSs; 1068 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1069 auto IPriv = C->privates().begin(); 1070 auto IRed = C->reduction_ops().begin(); 1071 auto ILHS = C->lhs_exprs().begin(); 1072 auto IRHS = C->rhs_exprs().begin(); 1073 for (const Expr *Ref : C->varlists()) { 1074 Shareds.emplace_back(Ref); 1075 Privates.emplace_back(*IPriv); 1076 ReductionOps.emplace_back(*IRed); 1077 LHSs.emplace_back(*ILHS); 1078 RHSs.emplace_back(*IRHS); 1079 std::advance(IPriv, 1); 1080 std::advance(IRed, 1); 1081 std::advance(ILHS, 1); 1082 std::advance(IRHS, 1); 1083 } 1084 } 1085 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1086 unsigned Count = 0; 1087 auto ILHS = LHSs.begin(); 1088 auto IRHS = RHSs.begin(); 1089 auto IPriv = Privates.begin(); 1090 for (const Expr *IRef : Shareds) { 1091 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1092 // Emit private VarDecl with reduction init. 1093 RedCG.emitSharedLValue(*this, Count); 1094 RedCG.emitAggregateType(*this, Count); 1095 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1096 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1097 RedCG.getSharedLValue(Count), 1098 [&Emission](CodeGenFunction &CGF) { 1099 CGF.EmitAutoVarInit(Emission); 1100 return true; 1101 }); 1102 EmitAutoVarCleanups(Emission); 1103 Address BaseAddr = RedCG.adjustPrivateAddress( 1104 *this, Count, Emission.getAllocatedAddress()); 1105 bool IsRegistered = PrivateScope.addPrivate( 1106 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1107 assert(IsRegistered && "private var already registered as private"); 1108 // Silence the warning about unused variable. 1109 (void)IsRegistered; 1110 1111 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1112 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1113 QualType Type = PrivateVD->getType(); 1114 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1115 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1116 // Store the address of the original variable associated with the LHS 1117 // implicit variable. 1118 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1119 return RedCG.getSharedLValue(Count).getAddress(); 1120 }); 1121 PrivateScope.addPrivate( 1122 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1123 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1124 isa<ArraySubscriptExpr>(IRef)) { 1125 // Store the address of the original variable associated with the LHS 1126 // implicit variable. 1127 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1128 return RedCG.getSharedLValue(Count).getAddress(); 1129 }); 1130 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1131 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1132 ConvertTypeForMem(RHSVD->getType()), 1133 "rhs.begin"); 1134 }); 1135 } else { 1136 QualType Type = PrivateVD->getType(); 1137 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1138 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1139 // Store the address of the original variable associated with the LHS 1140 // implicit variable. 1141 if (IsArray) { 1142 OriginalAddr = Builder.CreateElementBitCast( 1143 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1144 } 1145 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1146 PrivateScope.addPrivate( 1147 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1148 return IsArray 1149 ? Builder.CreateElementBitCast( 1150 GetAddrOfLocalVar(PrivateVD), 1151 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1152 : GetAddrOfLocalVar(PrivateVD); 1153 }); 1154 } 1155 ++ILHS; 1156 ++IRHS; 1157 ++IPriv; 1158 ++Count; 1159 } 1160 } 1161 1162 void CodeGenFunction::EmitOMPReductionClauseFinal( 1163 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1164 if (!HaveInsertPoint()) 1165 return; 1166 llvm::SmallVector<const Expr *, 8> Privates; 1167 llvm::SmallVector<const Expr *, 8> LHSExprs; 1168 llvm::SmallVector<const Expr *, 8> RHSExprs; 1169 llvm::SmallVector<const Expr *, 8> ReductionOps; 1170 bool HasAtLeastOneReduction = false; 1171 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1172 HasAtLeastOneReduction = true; 1173 Privates.append(C->privates().begin(), C->privates().end()); 1174 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1175 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1176 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1177 } 1178 if (HasAtLeastOneReduction) { 1179 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1180 isOpenMPParallelDirective(D.getDirectiveKind()) || 1181 ReductionKind == OMPD_simd; 1182 bool SimpleReduction = ReductionKind == OMPD_simd; 1183 // Emit nowait reduction if nowait clause is present or directive is a 1184 // parallel directive (it always has implicit barrier). 1185 CGM.getOpenMPRuntime().emitReduction( 1186 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1187 {WithNowait, SimpleReduction, ReductionKind}); 1188 } 1189 } 1190 1191 static void emitPostUpdateForReductionClause( 1192 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1193 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1194 if (!CGF.HaveInsertPoint()) 1195 return; 1196 llvm::BasicBlock *DoneBB = nullptr; 1197 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1198 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1199 if (!DoneBB) { 1200 if (llvm::Value *Cond = CondGen(CGF)) { 1201 // If the first post-update expression is found, emit conditional 1202 // block if it was requested. 1203 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1204 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1205 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1206 CGF.EmitBlock(ThenBB); 1207 } 1208 } 1209 CGF.EmitIgnoredExpr(PostUpdate); 1210 } 1211 } 1212 if (DoneBB) 1213 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1214 } 1215 1216 namespace { 1217 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1218 /// parallel function. This is necessary for combined constructs such as 1219 /// 'distribute parallel for' 1220 typedef llvm::function_ref<void(CodeGenFunction &, 1221 const OMPExecutableDirective &, 1222 llvm::SmallVectorImpl<llvm::Value *> &)> 1223 CodeGenBoundParametersTy; 1224 } // anonymous namespace 1225 1226 static void emitCommonOMPParallelDirective( 1227 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1228 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1229 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1230 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1231 llvm::Value *OutlinedFn = 1232 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1233 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1234 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1235 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1236 llvm::Value *NumThreads = 1237 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1238 /*IgnoreResultAssign=*/true); 1239 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1240 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1241 } 1242 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1243 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1244 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1245 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1246 } 1247 const Expr *IfCond = nullptr; 1248 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1249 if (C->getNameModifier() == OMPD_unknown || 1250 C->getNameModifier() == OMPD_parallel) { 1251 IfCond = C->getCondition(); 1252 break; 1253 } 1254 } 1255 1256 OMPParallelScope Scope(CGF, S); 1257 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1258 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1259 // lower and upper bounds with the pragma 'for' chunking mechanism. 1260 // The following lambda takes care of appending the lower and upper bound 1261 // parameters when necessary 1262 CodeGenBoundParameters(CGF, S, CapturedVars); 1263 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1264 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1265 CapturedVars, IfCond); 1266 } 1267 1268 static void emitEmptyBoundParameters(CodeGenFunction &, 1269 const OMPExecutableDirective &, 1270 llvm::SmallVectorImpl<llvm::Value *> &) {} 1271 1272 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1273 // Emit parallel region as a standalone region. 1274 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1275 Action.Enter(CGF); 1276 OMPPrivateScope PrivateScope(CGF); 1277 bool Copyins = CGF.EmitOMPCopyinClause(S); 1278 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1279 if (Copyins) { 1280 // Emit implicit barrier to synchronize threads and avoid data races on 1281 // propagation master's thread values of threadprivate variables to local 1282 // instances of that variables of all other implicit threads. 1283 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1284 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1285 /*ForceSimpleCall=*/true); 1286 } 1287 CGF.EmitOMPPrivateClause(S, PrivateScope); 1288 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1289 (void)PrivateScope.Privatize(); 1290 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1291 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1292 }; 1293 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1294 emitEmptyBoundParameters); 1295 emitPostUpdateForReductionClause(*this, S, 1296 [](CodeGenFunction &) { return nullptr; }); 1297 } 1298 1299 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1300 JumpDest LoopExit) { 1301 RunCleanupsScope BodyScope(*this); 1302 // Update counters values on current iteration. 1303 for (const Expr *UE : D.updates()) 1304 EmitIgnoredExpr(UE); 1305 // Update the linear variables. 1306 // In distribute directives only loop counters may be marked as linear, no 1307 // need to generate the code for them. 1308 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1309 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1310 for (const Expr *UE : C->updates()) 1311 EmitIgnoredExpr(UE); 1312 } 1313 } 1314 1315 // On a continue in the body, jump to the end. 1316 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1317 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1318 // Emit loop body. 1319 EmitStmt(D.getBody()); 1320 // The end (updates/cleanups). 1321 EmitBlock(Continue.getBlock()); 1322 BreakContinueStack.pop_back(); 1323 } 1324 1325 void CodeGenFunction::EmitOMPInnerLoop( 1326 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1327 const Expr *IncExpr, 1328 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1329 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1330 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1331 1332 // Start the loop with a block that tests the condition. 1333 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1334 EmitBlock(CondBlock); 1335 const SourceRange R = S.getSourceRange(); 1336 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1337 SourceLocToDebugLoc(R.getEnd())); 1338 1339 // If there are any cleanups between here and the loop-exit scope, 1340 // create a block to stage a loop exit along. 1341 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1342 if (RequiresCleanup) 1343 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1344 1345 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1346 1347 // Emit condition. 1348 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1349 if (ExitBlock != LoopExit.getBlock()) { 1350 EmitBlock(ExitBlock); 1351 EmitBranchThroughCleanup(LoopExit); 1352 } 1353 1354 EmitBlock(LoopBody); 1355 incrementProfileCounter(&S); 1356 1357 // Create a block for the increment. 1358 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1359 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1360 1361 BodyGen(*this); 1362 1363 // Emit "IV = IV + 1" and a back-edge to the condition block. 1364 EmitBlock(Continue.getBlock()); 1365 EmitIgnoredExpr(IncExpr); 1366 PostIncGen(*this); 1367 BreakContinueStack.pop_back(); 1368 EmitBranch(CondBlock); 1369 LoopStack.pop(); 1370 // Emit the fall-through block. 1371 EmitBlock(LoopExit.getBlock()); 1372 } 1373 1374 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1375 if (!HaveInsertPoint()) 1376 return false; 1377 // Emit inits for the linear variables. 1378 bool HasLinears = false; 1379 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1380 for (const Expr *Init : C->inits()) { 1381 HasLinears = true; 1382 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1383 if (const auto *Ref = 1384 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1385 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1386 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1387 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1388 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1389 VD->getInit()->getType(), VK_LValue, 1390 VD->getInit()->getExprLoc()); 1391 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1392 VD->getType()), 1393 /*capturedByInit=*/false); 1394 EmitAutoVarCleanups(Emission); 1395 } else { 1396 EmitVarDecl(*VD); 1397 } 1398 } 1399 // Emit the linear steps for the linear clauses. 1400 // If a step is not constant, it is pre-calculated before the loop. 1401 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1402 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1403 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1404 // Emit calculation of the linear step. 1405 EmitIgnoredExpr(CS); 1406 } 1407 } 1408 return HasLinears; 1409 } 1410 1411 void CodeGenFunction::EmitOMPLinearClauseFinal( 1412 const OMPLoopDirective &D, 1413 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1414 if (!HaveInsertPoint()) 1415 return; 1416 llvm::BasicBlock *DoneBB = nullptr; 1417 // Emit the final values of the linear variables. 1418 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1419 auto IC = C->varlist_begin(); 1420 for (const Expr *F : C->finals()) { 1421 if (!DoneBB) { 1422 if (llvm::Value *Cond = CondGen(*this)) { 1423 // If the first post-update expression is found, emit conditional 1424 // block if it was requested. 1425 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1426 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1427 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1428 EmitBlock(ThenBB); 1429 } 1430 } 1431 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1432 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1433 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1434 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1435 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1436 CodeGenFunction::OMPPrivateScope VarScope(*this); 1437 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1438 (void)VarScope.Privatize(); 1439 EmitIgnoredExpr(F); 1440 ++IC; 1441 } 1442 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1443 EmitIgnoredExpr(PostUpdate); 1444 } 1445 if (DoneBB) 1446 EmitBlock(DoneBB, /*IsFinished=*/true); 1447 } 1448 1449 static void emitAlignedClause(CodeGenFunction &CGF, 1450 const OMPExecutableDirective &D) { 1451 if (!CGF.HaveInsertPoint()) 1452 return; 1453 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1454 unsigned ClauseAlignment = 0; 1455 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1456 auto *AlignmentCI = 1457 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1458 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1459 } 1460 for (const Expr *E : Clause->varlists()) { 1461 unsigned Alignment = ClauseAlignment; 1462 if (Alignment == 0) { 1463 // OpenMP [2.8.1, Description] 1464 // If no optional parameter is specified, implementation-defined default 1465 // alignments for SIMD instructions on the target platforms are assumed. 1466 Alignment = 1467 CGF.getContext() 1468 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1469 E->getType()->getPointeeType())) 1470 .getQuantity(); 1471 } 1472 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1473 "alignment is not power of 2"); 1474 if (Alignment != 0) { 1475 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1476 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1477 } 1478 } 1479 } 1480 } 1481 1482 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1483 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1484 if (!HaveInsertPoint()) 1485 return; 1486 auto I = S.private_counters().begin(); 1487 for (const Expr *E : S.counters()) { 1488 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1489 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1490 // Emit var without initialization. 1491 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1492 EmitAutoVarCleanups(VarEmission); 1493 LocalDeclMap.erase(PrivateVD); 1494 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1495 return VarEmission.getAllocatedAddress(); 1496 }); 1497 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1498 VD->hasGlobalStorage()) { 1499 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1500 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1501 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1502 E->getType(), VK_LValue, E->getExprLoc()); 1503 return EmitLValue(&DRE).getAddress(); 1504 }); 1505 } else { 1506 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1507 return VarEmission.getAllocatedAddress(); 1508 }); 1509 } 1510 ++I; 1511 } 1512 // Privatize extra loop counters used in loops for ordered(n) clauses. 1513 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1514 if (!C->getNumForLoops()) 1515 continue; 1516 for (unsigned I = S.getCollapsedNumber(), 1517 E = C->getLoopNumIterations().size(); 1518 I < E; ++I) { 1519 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1520 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1521 // Override only those variables that are really emitted already. 1522 if (LocalDeclMap.count(VD)) { 1523 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1524 return CreateMemTemp(DRE->getType(), VD->getName()); 1525 }); 1526 } 1527 } 1528 } 1529 } 1530 1531 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1532 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1533 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1534 if (!CGF.HaveInsertPoint()) 1535 return; 1536 { 1537 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1538 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1539 (void)PreCondScope.Privatize(); 1540 // Get initial values of real counters. 1541 for (const Expr *I : S.inits()) { 1542 CGF.EmitIgnoredExpr(I); 1543 } 1544 } 1545 // Check that loop is executed at least one time. 1546 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1547 } 1548 1549 void CodeGenFunction::EmitOMPLinearClause( 1550 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1551 if (!HaveInsertPoint()) 1552 return; 1553 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1554 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1555 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1556 for (const Expr *C : LoopDirective->counters()) { 1557 SIMDLCVs.insert( 1558 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1559 } 1560 } 1561 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1562 auto CurPrivate = C->privates().begin(); 1563 for (const Expr *E : C->varlists()) { 1564 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1565 const auto *PrivateVD = 1566 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1567 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1568 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1569 // Emit private VarDecl with copy init. 1570 EmitVarDecl(*PrivateVD); 1571 return GetAddrOfLocalVar(PrivateVD); 1572 }); 1573 assert(IsRegistered && "linear var already registered as private"); 1574 // Silence the warning about unused variable. 1575 (void)IsRegistered; 1576 } else { 1577 EmitVarDecl(*PrivateVD); 1578 } 1579 ++CurPrivate; 1580 } 1581 } 1582 } 1583 1584 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1585 const OMPExecutableDirective &D, 1586 bool IsMonotonic) { 1587 if (!CGF.HaveInsertPoint()) 1588 return; 1589 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1590 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1591 /*ignoreResult=*/true); 1592 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1593 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1594 // In presence of finite 'safelen', it may be unsafe to mark all 1595 // the memory instructions parallel, because loop-carried 1596 // dependences of 'safelen' iterations are possible. 1597 if (!IsMonotonic) 1598 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1599 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1600 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1601 /*ignoreResult=*/true); 1602 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1603 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1604 // In presence of finite 'safelen', it may be unsafe to mark all 1605 // the memory instructions parallel, because loop-carried 1606 // dependences of 'safelen' iterations are possible. 1607 CGF.LoopStack.setParallel(/*Enable=*/false); 1608 } 1609 } 1610 1611 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1612 bool IsMonotonic) { 1613 // Walk clauses and process safelen/lastprivate. 1614 LoopStack.setParallel(!IsMonotonic); 1615 LoopStack.setVectorizeEnable(); 1616 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1617 } 1618 1619 void CodeGenFunction::EmitOMPSimdFinal( 1620 const OMPLoopDirective &D, 1621 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1622 if (!HaveInsertPoint()) 1623 return; 1624 llvm::BasicBlock *DoneBB = nullptr; 1625 auto IC = D.counters().begin(); 1626 auto IPC = D.private_counters().begin(); 1627 for (const Expr *F : D.finals()) { 1628 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1629 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1630 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1631 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1632 OrigVD->hasGlobalStorage() || CED) { 1633 if (!DoneBB) { 1634 if (llvm::Value *Cond = CondGen(*this)) { 1635 // If the first post-update expression is found, emit conditional 1636 // block if it was requested. 1637 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1638 DoneBB = createBasicBlock(".omp.final.done"); 1639 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1640 EmitBlock(ThenBB); 1641 } 1642 } 1643 Address OrigAddr = Address::invalid(); 1644 if (CED) { 1645 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1646 } else { 1647 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1648 /*RefersToEnclosingVariableOrCapture=*/false, 1649 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1650 OrigAddr = EmitLValue(&DRE).getAddress(); 1651 } 1652 OMPPrivateScope VarScope(*this); 1653 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1654 (void)VarScope.Privatize(); 1655 EmitIgnoredExpr(F); 1656 } 1657 ++IC; 1658 ++IPC; 1659 } 1660 if (DoneBB) 1661 EmitBlock(DoneBB, /*IsFinished=*/true); 1662 } 1663 1664 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1665 const OMPLoopDirective &S, 1666 CodeGenFunction::JumpDest LoopExit) { 1667 CGF.EmitOMPLoopBody(S, LoopExit); 1668 CGF.EmitStopPoint(&S); 1669 } 1670 1671 /// Emit a helper variable and return corresponding lvalue. 1672 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1673 const DeclRefExpr *Helper) { 1674 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1675 CGF.EmitVarDecl(*VDecl); 1676 return CGF.EmitLValue(Helper); 1677 } 1678 1679 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1680 PrePostActionTy &Action) { 1681 Action.Enter(CGF); 1682 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1683 "Expected simd directive"); 1684 OMPLoopScope PreInitScope(CGF, S); 1685 // if (PreCond) { 1686 // for (IV in 0..LastIteration) BODY; 1687 // <Final counter/linear vars updates>; 1688 // } 1689 // 1690 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1691 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1692 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1693 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1694 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1695 } 1696 1697 // Emit: if (PreCond) - begin. 1698 // If the condition constant folds and can be elided, avoid emitting the 1699 // whole loop. 1700 bool CondConstant; 1701 llvm::BasicBlock *ContBlock = nullptr; 1702 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1703 if (!CondConstant) 1704 return; 1705 } else { 1706 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1707 ContBlock = CGF.createBasicBlock("simd.if.end"); 1708 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1709 CGF.getProfileCount(&S)); 1710 CGF.EmitBlock(ThenBlock); 1711 CGF.incrementProfileCounter(&S); 1712 } 1713 1714 // Emit the loop iteration variable. 1715 const Expr *IVExpr = S.getIterationVariable(); 1716 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1717 CGF.EmitVarDecl(*IVDecl); 1718 CGF.EmitIgnoredExpr(S.getInit()); 1719 1720 // Emit the iterations count variable. 1721 // If it is not a variable, Sema decided to calculate iterations count on 1722 // each iteration (e.g., it is foldable into a constant). 1723 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1724 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1725 // Emit calculation of the iterations count. 1726 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1727 } 1728 1729 CGF.EmitOMPSimdInit(S); 1730 1731 emitAlignedClause(CGF, S); 1732 (void)CGF.EmitOMPLinearClauseInit(S); 1733 { 1734 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1735 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1736 CGF.EmitOMPLinearClause(S, LoopScope); 1737 CGF.EmitOMPPrivateClause(S, LoopScope); 1738 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1739 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1740 (void)LoopScope.Privatize(); 1741 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1742 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1743 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1744 S.getInc(), 1745 [&S](CodeGenFunction &CGF) { 1746 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1747 CGF.EmitStopPoint(&S); 1748 }, 1749 [](CodeGenFunction &) {}); 1750 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1751 // Emit final copy of the lastprivate variables at the end of loops. 1752 if (HasLastprivateClause) 1753 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1754 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1755 emitPostUpdateForReductionClause(CGF, S, 1756 [](CodeGenFunction &) { return nullptr; }); 1757 } 1758 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1759 // Emit: if (PreCond) - end. 1760 if (ContBlock) { 1761 CGF.EmitBranch(ContBlock); 1762 CGF.EmitBlock(ContBlock, true); 1763 } 1764 } 1765 1766 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1767 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1768 emitOMPSimdRegion(CGF, S, Action); 1769 }; 1770 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1771 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1772 } 1773 1774 void CodeGenFunction::EmitOMPOuterLoop( 1775 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1776 CodeGenFunction::OMPPrivateScope &LoopScope, 1777 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1778 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1779 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1780 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1781 1782 const Expr *IVExpr = S.getIterationVariable(); 1783 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1784 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1785 1786 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1787 1788 // Start the loop with a block that tests the condition. 1789 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1790 EmitBlock(CondBlock); 1791 const SourceRange R = S.getSourceRange(); 1792 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1793 SourceLocToDebugLoc(R.getEnd())); 1794 1795 llvm::Value *BoolCondVal = nullptr; 1796 if (!DynamicOrOrdered) { 1797 // UB = min(UB, GlobalUB) or 1798 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1799 // 'distribute parallel for') 1800 EmitIgnoredExpr(LoopArgs.EUB); 1801 // IV = LB 1802 EmitIgnoredExpr(LoopArgs.Init); 1803 // IV < UB 1804 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1805 } else { 1806 BoolCondVal = 1807 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1808 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1809 } 1810 1811 // If there are any cleanups between here and the loop-exit scope, 1812 // create a block to stage a loop exit along. 1813 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1814 if (LoopScope.requiresCleanups()) 1815 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1816 1817 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1818 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1819 if (ExitBlock != LoopExit.getBlock()) { 1820 EmitBlock(ExitBlock); 1821 EmitBranchThroughCleanup(LoopExit); 1822 } 1823 EmitBlock(LoopBody); 1824 1825 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1826 // LB for loop condition and emitted it above). 1827 if (DynamicOrOrdered) 1828 EmitIgnoredExpr(LoopArgs.Init); 1829 1830 // Create a block for the increment. 1831 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1832 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1833 1834 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1835 // with dynamic/guided scheduling and without ordered clause. 1836 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1837 LoopStack.setParallel(!IsMonotonic); 1838 else 1839 EmitOMPSimdInit(S, IsMonotonic); 1840 1841 SourceLocation Loc = S.getBeginLoc(); 1842 1843 // when 'distribute' is not combined with a 'for': 1844 // while (idx <= UB) { BODY; ++idx; } 1845 // when 'distribute' is combined with a 'for' 1846 // (e.g. 'distribute parallel for') 1847 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1848 EmitOMPInnerLoop( 1849 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1850 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1851 CodeGenLoop(CGF, S, LoopExit); 1852 }, 1853 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1854 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1855 }); 1856 1857 EmitBlock(Continue.getBlock()); 1858 BreakContinueStack.pop_back(); 1859 if (!DynamicOrOrdered) { 1860 // Emit "LB = LB + Stride", "UB = UB + Stride". 1861 EmitIgnoredExpr(LoopArgs.NextLB); 1862 EmitIgnoredExpr(LoopArgs.NextUB); 1863 } 1864 1865 EmitBranch(CondBlock); 1866 LoopStack.pop(); 1867 // Emit the fall-through block. 1868 EmitBlock(LoopExit.getBlock()); 1869 1870 // Tell the runtime we are done. 1871 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1872 if (!DynamicOrOrdered) 1873 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 1874 S.getDirectiveKind()); 1875 }; 1876 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1877 } 1878 1879 void CodeGenFunction::EmitOMPForOuterLoop( 1880 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1881 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1882 const OMPLoopArguments &LoopArgs, 1883 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1884 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1885 1886 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1887 const bool DynamicOrOrdered = 1888 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1889 1890 assert((Ordered || 1891 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1892 LoopArgs.Chunk != nullptr)) && 1893 "static non-chunked schedule does not need outer loop"); 1894 1895 // Emit outer loop. 1896 // 1897 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1898 // When schedule(dynamic,chunk_size) is specified, the iterations are 1899 // distributed to threads in the team in chunks as the threads request them. 1900 // Each thread executes a chunk of iterations, then requests another chunk, 1901 // until no chunks remain to be distributed. Each chunk contains chunk_size 1902 // iterations, except for the last chunk to be distributed, which may have 1903 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1904 // 1905 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1906 // to threads in the team in chunks as the executing threads request them. 1907 // Each thread executes a chunk of iterations, then requests another chunk, 1908 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1909 // each chunk is proportional to the number of unassigned iterations divided 1910 // by the number of threads in the team, decreasing to 1. For a chunk_size 1911 // with value k (greater than 1), the size of each chunk is determined in the 1912 // same way, with the restriction that the chunks do not contain fewer than k 1913 // iterations (except for the last chunk to be assigned, which may have fewer 1914 // than k iterations). 1915 // 1916 // When schedule(auto) is specified, the decision regarding scheduling is 1917 // delegated to the compiler and/or runtime system. The programmer gives the 1918 // implementation the freedom to choose any possible mapping of iterations to 1919 // threads in the team. 1920 // 1921 // When schedule(runtime) is specified, the decision regarding scheduling is 1922 // deferred until run time, and the schedule and chunk size are taken from the 1923 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1924 // implementation defined 1925 // 1926 // while(__kmpc_dispatch_next(&LB, &UB)) { 1927 // idx = LB; 1928 // while (idx <= UB) { BODY; ++idx; 1929 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1930 // } // inner loop 1931 // } 1932 // 1933 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1934 // When schedule(static, chunk_size) is specified, iterations are divided into 1935 // chunks of size chunk_size, and the chunks are assigned to the threads in 1936 // the team in a round-robin fashion in the order of the thread number. 1937 // 1938 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1939 // while (idx <= UB) { BODY; ++idx; } // inner loop 1940 // LB = LB + ST; 1941 // UB = UB + ST; 1942 // } 1943 // 1944 1945 const Expr *IVExpr = S.getIterationVariable(); 1946 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1947 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1948 1949 if (DynamicOrOrdered) { 1950 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 1951 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1952 llvm::Value *LBVal = DispatchBounds.first; 1953 llvm::Value *UBVal = DispatchBounds.second; 1954 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1955 LoopArgs.Chunk}; 1956 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 1957 IVSigned, Ordered, DipatchRTInputValues); 1958 } else { 1959 CGOpenMPRuntime::StaticRTInput StaticInit( 1960 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1961 LoopArgs.ST, LoopArgs.Chunk); 1962 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 1963 ScheduleKind, StaticInit); 1964 } 1965 1966 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1967 const unsigned IVSize, 1968 const bool IVSigned) { 1969 if (Ordered) { 1970 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1971 IVSigned); 1972 } 1973 }; 1974 1975 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1976 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1977 OuterLoopArgs.IncExpr = S.getInc(); 1978 OuterLoopArgs.Init = S.getInit(); 1979 OuterLoopArgs.Cond = S.getCond(); 1980 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1981 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1982 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1983 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1984 } 1985 1986 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1987 const unsigned IVSize, const bool IVSigned) {} 1988 1989 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1990 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 1991 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 1992 const CodeGenLoopTy &CodeGenLoopContent) { 1993 1994 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1995 1996 // Emit outer loop. 1997 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1998 // dynamic 1999 // 2000 2001 const Expr *IVExpr = S.getIterationVariable(); 2002 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2003 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2004 2005 CGOpenMPRuntime::StaticRTInput StaticInit( 2006 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2007 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2008 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2009 2010 // for combined 'distribute' and 'for' the increment expression of distribute 2011 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2012 Expr *IncExpr; 2013 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2014 IncExpr = S.getDistInc(); 2015 else 2016 IncExpr = S.getInc(); 2017 2018 // this routine is shared by 'omp distribute parallel for' and 2019 // 'omp distribute': select the right EUB expression depending on the 2020 // directive 2021 OMPLoopArguments OuterLoopArgs; 2022 OuterLoopArgs.LB = LoopArgs.LB; 2023 OuterLoopArgs.UB = LoopArgs.UB; 2024 OuterLoopArgs.ST = LoopArgs.ST; 2025 OuterLoopArgs.IL = LoopArgs.IL; 2026 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2027 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2028 ? S.getCombinedEnsureUpperBound() 2029 : S.getEnsureUpperBound(); 2030 OuterLoopArgs.IncExpr = IncExpr; 2031 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2032 ? S.getCombinedInit() 2033 : S.getInit(); 2034 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2035 ? S.getCombinedCond() 2036 : S.getCond(); 2037 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2038 ? S.getCombinedNextLowerBound() 2039 : S.getNextLowerBound(); 2040 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2041 ? S.getCombinedNextUpperBound() 2042 : S.getNextUpperBound(); 2043 2044 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2045 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2046 emitEmptyOrdered); 2047 } 2048 2049 static std::pair<LValue, LValue> 2050 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2051 const OMPExecutableDirective &S) { 2052 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2053 LValue LB = 2054 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2055 LValue UB = 2056 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2057 2058 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2059 // parallel for') we need to use the 'distribute' 2060 // chunk lower and upper bounds rather than the whole loop iteration 2061 // space. These are parameters to the outlined function for 'parallel' 2062 // and we copy the bounds of the previous schedule into the 2063 // the current ones. 2064 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2065 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2066 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2067 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2068 PrevLBVal = CGF.EmitScalarConversion( 2069 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2070 LS.getIterationVariable()->getType(), 2071 LS.getPrevLowerBoundVariable()->getExprLoc()); 2072 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2073 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2074 PrevUBVal = CGF.EmitScalarConversion( 2075 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2076 LS.getIterationVariable()->getType(), 2077 LS.getPrevUpperBoundVariable()->getExprLoc()); 2078 2079 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2080 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2081 2082 return {LB, UB}; 2083 } 2084 2085 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2086 /// we need to use the LB and UB expressions generated by the worksharing 2087 /// code generation support, whereas in non combined situations we would 2088 /// just emit 0 and the LastIteration expression 2089 /// This function is necessary due to the difference of the LB and UB 2090 /// types for the RT emission routines for 'for_static_init' and 2091 /// 'for_dispatch_init' 2092 static std::pair<llvm::Value *, llvm::Value *> 2093 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2094 const OMPExecutableDirective &S, 2095 Address LB, Address UB) { 2096 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2097 const Expr *IVExpr = LS.getIterationVariable(); 2098 // when implementing a dynamic schedule for a 'for' combined with a 2099 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2100 // is not normalized as each team only executes its own assigned 2101 // distribute chunk 2102 QualType IteratorTy = IVExpr->getType(); 2103 llvm::Value *LBVal = 2104 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2105 llvm::Value *UBVal = 2106 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2107 return {LBVal, UBVal}; 2108 } 2109 2110 static void emitDistributeParallelForDistributeInnerBoundParams( 2111 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2112 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2113 const auto &Dir = cast<OMPLoopDirective>(S); 2114 LValue LB = 2115 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2116 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2117 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2118 CapturedVars.push_back(LBCast); 2119 LValue UB = 2120 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2121 2122 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2123 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2124 CapturedVars.push_back(UBCast); 2125 } 2126 2127 static void 2128 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2129 const OMPLoopDirective &S, 2130 CodeGenFunction::JumpDest LoopExit) { 2131 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2132 PrePostActionTy &Action) { 2133 Action.Enter(CGF); 2134 bool HasCancel = false; 2135 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2136 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2137 HasCancel = D->hasCancel(); 2138 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2139 HasCancel = D->hasCancel(); 2140 else if (const auto *D = 2141 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2142 HasCancel = D->hasCancel(); 2143 } 2144 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2145 HasCancel); 2146 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2147 emitDistributeParallelForInnerBounds, 2148 emitDistributeParallelForDispatchBounds); 2149 }; 2150 2151 emitCommonOMPParallelDirective( 2152 CGF, S, 2153 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2154 CGInlinedWorksharingLoop, 2155 emitDistributeParallelForDistributeInnerBoundParams); 2156 } 2157 2158 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2159 const OMPDistributeParallelForDirective &S) { 2160 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2161 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2162 S.getDistInc()); 2163 }; 2164 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2165 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2166 } 2167 2168 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2169 const OMPDistributeParallelForSimdDirective &S) { 2170 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2171 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2172 S.getDistInc()); 2173 }; 2174 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2175 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2176 } 2177 2178 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2179 const OMPDistributeSimdDirective &S) { 2180 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2181 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2182 }; 2183 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2184 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2185 } 2186 2187 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2188 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2189 // Emit SPMD target parallel for region as a standalone region. 2190 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2191 emitOMPSimdRegion(CGF, S, Action); 2192 }; 2193 llvm::Function *Fn; 2194 llvm::Constant *Addr; 2195 // Emit target region as a standalone region. 2196 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2197 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2198 assert(Fn && Addr && "Target device function emission failed."); 2199 } 2200 2201 void CodeGenFunction::EmitOMPTargetSimdDirective( 2202 const OMPTargetSimdDirective &S) { 2203 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2204 emitOMPSimdRegion(CGF, S, Action); 2205 }; 2206 emitCommonOMPTargetDirective(*this, S, CodeGen); 2207 } 2208 2209 namespace { 2210 struct ScheduleKindModifiersTy { 2211 OpenMPScheduleClauseKind Kind; 2212 OpenMPScheduleClauseModifier M1; 2213 OpenMPScheduleClauseModifier M2; 2214 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2215 OpenMPScheduleClauseModifier M1, 2216 OpenMPScheduleClauseModifier M2) 2217 : Kind(Kind), M1(M1), M2(M2) {} 2218 }; 2219 } // namespace 2220 2221 bool CodeGenFunction::EmitOMPWorksharingLoop( 2222 const OMPLoopDirective &S, Expr *EUB, 2223 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2224 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2225 // Emit the loop iteration variable. 2226 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2227 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2228 EmitVarDecl(*IVDecl); 2229 2230 // Emit the iterations count variable. 2231 // If it is not a variable, Sema decided to calculate iterations count on each 2232 // iteration (e.g., it is foldable into a constant). 2233 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2234 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2235 // Emit calculation of the iterations count. 2236 EmitIgnoredExpr(S.getCalcLastIteration()); 2237 } 2238 2239 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2240 2241 bool HasLastprivateClause; 2242 // Check pre-condition. 2243 { 2244 OMPLoopScope PreInitScope(*this, S); 2245 // Skip the entire loop if we don't meet the precondition. 2246 // If the condition constant folds and can be elided, avoid emitting the 2247 // whole loop. 2248 bool CondConstant; 2249 llvm::BasicBlock *ContBlock = nullptr; 2250 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2251 if (!CondConstant) 2252 return false; 2253 } else { 2254 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2255 ContBlock = createBasicBlock("omp.precond.end"); 2256 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2257 getProfileCount(&S)); 2258 EmitBlock(ThenBlock); 2259 incrementProfileCounter(&S); 2260 } 2261 2262 RunCleanupsScope DoacrossCleanupScope(*this); 2263 bool Ordered = false; 2264 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2265 if (OrderedClause->getNumForLoops()) 2266 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2267 else 2268 Ordered = true; 2269 } 2270 2271 llvm::DenseSet<const Expr *> EmittedFinals; 2272 emitAlignedClause(*this, S); 2273 bool HasLinears = EmitOMPLinearClauseInit(S); 2274 // Emit helper vars inits. 2275 2276 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2277 LValue LB = Bounds.first; 2278 LValue UB = Bounds.second; 2279 LValue ST = 2280 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2281 LValue IL = 2282 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2283 2284 // Emit 'then' code. 2285 { 2286 OMPPrivateScope LoopScope(*this); 2287 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2288 // Emit implicit barrier to synchronize threads and avoid data races on 2289 // initialization of firstprivate variables and post-update of 2290 // lastprivate variables. 2291 CGM.getOpenMPRuntime().emitBarrierCall( 2292 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2293 /*ForceSimpleCall=*/true); 2294 } 2295 EmitOMPPrivateClause(S, LoopScope); 2296 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2297 EmitOMPReductionClauseInit(S, LoopScope); 2298 EmitOMPPrivateLoopCounters(S, LoopScope); 2299 EmitOMPLinearClause(S, LoopScope); 2300 (void)LoopScope.Privatize(); 2301 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2302 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2303 2304 // Detect the loop schedule kind and chunk. 2305 const Expr *ChunkExpr = nullptr; 2306 OpenMPScheduleTy ScheduleKind; 2307 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2308 ScheduleKind.Schedule = C->getScheduleKind(); 2309 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2310 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2311 ChunkExpr = C->getChunkSize(); 2312 } else { 2313 // Default behaviour for schedule clause. 2314 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2315 *this, S, ScheduleKind.Schedule, ChunkExpr); 2316 } 2317 bool HasChunkSizeOne = false; 2318 llvm::Value *Chunk = nullptr; 2319 if (ChunkExpr) { 2320 Chunk = EmitScalarExpr(ChunkExpr); 2321 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2322 S.getIterationVariable()->getType(), 2323 S.getBeginLoc()); 2324 Expr::EvalResult Result; 2325 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2326 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2327 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2328 } 2329 } 2330 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2331 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2332 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2333 // If the static schedule kind is specified or if the ordered clause is 2334 // specified, and if no monotonic modifier is specified, the effect will 2335 // be as if the monotonic modifier was specified. 2336 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2337 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2338 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2339 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2340 /* Chunked */ Chunk != nullptr) || 2341 StaticChunkedOne) && 2342 !Ordered) { 2343 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2344 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2345 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2346 // When no chunk_size is specified, the iteration space is divided into 2347 // chunks that are approximately equal in size, and at most one chunk is 2348 // distributed to each thread. Note that the size of the chunks is 2349 // unspecified in this case. 2350 CGOpenMPRuntime::StaticRTInput StaticInit( 2351 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2352 UB.getAddress(), ST.getAddress(), 2353 StaticChunkedOne ? Chunk : nullptr); 2354 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2355 ScheduleKind, StaticInit); 2356 JumpDest LoopExit = 2357 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2358 // UB = min(UB, GlobalUB); 2359 if (!StaticChunkedOne) 2360 EmitIgnoredExpr(S.getEnsureUpperBound()); 2361 // IV = LB; 2362 EmitIgnoredExpr(S.getInit()); 2363 // For unchunked static schedule generate: 2364 // 2365 // while (idx <= UB) { 2366 // BODY; 2367 // ++idx; 2368 // } 2369 // 2370 // For static schedule with chunk one: 2371 // 2372 // while (IV <= PrevUB) { 2373 // BODY; 2374 // IV += ST; 2375 // } 2376 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), 2377 StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), 2378 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2379 [&S, LoopExit](CodeGenFunction &CGF) { 2380 CGF.EmitOMPLoopBody(S, LoopExit); 2381 CGF.EmitStopPoint(&S); 2382 }, 2383 [](CodeGenFunction &) {}); 2384 EmitBlock(LoopExit.getBlock()); 2385 // Tell the runtime we are done. 2386 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2387 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2388 S.getDirectiveKind()); 2389 }; 2390 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2391 } else { 2392 const bool IsMonotonic = 2393 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2394 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2395 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2396 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2397 // Emit the outer loop, which requests its work chunk [LB..UB] from 2398 // runtime and runs the inner loop to process it. 2399 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2400 ST.getAddress(), IL.getAddress(), 2401 Chunk, EUB); 2402 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2403 LoopArguments, CGDispatchBounds); 2404 } 2405 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2406 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2407 return CGF.Builder.CreateIsNotNull( 2408 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2409 }); 2410 } 2411 EmitOMPReductionClauseFinal( 2412 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2413 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2414 : /*Parallel only*/ OMPD_parallel); 2415 // Emit post-update of the reduction variables if IsLastIter != 0. 2416 emitPostUpdateForReductionClause( 2417 *this, S, [IL, &S](CodeGenFunction &CGF) { 2418 return CGF.Builder.CreateIsNotNull( 2419 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2420 }); 2421 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2422 if (HasLastprivateClause) 2423 EmitOMPLastprivateClauseFinal( 2424 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2425 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2426 } 2427 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2428 return CGF.Builder.CreateIsNotNull( 2429 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2430 }); 2431 DoacrossCleanupScope.ForceCleanup(); 2432 // We're now done with the loop, so jump to the continuation block. 2433 if (ContBlock) { 2434 EmitBranch(ContBlock); 2435 EmitBlock(ContBlock, /*IsFinished=*/true); 2436 } 2437 } 2438 return HasLastprivateClause; 2439 } 2440 2441 /// The following two functions generate expressions for the loop lower 2442 /// and upper bounds in case of static and dynamic (dispatch) schedule 2443 /// of the associated 'for' or 'distribute' loop. 2444 static std::pair<LValue, LValue> 2445 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2446 const auto &LS = cast<OMPLoopDirective>(S); 2447 LValue LB = 2448 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2449 LValue UB = 2450 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2451 return {LB, UB}; 2452 } 2453 2454 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2455 /// consider the lower and upper bound expressions generated by the 2456 /// worksharing loop support, but we use 0 and the iteration space size as 2457 /// constants 2458 static std::pair<llvm::Value *, llvm::Value *> 2459 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2460 Address LB, Address UB) { 2461 const auto &LS = cast<OMPLoopDirective>(S); 2462 const Expr *IVExpr = LS.getIterationVariable(); 2463 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2464 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2465 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2466 return {LBVal, UBVal}; 2467 } 2468 2469 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2470 bool HasLastprivates = false; 2471 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2472 PrePostActionTy &) { 2473 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2474 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2475 emitForLoopBounds, 2476 emitDispatchForLoopBounds); 2477 }; 2478 { 2479 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2480 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2481 S.hasCancel()); 2482 } 2483 2484 // Emit an implicit barrier at the end. 2485 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2486 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2487 } 2488 2489 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2490 bool HasLastprivates = false; 2491 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2492 PrePostActionTy &) { 2493 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2494 emitForLoopBounds, 2495 emitDispatchForLoopBounds); 2496 }; 2497 { 2498 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2499 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2500 } 2501 2502 // Emit an implicit barrier at the end. 2503 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2504 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2505 } 2506 2507 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2508 const Twine &Name, 2509 llvm::Value *Init = nullptr) { 2510 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2511 if (Init) 2512 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2513 return LVal; 2514 } 2515 2516 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2517 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2518 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2519 bool HasLastprivates = false; 2520 auto &&CodeGen = [&S, CapturedStmt, CS, 2521 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2522 ASTContext &C = CGF.getContext(); 2523 QualType KmpInt32Ty = 2524 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2525 // Emit helper vars inits. 2526 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2527 CGF.Builder.getInt32(0)); 2528 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2529 ? CGF.Builder.getInt32(CS->size() - 1) 2530 : CGF.Builder.getInt32(0); 2531 LValue UB = 2532 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2533 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2534 CGF.Builder.getInt32(1)); 2535 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2536 CGF.Builder.getInt32(0)); 2537 // Loop counter. 2538 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2539 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2540 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2541 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2542 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2543 // Generate condition for loop. 2544 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2545 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2546 // Increment for loop counter. 2547 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2548 S.getBeginLoc(), true); 2549 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2550 // Iterate through all sections and emit a switch construct: 2551 // switch (IV) { 2552 // case 0: 2553 // <SectionStmt[0]>; 2554 // break; 2555 // ... 2556 // case <NumSection> - 1: 2557 // <SectionStmt[<NumSection> - 1]>; 2558 // break; 2559 // } 2560 // .omp.sections.exit: 2561 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2562 llvm::SwitchInst *SwitchStmt = 2563 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2564 ExitBB, CS == nullptr ? 1 : CS->size()); 2565 if (CS) { 2566 unsigned CaseNumber = 0; 2567 for (const Stmt *SubStmt : CS->children()) { 2568 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2569 CGF.EmitBlock(CaseBB); 2570 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2571 CGF.EmitStmt(SubStmt); 2572 CGF.EmitBranch(ExitBB); 2573 ++CaseNumber; 2574 } 2575 } else { 2576 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2577 CGF.EmitBlock(CaseBB); 2578 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2579 CGF.EmitStmt(CapturedStmt); 2580 CGF.EmitBranch(ExitBB); 2581 } 2582 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2583 }; 2584 2585 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2586 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2587 // Emit implicit barrier to synchronize threads and avoid data races on 2588 // initialization of firstprivate variables and post-update of lastprivate 2589 // variables. 2590 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2591 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2592 /*ForceSimpleCall=*/true); 2593 } 2594 CGF.EmitOMPPrivateClause(S, LoopScope); 2595 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2596 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2597 (void)LoopScope.Privatize(); 2598 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2599 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2600 2601 // Emit static non-chunked loop. 2602 OpenMPScheduleTy ScheduleKind; 2603 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2604 CGOpenMPRuntime::StaticRTInput StaticInit( 2605 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2606 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2607 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2608 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2609 // UB = min(UB, GlobalUB); 2610 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2611 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2612 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2613 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2614 // IV = LB; 2615 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2616 // while (idx <= UB) { BODY; ++idx; } 2617 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2618 [](CodeGenFunction &) {}); 2619 // Tell the runtime we are done. 2620 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2621 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2622 S.getDirectiveKind()); 2623 }; 2624 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2625 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2626 // Emit post-update of the reduction variables if IsLastIter != 0. 2627 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2628 return CGF.Builder.CreateIsNotNull( 2629 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2630 }); 2631 2632 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2633 if (HasLastprivates) 2634 CGF.EmitOMPLastprivateClauseFinal( 2635 S, /*NoFinals=*/false, 2636 CGF.Builder.CreateIsNotNull( 2637 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2638 }; 2639 2640 bool HasCancel = false; 2641 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2642 HasCancel = OSD->hasCancel(); 2643 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2644 HasCancel = OPSD->hasCancel(); 2645 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2646 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2647 HasCancel); 2648 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2649 // clause. Otherwise the barrier will be generated by the codegen for the 2650 // directive. 2651 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2652 // Emit implicit barrier to synchronize threads and avoid data races on 2653 // initialization of firstprivate variables. 2654 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2655 OMPD_unknown); 2656 } 2657 } 2658 2659 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2660 { 2661 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2662 EmitSections(S); 2663 } 2664 // Emit an implicit barrier at the end. 2665 if (!S.getSingleClause<OMPNowaitClause>()) { 2666 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2667 OMPD_sections); 2668 } 2669 } 2670 2671 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2672 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2673 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2674 }; 2675 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2676 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2677 S.hasCancel()); 2678 } 2679 2680 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2681 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2682 llvm::SmallVector<const Expr *, 8> DestExprs; 2683 llvm::SmallVector<const Expr *, 8> SrcExprs; 2684 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2685 // Check if there are any 'copyprivate' clauses associated with this 2686 // 'single' construct. 2687 // Build a list of copyprivate variables along with helper expressions 2688 // (<source>, <destination>, <destination>=<source> expressions) 2689 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2690 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2691 DestExprs.append(C->destination_exprs().begin(), 2692 C->destination_exprs().end()); 2693 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2694 AssignmentOps.append(C->assignment_ops().begin(), 2695 C->assignment_ops().end()); 2696 } 2697 // Emit code for 'single' region along with 'copyprivate' clauses 2698 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2699 Action.Enter(CGF); 2700 OMPPrivateScope SingleScope(CGF); 2701 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2702 CGF.EmitOMPPrivateClause(S, SingleScope); 2703 (void)SingleScope.Privatize(); 2704 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2705 }; 2706 { 2707 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2708 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2709 CopyprivateVars, DestExprs, 2710 SrcExprs, AssignmentOps); 2711 } 2712 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2713 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2714 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2715 CGM.getOpenMPRuntime().emitBarrierCall( 2716 *this, S.getBeginLoc(), 2717 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2718 } 2719 } 2720 2721 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2722 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2723 Action.Enter(CGF); 2724 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2725 }; 2726 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2727 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2728 } 2729 2730 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2731 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2732 Action.Enter(CGF); 2733 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2734 }; 2735 const Expr *Hint = nullptr; 2736 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2737 Hint = HintClause->getHint(); 2738 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2739 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2740 S.getDirectiveName().getAsString(), 2741 CodeGen, S.getBeginLoc(), Hint); 2742 } 2743 2744 void CodeGenFunction::EmitOMPParallelForDirective( 2745 const OMPParallelForDirective &S) { 2746 // Emit directive as a combined directive that consists of two implicit 2747 // directives: 'parallel' with 'for' directive. 2748 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2749 Action.Enter(CGF); 2750 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2751 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2752 emitDispatchForLoopBounds); 2753 }; 2754 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2755 emitEmptyBoundParameters); 2756 } 2757 2758 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2759 const OMPParallelForSimdDirective &S) { 2760 // Emit directive as a combined directive that consists of two implicit 2761 // directives: 'parallel' with 'for' directive. 2762 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2763 Action.Enter(CGF); 2764 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2765 emitDispatchForLoopBounds); 2766 }; 2767 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2768 emitEmptyBoundParameters); 2769 } 2770 2771 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2772 const OMPParallelSectionsDirective &S) { 2773 // Emit directive as a combined directive that consists of two implicit 2774 // directives: 'parallel' with 'sections' directive. 2775 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2776 Action.Enter(CGF); 2777 CGF.EmitSections(S); 2778 }; 2779 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2780 emitEmptyBoundParameters); 2781 } 2782 2783 void CodeGenFunction::EmitOMPTaskBasedDirective( 2784 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2785 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2786 OMPTaskDataTy &Data) { 2787 // Emit outlined function for task construct. 2788 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2789 auto I = CS->getCapturedDecl()->param_begin(); 2790 auto PartId = std::next(I); 2791 auto TaskT = std::next(I, 4); 2792 // Check if the task is final 2793 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2794 // If the condition constant folds and can be elided, try to avoid emitting 2795 // the condition and the dead arm of the if/else. 2796 const Expr *Cond = Clause->getCondition(); 2797 bool CondConstant; 2798 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2799 Data.Final.setInt(CondConstant); 2800 else 2801 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2802 } else { 2803 // By default the task is not final. 2804 Data.Final.setInt(/*IntVal=*/false); 2805 } 2806 // Check if the task has 'priority' clause. 2807 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2808 const Expr *Prio = Clause->getPriority(); 2809 Data.Priority.setInt(/*IntVal=*/true); 2810 Data.Priority.setPointer(EmitScalarConversion( 2811 EmitScalarExpr(Prio), Prio->getType(), 2812 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2813 Prio->getExprLoc())); 2814 } 2815 // The first function argument for tasks is a thread id, the second one is a 2816 // part id (0 for tied tasks, >=0 for untied task). 2817 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2818 // Get list of private variables. 2819 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2820 auto IRef = C->varlist_begin(); 2821 for (const Expr *IInit : C->private_copies()) { 2822 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2823 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2824 Data.PrivateVars.push_back(*IRef); 2825 Data.PrivateCopies.push_back(IInit); 2826 } 2827 ++IRef; 2828 } 2829 } 2830 EmittedAsPrivate.clear(); 2831 // Get list of firstprivate variables. 2832 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2833 auto IRef = C->varlist_begin(); 2834 auto IElemInitRef = C->inits().begin(); 2835 for (const Expr *IInit : C->private_copies()) { 2836 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2837 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2838 Data.FirstprivateVars.push_back(*IRef); 2839 Data.FirstprivateCopies.push_back(IInit); 2840 Data.FirstprivateInits.push_back(*IElemInitRef); 2841 } 2842 ++IRef; 2843 ++IElemInitRef; 2844 } 2845 } 2846 // Get list of lastprivate variables (for taskloops). 2847 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2848 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2849 auto IRef = C->varlist_begin(); 2850 auto ID = C->destination_exprs().begin(); 2851 for (const Expr *IInit : C->private_copies()) { 2852 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2853 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2854 Data.LastprivateVars.push_back(*IRef); 2855 Data.LastprivateCopies.push_back(IInit); 2856 } 2857 LastprivateDstsOrigs.insert( 2858 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2859 cast<DeclRefExpr>(*IRef)}); 2860 ++IRef; 2861 ++ID; 2862 } 2863 } 2864 SmallVector<const Expr *, 4> LHSs; 2865 SmallVector<const Expr *, 4> RHSs; 2866 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2867 auto IPriv = C->privates().begin(); 2868 auto IRed = C->reduction_ops().begin(); 2869 auto ILHS = C->lhs_exprs().begin(); 2870 auto IRHS = C->rhs_exprs().begin(); 2871 for (const Expr *Ref : C->varlists()) { 2872 Data.ReductionVars.emplace_back(Ref); 2873 Data.ReductionCopies.emplace_back(*IPriv); 2874 Data.ReductionOps.emplace_back(*IRed); 2875 LHSs.emplace_back(*ILHS); 2876 RHSs.emplace_back(*IRHS); 2877 std::advance(IPriv, 1); 2878 std::advance(IRed, 1); 2879 std::advance(ILHS, 1); 2880 std::advance(IRHS, 1); 2881 } 2882 } 2883 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2884 *this, S.getBeginLoc(), LHSs, RHSs, Data); 2885 // Build list of dependences. 2886 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2887 for (const Expr *IRef : C->varlists()) 2888 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 2889 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2890 CapturedRegion](CodeGenFunction &CGF, 2891 PrePostActionTy &Action) { 2892 // Set proper addresses for generated private copies. 2893 OMPPrivateScope Scope(CGF); 2894 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2895 !Data.LastprivateVars.empty()) { 2896 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2897 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 2898 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 2899 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 2900 CS->getCapturedDecl()->getParam(PrivatesParam))); 2901 // Map privates. 2902 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2903 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2904 CallArgs.push_back(PrivatesPtr); 2905 for (const Expr *E : Data.PrivateVars) { 2906 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2907 Address PrivatePtr = CGF.CreateMemTemp( 2908 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2909 PrivatePtrs.emplace_back(VD, PrivatePtr); 2910 CallArgs.push_back(PrivatePtr.getPointer()); 2911 } 2912 for (const Expr *E : Data.FirstprivateVars) { 2913 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2914 Address PrivatePtr = 2915 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2916 ".firstpriv.ptr.addr"); 2917 PrivatePtrs.emplace_back(VD, PrivatePtr); 2918 CallArgs.push_back(PrivatePtr.getPointer()); 2919 } 2920 for (const Expr *E : Data.LastprivateVars) { 2921 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2922 Address PrivatePtr = 2923 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2924 ".lastpriv.ptr.addr"); 2925 PrivatePtrs.emplace_back(VD, PrivatePtr); 2926 CallArgs.push_back(PrivatePtr.getPointer()); 2927 } 2928 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 2929 CopyFn, CallArgs); 2930 for (const auto &Pair : LastprivateDstsOrigs) { 2931 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2932 DeclRefExpr DRE( 2933 const_cast<VarDecl *>(OrigVD), 2934 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2935 OrigVD) != nullptr, 2936 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2937 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2938 return CGF.EmitLValue(&DRE).getAddress(); 2939 }); 2940 } 2941 for (const auto &Pair : PrivatePtrs) { 2942 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2943 CGF.getContext().getDeclAlign(Pair.first)); 2944 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2945 } 2946 } 2947 if (Data.Reductions) { 2948 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2949 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2950 Data.ReductionOps); 2951 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2952 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2953 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2954 RedCG.emitSharedLValue(CGF, Cnt); 2955 RedCG.emitAggregateType(CGF, Cnt); 2956 // FIXME: This must removed once the runtime library is fixed. 2957 // Emit required threadprivate variables for 2958 // initializer/combiner/finalizer. 2959 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 2960 RedCG, Cnt); 2961 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2962 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2963 Replacement = 2964 Address(CGF.EmitScalarConversion( 2965 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2966 CGF.getContext().getPointerType( 2967 Data.ReductionCopies[Cnt]->getType()), 2968 Data.ReductionCopies[Cnt]->getExprLoc()), 2969 Replacement.getAlignment()); 2970 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2971 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2972 [Replacement]() { return Replacement; }); 2973 } 2974 } 2975 // Privatize all private variables except for in_reduction items. 2976 (void)Scope.Privatize(); 2977 SmallVector<const Expr *, 4> InRedVars; 2978 SmallVector<const Expr *, 4> InRedPrivs; 2979 SmallVector<const Expr *, 4> InRedOps; 2980 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2981 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2982 auto IPriv = C->privates().begin(); 2983 auto IRed = C->reduction_ops().begin(); 2984 auto ITD = C->taskgroup_descriptors().begin(); 2985 for (const Expr *Ref : C->varlists()) { 2986 InRedVars.emplace_back(Ref); 2987 InRedPrivs.emplace_back(*IPriv); 2988 InRedOps.emplace_back(*IRed); 2989 TaskgroupDescriptors.emplace_back(*ITD); 2990 std::advance(IPriv, 1); 2991 std::advance(IRed, 1); 2992 std::advance(ITD, 1); 2993 } 2994 } 2995 // Privatize in_reduction items here, because taskgroup descriptors must be 2996 // privatized earlier. 2997 OMPPrivateScope InRedScope(CGF); 2998 if (!InRedVars.empty()) { 2999 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3000 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3001 RedCG.emitSharedLValue(CGF, Cnt); 3002 RedCG.emitAggregateType(CGF, Cnt); 3003 // The taskgroup descriptor variable is always implicit firstprivate and 3004 // privatized already during processing of the firstprivates. 3005 // FIXME: This must removed once the runtime library is fixed. 3006 // Emit required threadprivate variables for 3007 // initializer/combiner/finalizer. 3008 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3009 RedCG, Cnt); 3010 llvm::Value *ReductionsPtr = 3011 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3012 TaskgroupDescriptors[Cnt]->getExprLoc()); 3013 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3014 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3015 Replacement = Address( 3016 CGF.EmitScalarConversion( 3017 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3018 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3019 InRedPrivs[Cnt]->getExprLoc()), 3020 Replacement.getAlignment()); 3021 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3022 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3023 [Replacement]() { return Replacement; }); 3024 } 3025 } 3026 (void)InRedScope.Privatize(); 3027 3028 Action.Enter(CGF); 3029 BodyGen(CGF); 3030 }; 3031 llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3032 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3033 Data.NumberOfParts); 3034 OMPLexicalScope Scope(*this, S); 3035 TaskGen(*this, OutlinedFn, Data); 3036 } 3037 3038 static ImplicitParamDecl * 3039 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3040 QualType Ty, CapturedDecl *CD, 3041 SourceLocation Loc) { 3042 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3043 ImplicitParamDecl::Other); 3044 auto *OrigRef = DeclRefExpr::Create( 3045 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3046 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3047 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3048 ImplicitParamDecl::Other); 3049 auto *PrivateRef = DeclRefExpr::Create( 3050 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3051 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3052 QualType ElemType = C.getBaseElementType(Ty); 3053 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3054 ImplicitParamDecl::Other); 3055 auto *InitRef = DeclRefExpr::Create( 3056 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3057 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3058 PrivateVD->setInitStyle(VarDecl::CInit); 3059 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3060 InitRef, /*BasePath=*/nullptr, 3061 VK_RValue)); 3062 Data.FirstprivateVars.emplace_back(OrigRef); 3063 Data.FirstprivateCopies.emplace_back(PrivateRef); 3064 Data.FirstprivateInits.emplace_back(InitRef); 3065 return OrigVD; 3066 } 3067 3068 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3069 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3070 OMPTargetDataInfo &InputInfo) { 3071 // Emit outlined function for task construct. 3072 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3073 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3074 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3075 auto I = CS->getCapturedDecl()->param_begin(); 3076 auto PartId = std::next(I); 3077 auto TaskT = std::next(I, 4); 3078 OMPTaskDataTy Data; 3079 // The task is not final. 3080 Data.Final.setInt(/*IntVal=*/false); 3081 // Get list of firstprivate variables. 3082 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3083 auto IRef = C->varlist_begin(); 3084 auto IElemInitRef = C->inits().begin(); 3085 for (auto *IInit : C->private_copies()) { 3086 Data.FirstprivateVars.push_back(*IRef); 3087 Data.FirstprivateCopies.push_back(IInit); 3088 Data.FirstprivateInits.push_back(*IElemInitRef); 3089 ++IRef; 3090 ++IElemInitRef; 3091 } 3092 } 3093 OMPPrivateScope TargetScope(*this); 3094 VarDecl *BPVD = nullptr; 3095 VarDecl *PVD = nullptr; 3096 VarDecl *SVD = nullptr; 3097 if (InputInfo.NumberOfTargetItems > 0) { 3098 auto *CD = CapturedDecl::Create( 3099 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3100 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3101 QualType BaseAndPointersType = getContext().getConstantArrayType( 3102 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3103 /*IndexTypeQuals=*/0); 3104 BPVD = createImplicitFirstprivateForType( 3105 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3106 PVD = createImplicitFirstprivateForType( 3107 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3108 QualType SizesType = getContext().getConstantArrayType( 3109 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3110 /*IndexTypeQuals=*/0); 3111 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3112 S.getBeginLoc()); 3113 TargetScope.addPrivate( 3114 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3115 TargetScope.addPrivate(PVD, 3116 [&InputInfo]() { return InputInfo.PointersArray; }); 3117 TargetScope.addPrivate(SVD, 3118 [&InputInfo]() { return InputInfo.SizesArray; }); 3119 } 3120 (void)TargetScope.Privatize(); 3121 // Build list of dependences. 3122 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3123 for (const Expr *IRef : C->varlists()) 3124 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3125 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3126 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3127 // Set proper addresses for generated private copies. 3128 OMPPrivateScope Scope(CGF); 3129 if (!Data.FirstprivateVars.empty()) { 3130 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3131 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3132 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3133 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3134 CS->getCapturedDecl()->getParam(PrivatesParam))); 3135 // Map privates. 3136 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3137 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3138 CallArgs.push_back(PrivatesPtr); 3139 for (const Expr *E : Data.FirstprivateVars) { 3140 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3141 Address PrivatePtr = 3142 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3143 ".firstpriv.ptr.addr"); 3144 PrivatePtrs.emplace_back(VD, PrivatePtr); 3145 CallArgs.push_back(PrivatePtr.getPointer()); 3146 } 3147 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3148 CopyFn, CallArgs); 3149 for (const auto &Pair : PrivatePtrs) { 3150 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3151 CGF.getContext().getDeclAlign(Pair.first)); 3152 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3153 } 3154 } 3155 // Privatize all private variables except for in_reduction items. 3156 (void)Scope.Privatize(); 3157 if (InputInfo.NumberOfTargetItems > 0) { 3158 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3159 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize()); 3160 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3161 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize()); 3162 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3163 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize()); 3164 } 3165 3166 Action.Enter(CGF); 3167 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3168 BodyGen(CGF); 3169 }; 3170 llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3171 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3172 Data.NumberOfParts); 3173 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3174 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3175 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3176 SourceLocation()); 3177 3178 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3179 SharedsTy, CapturedStruct, &IfCond, Data); 3180 } 3181 3182 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3183 // Emit outlined function for task construct. 3184 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3185 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3186 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3187 const Expr *IfCond = nullptr; 3188 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3189 if (C->getNameModifier() == OMPD_unknown || 3190 C->getNameModifier() == OMPD_task) { 3191 IfCond = C->getCondition(); 3192 break; 3193 } 3194 } 3195 3196 OMPTaskDataTy Data; 3197 // Check if we should emit tied or untied task. 3198 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3199 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3200 CGF.EmitStmt(CS->getCapturedStmt()); 3201 }; 3202 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3203 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3204 const OMPTaskDataTy &Data) { 3205 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3206 SharedsTy, CapturedStruct, IfCond, 3207 Data); 3208 }; 3209 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3210 } 3211 3212 void CodeGenFunction::EmitOMPTaskyieldDirective( 3213 const OMPTaskyieldDirective &S) { 3214 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3215 } 3216 3217 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3218 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3219 } 3220 3221 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3222 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3223 } 3224 3225 void CodeGenFunction::EmitOMPTaskgroupDirective( 3226 const OMPTaskgroupDirective &S) { 3227 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3228 Action.Enter(CGF); 3229 if (const Expr *E = S.getReductionRef()) { 3230 SmallVector<const Expr *, 4> LHSs; 3231 SmallVector<const Expr *, 4> RHSs; 3232 OMPTaskDataTy Data; 3233 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3234 auto IPriv = C->privates().begin(); 3235 auto IRed = C->reduction_ops().begin(); 3236 auto ILHS = C->lhs_exprs().begin(); 3237 auto IRHS = C->rhs_exprs().begin(); 3238 for (const Expr *Ref : C->varlists()) { 3239 Data.ReductionVars.emplace_back(Ref); 3240 Data.ReductionCopies.emplace_back(*IPriv); 3241 Data.ReductionOps.emplace_back(*IRed); 3242 LHSs.emplace_back(*ILHS); 3243 RHSs.emplace_back(*IRHS); 3244 std::advance(IPriv, 1); 3245 std::advance(IRed, 1); 3246 std::advance(ILHS, 1); 3247 std::advance(IRHS, 1); 3248 } 3249 } 3250 llvm::Value *ReductionDesc = 3251 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3252 LHSs, RHSs, Data); 3253 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3254 CGF.EmitVarDecl(*VD); 3255 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3256 /*Volatile=*/false, E->getType()); 3257 } 3258 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3259 }; 3260 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3261 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3262 } 3263 3264 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3265 CGM.getOpenMPRuntime().emitFlush( 3266 *this, 3267 [&S]() -> ArrayRef<const Expr *> { 3268 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3269 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3270 FlushClause->varlist_end()); 3271 return llvm::None; 3272 }(), 3273 S.getBeginLoc()); 3274 } 3275 3276 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3277 const CodeGenLoopTy &CodeGenLoop, 3278 Expr *IncExpr) { 3279 // Emit the loop iteration variable. 3280 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3281 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3282 EmitVarDecl(*IVDecl); 3283 3284 // Emit the iterations count variable. 3285 // If it is not a variable, Sema decided to calculate iterations count on each 3286 // iteration (e.g., it is foldable into a constant). 3287 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3288 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3289 // Emit calculation of the iterations count. 3290 EmitIgnoredExpr(S.getCalcLastIteration()); 3291 } 3292 3293 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3294 3295 bool HasLastprivateClause = false; 3296 // Check pre-condition. 3297 { 3298 OMPLoopScope PreInitScope(*this, S); 3299 // Skip the entire loop if we don't meet the precondition. 3300 // If the condition constant folds and can be elided, avoid emitting the 3301 // whole loop. 3302 bool CondConstant; 3303 llvm::BasicBlock *ContBlock = nullptr; 3304 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3305 if (!CondConstant) 3306 return; 3307 } else { 3308 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3309 ContBlock = createBasicBlock("omp.precond.end"); 3310 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3311 getProfileCount(&S)); 3312 EmitBlock(ThenBlock); 3313 incrementProfileCounter(&S); 3314 } 3315 3316 emitAlignedClause(*this, S); 3317 // Emit 'then' code. 3318 { 3319 // Emit helper vars inits. 3320 3321 LValue LB = EmitOMPHelperVar( 3322 *this, cast<DeclRefExpr>( 3323 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3324 ? S.getCombinedLowerBoundVariable() 3325 : S.getLowerBoundVariable()))); 3326 LValue UB = EmitOMPHelperVar( 3327 *this, cast<DeclRefExpr>( 3328 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3329 ? S.getCombinedUpperBoundVariable() 3330 : S.getUpperBoundVariable()))); 3331 LValue ST = 3332 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3333 LValue IL = 3334 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3335 3336 OMPPrivateScope LoopScope(*this); 3337 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3338 // Emit implicit barrier to synchronize threads and avoid data races 3339 // on initialization of firstprivate variables and post-update of 3340 // lastprivate variables. 3341 CGM.getOpenMPRuntime().emitBarrierCall( 3342 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3343 /*ForceSimpleCall=*/true); 3344 } 3345 EmitOMPPrivateClause(S, LoopScope); 3346 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3347 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3348 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3349 EmitOMPReductionClauseInit(S, LoopScope); 3350 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3351 EmitOMPPrivateLoopCounters(S, LoopScope); 3352 (void)LoopScope.Privatize(); 3353 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3354 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3355 3356 // Detect the distribute schedule kind and chunk. 3357 llvm::Value *Chunk = nullptr; 3358 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3359 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3360 ScheduleKind = C->getDistScheduleKind(); 3361 if (const Expr *Ch = C->getChunkSize()) { 3362 Chunk = EmitScalarExpr(Ch); 3363 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3364 S.getIterationVariable()->getType(), 3365 S.getBeginLoc()); 3366 } 3367 } else { 3368 // Default behaviour for dist_schedule clause. 3369 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3370 *this, S, ScheduleKind, Chunk); 3371 } 3372 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3373 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3374 3375 // OpenMP [2.10.8, distribute Construct, Description] 3376 // If dist_schedule is specified, kind must be static. If specified, 3377 // iterations are divided into chunks of size chunk_size, chunks are 3378 // assigned to the teams of the league in a round-robin fashion in the 3379 // order of the team number. When no chunk_size is specified, the 3380 // iteration space is divided into chunks that are approximately equal 3381 // in size, and at most one chunk is distributed to each team of the 3382 // league. The size of the chunks is unspecified in this case. 3383 bool StaticChunked = RT.isStaticChunked( 3384 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3385 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3386 if (RT.isStaticNonchunked(ScheduleKind, 3387 /* Chunked */ Chunk != nullptr) || 3388 StaticChunked) { 3389 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3390 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3391 CGOpenMPRuntime::StaticRTInput StaticInit( 3392 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3393 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3394 StaticChunked ? Chunk : nullptr); 3395 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3396 StaticInit); 3397 JumpDest LoopExit = 3398 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3399 // UB = min(UB, GlobalUB); 3400 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3401 ? S.getCombinedEnsureUpperBound() 3402 : S.getEnsureUpperBound()); 3403 // IV = LB; 3404 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3405 ? S.getCombinedInit() 3406 : S.getInit()); 3407 3408 const Expr *Cond = 3409 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3410 ? S.getCombinedCond() 3411 : S.getCond(); 3412 3413 if (StaticChunked) 3414 Cond = S.getCombinedDistCond(); 3415 3416 // For static unchunked schedules generate: 3417 // 3418 // 1. For distribute alone, codegen 3419 // while (idx <= UB) { 3420 // BODY; 3421 // ++idx; 3422 // } 3423 // 3424 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3425 // while (idx <= UB) { 3426 // <CodeGen rest of pragma>(LB, UB); 3427 // idx += ST; 3428 // } 3429 // 3430 // For static chunk one schedule generate: 3431 // 3432 // while (IV <= GlobalUB) { 3433 // <CodeGen rest of pragma>(LB, UB); 3434 // LB += ST; 3435 // UB += ST; 3436 // UB = min(UB, GlobalUB); 3437 // IV = LB; 3438 // } 3439 // 3440 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3441 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3442 CodeGenLoop(CGF, S, LoopExit); 3443 }, 3444 [&S, StaticChunked](CodeGenFunction &CGF) { 3445 if (StaticChunked) { 3446 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3447 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3448 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3449 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3450 } 3451 }); 3452 EmitBlock(LoopExit.getBlock()); 3453 // Tell the runtime we are done. 3454 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3455 } else { 3456 // Emit the outer loop, which requests its work chunk [LB..UB] from 3457 // runtime and runs the inner loop to process it. 3458 const OMPLoopArguments LoopArguments = { 3459 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3460 Chunk}; 3461 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3462 CodeGenLoop); 3463 } 3464 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3465 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3466 return CGF.Builder.CreateIsNotNull( 3467 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3468 }); 3469 } 3470 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3471 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3472 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3473 EmitOMPReductionClauseFinal(S, OMPD_simd); 3474 // Emit post-update of the reduction variables if IsLastIter != 0. 3475 emitPostUpdateForReductionClause( 3476 *this, S, [IL, &S](CodeGenFunction &CGF) { 3477 return CGF.Builder.CreateIsNotNull( 3478 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3479 }); 3480 } 3481 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3482 if (HasLastprivateClause) { 3483 EmitOMPLastprivateClauseFinal( 3484 S, /*NoFinals=*/false, 3485 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3486 } 3487 } 3488 3489 // We're now done with the loop, so jump to the continuation block. 3490 if (ContBlock) { 3491 EmitBranch(ContBlock); 3492 EmitBlock(ContBlock, true); 3493 } 3494 } 3495 } 3496 3497 void CodeGenFunction::EmitOMPDistributeDirective( 3498 const OMPDistributeDirective &S) { 3499 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3500 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3501 }; 3502 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3503 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3504 } 3505 3506 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3507 const CapturedStmt *S) { 3508 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3509 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3510 CGF.CapturedStmtInfo = &CapStmtInfo; 3511 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3512 Fn->setDoesNotRecurse(); 3513 return Fn; 3514 } 3515 3516 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3517 if (S.hasClausesOfKind<OMPDependClause>()) { 3518 assert(!S.getAssociatedStmt() && 3519 "No associated statement must be in ordered depend construct."); 3520 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3521 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3522 return; 3523 } 3524 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3525 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3526 PrePostActionTy &Action) { 3527 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3528 if (C) { 3529 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3530 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3531 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3532 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3533 OutlinedFn, CapturedVars); 3534 } else { 3535 Action.Enter(CGF); 3536 CGF.EmitStmt(CS->getCapturedStmt()); 3537 } 3538 }; 3539 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3540 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3541 } 3542 3543 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3544 QualType SrcType, QualType DestType, 3545 SourceLocation Loc) { 3546 assert(CGF.hasScalarEvaluationKind(DestType) && 3547 "DestType must have scalar evaluation kind."); 3548 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3549 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3550 DestType, Loc) 3551 : CGF.EmitComplexToScalarConversion( 3552 Val.getComplexVal(), SrcType, DestType, Loc); 3553 } 3554 3555 static CodeGenFunction::ComplexPairTy 3556 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3557 QualType DestType, SourceLocation Loc) { 3558 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3559 "DestType must have complex evaluation kind."); 3560 CodeGenFunction::ComplexPairTy ComplexVal; 3561 if (Val.isScalar()) { 3562 // Convert the input element to the element type of the complex. 3563 QualType DestElementType = 3564 DestType->castAs<ComplexType>()->getElementType(); 3565 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3566 Val.getScalarVal(), SrcType, DestElementType, Loc); 3567 ComplexVal = CodeGenFunction::ComplexPairTy( 3568 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3569 } else { 3570 assert(Val.isComplex() && "Must be a scalar or complex."); 3571 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3572 QualType DestElementType = 3573 DestType->castAs<ComplexType>()->getElementType(); 3574 ComplexVal.first = CGF.EmitScalarConversion( 3575 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3576 ComplexVal.second = CGF.EmitScalarConversion( 3577 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3578 } 3579 return ComplexVal; 3580 } 3581 3582 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3583 LValue LVal, RValue RVal) { 3584 if (LVal.isGlobalReg()) { 3585 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3586 } else { 3587 CGF.EmitAtomicStore(RVal, LVal, 3588 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3589 : llvm::AtomicOrdering::Monotonic, 3590 LVal.isVolatile(), /*IsInit=*/false); 3591 } 3592 } 3593 3594 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3595 QualType RValTy, SourceLocation Loc) { 3596 switch (getEvaluationKind(LVal.getType())) { 3597 case TEK_Scalar: 3598 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3599 *this, RVal, RValTy, LVal.getType(), Loc)), 3600 LVal); 3601 break; 3602 case TEK_Complex: 3603 EmitStoreOfComplex( 3604 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3605 /*isInit=*/false); 3606 break; 3607 case TEK_Aggregate: 3608 llvm_unreachable("Must be a scalar or complex."); 3609 } 3610 } 3611 3612 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3613 const Expr *X, const Expr *V, 3614 SourceLocation Loc) { 3615 // v = x; 3616 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3617 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3618 LValue XLValue = CGF.EmitLValue(X); 3619 LValue VLValue = CGF.EmitLValue(V); 3620 RValue Res = XLValue.isGlobalReg() 3621 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3622 : CGF.EmitAtomicLoad( 3623 XLValue, Loc, 3624 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3625 : llvm::AtomicOrdering::Monotonic, 3626 XLValue.isVolatile()); 3627 // OpenMP, 2.12.6, atomic Construct 3628 // Any atomic construct with a seq_cst clause forces the atomically 3629 // performed operation to include an implicit flush operation without a 3630 // list. 3631 if (IsSeqCst) 3632 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3633 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3634 } 3635 3636 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3637 const Expr *X, const Expr *E, 3638 SourceLocation Loc) { 3639 // x = expr; 3640 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3641 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3642 // OpenMP, 2.12.6, atomic Construct 3643 // Any atomic construct with a seq_cst clause forces the atomically 3644 // performed operation to include an implicit flush operation without a 3645 // list. 3646 if (IsSeqCst) 3647 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3648 } 3649 3650 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3651 RValue Update, 3652 BinaryOperatorKind BO, 3653 llvm::AtomicOrdering AO, 3654 bool IsXLHSInRHSPart) { 3655 ASTContext &Context = CGF.getContext(); 3656 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3657 // expression is simple and atomic is allowed for the given type for the 3658 // target platform. 3659 if (BO == BO_Comma || !Update.isScalar() || 3660 !Update.getScalarVal()->getType()->isIntegerTy() || 3661 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3662 (Update.getScalarVal()->getType() != 3663 X.getAddress().getElementType())) || 3664 !X.getAddress().getElementType()->isIntegerTy() || 3665 !Context.getTargetInfo().hasBuiltinAtomic( 3666 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3667 return std::make_pair(false, RValue::get(nullptr)); 3668 3669 llvm::AtomicRMWInst::BinOp RMWOp; 3670 switch (BO) { 3671 case BO_Add: 3672 RMWOp = llvm::AtomicRMWInst::Add; 3673 break; 3674 case BO_Sub: 3675 if (!IsXLHSInRHSPart) 3676 return std::make_pair(false, RValue::get(nullptr)); 3677 RMWOp = llvm::AtomicRMWInst::Sub; 3678 break; 3679 case BO_And: 3680 RMWOp = llvm::AtomicRMWInst::And; 3681 break; 3682 case BO_Or: 3683 RMWOp = llvm::AtomicRMWInst::Or; 3684 break; 3685 case BO_Xor: 3686 RMWOp = llvm::AtomicRMWInst::Xor; 3687 break; 3688 case BO_LT: 3689 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3690 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3691 : llvm::AtomicRMWInst::Max) 3692 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3693 : llvm::AtomicRMWInst::UMax); 3694 break; 3695 case BO_GT: 3696 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3697 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3698 : llvm::AtomicRMWInst::Min) 3699 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3700 : llvm::AtomicRMWInst::UMin); 3701 break; 3702 case BO_Assign: 3703 RMWOp = llvm::AtomicRMWInst::Xchg; 3704 break; 3705 case BO_Mul: 3706 case BO_Div: 3707 case BO_Rem: 3708 case BO_Shl: 3709 case BO_Shr: 3710 case BO_LAnd: 3711 case BO_LOr: 3712 return std::make_pair(false, RValue::get(nullptr)); 3713 case BO_PtrMemD: 3714 case BO_PtrMemI: 3715 case BO_LE: 3716 case BO_GE: 3717 case BO_EQ: 3718 case BO_NE: 3719 case BO_Cmp: 3720 case BO_AddAssign: 3721 case BO_SubAssign: 3722 case BO_AndAssign: 3723 case BO_OrAssign: 3724 case BO_XorAssign: 3725 case BO_MulAssign: 3726 case BO_DivAssign: 3727 case BO_RemAssign: 3728 case BO_ShlAssign: 3729 case BO_ShrAssign: 3730 case BO_Comma: 3731 llvm_unreachable("Unsupported atomic update operation"); 3732 } 3733 llvm::Value *UpdateVal = Update.getScalarVal(); 3734 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3735 UpdateVal = CGF.Builder.CreateIntCast( 3736 IC, X.getAddress().getElementType(), 3737 X.getType()->hasSignedIntegerRepresentation()); 3738 } 3739 llvm::Value *Res = 3740 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3741 return std::make_pair(true, RValue::get(Res)); 3742 } 3743 3744 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3745 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3746 llvm::AtomicOrdering AO, SourceLocation Loc, 3747 const llvm::function_ref<RValue(RValue)> CommonGen) { 3748 // Update expressions are allowed to have the following forms: 3749 // x binop= expr; -> xrval + expr; 3750 // x++, ++x -> xrval + 1; 3751 // x--, --x -> xrval - 1; 3752 // x = x binop expr; -> xrval binop expr 3753 // x = expr Op x; - > expr binop xrval; 3754 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3755 if (!Res.first) { 3756 if (X.isGlobalReg()) { 3757 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3758 // 'xrval'. 3759 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3760 } else { 3761 // Perform compare-and-swap procedure. 3762 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3763 } 3764 } 3765 return Res; 3766 } 3767 3768 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3769 const Expr *X, const Expr *E, 3770 const Expr *UE, bool IsXLHSInRHSPart, 3771 SourceLocation Loc) { 3772 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3773 "Update expr in 'atomic update' must be a binary operator."); 3774 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3775 // Update expressions are allowed to have the following forms: 3776 // x binop= expr; -> xrval + expr; 3777 // x++, ++x -> xrval + 1; 3778 // x--, --x -> xrval - 1; 3779 // x = x binop expr; -> xrval binop expr 3780 // x = expr Op x; - > expr binop xrval; 3781 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3782 LValue XLValue = CGF.EmitLValue(X); 3783 RValue ExprRValue = CGF.EmitAnyExpr(E); 3784 llvm::AtomicOrdering AO = IsSeqCst 3785 ? llvm::AtomicOrdering::SequentiallyConsistent 3786 : llvm::AtomicOrdering::Monotonic; 3787 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3788 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3789 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3790 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3791 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3792 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3793 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3794 return CGF.EmitAnyExpr(UE); 3795 }; 3796 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3797 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3798 // OpenMP, 2.12.6, atomic Construct 3799 // Any atomic construct with a seq_cst clause forces the atomically 3800 // performed operation to include an implicit flush operation without a 3801 // list. 3802 if (IsSeqCst) 3803 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3804 } 3805 3806 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3807 QualType SourceType, QualType ResType, 3808 SourceLocation Loc) { 3809 switch (CGF.getEvaluationKind(ResType)) { 3810 case TEK_Scalar: 3811 return RValue::get( 3812 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3813 case TEK_Complex: { 3814 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3815 return RValue::getComplex(Res.first, Res.second); 3816 } 3817 case TEK_Aggregate: 3818 break; 3819 } 3820 llvm_unreachable("Must be a scalar or complex."); 3821 } 3822 3823 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3824 bool IsPostfixUpdate, const Expr *V, 3825 const Expr *X, const Expr *E, 3826 const Expr *UE, bool IsXLHSInRHSPart, 3827 SourceLocation Loc) { 3828 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3829 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3830 RValue NewVVal; 3831 LValue VLValue = CGF.EmitLValue(V); 3832 LValue XLValue = CGF.EmitLValue(X); 3833 RValue ExprRValue = CGF.EmitAnyExpr(E); 3834 llvm::AtomicOrdering AO = IsSeqCst 3835 ? llvm::AtomicOrdering::SequentiallyConsistent 3836 : llvm::AtomicOrdering::Monotonic; 3837 QualType NewVValType; 3838 if (UE) { 3839 // 'x' is updated with some additional value. 3840 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3841 "Update expr in 'atomic capture' must be a binary operator."); 3842 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3843 // Update expressions are allowed to have the following forms: 3844 // x binop= expr; -> xrval + expr; 3845 // x++, ++x -> xrval + 1; 3846 // x--, --x -> xrval - 1; 3847 // x = x binop expr; -> xrval binop expr 3848 // x = expr Op x; - > expr binop xrval; 3849 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3850 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3851 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3852 NewVValType = XRValExpr->getType(); 3853 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3854 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3855 IsPostfixUpdate](RValue XRValue) { 3856 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3857 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3858 RValue Res = CGF.EmitAnyExpr(UE); 3859 NewVVal = IsPostfixUpdate ? XRValue : Res; 3860 return Res; 3861 }; 3862 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3863 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3864 if (Res.first) { 3865 // 'atomicrmw' instruction was generated. 3866 if (IsPostfixUpdate) { 3867 // Use old value from 'atomicrmw'. 3868 NewVVal = Res.second; 3869 } else { 3870 // 'atomicrmw' does not provide new value, so evaluate it using old 3871 // value of 'x'. 3872 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3873 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3874 NewVVal = CGF.EmitAnyExpr(UE); 3875 } 3876 } 3877 } else { 3878 // 'x' is simply rewritten with some 'expr'. 3879 NewVValType = X->getType().getNonReferenceType(); 3880 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3881 X->getType().getNonReferenceType(), Loc); 3882 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 3883 NewVVal = XRValue; 3884 return ExprRValue; 3885 }; 3886 // Try to perform atomicrmw xchg, otherwise simple exchange. 3887 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3888 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3889 Loc, Gen); 3890 if (Res.first) { 3891 // 'atomicrmw' instruction was generated. 3892 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3893 } 3894 } 3895 // Emit post-update store to 'v' of old/new 'x' value. 3896 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3897 // OpenMP, 2.12.6, atomic Construct 3898 // Any atomic construct with a seq_cst clause forces the atomically 3899 // performed operation to include an implicit flush operation without a 3900 // list. 3901 if (IsSeqCst) 3902 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3903 } 3904 3905 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3906 bool IsSeqCst, bool IsPostfixUpdate, 3907 const Expr *X, const Expr *V, const Expr *E, 3908 const Expr *UE, bool IsXLHSInRHSPart, 3909 SourceLocation Loc) { 3910 switch (Kind) { 3911 case OMPC_read: 3912 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3913 break; 3914 case OMPC_write: 3915 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3916 break; 3917 case OMPC_unknown: 3918 case OMPC_update: 3919 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3920 break; 3921 case OMPC_capture: 3922 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3923 IsXLHSInRHSPart, Loc); 3924 break; 3925 case OMPC_if: 3926 case OMPC_final: 3927 case OMPC_num_threads: 3928 case OMPC_private: 3929 case OMPC_firstprivate: 3930 case OMPC_lastprivate: 3931 case OMPC_reduction: 3932 case OMPC_task_reduction: 3933 case OMPC_in_reduction: 3934 case OMPC_safelen: 3935 case OMPC_simdlen: 3936 case OMPC_collapse: 3937 case OMPC_default: 3938 case OMPC_seq_cst: 3939 case OMPC_shared: 3940 case OMPC_linear: 3941 case OMPC_aligned: 3942 case OMPC_copyin: 3943 case OMPC_copyprivate: 3944 case OMPC_flush: 3945 case OMPC_proc_bind: 3946 case OMPC_schedule: 3947 case OMPC_ordered: 3948 case OMPC_nowait: 3949 case OMPC_untied: 3950 case OMPC_threadprivate: 3951 case OMPC_depend: 3952 case OMPC_mergeable: 3953 case OMPC_device: 3954 case OMPC_threads: 3955 case OMPC_simd: 3956 case OMPC_map: 3957 case OMPC_num_teams: 3958 case OMPC_thread_limit: 3959 case OMPC_priority: 3960 case OMPC_grainsize: 3961 case OMPC_nogroup: 3962 case OMPC_num_tasks: 3963 case OMPC_hint: 3964 case OMPC_dist_schedule: 3965 case OMPC_defaultmap: 3966 case OMPC_uniform: 3967 case OMPC_to: 3968 case OMPC_from: 3969 case OMPC_use_device_ptr: 3970 case OMPC_is_device_ptr: 3971 case OMPC_unified_address: 3972 case OMPC_unified_shared_memory: 3973 case OMPC_reverse_offload: 3974 case OMPC_dynamic_allocators: 3975 case OMPC_atomic_default_mem_order: 3976 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3977 } 3978 } 3979 3980 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3981 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3982 OpenMPClauseKind Kind = OMPC_unknown; 3983 for (const OMPClause *C : S.clauses()) { 3984 // Find first clause (skip seq_cst clause, if it is first). 3985 if (C->getClauseKind() != OMPC_seq_cst) { 3986 Kind = C->getClauseKind(); 3987 break; 3988 } 3989 } 3990 3991 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 3992 if (const auto *FE = dyn_cast<FullExpr>(CS)) 3993 enterFullExpression(FE); 3994 // Processing for statements under 'atomic capture'. 3995 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3996 for (const Stmt *C : Compound->body()) { 3997 if (const auto *FE = dyn_cast<FullExpr>(C)) 3998 enterFullExpression(FE); 3999 } 4000 } 4001 4002 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4003 PrePostActionTy &) { 4004 CGF.EmitStopPoint(CS); 4005 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4006 S.getV(), S.getExpr(), S.getUpdateExpr(), 4007 S.isXLHSInRHSPart(), S.getBeginLoc()); 4008 }; 4009 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4010 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4011 } 4012 4013 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4014 const OMPExecutableDirective &S, 4015 const RegionCodeGenTy &CodeGen) { 4016 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4017 CodeGenModule &CGM = CGF.CGM; 4018 4019 // On device emit this construct as inlined code. 4020 if (CGM.getLangOpts().OpenMPIsDevice) { 4021 OMPLexicalScope Scope(CGF, S, OMPD_target); 4022 CGM.getOpenMPRuntime().emitInlinedDirective( 4023 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4024 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4025 }); 4026 return; 4027 } 4028 4029 llvm::Function *Fn = nullptr; 4030 llvm::Constant *FnID = nullptr; 4031 4032 const Expr *IfCond = nullptr; 4033 // Check for the at most one if clause associated with the target region. 4034 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4035 if (C->getNameModifier() == OMPD_unknown || 4036 C->getNameModifier() == OMPD_target) { 4037 IfCond = C->getCondition(); 4038 break; 4039 } 4040 } 4041 4042 // Check if we have any device clause associated with the directive. 4043 const Expr *Device = nullptr; 4044 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4045 Device = C->getDevice(); 4046 4047 // Check if we have an if clause whose conditional always evaluates to false 4048 // or if we do not have any targets specified. If so the target region is not 4049 // an offload entry point. 4050 bool IsOffloadEntry = true; 4051 if (IfCond) { 4052 bool Val; 4053 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4054 IsOffloadEntry = false; 4055 } 4056 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4057 IsOffloadEntry = false; 4058 4059 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4060 StringRef ParentName; 4061 // In case we have Ctors/Dtors we use the complete type variant to produce 4062 // the mangling of the device outlined kernel. 4063 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4064 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4065 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4066 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4067 else 4068 ParentName = 4069 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4070 4071 // Emit target region as a standalone region. 4072 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4073 IsOffloadEntry, CodeGen); 4074 OMPLexicalScope Scope(CGF, S, OMPD_task); 4075 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 4076 } 4077 4078 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4079 PrePostActionTy &Action) { 4080 Action.Enter(CGF); 4081 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4082 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4083 CGF.EmitOMPPrivateClause(S, PrivateScope); 4084 (void)PrivateScope.Privatize(); 4085 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4086 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4087 4088 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4089 } 4090 4091 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4092 StringRef ParentName, 4093 const OMPTargetDirective &S) { 4094 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4095 emitTargetRegion(CGF, S, Action); 4096 }; 4097 llvm::Function *Fn; 4098 llvm::Constant *Addr; 4099 // Emit target region as a standalone region. 4100 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4101 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4102 assert(Fn && Addr && "Target device function emission failed."); 4103 } 4104 4105 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4106 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4107 emitTargetRegion(CGF, S, Action); 4108 }; 4109 emitCommonOMPTargetDirective(*this, S, CodeGen); 4110 } 4111 4112 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4113 const OMPExecutableDirective &S, 4114 OpenMPDirectiveKind InnermostKind, 4115 const RegionCodeGenTy &CodeGen) { 4116 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4117 llvm::Value *OutlinedFn = 4118 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4119 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4120 4121 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4122 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4123 if (NT || TL) { 4124 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4125 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4126 4127 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4128 S.getBeginLoc()); 4129 } 4130 4131 OMPTeamsScope Scope(CGF, S); 4132 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4133 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4134 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4135 CapturedVars); 4136 } 4137 4138 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4139 // Emit teams region as a standalone region. 4140 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4141 Action.Enter(CGF); 4142 OMPPrivateScope PrivateScope(CGF); 4143 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4144 CGF.EmitOMPPrivateClause(S, PrivateScope); 4145 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4146 (void)PrivateScope.Privatize(); 4147 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4148 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4149 }; 4150 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4151 emitPostUpdateForReductionClause(*this, S, 4152 [](CodeGenFunction &) { return nullptr; }); 4153 } 4154 4155 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4156 const OMPTargetTeamsDirective &S) { 4157 auto *CS = S.getCapturedStmt(OMPD_teams); 4158 Action.Enter(CGF); 4159 // Emit teams region as a standalone region. 4160 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4161 Action.Enter(CGF); 4162 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4163 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4164 CGF.EmitOMPPrivateClause(S, PrivateScope); 4165 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4166 (void)PrivateScope.Privatize(); 4167 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4168 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4169 CGF.EmitStmt(CS->getCapturedStmt()); 4170 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4171 }; 4172 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4173 emitPostUpdateForReductionClause(CGF, S, 4174 [](CodeGenFunction &) { return nullptr; }); 4175 } 4176 4177 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4178 CodeGenModule &CGM, StringRef ParentName, 4179 const OMPTargetTeamsDirective &S) { 4180 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4181 emitTargetTeamsRegion(CGF, Action, S); 4182 }; 4183 llvm::Function *Fn; 4184 llvm::Constant *Addr; 4185 // Emit target region as a standalone region. 4186 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4187 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4188 assert(Fn && Addr && "Target device function emission failed."); 4189 } 4190 4191 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4192 const OMPTargetTeamsDirective &S) { 4193 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4194 emitTargetTeamsRegion(CGF, Action, S); 4195 }; 4196 emitCommonOMPTargetDirective(*this, S, CodeGen); 4197 } 4198 4199 static void 4200 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4201 const OMPTargetTeamsDistributeDirective &S) { 4202 Action.Enter(CGF); 4203 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4204 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4205 }; 4206 4207 // Emit teams region as a standalone region. 4208 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4209 PrePostActionTy &Action) { 4210 Action.Enter(CGF); 4211 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4212 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4213 (void)PrivateScope.Privatize(); 4214 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4215 CodeGenDistribute); 4216 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4217 }; 4218 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4219 emitPostUpdateForReductionClause(CGF, S, 4220 [](CodeGenFunction &) { return nullptr; }); 4221 } 4222 4223 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4224 CodeGenModule &CGM, StringRef ParentName, 4225 const OMPTargetTeamsDistributeDirective &S) { 4226 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4227 emitTargetTeamsDistributeRegion(CGF, Action, S); 4228 }; 4229 llvm::Function *Fn; 4230 llvm::Constant *Addr; 4231 // Emit target region as a standalone region. 4232 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4233 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4234 assert(Fn && Addr && "Target device function emission failed."); 4235 } 4236 4237 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4238 const OMPTargetTeamsDistributeDirective &S) { 4239 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4240 emitTargetTeamsDistributeRegion(CGF, Action, S); 4241 }; 4242 emitCommonOMPTargetDirective(*this, S, CodeGen); 4243 } 4244 4245 static void emitTargetTeamsDistributeSimdRegion( 4246 CodeGenFunction &CGF, PrePostActionTy &Action, 4247 const OMPTargetTeamsDistributeSimdDirective &S) { 4248 Action.Enter(CGF); 4249 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4250 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4251 }; 4252 4253 // Emit teams region as a standalone region. 4254 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4255 PrePostActionTy &Action) { 4256 Action.Enter(CGF); 4257 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4258 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4259 (void)PrivateScope.Privatize(); 4260 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4261 CodeGenDistribute); 4262 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4263 }; 4264 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4265 emitPostUpdateForReductionClause(CGF, S, 4266 [](CodeGenFunction &) { return nullptr; }); 4267 } 4268 4269 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4270 CodeGenModule &CGM, StringRef ParentName, 4271 const OMPTargetTeamsDistributeSimdDirective &S) { 4272 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4273 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4274 }; 4275 llvm::Function *Fn; 4276 llvm::Constant *Addr; 4277 // Emit target region as a standalone region. 4278 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4279 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4280 assert(Fn && Addr && "Target device function emission failed."); 4281 } 4282 4283 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4284 const OMPTargetTeamsDistributeSimdDirective &S) { 4285 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4286 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4287 }; 4288 emitCommonOMPTargetDirective(*this, S, CodeGen); 4289 } 4290 4291 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4292 const OMPTeamsDistributeDirective &S) { 4293 4294 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4295 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4296 }; 4297 4298 // Emit teams region as a standalone region. 4299 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4300 PrePostActionTy &Action) { 4301 Action.Enter(CGF); 4302 OMPPrivateScope PrivateScope(CGF); 4303 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4304 (void)PrivateScope.Privatize(); 4305 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4306 CodeGenDistribute); 4307 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4308 }; 4309 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4310 emitPostUpdateForReductionClause(*this, S, 4311 [](CodeGenFunction &) { return nullptr; }); 4312 } 4313 4314 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4315 const OMPTeamsDistributeSimdDirective &S) { 4316 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4317 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4318 }; 4319 4320 // Emit teams region as a standalone region. 4321 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4322 PrePostActionTy &Action) { 4323 Action.Enter(CGF); 4324 OMPPrivateScope PrivateScope(CGF); 4325 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4326 (void)PrivateScope.Privatize(); 4327 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4328 CodeGenDistribute); 4329 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4330 }; 4331 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4332 emitPostUpdateForReductionClause(*this, S, 4333 [](CodeGenFunction &) { return nullptr; }); 4334 } 4335 4336 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4337 const OMPTeamsDistributeParallelForDirective &S) { 4338 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4339 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4340 S.getDistInc()); 4341 }; 4342 4343 // Emit teams region as a standalone region. 4344 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4345 PrePostActionTy &Action) { 4346 Action.Enter(CGF); 4347 OMPPrivateScope PrivateScope(CGF); 4348 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4349 (void)PrivateScope.Privatize(); 4350 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4351 CodeGenDistribute); 4352 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4353 }; 4354 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4355 emitPostUpdateForReductionClause(*this, S, 4356 [](CodeGenFunction &) { return nullptr; }); 4357 } 4358 4359 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4360 const OMPTeamsDistributeParallelForSimdDirective &S) { 4361 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4362 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4363 S.getDistInc()); 4364 }; 4365 4366 // Emit teams region as a standalone region. 4367 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4368 PrePostActionTy &Action) { 4369 Action.Enter(CGF); 4370 OMPPrivateScope PrivateScope(CGF); 4371 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4372 (void)PrivateScope.Privatize(); 4373 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4374 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4375 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4376 }; 4377 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4378 emitPostUpdateForReductionClause(*this, S, 4379 [](CodeGenFunction &) { return nullptr; }); 4380 } 4381 4382 static void emitTargetTeamsDistributeParallelForRegion( 4383 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4384 PrePostActionTy &Action) { 4385 Action.Enter(CGF); 4386 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4387 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4388 S.getDistInc()); 4389 }; 4390 4391 // Emit teams region as a standalone region. 4392 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4393 PrePostActionTy &Action) { 4394 Action.Enter(CGF); 4395 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4396 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4397 (void)PrivateScope.Privatize(); 4398 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4399 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4400 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4401 }; 4402 4403 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4404 CodeGenTeams); 4405 emitPostUpdateForReductionClause(CGF, S, 4406 [](CodeGenFunction &) { return nullptr; }); 4407 } 4408 4409 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4410 CodeGenModule &CGM, StringRef ParentName, 4411 const OMPTargetTeamsDistributeParallelForDirective &S) { 4412 // Emit SPMD target teams distribute parallel for region as a standalone 4413 // region. 4414 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4415 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4416 }; 4417 llvm::Function *Fn; 4418 llvm::Constant *Addr; 4419 // Emit target region as a standalone region. 4420 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4421 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4422 assert(Fn && Addr && "Target device function emission failed."); 4423 } 4424 4425 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4426 const OMPTargetTeamsDistributeParallelForDirective &S) { 4427 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4428 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4429 }; 4430 emitCommonOMPTargetDirective(*this, S, CodeGen); 4431 } 4432 4433 static void emitTargetTeamsDistributeParallelForSimdRegion( 4434 CodeGenFunction &CGF, 4435 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4436 PrePostActionTy &Action) { 4437 Action.Enter(CGF); 4438 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4439 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4440 S.getDistInc()); 4441 }; 4442 4443 // Emit teams region as a standalone region. 4444 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4445 PrePostActionTy &Action) { 4446 Action.Enter(CGF); 4447 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4448 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4449 (void)PrivateScope.Privatize(); 4450 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4451 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4452 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4453 }; 4454 4455 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4456 CodeGenTeams); 4457 emitPostUpdateForReductionClause(CGF, S, 4458 [](CodeGenFunction &) { return nullptr; }); 4459 } 4460 4461 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4462 CodeGenModule &CGM, StringRef ParentName, 4463 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4464 // Emit SPMD target teams distribute parallel for simd region as a standalone 4465 // region. 4466 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4467 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4468 }; 4469 llvm::Function *Fn; 4470 llvm::Constant *Addr; 4471 // Emit target region as a standalone region. 4472 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4473 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4474 assert(Fn && Addr && "Target device function emission failed."); 4475 } 4476 4477 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4478 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4479 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4480 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4481 }; 4482 emitCommonOMPTargetDirective(*this, S, CodeGen); 4483 } 4484 4485 void CodeGenFunction::EmitOMPCancellationPointDirective( 4486 const OMPCancellationPointDirective &S) { 4487 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4488 S.getCancelRegion()); 4489 } 4490 4491 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4492 const Expr *IfCond = nullptr; 4493 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4494 if (C->getNameModifier() == OMPD_unknown || 4495 C->getNameModifier() == OMPD_cancel) { 4496 IfCond = C->getCondition(); 4497 break; 4498 } 4499 } 4500 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4501 S.getCancelRegion()); 4502 } 4503 4504 CodeGenFunction::JumpDest 4505 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4506 if (Kind == OMPD_parallel || Kind == OMPD_task || 4507 Kind == OMPD_target_parallel) 4508 return ReturnBlock; 4509 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4510 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4511 Kind == OMPD_distribute_parallel_for || 4512 Kind == OMPD_target_parallel_for || 4513 Kind == OMPD_teams_distribute_parallel_for || 4514 Kind == OMPD_target_teams_distribute_parallel_for); 4515 return OMPCancelStack.getExitBlock(); 4516 } 4517 4518 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4519 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4520 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4521 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4522 auto OrigVarIt = C.varlist_begin(); 4523 auto InitIt = C.inits().begin(); 4524 for (const Expr *PvtVarIt : C.private_copies()) { 4525 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4526 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4527 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4528 4529 // In order to identify the right initializer we need to match the 4530 // declaration used by the mapping logic. In some cases we may get 4531 // OMPCapturedExprDecl that refers to the original declaration. 4532 const ValueDecl *MatchingVD = OrigVD; 4533 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4534 // OMPCapturedExprDecl are used to privative fields of the current 4535 // structure. 4536 const auto *ME = cast<MemberExpr>(OED->getInit()); 4537 assert(isa<CXXThisExpr>(ME->getBase()) && 4538 "Base should be the current struct!"); 4539 MatchingVD = ME->getMemberDecl(); 4540 } 4541 4542 // If we don't have information about the current list item, move on to 4543 // the next one. 4544 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4545 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4546 continue; 4547 4548 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4549 InitAddrIt, InitVD, 4550 PvtVD]() { 4551 // Initialize the temporary initialization variable with the address we 4552 // get from the runtime library. We have to cast the source address 4553 // because it is always a void *. References are materialized in the 4554 // privatization scope, so the initialization here disregards the fact 4555 // the original variable is a reference. 4556 QualType AddrQTy = 4557 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4558 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4559 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4560 setAddrOfLocalVar(InitVD, InitAddr); 4561 4562 // Emit private declaration, it will be initialized by the value we 4563 // declaration we just added to the local declarations map. 4564 EmitDecl(*PvtVD); 4565 4566 // The initialization variables reached its purpose in the emission 4567 // of the previous declaration, so we don't need it anymore. 4568 LocalDeclMap.erase(InitVD); 4569 4570 // Return the address of the private variable. 4571 return GetAddrOfLocalVar(PvtVD); 4572 }); 4573 assert(IsRegistered && "firstprivate var already registered as private"); 4574 // Silence the warning about unused variable. 4575 (void)IsRegistered; 4576 4577 ++OrigVarIt; 4578 ++InitIt; 4579 } 4580 } 4581 4582 // Generate the instructions for '#pragma omp target data' directive. 4583 void CodeGenFunction::EmitOMPTargetDataDirective( 4584 const OMPTargetDataDirective &S) { 4585 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4586 4587 // Create a pre/post action to signal the privatization of the device pointer. 4588 // This action can be replaced by the OpenMP runtime code generation to 4589 // deactivate privatization. 4590 bool PrivatizeDevicePointers = false; 4591 class DevicePointerPrivActionTy : public PrePostActionTy { 4592 bool &PrivatizeDevicePointers; 4593 4594 public: 4595 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4596 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4597 void Enter(CodeGenFunction &CGF) override { 4598 PrivatizeDevicePointers = true; 4599 } 4600 }; 4601 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4602 4603 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4604 CodeGenFunction &CGF, PrePostActionTy &Action) { 4605 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4606 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4607 }; 4608 4609 // Codegen that selects whether to generate the privatization code or not. 4610 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4611 &InnermostCodeGen](CodeGenFunction &CGF, 4612 PrePostActionTy &Action) { 4613 RegionCodeGenTy RCG(InnermostCodeGen); 4614 PrivatizeDevicePointers = false; 4615 4616 // Call the pre-action to change the status of PrivatizeDevicePointers if 4617 // needed. 4618 Action.Enter(CGF); 4619 4620 if (PrivatizeDevicePointers) { 4621 OMPPrivateScope PrivateScope(CGF); 4622 // Emit all instances of the use_device_ptr clause. 4623 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4624 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4625 Info.CaptureDeviceAddrMap); 4626 (void)PrivateScope.Privatize(); 4627 RCG(CGF); 4628 } else { 4629 RCG(CGF); 4630 } 4631 }; 4632 4633 // Forward the provided action to the privatization codegen. 4634 RegionCodeGenTy PrivRCG(PrivCodeGen); 4635 PrivRCG.setAction(Action); 4636 4637 // Notwithstanding the body of the region is emitted as inlined directive, 4638 // we don't use an inline scope as changes in the references inside the 4639 // region are expected to be visible outside, so we do not privative them. 4640 OMPLexicalScope Scope(CGF, S); 4641 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4642 PrivRCG); 4643 }; 4644 4645 RegionCodeGenTy RCG(CodeGen); 4646 4647 // If we don't have target devices, don't bother emitting the data mapping 4648 // code. 4649 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4650 RCG(*this); 4651 return; 4652 } 4653 4654 // Check if we have any if clause associated with the directive. 4655 const Expr *IfCond = nullptr; 4656 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4657 IfCond = C->getCondition(); 4658 4659 // Check if we have any device clause associated with the directive. 4660 const Expr *Device = nullptr; 4661 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4662 Device = C->getDevice(); 4663 4664 // Set the action to signal privatization of device pointers. 4665 RCG.setAction(PrivAction); 4666 4667 // Emit region code. 4668 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4669 Info); 4670 } 4671 4672 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4673 const OMPTargetEnterDataDirective &S) { 4674 // If we don't have target devices, don't bother emitting the data mapping 4675 // code. 4676 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4677 return; 4678 4679 // Check if we have any if clause associated with the directive. 4680 const Expr *IfCond = nullptr; 4681 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4682 IfCond = C->getCondition(); 4683 4684 // Check if we have any device clause associated with the directive. 4685 const Expr *Device = nullptr; 4686 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4687 Device = C->getDevice(); 4688 4689 OMPLexicalScope Scope(*this, S, OMPD_task); 4690 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4691 } 4692 4693 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4694 const OMPTargetExitDataDirective &S) { 4695 // If we don't have target devices, don't bother emitting the data mapping 4696 // code. 4697 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4698 return; 4699 4700 // Check if we have any if clause associated with the directive. 4701 const Expr *IfCond = nullptr; 4702 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4703 IfCond = C->getCondition(); 4704 4705 // Check if we have any device clause associated with the directive. 4706 const Expr *Device = nullptr; 4707 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4708 Device = C->getDevice(); 4709 4710 OMPLexicalScope Scope(*this, S, OMPD_task); 4711 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4712 } 4713 4714 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4715 const OMPTargetParallelDirective &S, 4716 PrePostActionTy &Action) { 4717 // Get the captured statement associated with the 'parallel' region. 4718 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4719 Action.Enter(CGF); 4720 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4721 Action.Enter(CGF); 4722 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4723 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4724 CGF.EmitOMPPrivateClause(S, PrivateScope); 4725 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4726 (void)PrivateScope.Privatize(); 4727 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4728 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4729 // TODO: Add support for clauses. 4730 CGF.EmitStmt(CS->getCapturedStmt()); 4731 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4732 }; 4733 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4734 emitEmptyBoundParameters); 4735 emitPostUpdateForReductionClause(CGF, S, 4736 [](CodeGenFunction &) { return nullptr; }); 4737 } 4738 4739 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4740 CodeGenModule &CGM, StringRef ParentName, 4741 const OMPTargetParallelDirective &S) { 4742 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4743 emitTargetParallelRegion(CGF, S, Action); 4744 }; 4745 llvm::Function *Fn; 4746 llvm::Constant *Addr; 4747 // Emit target region as a standalone region. 4748 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4749 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4750 assert(Fn && Addr && "Target device function emission failed."); 4751 } 4752 4753 void CodeGenFunction::EmitOMPTargetParallelDirective( 4754 const OMPTargetParallelDirective &S) { 4755 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4756 emitTargetParallelRegion(CGF, S, Action); 4757 }; 4758 emitCommonOMPTargetDirective(*this, S, CodeGen); 4759 } 4760 4761 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4762 const OMPTargetParallelForDirective &S, 4763 PrePostActionTy &Action) { 4764 Action.Enter(CGF); 4765 // Emit directive as a combined directive that consists of two implicit 4766 // directives: 'parallel' with 'for' directive. 4767 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4768 Action.Enter(CGF); 4769 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4770 CGF, OMPD_target_parallel_for, S.hasCancel()); 4771 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4772 emitDispatchForLoopBounds); 4773 }; 4774 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4775 emitEmptyBoundParameters); 4776 } 4777 4778 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4779 CodeGenModule &CGM, StringRef ParentName, 4780 const OMPTargetParallelForDirective &S) { 4781 // Emit SPMD target parallel for region as a standalone region. 4782 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4783 emitTargetParallelForRegion(CGF, S, Action); 4784 }; 4785 llvm::Function *Fn; 4786 llvm::Constant *Addr; 4787 // Emit target region as a standalone region. 4788 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4789 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4790 assert(Fn && Addr && "Target device function emission failed."); 4791 } 4792 4793 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4794 const OMPTargetParallelForDirective &S) { 4795 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4796 emitTargetParallelForRegion(CGF, S, Action); 4797 }; 4798 emitCommonOMPTargetDirective(*this, S, CodeGen); 4799 } 4800 4801 static void 4802 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4803 const OMPTargetParallelForSimdDirective &S, 4804 PrePostActionTy &Action) { 4805 Action.Enter(CGF); 4806 // Emit directive as a combined directive that consists of two implicit 4807 // directives: 'parallel' with 'for' directive. 4808 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4809 Action.Enter(CGF); 4810 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4811 emitDispatchForLoopBounds); 4812 }; 4813 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4814 emitEmptyBoundParameters); 4815 } 4816 4817 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4818 CodeGenModule &CGM, StringRef ParentName, 4819 const OMPTargetParallelForSimdDirective &S) { 4820 // Emit SPMD target parallel for region as a standalone region. 4821 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4822 emitTargetParallelForSimdRegion(CGF, S, Action); 4823 }; 4824 llvm::Function *Fn; 4825 llvm::Constant *Addr; 4826 // Emit target region as a standalone region. 4827 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4828 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4829 assert(Fn && Addr && "Target device function emission failed."); 4830 } 4831 4832 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4833 const OMPTargetParallelForSimdDirective &S) { 4834 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4835 emitTargetParallelForSimdRegion(CGF, S, Action); 4836 }; 4837 emitCommonOMPTargetDirective(*this, S, CodeGen); 4838 } 4839 4840 /// Emit a helper variable and return corresponding lvalue. 4841 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4842 const ImplicitParamDecl *PVD, 4843 CodeGenFunction::OMPPrivateScope &Privates) { 4844 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4845 Privates.addPrivate(VDecl, 4846 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 4847 } 4848 4849 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4850 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4851 // Emit outlined function for task construct. 4852 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4853 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4854 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4855 const Expr *IfCond = nullptr; 4856 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4857 if (C->getNameModifier() == OMPD_unknown || 4858 C->getNameModifier() == OMPD_taskloop) { 4859 IfCond = C->getCondition(); 4860 break; 4861 } 4862 } 4863 4864 OMPTaskDataTy Data; 4865 // Check if taskloop must be emitted without taskgroup. 4866 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4867 // TODO: Check if we should emit tied or untied task. 4868 Data.Tied = true; 4869 // Set scheduling for taskloop 4870 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4871 // grainsize clause 4872 Data.Schedule.setInt(/*IntVal=*/false); 4873 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4874 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4875 // num_tasks clause 4876 Data.Schedule.setInt(/*IntVal=*/true); 4877 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4878 } 4879 4880 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4881 // if (PreCond) { 4882 // for (IV in 0..LastIteration) BODY; 4883 // <Final counter/linear vars updates>; 4884 // } 4885 // 4886 4887 // Emit: if (PreCond) - begin. 4888 // If the condition constant folds and can be elided, avoid emitting the 4889 // whole loop. 4890 bool CondConstant; 4891 llvm::BasicBlock *ContBlock = nullptr; 4892 OMPLoopScope PreInitScope(CGF, S); 4893 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4894 if (!CondConstant) 4895 return; 4896 } else { 4897 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4898 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4899 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4900 CGF.getProfileCount(&S)); 4901 CGF.EmitBlock(ThenBlock); 4902 CGF.incrementProfileCounter(&S); 4903 } 4904 4905 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4906 CGF.EmitOMPSimdInit(S); 4907 4908 OMPPrivateScope LoopScope(CGF); 4909 // Emit helper vars inits. 4910 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4911 auto *I = CS->getCapturedDecl()->param_begin(); 4912 auto *LBP = std::next(I, LowerBound); 4913 auto *UBP = std::next(I, UpperBound); 4914 auto *STP = std::next(I, Stride); 4915 auto *LIP = std::next(I, LastIter); 4916 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4917 LoopScope); 4918 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4919 LoopScope); 4920 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4921 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4922 LoopScope); 4923 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4924 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4925 (void)LoopScope.Privatize(); 4926 // Emit the loop iteration variable. 4927 const Expr *IVExpr = S.getIterationVariable(); 4928 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4929 CGF.EmitVarDecl(*IVDecl); 4930 CGF.EmitIgnoredExpr(S.getInit()); 4931 4932 // Emit the iterations count variable. 4933 // If it is not a variable, Sema decided to calculate iterations count on 4934 // each iteration (e.g., it is foldable into a constant). 4935 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4936 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4937 // Emit calculation of the iterations count. 4938 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4939 } 4940 4941 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4942 S.getInc(), 4943 [&S](CodeGenFunction &CGF) { 4944 CGF.EmitOMPLoopBody(S, JumpDest()); 4945 CGF.EmitStopPoint(&S); 4946 }, 4947 [](CodeGenFunction &) {}); 4948 // Emit: if (PreCond) - end. 4949 if (ContBlock) { 4950 CGF.EmitBranch(ContBlock); 4951 CGF.EmitBlock(ContBlock, true); 4952 } 4953 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4954 if (HasLastprivateClause) { 4955 CGF.EmitOMPLastprivateClauseFinal( 4956 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4957 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4958 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4959 (*LIP)->getType(), S.getBeginLoc()))); 4960 } 4961 }; 4962 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4963 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 4964 const OMPTaskDataTy &Data) { 4965 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 4966 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 4967 OMPLoopScope PreInitScope(CGF, S); 4968 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 4969 OutlinedFn, SharedsTy, 4970 CapturedStruct, IfCond, Data); 4971 }; 4972 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 4973 CodeGen); 4974 }; 4975 if (Data.Nogroup) { 4976 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 4977 } else { 4978 CGM.getOpenMPRuntime().emitTaskgroupRegion( 4979 *this, 4980 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 4981 PrePostActionTy &Action) { 4982 Action.Enter(CGF); 4983 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 4984 Data); 4985 }, 4986 S.getBeginLoc()); 4987 } 4988 } 4989 4990 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 4991 EmitOMPTaskLoopBasedDirective(S); 4992 } 4993 4994 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 4995 const OMPTaskLoopSimdDirective &S) { 4996 EmitOMPTaskLoopBasedDirective(S); 4997 } 4998 4999 // Generate the instructions for '#pragma omp target update' directive. 5000 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5001 const OMPTargetUpdateDirective &S) { 5002 // If we don't have target devices, don't bother emitting the data mapping 5003 // code. 5004 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5005 return; 5006 5007 // Check if we have any if clause associated with the directive. 5008 const Expr *IfCond = nullptr; 5009 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5010 IfCond = C->getCondition(); 5011 5012 // Check if we have any device clause associated with the directive. 5013 const Expr *Device = nullptr; 5014 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5015 Device = C->getDevice(); 5016 5017 OMPLexicalScope Scope(*this, S, OMPD_task); 5018 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5019 } 5020 5021 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5022 const OMPExecutableDirective &D) { 5023 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5024 return; 5025 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5026 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5027 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5028 } else { 5029 OMPPrivateScope LoopGlobals(CGF); 5030 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5031 for (const Expr *E : LD->counters()) { 5032 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5033 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5034 LValue GlobLVal = CGF.EmitLValue(E); 5035 LoopGlobals.addPrivate( 5036 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5037 } 5038 if (isa<OMPCapturedExprDecl>(VD)) { 5039 // Emit only those that were not explicitly referenced in clauses. 5040 if (!CGF.LocalDeclMap.count(VD)) 5041 CGF.EmitVarDecl(*VD); 5042 } 5043 } 5044 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5045 if (!C->getNumForLoops()) 5046 continue; 5047 for (unsigned I = LD->getCollapsedNumber(), 5048 E = C->getLoopNumIterations().size(); 5049 I < E; ++I) { 5050 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5051 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5052 // Emit only those that were not explicitly referenced in clauses. 5053 if (!CGF.LocalDeclMap.count(VD)) 5054 CGF.EmitVarDecl(*VD); 5055 } 5056 } 5057 } 5058 } 5059 LoopGlobals.Privatize(); 5060 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5061 } 5062 }; 5063 OMPSimdLexicalScope Scope(*this, D); 5064 CGM.getOpenMPRuntime().emitInlinedDirective( 5065 *this, 5066 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5067 : D.getDirectiveKind(), 5068 CodeGen); 5069 } 5070 5071