1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/Stmt.h" 22 #include "clang/AST/StmtOpenMP.h" 23 #include "clang/Basic/PrettyStackTrace.h" 24 using namespace clang; 25 using namespace CodeGen; 26 using namespace llvm::omp; 27 28 namespace { 29 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 30 /// for captured expressions. 31 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 32 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 33 for (const auto *C : S.clauses()) { 34 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 35 if (const auto *PreInit = 36 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 37 for (const auto *I : PreInit->decls()) { 38 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 39 CGF.EmitVarDecl(cast<VarDecl>(*I)); 40 } else { 41 CodeGenFunction::AutoVarEmission Emission = 42 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 43 CGF.EmitAutoVarCleanups(Emission); 44 } 45 } 46 } 47 } 48 } 49 } 50 CodeGenFunction::OMPPrivateScope InlinedShareds; 51 52 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 53 return CGF.LambdaCaptureFields.lookup(VD) || 54 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 55 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 56 } 57 58 public: 59 OMPLexicalScope( 60 CodeGenFunction &CGF, const OMPExecutableDirective &S, 61 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 62 const bool EmitPreInitStmt = true) 63 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 64 InlinedShareds(CGF) { 65 if (EmitPreInitStmt) 66 emitPreInitStmt(CGF, S); 67 if (!CapturedRegion.hasValue()) 68 return; 69 assert(S.hasAssociatedStmt() && 70 "Expected associated statement for inlined directive."); 71 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 72 for (const auto &C : CS->captures()) { 73 if (C.capturesVariable() || C.capturesVariableByCopy()) { 74 auto *VD = C.getCapturedVar(); 75 assert(VD == VD->getCanonicalDecl() && 76 "Canonical decl must be captured."); 77 DeclRefExpr DRE( 78 CGF.getContext(), const_cast<VarDecl *>(VD), 79 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 80 InlinedShareds.isGlobalVarCaptured(VD)), 81 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 82 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 83 return CGF.EmitLValue(&DRE).getAddress(CGF); 84 }); 85 } 86 } 87 (void)InlinedShareds.Privatize(); 88 } 89 }; 90 91 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 92 /// for captured expressions. 93 class OMPParallelScope final : public OMPLexicalScope { 94 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 95 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 96 return !(isOpenMPTargetExecutionDirective(Kind) || 97 isOpenMPLoopBoundSharingDirective(Kind)) && 98 isOpenMPParallelDirective(Kind); 99 } 100 101 public: 102 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 103 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 104 EmitPreInitStmt(S)) {} 105 }; 106 107 /// Lexical scope for OpenMP teams construct, that handles correct codegen 108 /// for captured expressions. 109 class OMPTeamsScope final : public OMPLexicalScope { 110 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 111 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 112 return !isOpenMPTargetExecutionDirective(Kind) && 113 isOpenMPTeamsDirective(Kind); 114 } 115 116 public: 117 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 118 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 119 EmitPreInitStmt(S)) {} 120 }; 121 122 /// Private scope for OpenMP loop-based directives, that supports capturing 123 /// of used expression from loop statement. 124 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 125 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 126 CodeGenFunction::OMPMapVars PreCondVars; 127 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 128 for (const auto *E : S.counters()) { 129 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 130 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 131 (void)PreCondVars.setVarAddr( 132 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 133 } 134 // Mark private vars as undefs. 135 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 136 for (const Expr *IRef : C->varlists()) { 137 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 138 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 139 (void)PreCondVars.setVarAddr( 140 CGF, OrigVD, 141 Address(llvm::UndefValue::get( 142 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 143 OrigVD->getType().getNonReferenceType()))), 144 CGF.getContext().getDeclAlign(OrigVD))); 145 } 146 } 147 } 148 (void)PreCondVars.apply(CGF); 149 // Emit init, __range and __end variables for C++ range loops. 150 const Stmt *Body = 151 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 152 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 153 Body = OMPLoopDirective::tryToFindNextInnerLoop( 154 Body, /*TryImperfectlyNestedLoops=*/true); 155 if (auto *For = dyn_cast<ForStmt>(Body)) { 156 Body = For->getBody(); 157 } else { 158 assert(isa<CXXForRangeStmt>(Body) && 159 "Expected canonical for loop or range-based for loop."); 160 auto *CXXFor = cast<CXXForRangeStmt>(Body); 161 if (const Stmt *Init = CXXFor->getInit()) 162 CGF.EmitStmt(Init); 163 CGF.EmitStmt(CXXFor->getRangeStmt()); 164 CGF.EmitStmt(CXXFor->getEndStmt()); 165 Body = CXXFor->getBody(); 166 } 167 } 168 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 169 for (const auto *I : PreInits->decls()) 170 CGF.EmitVarDecl(cast<VarDecl>(*I)); 171 } 172 PreCondVars.restore(CGF); 173 } 174 175 public: 176 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 177 : CodeGenFunction::RunCleanupsScope(CGF) { 178 emitPreInitStmt(CGF, S); 179 } 180 }; 181 182 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 183 CodeGenFunction::OMPPrivateScope InlinedShareds; 184 185 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 186 return CGF.LambdaCaptureFields.lookup(VD) || 187 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 188 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 189 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 190 } 191 192 public: 193 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 194 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 195 InlinedShareds(CGF) { 196 for (const auto *C : S.clauses()) { 197 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 198 if (const auto *PreInit = 199 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 200 for (const auto *I : PreInit->decls()) { 201 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 202 CGF.EmitVarDecl(cast<VarDecl>(*I)); 203 } else { 204 CodeGenFunction::AutoVarEmission Emission = 205 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 206 CGF.EmitAutoVarCleanups(Emission); 207 } 208 } 209 } 210 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 211 for (const Expr *E : UDP->varlists()) { 212 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 213 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 214 CGF.EmitVarDecl(*OED); 215 } 216 } 217 } 218 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 219 CGF.EmitOMPPrivateClause(S, InlinedShareds); 220 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 221 if (const Expr *E = TG->getReductionRef()) 222 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 223 } 224 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 225 while (CS) { 226 for (auto &C : CS->captures()) { 227 if (C.capturesVariable() || C.capturesVariableByCopy()) { 228 auto *VD = C.getCapturedVar(); 229 assert(VD == VD->getCanonicalDecl() && 230 "Canonical decl must be captured."); 231 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 232 isCapturedVar(CGF, VD) || 233 (CGF.CapturedStmtInfo && 234 InlinedShareds.isGlobalVarCaptured(VD)), 235 VD->getType().getNonReferenceType(), VK_LValue, 236 C.getLocation()); 237 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 238 return CGF.EmitLValue(&DRE).getAddress(CGF); 239 }); 240 } 241 } 242 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 243 } 244 (void)InlinedShareds.Privatize(); 245 } 246 }; 247 248 } // namespace 249 250 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 251 const OMPExecutableDirective &S, 252 const RegionCodeGenTy &CodeGen); 253 254 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 255 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 256 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 257 OrigVD = OrigVD->getCanonicalDecl(); 258 bool IsCaptured = 259 LambdaCaptureFields.lookup(OrigVD) || 260 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 261 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 262 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 263 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 264 return EmitLValue(&DRE); 265 } 266 } 267 return EmitLValue(E); 268 } 269 270 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 271 ASTContext &C = getContext(); 272 llvm::Value *Size = nullptr; 273 auto SizeInChars = C.getTypeSizeInChars(Ty); 274 if (SizeInChars.isZero()) { 275 // getTypeSizeInChars() returns 0 for a VLA. 276 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 277 VlaSizePair VlaSize = getVLASize(VAT); 278 Ty = VlaSize.Type; 279 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 280 : VlaSize.NumElts; 281 } 282 SizeInChars = C.getTypeSizeInChars(Ty); 283 if (SizeInChars.isZero()) 284 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 285 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 286 } 287 return CGM.getSize(SizeInChars); 288 } 289 290 void CodeGenFunction::GenerateOpenMPCapturedVars( 291 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 292 const RecordDecl *RD = S.getCapturedRecordDecl(); 293 auto CurField = RD->field_begin(); 294 auto CurCap = S.captures().begin(); 295 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 296 E = S.capture_init_end(); 297 I != E; ++I, ++CurField, ++CurCap) { 298 if (CurField->hasCapturedVLAType()) { 299 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 300 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 301 CapturedVars.push_back(Val); 302 } else if (CurCap->capturesThis()) { 303 CapturedVars.push_back(CXXThisValue); 304 } else if (CurCap->capturesVariableByCopy()) { 305 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 306 307 // If the field is not a pointer, we need to save the actual value 308 // and load it as a void pointer. 309 if (!CurField->getType()->isAnyPointerType()) { 310 ASTContext &Ctx = getContext(); 311 Address DstAddr = CreateMemTemp( 312 Ctx.getUIntPtrType(), 313 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 314 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 315 316 llvm::Value *SrcAddrVal = EmitScalarConversion( 317 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 318 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 319 LValue SrcLV = 320 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 321 322 // Store the value using the source type pointer. 323 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 324 325 // Load the value using the destination type pointer. 326 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 327 } 328 CapturedVars.push_back(CV); 329 } else { 330 assert(CurCap->capturesVariable() && "Expected capture by reference."); 331 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 332 } 333 } 334 } 335 336 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 337 QualType DstType, StringRef Name, 338 LValue AddrLV) { 339 ASTContext &Ctx = CGF.getContext(); 340 341 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 342 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 343 Ctx.getPointerType(DstType), Loc); 344 Address TmpAddr = 345 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 346 .getAddress(CGF); 347 return TmpAddr; 348 } 349 350 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 351 if (T->isLValueReferenceType()) 352 return C.getLValueReferenceType( 353 getCanonicalParamType(C, T.getNonReferenceType()), 354 /*SpelledAsLValue=*/false); 355 if (T->isPointerType()) 356 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 357 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 358 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 359 return getCanonicalParamType(C, VLA->getElementType()); 360 if (!A->isVariablyModifiedType()) 361 return C.getCanonicalType(T); 362 } 363 return C.getCanonicalParamType(T); 364 } 365 366 namespace { 367 /// Contains required data for proper outlined function codegen. 368 struct FunctionOptions { 369 /// Captured statement for which the function is generated. 370 const CapturedStmt *S = nullptr; 371 /// true if cast to/from UIntPtr is required for variables captured by 372 /// value. 373 const bool UIntPtrCastRequired = true; 374 /// true if only casted arguments must be registered as local args or VLA 375 /// sizes. 376 const bool RegisterCastedArgsOnly = false; 377 /// Name of the generated function. 378 const StringRef FunctionName; 379 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 380 bool RegisterCastedArgsOnly, 381 StringRef FunctionName) 382 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 383 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 384 FunctionName(FunctionName) {} 385 }; 386 } 387 388 static llvm::Function *emitOutlinedFunctionPrologue( 389 CodeGenFunction &CGF, FunctionArgList &Args, 390 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 391 &LocalAddrs, 392 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 393 &VLASizes, 394 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 395 const CapturedDecl *CD = FO.S->getCapturedDecl(); 396 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 397 assert(CD->hasBody() && "missing CapturedDecl body"); 398 399 CXXThisValue = nullptr; 400 // Build the argument list. 401 CodeGenModule &CGM = CGF.CGM; 402 ASTContext &Ctx = CGM.getContext(); 403 FunctionArgList TargetArgs; 404 Args.append(CD->param_begin(), 405 std::next(CD->param_begin(), CD->getContextParamPosition())); 406 TargetArgs.append( 407 CD->param_begin(), 408 std::next(CD->param_begin(), CD->getContextParamPosition())); 409 auto I = FO.S->captures().begin(); 410 FunctionDecl *DebugFunctionDecl = nullptr; 411 if (!FO.UIntPtrCastRequired) { 412 FunctionProtoType::ExtProtoInfo EPI; 413 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 414 DebugFunctionDecl = FunctionDecl::Create( 415 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 416 SourceLocation(), DeclarationName(), FunctionTy, 417 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 418 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 419 } 420 for (const FieldDecl *FD : RD->fields()) { 421 QualType ArgType = FD->getType(); 422 IdentifierInfo *II = nullptr; 423 VarDecl *CapVar = nullptr; 424 425 // If this is a capture by copy and the type is not a pointer, the outlined 426 // function argument type should be uintptr and the value properly casted to 427 // uintptr. This is necessary given that the runtime library is only able to 428 // deal with pointers. We can pass in the same way the VLA type sizes to the 429 // outlined function. 430 if (FO.UIntPtrCastRequired && 431 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 432 I->capturesVariableArrayType())) 433 ArgType = Ctx.getUIntPtrType(); 434 435 if (I->capturesVariable() || I->capturesVariableByCopy()) { 436 CapVar = I->getCapturedVar(); 437 II = CapVar->getIdentifier(); 438 } else if (I->capturesThis()) { 439 II = &Ctx.Idents.get("this"); 440 } else { 441 assert(I->capturesVariableArrayType()); 442 II = &Ctx.Idents.get("vla"); 443 } 444 if (ArgType->isVariablyModifiedType()) 445 ArgType = getCanonicalParamType(Ctx, ArgType); 446 VarDecl *Arg; 447 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 448 Arg = ParmVarDecl::Create( 449 Ctx, DebugFunctionDecl, 450 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 451 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 452 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 453 } else { 454 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 455 II, ArgType, ImplicitParamDecl::Other); 456 } 457 Args.emplace_back(Arg); 458 // Do not cast arguments if we emit function with non-original types. 459 TargetArgs.emplace_back( 460 FO.UIntPtrCastRequired 461 ? Arg 462 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 463 ++I; 464 } 465 Args.append( 466 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 467 CD->param_end()); 468 TargetArgs.append( 469 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 470 CD->param_end()); 471 472 // Create the function declaration. 473 const CGFunctionInfo &FuncInfo = 474 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 475 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 476 477 auto *F = 478 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 479 FO.FunctionName, &CGM.getModule()); 480 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 481 if (CD->isNothrow()) 482 F->setDoesNotThrow(); 483 F->setDoesNotRecurse(); 484 485 // Generate the function. 486 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 487 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 488 unsigned Cnt = CD->getContextParamPosition(); 489 I = FO.S->captures().begin(); 490 for (const FieldDecl *FD : RD->fields()) { 491 // Do not map arguments if we emit function with non-original types. 492 Address LocalAddr(Address::invalid()); 493 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 494 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 495 TargetArgs[Cnt]); 496 } else { 497 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 498 } 499 // If we are capturing a pointer by copy we don't need to do anything, just 500 // use the value that we get from the arguments. 501 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 502 const VarDecl *CurVD = I->getCapturedVar(); 503 if (!FO.RegisterCastedArgsOnly) 504 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 505 ++Cnt; 506 ++I; 507 continue; 508 } 509 510 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 511 AlignmentSource::Decl); 512 if (FD->hasCapturedVLAType()) { 513 if (FO.UIntPtrCastRequired) { 514 ArgLVal = CGF.MakeAddrLValue( 515 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 516 Args[Cnt]->getName(), ArgLVal), 517 FD->getType(), AlignmentSource::Decl); 518 } 519 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 520 const VariableArrayType *VAT = FD->getCapturedVLAType(); 521 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 522 } else if (I->capturesVariable()) { 523 const VarDecl *Var = I->getCapturedVar(); 524 QualType VarTy = Var->getType(); 525 Address ArgAddr = ArgLVal.getAddress(CGF); 526 if (ArgLVal.getType()->isLValueReferenceType()) { 527 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 528 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 529 assert(ArgLVal.getType()->isPointerType()); 530 ArgAddr = CGF.EmitLoadOfPointer( 531 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 532 } 533 if (!FO.RegisterCastedArgsOnly) { 534 LocalAddrs.insert( 535 {Args[Cnt], 536 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 537 } 538 } else if (I->capturesVariableByCopy()) { 539 assert(!FD->getType()->isAnyPointerType() && 540 "Not expecting a captured pointer."); 541 const VarDecl *Var = I->getCapturedVar(); 542 LocalAddrs.insert({Args[Cnt], 543 {Var, FO.UIntPtrCastRequired 544 ? castValueFromUintptr( 545 CGF, I->getLocation(), FD->getType(), 546 Args[Cnt]->getName(), ArgLVal) 547 : ArgLVal.getAddress(CGF)}}); 548 } else { 549 // If 'this' is captured, load it into CXXThisValue. 550 assert(I->capturesThis()); 551 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 552 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 553 } 554 ++Cnt; 555 ++I; 556 } 557 558 return F; 559 } 560 561 llvm::Function * 562 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 563 assert( 564 CapturedStmtInfo && 565 "CapturedStmtInfo should be set when generating the captured function"); 566 const CapturedDecl *CD = S.getCapturedDecl(); 567 // Build the argument list. 568 bool NeedWrapperFunction = 569 getDebugInfo() && 570 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 571 FunctionArgList Args; 572 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 573 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 574 SmallString<256> Buffer; 575 llvm::raw_svector_ostream Out(Buffer); 576 Out << CapturedStmtInfo->getHelperName(); 577 if (NeedWrapperFunction) 578 Out << "_debug__"; 579 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 580 Out.str()); 581 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 582 VLASizes, CXXThisValue, FO); 583 CodeGenFunction::OMPPrivateScope LocalScope(*this); 584 for (const auto &LocalAddrPair : LocalAddrs) { 585 if (LocalAddrPair.second.first) { 586 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 587 return LocalAddrPair.second.second; 588 }); 589 } 590 } 591 (void)LocalScope.Privatize(); 592 for (const auto &VLASizePair : VLASizes) 593 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 594 PGO.assignRegionCounters(GlobalDecl(CD), F); 595 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 596 (void)LocalScope.ForceCleanup(); 597 FinishFunction(CD->getBodyRBrace()); 598 if (!NeedWrapperFunction) 599 return F; 600 601 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 602 /*RegisterCastedArgsOnly=*/true, 603 CapturedStmtInfo->getHelperName()); 604 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 605 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 606 Args.clear(); 607 LocalAddrs.clear(); 608 VLASizes.clear(); 609 llvm::Function *WrapperF = 610 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 611 WrapperCGF.CXXThisValue, WrapperFO); 612 llvm::SmallVector<llvm::Value *, 4> CallArgs; 613 for (const auto *Arg : Args) { 614 llvm::Value *CallArg; 615 auto I = LocalAddrs.find(Arg); 616 if (I != LocalAddrs.end()) { 617 LValue LV = WrapperCGF.MakeAddrLValue( 618 I->second.second, 619 I->second.first ? I->second.first->getType() : Arg->getType(), 620 AlignmentSource::Decl); 621 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 622 } else { 623 auto EI = VLASizes.find(Arg); 624 if (EI != VLASizes.end()) { 625 CallArg = EI->second.second; 626 } else { 627 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 628 Arg->getType(), 629 AlignmentSource::Decl); 630 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 631 } 632 } 633 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 634 } 635 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 636 F, CallArgs); 637 WrapperCGF.FinishFunction(); 638 return WrapperF; 639 } 640 641 //===----------------------------------------------------------------------===// 642 // OpenMP Directive Emission 643 //===----------------------------------------------------------------------===// 644 void CodeGenFunction::EmitOMPAggregateAssign( 645 Address DestAddr, Address SrcAddr, QualType OriginalType, 646 const llvm::function_ref<void(Address, Address)> CopyGen) { 647 // Perform element-by-element initialization. 648 QualType ElementTy; 649 650 // Drill down to the base element type on both arrays. 651 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 652 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 653 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 654 655 llvm::Value *SrcBegin = SrcAddr.getPointer(); 656 llvm::Value *DestBegin = DestAddr.getPointer(); 657 // Cast from pointer to array type to pointer to single element. 658 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 659 // The basic structure here is a while-do loop. 660 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 661 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 662 llvm::Value *IsEmpty = 663 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 664 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 665 666 // Enter the loop body, making that address the current address. 667 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 668 EmitBlock(BodyBB); 669 670 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 671 672 llvm::PHINode *SrcElementPHI = 673 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 674 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 675 Address SrcElementCurrent = 676 Address(SrcElementPHI, 677 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 678 679 llvm::PHINode *DestElementPHI = 680 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 681 DestElementPHI->addIncoming(DestBegin, EntryBB); 682 Address DestElementCurrent = 683 Address(DestElementPHI, 684 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 685 686 // Emit copy. 687 CopyGen(DestElementCurrent, SrcElementCurrent); 688 689 // Shift the address forward by one element. 690 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 691 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 692 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 693 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 694 // Check whether we've reached the end. 695 llvm::Value *Done = 696 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 697 Builder.CreateCondBr(Done, DoneBB, BodyBB); 698 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 699 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 700 701 // Done. 702 EmitBlock(DoneBB, /*IsFinished=*/true); 703 } 704 705 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 706 Address SrcAddr, const VarDecl *DestVD, 707 const VarDecl *SrcVD, const Expr *Copy) { 708 if (OriginalType->isArrayType()) { 709 const auto *BO = dyn_cast<BinaryOperator>(Copy); 710 if (BO && BO->getOpcode() == BO_Assign) { 711 // Perform simple memcpy for simple copying. 712 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 713 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 714 EmitAggregateAssign(Dest, Src, OriginalType); 715 } else { 716 // For arrays with complex element types perform element by element 717 // copying. 718 EmitOMPAggregateAssign( 719 DestAddr, SrcAddr, OriginalType, 720 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 721 // Working with the single array element, so have to remap 722 // destination and source variables to corresponding array 723 // elements. 724 CodeGenFunction::OMPPrivateScope Remap(*this); 725 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 726 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 727 (void)Remap.Privatize(); 728 EmitIgnoredExpr(Copy); 729 }); 730 } 731 } else { 732 // Remap pseudo source variable to private copy. 733 CodeGenFunction::OMPPrivateScope Remap(*this); 734 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 735 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 736 (void)Remap.Privatize(); 737 // Emit copying of the whole variable. 738 EmitIgnoredExpr(Copy); 739 } 740 } 741 742 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 743 OMPPrivateScope &PrivateScope) { 744 if (!HaveInsertPoint()) 745 return false; 746 bool DeviceConstTarget = 747 getLangOpts().OpenMPIsDevice && 748 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 749 bool FirstprivateIsLastprivate = false; 750 llvm::DenseSet<const VarDecl *> Lastprivates; 751 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 752 for (const auto *D : C->varlists()) 753 Lastprivates.insert( 754 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 755 } 756 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 757 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 758 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 759 // Force emission of the firstprivate copy if the directive does not emit 760 // outlined function, like omp for, omp simd, omp distribute etc. 761 bool MustEmitFirstprivateCopy = 762 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 763 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 764 auto IRef = C->varlist_begin(); 765 auto InitsRef = C->inits().begin(); 766 for (const Expr *IInit : C->private_copies()) { 767 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 768 bool ThisFirstprivateIsLastprivate = 769 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 770 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 771 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 772 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 773 !FD->getType()->isReferenceType() && 774 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 775 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 776 ++IRef; 777 ++InitsRef; 778 continue; 779 } 780 // Do not emit copy for firstprivate constant variables in target regions, 781 // captured by reference. 782 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 783 FD && FD->getType()->isReferenceType() && 784 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 785 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 786 OrigVD); 787 ++IRef; 788 ++InitsRef; 789 continue; 790 } 791 FirstprivateIsLastprivate = 792 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 793 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 794 const auto *VDInit = 795 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 796 bool IsRegistered; 797 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 798 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 799 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 800 LValue OriginalLVal; 801 if (!FD) { 802 // Check if the firstprivate variable is just a constant value. 803 ConstantEmission CE = tryEmitAsConstant(&DRE); 804 if (CE && !CE.isReference()) { 805 // Constant value, no need to create a copy. 806 ++IRef; 807 ++InitsRef; 808 continue; 809 } 810 if (CE && CE.isReference()) { 811 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 812 } else { 813 assert(!CE && "Expected non-constant firstprivate."); 814 OriginalLVal = EmitLValue(&DRE); 815 } 816 } else { 817 OriginalLVal = EmitLValue(&DRE); 818 } 819 QualType Type = VD->getType(); 820 if (Type->isArrayType()) { 821 // Emit VarDecl with copy init for arrays. 822 // Get the address of the original variable captured in current 823 // captured region. 824 IsRegistered = PrivateScope.addPrivate( 825 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 826 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 827 const Expr *Init = VD->getInit(); 828 if (!isa<CXXConstructExpr>(Init) || 829 isTrivialInitializer(Init)) { 830 // Perform simple memcpy. 831 LValue Dest = 832 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 833 EmitAggregateAssign(Dest, OriginalLVal, Type); 834 } else { 835 EmitOMPAggregateAssign( 836 Emission.getAllocatedAddress(), 837 OriginalLVal.getAddress(*this), Type, 838 [this, VDInit, Init](Address DestElement, 839 Address SrcElement) { 840 // Clean up any temporaries needed by the 841 // initialization. 842 RunCleanupsScope InitScope(*this); 843 // Emit initialization for single element. 844 setAddrOfLocalVar(VDInit, SrcElement); 845 EmitAnyExprToMem(Init, DestElement, 846 Init->getType().getQualifiers(), 847 /*IsInitializer*/ false); 848 LocalDeclMap.erase(VDInit); 849 }); 850 } 851 EmitAutoVarCleanups(Emission); 852 return Emission.getAllocatedAddress(); 853 }); 854 } else { 855 Address OriginalAddr = OriginalLVal.getAddress(*this); 856 IsRegistered = PrivateScope.addPrivate( 857 OrigVD, [this, VDInit, OriginalAddr, VD]() { 858 // Emit private VarDecl with copy init. 859 // Remap temp VDInit variable to the address of the original 860 // variable (for proper handling of captured global variables). 861 setAddrOfLocalVar(VDInit, OriginalAddr); 862 EmitDecl(*VD); 863 LocalDeclMap.erase(VDInit); 864 return GetAddrOfLocalVar(VD); 865 }); 866 } 867 assert(IsRegistered && 868 "firstprivate var already registered as private"); 869 // Silence the warning about unused variable. 870 (void)IsRegistered; 871 } 872 ++IRef; 873 ++InitsRef; 874 } 875 } 876 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 877 } 878 879 void CodeGenFunction::EmitOMPPrivateClause( 880 const OMPExecutableDirective &D, 881 CodeGenFunction::OMPPrivateScope &PrivateScope) { 882 if (!HaveInsertPoint()) 883 return; 884 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 885 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 886 auto IRef = C->varlist_begin(); 887 for (const Expr *IInit : C->private_copies()) { 888 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 889 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 890 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 891 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 892 // Emit private VarDecl with copy init. 893 EmitDecl(*VD); 894 return GetAddrOfLocalVar(VD); 895 }); 896 assert(IsRegistered && "private var already registered as private"); 897 // Silence the warning about unused variable. 898 (void)IsRegistered; 899 } 900 ++IRef; 901 } 902 } 903 } 904 905 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 906 if (!HaveInsertPoint()) 907 return false; 908 // threadprivate_var1 = master_threadprivate_var1; 909 // operator=(threadprivate_var2, master_threadprivate_var2); 910 // ... 911 // __kmpc_barrier(&loc, global_tid); 912 llvm::DenseSet<const VarDecl *> CopiedVars; 913 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 914 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 915 auto IRef = C->varlist_begin(); 916 auto ISrcRef = C->source_exprs().begin(); 917 auto IDestRef = C->destination_exprs().begin(); 918 for (const Expr *AssignOp : C->assignment_ops()) { 919 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 920 QualType Type = VD->getType(); 921 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 922 // Get the address of the master variable. If we are emitting code with 923 // TLS support, the address is passed from the master as field in the 924 // captured declaration. 925 Address MasterAddr = Address::invalid(); 926 if (getLangOpts().OpenMPUseTLS && 927 getContext().getTargetInfo().isTLSSupported()) { 928 assert(CapturedStmtInfo->lookup(VD) && 929 "Copyin threadprivates should have been captured!"); 930 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 931 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 932 MasterAddr = EmitLValue(&DRE).getAddress(*this); 933 LocalDeclMap.erase(VD); 934 } else { 935 MasterAddr = 936 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 937 : CGM.GetAddrOfGlobal(VD), 938 getContext().getDeclAlign(VD)); 939 } 940 // Get the address of the threadprivate variable. 941 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 942 if (CopiedVars.size() == 1) { 943 // At first check if current thread is a master thread. If it is, no 944 // need to copy data. 945 CopyBegin = createBasicBlock("copyin.not.master"); 946 CopyEnd = createBasicBlock("copyin.not.master.end"); 947 Builder.CreateCondBr( 948 Builder.CreateICmpNE( 949 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 950 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 951 CGM.IntPtrTy)), 952 CopyBegin, CopyEnd); 953 EmitBlock(CopyBegin); 954 } 955 const auto *SrcVD = 956 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 957 const auto *DestVD = 958 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 959 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 960 } 961 ++IRef; 962 ++ISrcRef; 963 ++IDestRef; 964 } 965 } 966 if (CopyEnd) { 967 // Exit out of copying procedure for non-master thread. 968 EmitBlock(CopyEnd, /*IsFinished=*/true); 969 return true; 970 } 971 return false; 972 } 973 974 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 975 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 976 if (!HaveInsertPoint()) 977 return false; 978 bool HasAtLeastOneLastprivate = false; 979 llvm::DenseSet<const VarDecl *> SIMDLCVs; 980 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 981 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 982 for (const Expr *C : LoopDirective->counters()) { 983 SIMDLCVs.insert( 984 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 985 } 986 } 987 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 988 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 989 HasAtLeastOneLastprivate = true; 990 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 991 !getLangOpts().OpenMPSimd) 992 break; 993 auto IRef = C->varlist_begin(); 994 auto IDestRef = C->destination_exprs().begin(); 995 for (const Expr *IInit : C->private_copies()) { 996 // Keep the address of the original variable for future update at the end 997 // of the loop. 998 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 999 // Taskloops do not require additional initialization, it is done in 1000 // runtime support library. 1001 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1002 const auto *DestVD = 1003 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1004 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1005 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1006 /*RefersToEnclosingVariableOrCapture=*/ 1007 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1008 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1009 return EmitLValue(&DRE).getAddress(*this); 1010 }); 1011 // Check if the variable is also a firstprivate: in this case IInit is 1012 // not generated. Initialization of this variable will happen in codegen 1013 // for 'firstprivate' clause. 1014 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1015 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1016 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 1017 // Emit private VarDecl with copy init. 1018 EmitDecl(*VD); 1019 return GetAddrOfLocalVar(VD); 1020 }); 1021 assert(IsRegistered && 1022 "lastprivate var already registered as private"); 1023 (void)IsRegistered; 1024 } 1025 } 1026 ++IRef; 1027 ++IDestRef; 1028 } 1029 } 1030 return HasAtLeastOneLastprivate; 1031 } 1032 1033 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1034 const OMPExecutableDirective &D, bool NoFinals, 1035 llvm::Value *IsLastIterCond) { 1036 if (!HaveInsertPoint()) 1037 return; 1038 // Emit following code: 1039 // if (<IsLastIterCond>) { 1040 // orig_var1 = private_orig_var1; 1041 // ... 1042 // orig_varn = private_orig_varn; 1043 // } 1044 llvm::BasicBlock *ThenBB = nullptr; 1045 llvm::BasicBlock *DoneBB = nullptr; 1046 if (IsLastIterCond) { 1047 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1048 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1049 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1050 EmitBlock(ThenBB); 1051 } 1052 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1053 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1054 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1055 auto IC = LoopDirective->counters().begin(); 1056 for (const Expr *F : LoopDirective->finals()) { 1057 const auto *D = 1058 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1059 if (NoFinals) 1060 AlreadyEmittedVars.insert(D); 1061 else 1062 LoopCountersAndUpdates[D] = F; 1063 ++IC; 1064 } 1065 } 1066 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1067 auto IRef = C->varlist_begin(); 1068 auto ISrcRef = C->source_exprs().begin(); 1069 auto IDestRef = C->destination_exprs().begin(); 1070 for (const Expr *AssignOp : C->assignment_ops()) { 1071 const auto *PrivateVD = 1072 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1073 QualType Type = PrivateVD->getType(); 1074 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1075 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1076 // If lastprivate variable is a loop control variable for loop-based 1077 // directive, update its value before copyin back to original 1078 // variable. 1079 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1080 EmitIgnoredExpr(FinalExpr); 1081 const auto *SrcVD = 1082 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1083 const auto *DestVD = 1084 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1085 // Get the address of the original variable. 1086 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1087 // Get the address of the private variable. 1088 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1089 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1090 PrivateAddr = 1091 Address(Builder.CreateLoad(PrivateAddr), 1092 getNaturalTypeAlignment(RefTy->getPointeeType())); 1093 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1094 } 1095 ++IRef; 1096 ++ISrcRef; 1097 ++IDestRef; 1098 } 1099 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1100 EmitIgnoredExpr(PostUpdate); 1101 } 1102 if (IsLastIterCond) 1103 EmitBlock(DoneBB, /*IsFinished=*/true); 1104 } 1105 1106 void CodeGenFunction::EmitOMPReductionClauseInit( 1107 const OMPExecutableDirective &D, 1108 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1109 if (!HaveInsertPoint()) 1110 return; 1111 SmallVector<const Expr *, 4> Shareds; 1112 SmallVector<const Expr *, 4> Privates; 1113 SmallVector<const Expr *, 4> ReductionOps; 1114 SmallVector<const Expr *, 4> LHSs; 1115 SmallVector<const Expr *, 4> RHSs; 1116 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1117 auto IPriv = C->privates().begin(); 1118 auto IRed = C->reduction_ops().begin(); 1119 auto ILHS = C->lhs_exprs().begin(); 1120 auto IRHS = C->rhs_exprs().begin(); 1121 for (const Expr *Ref : C->varlists()) { 1122 Shareds.emplace_back(Ref); 1123 Privates.emplace_back(*IPriv); 1124 ReductionOps.emplace_back(*IRed); 1125 LHSs.emplace_back(*ILHS); 1126 RHSs.emplace_back(*IRHS); 1127 std::advance(IPriv, 1); 1128 std::advance(IRed, 1); 1129 std::advance(ILHS, 1); 1130 std::advance(IRHS, 1); 1131 } 1132 } 1133 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1134 unsigned Count = 0; 1135 auto ILHS = LHSs.begin(); 1136 auto IRHS = RHSs.begin(); 1137 auto IPriv = Privates.begin(); 1138 for (const Expr *IRef : Shareds) { 1139 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1140 // Emit private VarDecl with reduction init. 1141 RedCG.emitSharedLValue(*this, Count); 1142 RedCG.emitAggregateType(*this, Count); 1143 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1144 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1145 RedCG.getSharedLValue(Count), 1146 [&Emission](CodeGenFunction &CGF) { 1147 CGF.EmitAutoVarInit(Emission); 1148 return true; 1149 }); 1150 EmitAutoVarCleanups(Emission); 1151 Address BaseAddr = RedCG.adjustPrivateAddress( 1152 *this, Count, Emission.getAllocatedAddress()); 1153 bool IsRegistered = PrivateScope.addPrivate( 1154 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1155 assert(IsRegistered && "private var already registered as private"); 1156 // Silence the warning about unused variable. 1157 (void)IsRegistered; 1158 1159 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1160 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1161 QualType Type = PrivateVD->getType(); 1162 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1163 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1164 // Store the address of the original variable associated with the LHS 1165 // implicit variable. 1166 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1167 return RedCG.getSharedLValue(Count).getAddress(*this); 1168 }); 1169 PrivateScope.addPrivate( 1170 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1171 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1172 isa<ArraySubscriptExpr>(IRef)) { 1173 // Store the address of the original variable associated with the LHS 1174 // implicit variable. 1175 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1176 return RedCG.getSharedLValue(Count).getAddress(*this); 1177 }); 1178 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1179 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1180 ConvertTypeForMem(RHSVD->getType()), 1181 "rhs.begin"); 1182 }); 1183 } else { 1184 QualType Type = PrivateVD->getType(); 1185 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1186 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1187 // Store the address of the original variable associated with the LHS 1188 // implicit variable. 1189 if (IsArray) { 1190 OriginalAddr = Builder.CreateElementBitCast( 1191 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1192 } 1193 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1194 PrivateScope.addPrivate( 1195 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1196 return IsArray 1197 ? Builder.CreateElementBitCast( 1198 GetAddrOfLocalVar(PrivateVD), 1199 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1200 : GetAddrOfLocalVar(PrivateVD); 1201 }); 1202 } 1203 ++ILHS; 1204 ++IRHS; 1205 ++IPriv; 1206 ++Count; 1207 } 1208 } 1209 1210 void CodeGenFunction::EmitOMPReductionClauseFinal( 1211 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1212 if (!HaveInsertPoint()) 1213 return; 1214 llvm::SmallVector<const Expr *, 8> Privates; 1215 llvm::SmallVector<const Expr *, 8> LHSExprs; 1216 llvm::SmallVector<const Expr *, 8> RHSExprs; 1217 llvm::SmallVector<const Expr *, 8> ReductionOps; 1218 bool HasAtLeastOneReduction = false; 1219 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1220 HasAtLeastOneReduction = true; 1221 Privates.append(C->privates().begin(), C->privates().end()); 1222 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1223 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1224 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1225 } 1226 if (HasAtLeastOneReduction) { 1227 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1228 isOpenMPParallelDirective(D.getDirectiveKind()) || 1229 ReductionKind == OMPD_simd; 1230 bool SimpleReduction = ReductionKind == OMPD_simd; 1231 // Emit nowait reduction if nowait clause is present or directive is a 1232 // parallel directive (it always has implicit barrier). 1233 CGM.getOpenMPRuntime().emitReduction( 1234 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1235 {WithNowait, SimpleReduction, ReductionKind}); 1236 } 1237 } 1238 1239 static void emitPostUpdateForReductionClause( 1240 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1241 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1242 if (!CGF.HaveInsertPoint()) 1243 return; 1244 llvm::BasicBlock *DoneBB = nullptr; 1245 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1246 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1247 if (!DoneBB) { 1248 if (llvm::Value *Cond = CondGen(CGF)) { 1249 // If the first post-update expression is found, emit conditional 1250 // block if it was requested. 1251 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1252 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1253 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1254 CGF.EmitBlock(ThenBB); 1255 } 1256 } 1257 CGF.EmitIgnoredExpr(PostUpdate); 1258 } 1259 } 1260 if (DoneBB) 1261 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1262 } 1263 1264 namespace { 1265 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1266 /// parallel function. This is necessary for combined constructs such as 1267 /// 'distribute parallel for' 1268 typedef llvm::function_ref<void(CodeGenFunction &, 1269 const OMPExecutableDirective &, 1270 llvm::SmallVectorImpl<llvm::Value *> &)> 1271 CodeGenBoundParametersTy; 1272 } // anonymous namespace 1273 1274 static void emitCommonOMPParallelDirective( 1275 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1276 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1277 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1278 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1279 llvm::Function *OutlinedFn = 1280 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1281 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1282 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1283 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1284 llvm::Value *NumThreads = 1285 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1286 /*IgnoreResultAssign=*/true); 1287 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1288 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1289 } 1290 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1291 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1292 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1293 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1294 } 1295 const Expr *IfCond = nullptr; 1296 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1297 if (C->getNameModifier() == OMPD_unknown || 1298 C->getNameModifier() == OMPD_parallel) { 1299 IfCond = C->getCondition(); 1300 break; 1301 } 1302 } 1303 1304 OMPParallelScope Scope(CGF, S); 1305 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1306 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1307 // lower and upper bounds with the pragma 'for' chunking mechanism. 1308 // The following lambda takes care of appending the lower and upper bound 1309 // parameters when necessary 1310 CodeGenBoundParameters(CGF, S, CapturedVars); 1311 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1312 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1313 CapturedVars, IfCond); 1314 } 1315 1316 static void emitEmptyBoundParameters(CodeGenFunction &, 1317 const OMPExecutableDirective &, 1318 llvm::SmallVectorImpl<llvm::Value *> &) {} 1319 1320 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1321 // Emit parallel region as a standalone region. 1322 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1323 Action.Enter(CGF); 1324 OMPPrivateScope PrivateScope(CGF); 1325 bool Copyins = CGF.EmitOMPCopyinClause(S); 1326 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1327 if (Copyins) { 1328 // Emit implicit barrier to synchronize threads and avoid data races on 1329 // propagation master's thread values of threadprivate variables to local 1330 // instances of that variables of all other implicit threads. 1331 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1332 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1333 /*ForceSimpleCall=*/true); 1334 } 1335 CGF.EmitOMPPrivateClause(S, PrivateScope); 1336 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1337 (void)PrivateScope.Privatize(); 1338 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1339 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1340 }; 1341 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1342 emitEmptyBoundParameters); 1343 emitPostUpdateForReductionClause(*this, S, 1344 [](CodeGenFunction &) { return nullptr; }); 1345 } 1346 1347 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1348 int MaxLevel, int Level = 0) { 1349 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1350 const Stmt *SimplifiedS = S->IgnoreContainers(); 1351 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1352 PrettyStackTraceLoc CrashInfo( 1353 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1354 "LLVM IR generation of compound statement ('{}')"); 1355 1356 // Keep track of the current cleanup stack depth, including debug scopes. 1357 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1358 for (const Stmt *CurStmt : CS->body()) 1359 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1360 return; 1361 } 1362 if (SimplifiedS == NextLoop) { 1363 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1364 S = For->getBody(); 1365 } else { 1366 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1367 "Expected canonical for loop or range-based for loop."); 1368 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1369 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1370 S = CXXFor->getBody(); 1371 } 1372 if (Level + 1 < MaxLevel) { 1373 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1374 S, /*TryImperfectlyNestedLoops=*/true); 1375 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1376 return; 1377 } 1378 } 1379 CGF.EmitStmt(S); 1380 } 1381 1382 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1383 JumpDest LoopExit) { 1384 RunCleanupsScope BodyScope(*this); 1385 // Update counters values on current iteration. 1386 for (const Expr *UE : D.updates()) 1387 EmitIgnoredExpr(UE); 1388 // Update the linear variables. 1389 // In distribute directives only loop counters may be marked as linear, no 1390 // need to generate the code for them. 1391 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1392 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1393 for (const Expr *UE : C->updates()) 1394 EmitIgnoredExpr(UE); 1395 } 1396 } 1397 1398 // On a continue in the body, jump to the end. 1399 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1400 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1401 for (const Expr *E : D.finals_conditions()) { 1402 if (!E) 1403 continue; 1404 // Check that loop counter in non-rectangular nest fits into the iteration 1405 // space. 1406 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1407 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1408 getProfileCount(D.getBody())); 1409 EmitBlock(NextBB); 1410 } 1411 // Emit loop variables for C++ range loops. 1412 const Stmt *Body = 1413 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1414 // Emit loop body. 1415 emitBody(*this, Body, 1416 OMPLoopDirective::tryToFindNextInnerLoop( 1417 Body, /*TryImperfectlyNestedLoops=*/true), 1418 D.getCollapsedNumber()); 1419 1420 // The end (updates/cleanups). 1421 EmitBlock(Continue.getBlock()); 1422 BreakContinueStack.pop_back(); 1423 } 1424 1425 void CodeGenFunction::EmitOMPInnerLoop( 1426 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1427 const Expr *IncExpr, 1428 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1429 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1430 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1431 1432 // Start the loop with a block that tests the condition. 1433 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1434 EmitBlock(CondBlock); 1435 const SourceRange R = S.getSourceRange(); 1436 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1437 SourceLocToDebugLoc(R.getEnd())); 1438 1439 // If there are any cleanups between here and the loop-exit scope, 1440 // create a block to stage a loop exit along. 1441 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1442 if (RequiresCleanup) 1443 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1444 1445 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1446 1447 // Emit condition. 1448 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1449 if (ExitBlock != LoopExit.getBlock()) { 1450 EmitBlock(ExitBlock); 1451 EmitBranchThroughCleanup(LoopExit); 1452 } 1453 1454 EmitBlock(LoopBody); 1455 incrementProfileCounter(&S); 1456 1457 // Create a block for the increment. 1458 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1459 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1460 1461 BodyGen(*this); 1462 1463 // Emit "IV = IV + 1" and a back-edge to the condition block. 1464 EmitBlock(Continue.getBlock()); 1465 EmitIgnoredExpr(IncExpr); 1466 PostIncGen(*this); 1467 BreakContinueStack.pop_back(); 1468 EmitBranch(CondBlock); 1469 LoopStack.pop(); 1470 // Emit the fall-through block. 1471 EmitBlock(LoopExit.getBlock()); 1472 } 1473 1474 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1475 if (!HaveInsertPoint()) 1476 return false; 1477 // Emit inits for the linear variables. 1478 bool HasLinears = false; 1479 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1480 for (const Expr *Init : C->inits()) { 1481 HasLinears = true; 1482 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1483 if (const auto *Ref = 1484 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1485 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1486 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1487 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1488 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1489 VD->getInit()->getType(), VK_LValue, 1490 VD->getInit()->getExprLoc()); 1491 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1492 VD->getType()), 1493 /*capturedByInit=*/false); 1494 EmitAutoVarCleanups(Emission); 1495 } else { 1496 EmitVarDecl(*VD); 1497 } 1498 } 1499 // Emit the linear steps for the linear clauses. 1500 // If a step is not constant, it is pre-calculated before the loop. 1501 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1502 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1503 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1504 // Emit calculation of the linear step. 1505 EmitIgnoredExpr(CS); 1506 } 1507 } 1508 return HasLinears; 1509 } 1510 1511 void CodeGenFunction::EmitOMPLinearClauseFinal( 1512 const OMPLoopDirective &D, 1513 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1514 if (!HaveInsertPoint()) 1515 return; 1516 llvm::BasicBlock *DoneBB = nullptr; 1517 // Emit the final values of the linear variables. 1518 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1519 auto IC = C->varlist_begin(); 1520 for (const Expr *F : C->finals()) { 1521 if (!DoneBB) { 1522 if (llvm::Value *Cond = CondGen(*this)) { 1523 // If the first post-update expression is found, emit conditional 1524 // block if it was requested. 1525 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1526 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1527 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1528 EmitBlock(ThenBB); 1529 } 1530 } 1531 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1532 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1533 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1534 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1535 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1536 CodeGenFunction::OMPPrivateScope VarScope(*this); 1537 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1538 (void)VarScope.Privatize(); 1539 EmitIgnoredExpr(F); 1540 ++IC; 1541 } 1542 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1543 EmitIgnoredExpr(PostUpdate); 1544 } 1545 if (DoneBB) 1546 EmitBlock(DoneBB, /*IsFinished=*/true); 1547 } 1548 1549 static void emitAlignedClause(CodeGenFunction &CGF, 1550 const OMPExecutableDirective &D) { 1551 if (!CGF.HaveInsertPoint()) 1552 return; 1553 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1554 llvm::APInt ClauseAlignment(64, 0); 1555 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1556 auto *AlignmentCI = 1557 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1558 ClauseAlignment = AlignmentCI->getValue(); 1559 } 1560 for (const Expr *E : Clause->varlists()) { 1561 llvm::APInt Alignment(ClauseAlignment); 1562 if (Alignment == 0) { 1563 // OpenMP [2.8.1, Description] 1564 // If no optional parameter is specified, implementation-defined default 1565 // alignments for SIMD instructions on the target platforms are assumed. 1566 Alignment = 1567 CGF.getContext() 1568 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1569 E->getType()->getPointeeType())) 1570 .getQuantity(); 1571 } 1572 assert((Alignment == 0 || Alignment.isPowerOf2()) && 1573 "alignment is not power of 2"); 1574 if (Alignment != 0) { 1575 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1576 CGF.EmitAlignmentAssumption( 1577 PtrValue, E, /*No second loc needed*/ SourceLocation(), 1578 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 1579 } 1580 } 1581 } 1582 } 1583 1584 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1585 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1586 if (!HaveInsertPoint()) 1587 return; 1588 auto I = S.private_counters().begin(); 1589 for (const Expr *E : S.counters()) { 1590 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1591 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1592 // Emit var without initialization. 1593 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1594 EmitAutoVarCleanups(VarEmission); 1595 LocalDeclMap.erase(PrivateVD); 1596 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1597 return VarEmission.getAllocatedAddress(); 1598 }); 1599 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1600 VD->hasGlobalStorage()) { 1601 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1602 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1603 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1604 E->getType(), VK_LValue, E->getExprLoc()); 1605 return EmitLValue(&DRE).getAddress(*this); 1606 }); 1607 } else { 1608 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1609 return VarEmission.getAllocatedAddress(); 1610 }); 1611 } 1612 ++I; 1613 } 1614 // Privatize extra loop counters used in loops for ordered(n) clauses. 1615 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1616 if (!C->getNumForLoops()) 1617 continue; 1618 for (unsigned I = S.getCollapsedNumber(), 1619 E = C->getLoopNumIterations().size(); 1620 I < E; ++I) { 1621 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1622 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1623 // Override only those variables that can be captured to avoid re-emission 1624 // of the variables declared within the loops. 1625 if (DRE->refersToEnclosingVariableOrCapture()) { 1626 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1627 return CreateMemTemp(DRE->getType(), VD->getName()); 1628 }); 1629 } 1630 } 1631 } 1632 } 1633 1634 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1635 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1636 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1637 if (!CGF.HaveInsertPoint()) 1638 return; 1639 { 1640 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1641 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1642 (void)PreCondScope.Privatize(); 1643 // Get initial values of real counters. 1644 for (const Expr *I : S.inits()) { 1645 CGF.EmitIgnoredExpr(I); 1646 } 1647 } 1648 // Create temp loop control variables with their init values to support 1649 // non-rectangular loops. 1650 CodeGenFunction::OMPMapVars PreCondVars; 1651 for (const Expr * E: S.dependent_counters()) { 1652 if (!E) 1653 continue; 1654 assert(!E->getType().getNonReferenceType()->isRecordType() && 1655 "dependent counter must not be an iterator."); 1656 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1657 Address CounterAddr = 1658 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 1659 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 1660 } 1661 (void)PreCondVars.apply(CGF); 1662 for (const Expr *E : S.dependent_inits()) { 1663 if (!E) 1664 continue; 1665 CGF.EmitIgnoredExpr(E); 1666 } 1667 // Check that loop is executed at least one time. 1668 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1669 PreCondVars.restore(CGF); 1670 } 1671 1672 void CodeGenFunction::EmitOMPLinearClause( 1673 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1674 if (!HaveInsertPoint()) 1675 return; 1676 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1677 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1678 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1679 for (const Expr *C : LoopDirective->counters()) { 1680 SIMDLCVs.insert( 1681 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1682 } 1683 } 1684 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1685 auto CurPrivate = C->privates().begin(); 1686 for (const Expr *E : C->varlists()) { 1687 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1688 const auto *PrivateVD = 1689 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1690 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1691 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1692 // Emit private VarDecl with copy init. 1693 EmitVarDecl(*PrivateVD); 1694 return GetAddrOfLocalVar(PrivateVD); 1695 }); 1696 assert(IsRegistered && "linear var already registered as private"); 1697 // Silence the warning about unused variable. 1698 (void)IsRegistered; 1699 } else { 1700 EmitVarDecl(*PrivateVD); 1701 } 1702 ++CurPrivate; 1703 } 1704 } 1705 } 1706 1707 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1708 const OMPExecutableDirective &D, 1709 bool IsMonotonic) { 1710 if (!CGF.HaveInsertPoint()) 1711 return; 1712 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1713 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1714 /*ignoreResult=*/true); 1715 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1716 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1717 // In presence of finite 'safelen', it may be unsafe to mark all 1718 // the memory instructions parallel, because loop-carried 1719 // dependences of 'safelen' iterations are possible. 1720 if (!IsMonotonic) 1721 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1722 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1723 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1724 /*ignoreResult=*/true); 1725 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1726 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1727 // In presence of finite 'safelen', it may be unsafe to mark all 1728 // the memory instructions parallel, because loop-carried 1729 // dependences of 'safelen' iterations are possible. 1730 CGF.LoopStack.setParallel(/*Enable=*/false); 1731 } 1732 } 1733 1734 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1735 bool IsMonotonic) { 1736 // Walk clauses and process safelen/lastprivate. 1737 LoopStack.setParallel(!IsMonotonic); 1738 LoopStack.setVectorizeEnable(); 1739 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1740 } 1741 1742 void CodeGenFunction::EmitOMPSimdFinal( 1743 const OMPLoopDirective &D, 1744 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1745 if (!HaveInsertPoint()) 1746 return; 1747 llvm::BasicBlock *DoneBB = nullptr; 1748 auto IC = D.counters().begin(); 1749 auto IPC = D.private_counters().begin(); 1750 for (const Expr *F : D.finals()) { 1751 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1752 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1753 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1754 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1755 OrigVD->hasGlobalStorage() || CED) { 1756 if (!DoneBB) { 1757 if (llvm::Value *Cond = CondGen(*this)) { 1758 // If the first post-update expression is found, emit conditional 1759 // block if it was requested. 1760 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1761 DoneBB = createBasicBlock(".omp.final.done"); 1762 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1763 EmitBlock(ThenBB); 1764 } 1765 } 1766 Address OrigAddr = Address::invalid(); 1767 if (CED) { 1768 OrigAddr = 1769 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 1770 } else { 1771 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1772 /*RefersToEnclosingVariableOrCapture=*/false, 1773 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1774 OrigAddr = EmitLValue(&DRE).getAddress(*this); 1775 } 1776 OMPPrivateScope VarScope(*this); 1777 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1778 (void)VarScope.Privatize(); 1779 EmitIgnoredExpr(F); 1780 } 1781 ++IC; 1782 ++IPC; 1783 } 1784 if (DoneBB) 1785 EmitBlock(DoneBB, /*IsFinished=*/true); 1786 } 1787 1788 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1789 const OMPLoopDirective &S, 1790 CodeGenFunction::JumpDest LoopExit) { 1791 CGF.EmitOMPLoopBody(S, LoopExit); 1792 CGF.EmitStopPoint(&S); 1793 } 1794 1795 /// Emit a helper variable and return corresponding lvalue. 1796 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1797 const DeclRefExpr *Helper) { 1798 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1799 CGF.EmitVarDecl(*VDecl); 1800 return CGF.EmitLValue(Helper); 1801 } 1802 1803 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 1804 const RegionCodeGenTy &SimdInitGen, 1805 const RegionCodeGenTy &BodyCodeGen) { 1806 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 1807 PrePostActionTy &) { 1808 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 1809 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1810 SimdInitGen(CGF); 1811 1812 BodyCodeGen(CGF); 1813 }; 1814 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 1815 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1816 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 1817 1818 BodyCodeGen(CGF); 1819 }; 1820 const Expr *IfCond = nullptr; 1821 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1822 if (CGF.getLangOpts().OpenMP >= 50 && 1823 (C->getNameModifier() == OMPD_unknown || 1824 C->getNameModifier() == OMPD_simd)) { 1825 IfCond = C->getCondition(); 1826 break; 1827 } 1828 } 1829 if (IfCond) { 1830 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 1831 } else { 1832 RegionCodeGenTy ThenRCG(ThenGen); 1833 ThenRCG(CGF); 1834 } 1835 } 1836 1837 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1838 PrePostActionTy &Action) { 1839 Action.Enter(CGF); 1840 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1841 "Expected simd directive"); 1842 OMPLoopScope PreInitScope(CGF, S); 1843 // if (PreCond) { 1844 // for (IV in 0..LastIteration) BODY; 1845 // <Final counter/linear vars updates>; 1846 // } 1847 // 1848 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1849 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1850 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1851 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1852 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1853 } 1854 1855 // Emit: if (PreCond) - begin. 1856 // If the condition constant folds and can be elided, avoid emitting the 1857 // whole loop. 1858 bool CondConstant; 1859 llvm::BasicBlock *ContBlock = nullptr; 1860 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1861 if (!CondConstant) 1862 return; 1863 } else { 1864 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1865 ContBlock = CGF.createBasicBlock("simd.if.end"); 1866 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1867 CGF.getProfileCount(&S)); 1868 CGF.EmitBlock(ThenBlock); 1869 CGF.incrementProfileCounter(&S); 1870 } 1871 1872 // Emit the loop iteration variable. 1873 const Expr *IVExpr = S.getIterationVariable(); 1874 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1875 CGF.EmitVarDecl(*IVDecl); 1876 CGF.EmitIgnoredExpr(S.getInit()); 1877 1878 // Emit the iterations count variable. 1879 // If it is not a variable, Sema decided to calculate iterations count on 1880 // each iteration (e.g., it is foldable into a constant). 1881 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1882 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1883 // Emit calculation of the iterations count. 1884 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1885 } 1886 1887 emitAlignedClause(CGF, S); 1888 (void)CGF.EmitOMPLinearClauseInit(S); 1889 { 1890 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1891 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1892 CGF.EmitOMPLinearClause(S, LoopScope); 1893 CGF.EmitOMPPrivateClause(S, LoopScope); 1894 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1895 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1896 (void)LoopScope.Privatize(); 1897 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1898 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1899 1900 emitCommonSimdLoop( 1901 CGF, S, 1902 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1903 CGF.EmitOMPSimdInit(S); 1904 }, 1905 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 1906 CGF.EmitOMPInnerLoop( 1907 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1908 [&S](CodeGenFunction &CGF) { 1909 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1910 CGF.EmitStopPoint(&S); 1911 }, 1912 [](CodeGenFunction &) {}); 1913 }); 1914 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1915 // Emit final copy of the lastprivate variables at the end of loops. 1916 if (HasLastprivateClause) 1917 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1918 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1919 emitPostUpdateForReductionClause(CGF, S, 1920 [](CodeGenFunction &) { return nullptr; }); 1921 } 1922 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1923 // Emit: if (PreCond) - end. 1924 if (ContBlock) { 1925 CGF.EmitBranch(ContBlock); 1926 CGF.EmitBlock(ContBlock, true); 1927 } 1928 } 1929 1930 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1931 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1932 emitOMPSimdRegion(CGF, S, Action); 1933 }; 1934 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1935 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1936 } 1937 1938 void CodeGenFunction::EmitOMPOuterLoop( 1939 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1940 CodeGenFunction::OMPPrivateScope &LoopScope, 1941 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1942 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1943 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1944 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1945 1946 const Expr *IVExpr = S.getIterationVariable(); 1947 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1948 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1949 1950 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1951 1952 // Start the loop with a block that tests the condition. 1953 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1954 EmitBlock(CondBlock); 1955 const SourceRange R = S.getSourceRange(); 1956 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1957 SourceLocToDebugLoc(R.getEnd())); 1958 1959 llvm::Value *BoolCondVal = nullptr; 1960 if (!DynamicOrOrdered) { 1961 // UB = min(UB, GlobalUB) or 1962 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1963 // 'distribute parallel for') 1964 EmitIgnoredExpr(LoopArgs.EUB); 1965 // IV = LB 1966 EmitIgnoredExpr(LoopArgs.Init); 1967 // IV < UB 1968 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1969 } else { 1970 BoolCondVal = 1971 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1972 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1973 } 1974 1975 // If there are any cleanups between here and the loop-exit scope, 1976 // create a block to stage a loop exit along. 1977 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1978 if (LoopScope.requiresCleanups()) 1979 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1980 1981 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1982 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1983 if (ExitBlock != LoopExit.getBlock()) { 1984 EmitBlock(ExitBlock); 1985 EmitBranchThroughCleanup(LoopExit); 1986 } 1987 EmitBlock(LoopBody); 1988 1989 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1990 // LB for loop condition and emitted it above). 1991 if (DynamicOrOrdered) 1992 EmitIgnoredExpr(LoopArgs.Init); 1993 1994 // Create a block for the increment. 1995 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1996 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1997 1998 emitCommonSimdLoop( 1999 *this, S, 2000 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2001 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2002 // with dynamic/guided scheduling and without ordered clause. 2003 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 2004 CGF.LoopStack.setParallel(!IsMonotonic); 2005 else 2006 CGF.EmitOMPSimdInit(S, IsMonotonic); 2007 }, 2008 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2009 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2010 SourceLocation Loc = S.getBeginLoc(); 2011 // when 'distribute' is not combined with a 'for': 2012 // while (idx <= UB) { BODY; ++idx; } 2013 // when 'distribute' is combined with a 'for' 2014 // (e.g. 'distribute parallel for') 2015 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2016 CGF.EmitOMPInnerLoop( 2017 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2018 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2019 CodeGenLoop(CGF, S, LoopExit); 2020 }, 2021 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2022 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2023 }); 2024 }); 2025 2026 EmitBlock(Continue.getBlock()); 2027 BreakContinueStack.pop_back(); 2028 if (!DynamicOrOrdered) { 2029 // Emit "LB = LB + Stride", "UB = UB + Stride". 2030 EmitIgnoredExpr(LoopArgs.NextLB); 2031 EmitIgnoredExpr(LoopArgs.NextUB); 2032 } 2033 2034 EmitBranch(CondBlock); 2035 LoopStack.pop(); 2036 // Emit the fall-through block. 2037 EmitBlock(LoopExit.getBlock()); 2038 2039 // Tell the runtime we are done. 2040 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2041 if (!DynamicOrOrdered) 2042 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2043 S.getDirectiveKind()); 2044 }; 2045 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2046 } 2047 2048 void CodeGenFunction::EmitOMPForOuterLoop( 2049 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2050 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2051 const OMPLoopArguments &LoopArgs, 2052 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2053 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2054 2055 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2056 const bool DynamicOrOrdered = 2057 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2058 2059 assert((Ordered || 2060 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2061 LoopArgs.Chunk != nullptr)) && 2062 "static non-chunked schedule does not need outer loop"); 2063 2064 // Emit outer loop. 2065 // 2066 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2067 // When schedule(dynamic,chunk_size) is specified, the iterations are 2068 // distributed to threads in the team in chunks as the threads request them. 2069 // Each thread executes a chunk of iterations, then requests another chunk, 2070 // until no chunks remain to be distributed. Each chunk contains chunk_size 2071 // iterations, except for the last chunk to be distributed, which may have 2072 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2073 // 2074 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2075 // to threads in the team in chunks as the executing threads request them. 2076 // Each thread executes a chunk of iterations, then requests another chunk, 2077 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2078 // each chunk is proportional to the number of unassigned iterations divided 2079 // by the number of threads in the team, decreasing to 1. For a chunk_size 2080 // with value k (greater than 1), the size of each chunk is determined in the 2081 // same way, with the restriction that the chunks do not contain fewer than k 2082 // iterations (except for the last chunk to be assigned, which may have fewer 2083 // than k iterations). 2084 // 2085 // When schedule(auto) is specified, the decision regarding scheduling is 2086 // delegated to the compiler and/or runtime system. The programmer gives the 2087 // implementation the freedom to choose any possible mapping of iterations to 2088 // threads in the team. 2089 // 2090 // When schedule(runtime) is specified, the decision regarding scheduling is 2091 // deferred until run time, and the schedule and chunk size are taken from the 2092 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2093 // implementation defined 2094 // 2095 // while(__kmpc_dispatch_next(&LB, &UB)) { 2096 // idx = LB; 2097 // while (idx <= UB) { BODY; ++idx; 2098 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2099 // } // inner loop 2100 // } 2101 // 2102 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2103 // When schedule(static, chunk_size) is specified, iterations are divided into 2104 // chunks of size chunk_size, and the chunks are assigned to the threads in 2105 // the team in a round-robin fashion in the order of the thread number. 2106 // 2107 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2108 // while (idx <= UB) { BODY; ++idx; } // inner loop 2109 // LB = LB + ST; 2110 // UB = UB + ST; 2111 // } 2112 // 2113 2114 const Expr *IVExpr = S.getIterationVariable(); 2115 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2116 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2117 2118 if (DynamicOrOrdered) { 2119 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2120 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2121 llvm::Value *LBVal = DispatchBounds.first; 2122 llvm::Value *UBVal = DispatchBounds.second; 2123 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2124 LoopArgs.Chunk}; 2125 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2126 IVSigned, Ordered, DipatchRTInputValues); 2127 } else { 2128 CGOpenMPRuntime::StaticRTInput StaticInit( 2129 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2130 LoopArgs.ST, LoopArgs.Chunk); 2131 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2132 ScheduleKind, StaticInit); 2133 } 2134 2135 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2136 const unsigned IVSize, 2137 const bool IVSigned) { 2138 if (Ordered) { 2139 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2140 IVSigned); 2141 } 2142 }; 2143 2144 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2145 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2146 OuterLoopArgs.IncExpr = S.getInc(); 2147 OuterLoopArgs.Init = S.getInit(); 2148 OuterLoopArgs.Cond = S.getCond(); 2149 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2150 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2151 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2152 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2153 } 2154 2155 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2156 const unsigned IVSize, const bool IVSigned) {} 2157 2158 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2159 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2160 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2161 const CodeGenLoopTy &CodeGenLoopContent) { 2162 2163 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2164 2165 // Emit outer loop. 2166 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2167 // dynamic 2168 // 2169 2170 const Expr *IVExpr = S.getIterationVariable(); 2171 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2172 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2173 2174 CGOpenMPRuntime::StaticRTInput StaticInit( 2175 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2176 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2177 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2178 2179 // for combined 'distribute' and 'for' the increment expression of distribute 2180 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2181 Expr *IncExpr; 2182 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2183 IncExpr = S.getDistInc(); 2184 else 2185 IncExpr = S.getInc(); 2186 2187 // this routine is shared by 'omp distribute parallel for' and 2188 // 'omp distribute': select the right EUB expression depending on the 2189 // directive 2190 OMPLoopArguments OuterLoopArgs; 2191 OuterLoopArgs.LB = LoopArgs.LB; 2192 OuterLoopArgs.UB = LoopArgs.UB; 2193 OuterLoopArgs.ST = LoopArgs.ST; 2194 OuterLoopArgs.IL = LoopArgs.IL; 2195 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2196 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2197 ? S.getCombinedEnsureUpperBound() 2198 : S.getEnsureUpperBound(); 2199 OuterLoopArgs.IncExpr = IncExpr; 2200 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2201 ? S.getCombinedInit() 2202 : S.getInit(); 2203 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2204 ? S.getCombinedCond() 2205 : S.getCond(); 2206 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2207 ? S.getCombinedNextLowerBound() 2208 : S.getNextLowerBound(); 2209 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2210 ? S.getCombinedNextUpperBound() 2211 : S.getNextUpperBound(); 2212 2213 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2214 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2215 emitEmptyOrdered); 2216 } 2217 2218 static std::pair<LValue, LValue> 2219 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2220 const OMPExecutableDirective &S) { 2221 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2222 LValue LB = 2223 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2224 LValue UB = 2225 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2226 2227 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2228 // parallel for') we need to use the 'distribute' 2229 // chunk lower and upper bounds rather than the whole loop iteration 2230 // space. These are parameters to the outlined function for 'parallel' 2231 // and we copy the bounds of the previous schedule into the 2232 // the current ones. 2233 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2234 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2235 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2236 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2237 PrevLBVal = CGF.EmitScalarConversion( 2238 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2239 LS.getIterationVariable()->getType(), 2240 LS.getPrevLowerBoundVariable()->getExprLoc()); 2241 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2242 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2243 PrevUBVal = CGF.EmitScalarConversion( 2244 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2245 LS.getIterationVariable()->getType(), 2246 LS.getPrevUpperBoundVariable()->getExprLoc()); 2247 2248 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2249 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2250 2251 return {LB, UB}; 2252 } 2253 2254 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2255 /// we need to use the LB and UB expressions generated by the worksharing 2256 /// code generation support, whereas in non combined situations we would 2257 /// just emit 0 and the LastIteration expression 2258 /// This function is necessary due to the difference of the LB and UB 2259 /// types for the RT emission routines for 'for_static_init' and 2260 /// 'for_dispatch_init' 2261 static std::pair<llvm::Value *, llvm::Value *> 2262 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2263 const OMPExecutableDirective &S, 2264 Address LB, Address UB) { 2265 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2266 const Expr *IVExpr = LS.getIterationVariable(); 2267 // when implementing a dynamic schedule for a 'for' combined with a 2268 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2269 // is not normalized as each team only executes its own assigned 2270 // distribute chunk 2271 QualType IteratorTy = IVExpr->getType(); 2272 llvm::Value *LBVal = 2273 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2274 llvm::Value *UBVal = 2275 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2276 return {LBVal, UBVal}; 2277 } 2278 2279 static void emitDistributeParallelForDistributeInnerBoundParams( 2280 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2281 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2282 const auto &Dir = cast<OMPLoopDirective>(S); 2283 LValue LB = 2284 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2285 llvm::Value *LBCast = 2286 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2287 CGF.SizeTy, /*isSigned=*/false); 2288 CapturedVars.push_back(LBCast); 2289 LValue UB = 2290 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2291 2292 llvm::Value *UBCast = 2293 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2294 CGF.SizeTy, /*isSigned=*/false); 2295 CapturedVars.push_back(UBCast); 2296 } 2297 2298 static void 2299 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2300 const OMPLoopDirective &S, 2301 CodeGenFunction::JumpDest LoopExit) { 2302 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2303 PrePostActionTy &Action) { 2304 Action.Enter(CGF); 2305 bool HasCancel = false; 2306 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2307 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2308 HasCancel = D->hasCancel(); 2309 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2310 HasCancel = D->hasCancel(); 2311 else if (const auto *D = 2312 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2313 HasCancel = D->hasCancel(); 2314 } 2315 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2316 HasCancel); 2317 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2318 emitDistributeParallelForInnerBounds, 2319 emitDistributeParallelForDispatchBounds); 2320 }; 2321 2322 emitCommonOMPParallelDirective( 2323 CGF, S, 2324 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2325 CGInlinedWorksharingLoop, 2326 emitDistributeParallelForDistributeInnerBoundParams); 2327 } 2328 2329 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2330 const OMPDistributeParallelForDirective &S) { 2331 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2332 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2333 S.getDistInc()); 2334 }; 2335 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2336 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2337 } 2338 2339 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2340 const OMPDistributeParallelForSimdDirective &S) { 2341 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2342 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2343 S.getDistInc()); 2344 }; 2345 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2346 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2347 } 2348 2349 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2350 const OMPDistributeSimdDirective &S) { 2351 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2352 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2353 }; 2354 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2355 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2356 } 2357 2358 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2359 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2360 // Emit SPMD target parallel for region as a standalone region. 2361 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2362 emitOMPSimdRegion(CGF, S, Action); 2363 }; 2364 llvm::Function *Fn; 2365 llvm::Constant *Addr; 2366 // Emit target region as a standalone region. 2367 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2368 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2369 assert(Fn && Addr && "Target device function emission failed."); 2370 } 2371 2372 void CodeGenFunction::EmitOMPTargetSimdDirective( 2373 const OMPTargetSimdDirective &S) { 2374 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2375 emitOMPSimdRegion(CGF, S, Action); 2376 }; 2377 emitCommonOMPTargetDirective(*this, S, CodeGen); 2378 } 2379 2380 namespace { 2381 struct ScheduleKindModifiersTy { 2382 OpenMPScheduleClauseKind Kind; 2383 OpenMPScheduleClauseModifier M1; 2384 OpenMPScheduleClauseModifier M2; 2385 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2386 OpenMPScheduleClauseModifier M1, 2387 OpenMPScheduleClauseModifier M2) 2388 : Kind(Kind), M1(M1), M2(M2) {} 2389 }; 2390 } // namespace 2391 2392 bool CodeGenFunction::EmitOMPWorksharingLoop( 2393 const OMPLoopDirective &S, Expr *EUB, 2394 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2395 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2396 // Emit the loop iteration variable. 2397 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2398 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2399 EmitVarDecl(*IVDecl); 2400 2401 // Emit the iterations count variable. 2402 // If it is not a variable, Sema decided to calculate iterations count on each 2403 // iteration (e.g., it is foldable into a constant). 2404 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2405 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2406 // Emit calculation of the iterations count. 2407 EmitIgnoredExpr(S.getCalcLastIteration()); 2408 } 2409 2410 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2411 2412 bool HasLastprivateClause; 2413 // Check pre-condition. 2414 { 2415 OMPLoopScope PreInitScope(*this, S); 2416 // Skip the entire loop if we don't meet the precondition. 2417 // If the condition constant folds and can be elided, avoid emitting the 2418 // whole loop. 2419 bool CondConstant; 2420 llvm::BasicBlock *ContBlock = nullptr; 2421 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2422 if (!CondConstant) 2423 return false; 2424 } else { 2425 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2426 ContBlock = createBasicBlock("omp.precond.end"); 2427 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2428 getProfileCount(&S)); 2429 EmitBlock(ThenBlock); 2430 incrementProfileCounter(&S); 2431 } 2432 2433 RunCleanupsScope DoacrossCleanupScope(*this); 2434 bool Ordered = false; 2435 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2436 if (OrderedClause->getNumForLoops()) 2437 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2438 else 2439 Ordered = true; 2440 } 2441 2442 llvm::DenseSet<const Expr *> EmittedFinals; 2443 emitAlignedClause(*this, S); 2444 bool HasLinears = EmitOMPLinearClauseInit(S); 2445 // Emit helper vars inits. 2446 2447 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2448 LValue LB = Bounds.first; 2449 LValue UB = Bounds.second; 2450 LValue ST = 2451 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2452 LValue IL = 2453 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2454 2455 // Emit 'then' code. 2456 { 2457 OMPPrivateScope LoopScope(*this); 2458 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2459 // Emit implicit barrier to synchronize threads and avoid data races on 2460 // initialization of firstprivate variables and post-update of 2461 // lastprivate variables. 2462 CGM.getOpenMPRuntime().emitBarrierCall( 2463 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2464 /*ForceSimpleCall=*/true); 2465 } 2466 EmitOMPPrivateClause(S, LoopScope); 2467 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2468 EmitOMPReductionClauseInit(S, LoopScope); 2469 EmitOMPPrivateLoopCounters(S, LoopScope); 2470 EmitOMPLinearClause(S, LoopScope); 2471 (void)LoopScope.Privatize(); 2472 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2473 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2474 2475 // Detect the loop schedule kind and chunk. 2476 const Expr *ChunkExpr = nullptr; 2477 OpenMPScheduleTy ScheduleKind; 2478 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2479 ScheduleKind.Schedule = C->getScheduleKind(); 2480 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2481 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2482 ChunkExpr = C->getChunkSize(); 2483 } else { 2484 // Default behaviour for schedule clause. 2485 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2486 *this, S, ScheduleKind.Schedule, ChunkExpr); 2487 } 2488 bool HasChunkSizeOne = false; 2489 llvm::Value *Chunk = nullptr; 2490 if (ChunkExpr) { 2491 Chunk = EmitScalarExpr(ChunkExpr); 2492 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2493 S.getIterationVariable()->getType(), 2494 S.getBeginLoc()); 2495 Expr::EvalResult Result; 2496 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2497 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2498 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2499 } 2500 } 2501 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2502 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2503 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2504 // If the static schedule kind is specified or if the ordered clause is 2505 // specified, and if no monotonic modifier is specified, the effect will 2506 // be as if the monotonic modifier was specified. 2507 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2508 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2509 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2510 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2511 /* Chunked */ Chunk != nullptr) || 2512 StaticChunkedOne) && 2513 !Ordered) { 2514 JumpDest LoopExit = 2515 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2516 emitCommonSimdLoop( 2517 *this, S, 2518 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2519 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2520 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2521 }, 2522 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 2523 &S, ScheduleKind, LoopExit, 2524 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2525 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2526 // When no chunk_size is specified, the iteration space is divided 2527 // into chunks that are approximately equal in size, and at most 2528 // one chunk is distributed to each thread. Note that the size of 2529 // the chunks is unspecified in this case. 2530 CGOpenMPRuntime::StaticRTInput StaticInit( 2531 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 2532 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 2533 StaticChunkedOne ? Chunk : nullptr); 2534 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2535 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 2536 StaticInit); 2537 // UB = min(UB, GlobalUB); 2538 if (!StaticChunkedOne) 2539 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 2540 // IV = LB; 2541 CGF.EmitIgnoredExpr(S.getInit()); 2542 // For unchunked static schedule generate: 2543 // 2544 // while (idx <= UB) { 2545 // BODY; 2546 // ++idx; 2547 // } 2548 // 2549 // For static schedule with chunk one: 2550 // 2551 // while (IV <= PrevUB) { 2552 // BODY; 2553 // IV += ST; 2554 // } 2555 CGF.EmitOMPInnerLoop( 2556 S, LoopScope.requiresCleanups(), 2557 StaticChunkedOne ? S.getCombinedParForInDistCond() 2558 : S.getCond(), 2559 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2560 [&S, LoopExit](CodeGenFunction &CGF) { 2561 CGF.EmitOMPLoopBody(S, LoopExit); 2562 CGF.EmitStopPoint(&S); 2563 }, 2564 [](CodeGenFunction &) {}); 2565 }); 2566 EmitBlock(LoopExit.getBlock()); 2567 // Tell the runtime we are done. 2568 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2569 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2570 S.getDirectiveKind()); 2571 }; 2572 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2573 } else { 2574 const bool IsMonotonic = 2575 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2576 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2577 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2578 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2579 // Emit the outer loop, which requests its work chunk [LB..UB] from 2580 // runtime and runs the inner loop to process it. 2581 const OMPLoopArguments LoopArguments( 2582 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 2583 IL.getAddress(*this), Chunk, EUB); 2584 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2585 LoopArguments, CGDispatchBounds); 2586 } 2587 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2588 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2589 return CGF.Builder.CreateIsNotNull( 2590 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2591 }); 2592 } 2593 EmitOMPReductionClauseFinal( 2594 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2595 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2596 : /*Parallel only*/ OMPD_parallel); 2597 // Emit post-update of the reduction variables if IsLastIter != 0. 2598 emitPostUpdateForReductionClause( 2599 *this, S, [IL, &S](CodeGenFunction &CGF) { 2600 return CGF.Builder.CreateIsNotNull( 2601 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2602 }); 2603 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2604 if (HasLastprivateClause) 2605 EmitOMPLastprivateClauseFinal( 2606 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2607 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2608 } 2609 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2610 return CGF.Builder.CreateIsNotNull( 2611 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2612 }); 2613 DoacrossCleanupScope.ForceCleanup(); 2614 // We're now done with the loop, so jump to the continuation block. 2615 if (ContBlock) { 2616 EmitBranch(ContBlock); 2617 EmitBlock(ContBlock, /*IsFinished=*/true); 2618 } 2619 } 2620 return HasLastprivateClause; 2621 } 2622 2623 /// The following two functions generate expressions for the loop lower 2624 /// and upper bounds in case of static and dynamic (dispatch) schedule 2625 /// of the associated 'for' or 'distribute' loop. 2626 static std::pair<LValue, LValue> 2627 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2628 const auto &LS = cast<OMPLoopDirective>(S); 2629 LValue LB = 2630 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2631 LValue UB = 2632 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2633 return {LB, UB}; 2634 } 2635 2636 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2637 /// consider the lower and upper bound expressions generated by the 2638 /// worksharing loop support, but we use 0 and the iteration space size as 2639 /// constants 2640 static std::pair<llvm::Value *, llvm::Value *> 2641 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2642 Address LB, Address UB) { 2643 const auto &LS = cast<OMPLoopDirective>(S); 2644 const Expr *IVExpr = LS.getIterationVariable(); 2645 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2646 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2647 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2648 return {LBVal, UBVal}; 2649 } 2650 2651 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2652 bool HasLastprivates = false; 2653 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2654 PrePostActionTy &) { 2655 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2656 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2657 emitForLoopBounds, 2658 emitDispatchForLoopBounds); 2659 }; 2660 { 2661 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2662 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2663 S.hasCancel()); 2664 } 2665 2666 // Emit an implicit barrier at the end. 2667 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2668 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2669 } 2670 2671 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2672 bool HasLastprivates = false; 2673 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2674 PrePostActionTy &) { 2675 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2676 emitForLoopBounds, 2677 emitDispatchForLoopBounds); 2678 }; 2679 { 2680 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2681 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2682 } 2683 2684 // Emit an implicit barrier at the end. 2685 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2686 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2687 } 2688 2689 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2690 const Twine &Name, 2691 llvm::Value *Init = nullptr) { 2692 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2693 if (Init) 2694 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2695 return LVal; 2696 } 2697 2698 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2699 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2700 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2701 bool HasLastprivates = false; 2702 auto &&CodeGen = [&S, CapturedStmt, CS, 2703 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2704 ASTContext &C = CGF.getContext(); 2705 QualType KmpInt32Ty = 2706 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2707 // Emit helper vars inits. 2708 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2709 CGF.Builder.getInt32(0)); 2710 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2711 ? CGF.Builder.getInt32(CS->size() - 1) 2712 : CGF.Builder.getInt32(0); 2713 LValue UB = 2714 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2715 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2716 CGF.Builder.getInt32(1)); 2717 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2718 CGF.Builder.getInt32(0)); 2719 // Loop counter. 2720 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2721 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2722 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2723 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2724 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2725 // Generate condition for loop. 2726 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2727 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2728 // Increment for loop counter. 2729 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2730 S.getBeginLoc(), true); 2731 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2732 // Iterate through all sections and emit a switch construct: 2733 // switch (IV) { 2734 // case 0: 2735 // <SectionStmt[0]>; 2736 // break; 2737 // ... 2738 // case <NumSection> - 1: 2739 // <SectionStmt[<NumSection> - 1]>; 2740 // break; 2741 // } 2742 // .omp.sections.exit: 2743 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2744 llvm::SwitchInst *SwitchStmt = 2745 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2746 ExitBB, CS == nullptr ? 1 : CS->size()); 2747 if (CS) { 2748 unsigned CaseNumber = 0; 2749 for (const Stmt *SubStmt : CS->children()) { 2750 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2751 CGF.EmitBlock(CaseBB); 2752 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2753 CGF.EmitStmt(SubStmt); 2754 CGF.EmitBranch(ExitBB); 2755 ++CaseNumber; 2756 } 2757 } else { 2758 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2759 CGF.EmitBlock(CaseBB); 2760 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2761 CGF.EmitStmt(CapturedStmt); 2762 CGF.EmitBranch(ExitBB); 2763 } 2764 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2765 }; 2766 2767 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2768 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2769 // Emit implicit barrier to synchronize threads and avoid data races on 2770 // initialization of firstprivate variables and post-update of lastprivate 2771 // variables. 2772 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2773 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2774 /*ForceSimpleCall=*/true); 2775 } 2776 CGF.EmitOMPPrivateClause(S, LoopScope); 2777 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2778 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2779 (void)LoopScope.Privatize(); 2780 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2781 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2782 2783 // Emit static non-chunked loop. 2784 OpenMPScheduleTy ScheduleKind; 2785 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2786 CGOpenMPRuntime::StaticRTInput StaticInit( 2787 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 2788 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 2789 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2790 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2791 // UB = min(UB, GlobalUB); 2792 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2793 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2794 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2795 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2796 // IV = LB; 2797 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2798 // while (idx <= UB) { BODY; ++idx; } 2799 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2800 [](CodeGenFunction &) {}); 2801 // Tell the runtime we are done. 2802 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2803 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2804 S.getDirectiveKind()); 2805 }; 2806 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2807 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2808 // Emit post-update of the reduction variables if IsLastIter != 0. 2809 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2810 return CGF.Builder.CreateIsNotNull( 2811 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2812 }); 2813 2814 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2815 if (HasLastprivates) 2816 CGF.EmitOMPLastprivateClauseFinal( 2817 S, /*NoFinals=*/false, 2818 CGF.Builder.CreateIsNotNull( 2819 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2820 }; 2821 2822 bool HasCancel = false; 2823 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2824 HasCancel = OSD->hasCancel(); 2825 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2826 HasCancel = OPSD->hasCancel(); 2827 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2828 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2829 HasCancel); 2830 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2831 // clause. Otherwise the barrier will be generated by the codegen for the 2832 // directive. 2833 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2834 // Emit implicit barrier to synchronize threads and avoid data races on 2835 // initialization of firstprivate variables. 2836 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2837 OMPD_unknown); 2838 } 2839 } 2840 2841 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2842 { 2843 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2844 EmitSections(S); 2845 } 2846 // Emit an implicit barrier at the end. 2847 if (!S.getSingleClause<OMPNowaitClause>()) { 2848 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2849 OMPD_sections); 2850 } 2851 } 2852 2853 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2854 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2855 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2856 }; 2857 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2858 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2859 S.hasCancel()); 2860 } 2861 2862 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2863 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2864 llvm::SmallVector<const Expr *, 8> DestExprs; 2865 llvm::SmallVector<const Expr *, 8> SrcExprs; 2866 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2867 // Check if there are any 'copyprivate' clauses associated with this 2868 // 'single' construct. 2869 // Build a list of copyprivate variables along with helper expressions 2870 // (<source>, <destination>, <destination>=<source> expressions) 2871 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2872 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2873 DestExprs.append(C->destination_exprs().begin(), 2874 C->destination_exprs().end()); 2875 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2876 AssignmentOps.append(C->assignment_ops().begin(), 2877 C->assignment_ops().end()); 2878 } 2879 // Emit code for 'single' region along with 'copyprivate' clauses 2880 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2881 Action.Enter(CGF); 2882 OMPPrivateScope SingleScope(CGF); 2883 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2884 CGF.EmitOMPPrivateClause(S, SingleScope); 2885 (void)SingleScope.Privatize(); 2886 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2887 }; 2888 { 2889 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2890 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2891 CopyprivateVars, DestExprs, 2892 SrcExprs, AssignmentOps); 2893 } 2894 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2895 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2896 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2897 CGM.getOpenMPRuntime().emitBarrierCall( 2898 *this, S.getBeginLoc(), 2899 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2900 } 2901 } 2902 2903 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2904 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2905 Action.Enter(CGF); 2906 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2907 }; 2908 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 2909 } 2910 2911 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2912 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2913 emitMaster(*this, S); 2914 } 2915 2916 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2917 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2918 Action.Enter(CGF); 2919 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2920 }; 2921 const Expr *Hint = nullptr; 2922 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2923 Hint = HintClause->getHint(); 2924 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2925 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2926 S.getDirectiveName().getAsString(), 2927 CodeGen, S.getBeginLoc(), Hint); 2928 } 2929 2930 void CodeGenFunction::EmitOMPParallelForDirective( 2931 const OMPParallelForDirective &S) { 2932 // Emit directive as a combined directive that consists of two implicit 2933 // directives: 'parallel' with 'for' directive. 2934 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2935 Action.Enter(CGF); 2936 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2937 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2938 emitDispatchForLoopBounds); 2939 }; 2940 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2941 emitEmptyBoundParameters); 2942 } 2943 2944 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2945 const OMPParallelForSimdDirective &S) { 2946 // Emit directive as a combined directive that consists of two implicit 2947 // directives: 'parallel' with 'for' directive. 2948 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2949 Action.Enter(CGF); 2950 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2951 emitDispatchForLoopBounds); 2952 }; 2953 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2954 emitEmptyBoundParameters); 2955 } 2956 2957 void CodeGenFunction::EmitOMPParallelMasterDirective( 2958 const OMPParallelMasterDirective &S) { 2959 // Emit directive as a combined directive that consists of two implicit 2960 // directives: 'parallel' with 'master' directive. 2961 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2962 Action.Enter(CGF); 2963 OMPPrivateScope PrivateScope(CGF); 2964 bool Copyins = CGF.EmitOMPCopyinClause(S); 2965 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 2966 if (Copyins) { 2967 // Emit implicit barrier to synchronize threads and avoid data races on 2968 // propagation master's thread values of threadprivate variables to local 2969 // instances of that variables of all other implicit threads. 2970 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2971 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2972 /*ForceSimpleCall=*/true); 2973 } 2974 CGF.EmitOMPPrivateClause(S, PrivateScope); 2975 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 2976 (void)PrivateScope.Privatize(); 2977 emitMaster(CGF, S); 2978 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2979 }; 2980 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 2981 emitEmptyBoundParameters); 2982 emitPostUpdateForReductionClause(*this, S, 2983 [](CodeGenFunction &) { return nullptr; }); 2984 } 2985 2986 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2987 const OMPParallelSectionsDirective &S) { 2988 // Emit directive as a combined directive that consists of two implicit 2989 // directives: 'parallel' with 'sections' directive. 2990 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2991 Action.Enter(CGF); 2992 CGF.EmitSections(S); 2993 }; 2994 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2995 emitEmptyBoundParameters); 2996 } 2997 2998 void CodeGenFunction::EmitOMPTaskBasedDirective( 2999 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3000 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3001 OMPTaskDataTy &Data) { 3002 // Emit outlined function for task construct. 3003 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3004 auto I = CS->getCapturedDecl()->param_begin(); 3005 auto PartId = std::next(I); 3006 auto TaskT = std::next(I, 4); 3007 // Check if the task is final 3008 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3009 // If the condition constant folds and can be elided, try to avoid emitting 3010 // the condition and the dead arm of the if/else. 3011 const Expr *Cond = Clause->getCondition(); 3012 bool CondConstant; 3013 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3014 Data.Final.setInt(CondConstant); 3015 else 3016 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3017 } else { 3018 // By default the task is not final. 3019 Data.Final.setInt(/*IntVal=*/false); 3020 } 3021 // Check if the task has 'priority' clause. 3022 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3023 const Expr *Prio = Clause->getPriority(); 3024 Data.Priority.setInt(/*IntVal=*/true); 3025 Data.Priority.setPointer(EmitScalarConversion( 3026 EmitScalarExpr(Prio), Prio->getType(), 3027 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3028 Prio->getExprLoc())); 3029 } 3030 // The first function argument for tasks is a thread id, the second one is a 3031 // part id (0 for tied tasks, >=0 for untied task). 3032 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3033 // Get list of private variables. 3034 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3035 auto IRef = C->varlist_begin(); 3036 for (const Expr *IInit : C->private_copies()) { 3037 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3038 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3039 Data.PrivateVars.push_back(*IRef); 3040 Data.PrivateCopies.push_back(IInit); 3041 } 3042 ++IRef; 3043 } 3044 } 3045 EmittedAsPrivate.clear(); 3046 // Get list of firstprivate variables. 3047 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3048 auto IRef = C->varlist_begin(); 3049 auto IElemInitRef = C->inits().begin(); 3050 for (const Expr *IInit : C->private_copies()) { 3051 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3052 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3053 Data.FirstprivateVars.push_back(*IRef); 3054 Data.FirstprivateCopies.push_back(IInit); 3055 Data.FirstprivateInits.push_back(*IElemInitRef); 3056 } 3057 ++IRef; 3058 ++IElemInitRef; 3059 } 3060 } 3061 // Get list of lastprivate variables (for taskloops). 3062 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3063 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3064 auto IRef = C->varlist_begin(); 3065 auto ID = C->destination_exprs().begin(); 3066 for (const Expr *IInit : C->private_copies()) { 3067 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3068 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3069 Data.LastprivateVars.push_back(*IRef); 3070 Data.LastprivateCopies.push_back(IInit); 3071 } 3072 LastprivateDstsOrigs.insert( 3073 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3074 cast<DeclRefExpr>(*IRef)}); 3075 ++IRef; 3076 ++ID; 3077 } 3078 } 3079 SmallVector<const Expr *, 4> LHSs; 3080 SmallVector<const Expr *, 4> RHSs; 3081 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3082 auto IPriv = C->privates().begin(); 3083 auto IRed = C->reduction_ops().begin(); 3084 auto ILHS = C->lhs_exprs().begin(); 3085 auto IRHS = C->rhs_exprs().begin(); 3086 for (const Expr *Ref : C->varlists()) { 3087 Data.ReductionVars.emplace_back(Ref); 3088 Data.ReductionCopies.emplace_back(*IPriv); 3089 Data.ReductionOps.emplace_back(*IRed); 3090 LHSs.emplace_back(*ILHS); 3091 RHSs.emplace_back(*IRHS); 3092 std::advance(IPriv, 1); 3093 std::advance(IRed, 1); 3094 std::advance(ILHS, 1); 3095 std::advance(IRHS, 1); 3096 } 3097 } 3098 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3099 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3100 // Build list of dependences. 3101 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3102 for (const Expr *IRef : C->varlists()) 3103 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3104 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3105 CapturedRegion](CodeGenFunction &CGF, 3106 PrePostActionTy &Action) { 3107 // Set proper addresses for generated private copies. 3108 OMPPrivateScope Scope(CGF); 3109 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3110 !Data.LastprivateVars.empty()) { 3111 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3112 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3113 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3114 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3115 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3116 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3117 CS->getCapturedDecl()->getParam(PrivatesParam))); 3118 // Map privates. 3119 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3120 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3121 CallArgs.push_back(PrivatesPtr); 3122 for (const Expr *E : Data.PrivateVars) { 3123 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3124 Address PrivatePtr = CGF.CreateMemTemp( 3125 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3126 PrivatePtrs.emplace_back(VD, PrivatePtr); 3127 CallArgs.push_back(PrivatePtr.getPointer()); 3128 } 3129 for (const Expr *E : Data.FirstprivateVars) { 3130 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3131 Address PrivatePtr = 3132 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3133 ".firstpriv.ptr.addr"); 3134 PrivatePtrs.emplace_back(VD, PrivatePtr); 3135 CallArgs.push_back(PrivatePtr.getPointer()); 3136 } 3137 for (const Expr *E : Data.LastprivateVars) { 3138 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3139 Address PrivatePtr = 3140 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3141 ".lastpriv.ptr.addr"); 3142 PrivatePtrs.emplace_back(VD, PrivatePtr); 3143 CallArgs.push_back(PrivatePtr.getPointer()); 3144 } 3145 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3146 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3147 for (const auto &Pair : LastprivateDstsOrigs) { 3148 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3149 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3150 /*RefersToEnclosingVariableOrCapture=*/ 3151 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3152 Pair.second->getType(), VK_LValue, 3153 Pair.second->getExprLoc()); 3154 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3155 return CGF.EmitLValue(&DRE).getAddress(CGF); 3156 }); 3157 } 3158 for (const auto &Pair : PrivatePtrs) { 3159 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3160 CGF.getContext().getDeclAlign(Pair.first)); 3161 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3162 } 3163 } 3164 if (Data.Reductions) { 3165 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3166 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 3167 Data.ReductionOps); 3168 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3169 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3170 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3171 RedCG.emitSharedLValue(CGF, Cnt); 3172 RedCG.emitAggregateType(CGF, Cnt); 3173 // FIXME: This must removed once the runtime library is fixed. 3174 // Emit required threadprivate variables for 3175 // initializer/combiner/finalizer. 3176 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3177 RedCG, Cnt); 3178 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3179 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3180 Replacement = 3181 Address(CGF.EmitScalarConversion( 3182 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3183 CGF.getContext().getPointerType( 3184 Data.ReductionCopies[Cnt]->getType()), 3185 Data.ReductionCopies[Cnt]->getExprLoc()), 3186 Replacement.getAlignment()); 3187 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3188 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3189 [Replacement]() { return Replacement; }); 3190 } 3191 } 3192 // Privatize all private variables except for in_reduction items. 3193 (void)Scope.Privatize(); 3194 SmallVector<const Expr *, 4> InRedVars; 3195 SmallVector<const Expr *, 4> InRedPrivs; 3196 SmallVector<const Expr *, 4> InRedOps; 3197 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3198 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3199 auto IPriv = C->privates().begin(); 3200 auto IRed = C->reduction_ops().begin(); 3201 auto ITD = C->taskgroup_descriptors().begin(); 3202 for (const Expr *Ref : C->varlists()) { 3203 InRedVars.emplace_back(Ref); 3204 InRedPrivs.emplace_back(*IPriv); 3205 InRedOps.emplace_back(*IRed); 3206 TaskgroupDescriptors.emplace_back(*ITD); 3207 std::advance(IPriv, 1); 3208 std::advance(IRed, 1); 3209 std::advance(ITD, 1); 3210 } 3211 } 3212 // Privatize in_reduction items here, because taskgroup descriptors must be 3213 // privatized earlier. 3214 OMPPrivateScope InRedScope(CGF); 3215 if (!InRedVars.empty()) { 3216 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3217 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3218 RedCG.emitSharedLValue(CGF, Cnt); 3219 RedCG.emitAggregateType(CGF, Cnt); 3220 // The taskgroup descriptor variable is always implicit firstprivate and 3221 // privatized already during processing of the firstprivates. 3222 // FIXME: This must removed once the runtime library is fixed. 3223 // Emit required threadprivate variables for 3224 // initializer/combiner/finalizer. 3225 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3226 RedCG, Cnt); 3227 llvm::Value *ReductionsPtr = 3228 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3229 TaskgroupDescriptors[Cnt]->getExprLoc()); 3230 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3231 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3232 Replacement = Address( 3233 CGF.EmitScalarConversion( 3234 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3235 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3236 InRedPrivs[Cnt]->getExprLoc()), 3237 Replacement.getAlignment()); 3238 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3239 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3240 [Replacement]() { return Replacement; }); 3241 } 3242 } 3243 (void)InRedScope.Privatize(); 3244 3245 Action.Enter(CGF); 3246 BodyGen(CGF); 3247 }; 3248 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3249 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3250 Data.NumberOfParts); 3251 OMPLexicalScope Scope(*this, S, llvm::None, 3252 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3253 !isOpenMPSimdDirective(S.getDirectiveKind())); 3254 TaskGen(*this, OutlinedFn, Data); 3255 } 3256 3257 static ImplicitParamDecl * 3258 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3259 QualType Ty, CapturedDecl *CD, 3260 SourceLocation Loc) { 3261 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3262 ImplicitParamDecl::Other); 3263 auto *OrigRef = DeclRefExpr::Create( 3264 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3265 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3266 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3267 ImplicitParamDecl::Other); 3268 auto *PrivateRef = DeclRefExpr::Create( 3269 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3270 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3271 QualType ElemType = C.getBaseElementType(Ty); 3272 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3273 ImplicitParamDecl::Other); 3274 auto *InitRef = DeclRefExpr::Create( 3275 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3276 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3277 PrivateVD->setInitStyle(VarDecl::CInit); 3278 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3279 InitRef, /*BasePath=*/nullptr, 3280 VK_RValue)); 3281 Data.FirstprivateVars.emplace_back(OrigRef); 3282 Data.FirstprivateCopies.emplace_back(PrivateRef); 3283 Data.FirstprivateInits.emplace_back(InitRef); 3284 return OrigVD; 3285 } 3286 3287 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3288 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3289 OMPTargetDataInfo &InputInfo) { 3290 // Emit outlined function for task construct. 3291 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3292 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3293 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3294 auto I = CS->getCapturedDecl()->param_begin(); 3295 auto PartId = std::next(I); 3296 auto TaskT = std::next(I, 4); 3297 OMPTaskDataTy Data; 3298 // The task is not final. 3299 Data.Final.setInt(/*IntVal=*/false); 3300 // Get list of firstprivate variables. 3301 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3302 auto IRef = C->varlist_begin(); 3303 auto IElemInitRef = C->inits().begin(); 3304 for (auto *IInit : C->private_copies()) { 3305 Data.FirstprivateVars.push_back(*IRef); 3306 Data.FirstprivateCopies.push_back(IInit); 3307 Data.FirstprivateInits.push_back(*IElemInitRef); 3308 ++IRef; 3309 ++IElemInitRef; 3310 } 3311 } 3312 OMPPrivateScope TargetScope(*this); 3313 VarDecl *BPVD = nullptr; 3314 VarDecl *PVD = nullptr; 3315 VarDecl *SVD = nullptr; 3316 if (InputInfo.NumberOfTargetItems > 0) { 3317 auto *CD = CapturedDecl::Create( 3318 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3319 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3320 QualType BaseAndPointersType = getContext().getConstantArrayType( 3321 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 3322 /*IndexTypeQuals=*/0); 3323 BPVD = createImplicitFirstprivateForType( 3324 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3325 PVD = createImplicitFirstprivateForType( 3326 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3327 QualType SizesType = getContext().getConstantArrayType( 3328 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3329 ArrSize, nullptr, ArrayType::Normal, 3330 /*IndexTypeQuals=*/0); 3331 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3332 S.getBeginLoc()); 3333 TargetScope.addPrivate( 3334 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3335 TargetScope.addPrivate(PVD, 3336 [&InputInfo]() { return InputInfo.PointersArray; }); 3337 TargetScope.addPrivate(SVD, 3338 [&InputInfo]() { return InputInfo.SizesArray; }); 3339 } 3340 (void)TargetScope.Privatize(); 3341 // Build list of dependences. 3342 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3343 for (const Expr *IRef : C->varlists()) 3344 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3345 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3346 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3347 // Set proper addresses for generated private copies. 3348 OMPPrivateScope Scope(CGF); 3349 if (!Data.FirstprivateVars.empty()) { 3350 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3351 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3352 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3353 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3354 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3355 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3356 CS->getCapturedDecl()->getParam(PrivatesParam))); 3357 // Map privates. 3358 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3359 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3360 CallArgs.push_back(PrivatesPtr); 3361 for (const Expr *E : Data.FirstprivateVars) { 3362 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3363 Address PrivatePtr = 3364 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3365 ".firstpriv.ptr.addr"); 3366 PrivatePtrs.emplace_back(VD, PrivatePtr); 3367 CallArgs.push_back(PrivatePtr.getPointer()); 3368 } 3369 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3370 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3371 for (const auto &Pair : PrivatePtrs) { 3372 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3373 CGF.getContext().getDeclAlign(Pair.first)); 3374 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3375 } 3376 } 3377 // Privatize all private variables except for in_reduction items. 3378 (void)Scope.Privatize(); 3379 if (InputInfo.NumberOfTargetItems > 0) { 3380 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3381 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3382 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3383 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3384 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3385 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3386 } 3387 3388 Action.Enter(CGF); 3389 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3390 BodyGen(CGF); 3391 }; 3392 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3393 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3394 Data.NumberOfParts); 3395 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3396 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3397 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3398 SourceLocation()); 3399 3400 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3401 SharedsTy, CapturedStruct, &IfCond, Data); 3402 } 3403 3404 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3405 // Emit outlined function for task construct. 3406 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3407 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3408 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3409 const Expr *IfCond = nullptr; 3410 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3411 if (C->getNameModifier() == OMPD_unknown || 3412 C->getNameModifier() == OMPD_task) { 3413 IfCond = C->getCondition(); 3414 break; 3415 } 3416 } 3417 3418 OMPTaskDataTy Data; 3419 // Check if we should emit tied or untied task. 3420 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3421 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3422 CGF.EmitStmt(CS->getCapturedStmt()); 3423 }; 3424 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3425 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3426 const OMPTaskDataTy &Data) { 3427 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3428 SharedsTy, CapturedStruct, IfCond, 3429 Data); 3430 }; 3431 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3432 } 3433 3434 void CodeGenFunction::EmitOMPTaskyieldDirective( 3435 const OMPTaskyieldDirective &S) { 3436 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3437 } 3438 3439 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3440 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3441 } 3442 3443 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3444 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3445 } 3446 3447 void CodeGenFunction::EmitOMPTaskgroupDirective( 3448 const OMPTaskgroupDirective &S) { 3449 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3450 Action.Enter(CGF); 3451 if (const Expr *E = S.getReductionRef()) { 3452 SmallVector<const Expr *, 4> LHSs; 3453 SmallVector<const Expr *, 4> RHSs; 3454 OMPTaskDataTy Data; 3455 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3456 auto IPriv = C->privates().begin(); 3457 auto IRed = C->reduction_ops().begin(); 3458 auto ILHS = C->lhs_exprs().begin(); 3459 auto IRHS = C->rhs_exprs().begin(); 3460 for (const Expr *Ref : C->varlists()) { 3461 Data.ReductionVars.emplace_back(Ref); 3462 Data.ReductionCopies.emplace_back(*IPriv); 3463 Data.ReductionOps.emplace_back(*IRed); 3464 LHSs.emplace_back(*ILHS); 3465 RHSs.emplace_back(*IRHS); 3466 std::advance(IPriv, 1); 3467 std::advance(IRed, 1); 3468 std::advance(ILHS, 1); 3469 std::advance(IRHS, 1); 3470 } 3471 } 3472 llvm::Value *ReductionDesc = 3473 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3474 LHSs, RHSs, Data); 3475 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3476 CGF.EmitVarDecl(*VD); 3477 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3478 /*Volatile=*/false, E->getType()); 3479 } 3480 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3481 }; 3482 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3483 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3484 } 3485 3486 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3487 CGM.getOpenMPRuntime().emitFlush( 3488 *this, 3489 [&S]() -> ArrayRef<const Expr *> { 3490 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3491 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3492 FlushClause->varlist_end()); 3493 return llvm::None; 3494 }(), 3495 S.getBeginLoc()); 3496 } 3497 3498 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3499 const CodeGenLoopTy &CodeGenLoop, 3500 Expr *IncExpr) { 3501 // Emit the loop iteration variable. 3502 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3503 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3504 EmitVarDecl(*IVDecl); 3505 3506 // Emit the iterations count variable. 3507 // If it is not a variable, Sema decided to calculate iterations count on each 3508 // iteration (e.g., it is foldable into a constant). 3509 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3510 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3511 // Emit calculation of the iterations count. 3512 EmitIgnoredExpr(S.getCalcLastIteration()); 3513 } 3514 3515 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3516 3517 bool HasLastprivateClause = false; 3518 // Check pre-condition. 3519 { 3520 OMPLoopScope PreInitScope(*this, S); 3521 // Skip the entire loop if we don't meet the precondition. 3522 // If the condition constant folds and can be elided, avoid emitting the 3523 // whole loop. 3524 bool CondConstant; 3525 llvm::BasicBlock *ContBlock = nullptr; 3526 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3527 if (!CondConstant) 3528 return; 3529 } else { 3530 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3531 ContBlock = createBasicBlock("omp.precond.end"); 3532 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3533 getProfileCount(&S)); 3534 EmitBlock(ThenBlock); 3535 incrementProfileCounter(&S); 3536 } 3537 3538 emitAlignedClause(*this, S); 3539 // Emit 'then' code. 3540 { 3541 // Emit helper vars inits. 3542 3543 LValue LB = EmitOMPHelperVar( 3544 *this, cast<DeclRefExpr>( 3545 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3546 ? S.getCombinedLowerBoundVariable() 3547 : S.getLowerBoundVariable()))); 3548 LValue UB = EmitOMPHelperVar( 3549 *this, cast<DeclRefExpr>( 3550 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3551 ? S.getCombinedUpperBoundVariable() 3552 : S.getUpperBoundVariable()))); 3553 LValue ST = 3554 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3555 LValue IL = 3556 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3557 3558 OMPPrivateScope LoopScope(*this); 3559 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3560 // Emit implicit barrier to synchronize threads and avoid data races 3561 // on initialization of firstprivate variables and post-update of 3562 // lastprivate variables. 3563 CGM.getOpenMPRuntime().emitBarrierCall( 3564 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3565 /*ForceSimpleCall=*/true); 3566 } 3567 EmitOMPPrivateClause(S, LoopScope); 3568 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3569 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3570 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3571 EmitOMPReductionClauseInit(S, LoopScope); 3572 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3573 EmitOMPPrivateLoopCounters(S, LoopScope); 3574 (void)LoopScope.Privatize(); 3575 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3576 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3577 3578 // Detect the distribute schedule kind and chunk. 3579 llvm::Value *Chunk = nullptr; 3580 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3581 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3582 ScheduleKind = C->getDistScheduleKind(); 3583 if (const Expr *Ch = C->getChunkSize()) { 3584 Chunk = EmitScalarExpr(Ch); 3585 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3586 S.getIterationVariable()->getType(), 3587 S.getBeginLoc()); 3588 } 3589 } else { 3590 // Default behaviour for dist_schedule clause. 3591 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3592 *this, S, ScheduleKind, Chunk); 3593 } 3594 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3595 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3596 3597 // OpenMP [2.10.8, distribute Construct, Description] 3598 // If dist_schedule is specified, kind must be static. If specified, 3599 // iterations are divided into chunks of size chunk_size, chunks are 3600 // assigned to the teams of the league in a round-robin fashion in the 3601 // order of the team number. When no chunk_size is specified, the 3602 // iteration space is divided into chunks that are approximately equal 3603 // in size, and at most one chunk is distributed to each team of the 3604 // league. The size of the chunks is unspecified in this case. 3605 bool StaticChunked = RT.isStaticChunked( 3606 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3607 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3608 if (RT.isStaticNonchunked(ScheduleKind, 3609 /* Chunked */ Chunk != nullptr) || 3610 StaticChunked) { 3611 CGOpenMPRuntime::StaticRTInput StaticInit( 3612 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 3613 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3614 StaticChunked ? Chunk : nullptr); 3615 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3616 StaticInit); 3617 JumpDest LoopExit = 3618 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3619 // UB = min(UB, GlobalUB); 3620 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3621 ? S.getCombinedEnsureUpperBound() 3622 : S.getEnsureUpperBound()); 3623 // IV = LB; 3624 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3625 ? S.getCombinedInit() 3626 : S.getInit()); 3627 3628 const Expr *Cond = 3629 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3630 ? S.getCombinedCond() 3631 : S.getCond(); 3632 3633 if (StaticChunked) 3634 Cond = S.getCombinedDistCond(); 3635 3636 // For static unchunked schedules generate: 3637 // 3638 // 1. For distribute alone, codegen 3639 // while (idx <= UB) { 3640 // BODY; 3641 // ++idx; 3642 // } 3643 // 3644 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3645 // while (idx <= UB) { 3646 // <CodeGen rest of pragma>(LB, UB); 3647 // idx += ST; 3648 // } 3649 // 3650 // For static chunk one schedule generate: 3651 // 3652 // while (IV <= GlobalUB) { 3653 // <CodeGen rest of pragma>(LB, UB); 3654 // LB += ST; 3655 // UB += ST; 3656 // UB = min(UB, GlobalUB); 3657 // IV = LB; 3658 // } 3659 // 3660 emitCommonSimdLoop( 3661 *this, S, 3662 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3663 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3664 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3665 }, 3666 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 3667 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 3668 CGF.EmitOMPInnerLoop( 3669 S, LoopScope.requiresCleanups(), Cond, IncExpr, 3670 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3671 CodeGenLoop(CGF, S, LoopExit); 3672 }, 3673 [&S, StaticChunked](CodeGenFunction &CGF) { 3674 if (StaticChunked) { 3675 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3676 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3677 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3678 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3679 } 3680 }); 3681 }); 3682 EmitBlock(LoopExit.getBlock()); 3683 // Tell the runtime we are done. 3684 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3685 } else { 3686 // Emit the outer loop, which requests its work chunk [LB..UB] from 3687 // runtime and runs the inner loop to process it. 3688 const OMPLoopArguments LoopArguments = { 3689 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3690 IL.getAddress(*this), Chunk}; 3691 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3692 CodeGenLoop); 3693 } 3694 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3695 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3696 return CGF.Builder.CreateIsNotNull( 3697 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3698 }); 3699 } 3700 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3701 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3702 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3703 EmitOMPReductionClauseFinal(S, OMPD_simd); 3704 // Emit post-update of the reduction variables if IsLastIter != 0. 3705 emitPostUpdateForReductionClause( 3706 *this, S, [IL, &S](CodeGenFunction &CGF) { 3707 return CGF.Builder.CreateIsNotNull( 3708 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3709 }); 3710 } 3711 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3712 if (HasLastprivateClause) { 3713 EmitOMPLastprivateClauseFinal( 3714 S, /*NoFinals=*/false, 3715 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3716 } 3717 } 3718 3719 // We're now done with the loop, so jump to the continuation block. 3720 if (ContBlock) { 3721 EmitBranch(ContBlock); 3722 EmitBlock(ContBlock, true); 3723 } 3724 } 3725 } 3726 3727 void CodeGenFunction::EmitOMPDistributeDirective( 3728 const OMPDistributeDirective &S) { 3729 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3730 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3731 }; 3732 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3733 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3734 } 3735 3736 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3737 const CapturedStmt *S) { 3738 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3739 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3740 CGF.CapturedStmtInfo = &CapStmtInfo; 3741 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3742 Fn->setDoesNotRecurse(); 3743 return Fn; 3744 } 3745 3746 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3747 if (S.hasClausesOfKind<OMPDependClause>()) { 3748 assert(!S.getAssociatedStmt() && 3749 "No associated statement must be in ordered depend construct."); 3750 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3751 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3752 return; 3753 } 3754 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3755 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3756 PrePostActionTy &Action) { 3757 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3758 if (C) { 3759 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3760 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3761 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3762 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3763 OutlinedFn, CapturedVars); 3764 } else { 3765 Action.Enter(CGF); 3766 CGF.EmitStmt(CS->getCapturedStmt()); 3767 } 3768 }; 3769 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3770 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3771 } 3772 3773 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3774 QualType SrcType, QualType DestType, 3775 SourceLocation Loc) { 3776 assert(CGF.hasScalarEvaluationKind(DestType) && 3777 "DestType must have scalar evaluation kind."); 3778 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3779 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3780 DestType, Loc) 3781 : CGF.EmitComplexToScalarConversion( 3782 Val.getComplexVal(), SrcType, DestType, Loc); 3783 } 3784 3785 static CodeGenFunction::ComplexPairTy 3786 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3787 QualType DestType, SourceLocation Loc) { 3788 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3789 "DestType must have complex evaluation kind."); 3790 CodeGenFunction::ComplexPairTy ComplexVal; 3791 if (Val.isScalar()) { 3792 // Convert the input element to the element type of the complex. 3793 QualType DestElementType = 3794 DestType->castAs<ComplexType>()->getElementType(); 3795 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3796 Val.getScalarVal(), SrcType, DestElementType, Loc); 3797 ComplexVal = CodeGenFunction::ComplexPairTy( 3798 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3799 } else { 3800 assert(Val.isComplex() && "Must be a scalar or complex."); 3801 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3802 QualType DestElementType = 3803 DestType->castAs<ComplexType>()->getElementType(); 3804 ComplexVal.first = CGF.EmitScalarConversion( 3805 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3806 ComplexVal.second = CGF.EmitScalarConversion( 3807 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3808 } 3809 return ComplexVal; 3810 } 3811 3812 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3813 LValue LVal, RValue RVal) { 3814 if (LVal.isGlobalReg()) { 3815 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3816 } else { 3817 CGF.EmitAtomicStore(RVal, LVal, 3818 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3819 : llvm::AtomicOrdering::Monotonic, 3820 LVal.isVolatile(), /*isInit=*/false); 3821 } 3822 } 3823 3824 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3825 QualType RValTy, SourceLocation Loc) { 3826 switch (getEvaluationKind(LVal.getType())) { 3827 case TEK_Scalar: 3828 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3829 *this, RVal, RValTy, LVal.getType(), Loc)), 3830 LVal); 3831 break; 3832 case TEK_Complex: 3833 EmitStoreOfComplex( 3834 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3835 /*isInit=*/false); 3836 break; 3837 case TEK_Aggregate: 3838 llvm_unreachable("Must be a scalar or complex."); 3839 } 3840 } 3841 3842 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3843 const Expr *X, const Expr *V, 3844 SourceLocation Loc) { 3845 // v = x; 3846 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3847 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3848 LValue XLValue = CGF.EmitLValue(X); 3849 LValue VLValue = CGF.EmitLValue(V); 3850 RValue Res = XLValue.isGlobalReg() 3851 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3852 : CGF.EmitAtomicLoad( 3853 XLValue, Loc, 3854 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3855 : llvm::AtomicOrdering::Monotonic, 3856 XLValue.isVolatile()); 3857 // OpenMP, 2.12.6, atomic Construct 3858 // Any atomic construct with a seq_cst clause forces the atomically 3859 // performed operation to include an implicit flush operation without a 3860 // list. 3861 if (IsSeqCst) 3862 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3863 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3864 } 3865 3866 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3867 const Expr *X, const Expr *E, 3868 SourceLocation Loc) { 3869 // x = expr; 3870 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3871 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3872 // OpenMP, 2.12.6, atomic Construct 3873 // Any atomic construct with a seq_cst clause forces the atomically 3874 // performed operation to include an implicit flush operation without a 3875 // list. 3876 if (IsSeqCst) 3877 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3878 } 3879 3880 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3881 RValue Update, 3882 BinaryOperatorKind BO, 3883 llvm::AtomicOrdering AO, 3884 bool IsXLHSInRHSPart) { 3885 ASTContext &Context = CGF.getContext(); 3886 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3887 // expression is simple and atomic is allowed for the given type for the 3888 // target platform. 3889 if (BO == BO_Comma || !Update.isScalar() || 3890 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 3891 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3892 (Update.getScalarVal()->getType() != 3893 X.getAddress(CGF).getElementType())) || 3894 !X.getAddress(CGF).getElementType()->isIntegerTy() || 3895 !Context.getTargetInfo().hasBuiltinAtomic( 3896 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3897 return std::make_pair(false, RValue::get(nullptr)); 3898 3899 llvm::AtomicRMWInst::BinOp RMWOp; 3900 switch (BO) { 3901 case BO_Add: 3902 RMWOp = llvm::AtomicRMWInst::Add; 3903 break; 3904 case BO_Sub: 3905 if (!IsXLHSInRHSPart) 3906 return std::make_pair(false, RValue::get(nullptr)); 3907 RMWOp = llvm::AtomicRMWInst::Sub; 3908 break; 3909 case BO_And: 3910 RMWOp = llvm::AtomicRMWInst::And; 3911 break; 3912 case BO_Or: 3913 RMWOp = llvm::AtomicRMWInst::Or; 3914 break; 3915 case BO_Xor: 3916 RMWOp = llvm::AtomicRMWInst::Xor; 3917 break; 3918 case BO_LT: 3919 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3920 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3921 : llvm::AtomicRMWInst::Max) 3922 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3923 : llvm::AtomicRMWInst::UMax); 3924 break; 3925 case BO_GT: 3926 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3927 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3928 : llvm::AtomicRMWInst::Min) 3929 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3930 : llvm::AtomicRMWInst::UMin); 3931 break; 3932 case BO_Assign: 3933 RMWOp = llvm::AtomicRMWInst::Xchg; 3934 break; 3935 case BO_Mul: 3936 case BO_Div: 3937 case BO_Rem: 3938 case BO_Shl: 3939 case BO_Shr: 3940 case BO_LAnd: 3941 case BO_LOr: 3942 return std::make_pair(false, RValue::get(nullptr)); 3943 case BO_PtrMemD: 3944 case BO_PtrMemI: 3945 case BO_LE: 3946 case BO_GE: 3947 case BO_EQ: 3948 case BO_NE: 3949 case BO_Cmp: 3950 case BO_AddAssign: 3951 case BO_SubAssign: 3952 case BO_AndAssign: 3953 case BO_OrAssign: 3954 case BO_XorAssign: 3955 case BO_MulAssign: 3956 case BO_DivAssign: 3957 case BO_RemAssign: 3958 case BO_ShlAssign: 3959 case BO_ShrAssign: 3960 case BO_Comma: 3961 llvm_unreachable("Unsupported atomic update operation"); 3962 } 3963 llvm::Value *UpdateVal = Update.getScalarVal(); 3964 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3965 UpdateVal = CGF.Builder.CreateIntCast( 3966 IC, X.getAddress(CGF).getElementType(), 3967 X.getType()->hasSignedIntegerRepresentation()); 3968 } 3969 llvm::Value *Res = 3970 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 3971 return std::make_pair(true, RValue::get(Res)); 3972 } 3973 3974 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3975 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3976 llvm::AtomicOrdering AO, SourceLocation Loc, 3977 const llvm::function_ref<RValue(RValue)> CommonGen) { 3978 // Update expressions are allowed to have the following forms: 3979 // x binop= expr; -> xrval + expr; 3980 // x++, ++x -> xrval + 1; 3981 // x--, --x -> xrval - 1; 3982 // x = x binop expr; -> xrval binop expr 3983 // x = expr Op x; - > expr binop xrval; 3984 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3985 if (!Res.first) { 3986 if (X.isGlobalReg()) { 3987 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3988 // 'xrval'. 3989 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3990 } else { 3991 // Perform compare-and-swap procedure. 3992 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3993 } 3994 } 3995 return Res; 3996 } 3997 3998 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3999 const Expr *X, const Expr *E, 4000 const Expr *UE, bool IsXLHSInRHSPart, 4001 SourceLocation Loc) { 4002 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4003 "Update expr in 'atomic update' must be a binary operator."); 4004 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4005 // Update expressions are allowed to have the following forms: 4006 // x binop= expr; -> xrval + expr; 4007 // x++, ++x -> xrval + 1; 4008 // x--, --x -> xrval - 1; 4009 // x = x binop expr; -> xrval binop expr 4010 // x = expr Op x; - > expr binop xrval; 4011 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 4012 LValue XLValue = CGF.EmitLValue(X); 4013 RValue ExprRValue = CGF.EmitAnyExpr(E); 4014 llvm::AtomicOrdering AO = IsSeqCst 4015 ? llvm::AtomicOrdering::SequentiallyConsistent 4016 : llvm::AtomicOrdering::Monotonic; 4017 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4018 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4019 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4020 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4021 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 4022 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4023 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4024 return CGF.EmitAnyExpr(UE); 4025 }; 4026 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 4027 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4028 // OpenMP, 2.12.6, atomic Construct 4029 // Any atomic construct with a seq_cst clause forces the atomically 4030 // performed operation to include an implicit flush operation without a 4031 // list. 4032 if (IsSeqCst) 4033 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4034 } 4035 4036 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 4037 QualType SourceType, QualType ResType, 4038 SourceLocation Loc) { 4039 switch (CGF.getEvaluationKind(ResType)) { 4040 case TEK_Scalar: 4041 return RValue::get( 4042 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 4043 case TEK_Complex: { 4044 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 4045 return RValue::getComplex(Res.first, Res.second); 4046 } 4047 case TEK_Aggregate: 4048 break; 4049 } 4050 llvm_unreachable("Must be a scalar or complex."); 4051 } 4052 4053 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 4054 bool IsPostfixUpdate, const Expr *V, 4055 const Expr *X, const Expr *E, 4056 const Expr *UE, bool IsXLHSInRHSPart, 4057 SourceLocation Loc) { 4058 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 4059 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 4060 RValue NewVVal; 4061 LValue VLValue = CGF.EmitLValue(V); 4062 LValue XLValue = CGF.EmitLValue(X); 4063 RValue ExprRValue = CGF.EmitAnyExpr(E); 4064 llvm::AtomicOrdering AO = IsSeqCst 4065 ? llvm::AtomicOrdering::SequentiallyConsistent 4066 : llvm::AtomicOrdering::Monotonic; 4067 QualType NewVValType; 4068 if (UE) { 4069 // 'x' is updated with some additional value. 4070 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4071 "Update expr in 'atomic capture' must be a binary operator."); 4072 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4073 // Update expressions are allowed to have the following forms: 4074 // x binop= expr; -> xrval + expr; 4075 // x++, ++x -> xrval + 1; 4076 // x--, --x -> xrval - 1; 4077 // x = x binop expr; -> xrval binop expr 4078 // x = expr Op x; - > expr binop xrval; 4079 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4080 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4081 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4082 NewVValType = XRValExpr->getType(); 4083 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4084 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 4085 IsPostfixUpdate](RValue XRValue) { 4086 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4087 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4088 RValue Res = CGF.EmitAnyExpr(UE); 4089 NewVVal = IsPostfixUpdate ? XRValue : Res; 4090 return Res; 4091 }; 4092 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4093 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4094 if (Res.first) { 4095 // 'atomicrmw' instruction was generated. 4096 if (IsPostfixUpdate) { 4097 // Use old value from 'atomicrmw'. 4098 NewVVal = Res.second; 4099 } else { 4100 // 'atomicrmw' does not provide new value, so evaluate it using old 4101 // value of 'x'. 4102 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4103 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 4104 NewVVal = CGF.EmitAnyExpr(UE); 4105 } 4106 } 4107 } else { 4108 // 'x' is simply rewritten with some 'expr'. 4109 NewVValType = X->getType().getNonReferenceType(); 4110 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 4111 X->getType().getNonReferenceType(), Loc); 4112 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 4113 NewVVal = XRValue; 4114 return ExprRValue; 4115 }; 4116 // Try to perform atomicrmw xchg, otherwise simple exchange. 4117 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4118 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 4119 Loc, Gen); 4120 if (Res.first) { 4121 // 'atomicrmw' instruction was generated. 4122 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 4123 } 4124 } 4125 // Emit post-update store to 'v' of old/new 'x' value. 4126 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 4127 // OpenMP, 2.12.6, atomic Construct 4128 // Any atomic construct with a seq_cst clause forces the atomically 4129 // performed operation to include an implicit flush operation without a 4130 // list. 4131 if (IsSeqCst) 4132 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4133 } 4134 4135 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 4136 bool IsSeqCst, bool IsPostfixUpdate, 4137 const Expr *X, const Expr *V, const Expr *E, 4138 const Expr *UE, bool IsXLHSInRHSPart, 4139 SourceLocation Loc) { 4140 switch (Kind) { 4141 case OMPC_read: 4142 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 4143 break; 4144 case OMPC_write: 4145 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 4146 break; 4147 case OMPC_unknown: 4148 case OMPC_update: 4149 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 4150 break; 4151 case OMPC_capture: 4152 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 4153 IsXLHSInRHSPart, Loc); 4154 break; 4155 case OMPC_if: 4156 case OMPC_final: 4157 case OMPC_num_threads: 4158 case OMPC_private: 4159 case OMPC_firstprivate: 4160 case OMPC_lastprivate: 4161 case OMPC_reduction: 4162 case OMPC_task_reduction: 4163 case OMPC_in_reduction: 4164 case OMPC_safelen: 4165 case OMPC_simdlen: 4166 case OMPC_allocator: 4167 case OMPC_allocate: 4168 case OMPC_collapse: 4169 case OMPC_default: 4170 case OMPC_seq_cst: 4171 case OMPC_shared: 4172 case OMPC_linear: 4173 case OMPC_aligned: 4174 case OMPC_copyin: 4175 case OMPC_copyprivate: 4176 case OMPC_flush: 4177 case OMPC_proc_bind: 4178 case OMPC_schedule: 4179 case OMPC_ordered: 4180 case OMPC_nowait: 4181 case OMPC_untied: 4182 case OMPC_threadprivate: 4183 case OMPC_depend: 4184 case OMPC_mergeable: 4185 case OMPC_device: 4186 case OMPC_threads: 4187 case OMPC_simd: 4188 case OMPC_map: 4189 case OMPC_num_teams: 4190 case OMPC_thread_limit: 4191 case OMPC_priority: 4192 case OMPC_grainsize: 4193 case OMPC_nogroup: 4194 case OMPC_num_tasks: 4195 case OMPC_hint: 4196 case OMPC_dist_schedule: 4197 case OMPC_defaultmap: 4198 case OMPC_uniform: 4199 case OMPC_to: 4200 case OMPC_from: 4201 case OMPC_use_device_ptr: 4202 case OMPC_is_device_ptr: 4203 case OMPC_unified_address: 4204 case OMPC_unified_shared_memory: 4205 case OMPC_reverse_offload: 4206 case OMPC_dynamic_allocators: 4207 case OMPC_atomic_default_mem_order: 4208 case OMPC_device_type: 4209 case OMPC_match: 4210 case OMPC_nontemporal: 4211 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 4212 } 4213 } 4214 4215 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4216 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4217 OpenMPClauseKind Kind = OMPC_unknown; 4218 for (const OMPClause *C : S.clauses()) { 4219 // Find first clause (skip seq_cst clause, if it is first). 4220 if (C->getClauseKind() != OMPC_seq_cst) { 4221 Kind = C->getClauseKind(); 4222 break; 4223 } 4224 } 4225 4226 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4227 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4228 enterFullExpression(FE); 4229 // Processing for statements under 'atomic capture'. 4230 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4231 for (const Stmt *C : Compound->body()) { 4232 if (const auto *FE = dyn_cast<FullExpr>(C)) 4233 enterFullExpression(FE); 4234 } 4235 } 4236 4237 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4238 PrePostActionTy &) { 4239 CGF.EmitStopPoint(CS); 4240 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4241 S.getV(), S.getExpr(), S.getUpdateExpr(), 4242 S.isXLHSInRHSPart(), S.getBeginLoc()); 4243 }; 4244 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4245 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4246 } 4247 4248 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4249 const OMPExecutableDirective &S, 4250 const RegionCodeGenTy &CodeGen) { 4251 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4252 CodeGenModule &CGM = CGF.CGM; 4253 4254 // On device emit this construct as inlined code. 4255 if (CGM.getLangOpts().OpenMPIsDevice) { 4256 OMPLexicalScope Scope(CGF, S, OMPD_target); 4257 CGM.getOpenMPRuntime().emitInlinedDirective( 4258 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4259 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4260 }); 4261 return; 4262 } 4263 4264 llvm::Function *Fn = nullptr; 4265 llvm::Constant *FnID = nullptr; 4266 4267 const Expr *IfCond = nullptr; 4268 // Check for the at most one if clause associated with the target region. 4269 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4270 if (C->getNameModifier() == OMPD_unknown || 4271 C->getNameModifier() == OMPD_target) { 4272 IfCond = C->getCondition(); 4273 break; 4274 } 4275 } 4276 4277 // Check if we have any device clause associated with the directive. 4278 const Expr *Device = nullptr; 4279 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4280 Device = C->getDevice(); 4281 4282 // Check if we have an if clause whose conditional always evaluates to false 4283 // or if we do not have any targets specified. If so the target region is not 4284 // an offload entry point. 4285 bool IsOffloadEntry = true; 4286 if (IfCond) { 4287 bool Val; 4288 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4289 IsOffloadEntry = false; 4290 } 4291 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4292 IsOffloadEntry = false; 4293 4294 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4295 StringRef ParentName; 4296 // In case we have Ctors/Dtors we use the complete type variant to produce 4297 // the mangling of the device outlined kernel. 4298 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4299 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4300 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4301 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4302 else 4303 ParentName = 4304 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4305 4306 // Emit target region as a standalone region. 4307 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4308 IsOffloadEntry, CodeGen); 4309 OMPLexicalScope Scope(CGF, S, OMPD_task); 4310 auto &&SizeEmitter = 4311 [IsOffloadEntry](CodeGenFunction &CGF, 4312 const OMPLoopDirective &D) -> llvm::Value * { 4313 if (IsOffloadEntry) { 4314 OMPLoopScope(CGF, D); 4315 // Emit calculation of the iterations count. 4316 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4317 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4318 /*isSigned=*/false); 4319 return NumIterations; 4320 } 4321 return nullptr; 4322 }; 4323 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 4324 SizeEmitter); 4325 } 4326 4327 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4328 PrePostActionTy &Action) { 4329 Action.Enter(CGF); 4330 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4331 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4332 CGF.EmitOMPPrivateClause(S, PrivateScope); 4333 (void)PrivateScope.Privatize(); 4334 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4335 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4336 4337 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4338 } 4339 4340 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4341 StringRef ParentName, 4342 const OMPTargetDirective &S) { 4343 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4344 emitTargetRegion(CGF, S, Action); 4345 }; 4346 llvm::Function *Fn; 4347 llvm::Constant *Addr; 4348 // Emit target region as a standalone region. 4349 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4350 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4351 assert(Fn && Addr && "Target device function emission failed."); 4352 } 4353 4354 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4355 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4356 emitTargetRegion(CGF, S, Action); 4357 }; 4358 emitCommonOMPTargetDirective(*this, S, CodeGen); 4359 } 4360 4361 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4362 const OMPExecutableDirective &S, 4363 OpenMPDirectiveKind InnermostKind, 4364 const RegionCodeGenTy &CodeGen) { 4365 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4366 llvm::Function *OutlinedFn = 4367 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4368 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4369 4370 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4371 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4372 if (NT || TL) { 4373 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4374 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4375 4376 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4377 S.getBeginLoc()); 4378 } 4379 4380 OMPTeamsScope Scope(CGF, S); 4381 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4382 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4383 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4384 CapturedVars); 4385 } 4386 4387 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4388 // Emit teams region as a standalone region. 4389 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4390 Action.Enter(CGF); 4391 OMPPrivateScope PrivateScope(CGF); 4392 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4393 CGF.EmitOMPPrivateClause(S, PrivateScope); 4394 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4395 (void)PrivateScope.Privatize(); 4396 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4397 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4398 }; 4399 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4400 emitPostUpdateForReductionClause(*this, S, 4401 [](CodeGenFunction &) { return nullptr; }); 4402 } 4403 4404 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4405 const OMPTargetTeamsDirective &S) { 4406 auto *CS = S.getCapturedStmt(OMPD_teams); 4407 Action.Enter(CGF); 4408 // Emit teams region as a standalone region. 4409 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4410 Action.Enter(CGF); 4411 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4412 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4413 CGF.EmitOMPPrivateClause(S, PrivateScope); 4414 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4415 (void)PrivateScope.Privatize(); 4416 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4417 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4418 CGF.EmitStmt(CS->getCapturedStmt()); 4419 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4420 }; 4421 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4422 emitPostUpdateForReductionClause(CGF, S, 4423 [](CodeGenFunction &) { return nullptr; }); 4424 } 4425 4426 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4427 CodeGenModule &CGM, StringRef ParentName, 4428 const OMPTargetTeamsDirective &S) { 4429 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4430 emitTargetTeamsRegion(CGF, Action, S); 4431 }; 4432 llvm::Function *Fn; 4433 llvm::Constant *Addr; 4434 // Emit target region as a standalone region. 4435 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4436 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4437 assert(Fn && Addr && "Target device function emission failed."); 4438 } 4439 4440 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4441 const OMPTargetTeamsDirective &S) { 4442 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4443 emitTargetTeamsRegion(CGF, Action, S); 4444 }; 4445 emitCommonOMPTargetDirective(*this, S, CodeGen); 4446 } 4447 4448 static void 4449 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4450 const OMPTargetTeamsDistributeDirective &S) { 4451 Action.Enter(CGF); 4452 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4453 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4454 }; 4455 4456 // Emit teams region as a standalone region. 4457 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4458 PrePostActionTy &Action) { 4459 Action.Enter(CGF); 4460 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4461 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4462 (void)PrivateScope.Privatize(); 4463 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4464 CodeGenDistribute); 4465 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4466 }; 4467 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4468 emitPostUpdateForReductionClause(CGF, S, 4469 [](CodeGenFunction &) { return nullptr; }); 4470 } 4471 4472 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4473 CodeGenModule &CGM, StringRef ParentName, 4474 const OMPTargetTeamsDistributeDirective &S) { 4475 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4476 emitTargetTeamsDistributeRegion(CGF, Action, S); 4477 }; 4478 llvm::Function *Fn; 4479 llvm::Constant *Addr; 4480 // Emit target region as a standalone region. 4481 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4482 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4483 assert(Fn && Addr && "Target device function emission failed."); 4484 } 4485 4486 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4487 const OMPTargetTeamsDistributeDirective &S) { 4488 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4489 emitTargetTeamsDistributeRegion(CGF, Action, S); 4490 }; 4491 emitCommonOMPTargetDirective(*this, S, CodeGen); 4492 } 4493 4494 static void emitTargetTeamsDistributeSimdRegion( 4495 CodeGenFunction &CGF, PrePostActionTy &Action, 4496 const OMPTargetTeamsDistributeSimdDirective &S) { 4497 Action.Enter(CGF); 4498 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4499 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4500 }; 4501 4502 // Emit teams region as a standalone region. 4503 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4504 PrePostActionTy &Action) { 4505 Action.Enter(CGF); 4506 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4507 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4508 (void)PrivateScope.Privatize(); 4509 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4510 CodeGenDistribute); 4511 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4512 }; 4513 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4514 emitPostUpdateForReductionClause(CGF, S, 4515 [](CodeGenFunction &) { return nullptr; }); 4516 } 4517 4518 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4519 CodeGenModule &CGM, StringRef ParentName, 4520 const OMPTargetTeamsDistributeSimdDirective &S) { 4521 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4522 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4523 }; 4524 llvm::Function *Fn; 4525 llvm::Constant *Addr; 4526 // Emit target region as a standalone region. 4527 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4528 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4529 assert(Fn && Addr && "Target device function emission failed."); 4530 } 4531 4532 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4533 const OMPTargetTeamsDistributeSimdDirective &S) { 4534 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4535 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4536 }; 4537 emitCommonOMPTargetDirective(*this, S, CodeGen); 4538 } 4539 4540 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4541 const OMPTeamsDistributeDirective &S) { 4542 4543 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4544 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4545 }; 4546 4547 // Emit teams region as a standalone region. 4548 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4549 PrePostActionTy &Action) { 4550 Action.Enter(CGF); 4551 OMPPrivateScope PrivateScope(CGF); 4552 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4553 (void)PrivateScope.Privatize(); 4554 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4555 CodeGenDistribute); 4556 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4557 }; 4558 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4559 emitPostUpdateForReductionClause(*this, S, 4560 [](CodeGenFunction &) { return nullptr; }); 4561 } 4562 4563 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4564 const OMPTeamsDistributeSimdDirective &S) { 4565 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4566 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4567 }; 4568 4569 // Emit teams region as a standalone region. 4570 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4571 PrePostActionTy &Action) { 4572 Action.Enter(CGF); 4573 OMPPrivateScope PrivateScope(CGF); 4574 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4575 (void)PrivateScope.Privatize(); 4576 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4577 CodeGenDistribute); 4578 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4579 }; 4580 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4581 emitPostUpdateForReductionClause(*this, S, 4582 [](CodeGenFunction &) { return nullptr; }); 4583 } 4584 4585 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4586 const OMPTeamsDistributeParallelForDirective &S) { 4587 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4588 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4589 S.getDistInc()); 4590 }; 4591 4592 // Emit teams region as a standalone region. 4593 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4594 PrePostActionTy &Action) { 4595 Action.Enter(CGF); 4596 OMPPrivateScope PrivateScope(CGF); 4597 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4598 (void)PrivateScope.Privatize(); 4599 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4600 CodeGenDistribute); 4601 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4602 }; 4603 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4604 emitPostUpdateForReductionClause(*this, S, 4605 [](CodeGenFunction &) { return nullptr; }); 4606 } 4607 4608 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4609 const OMPTeamsDistributeParallelForSimdDirective &S) { 4610 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4611 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4612 S.getDistInc()); 4613 }; 4614 4615 // Emit teams region as a standalone region. 4616 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4617 PrePostActionTy &Action) { 4618 Action.Enter(CGF); 4619 OMPPrivateScope PrivateScope(CGF); 4620 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4621 (void)PrivateScope.Privatize(); 4622 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4623 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4624 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4625 }; 4626 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 4627 CodeGen); 4628 emitPostUpdateForReductionClause(*this, S, 4629 [](CodeGenFunction &) { return nullptr; }); 4630 } 4631 4632 static void emitTargetTeamsDistributeParallelForRegion( 4633 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4634 PrePostActionTy &Action) { 4635 Action.Enter(CGF); 4636 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4637 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4638 S.getDistInc()); 4639 }; 4640 4641 // Emit teams region as a standalone region. 4642 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4643 PrePostActionTy &Action) { 4644 Action.Enter(CGF); 4645 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4646 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4647 (void)PrivateScope.Privatize(); 4648 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4649 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4650 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4651 }; 4652 4653 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4654 CodeGenTeams); 4655 emitPostUpdateForReductionClause(CGF, S, 4656 [](CodeGenFunction &) { return nullptr; }); 4657 } 4658 4659 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4660 CodeGenModule &CGM, StringRef ParentName, 4661 const OMPTargetTeamsDistributeParallelForDirective &S) { 4662 // Emit SPMD target teams distribute parallel for region as a standalone 4663 // region. 4664 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4665 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4666 }; 4667 llvm::Function *Fn; 4668 llvm::Constant *Addr; 4669 // Emit target region as a standalone region. 4670 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4671 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4672 assert(Fn && Addr && "Target device function emission failed."); 4673 } 4674 4675 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4676 const OMPTargetTeamsDistributeParallelForDirective &S) { 4677 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4678 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4679 }; 4680 emitCommonOMPTargetDirective(*this, S, CodeGen); 4681 } 4682 4683 static void emitTargetTeamsDistributeParallelForSimdRegion( 4684 CodeGenFunction &CGF, 4685 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4686 PrePostActionTy &Action) { 4687 Action.Enter(CGF); 4688 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4689 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4690 S.getDistInc()); 4691 }; 4692 4693 // Emit teams region as a standalone region. 4694 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4695 PrePostActionTy &Action) { 4696 Action.Enter(CGF); 4697 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4698 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4699 (void)PrivateScope.Privatize(); 4700 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4701 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4702 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4703 }; 4704 4705 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4706 CodeGenTeams); 4707 emitPostUpdateForReductionClause(CGF, S, 4708 [](CodeGenFunction &) { return nullptr; }); 4709 } 4710 4711 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4712 CodeGenModule &CGM, StringRef ParentName, 4713 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4714 // Emit SPMD target teams distribute parallel for simd region as a standalone 4715 // region. 4716 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4717 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4718 }; 4719 llvm::Function *Fn; 4720 llvm::Constant *Addr; 4721 // Emit target region as a standalone region. 4722 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4723 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4724 assert(Fn && Addr && "Target device function emission failed."); 4725 } 4726 4727 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4728 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4729 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4730 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4731 }; 4732 emitCommonOMPTargetDirective(*this, S, CodeGen); 4733 } 4734 4735 void CodeGenFunction::EmitOMPCancellationPointDirective( 4736 const OMPCancellationPointDirective &S) { 4737 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4738 S.getCancelRegion()); 4739 } 4740 4741 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4742 const Expr *IfCond = nullptr; 4743 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4744 if (C->getNameModifier() == OMPD_unknown || 4745 C->getNameModifier() == OMPD_cancel) { 4746 IfCond = C->getCondition(); 4747 break; 4748 } 4749 } 4750 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4751 S.getCancelRegion()); 4752 } 4753 4754 CodeGenFunction::JumpDest 4755 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4756 if (Kind == OMPD_parallel || Kind == OMPD_task || 4757 Kind == OMPD_target_parallel) 4758 return ReturnBlock; 4759 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4760 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4761 Kind == OMPD_distribute_parallel_for || 4762 Kind == OMPD_target_parallel_for || 4763 Kind == OMPD_teams_distribute_parallel_for || 4764 Kind == OMPD_target_teams_distribute_parallel_for); 4765 return OMPCancelStack.getExitBlock(); 4766 } 4767 4768 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4769 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4770 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4771 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4772 auto OrigVarIt = C.varlist_begin(); 4773 auto InitIt = C.inits().begin(); 4774 for (const Expr *PvtVarIt : C.private_copies()) { 4775 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4776 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4777 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4778 4779 // In order to identify the right initializer we need to match the 4780 // declaration used by the mapping logic. In some cases we may get 4781 // OMPCapturedExprDecl that refers to the original declaration. 4782 const ValueDecl *MatchingVD = OrigVD; 4783 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4784 // OMPCapturedExprDecl are used to privative fields of the current 4785 // structure. 4786 const auto *ME = cast<MemberExpr>(OED->getInit()); 4787 assert(isa<CXXThisExpr>(ME->getBase()) && 4788 "Base should be the current struct!"); 4789 MatchingVD = ME->getMemberDecl(); 4790 } 4791 4792 // If we don't have information about the current list item, move on to 4793 // the next one. 4794 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4795 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4796 continue; 4797 4798 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4799 InitAddrIt, InitVD, 4800 PvtVD]() { 4801 // Initialize the temporary initialization variable with the address we 4802 // get from the runtime library. We have to cast the source address 4803 // because it is always a void *. References are materialized in the 4804 // privatization scope, so the initialization here disregards the fact 4805 // the original variable is a reference. 4806 QualType AddrQTy = 4807 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4808 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4809 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4810 setAddrOfLocalVar(InitVD, InitAddr); 4811 4812 // Emit private declaration, it will be initialized by the value we 4813 // declaration we just added to the local declarations map. 4814 EmitDecl(*PvtVD); 4815 4816 // The initialization variables reached its purpose in the emission 4817 // of the previous declaration, so we don't need it anymore. 4818 LocalDeclMap.erase(InitVD); 4819 4820 // Return the address of the private variable. 4821 return GetAddrOfLocalVar(PvtVD); 4822 }); 4823 assert(IsRegistered && "firstprivate var already registered as private"); 4824 // Silence the warning about unused variable. 4825 (void)IsRegistered; 4826 4827 ++OrigVarIt; 4828 ++InitIt; 4829 } 4830 } 4831 4832 // Generate the instructions for '#pragma omp target data' directive. 4833 void CodeGenFunction::EmitOMPTargetDataDirective( 4834 const OMPTargetDataDirective &S) { 4835 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4836 4837 // Create a pre/post action to signal the privatization of the device pointer. 4838 // This action can be replaced by the OpenMP runtime code generation to 4839 // deactivate privatization. 4840 bool PrivatizeDevicePointers = false; 4841 class DevicePointerPrivActionTy : public PrePostActionTy { 4842 bool &PrivatizeDevicePointers; 4843 4844 public: 4845 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4846 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4847 void Enter(CodeGenFunction &CGF) override { 4848 PrivatizeDevicePointers = true; 4849 } 4850 }; 4851 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4852 4853 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4854 CodeGenFunction &CGF, PrePostActionTy &Action) { 4855 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4856 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4857 }; 4858 4859 // Codegen that selects whether to generate the privatization code or not. 4860 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4861 &InnermostCodeGen](CodeGenFunction &CGF, 4862 PrePostActionTy &Action) { 4863 RegionCodeGenTy RCG(InnermostCodeGen); 4864 PrivatizeDevicePointers = false; 4865 4866 // Call the pre-action to change the status of PrivatizeDevicePointers if 4867 // needed. 4868 Action.Enter(CGF); 4869 4870 if (PrivatizeDevicePointers) { 4871 OMPPrivateScope PrivateScope(CGF); 4872 // Emit all instances of the use_device_ptr clause. 4873 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4874 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4875 Info.CaptureDeviceAddrMap); 4876 (void)PrivateScope.Privatize(); 4877 RCG(CGF); 4878 } else { 4879 RCG(CGF); 4880 } 4881 }; 4882 4883 // Forward the provided action to the privatization codegen. 4884 RegionCodeGenTy PrivRCG(PrivCodeGen); 4885 PrivRCG.setAction(Action); 4886 4887 // Notwithstanding the body of the region is emitted as inlined directive, 4888 // we don't use an inline scope as changes in the references inside the 4889 // region are expected to be visible outside, so we do not privative them. 4890 OMPLexicalScope Scope(CGF, S); 4891 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4892 PrivRCG); 4893 }; 4894 4895 RegionCodeGenTy RCG(CodeGen); 4896 4897 // If we don't have target devices, don't bother emitting the data mapping 4898 // code. 4899 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4900 RCG(*this); 4901 return; 4902 } 4903 4904 // Check if we have any if clause associated with the directive. 4905 const Expr *IfCond = nullptr; 4906 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4907 IfCond = C->getCondition(); 4908 4909 // Check if we have any device clause associated with the directive. 4910 const Expr *Device = nullptr; 4911 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4912 Device = C->getDevice(); 4913 4914 // Set the action to signal privatization of device pointers. 4915 RCG.setAction(PrivAction); 4916 4917 // Emit region code. 4918 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4919 Info); 4920 } 4921 4922 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4923 const OMPTargetEnterDataDirective &S) { 4924 // If we don't have target devices, don't bother emitting the data mapping 4925 // code. 4926 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4927 return; 4928 4929 // Check if we have any if clause associated with the directive. 4930 const Expr *IfCond = nullptr; 4931 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4932 IfCond = C->getCondition(); 4933 4934 // Check if we have any device clause associated with the directive. 4935 const Expr *Device = nullptr; 4936 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4937 Device = C->getDevice(); 4938 4939 OMPLexicalScope Scope(*this, S, OMPD_task); 4940 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4941 } 4942 4943 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4944 const OMPTargetExitDataDirective &S) { 4945 // If we don't have target devices, don't bother emitting the data mapping 4946 // code. 4947 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4948 return; 4949 4950 // Check if we have any if clause associated with the directive. 4951 const Expr *IfCond = nullptr; 4952 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4953 IfCond = C->getCondition(); 4954 4955 // Check if we have any device clause associated with the directive. 4956 const Expr *Device = nullptr; 4957 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4958 Device = C->getDevice(); 4959 4960 OMPLexicalScope Scope(*this, S, OMPD_task); 4961 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4962 } 4963 4964 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4965 const OMPTargetParallelDirective &S, 4966 PrePostActionTy &Action) { 4967 // Get the captured statement associated with the 'parallel' region. 4968 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4969 Action.Enter(CGF); 4970 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4971 Action.Enter(CGF); 4972 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4973 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4974 CGF.EmitOMPPrivateClause(S, PrivateScope); 4975 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4976 (void)PrivateScope.Privatize(); 4977 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4978 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4979 // TODO: Add support for clauses. 4980 CGF.EmitStmt(CS->getCapturedStmt()); 4981 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4982 }; 4983 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4984 emitEmptyBoundParameters); 4985 emitPostUpdateForReductionClause(CGF, S, 4986 [](CodeGenFunction &) { return nullptr; }); 4987 } 4988 4989 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4990 CodeGenModule &CGM, StringRef ParentName, 4991 const OMPTargetParallelDirective &S) { 4992 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4993 emitTargetParallelRegion(CGF, S, Action); 4994 }; 4995 llvm::Function *Fn; 4996 llvm::Constant *Addr; 4997 // Emit target region as a standalone region. 4998 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4999 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5000 assert(Fn && Addr && "Target device function emission failed."); 5001 } 5002 5003 void CodeGenFunction::EmitOMPTargetParallelDirective( 5004 const OMPTargetParallelDirective &S) { 5005 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5006 emitTargetParallelRegion(CGF, S, Action); 5007 }; 5008 emitCommonOMPTargetDirective(*this, S, CodeGen); 5009 } 5010 5011 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 5012 const OMPTargetParallelForDirective &S, 5013 PrePostActionTy &Action) { 5014 Action.Enter(CGF); 5015 // Emit directive as a combined directive that consists of two implicit 5016 // directives: 'parallel' with 'for' directive. 5017 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5018 Action.Enter(CGF); 5019 CodeGenFunction::OMPCancelStackRAII CancelRegion( 5020 CGF, OMPD_target_parallel_for, S.hasCancel()); 5021 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5022 emitDispatchForLoopBounds); 5023 }; 5024 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 5025 emitEmptyBoundParameters); 5026 } 5027 5028 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 5029 CodeGenModule &CGM, StringRef ParentName, 5030 const OMPTargetParallelForDirective &S) { 5031 // Emit SPMD target parallel for region as a standalone region. 5032 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5033 emitTargetParallelForRegion(CGF, S, Action); 5034 }; 5035 llvm::Function *Fn; 5036 llvm::Constant *Addr; 5037 // Emit target region as a standalone region. 5038 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5039 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5040 assert(Fn && Addr && "Target device function emission failed."); 5041 } 5042 5043 void CodeGenFunction::EmitOMPTargetParallelForDirective( 5044 const OMPTargetParallelForDirective &S) { 5045 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5046 emitTargetParallelForRegion(CGF, S, Action); 5047 }; 5048 emitCommonOMPTargetDirective(*this, S, CodeGen); 5049 } 5050 5051 static void 5052 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 5053 const OMPTargetParallelForSimdDirective &S, 5054 PrePostActionTy &Action) { 5055 Action.Enter(CGF); 5056 // Emit directive as a combined directive that consists of two implicit 5057 // directives: 'parallel' with 'for' directive. 5058 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5059 Action.Enter(CGF); 5060 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5061 emitDispatchForLoopBounds); 5062 }; 5063 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 5064 emitEmptyBoundParameters); 5065 } 5066 5067 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 5068 CodeGenModule &CGM, StringRef ParentName, 5069 const OMPTargetParallelForSimdDirective &S) { 5070 // Emit SPMD target parallel for region as a standalone region. 5071 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5072 emitTargetParallelForSimdRegion(CGF, S, Action); 5073 }; 5074 llvm::Function *Fn; 5075 llvm::Constant *Addr; 5076 // Emit target region as a standalone region. 5077 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5078 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5079 assert(Fn && Addr && "Target device function emission failed."); 5080 } 5081 5082 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 5083 const OMPTargetParallelForSimdDirective &S) { 5084 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5085 emitTargetParallelForSimdRegion(CGF, S, Action); 5086 }; 5087 emitCommonOMPTargetDirective(*this, S, CodeGen); 5088 } 5089 5090 /// Emit a helper variable and return corresponding lvalue. 5091 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 5092 const ImplicitParamDecl *PVD, 5093 CodeGenFunction::OMPPrivateScope &Privates) { 5094 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 5095 Privates.addPrivate(VDecl, 5096 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 5097 } 5098 5099 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 5100 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 5101 // Emit outlined function for task construct. 5102 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 5103 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5104 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5105 const Expr *IfCond = nullptr; 5106 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5107 if (C->getNameModifier() == OMPD_unknown || 5108 C->getNameModifier() == OMPD_taskloop) { 5109 IfCond = C->getCondition(); 5110 break; 5111 } 5112 } 5113 5114 OMPTaskDataTy Data; 5115 // Check if taskloop must be emitted without taskgroup. 5116 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 5117 // TODO: Check if we should emit tied or untied task. 5118 Data.Tied = true; 5119 // Set scheduling for taskloop 5120 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 5121 // grainsize clause 5122 Data.Schedule.setInt(/*IntVal=*/false); 5123 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 5124 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 5125 // num_tasks clause 5126 Data.Schedule.setInt(/*IntVal=*/true); 5127 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 5128 } 5129 5130 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 5131 // if (PreCond) { 5132 // for (IV in 0..LastIteration) BODY; 5133 // <Final counter/linear vars updates>; 5134 // } 5135 // 5136 5137 // Emit: if (PreCond) - begin. 5138 // If the condition constant folds and can be elided, avoid emitting the 5139 // whole loop. 5140 bool CondConstant; 5141 llvm::BasicBlock *ContBlock = nullptr; 5142 OMPLoopScope PreInitScope(CGF, S); 5143 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5144 if (!CondConstant) 5145 return; 5146 } else { 5147 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 5148 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 5149 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 5150 CGF.getProfileCount(&S)); 5151 CGF.EmitBlock(ThenBlock); 5152 CGF.incrementProfileCounter(&S); 5153 } 5154 5155 (void)CGF.EmitOMPLinearClauseInit(S); 5156 5157 OMPPrivateScope LoopScope(CGF); 5158 // Emit helper vars inits. 5159 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 5160 auto *I = CS->getCapturedDecl()->param_begin(); 5161 auto *LBP = std::next(I, LowerBound); 5162 auto *UBP = std::next(I, UpperBound); 5163 auto *STP = std::next(I, Stride); 5164 auto *LIP = std::next(I, LastIter); 5165 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 5166 LoopScope); 5167 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 5168 LoopScope); 5169 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 5170 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 5171 LoopScope); 5172 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 5173 CGF.EmitOMPLinearClause(S, LoopScope); 5174 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 5175 (void)LoopScope.Privatize(); 5176 // Emit the loop iteration variable. 5177 const Expr *IVExpr = S.getIterationVariable(); 5178 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 5179 CGF.EmitVarDecl(*IVDecl); 5180 CGF.EmitIgnoredExpr(S.getInit()); 5181 5182 // Emit the iterations count variable. 5183 // If it is not a variable, Sema decided to calculate iterations count on 5184 // each iteration (e.g., it is foldable into a constant). 5185 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5186 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5187 // Emit calculation of the iterations count. 5188 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 5189 } 5190 5191 { 5192 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 5193 emitCommonSimdLoop( 5194 CGF, S, 5195 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5196 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5197 CGF.EmitOMPSimdInit(S); 5198 }, 5199 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 5200 CGF.EmitOMPInnerLoop( 5201 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 5202 [&S](CodeGenFunction &CGF) { 5203 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 5204 CGF.EmitStopPoint(&S); 5205 }, 5206 [](CodeGenFunction &) {}); 5207 }); 5208 } 5209 // Emit: if (PreCond) - end. 5210 if (ContBlock) { 5211 CGF.EmitBranch(ContBlock); 5212 CGF.EmitBlock(ContBlock, true); 5213 } 5214 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5215 if (HasLastprivateClause) { 5216 CGF.EmitOMPLastprivateClauseFinal( 5217 S, isOpenMPSimdDirective(S.getDirectiveKind()), 5218 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 5219 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5220 (*LIP)->getType(), S.getBeginLoc()))); 5221 } 5222 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 5223 return CGF.Builder.CreateIsNotNull( 5224 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5225 (*LIP)->getType(), S.getBeginLoc())); 5226 }); 5227 }; 5228 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5229 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5230 const OMPTaskDataTy &Data) { 5231 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 5232 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 5233 OMPLoopScope PreInitScope(CGF, S); 5234 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5235 OutlinedFn, SharedsTy, 5236 CapturedStruct, IfCond, Data); 5237 }; 5238 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5239 CodeGen); 5240 }; 5241 if (Data.Nogroup) { 5242 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5243 } else { 5244 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5245 *this, 5246 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5247 PrePostActionTy &Action) { 5248 Action.Enter(CGF); 5249 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5250 Data); 5251 }, 5252 S.getBeginLoc()); 5253 } 5254 } 5255 5256 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5257 EmitOMPTaskLoopBasedDirective(S); 5258 } 5259 5260 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5261 const OMPTaskLoopSimdDirective &S) { 5262 OMPLexicalScope Scope(*this, S); 5263 EmitOMPTaskLoopBasedDirective(S); 5264 } 5265 5266 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 5267 const OMPMasterTaskLoopDirective &S) { 5268 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5269 Action.Enter(CGF); 5270 EmitOMPTaskLoopBasedDirective(S); 5271 }; 5272 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5273 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5274 } 5275 5276 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 5277 const OMPMasterTaskLoopSimdDirective &S) { 5278 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5279 Action.Enter(CGF); 5280 EmitOMPTaskLoopBasedDirective(S); 5281 }; 5282 OMPLexicalScope Scope(*this, S); 5283 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5284 } 5285 5286 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 5287 const OMPParallelMasterTaskLoopDirective &S) { 5288 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5289 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5290 PrePostActionTy &Action) { 5291 Action.Enter(CGF); 5292 CGF.EmitOMPTaskLoopBasedDirective(S); 5293 }; 5294 OMPLexicalScope Scope(CGF, S, llvm::None, /*EmitPreInitStmt=*/false); 5295 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5296 S.getBeginLoc()); 5297 }; 5298 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 5299 emitEmptyBoundParameters); 5300 } 5301 5302 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 5303 const OMPParallelMasterTaskLoopSimdDirective &S) { 5304 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5305 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5306 PrePostActionTy &Action) { 5307 Action.Enter(CGF); 5308 CGF.EmitOMPTaskLoopBasedDirective(S); 5309 }; 5310 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 5311 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5312 S.getBeginLoc()); 5313 }; 5314 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 5315 emitEmptyBoundParameters); 5316 } 5317 5318 // Generate the instructions for '#pragma omp target update' directive. 5319 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5320 const OMPTargetUpdateDirective &S) { 5321 // If we don't have target devices, don't bother emitting the data mapping 5322 // code. 5323 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5324 return; 5325 5326 // Check if we have any if clause associated with the directive. 5327 const Expr *IfCond = nullptr; 5328 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5329 IfCond = C->getCondition(); 5330 5331 // Check if we have any device clause associated with the directive. 5332 const Expr *Device = nullptr; 5333 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5334 Device = C->getDevice(); 5335 5336 OMPLexicalScope Scope(*this, S, OMPD_task); 5337 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5338 } 5339 5340 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5341 const OMPExecutableDirective &D) { 5342 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5343 return; 5344 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5345 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5346 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5347 } else { 5348 OMPPrivateScope LoopGlobals(CGF); 5349 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5350 for (const Expr *E : LD->counters()) { 5351 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5352 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5353 LValue GlobLVal = CGF.EmitLValue(E); 5354 LoopGlobals.addPrivate( 5355 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 5356 } 5357 if (isa<OMPCapturedExprDecl>(VD)) { 5358 // Emit only those that were not explicitly referenced in clauses. 5359 if (!CGF.LocalDeclMap.count(VD)) 5360 CGF.EmitVarDecl(*VD); 5361 } 5362 } 5363 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5364 if (!C->getNumForLoops()) 5365 continue; 5366 for (unsigned I = LD->getCollapsedNumber(), 5367 E = C->getLoopNumIterations().size(); 5368 I < E; ++I) { 5369 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5370 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5371 // Emit only those that were not explicitly referenced in clauses. 5372 if (!CGF.LocalDeclMap.count(VD)) 5373 CGF.EmitVarDecl(*VD); 5374 } 5375 } 5376 } 5377 } 5378 LoopGlobals.Privatize(); 5379 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5380 } 5381 }; 5382 OMPSimdLexicalScope Scope(*this, D); 5383 CGM.getOpenMPRuntime().emitInlinedDirective( 5384 *this, 5385 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5386 : D.getDirectiveKind(), 5387 CodeGen); 5388 } 5389