1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (const auto *PreInit =
34                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
35           for (const auto *I : PreInit->decls()) {
36             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
37               CGF.EmitVarDecl(cast<VarDecl>(*I));
38             } else {
39               CodeGenFunction::AutoVarEmission Emission =
40                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
41               CGF.EmitAutoVarCleanups(Emission);
42             }
43           }
44         }
45       }
46     }
47   }
48   CodeGenFunction::OMPPrivateScope InlinedShareds;
49 
50   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
51     return CGF.LambdaCaptureFields.lookup(VD) ||
52            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
53            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
54   }
55 
56 public:
57   OMPLexicalScope(
58       CodeGenFunction &CGF, const OMPExecutableDirective &S,
59       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
60       const bool EmitPreInitStmt = true)
61       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
62         InlinedShareds(CGF) {
63     if (EmitPreInitStmt)
64       emitPreInitStmt(CGF, S);
65     if (!CapturedRegion.hasValue())
66       return;
67     assert(S.hasAssociatedStmt() &&
68            "Expected associated statement for inlined directive.");
69     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
70     for (const auto &C : CS->captures()) {
71       if (C.capturesVariable() || C.capturesVariableByCopy()) {
72         auto *VD = C.getCapturedVar();
73         assert(VD == VD->getCanonicalDecl() &&
74                "Canonical decl must be captured.");
75         DeclRefExpr DRE(
76             const_cast<VarDecl *>(VD),
77             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
78                                        InlinedShareds.isGlobalVarCaptured(VD)),
79             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
80         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
81           return CGF.EmitLValue(&DRE).getAddress();
82         });
83       }
84     }
85     (void)InlinedShareds.Privatize();
86   }
87 };
88 
89 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
90 /// for captured expressions.
91 class OMPParallelScope final : public OMPLexicalScope {
92   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
93     OpenMPDirectiveKind Kind = S.getDirectiveKind();
94     return !(isOpenMPTargetExecutionDirective(Kind) ||
95              isOpenMPLoopBoundSharingDirective(Kind)) &&
96            isOpenMPParallelDirective(Kind);
97   }
98 
99 public:
100   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
101       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
102                         EmitPreInitStmt(S)) {}
103 };
104 
105 /// Lexical scope for OpenMP teams construct, that handles correct codegen
106 /// for captured expressions.
107 class OMPTeamsScope final : public OMPLexicalScope {
108   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
109     OpenMPDirectiveKind Kind = S.getDirectiveKind();
110     return !isOpenMPTargetExecutionDirective(Kind) &&
111            isOpenMPTeamsDirective(Kind);
112   }
113 
114 public:
115   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
116       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
117                         EmitPreInitStmt(S)) {}
118 };
119 
120 /// Private scope for OpenMP loop-based directives, that supports capturing
121 /// of used expression from loop statement.
122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
123   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
124     CodeGenFunction::OMPMapVars PreCondVars;
125     for (const auto *E : S.counters()) {
126       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
127       (void)PreCondVars.setVarAddr(
128           CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
129     }
130     (void)PreCondVars.apply(CGF);
131     if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) {
132       for (const auto *I : PreInits->decls())
133         CGF.EmitVarDecl(cast<VarDecl>(*I));
134     }
135     PreCondVars.restore(CGF);
136   }
137 
138 public:
139   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
140       : CodeGenFunction::RunCleanupsScope(CGF) {
141     emitPreInitStmt(CGF, S);
142   }
143 };
144 
145 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
146   CodeGenFunction::OMPPrivateScope InlinedShareds;
147 
148   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
149     return CGF.LambdaCaptureFields.lookup(VD) ||
150            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
151            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
152             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
153   }
154 
155 public:
156   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
157       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
158         InlinedShareds(CGF) {
159     for (const auto *C : S.clauses()) {
160       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
161         if (const auto *PreInit =
162                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
163           for (const auto *I : PreInit->decls()) {
164             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
165               CGF.EmitVarDecl(cast<VarDecl>(*I));
166             } else {
167               CodeGenFunction::AutoVarEmission Emission =
168                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
169               CGF.EmitAutoVarCleanups(Emission);
170             }
171           }
172         }
173       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
174         for (const Expr *E : UDP->varlists()) {
175           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
176           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
177             CGF.EmitVarDecl(*OED);
178         }
179       }
180     }
181     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
182       CGF.EmitOMPPrivateClause(S, InlinedShareds);
183     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
184       if (const Expr *E = TG->getReductionRef())
185         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
186     }
187     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
188     while (CS) {
189       for (auto &C : CS->captures()) {
190         if (C.capturesVariable() || C.capturesVariableByCopy()) {
191           auto *VD = C.getCapturedVar();
192           assert(VD == VD->getCanonicalDecl() &&
193                  "Canonical decl must be captured.");
194           DeclRefExpr DRE(const_cast<VarDecl *>(VD),
195                           isCapturedVar(CGF, VD) ||
196                               (CGF.CapturedStmtInfo &&
197                                InlinedShareds.isGlobalVarCaptured(VD)),
198                           VD->getType().getNonReferenceType(), VK_LValue,
199                           C.getLocation());
200           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
201             return CGF.EmitLValue(&DRE).getAddress();
202           });
203         }
204       }
205       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
206     }
207     (void)InlinedShareds.Privatize();
208   }
209 };
210 
211 } // namespace
212 
213 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
214                                          const OMPExecutableDirective &S,
215                                          const RegionCodeGenTy &CodeGen);
216 
217 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
218   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
219     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
220       OrigVD = OrigVD->getCanonicalDecl();
221       bool IsCaptured =
222           LambdaCaptureFields.lookup(OrigVD) ||
223           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
224           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
225       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured,
226                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
227       return EmitLValue(&DRE);
228     }
229   }
230   return EmitLValue(E);
231 }
232 
233 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
234   ASTContext &C = getContext();
235   llvm::Value *Size = nullptr;
236   auto SizeInChars = C.getTypeSizeInChars(Ty);
237   if (SizeInChars.isZero()) {
238     // getTypeSizeInChars() returns 0 for a VLA.
239     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
240       VlaSizePair VlaSize = getVLASize(VAT);
241       Ty = VlaSize.Type;
242       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
243                   : VlaSize.NumElts;
244     }
245     SizeInChars = C.getTypeSizeInChars(Ty);
246     if (SizeInChars.isZero())
247       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
248     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
249   }
250   return CGM.getSize(SizeInChars);
251 }
252 
253 void CodeGenFunction::GenerateOpenMPCapturedVars(
254     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
255   const RecordDecl *RD = S.getCapturedRecordDecl();
256   auto CurField = RD->field_begin();
257   auto CurCap = S.captures().begin();
258   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
259                                                  E = S.capture_init_end();
260        I != E; ++I, ++CurField, ++CurCap) {
261     if (CurField->hasCapturedVLAType()) {
262       const VariableArrayType *VAT = CurField->getCapturedVLAType();
263       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
264       CapturedVars.push_back(Val);
265     } else if (CurCap->capturesThis()) {
266       CapturedVars.push_back(CXXThisValue);
267     } else if (CurCap->capturesVariableByCopy()) {
268       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
269 
270       // If the field is not a pointer, we need to save the actual value
271       // and load it as a void pointer.
272       if (!CurField->getType()->isAnyPointerType()) {
273         ASTContext &Ctx = getContext();
274         Address DstAddr = CreateMemTemp(
275             Ctx.getUIntPtrType(),
276             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
277         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
278 
279         llvm::Value *SrcAddrVal = EmitScalarConversion(
280             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
281             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
282         LValue SrcLV =
283             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
284 
285         // Store the value using the source type pointer.
286         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
287 
288         // Load the value using the destination type pointer.
289         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
290       }
291       CapturedVars.push_back(CV);
292     } else {
293       assert(CurCap->capturesVariable() && "Expected capture by reference.");
294       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
295     }
296   }
297 }
298 
299 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
300                                     QualType DstType, StringRef Name,
301                                     LValue AddrLV,
302                                     bool isReferenceType = false) {
303   ASTContext &Ctx = CGF.getContext();
304 
305   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
306       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
307       Ctx.getPointerType(DstType), Loc);
308   Address TmpAddr =
309       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
310           .getAddress();
311 
312   // If we are dealing with references we need to return the address of the
313   // reference instead of the reference of the value.
314   if (isReferenceType) {
315     QualType RefType = Ctx.getLValueReferenceType(DstType);
316     llvm::Value *RefVal = TmpAddr.getPointer();
317     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref"));
318     LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
319     CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true);
320   }
321 
322   return TmpAddr;
323 }
324 
325 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
326   if (T->isLValueReferenceType())
327     return C.getLValueReferenceType(
328         getCanonicalParamType(C, T.getNonReferenceType()),
329         /*SpelledAsLValue=*/false);
330   if (T->isPointerType())
331     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
332   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
333     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
334       return getCanonicalParamType(C, VLA->getElementType());
335     if (!A->isVariablyModifiedType())
336       return C.getCanonicalType(T);
337   }
338   return C.getCanonicalParamType(T);
339 }
340 
341 namespace {
342   /// Contains required data for proper outlined function codegen.
343   struct FunctionOptions {
344     /// Captured statement for which the function is generated.
345     const CapturedStmt *S = nullptr;
346     /// true if cast to/from  UIntPtr is required for variables captured by
347     /// value.
348     const bool UIntPtrCastRequired = true;
349     /// true if only casted arguments must be registered as local args or VLA
350     /// sizes.
351     const bool RegisterCastedArgsOnly = false;
352     /// Name of the generated function.
353     const StringRef FunctionName;
354     explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
355                              bool RegisterCastedArgsOnly,
356                              StringRef FunctionName)
357         : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
358           RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
359           FunctionName(FunctionName) {}
360   };
361 }
362 
363 static llvm::Function *emitOutlinedFunctionPrologue(
364     CodeGenFunction &CGF, FunctionArgList &Args,
365     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
366         &LocalAddrs,
367     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
368         &VLASizes,
369     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
370   const CapturedDecl *CD = FO.S->getCapturedDecl();
371   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
372   assert(CD->hasBody() && "missing CapturedDecl body");
373 
374   CXXThisValue = nullptr;
375   // Build the argument list.
376   CodeGenModule &CGM = CGF.CGM;
377   ASTContext &Ctx = CGM.getContext();
378   FunctionArgList TargetArgs;
379   Args.append(CD->param_begin(),
380               std::next(CD->param_begin(), CD->getContextParamPosition()));
381   TargetArgs.append(
382       CD->param_begin(),
383       std::next(CD->param_begin(), CD->getContextParamPosition()));
384   auto I = FO.S->captures().begin();
385   FunctionDecl *DebugFunctionDecl = nullptr;
386   if (!FO.UIntPtrCastRequired) {
387     FunctionProtoType::ExtProtoInfo EPI;
388     DebugFunctionDecl = FunctionDecl::Create(
389         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getLocStart(),
390         SourceLocation(), DeclarationName(), Ctx.VoidTy,
391         Ctx.getTrivialTypeSourceInfo(
392             Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI)),
393         SC_Static, /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
394   }
395   for (const FieldDecl *FD : RD->fields()) {
396     QualType ArgType = FD->getType();
397     IdentifierInfo *II = nullptr;
398     VarDecl *CapVar = nullptr;
399 
400     // If this is a capture by copy and the type is not a pointer, the outlined
401     // function argument type should be uintptr and the value properly casted to
402     // uintptr. This is necessary given that the runtime library is only able to
403     // deal with pointers. We can pass in the same way the VLA type sizes to the
404     // outlined function.
405     if (FO.UIntPtrCastRequired &&
406         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
407          I->capturesVariableArrayType()))
408       ArgType = Ctx.getUIntPtrType();
409 
410     if (I->capturesVariable() || I->capturesVariableByCopy()) {
411       CapVar = I->getCapturedVar();
412       II = CapVar->getIdentifier();
413     } else if (I->capturesThis()) {
414       II = &Ctx.Idents.get("this");
415     } else {
416       assert(I->capturesVariableArrayType());
417       II = &Ctx.Idents.get("vla");
418     }
419     if (ArgType->isVariablyModifiedType())
420       ArgType = getCanonicalParamType(Ctx, ArgType);
421     VarDecl *Arg;
422     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
423       Arg = ParmVarDecl::Create(
424           Ctx, DebugFunctionDecl,
425           CapVar ? CapVar->getLocStart() : FD->getLocStart(),
426           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
427           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
428     } else {
429       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
430                                       II, ArgType, ImplicitParamDecl::Other);
431     }
432     Args.emplace_back(Arg);
433     // Do not cast arguments if we emit function with non-original types.
434     TargetArgs.emplace_back(
435         FO.UIntPtrCastRequired
436             ? Arg
437             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
438     ++I;
439   }
440   Args.append(
441       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
442       CD->param_end());
443   TargetArgs.append(
444       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
445       CD->param_end());
446 
447   // Create the function declaration.
448   const CGFunctionInfo &FuncInfo =
449       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
450   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
451 
452   auto *F =
453       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
454                              FO.FunctionName, &CGM.getModule());
455   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
456   if (CD->isNothrow())
457     F->setDoesNotThrow();
458   F->setDoesNotRecurse();
459 
460   // Generate the function.
461   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
462                     FO.S->getLocStart(), CD->getBody()->getLocStart());
463   unsigned Cnt = CD->getContextParamPosition();
464   I = FO.S->captures().begin();
465   for (const FieldDecl *FD : RD->fields()) {
466     // Do not map arguments if we emit function with non-original types.
467     Address LocalAddr(Address::invalid());
468     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
469       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
470                                                              TargetArgs[Cnt]);
471     } else {
472       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
473     }
474     // If we are capturing a pointer by copy we don't need to do anything, just
475     // use the value that we get from the arguments.
476     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
477       const VarDecl *CurVD = I->getCapturedVar();
478       // If the variable is a reference we need to materialize it here.
479       if (CurVD->getType()->isReferenceType()) {
480         Address RefAddr = CGF.CreateMemTemp(
481             CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref");
482         CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr,
483                               /*Volatile=*/false, CurVD->getType());
484         LocalAddr = RefAddr;
485       }
486       if (!FO.RegisterCastedArgsOnly)
487         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
488       ++Cnt;
489       ++I;
490       continue;
491     }
492 
493     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
494                                         AlignmentSource::Decl);
495     if (FD->hasCapturedVLAType()) {
496       if (FO.UIntPtrCastRequired) {
497         ArgLVal = CGF.MakeAddrLValue(
498             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
499                                  Args[Cnt]->getName(), ArgLVal),
500             FD->getType(), AlignmentSource::Decl);
501       }
502       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
503       const VariableArrayType *VAT = FD->getCapturedVLAType();
504       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
505     } else if (I->capturesVariable()) {
506       const VarDecl *Var = I->getCapturedVar();
507       QualType VarTy = Var->getType();
508       Address ArgAddr = ArgLVal.getAddress();
509       if (!VarTy->isReferenceType()) {
510         if (ArgLVal.getType()->isLValueReferenceType()) {
511           ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
512         } else if (!VarTy->isVariablyModifiedType() ||
513                    !VarTy->isPointerType()) {
514           assert(ArgLVal.getType()->isPointerType());
515           ArgAddr = CGF.EmitLoadOfPointer(
516               ArgAddr, ArgLVal.getType()->castAs<PointerType>());
517         }
518       }
519       if (!FO.RegisterCastedArgsOnly) {
520         LocalAddrs.insert(
521             {Args[Cnt],
522              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
523       }
524     } else if (I->capturesVariableByCopy()) {
525       assert(!FD->getType()->isAnyPointerType() &&
526              "Not expecting a captured pointer.");
527       const VarDecl *Var = I->getCapturedVar();
528       QualType VarTy = Var->getType();
529       LocalAddrs.insert(
530           {Args[Cnt],
531            {Var, FO.UIntPtrCastRequired
532                      ? castValueFromUintptr(CGF, I->getLocation(),
533                                             FD->getType(), Args[Cnt]->getName(),
534                                             ArgLVal, VarTy->isReferenceType())
535                      : ArgLVal.getAddress()}});
536     } else {
537       // If 'this' is captured, load it into CXXThisValue.
538       assert(I->capturesThis());
539       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
540       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}});
541     }
542     ++Cnt;
543     ++I;
544   }
545 
546   return F;
547 }
548 
549 llvm::Function *
550 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
551   assert(
552       CapturedStmtInfo &&
553       "CapturedStmtInfo should be set when generating the captured function");
554   const CapturedDecl *CD = S.getCapturedDecl();
555   // Build the argument list.
556   bool NeedWrapperFunction =
557       getDebugInfo() &&
558       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo;
559   FunctionArgList Args;
560   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
561   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
562   SmallString<256> Buffer;
563   llvm::raw_svector_ostream Out(Buffer);
564   Out << CapturedStmtInfo->getHelperName();
565   if (NeedWrapperFunction)
566     Out << "_debug__";
567   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
568                      Out.str());
569   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
570                                                    VLASizes, CXXThisValue, FO);
571   for (const auto &LocalAddrPair : LocalAddrs) {
572     if (LocalAddrPair.second.first) {
573       setAddrOfLocalVar(LocalAddrPair.second.first,
574                         LocalAddrPair.second.second);
575     }
576   }
577   for (const auto &VLASizePair : VLASizes)
578     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
579   PGO.assignRegionCounters(GlobalDecl(CD), F);
580   CapturedStmtInfo->EmitBody(*this, CD->getBody());
581   FinishFunction(CD->getBodyRBrace());
582   if (!NeedWrapperFunction)
583     return F;
584 
585   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
586                             /*RegisterCastedArgsOnly=*/true,
587                             CapturedStmtInfo->getHelperName());
588   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
589   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
590   Args.clear();
591   LocalAddrs.clear();
592   VLASizes.clear();
593   llvm::Function *WrapperF =
594       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
595                                    WrapperCGF.CXXThisValue, WrapperFO);
596   llvm::SmallVector<llvm::Value *, 4> CallArgs;
597   for (const auto *Arg : Args) {
598     llvm::Value *CallArg;
599     auto I = LocalAddrs.find(Arg);
600     if (I != LocalAddrs.end()) {
601       LValue LV = WrapperCGF.MakeAddrLValue(
602           I->second.second,
603           I->second.first ? I->second.first->getType() : Arg->getType(),
604           AlignmentSource::Decl);
605       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getLocStart());
606     } else {
607       auto EI = VLASizes.find(Arg);
608       if (EI != VLASizes.end()) {
609         CallArg = EI->second.second;
610       } else {
611         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
612                                               Arg->getType(),
613                                               AlignmentSource::Decl);
614         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getLocStart());
615       }
616     }
617     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
618   }
619   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getLocStart(),
620                                                   F, CallArgs);
621   WrapperCGF.FinishFunction();
622   return WrapperF;
623 }
624 
625 //===----------------------------------------------------------------------===//
626 //                              OpenMP Directive Emission
627 //===----------------------------------------------------------------------===//
628 void CodeGenFunction::EmitOMPAggregateAssign(
629     Address DestAddr, Address SrcAddr, QualType OriginalType,
630     const llvm::function_ref<void(Address, Address)> CopyGen) {
631   // Perform element-by-element initialization.
632   QualType ElementTy;
633 
634   // Drill down to the base element type on both arrays.
635   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
636   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
637   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
638 
639   llvm::Value *SrcBegin = SrcAddr.getPointer();
640   llvm::Value *DestBegin = DestAddr.getPointer();
641   // Cast from pointer to array type to pointer to single element.
642   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
643   // The basic structure here is a while-do loop.
644   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
645   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
646   llvm::Value *IsEmpty =
647       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
648   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
649 
650   // Enter the loop body, making that address the current address.
651   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
652   EmitBlock(BodyBB);
653 
654   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
655 
656   llvm::PHINode *SrcElementPHI =
657     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
658   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
659   Address SrcElementCurrent =
660       Address(SrcElementPHI,
661               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
662 
663   llvm::PHINode *DestElementPHI =
664     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
665   DestElementPHI->addIncoming(DestBegin, EntryBB);
666   Address DestElementCurrent =
667     Address(DestElementPHI,
668             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
669 
670   // Emit copy.
671   CopyGen(DestElementCurrent, SrcElementCurrent);
672 
673   // Shift the address forward by one element.
674   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
675       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
676   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
677       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
678   // Check whether we've reached the end.
679   llvm::Value *Done =
680       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
681   Builder.CreateCondBr(Done, DoneBB, BodyBB);
682   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
683   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
684 
685   // Done.
686   EmitBlock(DoneBB, /*IsFinished=*/true);
687 }
688 
689 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
690                                   Address SrcAddr, const VarDecl *DestVD,
691                                   const VarDecl *SrcVD, const Expr *Copy) {
692   if (OriginalType->isArrayType()) {
693     const auto *BO = dyn_cast<BinaryOperator>(Copy);
694     if (BO && BO->getOpcode() == BO_Assign) {
695       // Perform simple memcpy for simple copying.
696       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
697       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
698       EmitAggregateAssign(Dest, Src, OriginalType);
699     } else {
700       // For arrays with complex element types perform element by element
701       // copying.
702       EmitOMPAggregateAssign(
703           DestAddr, SrcAddr, OriginalType,
704           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
705             // Working with the single array element, so have to remap
706             // destination and source variables to corresponding array
707             // elements.
708             CodeGenFunction::OMPPrivateScope Remap(*this);
709             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
710             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
711             (void)Remap.Privatize();
712             EmitIgnoredExpr(Copy);
713           });
714     }
715   } else {
716     // Remap pseudo source variable to private copy.
717     CodeGenFunction::OMPPrivateScope Remap(*this);
718     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
719     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
720     (void)Remap.Privatize();
721     // Emit copying of the whole variable.
722     EmitIgnoredExpr(Copy);
723   }
724 }
725 
726 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
727                                                 OMPPrivateScope &PrivateScope) {
728   if (!HaveInsertPoint())
729     return false;
730   bool FirstprivateIsLastprivate = false;
731   llvm::DenseSet<const VarDecl *> Lastprivates;
732   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
733     for (const auto *D : C->varlists())
734       Lastprivates.insert(
735           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
736   }
737   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
738   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
739   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
740   // Force emission of the firstprivate copy if the directive does not emit
741   // outlined function, like omp for, omp simd, omp distribute etc.
742   bool MustEmitFirstprivateCopy =
743       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
744   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
745     auto IRef = C->varlist_begin();
746     auto InitsRef = C->inits().begin();
747     for (const Expr *IInit : C->private_copies()) {
748       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
749       bool ThisFirstprivateIsLastprivate =
750           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
751       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
752       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
753           !FD->getType()->isReferenceType()) {
754         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
755         ++IRef;
756         ++InitsRef;
757         continue;
758       }
759       FirstprivateIsLastprivate =
760           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
761       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
762         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
763         const auto *VDInit =
764             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
765         bool IsRegistered;
766         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
767                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
768                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
769         LValue OriginalLVal = EmitLValue(&DRE);
770         QualType Type = VD->getType();
771         if (Type->isArrayType()) {
772           // Emit VarDecl with copy init for arrays.
773           // Get the address of the original variable captured in current
774           // captured region.
775           IsRegistered = PrivateScope.addPrivate(
776               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
777                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
778                 const Expr *Init = VD->getInit();
779                 if (!isa<CXXConstructExpr>(Init) ||
780                     isTrivialInitializer(Init)) {
781                   // Perform simple memcpy.
782                   LValue Dest =
783                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
784                   EmitAggregateAssign(Dest, OriginalLVal, Type);
785                 } else {
786                   EmitOMPAggregateAssign(
787                       Emission.getAllocatedAddress(), OriginalLVal.getAddress(),
788                       Type,
789                       [this, VDInit, Init](Address DestElement,
790                                            Address SrcElement) {
791                         // Clean up any temporaries needed by the
792                         // initialization.
793                         RunCleanupsScope InitScope(*this);
794                         // Emit initialization for single element.
795                         setAddrOfLocalVar(VDInit, SrcElement);
796                         EmitAnyExprToMem(Init, DestElement,
797                                          Init->getType().getQualifiers(),
798                                          /*IsInitializer*/ false);
799                         LocalDeclMap.erase(VDInit);
800                       });
801                 }
802                 EmitAutoVarCleanups(Emission);
803                 return Emission.getAllocatedAddress();
804               });
805         } else {
806           Address OriginalAddr = OriginalLVal.getAddress();
807           IsRegistered = PrivateScope.addPrivate(
808               OrigVD, [this, VDInit, OriginalAddr, VD]() {
809                 // Emit private VarDecl with copy init.
810                 // Remap temp VDInit variable to the address of the original
811                 // variable (for proper handling of captured global variables).
812                 setAddrOfLocalVar(VDInit, OriginalAddr);
813                 EmitDecl(*VD);
814                 LocalDeclMap.erase(VDInit);
815                 return GetAddrOfLocalVar(VD);
816               });
817         }
818         assert(IsRegistered &&
819                "firstprivate var already registered as private");
820         // Silence the warning about unused variable.
821         (void)IsRegistered;
822       }
823       ++IRef;
824       ++InitsRef;
825     }
826   }
827   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
828 }
829 
830 void CodeGenFunction::EmitOMPPrivateClause(
831     const OMPExecutableDirective &D,
832     CodeGenFunction::OMPPrivateScope &PrivateScope) {
833   if (!HaveInsertPoint())
834     return;
835   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
836   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
837     auto IRef = C->varlist_begin();
838     for (const Expr *IInit : C->private_copies()) {
839       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
840       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
841         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
842         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
843           // Emit private VarDecl with copy init.
844           EmitDecl(*VD);
845           return GetAddrOfLocalVar(VD);
846         });
847         assert(IsRegistered && "private var already registered as private");
848         // Silence the warning about unused variable.
849         (void)IsRegistered;
850       }
851       ++IRef;
852     }
853   }
854 }
855 
856 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
857   if (!HaveInsertPoint())
858     return false;
859   // threadprivate_var1 = master_threadprivate_var1;
860   // operator=(threadprivate_var2, master_threadprivate_var2);
861   // ...
862   // __kmpc_barrier(&loc, global_tid);
863   llvm::DenseSet<const VarDecl *> CopiedVars;
864   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
865   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
866     auto IRef = C->varlist_begin();
867     auto ISrcRef = C->source_exprs().begin();
868     auto IDestRef = C->destination_exprs().begin();
869     for (const Expr *AssignOp : C->assignment_ops()) {
870       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
871       QualType Type = VD->getType();
872       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
873         // Get the address of the master variable. If we are emitting code with
874         // TLS support, the address is passed from the master as field in the
875         // captured declaration.
876         Address MasterAddr = Address::invalid();
877         if (getLangOpts().OpenMPUseTLS &&
878             getContext().getTargetInfo().isTLSSupported()) {
879           assert(CapturedStmtInfo->lookup(VD) &&
880                  "Copyin threadprivates should have been captured!");
881           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
882                           VK_LValue, (*IRef)->getExprLoc());
883           MasterAddr = EmitLValue(&DRE).getAddress();
884           LocalDeclMap.erase(VD);
885         } else {
886           MasterAddr =
887             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
888                                         : CGM.GetAddrOfGlobal(VD),
889                     getContext().getDeclAlign(VD));
890         }
891         // Get the address of the threadprivate variable.
892         Address PrivateAddr = EmitLValue(*IRef).getAddress();
893         if (CopiedVars.size() == 1) {
894           // At first check if current thread is a master thread. If it is, no
895           // need to copy data.
896           CopyBegin = createBasicBlock("copyin.not.master");
897           CopyEnd = createBasicBlock("copyin.not.master.end");
898           Builder.CreateCondBr(
899               Builder.CreateICmpNE(
900                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
901                   Builder.CreatePtrToInt(PrivateAddr.getPointer(),
902                                          CGM.IntPtrTy)),
903               CopyBegin, CopyEnd);
904           EmitBlock(CopyBegin);
905         }
906         const auto *SrcVD =
907             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
908         const auto *DestVD =
909             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
910         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
911       }
912       ++IRef;
913       ++ISrcRef;
914       ++IDestRef;
915     }
916   }
917   if (CopyEnd) {
918     // Exit out of copying procedure for non-master thread.
919     EmitBlock(CopyEnd, /*IsFinished=*/true);
920     return true;
921   }
922   return false;
923 }
924 
925 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
926     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
927   if (!HaveInsertPoint())
928     return false;
929   bool HasAtLeastOneLastprivate = false;
930   llvm::DenseSet<const VarDecl *> SIMDLCVs;
931   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
932     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
933     for (const Expr *C : LoopDirective->counters()) {
934       SIMDLCVs.insert(
935           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
936     }
937   }
938   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
939   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
940     HasAtLeastOneLastprivate = true;
941     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
942         !getLangOpts().OpenMPSimd)
943       break;
944     auto IRef = C->varlist_begin();
945     auto IDestRef = C->destination_exprs().begin();
946     for (const Expr *IInit : C->private_copies()) {
947       // Keep the address of the original variable for future update at the end
948       // of the loop.
949       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
950       // Taskloops do not require additional initialization, it is done in
951       // runtime support library.
952       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
953         const auto *DestVD =
954             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
955         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
956           DeclRefExpr DRE(
957               const_cast<VarDecl *>(OrigVD),
958               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
959                   OrigVD) != nullptr,
960               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
961           return EmitLValue(&DRE).getAddress();
962         });
963         // Check if the variable is also a firstprivate: in this case IInit is
964         // not generated. Initialization of this variable will happen in codegen
965         // for 'firstprivate' clause.
966         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
967           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
968           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
969             // Emit private VarDecl with copy init.
970             EmitDecl(*VD);
971             return GetAddrOfLocalVar(VD);
972           });
973           assert(IsRegistered &&
974                  "lastprivate var already registered as private");
975           (void)IsRegistered;
976         }
977       }
978       ++IRef;
979       ++IDestRef;
980     }
981   }
982   return HasAtLeastOneLastprivate;
983 }
984 
985 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
986     const OMPExecutableDirective &D, bool NoFinals,
987     llvm::Value *IsLastIterCond) {
988   if (!HaveInsertPoint())
989     return;
990   // Emit following code:
991   // if (<IsLastIterCond>) {
992   //   orig_var1 = private_orig_var1;
993   //   ...
994   //   orig_varn = private_orig_varn;
995   // }
996   llvm::BasicBlock *ThenBB = nullptr;
997   llvm::BasicBlock *DoneBB = nullptr;
998   if (IsLastIterCond) {
999     ThenBB = createBasicBlock(".omp.lastprivate.then");
1000     DoneBB = createBasicBlock(".omp.lastprivate.done");
1001     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1002     EmitBlock(ThenBB);
1003   }
1004   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1005   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1006   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1007     auto IC = LoopDirective->counters().begin();
1008     for (const Expr *F : LoopDirective->finals()) {
1009       const auto *D =
1010           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1011       if (NoFinals)
1012         AlreadyEmittedVars.insert(D);
1013       else
1014         LoopCountersAndUpdates[D] = F;
1015       ++IC;
1016     }
1017   }
1018   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1019     auto IRef = C->varlist_begin();
1020     auto ISrcRef = C->source_exprs().begin();
1021     auto IDestRef = C->destination_exprs().begin();
1022     for (const Expr *AssignOp : C->assignment_ops()) {
1023       const auto *PrivateVD =
1024           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1025       QualType Type = PrivateVD->getType();
1026       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1027       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1028         // If lastprivate variable is a loop control variable for loop-based
1029         // directive, update its value before copyin back to original
1030         // variable.
1031         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1032           EmitIgnoredExpr(FinalExpr);
1033         const auto *SrcVD =
1034             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1035         const auto *DestVD =
1036             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1037         // Get the address of the original variable.
1038         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1039         // Get the address of the private variable.
1040         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1041         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1042           PrivateAddr =
1043               Address(Builder.CreateLoad(PrivateAddr),
1044                       getNaturalTypeAlignment(RefTy->getPointeeType()));
1045         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1046       }
1047       ++IRef;
1048       ++ISrcRef;
1049       ++IDestRef;
1050     }
1051     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1052       EmitIgnoredExpr(PostUpdate);
1053   }
1054   if (IsLastIterCond)
1055     EmitBlock(DoneBB, /*IsFinished=*/true);
1056 }
1057 
1058 void CodeGenFunction::EmitOMPReductionClauseInit(
1059     const OMPExecutableDirective &D,
1060     CodeGenFunction::OMPPrivateScope &PrivateScope) {
1061   if (!HaveInsertPoint())
1062     return;
1063   SmallVector<const Expr *, 4> Shareds;
1064   SmallVector<const Expr *, 4> Privates;
1065   SmallVector<const Expr *, 4> ReductionOps;
1066   SmallVector<const Expr *, 4> LHSs;
1067   SmallVector<const Expr *, 4> RHSs;
1068   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1069     auto IPriv = C->privates().begin();
1070     auto IRed = C->reduction_ops().begin();
1071     auto ILHS = C->lhs_exprs().begin();
1072     auto IRHS = C->rhs_exprs().begin();
1073     for (const Expr *Ref : C->varlists()) {
1074       Shareds.emplace_back(Ref);
1075       Privates.emplace_back(*IPriv);
1076       ReductionOps.emplace_back(*IRed);
1077       LHSs.emplace_back(*ILHS);
1078       RHSs.emplace_back(*IRHS);
1079       std::advance(IPriv, 1);
1080       std::advance(IRed, 1);
1081       std::advance(ILHS, 1);
1082       std::advance(IRHS, 1);
1083     }
1084   }
1085   ReductionCodeGen RedCG(Shareds, Privates, ReductionOps);
1086   unsigned Count = 0;
1087   auto ILHS = LHSs.begin();
1088   auto IRHS = RHSs.begin();
1089   auto IPriv = Privates.begin();
1090   for (const Expr *IRef : Shareds) {
1091     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1092     // Emit private VarDecl with reduction init.
1093     RedCG.emitSharedLValue(*this, Count);
1094     RedCG.emitAggregateType(*this, Count);
1095     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1096     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1097                              RedCG.getSharedLValue(Count),
1098                              [&Emission](CodeGenFunction &CGF) {
1099                                CGF.EmitAutoVarInit(Emission);
1100                                return true;
1101                              });
1102     EmitAutoVarCleanups(Emission);
1103     Address BaseAddr = RedCG.adjustPrivateAddress(
1104         *this, Count, Emission.getAllocatedAddress());
1105     bool IsRegistered = PrivateScope.addPrivate(
1106         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1107     assert(IsRegistered && "private var already registered as private");
1108     // Silence the warning about unused variable.
1109     (void)IsRegistered;
1110 
1111     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1112     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1113     QualType Type = PrivateVD->getType();
1114     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1115     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1116       // Store the address of the original variable associated with the LHS
1117       // implicit variable.
1118       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1119         return RedCG.getSharedLValue(Count).getAddress();
1120       });
1121       PrivateScope.addPrivate(
1122           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1123     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1124                isa<ArraySubscriptExpr>(IRef)) {
1125       // Store the address of the original variable associated with the LHS
1126       // implicit variable.
1127       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1128         return RedCG.getSharedLValue(Count).getAddress();
1129       });
1130       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1131         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1132                                             ConvertTypeForMem(RHSVD->getType()),
1133                                             "rhs.begin");
1134       });
1135     } else {
1136       QualType Type = PrivateVD->getType();
1137       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1138       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress();
1139       // Store the address of the original variable associated with the LHS
1140       // implicit variable.
1141       if (IsArray) {
1142         OriginalAddr = Builder.CreateElementBitCast(
1143             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1144       }
1145       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1146       PrivateScope.addPrivate(
1147           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1148             return IsArray
1149                        ? Builder.CreateElementBitCast(
1150                              GetAddrOfLocalVar(PrivateVD),
1151                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1152                        : GetAddrOfLocalVar(PrivateVD);
1153           });
1154     }
1155     ++ILHS;
1156     ++IRHS;
1157     ++IPriv;
1158     ++Count;
1159   }
1160 }
1161 
1162 void CodeGenFunction::EmitOMPReductionClauseFinal(
1163     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1164   if (!HaveInsertPoint())
1165     return;
1166   llvm::SmallVector<const Expr *, 8> Privates;
1167   llvm::SmallVector<const Expr *, 8> LHSExprs;
1168   llvm::SmallVector<const Expr *, 8> RHSExprs;
1169   llvm::SmallVector<const Expr *, 8> ReductionOps;
1170   bool HasAtLeastOneReduction = false;
1171   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1172     HasAtLeastOneReduction = true;
1173     Privates.append(C->privates().begin(), C->privates().end());
1174     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1175     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1176     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1177   }
1178   if (HasAtLeastOneReduction) {
1179     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1180                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1181                       ReductionKind == OMPD_simd;
1182     bool SimpleReduction = ReductionKind == OMPD_simd;
1183     // Emit nowait reduction if nowait clause is present or directive is a
1184     // parallel directive (it always has implicit barrier).
1185     CGM.getOpenMPRuntime().emitReduction(
1186         *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
1187         {WithNowait, SimpleReduction, ReductionKind});
1188   }
1189 }
1190 
1191 static void emitPostUpdateForReductionClause(
1192     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1193     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1194   if (!CGF.HaveInsertPoint())
1195     return;
1196   llvm::BasicBlock *DoneBB = nullptr;
1197   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1198     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1199       if (!DoneBB) {
1200         if (llvm::Value *Cond = CondGen(CGF)) {
1201           // If the first post-update expression is found, emit conditional
1202           // block if it was requested.
1203           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1204           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1205           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1206           CGF.EmitBlock(ThenBB);
1207         }
1208       }
1209       CGF.EmitIgnoredExpr(PostUpdate);
1210     }
1211   }
1212   if (DoneBB)
1213     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1214 }
1215 
1216 namespace {
1217 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1218 /// parallel function. This is necessary for combined constructs such as
1219 /// 'distribute parallel for'
1220 typedef llvm::function_ref<void(CodeGenFunction &,
1221                                 const OMPExecutableDirective &,
1222                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1223     CodeGenBoundParametersTy;
1224 } // anonymous namespace
1225 
1226 static void emitCommonOMPParallelDirective(
1227     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1228     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1229     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1230   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1231   llvm::Value *OutlinedFn =
1232       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1233           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1234   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1235     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1236     llvm::Value *NumThreads =
1237         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1238                            /*IgnoreResultAssign=*/true);
1239     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1240         CGF, NumThreads, NumThreadsClause->getLocStart());
1241   }
1242   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1243     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1244     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1245         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
1246   }
1247   const Expr *IfCond = nullptr;
1248   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1249     if (C->getNameModifier() == OMPD_unknown ||
1250         C->getNameModifier() == OMPD_parallel) {
1251       IfCond = C->getCondition();
1252       break;
1253     }
1254   }
1255 
1256   OMPParallelScope Scope(CGF, S);
1257   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1258   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1259   // lower and upper bounds with the pragma 'for' chunking mechanism.
1260   // The following lambda takes care of appending the lower and upper bound
1261   // parameters when necessary
1262   CodeGenBoundParameters(CGF, S, CapturedVars);
1263   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1264   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
1265                                               CapturedVars, IfCond);
1266 }
1267 
1268 static void emitEmptyBoundParameters(CodeGenFunction &,
1269                                      const OMPExecutableDirective &,
1270                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1271 
1272 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1273   // Emit parallel region as a standalone region.
1274   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1275     Action.Enter(CGF);
1276     OMPPrivateScope PrivateScope(CGF);
1277     bool Copyins = CGF.EmitOMPCopyinClause(S);
1278     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1279     if (Copyins) {
1280       // Emit implicit barrier to synchronize threads and avoid data races on
1281       // propagation master's thread values of threadprivate variables to local
1282       // instances of that variables of all other implicit threads.
1283       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1284           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
1285           /*ForceSimpleCall=*/true);
1286     }
1287     CGF.EmitOMPPrivateClause(S, PrivateScope);
1288     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1289     (void)PrivateScope.Privatize();
1290     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1291     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1292   };
1293   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1294                                  emitEmptyBoundParameters);
1295   emitPostUpdateForReductionClause(*this, S,
1296                                    [](CodeGenFunction &) { return nullptr; });
1297 }
1298 
1299 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1300                                       JumpDest LoopExit) {
1301   RunCleanupsScope BodyScope(*this);
1302   // Update counters values on current iteration.
1303   for (const Expr *UE : D.updates())
1304     EmitIgnoredExpr(UE);
1305   // Update the linear variables.
1306   // In distribute directives only loop counters may be marked as linear, no
1307   // need to generate the code for them.
1308   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1309     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1310       for (const Expr *UE : C->updates())
1311         EmitIgnoredExpr(UE);
1312     }
1313   }
1314 
1315   // On a continue in the body, jump to the end.
1316   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1317   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1318   // Emit loop body.
1319   EmitStmt(D.getBody());
1320   // The end (updates/cleanups).
1321   EmitBlock(Continue.getBlock());
1322   BreakContinueStack.pop_back();
1323 }
1324 
1325 void CodeGenFunction::EmitOMPInnerLoop(
1326     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1327     const Expr *IncExpr,
1328     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
1329     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
1330   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1331 
1332   // Start the loop with a block that tests the condition.
1333   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1334   EmitBlock(CondBlock);
1335   const SourceRange R = S.getSourceRange();
1336   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1337                  SourceLocToDebugLoc(R.getEnd()));
1338 
1339   // If there are any cleanups between here and the loop-exit scope,
1340   // create a block to stage a loop exit along.
1341   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1342   if (RequiresCleanup)
1343     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1344 
1345   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
1346 
1347   // Emit condition.
1348   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1349   if (ExitBlock != LoopExit.getBlock()) {
1350     EmitBlock(ExitBlock);
1351     EmitBranchThroughCleanup(LoopExit);
1352   }
1353 
1354   EmitBlock(LoopBody);
1355   incrementProfileCounter(&S);
1356 
1357   // Create a block for the increment.
1358   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1359   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1360 
1361   BodyGen(*this);
1362 
1363   // Emit "IV = IV + 1" and a back-edge to the condition block.
1364   EmitBlock(Continue.getBlock());
1365   EmitIgnoredExpr(IncExpr);
1366   PostIncGen(*this);
1367   BreakContinueStack.pop_back();
1368   EmitBranch(CondBlock);
1369   LoopStack.pop();
1370   // Emit the fall-through block.
1371   EmitBlock(LoopExit.getBlock());
1372 }
1373 
1374 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1375   if (!HaveInsertPoint())
1376     return false;
1377   // Emit inits for the linear variables.
1378   bool HasLinears = false;
1379   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1380     for (const Expr *Init : C->inits()) {
1381       HasLinears = true;
1382       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1383       if (const auto *Ref =
1384               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1385         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1386         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1387         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1388                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1389                         VD->getInit()->getType(), VK_LValue,
1390                         VD->getInit()->getExprLoc());
1391         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1392                                                 VD->getType()),
1393                        /*capturedByInit=*/false);
1394         EmitAutoVarCleanups(Emission);
1395       } else {
1396         EmitVarDecl(*VD);
1397       }
1398     }
1399     // Emit the linear steps for the linear clauses.
1400     // If a step is not constant, it is pre-calculated before the loop.
1401     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1402       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1403         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1404         // Emit calculation of the linear step.
1405         EmitIgnoredExpr(CS);
1406       }
1407   }
1408   return HasLinears;
1409 }
1410 
1411 void CodeGenFunction::EmitOMPLinearClauseFinal(
1412     const OMPLoopDirective &D,
1413     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1414   if (!HaveInsertPoint())
1415     return;
1416   llvm::BasicBlock *DoneBB = nullptr;
1417   // Emit the final values of the linear variables.
1418   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1419     auto IC = C->varlist_begin();
1420     for (const Expr *F : C->finals()) {
1421       if (!DoneBB) {
1422         if (llvm::Value *Cond = CondGen(*this)) {
1423           // If the first post-update expression is found, emit conditional
1424           // block if it was requested.
1425           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
1426           DoneBB = createBasicBlock(".omp.linear.pu.done");
1427           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1428           EmitBlock(ThenBB);
1429         }
1430       }
1431       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1432       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1433                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1434                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1435       Address OrigAddr = EmitLValue(&DRE).getAddress();
1436       CodeGenFunction::OMPPrivateScope VarScope(*this);
1437       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1438       (void)VarScope.Privatize();
1439       EmitIgnoredExpr(F);
1440       ++IC;
1441     }
1442     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1443       EmitIgnoredExpr(PostUpdate);
1444   }
1445   if (DoneBB)
1446     EmitBlock(DoneBB, /*IsFinished=*/true);
1447 }
1448 
1449 static void emitAlignedClause(CodeGenFunction &CGF,
1450                               const OMPExecutableDirective &D) {
1451   if (!CGF.HaveInsertPoint())
1452     return;
1453   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1454     unsigned ClauseAlignment = 0;
1455     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
1456       auto *AlignmentCI =
1457           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1458       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1459     }
1460     for (const Expr *E : Clause->varlists()) {
1461       unsigned Alignment = ClauseAlignment;
1462       if (Alignment == 0) {
1463         // OpenMP [2.8.1, Description]
1464         // If no optional parameter is specified, implementation-defined default
1465         // alignments for SIMD instructions on the target platforms are assumed.
1466         Alignment =
1467             CGF.getContext()
1468                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1469                     E->getType()->getPointeeType()))
1470                 .getQuantity();
1471       }
1472       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1473              "alignment is not power of 2");
1474       if (Alignment != 0) {
1475         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1476         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1477       }
1478     }
1479   }
1480 }
1481 
1482 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1483     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1484   if (!HaveInsertPoint())
1485     return;
1486   auto I = S.private_counters().begin();
1487   for (const Expr *E : S.counters()) {
1488     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1489     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1490     // Emit var without initialization.
1491     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
1492     EmitAutoVarCleanups(VarEmission);
1493     LocalDeclMap.erase(PrivateVD);
1494     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
1495       return VarEmission.getAllocatedAddress();
1496     });
1497     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1498         VD->hasGlobalStorage()) {
1499       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
1500         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1501                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1502                         E->getType(), VK_LValue, E->getExprLoc());
1503         return EmitLValue(&DRE).getAddress();
1504       });
1505     } else {
1506       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
1507         return VarEmission.getAllocatedAddress();
1508       });
1509     }
1510     ++I;
1511   }
1512 }
1513 
1514 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1515                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1516                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1517   if (!CGF.HaveInsertPoint())
1518     return;
1519   {
1520     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1521     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1522     (void)PreCondScope.Privatize();
1523     // Get initial values of real counters.
1524     for (const Expr *I : S.inits()) {
1525       CGF.EmitIgnoredExpr(I);
1526     }
1527   }
1528   // Check that loop is executed at least one time.
1529   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1530 }
1531 
1532 void CodeGenFunction::EmitOMPLinearClause(
1533     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1534   if (!HaveInsertPoint())
1535     return;
1536   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1537   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1538     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1539     for (const Expr *C : LoopDirective->counters()) {
1540       SIMDLCVs.insert(
1541           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1542     }
1543   }
1544   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1545     auto CurPrivate = C->privates().begin();
1546     for (const Expr *E : C->varlists()) {
1547       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1548       const auto *PrivateVD =
1549           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1550       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1551         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
1552           // Emit private VarDecl with copy init.
1553           EmitVarDecl(*PrivateVD);
1554           return GetAddrOfLocalVar(PrivateVD);
1555         });
1556         assert(IsRegistered && "linear var already registered as private");
1557         // Silence the warning about unused variable.
1558         (void)IsRegistered;
1559       } else {
1560         EmitVarDecl(*PrivateVD);
1561       }
1562       ++CurPrivate;
1563     }
1564   }
1565 }
1566 
1567 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1568                                      const OMPExecutableDirective &D,
1569                                      bool IsMonotonic) {
1570   if (!CGF.HaveInsertPoint())
1571     return;
1572   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1573     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1574                                  /*ignoreResult=*/true);
1575     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1576     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1577     // In presence of finite 'safelen', it may be unsafe to mark all
1578     // the memory instructions parallel, because loop-carried
1579     // dependences of 'safelen' iterations are possible.
1580     if (!IsMonotonic)
1581       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1582   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1583     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1584                                  /*ignoreResult=*/true);
1585     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1586     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1587     // In presence of finite 'safelen', it may be unsafe to mark all
1588     // the memory instructions parallel, because loop-carried
1589     // dependences of 'safelen' iterations are possible.
1590     CGF.LoopStack.setParallel(/*Enable=*/false);
1591   }
1592 }
1593 
1594 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1595                                       bool IsMonotonic) {
1596   // Walk clauses and process safelen/lastprivate.
1597   LoopStack.setParallel(!IsMonotonic);
1598   LoopStack.setVectorizeEnable();
1599   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1600 }
1601 
1602 void CodeGenFunction::EmitOMPSimdFinal(
1603     const OMPLoopDirective &D,
1604     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1605   if (!HaveInsertPoint())
1606     return;
1607   llvm::BasicBlock *DoneBB = nullptr;
1608   auto IC = D.counters().begin();
1609   auto IPC = D.private_counters().begin();
1610   for (const Expr *F : D.finals()) {
1611     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1612     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1613     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1614     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1615         OrigVD->hasGlobalStorage() || CED) {
1616       if (!DoneBB) {
1617         if (llvm::Value *Cond = CondGen(*this)) {
1618           // If the first post-update expression is found, emit conditional
1619           // block if it was requested.
1620           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
1621           DoneBB = createBasicBlock(".omp.final.done");
1622           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1623           EmitBlock(ThenBB);
1624         }
1625       }
1626       Address OrigAddr = Address::invalid();
1627       if (CED) {
1628         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1629       } else {
1630         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1631                         /*RefersToEnclosingVariableOrCapture=*/false,
1632                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1633         OrigAddr = EmitLValue(&DRE).getAddress();
1634       }
1635       OMPPrivateScope VarScope(*this);
1636       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1637       (void)VarScope.Privatize();
1638       EmitIgnoredExpr(F);
1639     }
1640     ++IC;
1641     ++IPC;
1642   }
1643   if (DoneBB)
1644     EmitBlock(DoneBB, /*IsFinished=*/true);
1645 }
1646 
1647 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
1648                                          const OMPLoopDirective &S,
1649                                          CodeGenFunction::JumpDest LoopExit) {
1650   CGF.EmitOMPLoopBody(S, LoopExit);
1651   CGF.EmitStopPoint(&S);
1652 }
1653 
1654 /// Emit a helper variable and return corresponding lvalue.
1655 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1656                                const DeclRefExpr *Helper) {
1657   auto VDecl = cast<VarDecl>(Helper->getDecl());
1658   CGF.EmitVarDecl(*VDecl);
1659   return CGF.EmitLValue(Helper);
1660 }
1661 
1662 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
1663                               PrePostActionTy &Action) {
1664   Action.Enter(CGF);
1665   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
1666          "Expected simd directive");
1667   OMPLoopScope PreInitScope(CGF, S);
1668   // if (PreCond) {
1669   //   for (IV in 0..LastIteration) BODY;
1670   //   <Final counter/linear vars updates>;
1671   // }
1672   //
1673   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
1674       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
1675       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
1676     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1677     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
1678   }
1679 
1680   // Emit: if (PreCond) - begin.
1681   // If the condition constant folds and can be elided, avoid emitting the
1682   // whole loop.
1683   bool CondConstant;
1684   llvm::BasicBlock *ContBlock = nullptr;
1685   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1686     if (!CondConstant)
1687       return;
1688   } else {
1689     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
1690     ContBlock = CGF.createBasicBlock("simd.if.end");
1691     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1692                 CGF.getProfileCount(&S));
1693     CGF.EmitBlock(ThenBlock);
1694     CGF.incrementProfileCounter(&S);
1695   }
1696 
1697   // Emit the loop iteration variable.
1698   const Expr *IVExpr = S.getIterationVariable();
1699   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1700   CGF.EmitVarDecl(*IVDecl);
1701   CGF.EmitIgnoredExpr(S.getInit());
1702 
1703   // Emit the iterations count variable.
1704   // If it is not a variable, Sema decided to calculate iterations count on
1705   // each iteration (e.g., it is foldable into a constant).
1706   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1707     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1708     // Emit calculation of the iterations count.
1709     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1710   }
1711 
1712   CGF.EmitOMPSimdInit(S);
1713 
1714   emitAlignedClause(CGF, S);
1715   (void)CGF.EmitOMPLinearClauseInit(S);
1716   {
1717     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
1718     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1719     CGF.EmitOMPLinearClause(S, LoopScope);
1720     CGF.EmitOMPPrivateClause(S, LoopScope);
1721     CGF.EmitOMPReductionClauseInit(S, LoopScope);
1722     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1723     (void)LoopScope.Privatize();
1724     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1725                          S.getInc(),
1726                          [&S](CodeGenFunction &CGF) {
1727                            CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest());
1728                            CGF.EmitStopPoint(&S);
1729                          },
1730                          [](CodeGenFunction &) {});
1731     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
1732     // Emit final copy of the lastprivate variables at the end of loops.
1733     if (HasLastprivateClause)
1734       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1735     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
1736     emitPostUpdateForReductionClause(CGF, S,
1737                                      [](CodeGenFunction &) { return nullptr; });
1738   }
1739   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
1740   // Emit: if (PreCond) - end.
1741   if (ContBlock) {
1742     CGF.EmitBranch(ContBlock);
1743     CGF.EmitBlock(ContBlock, true);
1744   }
1745 }
1746 
1747 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1748   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1749     emitOMPSimdRegion(CGF, S, Action);
1750   };
1751   OMPLexicalScope Scope(*this, S, OMPD_unknown);
1752   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1753 }
1754 
1755 void CodeGenFunction::EmitOMPOuterLoop(
1756     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
1757     CodeGenFunction::OMPPrivateScope &LoopScope,
1758     const CodeGenFunction::OMPLoopArguments &LoopArgs,
1759     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
1760     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
1761   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1762 
1763   const Expr *IVExpr = S.getIterationVariable();
1764   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1765   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1766 
1767   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1768 
1769   // Start the loop with a block that tests the condition.
1770   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
1771   EmitBlock(CondBlock);
1772   const SourceRange R = S.getSourceRange();
1773   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1774                  SourceLocToDebugLoc(R.getEnd()));
1775 
1776   llvm::Value *BoolCondVal = nullptr;
1777   if (!DynamicOrOrdered) {
1778     // UB = min(UB, GlobalUB) or
1779     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
1780     // 'distribute parallel for')
1781     EmitIgnoredExpr(LoopArgs.EUB);
1782     // IV = LB
1783     EmitIgnoredExpr(LoopArgs.Init);
1784     // IV < UB
1785     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
1786   } else {
1787     BoolCondVal =
1788         RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, LoopArgs.IL,
1789                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
1790   }
1791 
1792   // If there are any cleanups between here and the loop-exit scope,
1793   // create a block to stage a loop exit along.
1794   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1795   if (LoopScope.requiresCleanups())
1796     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1797 
1798   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
1799   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1800   if (ExitBlock != LoopExit.getBlock()) {
1801     EmitBlock(ExitBlock);
1802     EmitBranchThroughCleanup(LoopExit);
1803   }
1804   EmitBlock(LoopBody);
1805 
1806   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1807   // LB for loop condition and emitted it above).
1808   if (DynamicOrOrdered)
1809     EmitIgnoredExpr(LoopArgs.Init);
1810 
1811   // Create a block for the increment.
1812   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1813   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1814 
1815   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1816   // with dynamic/guided scheduling and without ordered clause.
1817   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1818     LoopStack.setParallel(!IsMonotonic);
1819   else
1820     EmitOMPSimdInit(S, IsMonotonic);
1821 
1822   SourceLocation Loc = S.getLocStart();
1823 
1824   // when 'distribute' is not combined with a 'for':
1825   // while (idx <= UB) { BODY; ++idx; }
1826   // when 'distribute' is combined with a 'for'
1827   // (e.g. 'distribute parallel for')
1828   // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
1829   EmitOMPInnerLoop(
1830       S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
1831       [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
1832         CodeGenLoop(CGF, S, LoopExit);
1833       },
1834       [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
1835         CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
1836       });
1837 
1838   EmitBlock(Continue.getBlock());
1839   BreakContinueStack.pop_back();
1840   if (!DynamicOrOrdered) {
1841     // Emit "LB = LB + Stride", "UB = UB + Stride".
1842     EmitIgnoredExpr(LoopArgs.NextLB);
1843     EmitIgnoredExpr(LoopArgs.NextUB);
1844   }
1845 
1846   EmitBranch(CondBlock);
1847   LoopStack.pop();
1848   // Emit the fall-through block.
1849   EmitBlock(LoopExit.getBlock());
1850 
1851   // Tell the runtime we are done.
1852   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
1853     if (!DynamicOrOrdered)
1854       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(),
1855                                                      S.getDirectiveKind());
1856   };
1857   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
1858 }
1859 
1860 void CodeGenFunction::EmitOMPForOuterLoop(
1861     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1862     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1863     const OMPLoopArguments &LoopArgs,
1864     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
1865   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1866 
1867   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1868   const bool DynamicOrOrdered =
1869       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1870 
1871   assert((Ordered ||
1872           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1873                                  LoopArgs.Chunk != nullptr)) &&
1874          "static non-chunked schedule does not need outer loop");
1875 
1876   // Emit outer loop.
1877   //
1878   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1879   // When schedule(dynamic,chunk_size) is specified, the iterations are
1880   // distributed to threads in the team in chunks as the threads request them.
1881   // Each thread executes a chunk of iterations, then requests another chunk,
1882   // until no chunks remain to be distributed. Each chunk contains chunk_size
1883   // iterations, except for the last chunk to be distributed, which may have
1884   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1885   //
1886   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1887   // to threads in the team in chunks as the executing threads request them.
1888   // Each thread executes a chunk of iterations, then requests another chunk,
1889   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1890   // each chunk is proportional to the number of unassigned iterations divided
1891   // by the number of threads in the team, decreasing to 1. For a chunk_size
1892   // with value k (greater than 1), the size of each chunk is determined in the
1893   // same way, with the restriction that the chunks do not contain fewer than k
1894   // iterations (except for the last chunk to be assigned, which may have fewer
1895   // than k iterations).
1896   //
1897   // When schedule(auto) is specified, the decision regarding scheduling is
1898   // delegated to the compiler and/or runtime system. The programmer gives the
1899   // implementation the freedom to choose any possible mapping of iterations to
1900   // threads in the team.
1901   //
1902   // When schedule(runtime) is specified, the decision regarding scheduling is
1903   // deferred until run time, and the schedule and chunk size are taken from the
1904   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1905   // implementation defined
1906   //
1907   // while(__kmpc_dispatch_next(&LB, &UB)) {
1908   //   idx = LB;
1909   //   while (idx <= UB) { BODY; ++idx;
1910   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1911   //   } // inner loop
1912   // }
1913   //
1914   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1915   // When schedule(static, chunk_size) is specified, iterations are divided into
1916   // chunks of size chunk_size, and the chunks are assigned to the threads in
1917   // the team in a round-robin fashion in the order of the thread number.
1918   //
1919   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1920   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1921   //   LB = LB + ST;
1922   //   UB = UB + ST;
1923   // }
1924   //
1925 
1926   const Expr *IVExpr = S.getIterationVariable();
1927   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1928   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1929 
1930   if (DynamicOrOrdered) {
1931     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
1932         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
1933     llvm::Value *LBVal = DispatchBounds.first;
1934     llvm::Value *UBVal = DispatchBounds.second;
1935     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
1936                                                              LoopArgs.Chunk};
1937     RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize,
1938                            IVSigned, Ordered, DipatchRTInputValues);
1939   } else {
1940     CGOpenMPRuntime::StaticRTInput StaticInit(
1941         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
1942         LoopArgs.ST, LoopArgs.Chunk);
1943     RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(),
1944                          ScheduleKind, StaticInit);
1945   }
1946 
1947   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
1948                                     const unsigned IVSize,
1949                                     const bool IVSigned) {
1950     if (Ordered) {
1951       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
1952                                                             IVSigned);
1953     }
1954   };
1955 
1956   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
1957                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
1958   OuterLoopArgs.IncExpr = S.getInc();
1959   OuterLoopArgs.Init = S.getInit();
1960   OuterLoopArgs.Cond = S.getCond();
1961   OuterLoopArgs.NextLB = S.getNextLowerBound();
1962   OuterLoopArgs.NextUB = S.getNextUpperBound();
1963   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
1964                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
1965 }
1966 
1967 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
1968                              const unsigned IVSize, const bool IVSigned) {}
1969 
1970 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1971     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
1972     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
1973     const CodeGenLoopTy &CodeGenLoopContent) {
1974 
1975   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1976 
1977   // Emit outer loop.
1978   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1979   // dynamic
1980   //
1981 
1982   const Expr *IVExpr = S.getIterationVariable();
1983   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1984   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1985 
1986   CGOpenMPRuntime::StaticRTInput StaticInit(
1987       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
1988       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
1989   RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, StaticInit);
1990 
1991   // for combined 'distribute' and 'for' the increment expression of distribute
1992   // is store in DistInc. For 'distribute' alone, it is in Inc.
1993   Expr *IncExpr;
1994   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
1995     IncExpr = S.getDistInc();
1996   else
1997     IncExpr = S.getInc();
1998 
1999   // this routine is shared by 'omp distribute parallel for' and
2000   // 'omp distribute': select the right EUB expression depending on the
2001   // directive
2002   OMPLoopArguments OuterLoopArgs;
2003   OuterLoopArgs.LB = LoopArgs.LB;
2004   OuterLoopArgs.UB = LoopArgs.UB;
2005   OuterLoopArgs.ST = LoopArgs.ST;
2006   OuterLoopArgs.IL = LoopArgs.IL;
2007   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2008   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2009                           ? S.getCombinedEnsureUpperBound()
2010                           : S.getEnsureUpperBound();
2011   OuterLoopArgs.IncExpr = IncExpr;
2012   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2013                            ? S.getCombinedInit()
2014                            : S.getInit();
2015   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2016                            ? S.getCombinedCond()
2017                            : S.getCond();
2018   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2019                              ? S.getCombinedNextLowerBound()
2020                              : S.getNextLowerBound();
2021   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2022                              ? S.getCombinedNextUpperBound()
2023                              : S.getNextUpperBound();
2024 
2025   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2026                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2027                    emitEmptyOrdered);
2028 }
2029 
2030 static std::pair<LValue, LValue>
2031 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2032                                      const OMPExecutableDirective &S) {
2033   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2034   LValue LB =
2035       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2036   LValue UB =
2037       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2038 
2039   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2040   // parallel for') we need to use the 'distribute'
2041   // chunk lower and upper bounds rather than the whole loop iteration
2042   // space. These are parameters to the outlined function for 'parallel'
2043   // and we copy the bounds of the previous schedule into the
2044   // the current ones.
2045   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2046   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2047   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2048       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2049   PrevLBVal = CGF.EmitScalarConversion(
2050       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2051       LS.getIterationVariable()->getType(),
2052       LS.getPrevLowerBoundVariable()->getExprLoc());
2053   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2054       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2055   PrevUBVal = CGF.EmitScalarConversion(
2056       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2057       LS.getIterationVariable()->getType(),
2058       LS.getPrevUpperBoundVariable()->getExprLoc());
2059 
2060   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2061   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2062 
2063   return {LB, UB};
2064 }
2065 
2066 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2067 /// we need to use the LB and UB expressions generated by the worksharing
2068 /// code generation support, whereas in non combined situations we would
2069 /// just emit 0 and the LastIteration expression
2070 /// This function is necessary due to the difference of the LB and UB
2071 /// types for the RT emission routines for 'for_static_init' and
2072 /// 'for_dispatch_init'
2073 static std::pair<llvm::Value *, llvm::Value *>
2074 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2075                                         const OMPExecutableDirective &S,
2076                                         Address LB, Address UB) {
2077   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2078   const Expr *IVExpr = LS.getIterationVariable();
2079   // when implementing a dynamic schedule for a 'for' combined with a
2080   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2081   // is not normalized as each team only executes its own assigned
2082   // distribute chunk
2083   QualType IteratorTy = IVExpr->getType();
2084   llvm::Value *LBVal =
2085       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getLocStart());
2086   llvm::Value *UBVal =
2087       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getLocStart());
2088   return {LBVal, UBVal};
2089 }
2090 
2091 static void emitDistributeParallelForDistributeInnerBoundParams(
2092     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2093     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2094   const auto &Dir = cast<OMPLoopDirective>(S);
2095   LValue LB =
2096       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2097   llvm::Value *LBCast = CGF.Builder.CreateIntCast(
2098       CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2099   CapturedVars.push_back(LBCast);
2100   LValue UB =
2101       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2102 
2103   llvm::Value *UBCast = CGF.Builder.CreateIntCast(
2104       CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2105   CapturedVars.push_back(UBCast);
2106 }
2107 
2108 static void
2109 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2110                                  const OMPLoopDirective &S,
2111                                  CodeGenFunction::JumpDest LoopExit) {
2112   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2113                                          PrePostActionTy &Action) {
2114     Action.Enter(CGF);
2115     bool HasCancel = false;
2116     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2117       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2118         HasCancel = D->hasCancel();
2119       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2120         HasCancel = D->hasCancel();
2121       else if (const auto *D =
2122                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2123         HasCancel = D->hasCancel();
2124     }
2125     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2126                                                      HasCancel);
2127     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2128                                emitDistributeParallelForInnerBounds,
2129                                emitDistributeParallelForDispatchBounds);
2130   };
2131 
2132   emitCommonOMPParallelDirective(
2133       CGF, S,
2134       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2135       CGInlinedWorksharingLoop,
2136       emitDistributeParallelForDistributeInnerBoundParams);
2137 }
2138 
2139 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2140     const OMPDistributeParallelForDirective &S) {
2141   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2142     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2143                               S.getDistInc());
2144   };
2145   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2146   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2147 }
2148 
2149 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2150     const OMPDistributeParallelForSimdDirective &S) {
2151   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2152     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2153                               S.getDistInc());
2154   };
2155   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2156   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2157 }
2158 
2159 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2160     const OMPDistributeSimdDirective &S) {
2161   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2162     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
2163   };
2164   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2165   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2166 }
2167 
2168 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
2169     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
2170   // Emit SPMD target parallel for region as a standalone region.
2171   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2172     emitOMPSimdRegion(CGF, S, Action);
2173   };
2174   llvm::Function *Fn;
2175   llvm::Constant *Addr;
2176   // Emit target region as a standalone region.
2177   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
2178       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
2179   assert(Fn && Addr && "Target device function emission failed.");
2180 }
2181 
2182 void CodeGenFunction::EmitOMPTargetSimdDirective(
2183     const OMPTargetSimdDirective &S) {
2184   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2185     emitOMPSimdRegion(CGF, S, Action);
2186   };
2187   emitCommonOMPTargetDirective(*this, S, CodeGen);
2188 }
2189 
2190 namespace {
2191   struct ScheduleKindModifiersTy {
2192     OpenMPScheduleClauseKind Kind;
2193     OpenMPScheduleClauseModifier M1;
2194     OpenMPScheduleClauseModifier M2;
2195     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
2196                             OpenMPScheduleClauseModifier M1,
2197                             OpenMPScheduleClauseModifier M2)
2198         : Kind(Kind), M1(M1), M2(M2) {}
2199   };
2200 } // namespace
2201 
2202 bool CodeGenFunction::EmitOMPWorksharingLoop(
2203     const OMPLoopDirective &S, Expr *EUB,
2204     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2205     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2206   // Emit the loop iteration variable.
2207   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2208   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
2209   EmitVarDecl(*IVDecl);
2210 
2211   // Emit the iterations count variable.
2212   // If it is not a variable, Sema decided to calculate iterations count on each
2213   // iteration (e.g., it is foldable into a constant).
2214   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2215     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2216     // Emit calculation of the iterations count.
2217     EmitIgnoredExpr(S.getCalcLastIteration());
2218   }
2219 
2220   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2221 
2222   bool HasLastprivateClause;
2223   // Check pre-condition.
2224   {
2225     OMPLoopScope PreInitScope(*this, S);
2226     // Skip the entire loop if we don't meet the precondition.
2227     // If the condition constant folds and can be elided, avoid emitting the
2228     // whole loop.
2229     bool CondConstant;
2230     llvm::BasicBlock *ContBlock = nullptr;
2231     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2232       if (!CondConstant)
2233         return false;
2234     } else {
2235       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
2236       ContBlock = createBasicBlock("omp.precond.end");
2237       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2238                   getProfileCount(&S));
2239       EmitBlock(ThenBlock);
2240       incrementProfileCounter(&S);
2241     }
2242 
2243     RunCleanupsScope DoacrossCleanupScope(*this);
2244     bool Ordered = false;
2245     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2246       if (OrderedClause->getNumForLoops())
2247         RT.emitDoacrossInit(*this, S);
2248       else
2249         Ordered = true;
2250     }
2251 
2252     llvm::DenseSet<const Expr *> EmittedFinals;
2253     emitAlignedClause(*this, S);
2254     bool HasLinears = EmitOMPLinearClauseInit(S);
2255     // Emit helper vars inits.
2256 
2257     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
2258     LValue LB = Bounds.first;
2259     LValue UB = Bounds.second;
2260     LValue ST =
2261         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2262     LValue IL =
2263         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2264 
2265     // Emit 'then' code.
2266     {
2267       OMPPrivateScope LoopScope(*this);
2268       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
2269         // Emit implicit barrier to synchronize threads and avoid data races on
2270         // initialization of firstprivate variables and post-update of
2271         // lastprivate variables.
2272         CGM.getOpenMPRuntime().emitBarrierCall(
2273             *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2274             /*ForceSimpleCall=*/true);
2275       }
2276       EmitOMPPrivateClause(S, LoopScope);
2277       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2278       EmitOMPReductionClauseInit(S, LoopScope);
2279       EmitOMPPrivateLoopCounters(S, LoopScope);
2280       EmitOMPLinearClause(S, LoopScope);
2281       (void)LoopScope.Privatize();
2282 
2283       // Detect the loop schedule kind and chunk.
2284       llvm::Value *Chunk = nullptr;
2285       OpenMPScheduleTy ScheduleKind;
2286       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
2287         ScheduleKind.Schedule = C->getScheduleKind();
2288         ScheduleKind.M1 = C->getFirstScheduleModifier();
2289         ScheduleKind.M2 = C->getSecondScheduleModifier();
2290         if (const Expr *Ch = C->getChunkSize()) {
2291           Chunk = EmitScalarExpr(Ch);
2292           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2293                                        S.getIterationVariable()->getType(),
2294                                        S.getLocStart());
2295         }
2296       }
2297       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2298       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2299       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2300       // If the static schedule kind is specified or if the ordered clause is
2301       // specified, and if no monotonic modifier is specified, the effect will
2302       // be as if the monotonic modifier was specified.
2303       if (RT.isStaticNonchunked(ScheduleKind.Schedule,
2304                                 /* Chunked */ Chunk != nullptr) &&
2305           !Ordered) {
2306         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2307           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2308         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2309         // When no chunk_size is specified, the iteration space is divided into
2310         // chunks that are approximately equal in size, and at most one chunk is
2311         // distributed to each thread. Note that the size of the chunks is
2312         // unspecified in this case.
2313         CGOpenMPRuntime::StaticRTInput StaticInit(
2314             IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(),
2315             UB.getAddress(), ST.getAddress());
2316         RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(),
2317                              ScheduleKind, StaticInit);
2318         JumpDest LoopExit =
2319             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2320         // UB = min(UB, GlobalUB);
2321         EmitIgnoredExpr(S.getEnsureUpperBound());
2322         // IV = LB;
2323         EmitIgnoredExpr(S.getInit());
2324         // while (idx <= UB) { BODY; ++idx; }
2325         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2326                          S.getInc(),
2327                          [&S, LoopExit](CodeGenFunction &CGF) {
2328                            CGF.EmitOMPLoopBody(S, LoopExit);
2329                            CGF.EmitStopPoint(&S);
2330                          },
2331                          [](CodeGenFunction &) {});
2332         EmitBlock(LoopExit.getBlock());
2333         // Tell the runtime we are done.
2334         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2335           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(),
2336                                                          S.getDirectiveKind());
2337         };
2338         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2339       } else {
2340         const bool IsMonotonic =
2341             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2342             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2343             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2344             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2345         // Emit the outer loop, which requests its work chunk [LB..UB] from
2346         // runtime and runs the inner loop to process it.
2347         const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(),
2348                                              ST.getAddress(), IL.getAddress(),
2349                                              Chunk, EUB);
2350         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2351                             LoopArguments, CGDispatchBounds);
2352       }
2353       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2354         EmitOMPSimdFinal(S,
2355                          [IL, &S](CodeGenFunction &CGF) {
2356                            return CGF.Builder.CreateIsNotNull(
2357                                CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2358                          });
2359       }
2360       EmitOMPReductionClauseFinal(
2361           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
2362                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
2363                  : /*Parallel only*/ OMPD_parallel);
2364       // Emit post-update of the reduction variables if IsLastIter != 0.
2365       emitPostUpdateForReductionClause(
2366           *this, S, [IL, &S](CodeGenFunction &CGF) {
2367             return CGF.Builder.CreateIsNotNull(
2368                 CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2369           });
2370       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2371       if (HasLastprivateClause)
2372         EmitOMPLastprivateClauseFinal(
2373             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2374             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
2375     }
2376     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
2377       return CGF.Builder.CreateIsNotNull(
2378           CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2379     });
2380     DoacrossCleanupScope.ForceCleanup();
2381     // We're now done with the loop, so jump to the continuation block.
2382     if (ContBlock) {
2383       EmitBranch(ContBlock);
2384       EmitBlock(ContBlock, /*IsFinished=*/true);
2385     }
2386   }
2387   return HasLastprivateClause;
2388 }
2389 
2390 /// The following two functions generate expressions for the loop lower
2391 /// and upper bounds in case of static and dynamic (dispatch) schedule
2392 /// of the associated 'for' or 'distribute' loop.
2393 static std::pair<LValue, LValue>
2394 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
2395   const auto &LS = cast<OMPLoopDirective>(S);
2396   LValue LB =
2397       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2398   LValue UB =
2399       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2400   return {LB, UB};
2401 }
2402 
2403 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
2404 /// consider the lower and upper bound expressions generated by the
2405 /// worksharing loop support, but we use 0 and the iteration space size as
2406 /// constants
2407 static std::pair<llvm::Value *, llvm::Value *>
2408 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
2409                           Address LB, Address UB) {
2410   const auto &LS = cast<OMPLoopDirective>(S);
2411   const Expr *IVExpr = LS.getIterationVariable();
2412   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
2413   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
2414   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
2415   return {LBVal, UBVal};
2416 }
2417 
2418 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2419   bool HasLastprivates = false;
2420   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2421                                           PrePostActionTy &) {
2422     OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel());
2423     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2424                                                  emitForLoopBounds,
2425                                                  emitDispatchForLoopBounds);
2426   };
2427   {
2428     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2429     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2430                                                 S.hasCancel());
2431   }
2432 
2433   // Emit an implicit barrier at the end.
2434   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2435     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2436 }
2437 
2438 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2439   bool HasLastprivates = false;
2440   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2441                                           PrePostActionTy &) {
2442     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2443                                                  emitForLoopBounds,
2444                                                  emitDispatchForLoopBounds);
2445   };
2446   {
2447     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2448     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2449   }
2450 
2451   // Emit an implicit barrier at the end.
2452   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2453     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2454 }
2455 
2456 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2457                                 const Twine &Name,
2458                                 llvm::Value *Init = nullptr) {
2459   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2460   if (Init)
2461     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2462   return LVal;
2463 }
2464 
2465 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2466   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
2467   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
2468   bool HasLastprivates = false;
2469   auto &&CodeGen = [&S, CapturedStmt, CS,
2470                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
2471     ASTContext &C = CGF.getContext();
2472     QualType KmpInt32Ty =
2473         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2474     // Emit helper vars inits.
2475     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2476                                   CGF.Builder.getInt32(0));
2477     llvm::ConstantInt *GlobalUBVal = CS != nullptr
2478                                          ? CGF.Builder.getInt32(CS->size() - 1)
2479                                          : CGF.Builder.getInt32(0);
2480     LValue UB =
2481         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2482     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2483                                   CGF.Builder.getInt32(1));
2484     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2485                                   CGF.Builder.getInt32(0));
2486     // Loop counter.
2487     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2488     OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2489     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2490     OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2491     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2492     // Generate condition for loop.
2493     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2494                         OK_Ordinary, S.getLocStart(), FPOptions());
2495     // Increment for loop counter.
2496     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2497                       S.getLocStart(), true);
2498     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
2499       // Iterate through all sections and emit a switch construct:
2500       // switch (IV) {
2501       //   case 0:
2502       //     <SectionStmt[0]>;
2503       //     break;
2504       // ...
2505       //   case <NumSection> - 1:
2506       //     <SectionStmt[<NumSection> - 1]>;
2507       //     break;
2508       // }
2509       // .omp.sections.exit:
2510       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2511       llvm::SwitchInst *SwitchStmt =
2512           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getLocStart()),
2513                                    ExitBB, CS == nullptr ? 1 : CS->size());
2514       if (CS) {
2515         unsigned CaseNumber = 0;
2516         for (const Stmt *SubStmt : CS->children()) {
2517           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2518           CGF.EmitBlock(CaseBB);
2519           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2520           CGF.EmitStmt(SubStmt);
2521           CGF.EmitBranch(ExitBB);
2522           ++CaseNumber;
2523         }
2524       } else {
2525         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
2526         CGF.EmitBlock(CaseBB);
2527         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2528         CGF.EmitStmt(CapturedStmt);
2529         CGF.EmitBranch(ExitBB);
2530       }
2531       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2532     };
2533 
2534     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2535     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2536       // Emit implicit barrier to synchronize threads and avoid data races on
2537       // initialization of firstprivate variables and post-update of lastprivate
2538       // variables.
2539       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2540           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2541           /*ForceSimpleCall=*/true);
2542     }
2543     CGF.EmitOMPPrivateClause(S, LoopScope);
2544     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2545     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2546     (void)LoopScope.Privatize();
2547 
2548     // Emit static non-chunked loop.
2549     OpenMPScheduleTy ScheduleKind;
2550     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2551     CGOpenMPRuntime::StaticRTInput StaticInit(
2552         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
2553         LB.getAddress(), UB.getAddress(), ST.getAddress());
2554     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2555         CGF, S.getLocStart(), S.getDirectiveKind(), ScheduleKind, StaticInit);
2556     // UB = min(UB, GlobalUB);
2557     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
2558     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
2559         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2560     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2561     // IV = LB;
2562     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
2563     // while (idx <= UB) { BODY; ++idx; }
2564     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2565                          [](CodeGenFunction &) {});
2566     // Tell the runtime we are done.
2567     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2568       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(),
2569                                                      S.getDirectiveKind());
2570     };
2571     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
2572     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
2573     // Emit post-update of the reduction variables if IsLastIter != 0.
2574     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
2575       return CGF.Builder.CreateIsNotNull(
2576           CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2577     });
2578 
2579     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2580     if (HasLastprivates)
2581       CGF.EmitOMPLastprivateClauseFinal(
2582           S, /*NoFinals=*/false,
2583           CGF.Builder.CreateIsNotNull(
2584               CGF.EmitLoadOfScalar(IL, S.getLocStart())));
2585   };
2586 
2587   bool HasCancel = false;
2588   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2589     HasCancel = OSD->hasCancel();
2590   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2591     HasCancel = OPSD->hasCancel();
2592   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
2593   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2594                                               HasCancel);
2595   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2596   // clause. Otherwise the barrier will be generated by the codegen for the
2597   // directive.
2598   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2599     // Emit implicit barrier to synchronize threads and avoid data races on
2600     // initialization of firstprivate variables.
2601     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2602                                            OMPD_unknown);
2603   }
2604 }
2605 
2606 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2607   {
2608     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2609     EmitSections(S);
2610   }
2611   // Emit an implicit barrier at the end.
2612   if (!S.getSingleClause<OMPNowaitClause>()) {
2613     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2614                                            OMPD_sections);
2615   }
2616 }
2617 
2618 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2619   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2620     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2621   };
2622   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2623   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2624                                               S.hasCancel());
2625 }
2626 
2627 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2628   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2629   llvm::SmallVector<const Expr *, 8> DestExprs;
2630   llvm::SmallVector<const Expr *, 8> SrcExprs;
2631   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2632   // Check if there are any 'copyprivate' clauses associated with this
2633   // 'single' construct.
2634   // Build a list of copyprivate variables along with helper expressions
2635   // (<source>, <destination>, <destination>=<source> expressions)
2636   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2637     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2638     DestExprs.append(C->destination_exprs().begin(),
2639                      C->destination_exprs().end());
2640     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2641     AssignmentOps.append(C->assignment_ops().begin(),
2642                          C->assignment_ops().end());
2643   }
2644   // Emit code for 'single' region along with 'copyprivate' clauses
2645   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2646     Action.Enter(CGF);
2647     OMPPrivateScope SingleScope(CGF);
2648     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2649     CGF.EmitOMPPrivateClause(S, SingleScope);
2650     (void)SingleScope.Privatize();
2651     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2652   };
2653   {
2654     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2655     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
2656                                             CopyprivateVars, DestExprs,
2657                                             SrcExprs, AssignmentOps);
2658   }
2659   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2660   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2661   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2662     CGM.getOpenMPRuntime().emitBarrierCall(
2663         *this, S.getLocStart(),
2664         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2665   }
2666 }
2667 
2668 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2669   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2670     Action.Enter(CGF);
2671     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2672   };
2673   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2674   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
2675 }
2676 
2677 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2678   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2679     Action.Enter(CGF);
2680     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2681   };
2682   const Expr *Hint = nullptr;
2683   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
2684     Hint = HintClause->getHint();
2685   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2686   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2687                                             S.getDirectiveName().getAsString(),
2688                                             CodeGen, S.getLocStart(), Hint);
2689 }
2690 
2691 void CodeGenFunction::EmitOMPParallelForDirective(
2692     const OMPParallelForDirective &S) {
2693   // Emit directive as a combined directive that consists of two implicit
2694   // directives: 'parallel' with 'for' directive.
2695   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2696     Action.Enter(CGF);
2697     OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel());
2698     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2699                                emitDispatchForLoopBounds);
2700   };
2701   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
2702                                  emitEmptyBoundParameters);
2703 }
2704 
2705 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2706     const OMPParallelForSimdDirective &S) {
2707   // Emit directive as a combined directive that consists of two implicit
2708   // directives: 'parallel' with 'for' directive.
2709   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2710     Action.Enter(CGF);
2711     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2712                                emitDispatchForLoopBounds);
2713   };
2714   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen,
2715                                  emitEmptyBoundParameters);
2716 }
2717 
2718 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2719     const OMPParallelSectionsDirective &S) {
2720   // Emit directive as a combined directive that consists of two implicit
2721   // directives: 'parallel' with 'sections' directive.
2722   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2723     Action.Enter(CGF);
2724     CGF.EmitSections(S);
2725   };
2726   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
2727                                  emitEmptyBoundParameters);
2728 }
2729 
2730 void CodeGenFunction::EmitOMPTaskBasedDirective(
2731     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
2732     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
2733     OMPTaskDataTy &Data) {
2734   // Emit outlined function for task construct.
2735   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
2736   auto I = CS->getCapturedDecl()->param_begin();
2737   auto PartId = std::next(I);
2738   auto TaskT = std::next(I, 4);
2739   // Check if the task is final
2740   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2741     // If the condition constant folds and can be elided, try to avoid emitting
2742     // the condition and the dead arm of the if/else.
2743     const Expr *Cond = Clause->getCondition();
2744     bool CondConstant;
2745     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2746       Data.Final.setInt(CondConstant);
2747     else
2748       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2749   } else {
2750     // By default the task is not final.
2751     Data.Final.setInt(/*IntVal=*/false);
2752   }
2753   // Check if the task has 'priority' clause.
2754   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2755     const Expr *Prio = Clause->getPriority();
2756     Data.Priority.setInt(/*IntVal=*/true);
2757     Data.Priority.setPointer(EmitScalarConversion(
2758         EmitScalarExpr(Prio), Prio->getType(),
2759         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2760         Prio->getExprLoc()));
2761   }
2762   // The first function argument for tasks is a thread id, the second one is a
2763   // part id (0 for tied tasks, >=0 for untied task).
2764   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2765   // Get list of private variables.
2766   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2767     auto IRef = C->varlist_begin();
2768     for (const Expr *IInit : C->private_copies()) {
2769       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2770       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2771         Data.PrivateVars.push_back(*IRef);
2772         Data.PrivateCopies.push_back(IInit);
2773       }
2774       ++IRef;
2775     }
2776   }
2777   EmittedAsPrivate.clear();
2778   // Get list of firstprivate variables.
2779   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2780     auto IRef = C->varlist_begin();
2781     auto IElemInitRef = C->inits().begin();
2782     for (const Expr *IInit : C->private_copies()) {
2783       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2784       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2785         Data.FirstprivateVars.push_back(*IRef);
2786         Data.FirstprivateCopies.push_back(IInit);
2787         Data.FirstprivateInits.push_back(*IElemInitRef);
2788       }
2789       ++IRef;
2790       ++IElemInitRef;
2791     }
2792   }
2793   // Get list of lastprivate variables (for taskloops).
2794   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2795   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2796     auto IRef = C->varlist_begin();
2797     auto ID = C->destination_exprs().begin();
2798     for (const Expr *IInit : C->private_copies()) {
2799       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2800       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2801         Data.LastprivateVars.push_back(*IRef);
2802         Data.LastprivateCopies.push_back(IInit);
2803       }
2804       LastprivateDstsOrigs.insert(
2805           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2806            cast<DeclRefExpr>(*IRef)});
2807       ++IRef;
2808       ++ID;
2809     }
2810   }
2811   SmallVector<const Expr *, 4> LHSs;
2812   SmallVector<const Expr *, 4> RHSs;
2813   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
2814     auto IPriv = C->privates().begin();
2815     auto IRed = C->reduction_ops().begin();
2816     auto ILHS = C->lhs_exprs().begin();
2817     auto IRHS = C->rhs_exprs().begin();
2818     for (const Expr *Ref : C->varlists()) {
2819       Data.ReductionVars.emplace_back(Ref);
2820       Data.ReductionCopies.emplace_back(*IPriv);
2821       Data.ReductionOps.emplace_back(*IRed);
2822       LHSs.emplace_back(*ILHS);
2823       RHSs.emplace_back(*IRHS);
2824       std::advance(IPriv, 1);
2825       std::advance(IRed, 1);
2826       std::advance(ILHS, 1);
2827       std::advance(IRHS, 1);
2828     }
2829   }
2830   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
2831       *this, S.getLocStart(), LHSs, RHSs, Data);
2832   // Build list of dependences.
2833   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2834     for (const Expr *IRef : C->varlists())
2835       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
2836   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
2837                     CapturedRegion](CodeGenFunction &CGF,
2838                                     PrePostActionTy &Action) {
2839     // Set proper addresses for generated private copies.
2840     OMPPrivateScope Scope(CGF);
2841     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2842         !Data.LastprivateVars.empty()) {
2843       enum { PrivatesParam = 2, CopyFnParam = 3 };
2844       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
2845           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
2846       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
2847           CS->getCapturedDecl()->getParam(PrivatesParam)));
2848       // Map privates.
2849       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2850       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2851       CallArgs.push_back(PrivatesPtr);
2852       for (const Expr *E : Data.PrivateVars) {
2853         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2854         Address PrivatePtr = CGF.CreateMemTemp(
2855             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2856         PrivatePtrs.emplace_back(VD, PrivatePtr);
2857         CallArgs.push_back(PrivatePtr.getPointer());
2858       }
2859       for (const Expr *E : Data.FirstprivateVars) {
2860         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2861         Address PrivatePtr =
2862             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2863                               ".firstpriv.ptr.addr");
2864         PrivatePtrs.emplace_back(VD, PrivatePtr);
2865         CallArgs.push_back(PrivatePtr.getPointer());
2866       }
2867       for (const Expr *E : Data.LastprivateVars) {
2868         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2869         Address PrivatePtr =
2870             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2871                               ".lastpriv.ptr.addr");
2872         PrivatePtrs.emplace_back(VD, PrivatePtr);
2873         CallArgs.push_back(PrivatePtr.getPointer());
2874       }
2875       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(),
2876                                                           CopyFn, CallArgs);
2877       for (const auto &Pair : LastprivateDstsOrigs) {
2878         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2879         DeclRefExpr DRE(
2880             const_cast<VarDecl *>(OrigVD),
2881             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2882                 OrigVD) != nullptr,
2883             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2884         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2885           return CGF.EmitLValue(&DRE).getAddress();
2886         });
2887       }
2888       for (const auto &Pair : PrivatePtrs) {
2889         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2890                             CGF.getContext().getDeclAlign(Pair.first));
2891         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2892       }
2893     }
2894     if (Data.Reductions) {
2895       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
2896       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies,
2897                              Data.ReductionOps);
2898       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
2899           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
2900       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
2901         RedCG.emitSharedLValue(CGF, Cnt);
2902         RedCG.emitAggregateType(CGF, Cnt);
2903         // FIXME: This must removed once the runtime library is fixed.
2904         // Emit required threadprivate variables for
2905         // initilizer/combiner/finalizer.
2906         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(),
2907                                                            RedCG, Cnt);
2908         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
2909             CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
2910         Replacement =
2911             Address(CGF.EmitScalarConversion(
2912                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
2913                         CGF.getContext().getPointerType(
2914                             Data.ReductionCopies[Cnt]->getType()),
2915                         Data.ReductionCopies[Cnt]->getExprLoc()),
2916                     Replacement.getAlignment());
2917         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
2918         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
2919                          [Replacement]() { return Replacement; });
2920       }
2921     }
2922     // Privatize all private variables except for in_reduction items.
2923     (void)Scope.Privatize();
2924     SmallVector<const Expr *, 4> InRedVars;
2925     SmallVector<const Expr *, 4> InRedPrivs;
2926     SmallVector<const Expr *, 4> InRedOps;
2927     SmallVector<const Expr *, 4> TaskgroupDescriptors;
2928     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
2929       auto IPriv = C->privates().begin();
2930       auto IRed = C->reduction_ops().begin();
2931       auto ITD = C->taskgroup_descriptors().begin();
2932       for (const Expr *Ref : C->varlists()) {
2933         InRedVars.emplace_back(Ref);
2934         InRedPrivs.emplace_back(*IPriv);
2935         InRedOps.emplace_back(*IRed);
2936         TaskgroupDescriptors.emplace_back(*ITD);
2937         std::advance(IPriv, 1);
2938         std::advance(IRed, 1);
2939         std::advance(ITD, 1);
2940       }
2941     }
2942     // Privatize in_reduction items here, because taskgroup descriptors must be
2943     // privatized earlier.
2944     OMPPrivateScope InRedScope(CGF);
2945     if (!InRedVars.empty()) {
2946       ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps);
2947       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
2948         RedCG.emitSharedLValue(CGF, Cnt);
2949         RedCG.emitAggregateType(CGF, Cnt);
2950         // The taskgroup descriptor variable is always implicit firstprivate and
2951         // privatized already during procoessing of the firstprivates.
2952         // FIXME: This must removed once the runtime library is fixed.
2953         // Emit required threadprivate variables for
2954         // initilizer/combiner/finalizer.
2955         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(),
2956                                                            RedCG, Cnt);
2957         llvm::Value *ReductionsPtr =
2958             CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]),
2959                                  TaskgroupDescriptors[Cnt]->getExprLoc());
2960         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
2961             CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
2962         Replacement = Address(
2963             CGF.EmitScalarConversion(
2964                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
2965                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
2966                 InRedPrivs[Cnt]->getExprLoc()),
2967             Replacement.getAlignment());
2968         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
2969         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
2970                               [Replacement]() { return Replacement; });
2971       }
2972     }
2973     (void)InRedScope.Privatize();
2974 
2975     Action.Enter(CGF);
2976     BodyGen(CGF);
2977   };
2978   llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
2979       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
2980       Data.NumberOfParts);
2981   OMPLexicalScope Scope(*this, S);
2982   TaskGen(*this, OutlinedFn, Data);
2983 }
2984 
2985 static ImplicitParamDecl *
2986 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
2987                                   QualType Ty, CapturedDecl *CD,
2988                                   SourceLocation Loc) {
2989   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
2990                                            ImplicitParamDecl::Other);
2991   auto *OrigRef = DeclRefExpr::Create(
2992       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
2993       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
2994   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
2995                                               ImplicitParamDecl::Other);
2996   auto *PrivateRef = DeclRefExpr::Create(
2997       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
2998       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
2999   QualType ElemType = C.getBaseElementType(Ty);
3000   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
3001                                            ImplicitParamDecl::Other);
3002   auto *InitRef = DeclRefExpr::Create(
3003       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
3004       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
3005   PrivateVD->setInitStyle(VarDecl::CInit);
3006   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
3007                                               InitRef, /*BasePath=*/nullptr,
3008                                               VK_RValue));
3009   Data.FirstprivateVars.emplace_back(OrigRef);
3010   Data.FirstprivateCopies.emplace_back(PrivateRef);
3011   Data.FirstprivateInits.emplace_back(InitRef);
3012   return OrigVD;
3013 }
3014 
3015 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
3016     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
3017     OMPTargetDataInfo &InputInfo) {
3018   // Emit outlined function for task construct.
3019   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3020   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3021   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3022   auto I = CS->getCapturedDecl()->param_begin();
3023   auto PartId = std::next(I);
3024   auto TaskT = std::next(I, 4);
3025   OMPTaskDataTy Data;
3026   // The task is not final.
3027   Data.Final.setInt(/*IntVal=*/false);
3028   // Get list of firstprivate variables.
3029   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
3030     auto IRef = C->varlist_begin();
3031     auto IElemInitRef = C->inits().begin();
3032     for (auto *IInit : C->private_copies()) {
3033       Data.FirstprivateVars.push_back(*IRef);
3034       Data.FirstprivateCopies.push_back(IInit);
3035       Data.FirstprivateInits.push_back(*IElemInitRef);
3036       ++IRef;
3037       ++IElemInitRef;
3038     }
3039   }
3040   OMPPrivateScope TargetScope(*this);
3041   VarDecl *BPVD = nullptr;
3042   VarDecl *PVD = nullptr;
3043   VarDecl *SVD = nullptr;
3044   if (InputInfo.NumberOfTargetItems > 0) {
3045     auto *CD = CapturedDecl::Create(
3046         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
3047     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
3048     QualType BaseAndPointersType = getContext().getConstantArrayType(
3049         getContext().VoidPtrTy, ArrSize, ArrayType::Normal,
3050         /*IndexTypeQuals=*/0);
3051     BPVD = createImplicitFirstprivateForType(
3052         getContext(), Data, BaseAndPointersType, CD, S.getLocStart());
3053     PVD = createImplicitFirstprivateForType(
3054         getContext(), Data, BaseAndPointersType, CD, S.getLocStart());
3055     QualType SizesType = getContext().getConstantArrayType(
3056         getContext().getSizeType(), ArrSize, ArrayType::Normal,
3057         /*IndexTypeQuals=*/0);
3058     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
3059                                             S.getLocStart());
3060     TargetScope.addPrivate(
3061         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
3062     TargetScope.addPrivate(PVD,
3063                            [&InputInfo]() { return InputInfo.PointersArray; });
3064     TargetScope.addPrivate(SVD,
3065                            [&InputInfo]() { return InputInfo.SizesArray; });
3066   }
3067   (void)TargetScope.Privatize();
3068   // Build list of dependences.
3069   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
3070     for (const Expr *IRef : C->varlists())
3071       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
3072   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD,
3073                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
3074     // Set proper addresses for generated private copies.
3075     OMPPrivateScope Scope(CGF);
3076     if (!Data.FirstprivateVars.empty()) {
3077       enum { PrivatesParam = 2, CopyFnParam = 3 };
3078       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
3079           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
3080       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
3081           CS->getCapturedDecl()->getParam(PrivatesParam)));
3082       // Map privates.
3083       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
3084       llvm::SmallVector<llvm::Value *, 16> CallArgs;
3085       CallArgs.push_back(PrivatesPtr);
3086       for (const Expr *E : Data.FirstprivateVars) {
3087         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3088         Address PrivatePtr =
3089             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3090                               ".firstpriv.ptr.addr");
3091         PrivatePtrs.emplace_back(VD, PrivatePtr);
3092         CallArgs.push_back(PrivatePtr.getPointer());
3093       }
3094       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(),
3095                                                           CopyFn, CallArgs);
3096       for (const auto &Pair : PrivatePtrs) {
3097         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
3098                             CGF.getContext().getDeclAlign(Pair.first));
3099         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
3100       }
3101     }
3102     // Privatize all private variables except for in_reduction items.
3103     (void)Scope.Privatize();
3104     if (InputInfo.NumberOfTargetItems > 0) {
3105       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
3106           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0, CGF.getPointerSize());
3107       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
3108           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0, CGF.getPointerSize());
3109       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
3110           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0, CGF.getSizeSize());
3111     }
3112 
3113     Action.Enter(CGF);
3114     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
3115     BodyGen(CGF);
3116   };
3117   llvm::Value *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3118       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
3119       Data.NumberOfParts);
3120   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
3121   IntegerLiteral IfCond(getContext(), TrueOrFalse,
3122                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3123                         SourceLocation());
3124 
3125   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getLocStart(), S, OutlinedFn,
3126                                       SharedsTy, CapturedStruct, &IfCond, Data);
3127 }
3128 
3129 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
3130   // Emit outlined function for task construct.
3131   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3132   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3133   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3134   const Expr *IfCond = nullptr;
3135   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3136     if (C->getNameModifier() == OMPD_unknown ||
3137         C->getNameModifier() == OMPD_task) {
3138       IfCond = C->getCondition();
3139       break;
3140     }
3141   }
3142 
3143   OMPTaskDataTy Data;
3144   // Check if we should emit tied or untied task.
3145   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
3146   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
3147     CGF.EmitStmt(CS->getCapturedStmt());
3148   };
3149   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3150                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
3151                             const OMPTaskDataTy &Data) {
3152     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn,
3153                                             SharedsTy, CapturedStruct, IfCond,
3154                                             Data);
3155   };
3156   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
3157 }
3158 
3159 void CodeGenFunction::EmitOMPTaskyieldDirective(
3160     const OMPTaskyieldDirective &S) {
3161   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
3162 }
3163 
3164 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
3165   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
3166 }
3167 
3168 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
3169   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
3170 }
3171 
3172 void CodeGenFunction::EmitOMPTaskgroupDirective(
3173     const OMPTaskgroupDirective &S) {
3174   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3175     Action.Enter(CGF);
3176     if (const Expr *E = S.getReductionRef()) {
3177       SmallVector<const Expr *, 4> LHSs;
3178       SmallVector<const Expr *, 4> RHSs;
3179       OMPTaskDataTy Data;
3180       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
3181         auto IPriv = C->privates().begin();
3182         auto IRed = C->reduction_ops().begin();
3183         auto ILHS = C->lhs_exprs().begin();
3184         auto IRHS = C->rhs_exprs().begin();
3185         for (const Expr *Ref : C->varlists()) {
3186           Data.ReductionVars.emplace_back(Ref);
3187           Data.ReductionCopies.emplace_back(*IPriv);
3188           Data.ReductionOps.emplace_back(*IRed);
3189           LHSs.emplace_back(*ILHS);
3190           RHSs.emplace_back(*IRHS);
3191           std::advance(IPriv, 1);
3192           std::advance(IRed, 1);
3193           std::advance(ILHS, 1);
3194           std::advance(IRHS, 1);
3195         }
3196       }
3197       llvm::Value *ReductionDesc =
3198           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getLocStart(),
3199                                                            LHSs, RHSs, Data);
3200       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3201       CGF.EmitVarDecl(*VD);
3202       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
3203                             /*Volatile=*/false, E->getType());
3204     }
3205     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3206   };
3207   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3208   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
3209 }
3210 
3211 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
3212   CGM.getOpenMPRuntime().emitFlush(
3213       *this,
3214       [&S]() -> ArrayRef<const Expr *> {
3215         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
3216           return llvm::makeArrayRef(FlushClause->varlist_begin(),
3217                                     FlushClause->varlist_end());
3218         return llvm::None;
3219       }(),
3220       S.getLocStart());
3221 }
3222 
3223 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
3224                                             const CodeGenLoopTy &CodeGenLoop,
3225                                             Expr *IncExpr) {
3226   // Emit the loop iteration variable.
3227   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3228   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3229   EmitVarDecl(*IVDecl);
3230 
3231   // Emit the iterations count variable.
3232   // If it is not a variable, Sema decided to calculate iterations count on each
3233   // iteration (e.g., it is foldable into a constant).
3234   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3235     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3236     // Emit calculation of the iterations count.
3237     EmitIgnoredExpr(S.getCalcLastIteration());
3238   }
3239 
3240   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3241 
3242   bool HasLastprivateClause = false;
3243   // Check pre-condition.
3244   {
3245     OMPLoopScope PreInitScope(*this, S);
3246     // Skip the entire loop if we don't meet the precondition.
3247     // If the condition constant folds and can be elided, avoid emitting the
3248     // whole loop.
3249     bool CondConstant;
3250     llvm::BasicBlock *ContBlock = nullptr;
3251     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3252       if (!CondConstant)
3253         return;
3254     } else {
3255       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3256       ContBlock = createBasicBlock("omp.precond.end");
3257       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3258                   getProfileCount(&S));
3259       EmitBlock(ThenBlock);
3260       incrementProfileCounter(&S);
3261     }
3262 
3263     emitAlignedClause(*this, S);
3264     // Emit 'then' code.
3265     {
3266       // Emit helper vars inits.
3267 
3268       LValue LB = EmitOMPHelperVar(
3269           *this, cast<DeclRefExpr>(
3270                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3271                           ? S.getCombinedLowerBoundVariable()
3272                           : S.getLowerBoundVariable())));
3273       LValue UB = EmitOMPHelperVar(
3274           *this, cast<DeclRefExpr>(
3275                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3276                           ? S.getCombinedUpperBoundVariable()
3277                           : S.getUpperBoundVariable())));
3278       LValue ST =
3279           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3280       LValue IL =
3281           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3282 
3283       OMPPrivateScope LoopScope(*this);
3284       if (EmitOMPFirstprivateClause(S, LoopScope)) {
3285         // Emit implicit barrier to synchronize threads and avoid data races
3286         // on initialization of firstprivate variables and post-update of
3287         // lastprivate variables.
3288         CGM.getOpenMPRuntime().emitBarrierCall(
3289             *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
3290             /*ForceSimpleCall=*/true);
3291       }
3292       EmitOMPPrivateClause(S, LoopScope);
3293       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3294           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3295           !isOpenMPTeamsDirective(S.getDirectiveKind()))
3296         EmitOMPReductionClauseInit(S, LoopScope);
3297       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3298       EmitOMPPrivateLoopCounters(S, LoopScope);
3299       (void)LoopScope.Privatize();
3300 
3301       // Detect the distribute schedule kind and chunk.
3302       llvm::Value *Chunk = nullptr;
3303       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
3304       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
3305         ScheduleKind = C->getDistScheduleKind();
3306         if (const Expr *Ch = C->getChunkSize()) {
3307           Chunk = EmitScalarExpr(Ch);
3308           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
3309                                        S.getIterationVariable()->getType(),
3310                                        S.getLocStart());
3311         }
3312       }
3313       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3314       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3315 
3316       // OpenMP [2.10.8, distribute Construct, Description]
3317       // If dist_schedule is specified, kind must be static. If specified,
3318       // iterations are divided into chunks of size chunk_size, chunks are
3319       // assigned to the teams of the league in a round-robin fashion in the
3320       // order of the team number. When no chunk_size is specified, the
3321       // iteration space is divided into chunks that are approximately equal
3322       // in size, and at most one chunk is distributed to each team of the
3323       // league. The size of the chunks is unspecified in this case.
3324       if (RT.isStaticNonchunked(ScheduleKind,
3325                                 /* Chunked */ Chunk != nullptr)) {
3326         if (isOpenMPSimdDirective(S.getDirectiveKind()))
3327           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
3328         CGOpenMPRuntime::StaticRTInput StaticInit(
3329             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(),
3330             LB.getAddress(), UB.getAddress(), ST.getAddress());
3331         RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
3332                                     StaticInit);
3333         JumpDest LoopExit =
3334             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3335         // UB = min(UB, GlobalUB);
3336         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3337                             ? S.getCombinedEnsureUpperBound()
3338                             : S.getEnsureUpperBound());
3339         // IV = LB;
3340         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3341                             ? S.getCombinedInit()
3342                             : S.getInit());
3343 
3344         const Expr *Cond =
3345             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3346                 ? S.getCombinedCond()
3347                 : S.getCond();
3348 
3349         // for distribute alone,  codegen
3350         // while (idx <= UB) { BODY; ++idx; }
3351         // when combined with 'for' (e.g. as in 'distribute parallel for')
3352         // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
3353         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr,
3354                          [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
3355                            CodeGenLoop(CGF, S, LoopExit);
3356                          },
3357                          [](CodeGenFunction &) {});
3358         EmitBlock(LoopExit.getBlock());
3359         // Tell the runtime we are done.
3360         RT.emitForStaticFinish(*this, S.getLocStart(), S.getDirectiveKind());
3361       } else {
3362         // Emit the outer loop, which requests its work chunk [LB..UB] from
3363         // runtime and runs the inner loop to process it.
3364         const OMPLoopArguments LoopArguments = {
3365             LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(),
3366             Chunk};
3367         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
3368                                    CodeGenLoop);
3369       }
3370       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3371         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3372           return CGF.Builder.CreateIsNotNull(
3373               CGF.EmitLoadOfScalar(IL, S.getLocStart()));
3374         });
3375       }
3376       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3377           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3378           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
3379         OpenMPDirectiveKind ReductionKind = OMPD_unknown;
3380         if (isOpenMPParallelDirective(S.getDirectiveKind()) &&
3381             isOpenMPSimdDirective(S.getDirectiveKind())) {
3382           ReductionKind = OMPD_parallel_for_simd;
3383         } else if (isOpenMPParallelDirective(S.getDirectiveKind())) {
3384           ReductionKind = OMPD_parallel_for;
3385         } else if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3386           ReductionKind = OMPD_simd;
3387         } else if (!isOpenMPTeamsDirective(S.getDirectiveKind()) &&
3388                    S.hasClausesOfKind<OMPReductionClause>()) {
3389           llvm_unreachable(
3390               "No reduction clauses is allowed in distribute directive.");
3391         }
3392         EmitOMPReductionClauseFinal(S, ReductionKind);
3393         // Emit post-update of the reduction variables if IsLastIter != 0.
3394         emitPostUpdateForReductionClause(
3395             *this, S, [IL, &S](CodeGenFunction &CGF) {
3396               return CGF.Builder.CreateIsNotNull(
3397                   CGF.EmitLoadOfScalar(IL, S.getLocStart()));
3398             });
3399       }
3400       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3401       if (HasLastprivateClause) {
3402         EmitOMPLastprivateClauseFinal(
3403             S, /*NoFinals=*/false,
3404             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
3405       }
3406     }
3407 
3408     // We're now done with the loop, so jump to the continuation block.
3409     if (ContBlock) {
3410       EmitBranch(ContBlock);
3411       EmitBlock(ContBlock, true);
3412     }
3413   }
3414 }
3415 
3416 void CodeGenFunction::EmitOMPDistributeDirective(
3417     const OMPDistributeDirective &S) {
3418   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3419     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
3420   };
3421   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3422   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
3423 }
3424 
3425 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
3426                                                    const CapturedStmt *S) {
3427   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3428   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
3429   CGF.CapturedStmtInfo = &CapStmtInfo;
3430   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
3431   Fn->setDoesNotRecurse();
3432   return Fn;
3433 }
3434 
3435 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
3436   if (S.hasClausesOfKind<OMPDependClause>()) {
3437     assert(!S.getAssociatedStmt() &&
3438            "No associated statement must be in ordered depend construct.");
3439     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
3440       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
3441     return;
3442   }
3443   const auto *C = S.getSingleClause<OMPSIMDClause>();
3444   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
3445                                  PrePostActionTy &Action) {
3446     const CapturedStmt *CS = S.getInnermostCapturedStmt();
3447     if (C) {
3448       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3449       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3450       llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
3451       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(),
3452                                                       OutlinedFn, CapturedVars);
3453     } else {
3454       Action.Enter(CGF);
3455       CGF.EmitStmt(CS->getCapturedStmt());
3456     }
3457   };
3458   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3459   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
3460 }
3461 
3462 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
3463                                          QualType SrcType, QualType DestType,
3464                                          SourceLocation Loc) {
3465   assert(CGF.hasScalarEvaluationKind(DestType) &&
3466          "DestType must have scalar evaluation kind.");
3467   assert(!Val.isAggregate() && "Must be a scalar or complex.");
3468   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
3469                                                    DestType, Loc)
3470                         : CGF.EmitComplexToScalarConversion(
3471                               Val.getComplexVal(), SrcType, DestType, Loc);
3472 }
3473 
3474 static CodeGenFunction::ComplexPairTy
3475 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
3476                       QualType DestType, SourceLocation Loc) {
3477   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
3478          "DestType must have complex evaluation kind.");
3479   CodeGenFunction::ComplexPairTy ComplexVal;
3480   if (Val.isScalar()) {
3481     // Convert the input element to the element type of the complex.
3482     QualType DestElementType =
3483         DestType->castAs<ComplexType>()->getElementType();
3484     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
3485         Val.getScalarVal(), SrcType, DestElementType, Loc);
3486     ComplexVal = CodeGenFunction::ComplexPairTy(
3487         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
3488   } else {
3489     assert(Val.isComplex() && "Must be a scalar or complex.");
3490     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
3491     QualType DestElementType =
3492         DestType->castAs<ComplexType>()->getElementType();
3493     ComplexVal.first = CGF.EmitScalarConversion(
3494         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
3495     ComplexVal.second = CGF.EmitScalarConversion(
3496         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
3497   }
3498   return ComplexVal;
3499 }
3500 
3501 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
3502                                   LValue LVal, RValue RVal) {
3503   if (LVal.isGlobalReg()) {
3504     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
3505   } else {
3506     CGF.EmitAtomicStore(RVal, LVal,
3507                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3508                                  : llvm::AtomicOrdering::Monotonic,
3509                         LVal.isVolatile(), /*IsInit=*/false);
3510   }
3511 }
3512 
3513 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
3514                                          QualType RValTy, SourceLocation Loc) {
3515   switch (getEvaluationKind(LVal.getType())) {
3516   case TEK_Scalar:
3517     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
3518                                *this, RVal, RValTy, LVal.getType(), Loc)),
3519                            LVal);
3520     break;
3521   case TEK_Complex:
3522     EmitStoreOfComplex(
3523         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
3524         /*isInit=*/false);
3525     break;
3526   case TEK_Aggregate:
3527     llvm_unreachable("Must be a scalar or complex.");
3528   }
3529 }
3530 
3531 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
3532                                   const Expr *X, const Expr *V,
3533                                   SourceLocation Loc) {
3534   // v = x;
3535   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
3536   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
3537   LValue XLValue = CGF.EmitLValue(X);
3538   LValue VLValue = CGF.EmitLValue(V);
3539   RValue Res = XLValue.isGlobalReg()
3540                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
3541                    : CGF.EmitAtomicLoad(
3542                          XLValue, Loc,
3543                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3544                                   : llvm::AtomicOrdering::Monotonic,
3545                          XLValue.isVolatile());
3546   // OpenMP, 2.12.6, atomic Construct
3547   // Any atomic construct with a seq_cst clause forces the atomically
3548   // performed operation to include an implicit flush operation without a
3549   // list.
3550   if (IsSeqCst)
3551     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3552   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
3553 }
3554 
3555 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
3556                                    const Expr *X, const Expr *E,
3557                                    SourceLocation Loc) {
3558   // x = expr;
3559   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
3560   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
3561   // OpenMP, 2.12.6, atomic Construct
3562   // Any atomic construct with a seq_cst clause forces the atomically
3563   // performed operation to include an implicit flush operation without a
3564   // list.
3565   if (IsSeqCst)
3566     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3567 }
3568 
3569 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
3570                                                 RValue Update,
3571                                                 BinaryOperatorKind BO,
3572                                                 llvm::AtomicOrdering AO,
3573                                                 bool IsXLHSInRHSPart) {
3574   ASTContext &Context = CGF.getContext();
3575   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
3576   // expression is simple and atomic is allowed for the given type for the
3577   // target platform.
3578   if (BO == BO_Comma || !Update.isScalar() ||
3579       !Update.getScalarVal()->getType()->isIntegerTy() ||
3580       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
3581                         (Update.getScalarVal()->getType() !=
3582                          X.getAddress().getElementType())) ||
3583       !X.getAddress().getElementType()->isIntegerTy() ||
3584       !Context.getTargetInfo().hasBuiltinAtomic(
3585           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
3586     return std::make_pair(false, RValue::get(nullptr));
3587 
3588   llvm::AtomicRMWInst::BinOp RMWOp;
3589   switch (BO) {
3590   case BO_Add:
3591     RMWOp = llvm::AtomicRMWInst::Add;
3592     break;
3593   case BO_Sub:
3594     if (!IsXLHSInRHSPart)
3595       return std::make_pair(false, RValue::get(nullptr));
3596     RMWOp = llvm::AtomicRMWInst::Sub;
3597     break;
3598   case BO_And:
3599     RMWOp = llvm::AtomicRMWInst::And;
3600     break;
3601   case BO_Or:
3602     RMWOp = llvm::AtomicRMWInst::Or;
3603     break;
3604   case BO_Xor:
3605     RMWOp = llvm::AtomicRMWInst::Xor;
3606     break;
3607   case BO_LT:
3608     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3609                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
3610                                    : llvm::AtomicRMWInst::Max)
3611                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
3612                                    : llvm::AtomicRMWInst::UMax);
3613     break;
3614   case BO_GT:
3615     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3616                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
3617                                    : llvm::AtomicRMWInst::Min)
3618                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
3619                                    : llvm::AtomicRMWInst::UMin);
3620     break;
3621   case BO_Assign:
3622     RMWOp = llvm::AtomicRMWInst::Xchg;
3623     break;
3624   case BO_Mul:
3625   case BO_Div:
3626   case BO_Rem:
3627   case BO_Shl:
3628   case BO_Shr:
3629   case BO_LAnd:
3630   case BO_LOr:
3631     return std::make_pair(false, RValue::get(nullptr));
3632   case BO_PtrMemD:
3633   case BO_PtrMemI:
3634   case BO_LE:
3635   case BO_GE:
3636   case BO_EQ:
3637   case BO_NE:
3638   case BO_Cmp:
3639   case BO_AddAssign:
3640   case BO_SubAssign:
3641   case BO_AndAssign:
3642   case BO_OrAssign:
3643   case BO_XorAssign:
3644   case BO_MulAssign:
3645   case BO_DivAssign:
3646   case BO_RemAssign:
3647   case BO_ShlAssign:
3648   case BO_ShrAssign:
3649   case BO_Comma:
3650     llvm_unreachable("Unsupported atomic update operation");
3651   }
3652   llvm::Value *UpdateVal = Update.getScalarVal();
3653   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3654     UpdateVal = CGF.Builder.CreateIntCast(
3655         IC, X.getAddress().getElementType(),
3656         X.getType()->hasSignedIntegerRepresentation());
3657   }
3658   llvm::Value *Res =
3659       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3660   return std::make_pair(true, RValue::get(Res));
3661 }
3662 
3663 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3664     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3665     llvm::AtomicOrdering AO, SourceLocation Loc,
3666     const llvm::function_ref<RValue(RValue)> CommonGen) {
3667   // Update expressions are allowed to have the following forms:
3668   // x binop= expr; -> xrval + expr;
3669   // x++, ++x -> xrval + 1;
3670   // x--, --x -> xrval - 1;
3671   // x = x binop expr; -> xrval binop expr
3672   // x = expr Op x; - > expr binop xrval;
3673   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3674   if (!Res.first) {
3675     if (X.isGlobalReg()) {
3676       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3677       // 'xrval'.
3678       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3679     } else {
3680       // Perform compare-and-swap procedure.
3681       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3682     }
3683   }
3684   return Res;
3685 }
3686 
3687 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3688                                     const Expr *X, const Expr *E,
3689                                     const Expr *UE, bool IsXLHSInRHSPart,
3690                                     SourceLocation Loc) {
3691   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3692          "Update expr in 'atomic update' must be a binary operator.");
3693   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3694   // Update expressions are allowed to have the following forms:
3695   // x binop= expr; -> xrval + expr;
3696   // x++, ++x -> xrval + 1;
3697   // x--, --x -> xrval - 1;
3698   // x = x binop expr; -> xrval binop expr
3699   // x = expr Op x; - > expr binop xrval;
3700   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3701   LValue XLValue = CGF.EmitLValue(X);
3702   RValue ExprRValue = CGF.EmitAnyExpr(E);
3703   llvm::AtomicOrdering AO = IsSeqCst
3704                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3705                                 : llvm::AtomicOrdering::Monotonic;
3706   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3707   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3708   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3709   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3710   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
3711     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3712     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3713     return CGF.EmitAnyExpr(UE);
3714   };
3715   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3716       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3717   // OpenMP, 2.12.6, atomic Construct
3718   // Any atomic construct with a seq_cst clause forces the atomically
3719   // performed operation to include an implicit flush operation without a
3720   // list.
3721   if (IsSeqCst)
3722     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3723 }
3724 
3725 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3726                             QualType SourceType, QualType ResType,
3727                             SourceLocation Loc) {
3728   switch (CGF.getEvaluationKind(ResType)) {
3729   case TEK_Scalar:
3730     return RValue::get(
3731         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3732   case TEK_Complex: {
3733     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3734     return RValue::getComplex(Res.first, Res.second);
3735   }
3736   case TEK_Aggregate:
3737     break;
3738   }
3739   llvm_unreachable("Must be a scalar or complex.");
3740 }
3741 
3742 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3743                                      bool IsPostfixUpdate, const Expr *V,
3744                                      const Expr *X, const Expr *E,
3745                                      const Expr *UE, bool IsXLHSInRHSPart,
3746                                      SourceLocation Loc) {
3747   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3748   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3749   RValue NewVVal;
3750   LValue VLValue = CGF.EmitLValue(V);
3751   LValue XLValue = CGF.EmitLValue(X);
3752   RValue ExprRValue = CGF.EmitAnyExpr(E);
3753   llvm::AtomicOrdering AO = IsSeqCst
3754                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3755                                 : llvm::AtomicOrdering::Monotonic;
3756   QualType NewVValType;
3757   if (UE) {
3758     // 'x' is updated with some additional value.
3759     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3760            "Update expr in 'atomic capture' must be a binary operator.");
3761     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3762     // Update expressions are allowed to have the following forms:
3763     // x binop= expr; -> xrval + expr;
3764     // x++, ++x -> xrval + 1;
3765     // x--, --x -> xrval - 1;
3766     // x = x binop expr; -> xrval binop expr
3767     // x = expr Op x; - > expr binop xrval;
3768     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3769     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3770     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3771     NewVValType = XRValExpr->getType();
3772     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3773     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3774                   IsPostfixUpdate](RValue XRValue) {
3775       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3776       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3777       RValue Res = CGF.EmitAnyExpr(UE);
3778       NewVVal = IsPostfixUpdate ? XRValue : Res;
3779       return Res;
3780     };
3781     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3782         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3783     if (Res.first) {
3784       // 'atomicrmw' instruction was generated.
3785       if (IsPostfixUpdate) {
3786         // Use old value from 'atomicrmw'.
3787         NewVVal = Res.second;
3788       } else {
3789         // 'atomicrmw' does not provide new value, so evaluate it using old
3790         // value of 'x'.
3791         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3792         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3793         NewVVal = CGF.EmitAnyExpr(UE);
3794       }
3795     }
3796   } else {
3797     // 'x' is simply rewritten with some 'expr'.
3798     NewVValType = X->getType().getNonReferenceType();
3799     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3800                                X->getType().getNonReferenceType(), Loc);
3801     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
3802       NewVVal = XRValue;
3803       return ExprRValue;
3804     };
3805     // Try to perform atomicrmw xchg, otherwise simple exchange.
3806     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3807         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3808         Loc, Gen);
3809     if (Res.first) {
3810       // 'atomicrmw' instruction was generated.
3811       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3812     }
3813   }
3814   // Emit post-update store to 'v' of old/new 'x' value.
3815   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3816   // OpenMP, 2.12.6, atomic Construct
3817   // Any atomic construct with a seq_cst clause forces the atomically
3818   // performed operation to include an implicit flush operation without a
3819   // list.
3820   if (IsSeqCst)
3821     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3822 }
3823 
3824 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3825                               bool IsSeqCst, bool IsPostfixUpdate,
3826                               const Expr *X, const Expr *V, const Expr *E,
3827                               const Expr *UE, bool IsXLHSInRHSPart,
3828                               SourceLocation Loc) {
3829   switch (Kind) {
3830   case OMPC_read:
3831     emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3832     break;
3833   case OMPC_write:
3834     emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3835     break;
3836   case OMPC_unknown:
3837   case OMPC_update:
3838     emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3839     break;
3840   case OMPC_capture:
3841     emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3842                              IsXLHSInRHSPart, Loc);
3843     break;
3844   case OMPC_if:
3845   case OMPC_final:
3846   case OMPC_num_threads:
3847   case OMPC_private:
3848   case OMPC_firstprivate:
3849   case OMPC_lastprivate:
3850   case OMPC_reduction:
3851   case OMPC_task_reduction:
3852   case OMPC_in_reduction:
3853   case OMPC_safelen:
3854   case OMPC_simdlen:
3855   case OMPC_collapse:
3856   case OMPC_default:
3857   case OMPC_seq_cst:
3858   case OMPC_shared:
3859   case OMPC_linear:
3860   case OMPC_aligned:
3861   case OMPC_copyin:
3862   case OMPC_copyprivate:
3863   case OMPC_flush:
3864   case OMPC_proc_bind:
3865   case OMPC_schedule:
3866   case OMPC_ordered:
3867   case OMPC_nowait:
3868   case OMPC_untied:
3869   case OMPC_threadprivate:
3870   case OMPC_depend:
3871   case OMPC_mergeable:
3872   case OMPC_device:
3873   case OMPC_threads:
3874   case OMPC_simd:
3875   case OMPC_map:
3876   case OMPC_num_teams:
3877   case OMPC_thread_limit:
3878   case OMPC_priority:
3879   case OMPC_grainsize:
3880   case OMPC_nogroup:
3881   case OMPC_num_tasks:
3882   case OMPC_hint:
3883   case OMPC_dist_schedule:
3884   case OMPC_defaultmap:
3885   case OMPC_uniform:
3886   case OMPC_to:
3887   case OMPC_from:
3888   case OMPC_use_device_ptr:
3889   case OMPC_is_device_ptr:
3890     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3891   }
3892 }
3893 
3894 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3895   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3896   OpenMPClauseKind Kind = OMPC_unknown;
3897   for (const OMPClause *C : S.clauses()) {
3898     // Find first clause (skip seq_cst clause, if it is first).
3899     if (C->getClauseKind() != OMPC_seq_cst) {
3900       Kind = C->getClauseKind();
3901       break;
3902     }
3903   }
3904 
3905   const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers();
3906   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS))
3907     enterFullExpression(EWC);
3908   // Processing for statements under 'atomic capture'.
3909   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3910     for (const Stmt *C : Compound->body()) {
3911       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C))
3912         enterFullExpression(EWC);
3913     }
3914   }
3915 
3916   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
3917                                             PrePostActionTy &) {
3918     CGF.EmitStopPoint(CS);
3919     emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
3920                       S.getV(), S.getExpr(), S.getUpdateExpr(),
3921                       S.isXLHSInRHSPart(), S.getLocStart());
3922   };
3923   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3924   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
3925 }
3926 
3927 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
3928                                          const OMPExecutableDirective &S,
3929                                          const RegionCodeGenTy &CodeGen) {
3930   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
3931   CodeGenModule &CGM = CGF.CGM;
3932 
3933   // On device emit this construct as inlined code.
3934   if (CGM.getLangOpts().OpenMPIsDevice) {
3935     OMPLexicalScope Scope(CGF, S, OMPD_target);
3936     CGM.getOpenMPRuntime().emitInlinedDirective(
3937         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3938           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3939         });
3940     return;
3941   }
3942 
3943   llvm::Function *Fn = nullptr;
3944   llvm::Constant *FnID = nullptr;
3945 
3946   const Expr *IfCond = nullptr;
3947   // Check for the at most one if clause associated with the target region.
3948   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3949     if (C->getNameModifier() == OMPD_unknown ||
3950         C->getNameModifier() == OMPD_target) {
3951       IfCond = C->getCondition();
3952       break;
3953     }
3954   }
3955 
3956   // Check if we have any device clause associated with the directive.
3957   const Expr *Device = nullptr;
3958   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3959     Device = C->getDevice();
3960 
3961   // Check if we have an if clause whose conditional always evaluates to false
3962   // or if we do not have any targets specified. If so the target region is not
3963   // an offload entry point.
3964   bool IsOffloadEntry = true;
3965   if (IfCond) {
3966     bool Val;
3967     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
3968       IsOffloadEntry = false;
3969   }
3970   if (CGM.getLangOpts().OMPTargetTriples.empty())
3971     IsOffloadEntry = false;
3972 
3973   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
3974   StringRef ParentName;
3975   // In case we have Ctors/Dtors we use the complete type variant to produce
3976   // the mangling of the device outlined kernel.
3977   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
3978     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
3979   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
3980     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
3981   else
3982     ParentName =
3983         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
3984 
3985   // Emit target region as a standalone region.
3986   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
3987                                                     IsOffloadEntry, CodeGen);
3988   OMPLexicalScope Scope(CGF, S, OMPD_task);
3989   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device);
3990 }
3991 
3992 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
3993                              PrePostActionTy &Action) {
3994   Action.Enter(CGF);
3995   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
3996   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3997   CGF.EmitOMPPrivateClause(S, PrivateScope);
3998   (void)PrivateScope.Privatize();
3999 
4000   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
4001 }
4002 
4003 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
4004                                                   StringRef ParentName,
4005                                                   const OMPTargetDirective &S) {
4006   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4007     emitTargetRegion(CGF, S, Action);
4008   };
4009   llvm::Function *Fn;
4010   llvm::Constant *Addr;
4011   // Emit target region as a standalone region.
4012   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4013       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4014   assert(Fn && Addr && "Target device function emission failed.");
4015 }
4016 
4017 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
4018   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4019     emitTargetRegion(CGF, S, Action);
4020   };
4021   emitCommonOMPTargetDirective(*this, S, CodeGen);
4022 }
4023 
4024 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
4025                                         const OMPExecutableDirective &S,
4026                                         OpenMPDirectiveKind InnermostKind,
4027                                         const RegionCodeGenTy &CodeGen) {
4028   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
4029   llvm::Value *OutlinedFn =
4030       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
4031           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
4032 
4033   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
4034   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
4035   if (NT || TL) {
4036     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
4037     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
4038 
4039     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
4040                                                   S.getLocStart());
4041   }
4042 
4043   OMPTeamsScope Scope(CGF, S);
4044   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
4045   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
4046   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn,
4047                                            CapturedVars);
4048 }
4049 
4050 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
4051   // Emit teams region as a standalone region.
4052   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4053     Action.Enter(CGF);
4054     OMPPrivateScope PrivateScope(CGF);
4055     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4056     CGF.EmitOMPPrivateClause(S, PrivateScope);
4057     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4058     (void)PrivateScope.Privatize();
4059     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
4060     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4061   };
4062   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4063   emitPostUpdateForReductionClause(*this, S,
4064                                    [](CodeGenFunction &) { return nullptr; });
4065 }
4066 
4067 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4068                                   const OMPTargetTeamsDirective &S) {
4069   auto *CS = S.getCapturedStmt(OMPD_teams);
4070   Action.Enter(CGF);
4071   // Emit teams region as a standalone region.
4072   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4073     Action.Enter(CGF);
4074     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4075     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4076     CGF.EmitOMPPrivateClause(S, PrivateScope);
4077     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4078     (void)PrivateScope.Privatize();
4079     CGF.EmitStmt(CS->getCapturedStmt());
4080     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4081   };
4082   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
4083   emitPostUpdateForReductionClause(CGF, S,
4084                                    [](CodeGenFunction &) { return nullptr; });
4085 }
4086 
4087 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
4088     CodeGenModule &CGM, StringRef ParentName,
4089     const OMPTargetTeamsDirective &S) {
4090   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4091     emitTargetTeamsRegion(CGF, Action, S);
4092   };
4093   llvm::Function *Fn;
4094   llvm::Constant *Addr;
4095   // Emit target region as a standalone region.
4096   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4097       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4098   assert(Fn && Addr && "Target device function emission failed.");
4099 }
4100 
4101 void CodeGenFunction::EmitOMPTargetTeamsDirective(
4102     const OMPTargetTeamsDirective &S) {
4103   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4104     emitTargetTeamsRegion(CGF, Action, S);
4105   };
4106   emitCommonOMPTargetDirective(*this, S, CodeGen);
4107 }
4108 
4109 static void
4110 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4111                                 const OMPTargetTeamsDistributeDirective &S) {
4112   Action.Enter(CGF);
4113   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4114     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4115   };
4116 
4117   // Emit teams region as a standalone region.
4118   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4119                                             PrePostActionTy &Action) {
4120     Action.Enter(CGF);
4121     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4122     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4123     (void)PrivateScope.Privatize();
4124     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4125                                                     CodeGenDistribute);
4126     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4127   };
4128   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
4129   emitPostUpdateForReductionClause(CGF, S,
4130                                    [](CodeGenFunction &) { return nullptr; });
4131 }
4132 
4133 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
4134     CodeGenModule &CGM, StringRef ParentName,
4135     const OMPTargetTeamsDistributeDirective &S) {
4136   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4137     emitTargetTeamsDistributeRegion(CGF, Action, S);
4138   };
4139   llvm::Function *Fn;
4140   llvm::Constant *Addr;
4141   // Emit target region as a standalone region.
4142   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4143       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4144   assert(Fn && Addr && "Target device function emission failed.");
4145 }
4146 
4147 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
4148     const OMPTargetTeamsDistributeDirective &S) {
4149   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4150     emitTargetTeamsDistributeRegion(CGF, Action, S);
4151   };
4152   emitCommonOMPTargetDirective(*this, S, CodeGen);
4153 }
4154 
4155 static void emitTargetTeamsDistributeSimdRegion(
4156     CodeGenFunction &CGF, PrePostActionTy &Action,
4157     const OMPTargetTeamsDistributeSimdDirective &S) {
4158   Action.Enter(CGF);
4159   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4160     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4161   };
4162 
4163   // Emit teams region as a standalone region.
4164   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4165                                             PrePostActionTy &Action) {
4166     Action.Enter(CGF);
4167     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4168     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4169     (void)PrivateScope.Privatize();
4170     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4171                                                     CodeGenDistribute);
4172     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4173   };
4174   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
4175   emitPostUpdateForReductionClause(CGF, S,
4176                                    [](CodeGenFunction &) { return nullptr; });
4177 }
4178 
4179 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
4180     CodeGenModule &CGM, StringRef ParentName,
4181     const OMPTargetTeamsDistributeSimdDirective &S) {
4182   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4183     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4184   };
4185   llvm::Function *Fn;
4186   llvm::Constant *Addr;
4187   // Emit target region as a standalone region.
4188   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4189       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4190   assert(Fn && Addr && "Target device function emission failed.");
4191 }
4192 
4193 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
4194     const OMPTargetTeamsDistributeSimdDirective &S) {
4195   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4196     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4197   };
4198   emitCommonOMPTargetDirective(*this, S, CodeGen);
4199 }
4200 
4201 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
4202     const OMPTeamsDistributeDirective &S) {
4203 
4204   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4205     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4206   };
4207 
4208   // Emit teams region as a standalone region.
4209   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4210                                             PrePostActionTy &Action) {
4211     Action.Enter(CGF);
4212     OMPPrivateScope PrivateScope(CGF);
4213     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4214     (void)PrivateScope.Privatize();
4215     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4216                                                     CodeGenDistribute);
4217     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4218   };
4219   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4220   emitPostUpdateForReductionClause(*this, S,
4221                                    [](CodeGenFunction &) { return nullptr; });
4222 }
4223 
4224 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
4225     const OMPTeamsDistributeSimdDirective &S) {
4226   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4227     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4228   };
4229 
4230   // Emit teams region as a standalone region.
4231   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4232                                             PrePostActionTy &Action) {
4233     Action.Enter(CGF);
4234     OMPPrivateScope PrivateScope(CGF);
4235     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4236     (void)PrivateScope.Privatize();
4237     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
4238                                                     CodeGenDistribute);
4239     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4240   };
4241   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
4242   emitPostUpdateForReductionClause(*this, S,
4243                                    [](CodeGenFunction &) { return nullptr; });
4244 }
4245 
4246 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
4247     const OMPTeamsDistributeParallelForDirective &S) {
4248   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4249     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4250                               S.getDistInc());
4251   };
4252 
4253   // Emit teams region as a standalone region.
4254   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4255                                             PrePostActionTy &Action) {
4256     Action.Enter(CGF);
4257     OMPPrivateScope PrivateScope(CGF);
4258     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4259     (void)PrivateScope.Privatize();
4260     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4261                                                     CodeGenDistribute);
4262     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4263   };
4264   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4265   emitPostUpdateForReductionClause(*this, S,
4266                                    [](CodeGenFunction &) { return nullptr; });
4267 }
4268 
4269 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
4270     const OMPTeamsDistributeParallelForSimdDirective &S) {
4271   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4272     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4273                               S.getDistInc());
4274   };
4275 
4276   // Emit teams region as a standalone region.
4277   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4278                                             PrePostActionTy &Action) {
4279     Action.Enter(CGF);
4280     OMPPrivateScope PrivateScope(CGF);
4281     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4282     (void)PrivateScope.Privatize();
4283     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4284         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4285     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4286   };
4287   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4288   emitPostUpdateForReductionClause(*this, S,
4289                                    [](CodeGenFunction &) { return nullptr; });
4290 }
4291 
4292 static void emitTargetTeamsDistributeParallelForRegion(
4293     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
4294     PrePostActionTy &Action) {
4295   Action.Enter(CGF);
4296   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4297     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4298                               S.getDistInc());
4299   };
4300 
4301   // Emit teams region as a standalone region.
4302   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4303                                                  PrePostActionTy &Action) {
4304     Action.Enter(CGF);
4305     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4306     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4307     (void)PrivateScope.Privatize();
4308     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4309         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4310     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4311   };
4312 
4313   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
4314                               CodeGenTeams);
4315   emitPostUpdateForReductionClause(CGF, S,
4316                                    [](CodeGenFunction &) { return nullptr; });
4317 }
4318 
4319 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
4320     CodeGenModule &CGM, StringRef ParentName,
4321     const OMPTargetTeamsDistributeParallelForDirective &S) {
4322   // Emit SPMD target teams distribute parallel for region as a standalone
4323   // region.
4324   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4325     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4326   };
4327   llvm::Function *Fn;
4328   llvm::Constant *Addr;
4329   // Emit target region as a standalone region.
4330   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4331       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4332   assert(Fn && Addr && "Target device function emission failed.");
4333 }
4334 
4335 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
4336     const OMPTargetTeamsDistributeParallelForDirective &S) {
4337   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4338     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4339   };
4340   emitCommonOMPTargetDirective(*this, S, CodeGen);
4341 }
4342 
4343 static void emitTargetTeamsDistributeParallelForSimdRegion(
4344     CodeGenFunction &CGF,
4345     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
4346     PrePostActionTy &Action) {
4347   Action.Enter(CGF);
4348   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4349     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4350                               S.getDistInc());
4351   };
4352 
4353   // Emit teams region as a standalone region.
4354   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4355                                                  PrePostActionTy &Action) {
4356     Action.Enter(CGF);
4357     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4358     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4359     (void)PrivateScope.Privatize();
4360     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4361         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4362     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4363   };
4364 
4365   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
4366                               CodeGenTeams);
4367   emitPostUpdateForReductionClause(CGF, S,
4368                                    [](CodeGenFunction &) { return nullptr; });
4369 }
4370 
4371 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
4372     CodeGenModule &CGM, StringRef ParentName,
4373     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4374   // Emit SPMD target teams distribute parallel for simd region as a standalone
4375   // region.
4376   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4377     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4378   };
4379   llvm::Function *Fn;
4380   llvm::Constant *Addr;
4381   // Emit target region as a standalone region.
4382   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4383       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4384   assert(Fn && Addr && "Target device function emission failed.");
4385 }
4386 
4387 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
4388     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4389   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4390     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4391   };
4392   emitCommonOMPTargetDirective(*this, S, CodeGen);
4393 }
4394 
4395 void CodeGenFunction::EmitOMPCancellationPointDirective(
4396     const OMPCancellationPointDirective &S) {
4397   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
4398                                                    S.getCancelRegion());
4399 }
4400 
4401 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
4402   const Expr *IfCond = nullptr;
4403   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4404     if (C->getNameModifier() == OMPD_unknown ||
4405         C->getNameModifier() == OMPD_cancel) {
4406       IfCond = C->getCondition();
4407       break;
4408     }
4409   }
4410   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
4411                                         S.getCancelRegion());
4412 }
4413 
4414 CodeGenFunction::JumpDest
4415 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
4416   if (Kind == OMPD_parallel || Kind == OMPD_task ||
4417       Kind == OMPD_target_parallel)
4418     return ReturnBlock;
4419   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
4420          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
4421          Kind == OMPD_distribute_parallel_for ||
4422          Kind == OMPD_target_parallel_for ||
4423          Kind == OMPD_teams_distribute_parallel_for ||
4424          Kind == OMPD_target_teams_distribute_parallel_for);
4425   return OMPCancelStack.getExitBlock();
4426 }
4427 
4428 void CodeGenFunction::EmitOMPUseDevicePtrClause(
4429     const OMPClause &NC, OMPPrivateScope &PrivateScope,
4430     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
4431   const auto &C = cast<OMPUseDevicePtrClause>(NC);
4432   auto OrigVarIt = C.varlist_begin();
4433   auto InitIt = C.inits().begin();
4434   for (const Expr *PvtVarIt : C.private_copies()) {
4435     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
4436     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
4437     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
4438 
4439     // In order to identify the right initializer we need to match the
4440     // declaration used by the mapping logic. In some cases we may get
4441     // OMPCapturedExprDecl that refers to the original declaration.
4442     const ValueDecl *MatchingVD = OrigVD;
4443     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
4444       // OMPCapturedExprDecl are used to privative fields of the current
4445       // structure.
4446       const auto *ME = cast<MemberExpr>(OED->getInit());
4447       assert(isa<CXXThisExpr>(ME->getBase()) &&
4448              "Base should be the current struct!");
4449       MatchingVD = ME->getMemberDecl();
4450     }
4451 
4452     // If we don't have information about the current list item, move on to
4453     // the next one.
4454     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
4455     if (InitAddrIt == CaptureDeviceAddrMap.end())
4456       continue;
4457 
4458     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
4459                                                          InitAddrIt, InitVD,
4460                                                          PvtVD]() {
4461       // Initialize the temporary initialization variable with the address we
4462       // get from the runtime library. We have to cast the source address
4463       // because it is always a void *. References are materialized in the
4464       // privatization scope, so the initialization here disregards the fact
4465       // the original variable is a reference.
4466       QualType AddrQTy =
4467           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
4468       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
4469       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
4470       setAddrOfLocalVar(InitVD, InitAddr);
4471 
4472       // Emit private declaration, it will be initialized by the value we
4473       // declaration we just added to the local declarations map.
4474       EmitDecl(*PvtVD);
4475 
4476       // The initialization variables reached its purpose in the emission
4477       // of the previous declaration, so we don't need it anymore.
4478       LocalDeclMap.erase(InitVD);
4479 
4480       // Return the address of the private variable.
4481       return GetAddrOfLocalVar(PvtVD);
4482     });
4483     assert(IsRegistered && "firstprivate var already registered as private");
4484     // Silence the warning about unused variable.
4485     (void)IsRegistered;
4486 
4487     ++OrigVarIt;
4488     ++InitIt;
4489   }
4490 }
4491 
4492 // Generate the instructions for '#pragma omp target data' directive.
4493 void CodeGenFunction::EmitOMPTargetDataDirective(
4494     const OMPTargetDataDirective &S) {
4495   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
4496 
4497   // Create a pre/post action to signal the privatization of the device pointer.
4498   // This action can be replaced by the OpenMP runtime code generation to
4499   // deactivate privatization.
4500   bool PrivatizeDevicePointers = false;
4501   class DevicePointerPrivActionTy : public PrePostActionTy {
4502     bool &PrivatizeDevicePointers;
4503 
4504   public:
4505     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
4506         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
4507     void Enter(CodeGenFunction &CGF) override {
4508       PrivatizeDevicePointers = true;
4509     }
4510   };
4511   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
4512 
4513   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
4514                        CodeGenFunction &CGF, PrePostActionTy &Action) {
4515     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4516       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4517     };
4518 
4519     // Codegen that selects whether to generate the privatization code or not.
4520     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
4521                           &InnermostCodeGen](CodeGenFunction &CGF,
4522                                              PrePostActionTy &Action) {
4523       RegionCodeGenTy RCG(InnermostCodeGen);
4524       PrivatizeDevicePointers = false;
4525 
4526       // Call the pre-action to change the status of PrivatizeDevicePointers if
4527       // needed.
4528       Action.Enter(CGF);
4529 
4530       if (PrivatizeDevicePointers) {
4531         OMPPrivateScope PrivateScope(CGF);
4532         // Emit all instances of the use_device_ptr clause.
4533         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
4534           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
4535                                         Info.CaptureDeviceAddrMap);
4536         (void)PrivateScope.Privatize();
4537         RCG(CGF);
4538       } else {
4539         RCG(CGF);
4540       }
4541     };
4542 
4543     // Forward the provided action to the privatization codegen.
4544     RegionCodeGenTy PrivRCG(PrivCodeGen);
4545     PrivRCG.setAction(Action);
4546 
4547     // Notwithstanding the body of the region is emitted as inlined directive,
4548     // we don't use an inline scope as changes in the references inside the
4549     // region are expected to be visible outside, so we do not privative them.
4550     OMPLexicalScope Scope(CGF, S);
4551     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
4552                                                     PrivRCG);
4553   };
4554 
4555   RegionCodeGenTy RCG(CodeGen);
4556 
4557   // If we don't have target devices, don't bother emitting the data mapping
4558   // code.
4559   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
4560     RCG(*this);
4561     return;
4562   }
4563 
4564   // Check if we have any if clause associated with the directive.
4565   const Expr *IfCond = nullptr;
4566   if (const auto *C = S.getSingleClause<OMPIfClause>())
4567     IfCond = C->getCondition();
4568 
4569   // Check if we have any device clause associated with the directive.
4570   const Expr *Device = nullptr;
4571   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4572     Device = C->getDevice();
4573 
4574   // Set the action to signal privatization of device pointers.
4575   RCG.setAction(PrivAction);
4576 
4577   // Emit region code.
4578   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
4579                                              Info);
4580 }
4581 
4582 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
4583     const OMPTargetEnterDataDirective &S) {
4584   // If we don't have target devices, don't bother emitting the data mapping
4585   // code.
4586   if (CGM.getLangOpts().OMPTargetTriples.empty())
4587     return;
4588 
4589   // Check if we have any if clause associated with the directive.
4590   const Expr *IfCond = nullptr;
4591   if (const auto *C = S.getSingleClause<OMPIfClause>())
4592     IfCond = C->getCondition();
4593 
4594   // Check if we have any device clause associated with the directive.
4595   const Expr *Device = nullptr;
4596   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4597     Device = C->getDevice();
4598 
4599   OMPLexicalScope Scope(*this, S, OMPD_task);
4600   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4601 }
4602 
4603 void CodeGenFunction::EmitOMPTargetExitDataDirective(
4604     const OMPTargetExitDataDirective &S) {
4605   // If we don't have target devices, don't bother emitting the data mapping
4606   // code.
4607   if (CGM.getLangOpts().OMPTargetTriples.empty())
4608     return;
4609 
4610   // Check if we have any if clause associated with the directive.
4611   const Expr *IfCond = nullptr;
4612   if (const auto *C = S.getSingleClause<OMPIfClause>())
4613     IfCond = C->getCondition();
4614 
4615   // Check if we have any device clause associated with the directive.
4616   const Expr *Device = nullptr;
4617   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4618     Device = C->getDevice();
4619 
4620   OMPLexicalScope Scope(*this, S, OMPD_task);
4621   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4622 }
4623 
4624 static void emitTargetParallelRegion(CodeGenFunction &CGF,
4625                                      const OMPTargetParallelDirective &S,
4626                                      PrePostActionTy &Action) {
4627   // Get the captured statement associated with the 'parallel' region.
4628   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
4629   Action.Enter(CGF);
4630   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4631     Action.Enter(CGF);
4632     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4633     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4634     CGF.EmitOMPPrivateClause(S, PrivateScope);
4635     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4636     (void)PrivateScope.Privatize();
4637     // TODO: Add support for clauses.
4638     CGF.EmitStmt(CS->getCapturedStmt());
4639     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
4640   };
4641   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
4642                                  emitEmptyBoundParameters);
4643   emitPostUpdateForReductionClause(CGF, S,
4644                                    [](CodeGenFunction &) { return nullptr; });
4645 }
4646 
4647 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
4648     CodeGenModule &CGM, StringRef ParentName,
4649     const OMPTargetParallelDirective &S) {
4650   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4651     emitTargetParallelRegion(CGF, S, Action);
4652   };
4653   llvm::Function *Fn;
4654   llvm::Constant *Addr;
4655   // Emit target region as a standalone region.
4656   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4657       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4658   assert(Fn && Addr && "Target device function emission failed.");
4659 }
4660 
4661 void CodeGenFunction::EmitOMPTargetParallelDirective(
4662     const OMPTargetParallelDirective &S) {
4663   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4664     emitTargetParallelRegion(CGF, S, Action);
4665   };
4666   emitCommonOMPTargetDirective(*this, S, CodeGen);
4667 }
4668 
4669 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
4670                                         const OMPTargetParallelForDirective &S,
4671                                         PrePostActionTy &Action) {
4672   Action.Enter(CGF);
4673   // Emit directive as a combined directive that consists of two implicit
4674   // directives: 'parallel' with 'for' directive.
4675   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4676     Action.Enter(CGF);
4677     CodeGenFunction::OMPCancelStackRAII CancelRegion(
4678         CGF, OMPD_target_parallel_for, S.hasCancel());
4679     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4680                                emitDispatchForLoopBounds);
4681   };
4682   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
4683                                  emitEmptyBoundParameters);
4684 }
4685 
4686 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
4687     CodeGenModule &CGM, StringRef ParentName,
4688     const OMPTargetParallelForDirective &S) {
4689   // Emit SPMD target parallel for region as a standalone region.
4690   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4691     emitTargetParallelForRegion(CGF, S, Action);
4692   };
4693   llvm::Function *Fn;
4694   llvm::Constant *Addr;
4695   // Emit target region as a standalone region.
4696   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4697       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4698   assert(Fn && Addr && "Target device function emission failed.");
4699 }
4700 
4701 void CodeGenFunction::EmitOMPTargetParallelForDirective(
4702     const OMPTargetParallelForDirective &S) {
4703   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4704     emitTargetParallelForRegion(CGF, S, Action);
4705   };
4706   emitCommonOMPTargetDirective(*this, S, CodeGen);
4707 }
4708 
4709 static void
4710 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
4711                                 const OMPTargetParallelForSimdDirective &S,
4712                                 PrePostActionTy &Action) {
4713   Action.Enter(CGF);
4714   // Emit directive as a combined directive that consists of two implicit
4715   // directives: 'parallel' with 'for' directive.
4716   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4717     Action.Enter(CGF);
4718     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4719                                emitDispatchForLoopBounds);
4720   };
4721   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
4722                                  emitEmptyBoundParameters);
4723 }
4724 
4725 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
4726     CodeGenModule &CGM, StringRef ParentName,
4727     const OMPTargetParallelForSimdDirective &S) {
4728   // Emit SPMD target parallel for region as a standalone region.
4729   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4730     emitTargetParallelForSimdRegion(CGF, S, Action);
4731   };
4732   llvm::Function *Fn;
4733   llvm::Constant *Addr;
4734   // Emit target region as a standalone region.
4735   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4736       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4737   assert(Fn && Addr && "Target device function emission failed.");
4738 }
4739 
4740 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
4741     const OMPTargetParallelForSimdDirective &S) {
4742   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4743     emitTargetParallelForSimdRegion(CGF, S, Action);
4744   };
4745   emitCommonOMPTargetDirective(*this, S, CodeGen);
4746 }
4747 
4748 /// Emit a helper variable and return corresponding lvalue.
4749 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
4750                      const ImplicitParamDecl *PVD,
4751                      CodeGenFunction::OMPPrivateScope &Privates) {
4752   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
4753   Privates.addPrivate(VDecl,
4754                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
4755 }
4756 
4757 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
4758   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
4759   // Emit outlined function for task construct.
4760   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
4761   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4762   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4763   const Expr *IfCond = nullptr;
4764   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4765     if (C->getNameModifier() == OMPD_unknown ||
4766         C->getNameModifier() == OMPD_taskloop) {
4767       IfCond = C->getCondition();
4768       break;
4769     }
4770   }
4771 
4772   OMPTaskDataTy Data;
4773   // Check if taskloop must be emitted without taskgroup.
4774   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
4775   // TODO: Check if we should emit tied or untied task.
4776   Data.Tied = true;
4777   // Set scheduling for taskloop
4778   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
4779     // grainsize clause
4780     Data.Schedule.setInt(/*IntVal=*/false);
4781     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
4782   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
4783     // num_tasks clause
4784     Data.Schedule.setInt(/*IntVal=*/true);
4785     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
4786   }
4787 
4788   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
4789     // if (PreCond) {
4790     //   for (IV in 0..LastIteration) BODY;
4791     //   <Final counter/linear vars updates>;
4792     // }
4793     //
4794 
4795     // Emit: if (PreCond) - begin.
4796     // If the condition constant folds and can be elided, avoid emitting the
4797     // whole loop.
4798     bool CondConstant;
4799     llvm::BasicBlock *ContBlock = nullptr;
4800     OMPLoopScope PreInitScope(CGF, S);
4801     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
4802       if (!CondConstant)
4803         return;
4804     } else {
4805       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
4806       ContBlock = CGF.createBasicBlock("taskloop.if.end");
4807       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
4808                   CGF.getProfileCount(&S));
4809       CGF.EmitBlock(ThenBlock);
4810       CGF.incrementProfileCounter(&S);
4811     }
4812 
4813     if (isOpenMPSimdDirective(S.getDirectiveKind()))
4814       CGF.EmitOMPSimdInit(S);
4815 
4816     OMPPrivateScope LoopScope(CGF);
4817     // Emit helper vars inits.
4818     enum { LowerBound = 5, UpperBound, Stride, LastIter };
4819     auto *I = CS->getCapturedDecl()->param_begin();
4820     auto *LBP = std::next(I, LowerBound);
4821     auto *UBP = std::next(I, UpperBound);
4822     auto *STP = std::next(I, Stride);
4823     auto *LIP = std::next(I, LastIter);
4824     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
4825              LoopScope);
4826     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
4827              LoopScope);
4828     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
4829     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
4830              LoopScope);
4831     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
4832     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
4833     (void)LoopScope.Privatize();
4834     // Emit the loop iteration variable.
4835     const Expr *IVExpr = S.getIterationVariable();
4836     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
4837     CGF.EmitVarDecl(*IVDecl);
4838     CGF.EmitIgnoredExpr(S.getInit());
4839 
4840     // Emit the iterations count variable.
4841     // If it is not a variable, Sema decided to calculate iterations count on
4842     // each iteration (e.g., it is foldable into a constant).
4843     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
4844       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
4845       // Emit calculation of the iterations count.
4846       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
4847     }
4848 
4849     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
4850                          S.getInc(),
4851                          [&S](CodeGenFunction &CGF) {
4852                            CGF.EmitOMPLoopBody(S, JumpDest());
4853                            CGF.EmitStopPoint(&S);
4854                          },
4855                          [](CodeGenFunction &) {});
4856     // Emit: if (PreCond) - end.
4857     if (ContBlock) {
4858       CGF.EmitBranch(ContBlock);
4859       CGF.EmitBlock(ContBlock, true);
4860     }
4861     // Emit final copy of the lastprivate variables if IsLastIter != 0.
4862     if (HasLastprivateClause) {
4863       CGF.EmitOMPLastprivateClauseFinal(
4864           S, isOpenMPSimdDirective(S.getDirectiveKind()),
4865           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
4866               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
4867               (*LIP)->getType(), S.getLocStart())));
4868     }
4869   };
4870   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
4871                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
4872                             const OMPTaskDataTy &Data) {
4873     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
4874                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
4875       OMPLoopScope PreInitScope(CGF, S);
4876       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S,
4877                                                   OutlinedFn, SharedsTy,
4878                                                   CapturedStruct, IfCond, Data);
4879     };
4880     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
4881                                                     CodeGen);
4882   };
4883   if (Data.Nogroup) {
4884     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
4885   } else {
4886     CGM.getOpenMPRuntime().emitTaskgroupRegion(
4887         *this,
4888         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
4889                                         PrePostActionTy &Action) {
4890           Action.Enter(CGF);
4891           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
4892                                         Data);
4893         },
4894         S.getLocStart());
4895   }
4896 }
4897 
4898 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
4899   EmitOMPTaskLoopBasedDirective(S);
4900 }
4901 
4902 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
4903     const OMPTaskLoopSimdDirective &S) {
4904   EmitOMPTaskLoopBasedDirective(S);
4905 }
4906 
4907 // Generate the instructions for '#pragma omp target update' directive.
4908 void CodeGenFunction::EmitOMPTargetUpdateDirective(
4909     const OMPTargetUpdateDirective &S) {
4910   // If we don't have target devices, don't bother emitting the data mapping
4911   // code.
4912   if (CGM.getLangOpts().OMPTargetTriples.empty())
4913     return;
4914 
4915   // Check if we have any if clause associated with the directive.
4916   const Expr *IfCond = nullptr;
4917   if (const auto *C = S.getSingleClause<OMPIfClause>())
4918     IfCond = C->getCondition();
4919 
4920   // Check if we have any device clause associated with the directive.
4921   const Expr *Device = nullptr;
4922   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4923     Device = C->getDevice();
4924 
4925   OMPLexicalScope Scope(*this, S, OMPD_task);
4926   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4927 }
4928 
4929 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
4930     const OMPExecutableDirective &D) {
4931   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
4932     return;
4933   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
4934     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
4935       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
4936     } else {
4937       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
4938         for (const Expr *E : LD->counters()) {
4939           if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
4940                   cast<DeclRefExpr>(E)->getDecl())) {
4941             // Emit only those that were not explicitly referenced in clauses.
4942             if (!CGF.LocalDeclMap.count(VD))
4943               CGF.EmitVarDecl(*VD);
4944           }
4945         }
4946       }
4947       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
4948     }
4949   };
4950   OMPSimdLexicalScope Scope(*this, D);
4951   CGM.getOpenMPRuntime().emitInlinedDirective(
4952       *this,
4953       isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
4954                                                   : D.getDirectiveKind(),
4955       CodeGen);
4956 }
4957 
4958