1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/Frontend/OpenMP/OMPConstants.h" 28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/Support/AtomicOrdering.h" 32 using namespace clang; 33 using namespace CodeGen; 34 using namespace llvm::omp; 35 36 static const VarDecl *getBaseDecl(const Expr *Ref); 37 38 namespace { 39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 40 /// for captured expressions. 41 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 42 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 43 for (const auto *C : S.clauses()) { 44 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 45 if (const auto *PreInit = 46 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 47 for (const auto *I : PreInit->decls()) { 48 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 49 CGF.EmitVarDecl(cast<VarDecl>(*I)); 50 } else { 51 CodeGenFunction::AutoVarEmission Emission = 52 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 53 CGF.EmitAutoVarCleanups(Emission); 54 } 55 } 56 } 57 } 58 } 59 } 60 CodeGenFunction::OMPPrivateScope InlinedShareds; 61 62 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 63 return CGF.LambdaCaptureFields.lookup(VD) || 64 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 65 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 66 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 67 } 68 69 public: 70 OMPLexicalScope( 71 CodeGenFunction &CGF, const OMPExecutableDirective &S, 72 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 73 const bool EmitPreInitStmt = true) 74 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 75 InlinedShareds(CGF) { 76 if (EmitPreInitStmt) 77 emitPreInitStmt(CGF, S); 78 if (!CapturedRegion.hasValue()) 79 return; 80 assert(S.hasAssociatedStmt() && 81 "Expected associated statement for inlined directive."); 82 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 83 for (const auto &C : CS->captures()) { 84 if (C.capturesVariable() || C.capturesVariableByCopy()) { 85 auto *VD = C.getCapturedVar(); 86 assert(VD == VD->getCanonicalDecl() && 87 "Canonical decl must be captured."); 88 DeclRefExpr DRE( 89 CGF.getContext(), const_cast<VarDecl *>(VD), 90 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 91 InlinedShareds.isGlobalVarCaptured(VD)), 92 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 93 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 94 return CGF.EmitLValue(&DRE).getAddress(CGF); 95 }); 96 } 97 } 98 (void)InlinedShareds.Privatize(); 99 } 100 }; 101 102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 103 /// for captured expressions. 104 class OMPParallelScope final : public OMPLexicalScope { 105 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 106 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 107 return !(isOpenMPTargetExecutionDirective(Kind) || 108 isOpenMPLoopBoundSharingDirective(Kind)) && 109 isOpenMPParallelDirective(Kind); 110 } 111 112 public: 113 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Lexical scope for OpenMP teams construct, that handles correct codegen 119 /// for captured expressions. 120 class OMPTeamsScope final : public OMPLexicalScope { 121 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 122 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 123 return !isOpenMPTargetExecutionDirective(Kind) && 124 isOpenMPTeamsDirective(Kind); 125 } 126 127 public: 128 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 129 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 130 EmitPreInitStmt(S)) {} 131 }; 132 133 /// Private scope for OpenMP loop-based directives, that supports capturing 134 /// of used expression from loop statement. 135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 136 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 137 const DeclStmt *PreInits; 138 CodeGenFunction::OMPMapVars PreCondVars; 139 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 140 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 141 for (const auto *E : LD->counters()) { 142 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 143 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 144 (void)PreCondVars.setVarAddr( 145 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 146 } 147 // Mark private vars as undefs. 148 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 149 for (const Expr *IRef : C->varlists()) { 150 const auto *OrigVD = 151 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 152 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 153 (void)PreCondVars.setVarAddr( 154 CGF, OrigVD, 155 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 156 CGF.getContext().getPointerType( 157 OrigVD->getType().getNonReferenceType()))), 158 CGF.getContext().getDeclAlign(OrigVD))); 159 } 160 } 161 } 162 (void)PreCondVars.apply(CGF); 163 // Emit init, __range and __end variables for C++ range loops. 164 (void)OMPLoopBasedDirective::doForAllLoops( 165 LD->getInnermostCapturedStmt()->getCapturedStmt(), 166 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 167 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 168 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 169 if (const Stmt *Init = CXXFor->getInit()) 170 CGF.EmitStmt(Init); 171 CGF.EmitStmt(CXXFor->getRangeStmt()); 172 CGF.EmitStmt(CXXFor->getEndStmt()); 173 } 174 return false; 175 }); 176 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 177 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 178 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 179 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 180 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 181 } else { 182 llvm_unreachable("Unknown loop-based directive kind."); 183 } 184 if (PreInits) { 185 for (const auto *I : PreInits->decls()) 186 CGF.EmitVarDecl(cast<VarDecl>(*I)); 187 } 188 PreCondVars.restore(CGF); 189 } 190 191 public: 192 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 193 : CodeGenFunction::RunCleanupsScope(CGF) { 194 emitPreInitStmt(CGF, S); 195 } 196 }; 197 198 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 199 CodeGenFunction::OMPPrivateScope InlinedShareds; 200 201 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 202 return CGF.LambdaCaptureFields.lookup(VD) || 203 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 204 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 205 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 206 } 207 208 public: 209 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 210 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 211 InlinedShareds(CGF) { 212 for (const auto *C : S.clauses()) { 213 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 214 if (const auto *PreInit = 215 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 216 for (const auto *I : PreInit->decls()) { 217 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 218 CGF.EmitVarDecl(cast<VarDecl>(*I)); 219 } else { 220 CodeGenFunction::AutoVarEmission Emission = 221 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 222 CGF.EmitAutoVarCleanups(Emission); 223 } 224 } 225 } 226 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 227 for (const Expr *E : UDP->varlists()) { 228 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 229 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 230 CGF.EmitVarDecl(*OED); 231 } 232 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 233 for (const Expr *E : UDP->varlists()) { 234 const Decl *D = getBaseDecl(E); 235 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 236 CGF.EmitVarDecl(*OED); 237 } 238 } 239 } 240 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 241 CGF.EmitOMPPrivateClause(S, InlinedShareds); 242 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 243 if (const Expr *E = TG->getReductionRef()) 244 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 245 } 246 // Temp copy arrays for inscan reductions should not be emitted as they are 247 // not used in simd only mode. 248 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 249 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 250 if (C->getModifier() != OMPC_REDUCTION_inscan) 251 continue; 252 for (const Expr *E : C->copy_array_temps()) 253 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 254 } 255 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 256 while (CS) { 257 for (auto &C : CS->captures()) { 258 if (C.capturesVariable() || C.capturesVariableByCopy()) { 259 auto *VD = C.getCapturedVar(); 260 if (CopyArrayTemps.contains(VD)) 261 continue; 262 assert(VD == VD->getCanonicalDecl() && 263 "Canonical decl must be captured."); 264 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 265 isCapturedVar(CGF, VD) || 266 (CGF.CapturedStmtInfo && 267 InlinedShareds.isGlobalVarCaptured(VD)), 268 VD->getType().getNonReferenceType(), VK_LValue, 269 C.getLocation()); 270 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 271 return CGF.EmitLValue(&DRE).getAddress(CGF); 272 }); 273 } 274 } 275 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 276 } 277 (void)InlinedShareds.Privatize(); 278 } 279 }; 280 281 } // namespace 282 283 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 284 const OMPExecutableDirective &S, 285 const RegionCodeGenTy &CodeGen); 286 287 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 288 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 289 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 290 OrigVD = OrigVD->getCanonicalDecl(); 291 bool IsCaptured = 292 LambdaCaptureFields.lookup(OrigVD) || 293 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 294 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 295 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 296 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 297 return EmitLValue(&DRE); 298 } 299 } 300 return EmitLValue(E); 301 } 302 303 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 304 ASTContext &C = getContext(); 305 llvm::Value *Size = nullptr; 306 auto SizeInChars = C.getTypeSizeInChars(Ty); 307 if (SizeInChars.isZero()) { 308 // getTypeSizeInChars() returns 0 for a VLA. 309 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 310 VlaSizePair VlaSize = getVLASize(VAT); 311 Ty = VlaSize.Type; 312 Size = 313 Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) : VlaSize.NumElts; 314 } 315 SizeInChars = C.getTypeSizeInChars(Ty); 316 if (SizeInChars.isZero()) 317 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 318 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 319 } 320 return CGM.getSize(SizeInChars); 321 } 322 323 void CodeGenFunction::GenerateOpenMPCapturedVars( 324 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 325 const RecordDecl *RD = S.getCapturedRecordDecl(); 326 auto CurField = RD->field_begin(); 327 auto CurCap = S.captures().begin(); 328 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 329 E = S.capture_init_end(); 330 I != E; ++I, ++CurField, ++CurCap) { 331 if (CurField->hasCapturedVLAType()) { 332 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 333 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 334 CapturedVars.push_back(Val); 335 } else if (CurCap->capturesThis()) { 336 CapturedVars.push_back(CXXThisValue); 337 } else if (CurCap->capturesVariableByCopy()) { 338 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 339 340 // If the field is not a pointer, we need to save the actual value 341 // and load it as a void pointer. 342 if (!CurField->getType()->isAnyPointerType()) { 343 ASTContext &Ctx = getContext(); 344 Address DstAddr = CreateMemTemp( 345 Ctx.getUIntPtrType(), 346 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 347 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 348 349 llvm::Value *SrcAddrVal = EmitScalarConversion( 350 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 351 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 352 LValue SrcLV = 353 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 354 355 // Store the value using the source type pointer. 356 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 357 358 // Load the value using the destination type pointer. 359 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 360 } 361 CapturedVars.push_back(CV); 362 } else { 363 assert(CurCap->capturesVariable() && "Expected capture by reference."); 364 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 365 } 366 } 367 } 368 369 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 370 QualType DstType, StringRef Name, 371 LValue AddrLV) { 372 ASTContext &Ctx = CGF.getContext(); 373 374 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 375 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 376 Ctx.getPointerType(DstType), Loc); 377 Address TmpAddr = 378 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 379 .getAddress(CGF); 380 return TmpAddr; 381 } 382 383 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 384 if (T->isLValueReferenceType()) 385 return C.getLValueReferenceType( 386 getCanonicalParamType(C, T.getNonReferenceType()), 387 /*SpelledAsLValue=*/false); 388 if (T->isPointerType()) 389 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 390 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 391 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 392 return getCanonicalParamType(C, VLA->getElementType()); 393 if (!A->isVariablyModifiedType()) 394 return C.getCanonicalType(T); 395 } 396 return C.getCanonicalParamType(T); 397 } 398 399 namespace { 400 /// Contains required data for proper outlined function codegen. 401 struct FunctionOptions { 402 /// Captured statement for which the function is generated. 403 const CapturedStmt *S = nullptr; 404 /// true if cast to/from UIntPtr is required for variables captured by 405 /// value. 406 const bool UIntPtrCastRequired = true; 407 /// true if only casted arguments must be registered as local args or VLA 408 /// sizes. 409 const bool RegisterCastedArgsOnly = false; 410 /// Name of the generated function. 411 const StringRef FunctionName; 412 /// Location of the non-debug version of the outlined function. 413 SourceLocation Loc; 414 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 415 bool RegisterCastedArgsOnly, StringRef FunctionName, 416 SourceLocation Loc) 417 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 418 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 419 FunctionName(FunctionName), Loc(Loc) {} 420 }; 421 } // namespace 422 423 static llvm::Function *emitOutlinedFunctionPrologue( 424 CodeGenFunction &CGF, FunctionArgList &Args, 425 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 426 &LocalAddrs, 427 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 428 &VLASizes, 429 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 430 const CapturedDecl *CD = FO.S->getCapturedDecl(); 431 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 432 assert(CD->hasBody() && "missing CapturedDecl body"); 433 434 CXXThisValue = nullptr; 435 // Build the argument list. 436 CodeGenModule &CGM = CGF.CGM; 437 ASTContext &Ctx = CGM.getContext(); 438 FunctionArgList TargetArgs; 439 Args.append(CD->param_begin(), 440 std::next(CD->param_begin(), CD->getContextParamPosition())); 441 TargetArgs.append( 442 CD->param_begin(), 443 std::next(CD->param_begin(), CD->getContextParamPosition())); 444 auto I = FO.S->captures().begin(); 445 FunctionDecl *DebugFunctionDecl = nullptr; 446 if (!FO.UIntPtrCastRequired) { 447 FunctionProtoType::ExtProtoInfo EPI; 448 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 449 DebugFunctionDecl = FunctionDecl::Create( 450 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 451 SourceLocation(), DeclarationName(), FunctionTy, 452 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 453 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 454 /*hasWrittenPrototype=*/false); 455 } 456 for (const FieldDecl *FD : RD->fields()) { 457 QualType ArgType = FD->getType(); 458 IdentifierInfo *II = nullptr; 459 VarDecl *CapVar = nullptr; 460 461 // If this is a capture by copy and the type is not a pointer, the outlined 462 // function argument type should be uintptr and the value properly casted to 463 // uintptr. This is necessary given that the runtime library is only able to 464 // deal with pointers. We can pass in the same way the VLA type sizes to the 465 // outlined function. 466 if (FO.UIntPtrCastRequired && 467 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 468 I->capturesVariableArrayType())) 469 ArgType = Ctx.getUIntPtrType(); 470 471 if (I->capturesVariable() || I->capturesVariableByCopy()) { 472 CapVar = I->getCapturedVar(); 473 II = CapVar->getIdentifier(); 474 } else if (I->capturesThis()) { 475 II = &Ctx.Idents.get("this"); 476 } else { 477 assert(I->capturesVariableArrayType()); 478 II = &Ctx.Idents.get("vla"); 479 } 480 if (ArgType->isVariablyModifiedType()) 481 ArgType = getCanonicalParamType(Ctx, ArgType); 482 VarDecl *Arg; 483 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 484 Arg = ParmVarDecl::Create( 485 Ctx, DebugFunctionDecl, 486 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 487 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 488 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 489 } else { 490 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 491 II, ArgType, ImplicitParamDecl::Other); 492 } 493 Args.emplace_back(Arg); 494 // Do not cast arguments if we emit function with non-original types. 495 TargetArgs.emplace_back( 496 FO.UIntPtrCastRequired 497 ? Arg 498 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 499 ++I; 500 } 501 Args.append(std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 502 CD->param_end()); 503 TargetArgs.append( 504 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 505 CD->param_end()); 506 507 // Create the function declaration. 508 const CGFunctionInfo &FuncInfo = 509 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 510 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 511 512 auto *F = 513 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 514 FO.FunctionName, &CGM.getModule()); 515 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 516 if (CD->isNothrow()) 517 F->setDoesNotThrow(); 518 F->setDoesNotRecurse(); 519 520 // Always inline the outlined function if optimizations are enabled. 521 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 522 F->addFnAttr(llvm::Attribute::AlwaysInline); 523 524 // Generate the function. 525 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 526 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 527 FO.UIntPtrCastRequired ? FO.Loc 528 : CD->getBody()->getBeginLoc()); 529 unsigned Cnt = CD->getContextParamPosition(); 530 I = FO.S->captures().begin(); 531 for (const FieldDecl *FD : RD->fields()) { 532 // Do not map arguments if we emit function with non-original types. 533 Address LocalAddr(Address::invalid()); 534 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 535 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 536 TargetArgs[Cnt]); 537 } else { 538 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 539 } 540 // If we are capturing a pointer by copy we don't need to do anything, just 541 // use the value that we get from the arguments. 542 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 543 const VarDecl *CurVD = I->getCapturedVar(); 544 if (!FO.RegisterCastedArgsOnly) 545 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 546 ++Cnt; 547 ++I; 548 continue; 549 } 550 551 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 552 AlignmentSource::Decl); 553 if (FD->hasCapturedVLAType()) { 554 if (FO.UIntPtrCastRequired) { 555 ArgLVal = CGF.MakeAddrLValue( 556 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 557 Args[Cnt]->getName(), ArgLVal), 558 FD->getType(), AlignmentSource::Decl); 559 } 560 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 561 const VariableArrayType *VAT = FD->getCapturedVLAType(); 562 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 563 } else if (I->capturesVariable()) { 564 const VarDecl *Var = I->getCapturedVar(); 565 QualType VarTy = Var->getType(); 566 Address ArgAddr = ArgLVal.getAddress(CGF); 567 if (ArgLVal.getType()->isLValueReferenceType()) { 568 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 569 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 570 assert(ArgLVal.getType()->isPointerType()); 571 ArgAddr = CGF.EmitLoadOfPointer( 572 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 573 } 574 if (!FO.RegisterCastedArgsOnly) { 575 LocalAddrs.insert( 576 {Args[Cnt], 577 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 578 } 579 } else if (I->capturesVariableByCopy()) { 580 assert(!FD->getType()->isAnyPointerType() && 581 "Not expecting a captured pointer."); 582 const VarDecl *Var = I->getCapturedVar(); 583 LocalAddrs.insert({Args[Cnt], 584 {Var, FO.UIntPtrCastRequired 585 ? castValueFromUintptr( 586 CGF, I->getLocation(), FD->getType(), 587 Args[Cnt]->getName(), ArgLVal) 588 : ArgLVal.getAddress(CGF)}}); 589 } else { 590 // If 'this' is captured, load it into CXXThisValue. 591 assert(I->capturesThis()); 592 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 593 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 594 } 595 ++Cnt; 596 ++I; 597 } 598 599 return F; 600 } 601 602 llvm::Function * 603 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 604 SourceLocation Loc) { 605 assert( 606 CapturedStmtInfo && 607 "CapturedStmtInfo should be set when generating the captured function"); 608 const CapturedDecl *CD = S.getCapturedDecl(); 609 // Build the argument list. 610 bool NeedWrapperFunction = 611 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 612 FunctionArgList Args; 613 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 614 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 615 SmallString<256> Buffer; 616 llvm::raw_svector_ostream Out(Buffer); 617 Out << CapturedStmtInfo->getHelperName(); 618 if (NeedWrapperFunction) 619 Out << "_debug__"; 620 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 621 Out.str(), Loc); 622 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 623 VLASizes, CXXThisValue, FO); 624 CodeGenFunction::OMPPrivateScope LocalScope(*this); 625 for (const auto &LocalAddrPair : LocalAddrs) { 626 if (LocalAddrPair.second.first) { 627 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 628 return LocalAddrPair.second.second; 629 }); 630 } 631 } 632 (void)LocalScope.Privatize(); 633 for (const auto &VLASizePair : VLASizes) 634 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 635 PGO.assignRegionCounters(GlobalDecl(CD), F); 636 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 637 (void)LocalScope.ForceCleanup(); 638 FinishFunction(CD->getBodyRBrace()); 639 if (!NeedWrapperFunction) 640 return F; 641 642 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 643 /*RegisterCastedArgsOnly=*/true, 644 CapturedStmtInfo->getHelperName(), Loc); 645 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 646 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 647 Args.clear(); 648 LocalAddrs.clear(); 649 VLASizes.clear(); 650 llvm::Function *WrapperF = 651 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 652 WrapperCGF.CXXThisValue, WrapperFO); 653 llvm::SmallVector<llvm::Value *, 4> CallArgs; 654 auto *PI = F->arg_begin(); 655 for (const auto *Arg : Args) { 656 llvm::Value *CallArg; 657 auto I = LocalAddrs.find(Arg); 658 if (I != LocalAddrs.end()) { 659 LValue LV = WrapperCGF.MakeAddrLValue( 660 I->second.second, 661 I->second.first ? I->second.first->getType() : Arg->getType(), 662 AlignmentSource::Decl); 663 if (LV.getType()->isAnyComplexType()) 664 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 665 LV.getAddress(WrapperCGF), 666 PI->getType()->getPointerTo( 667 LV.getAddress(WrapperCGF).getAddressSpace()))); 668 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 669 } else { 670 auto EI = VLASizes.find(Arg); 671 if (EI != VLASizes.end()) { 672 CallArg = EI->second.second; 673 } else { 674 LValue LV = 675 WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 676 Arg->getType(), AlignmentSource::Decl); 677 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 678 } 679 } 680 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 681 ++PI; 682 } 683 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 684 WrapperCGF.FinishFunction(); 685 return WrapperF; 686 } 687 688 //===----------------------------------------------------------------------===// 689 // OpenMP Directive Emission 690 //===----------------------------------------------------------------------===// 691 void CodeGenFunction::EmitOMPAggregateAssign( 692 Address DestAddr, Address SrcAddr, QualType OriginalType, 693 const llvm::function_ref<void(Address, Address)> CopyGen) { 694 // Perform element-by-element initialization. 695 QualType ElementTy; 696 697 // Drill down to the base element type on both arrays. 698 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 699 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 700 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 701 702 llvm::Value *SrcBegin = SrcAddr.getPointer(); 703 llvm::Value *DestBegin = DestAddr.getPointer(); 704 // Cast from pointer to array type to pointer to single element. 705 llvm::Value *DestEnd = 706 Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); 707 // The basic structure here is a while-do loop. 708 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 709 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 710 llvm::Value *IsEmpty = 711 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 712 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 713 714 // Enter the loop body, making that address the current address. 715 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 716 EmitBlock(BodyBB); 717 718 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 719 720 llvm::PHINode *SrcElementPHI = 721 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 722 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 723 Address SrcElementCurrent = 724 Address(SrcElementPHI, 725 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 726 727 llvm::PHINode *DestElementPHI = Builder.CreatePHI( 728 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 729 DestElementPHI->addIncoming(DestBegin, EntryBB); 730 Address DestElementCurrent = 731 Address(DestElementPHI, 732 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 733 734 // Emit copy. 735 CopyGen(DestElementCurrent, SrcElementCurrent); 736 737 // Shift the address forward by one element. 738 llvm::Value *DestElementNext = 739 Builder.CreateConstGEP1_32(DestAddr.getElementType(), DestElementPHI, 740 /*Idx0=*/1, "omp.arraycpy.dest.element"); 741 llvm::Value *SrcElementNext = 742 Builder.CreateConstGEP1_32(SrcAddr.getElementType(), SrcElementPHI, 743 /*Idx0=*/1, "omp.arraycpy.src.element"); 744 // Check whether we've reached the end. 745 llvm::Value *Done = 746 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 747 Builder.CreateCondBr(Done, DoneBB, BodyBB); 748 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 749 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 750 751 // Done. 752 EmitBlock(DoneBB, /*IsFinished=*/true); 753 } 754 755 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 756 Address SrcAddr, const VarDecl *DestVD, 757 const VarDecl *SrcVD, const Expr *Copy) { 758 if (OriginalType->isArrayType()) { 759 const auto *BO = dyn_cast<BinaryOperator>(Copy); 760 if (BO && BO->getOpcode() == BO_Assign) { 761 // Perform simple memcpy for simple copying. 762 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 763 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 764 EmitAggregateAssign(Dest, Src, OriginalType); 765 } else { 766 // For arrays with complex element types perform element by element 767 // copying. 768 EmitOMPAggregateAssign( 769 DestAddr, SrcAddr, OriginalType, 770 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 771 // Working with the single array element, so have to remap 772 // destination and source variables to corresponding array 773 // elements. 774 CodeGenFunction::OMPPrivateScope Remap(*this); 775 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 776 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 777 (void)Remap.Privatize(); 778 EmitIgnoredExpr(Copy); 779 }); 780 } 781 } else { 782 // Remap pseudo source variable to private copy. 783 CodeGenFunction::OMPPrivateScope Remap(*this); 784 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 785 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 786 (void)Remap.Privatize(); 787 // Emit copying of the whole variable. 788 EmitIgnoredExpr(Copy); 789 } 790 } 791 792 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 793 OMPPrivateScope &PrivateScope) { 794 if (!HaveInsertPoint()) 795 return false; 796 bool DeviceConstTarget = 797 getLangOpts().OpenMPIsDevice && 798 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 799 bool FirstprivateIsLastprivate = false; 800 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 801 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 802 for (const auto *D : C->varlists()) 803 Lastprivates.try_emplace( 804 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 805 C->getKind()); 806 } 807 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 808 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 809 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 810 // Force emission of the firstprivate copy if the directive does not emit 811 // outlined function, like omp for, omp simd, omp distribute etc. 812 bool MustEmitFirstprivateCopy = 813 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 814 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 815 const auto *IRef = C->varlist_begin(); 816 const auto *InitsRef = C->inits().begin(); 817 for (const Expr *IInit : C->private_copies()) { 818 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 819 bool ThisFirstprivateIsLastprivate = 820 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 821 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 822 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 823 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 824 !FD->getType()->isReferenceType() && 825 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 826 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 827 ++IRef; 828 ++InitsRef; 829 continue; 830 } 831 // Do not emit copy for firstprivate constant variables in target regions, 832 // captured by reference. 833 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 834 FD && FD->getType()->isReferenceType() && 835 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 836 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 837 ++IRef; 838 ++InitsRef; 839 continue; 840 } 841 FirstprivateIsLastprivate = 842 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 843 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 844 const auto *VDInit = 845 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 846 bool IsRegistered; 847 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 848 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 849 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 850 LValue OriginalLVal; 851 if (!FD) { 852 // Check if the firstprivate variable is just a constant value. 853 ConstantEmission CE = tryEmitAsConstant(&DRE); 854 if (CE && !CE.isReference()) { 855 // Constant value, no need to create a copy. 856 ++IRef; 857 ++InitsRef; 858 continue; 859 } 860 if (CE && CE.isReference()) { 861 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 862 } else { 863 assert(!CE && "Expected non-constant firstprivate."); 864 OriginalLVal = EmitLValue(&DRE); 865 } 866 } else { 867 OriginalLVal = EmitLValue(&DRE); 868 } 869 QualType Type = VD->getType(); 870 if (Type->isArrayType()) { 871 // Emit VarDecl with copy init for arrays. 872 // Get the address of the original variable captured in current 873 // captured region. 874 IsRegistered = PrivateScope.addPrivate( 875 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 876 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 877 const Expr *Init = VD->getInit(); 878 if (!isa<CXXConstructExpr>(Init) || 879 isTrivialInitializer(Init)) { 880 // Perform simple memcpy. 881 LValue Dest = 882 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 883 EmitAggregateAssign(Dest, OriginalLVal, Type); 884 } else { 885 EmitOMPAggregateAssign( 886 Emission.getAllocatedAddress(), 887 OriginalLVal.getAddress(*this), Type, 888 [this, VDInit, Init](Address DestElement, 889 Address SrcElement) { 890 // Clean up any temporaries needed by the 891 // initialization. 892 RunCleanupsScope InitScope(*this); 893 // Emit initialization for single element. 894 setAddrOfLocalVar(VDInit, SrcElement); 895 EmitAnyExprToMem(Init, DestElement, 896 Init->getType().getQualifiers(), 897 /*IsInitializer*/ false); 898 LocalDeclMap.erase(VDInit); 899 }); 900 } 901 EmitAutoVarCleanups(Emission); 902 return Emission.getAllocatedAddress(); 903 }); 904 } else { 905 Address OriginalAddr = OriginalLVal.getAddress(*this); 906 IsRegistered = 907 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 908 ThisFirstprivateIsLastprivate, 909 OrigVD, &Lastprivates, IRef]() { 910 // Emit private VarDecl with copy init. 911 // Remap temp VDInit variable to the address of the original 912 // variable (for proper handling of captured global variables). 913 setAddrOfLocalVar(VDInit, OriginalAddr); 914 EmitDecl(*VD); 915 LocalDeclMap.erase(VDInit); 916 if (ThisFirstprivateIsLastprivate && 917 Lastprivates[OrigVD->getCanonicalDecl()] == 918 OMPC_LASTPRIVATE_conditional) { 919 // Create/init special variable for lastprivate conditionals. 920 Address VDAddr = 921 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 922 *this, OrigVD); 923 llvm::Value *V = EmitLoadOfScalar( 924 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 925 AlignmentSource::Decl), 926 (*IRef)->getExprLoc()); 927 EmitStoreOfScalar(V, 928 MakeAddrLValue(VDAddr, (*IRef)->getType(), 929 AlignmentSource::Decl)); 930 LocalDeclMap.erase(VD); 931 setAddrOfLocalVar(VD, VDAddr); 932 return VDAddr; 933 } 934 return GetAddrOfLocalVar(VD); 935 }); 936 } 937 assert(IsRegistered && 938 "firstprivate var already registered as private"); 939 // Silence the warning about unused variable. 940 (void)IsRegistered; 941 } 942 ++IRef; 943 ++InitsRef; 944 } 945 } 946 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 947 } 948 949 void CodeGenFunction::EmitOMPPrivateClause( 950 const OMPExecutableDirective &D, 951 CodeGenFunction::OMPPrivateScope &PrivateScope) { 952 if (!HaveInsertPoint()) 953 return; 954 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 955 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 956 auto IRef = C->varlist_begin(); 957 for (const Expr *IInit : C->private_copies()) { 958 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 959 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 960 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 961 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 962 // Emit private VarDecl with copy init. 963 EmitDecl(*VD); 964 return GetAddrOfLocalVar(VD); 965 }); 966 assert(IsRegistered && "private var already registered as private"); 967 // Silence the warning about unused variable. 968 (void)IsRegistered; 969 } 970 ++IRef; 971 } 972 } 973 } 974 975 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 976 if (!HaveInsertPoint()) 977 return false; 978 // threadprivate_var1 = master_threadprivate_var1; 979 // operator=(threadprivate_var2, master_threadprivate_var2); 980 // ... 981 // __kmpc_barrier(&loc, global_tid); 982 llvm::DenseSet<const VarDecl *> CopiedVars; 983 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 984 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 985 auto IRef = C->varlist_begin(); 986 auto ISrcRef = C->source_exprs().begin(); 987 auto IDestRef = C->destination_exprs().begin(); 988 for (const Expr *AssignOp : C->assignment_ops()) { 989 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 990 QualType Type = VD->getType(); 991 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 992 // Get the address of the master variable. If we are emitting code with 993 // TLS support, the address is passed from the master as field in the 994 // captured declaration. 995 Address MasterAddr = Address::invalid(); 996 if (getLangOpts().OpenMPUseTLS && 997 getContext().getTargetInfo().isTLSSupported()) { 998 assert(CapturedStmtInfo->lookup(VD) && 999 "Copyin threadprivates should have been captured!"); 1000 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 1001 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1002 MasterAddr = EmitLValue(&DRE).getAddress(*this); 1003 LocalDeclMap.erase(VD); 1004 } else { 1005 MasterAddr = 1006 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1007 : CGM.GetAddrOfGlobal(VD), 1008 getContext().getDeclAlign(VD)); 1009 } 1010 // Get the address of the threadprivate variable. 1011 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1012 if (CopiedVars.size() == 1) { 1013 // At first check if current thread is a master thread. If it is, no 1014 // need to copy data. 1015 CopyBegin = createBasicBlock("copyin.not.master"); 1016 CopyEnd = createBasicBlock("copyin.not.master.end"); 1017 // TODO: Avoid ptrtoint conversion. 1018 auto *MasterAddrInt = 1019 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1020 auto *PrivateAddrInt = 1021 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1022 Builder.CreateCondBr( 1023 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1024 CopyEnd); 1025 EmitBlock(CopyBegin); 1026 } 1027 const auto *SrcVD = 1028 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1029 const auto *DestVD = 1030 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1031 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1032 } 1033 ++IRef; 1034 ++ISrcRef; 1035 ++IDestRef; 1036 } 1037 } 1038 if (CopyEnd) { 1039 // Exit out of copying procedure for non-master thread. 1040 EmitBlock(CopyEnd, /*IsFinished=*/true); 1041 return true; 1042 } 1043 return false; 1044 } 1045 1046 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1047 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1048 if (!HaveInsertPoint()) 1049 return false; 1050 bool HasAtLeastOneLastprivate = false; 1051 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1052 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1053 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1054 for (const Expr *C : LoopDirective->counters()) { 1055 SIMDLCVs.insert( 1056 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1057 } 1058 } 1059 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1060 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1061 HasAtLeastOneLastprivate = true; 1062 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1063 !getLangOpts().OpenMPSimd) 1064 break; 1065 const auto *IRef = C->varlist_begin(); 1066 const auto *IDestRef = C->destination_exprs().begin(); 1067 for (const Expr *IInit : C->private_copies()) { 1068 // Keep the address of the original variable for future update at the end 1069 // of the loop. 1070 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1071 // Taskloops do not require additional initialization, it is done in 1072 // runtime support library. 1073 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1074 const auto *DestVD = 1075 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1076 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1077 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1078 /*RefersToEnclosingVariableOrCapture=*/ 1079 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1080 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1081 return EmitLValue(&DRE).getAddress(*this); 1082 }); 1083 // Check if the variable is also a firstprivate: in this case IInit is 1084 // not generated. Initialization of this variable will happen in codegen 1085 // for 'firstprivate' clause. 1086 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1087 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1088 bool IsRegistered = 1089 PrivateScope.addPrivate(OrigVD, [this, VD, C, OrigVD]() { 1090 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1091 Address VDAddr = 1092 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 1093 *this, OrigVD); 1094 setAddrOfLocalVar(VD, VDAddr); 1095 return VDAddr; 1096 } 1097 // Emit private VarDecl with copy init. 1098 EmitDecl(*VD); 1099 return GetAddrOfLocalVar(VD); 1100 }); 1101 assert(IsRegistered && 1102 "lastprivate var already registered as private"); 1103 (void)IsRegistered; 1104 } 1105 } 1106 ++IRef; 1107 ++IDestRef; 1108 } 1109 } 1110 return HasAtLeastOneLastprivate; 1111 } 1112 1113 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1114 const OMPExecutableDirective &D, bool NoFinals, 1115 llvm::Value *IsLastIterCond) { 1116 if (!HaveInsertPoint()) 1117 return; 1118 // Emit following code: 1119 // if (<IsLastIterCond>) { 1120 // orig_var1 = private_orig_var1; 1121 // ... 1122 // orig_varn = private_orig_varn; 1123 // } 1124 llvm::BasicBlock *ThenBB = nullptr; 1125 llvm::BasicBlock *DoneBB = nullptr; 1126 if (IsLastIterCond) { 1127 // Emit implicit barrier if at least one lastprivate conditional is found 1128 // and this is not a simd mode. 1129 if (!getLangOpts().OpenMPSimd && 1130 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1131 [](const OMPLastprivateClause *C) { 1132 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1133 })) { 1134 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1135 OMPD_unknown, 1136 /*EmitChecks=*/false, 1137 /*ForceSimpleCall=*/true); 1138 } 1139 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1140 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1141 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1142 EmitBlock(ThenBB); 1143 } 1144 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1145 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1146 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1147 auto IC = LoopDirective->counters().begin(); 1148 for (const Expr *F : LoopDirective->finals()) { 1149 const auto *D = 1150 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1151 if (NoFinals) 1152 AlreadyEmittedVars.insert(D); 1153 else 1154 LoopCountersAndUpdates[D] = F; 1155 ++IC; 1156 } 1157 } 1158 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1159 auto IRef = C->varlist_begin(); 1160 auto ISrcRef = C->source_exprs().begin(); 1161 auto IDestRef = C->destination_exprs().begin(); 1162 for (const Expr *AssignOp : C->assignment_ops()) { 1163 const auto *PrivateVD = 1164 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1165 QualType Type = PrivateVD->getType(); 1166 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1167 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1168 // If lastprivate variable is a loop control variable for loop-based 1169 // directive, update its value before copyin back to original 1170 // variable. 1171 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1172 EmitIgnoredExpr(FinalExpr); 1173 const auto *SrcVD = 1174 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1175 const auto *DestVD = 1176 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1177 // Get the address of the private variable. 1178 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1179 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1180 PrivateAddr = 1181 Address(Builder.CreateLoad(PrivateAddr), 1182 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1183 // Store the last value to the private copy in the last iteration. 1184 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1185 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1186 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1187 (*IRef)->getExprLoc()); 1188 // Get the address of the original variable. 1189 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1190 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1191 } 1192 ++IRef; 1193 ++ISrcRef; 1194 ++IDestRef; 1195 } 1196 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1197 EmitIgnoredExpr(PostUpdate); 1198 } 1199 if (IsLastIterCond) 1200 EmitBlock(DoneBB, /*IsFinished=*/true); 1201 } 1202 1203 void CodeGenFunction::EmitOMPReductionClauseInit( 1204 const OMPExecutableDirective &D, 1205 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1206 if (!HaveInsertPoint()) 1207 return; 1208 SmallVector<const Expr *, 4> Shareds; 1209 SmallVector<const Expr *, 4> Privates; 1210 SmallVector<const Expr *, 4> ReductionOps; 1211 SmallVector<const Expr *, 4> LHSs; 1212 SmallVector<const Expr *, 4> RHSs; 1213 OMPTaskDataTy Data; 1214 SmallVector<const Expr *, 4> TaskLHSs; 1215 SmallVector<const Expr *, 4> TaskRHSs; 1216 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1217 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1218 continue; 1219 Shareds.append(C->varlist_begin(), C->varlist_end()); 1220 Privates.append(C->privates().begin(), C->privates().end()); 1221 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1222 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1223 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1224 if (C->getModifier() == OMPC_REDUCTION_task) { 1225 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1226 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1227 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1228 Data.ReductionOps.append(C->reduction_ops().begin(), 1229 C->reduction_ops().end()); 1230 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1231 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1232 } 1233 } 1234 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1235 unsigned Count = 0; 1236 auto *ILHS = LHSs.begin(); 1237 auto *IRHS = RHSs.begin(); 1238 auto *IPriv = Privates.begin(); 1239 for (const Expr *IRef : Shareds) { 1240 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1241 // Emit private VarDecl with reduction init. 1242 RedCG.emitSharedOrigLValue(*this, Count); 1243 RedCG.emitAggregateType(*this, Count); 1244 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1245 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1246 RedCG.getSharedLValue(Count), 1247 [&Emission](CodeGenFunction &CGF) { 1248 CGF.EmitAutoVarInit(Emission); 1249 return true; 1250 }); 1251 EmitAutoVarCleanups(Emission); 1252 Address BaseAddr = RedCG.adjustPrivateAddress( 1253 *this, Count, Emission.getAllocatedAddress()); 1254 bool IsRegistered = PrivateScope.addPrivate( 1255 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1256 assert(IsRegistered && "private var already registered as private"); 1257 // Silence the warning about unused variable. 1258 (void)IsRegistered; 1259 1260 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1261 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1262 QualType Type = PrivateVD->getType(); 1263 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1264 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1265 // Store the address of the original variable associated with the LHS 1266 // implicit variable. 1267 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1268 return RedCG.getSharedLValue(Count).getAddress(*this); 1269 }); 1270 PrivateScope.addPrivate( 1271 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1272 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1273 isa<ArraySubscriptExpr>(IRef)) { 1274 // Store the address of the original variable associated with the LHS 1275 // implicit variable. 1276 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1277 return RedCG.getSharedLValue(Count).getAddress(*this); 1278 }); 1279 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1280 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1281 ConvertTypeForMem(RHSVD->getType()), 1282 "rhs.begin"); 1283 }); 1284 } else { 1285 QualType Type = PrivateVD->getType(); 1286 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1287 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1288 // Store the address of the original variable associated with the LHS 1289 // implicit variable. 1290 if (IsArray) { 1291 OriginalAddr = Builder.CreateElementBitCast( 1292 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1293 } 1294 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1295 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1296 return IsArray ? Builder.CreateElementBitCast( 1297 GetAddrOfLocalVar(PrivateVD), 1298 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1299 : GetAddrOfLocalVar(PrivateVD); 1300 }); 1301 } 1302 ++ILHS; 1303 ++IRHS; 1304 ++IPriv; 1305 ++Count; 1306 } 1307 if (!Data.ReductionVars.empty()) { 1308 Data.IsReductionWithTaskMod = true; 1309 Data.IsWorksharingReduction = 1310 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1311 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1312 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1313 const Expr *TaskRedRef = nullptr; 1314 switch (D.getDirectiveKind()) { 1315 case OMPD_parallel: 1316 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1317 break; 1318 case OMPD_for: 1319 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1320 break; 1321 case OMPD_sections: 1322 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1323 break; 1324 case OMPD_parallel_for: 1325 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1326 break; 1327 case OMPD_parallel_master: 1328 TaskRedRef = 1329 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1330 break; 1331 case OMPD_parallel_sections: 1332 TaskRedRef = 1333 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1334 break; 1335 case OMPD_target_parallel: 1336 TaskRedRef = 1337 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1338 break; 1339 case OMPD_target_parallel_for: 1340 TaskRedRef = 1341 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1342 break; 1343 case OMPD_distribute_parallel_for: 1344 TaskRedRef = 1345 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1346 break; 1347 case OMPD_teams_distribute_parallel_for: 1348 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1349 .getTaskReductionRefExpr(); 1350 break; 1351 case OMPD_target_teams_distribute_parallel_for: 1352 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1353 .getTaskReductionRefExpr(); 1354 break; 1355 case OMPD_simd: 1356 case OMPD_for_simd: 1357 case OMPD_section: 1358 case OMPD_single: 1359 case OMPD_master: 1360 case OMPD_critical: 1361 case OMPD_parallel_for_simd: 1362 case OMPD_task: 1363 case OMPD_taskyield: 1364 case OMPD_barrier: 1365 case OMPD_taskwait: 1366 case OMPD_taskgroup: 1367 case OMPD_flush: 1368 case OMPD_depobj: 1369 case OMPD_scan: 1370 case OMPD_ordered: 1371 case OMPD_atomic: 1372 case OMPD_teams: 1373 case OMPD_target: 1374 case OMPD_cancellation_point: 1375 case OMPD_cancel: 1376 case OMPD_target_data: 1377 case OMPD_target_enter_data: 1378 case OMPD_target_exit_data: 1379 case OMPD_taskloop: 1380 case OMPD_taskloop_simd: 1381 case OMPD_master_taskloop: 1382 case OMPD_master_taskloop_simd: 1383 case OMPD_parallel_master_taskloop: 1384 case OMPD_parallel_master_taskloop_simd: 1385 case OMPD_distribute: 1386 case OMPD_target_update: 1387 case OMPD_distribute_parallel_for_simd: 1388 case OMPD_distribute_simd: 1389 case OMPD_target_parallel_for_simd: 1390 case OMPD_target_simd: 1391 case OMPD_teams_distribute: 1392 case OMPD_teams_distribute_simd: 1393 case OMPD_teams_distribute_parallel_for_simd: 1394 case OMPD_target_teams: 1395 case OMPD_target_teams_distribute: 1396 case OMPD_target_teams_distribute_parallel_for_simd: 1397 case OMPD_target_teams_distribute_simd: 1398 case OMPD_declare_target: 1399 case OMPD_end_declare_target: 1400 case OMPD_threadprivate: 1401 case OMPD_allocate: 1402 case OMPD_declare_reduction: 1403 case OMPD_declare_mapper: 1404 case OMPD_declare_simd: 1405 case OMPD_requires: 1406 case OMPD_declare_variant: 1407 case OMPD_begin_declare_variant: 1408 case OMPD_end_declare_variant: 1409 case OMPD_unknown: 1410 default: 1411 llvm_unreachable("Enexpected directive with task reductions."); 1412 } 1413 1414 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1415 EmitVarDecl(*VD); 1416 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1417 /*Volatile=*/false, TaskRedRef->getType()); 1418 } 1419 } 1420 1421 void CodeGenFunction::EmitOMPReductionClauseFinal( 1422 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1423 if (!HaveInsertPoint()) 1424 return; 1425 llvm::SmallVector<const Expr *, 8> Privates; 1426 llvm::SmallVector<const Expr *, 8> LHSExprs; 1427 llvm::SmallVector<const Expr *, 8> RHSExprs; 1428 llvm::SmallVector<const Expr *, 8> ReductionOps; 1429 bool HasAtLeastOneReduction = false; 1430 bool IsReductionWithTaskMod = false; 1431 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1432 // Do not emit for inscan reductions. 1433 if (C->getModifier() == OMPC_REDUCTION_inscan) 1434 continue; 1435 HasAtLeastOneReduction = true; 1436 Privates.append(C->privates().begin(), C->privates().end()); 1437 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1438 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1439 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1440 IsReductionWithTaskMod = 1441 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1442 } 1443 if (HasAtLeastOneReduction) { 1444 if (IsReductionWithTaskMod) { 1445 CGM.getOpenMPRuntime().emitTaskReductionFini( 1446 *this, D.getBeginLoc(), 1447 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1448 } 1449 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1450 isOpenMPParallelDirective(D.getDirectiveKind()) || 1451 ReductionKind == OMPD_simd; 1452 bool SimpleReduction = ReductionKind == OMPD_simd; 1453 // Emit nowait reduction if nowait clause is present or directive is a 1454 // parallel directive (it always has implicit barrier). 1455 CGM.getOpenMPRuntime().emitReduction( 1456 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1457 {WithNowait, SimpleReduction, ReductionKind}); 1458 } 1459 } 1460 1461 static void emitPostUpdateForReductionClause( 1462 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1463 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1464 if (!CGF.HaveInsertPoint()) 1465 return; 1466 llvm::BasicBlock *DoneBB = nullptr; 1467 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1468 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1469 if (!DoneBB) { 1470 if (llvm::Value *Cond = CondGen(CGF)) { 1471 // If the first post-update expression is found, emit conditional 1472 // block if it was requested. 1473 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1474 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1475 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1476 CGF.EmitBlock(ThenBB); 1477 } 1478 } 1479 CGF.EmitIgnoredExpr(PostUpdate); 1480 } 1481 } 1482 if (DoneBB) 1483 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1484 } 1485 1486 namespace { 1487 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1488 /// parallel function. This is necessary for combined constructs such as 1489 /// 'distribute parallel for' 1490 typedef llvm::function_ref<void(CodeGenFunction &, 1491 const OMPExecutableDirective &, 1492 llvm::SmallVectorImpl<llvm::Value *> &)> 1493 CodeGenBoundParametersTy; 1494 } // anonymous namespace 1495 1496 static void 1497 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1498 const OMPExecutableDirective &S) { 1499 if (CGF.getLangOpts().OpenMP < 50) 1500 return; 1501 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1502 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1503 for (const Expr *Ref : C->varlists()) { 1504 if (!Ref->getType()->isScalarType()) 1505 continue; 1506 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1507 if (!DRE) 1508 continue; 1509 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1510 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1511 } 1512 } 1513 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1514 for (const Expr *Ref : C->varlists()) { 1515 if (!Ref->getType()->isScalarType()) 1516 continue; 1517 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1518 if (!DRE) 1519 continue; 1520 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1521 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1522 } 1523 } 1524 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1525 for (const Expr *Ref : C->varlists()) { 1526 if (!Ref->getType()->isScalarType()) 1527 continue; 1528 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1529 if (!DRE) 1530 continue; 1531 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1532 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1533 } 1534 } 1535 // Privates should ne analyzed since they are not captured at all. 1536 // Task reductions may be skipped - tasks are ignored. 1537 // Firstprivates do not return value but may be passed by reference - no need 1538 // to check for updated lastprivate conditional. 1539 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1540 for (const Expr *Ref : C->varlists()) { 1541 if (!Ref->getType()->isScalarType()) 1542 continue; 1543 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1544 if (!DRE) 1545 continue; 1546 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1547 } 1548 } 1549 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1550 CGF, S, PrivateDecls); 1551 } 1552 1553 static void emitCommonOMPParallelDirective( 1554 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1555 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1556 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1557 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1558 llvm::Function *OutlinedFn = 1559 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1560 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1561 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1562 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1563 llvm::Value *NumThreads = 1564 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1565 /*IgnoreResultAssign=*/true); 1566 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1567 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1568 } 1569 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1570 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1571 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1572 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1573 } 1574 const Expr *IfCond = nullptr; 1575 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1576 if (C->getNameModifier() == OMPD_unknown || 1577 C->getNameModifier() == OMPD_parallel) { 1578 IfCond = C->getCondition(); 1579 break; 1580 } 1581 } 1582 1583 OMPParallelScope Scope(CGF, S); 1584 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1585 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1586 // lower and upper bounds with the pragma 'for' chunking mechanism. 1587 // The following lambda takes care of appending the lower and upper bound 1588 // parameters when necessary 1589 CodeGenBoundParameters(CGF, S, CapturedVars); 1590 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1591 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1592 CapturedVars, IfCond); 1593 } 1594 1595 static bool isAllocatableDecl(const VarDecl *VD) { 1596 const VarDecl *CVD = VD->getCanonicalDecl(); 1597 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1598 return false; 1599 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1600 // Use the default allocation. 1601 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1602 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1603 !AA->getAllocator()); 1604 } 1605 1606 static void emitEmptyBoundParameters(CodeGenFunction &, 1607 const OMPExecutableDirective &, 1608 llvm::SmallVectorImpl<llvm::Value *> &) {} 1609 1610 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1611 CodeGenFunction &CGF, const VarDecl *VD) { 1612 CodeGenModule &CGM = CGF.CGM; 1613 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1614 1615 if (!VD) 1616 return Address::invalid(); 1617 const VarDecl *CVD = VD->getCanonicalDecl(); 1618 if (!isAllocatableDecl(CVD)) 1619 return Address::invalid(); 1620 llvm::Value *Size; 1621 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1622 if (CVD->getType()->isVariablyModifiedType()) { 1623 Size = CGF.getTypeSize(CVD->getType()); 1624 // Align the size: ((size + align - 1) / align) * align 1625 Size = CGF.Builder.CreateNUWAdd( 1626 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1627 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1628 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1629 } else { 1630 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1631 Size = CGM.getSize(Sz.alignTo(Align)); 1632 } 1633 1634 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1635 assert(AA->getAllocator() && 1636 "Expected allocator expression for non-default allocator."); 1637 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1638 // According to the standard, the original allocator type is a enum (integer). 1639 // Convert to pointer type, if required. 1640 if (Allocator->getType()->isIntegerTy()) 1641 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1642 else if (Allocator->getType()->isPointerTy()) 1643 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1644 CGM.VoidPtrTy); 1645 1646 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1647 CGF.Builder, Size, Allocator, 1648 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1649 llvm::CallInst *FreeCI = 1650 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1651 1652 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1653 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1654 Addr, 1655 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1656 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1657 return Address(Addr, Align); 1658 } 1659 1660 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1661 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1662 SourceLocation Loc) { 1663 CodeGenModule &CGM = CGF.CGM; 1664 if (CGM.getLangOpts().OpenMPUseTLS && 1665 CGM.getContext().getTargetInfo().isTLSSupported()) 1666 return VDAddr; 1667 1668 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1669 1670 llvm::Type *VarTy = VDAddr.getElementType(); 1671 llvm::Value *Data = 1672 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1673 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1674 std::string Suffix = getNameWithSeparators({"cache", ""}); 1675 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1676 1677 llvm::CallInst *ThreadPrivateCacheCall = 1678 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1679 1680 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1681 } 1682 1683 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1684 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1685 SmallString<128> Buffer; 1686 llvm::raw_svector_ostream OS(Buffer); 1687 StringRef Sep = FirstSeparator; 1688 for (StringRef Part : Parts) { 1689 OS << Sep << Part; 1690 Sep = Separator; 1691 } 1692 return OS.str().str(); 1693 } 1694 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1695 if (CGM.getLangOpts().OpenMPIRBuilder) { 1696 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1697 // Check if we have any if clause associated with the directive. 1698 llvm::Value *IfCond = nullptr; 1699 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1700 IfCond = EmitScalarExpr(C->getCondition(), 1701 /*IgnoreResultAssign=*/true); 1702 1703 llvm::Value *NumThreads = nullptr; 1704 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1705 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1706 /*IgnoreResultAssign=*/true); 1707 1708 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1709 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1710 ProcBind = ProcBindClause->getProcBindKind(); 1711 1712 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1713 1714 // The cleanup callback that finalizes all variabels at the given location, 1715 // thus calls destructors etc. 1716 auto FiniCB = [this](InsertPointTy IP) { 1717 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1718 }; 1719 1720 // Privatization callback that performs appropriate action for 1721 // shared/private/firstprivate/lastprivate/copyin/... variables. 1722 // 1723 // TODO: This defaults to shared right now. 1724 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1725 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1726 // The next line is appropriate only for variables (Val) with the 1727 // data-sharing attribute "shared". 1728 ReplVal = &Val; 1729 1730 return CodeGenIP; 1731 }; 1732 1733 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1734 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1735 1736 auto BodyGenCB = [ParallelRegionBodyStmt, 1737 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1738 llvm::BasicBlock &ContinuationBB) { 1739 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1740 ContinuationBB); 1741 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1742 CodeGenIP, ContinuationBB); 1743 }; 1744 1745 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1746 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1747 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1748 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1749 Builder.restoreIP( 1750 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1751 IfCond, NumThreads, ProcBind, S.hasCancel())); 1752 return; 1753 } 1754 1755 // Emit parallel region as a standalone region. 1756 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1757 Action.Enter(CGF); 1758 OMPPrivateScope PrivateScope(CGF); 1759 bool Copyins = CGF.EmitOMPCopyinClause(S); 1760 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1761 if (Copyins) { 1762 // Emit implicit barrier to synchronize threads and avoid data races on 1763 // propagation master's thread values of threadprivate variables to local 1764 // instances of that variables of all other implicit threads. 1765 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1766 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1767 /*ForceSimpleCall=*/true); 1768 } 1769 CGF.EmitOMPPrivateClause(S, PrivateScope); 1770 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1771 (void)PrivateScope.Privatize(); 1772 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1773 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1774 }; 1775 { 1776 auto LPCRegion = 1777 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1778 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1779 emitEmptyBoundParameters); 1780 emitPostUpdateForReductionClause(*this, S, 1781 [](CodeGenFunction &) { return nullptr; }); 1782 } 1783 // Check for outer lastprivate conditional update. 1784 checkForLastprivateConditionalUpdate(*this, S); 1785 } 1786 1787 void CodeGenFunction::EmitOMPMetaDirective(const OMPMetaDirective &S) { 1788 EmitStmt(S.getIfStmt()); 1789 } 1790 1791 namespace { 1792 /// RAII to handle scopes for loop transformation directives. 1793 class OMPTransformDirectiveScopeRAII { 1794 OMPLoopScope *Scope = nullptr; 1795 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1796 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1797 1798 public: 1799 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1800 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1801 Scope = new OMPLoopScope(CGF, *Dir); 1802 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1803 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1804 } 1805 } 1806 ~OMPTransformDirectiveScopeRAII() { 1807 if (!Scope) 1808 return; 1809 delete CapInfoRAII; 1810 delete CGSI; 1811 delete Scope; 1812 } 1813 }; 1814 } // namespace 1815 1816 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1817 int MaxLevel, int Level = 0) { 1818 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1819 const Stmt *SimplifiedS = S->IgnoreContainers(); 1820 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1821 PrettyStackTraceLoc CrashInfo( 1822 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1823 "LLVM IR generation of compound statement ('{}')"); 1824 1825 // Keep track of the current cleanup stack depth, including debug scopes. 1826 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1827 for (const Stmt *CurStmt : CS->body()) 1828 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1829 return; 1830 } 1831 if (SimplifiedS == NextLoop) { 1832 if (auto *Dir = dyn_cast<OMPLoopTransformationDirective>(SimplifiedS)) 1833 SimplifiedS = Dir->getTransformedStmt(); 1834 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1835 SimplifiedS = CanonLoop->getLoopStmt(); 1836 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1837 S = For->getBody(); 1838 } else { 1839 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1840 "Expected canonical for loop or range-based for loop."); 1841 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1842 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1843 S = CXXFor->getBody(); 1844 } 1845 if (Level + 1 < MaxLevel) { 1846 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1847 S, /*TryImperfectlyNestedLoops=*/true); 1848 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1849 return; 1850 } 1851 } 1852 CGF.EmitStmt(S); 1853 } 1854 1855 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1856 JumpDest LoopExit) { 1857 RunCleanupsScope BodyScope(*this); 1858 // Update counters values on current iteration. 1859 for (const Expr *UE : D.updates()) 1860 EmitIgnoredExpr(UE); 1861 // Update the linear variables. 1862 // In distribute directives only loop counters may be marked as linear, no 1863 // need to generate the code for them. 1864 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1865 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1866 for (const Expr *UE : C->updates()) 1867 EmitIgnoredExpr(UE); 1868 } 1869 } 1870 1871 // On a continue in the body, jump to the end. 1872 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1873 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1874 for (const Expr *E : D.finals_conditions()) { 1875 if (!E) 1876 continue; 1877 // Check that loop counter in non-rectangular nest fits into the iteration 1878 // space. 1879 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1880 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1881 getProfileCount(D.getBody())); 1882 EmitBlock(NextBB); 1883 } 1884 1885 OMPPrivateScope InscanScope(*this); 1886 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1887 bool IsInscanRegion = InscanScope.Privatize(); 1888 if (IsInscanRegion) { 1889 // Need to remember the block before and after scan directive 1890 // to dispatch them correctly depending on the clause used in 1891 // this directive, inclusive or exclusive. For inclusive scan the natural 1892 // order of the blocks is used, for exclusive clause the blocks must be 1893 // executed in reverse order. 1894 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1895 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1896 // No need to allocate inscan exit block, in simd mode it is selected in the 1897 // codegen for the scan directive. 1898 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1899 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1900 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1901 EmitBranch(OMPScanDispatch); 1902 EmitBlock(OMPBeforeScanBlock); 1903 } 1904 1905 // Emit loop variables for C++ range loops. 1906 const Stmt *Body = 1907 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1908 // Emit loop body. 1909 emitBody(*this, Body, 1910 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1911 Body, /*TryImperfectlyNestedLoops=*/true), 1912 D.getLoopsNumber()); 1913 1914 // Jump to the dispatcher at the end of the loop body. 1915 if (IsInscanRegion) 1916 EmitBranch(OMPScanExitBlock); 1917 1918 // The end (updates/cleanups). 1919 EmitBlock(Continue.getBlock()); 1920 BreakContinueStack.pop_back(); 1921 } 1922 1923 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1924 1925 /// Emit a captured statement and return the function as well as its captured 1926 /// closure context. 1927 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1928 const CapturedStmt *S) { 1929 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1930 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1931 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1932 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1933 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1934 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1935 1936 return {F, CapStruct.getPointer(ParentCGF)}; 1937 } 1938 1939 /// Emit a call to a previously captured closure. 1940 static llvm::CallInst * 1941 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1942 llvm::ArrayRef<llvm::Value *> Args) { 1943 // Append the closure context to the argument. 1944 SmallVector<llvm::Value *> EffectiveArgs; 1945 EffectiveArgs.reserve(Args.size() + 1); 1946 llvm::append_range(EffectiveArgs, Args); 1947 EffectiveArgs.push_back(Cap.second); 1948 1949 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1950 } 1951 1952 llvm::CanonicalLoopInfo * 1953 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1954 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1955 1956 // The caller is processing the loop-associated directive processing the \p 1957 // Depth loops nested in \p S. Put the previous pending loop-associated 1958 // directive to the stack. If the current loop-associated directive is a loop 1959 // transformation directive, it will push its generated loops onto the stack 1960 // such that together with the loops left here they form the combined loop 1961 // nest for the parent loop-associated directive. 1962 int ParentExpectedOMPLoopDepth = ExpectedOMPLoopDepth; 1963 ExpectedOMPLoopDepth = Depth; 1964 1965 EmitStmt(S); 1966 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1967 1968 // The last added loop is the outermost one. 1969 llvm::CanonicalLoopInfo *Result = OMPLoopNestStack.back(); 1970 1971 // Pop the \p Depth loops requested by the call from that stack and restore 1972 // the previous context. 1973 OMPLoopNestStack.set_size(OMPLoopNestStack.size() - Depth); 1974 ExpectedOMPLoopDepth = ParentExpectedOMPLoopDepth; 1975 1976 return Result; 1977 } 1978 1979 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 1980 const Stmt *SyntacticalLoop = S->getLoopStmt(); 1981 if (!getLangOpts().OpenMPIRBuilder) { 1982 // Ignore if OpenMPIRBuilder is not enabled. 1983 EmitStmt(SyntacticalLoop); 1984 return; 1985 } 1986 1987 LexicalScope ForScope(*this, S->getSourceRange()); 1988 1989 // Emit init statements. The Distance/LoopVar funcs may reference variable 1990 // declarations they contain. 1991 const Stmt *BodyStmt; 1992 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 1993 if (const Stmt *InitStmt = For->getInit()) 1994 EmitStmt(InitStmt); 1995 BodyStmt = For->getBody(); 1996 } else if (const auto *RangeFor = 1997 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 1998 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 1999 EmitStmt(RangeStmt); 2000 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 2001 EmitStmt(BeginStmt); 2002 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 2003 EmitStmt(EndStmt); 2004 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 2005 EmitStmt(LoopVarStmt); 2006 BodyStmt = RangeFor->getBody(); 2007 } else 2008 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 2009 2010 // Emit closure for later use. By-value captures will be captured here. 2011 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 2012 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 2013 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 2014 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2015 2016 // Call the distance function to get the number of iterations of the loop to 2017 // come. 2018 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2019 ->getParam(0) 2020 ->getType() 2021 .getNonReferenceType(); 2022 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2023 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2024 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2025 2026 // Emit the loop structure. 2027 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2028 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2029 llvm::Value *IndVar) { 2030 Builder.restoreIP(CodeGenIP); 2031 2032 // Emit the loop body: Convert the logical iteration number to the loop 2033 // variable and emit the body. 2034 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2035 LValue LCVal = EmitLValue(LoopVarRef); 2036 Address LoopVarAddress = LCVal.getAddress(*this); 2037 emitCapturedStmtCall(*this, LoopVarClosure, 2038 {LoopVarAddress.getPointer(), IndVar}); 2039 2040 RunCleanupsScope BodyScope(*this); 2041 EmitStmt(BodyStmt); 2042 }; 2043 llvm::CanonicalLoopInfo *CL = 2044 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2045 2046 // Finish up the loop. 2047 Builder.restoreIP(CL->getAfterIP()); 2048 ForScope.ForceCleanup(); 2049 2050 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2051 OMPLoopNestStack.push_back(CL); 2052 } 2053 2054 void CodeGenFunction::EmitOMPInnerLoop( 2055 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2056 const Expr *IncExpr, 2057 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2058 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2059 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2060 2061 // Start the loop with a block that tests the condition. 2062 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2063 EmitBlock(CondBlock); 2064 const SourceRange R = S.getSourceRange(); 2065 2066 // If attributes are attached, push to the basic block with them. 2067 const auto &OMPED = cast<OMPExecutableDirective>(S); 2068 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2069 const Stmt *SS = ICS->getCapturedStmt(); 2070 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2071 OMPLoopNestStack.clear(); 2072 if (AS) 2073 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2074 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2075 SourceLocToDebugLoc(R.getEnd())); 2076 else 2077 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2078 SourceLocToDebugLoc(R.getEnd())); 2079 2080 // If there are any cleanups between here and the loop-exit scope, 2081 // create a block to stage a loop exit along. 2082 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2083 if (RequiresCleanup) 2084 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2085 2086 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2087 2088 // Emit condition. 2089 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2090 if (ExitBlock != LoopExit.getBlock()) { 2091 EmitBlock(ExitBlock); 2092 EmitBranchThroughCleanup(LoopExit); 2093 } 2094 2095 EmitBlock(LoopBody); 2096 incrementProfileCounter(&S); 2097 2098 // Create a block for the increment. 2099 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2100 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2101 2102 BodyGen(*this); 2103 2104 // Emit "IV = IV + 1" and a back-edge to the condition block. 2105 EmitBlock(Continue.getBlock()); 2106 EmitIgnoredExpr(IncExpr); 2107 PostIncGen(*this); 2108 BreakContinueStack.pop_back(); 2109 EmitBranch(CondBlock); 2110 LoopStack.pop(); 2111 // Emit the fall-through block. 2112 EmitBlock(LoopExit.getBlock()); 2113 } 2114 2115 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2116 if (!HaveInsertPoint()) 2117 return false; 2118 // Emit inits for the linear variables. 2119 bool HasLinears = false; 2120 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2121 for (const Expr *Init : C->inits()) { 2122 HasLinears = true; 2123 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2124 if (const auto *Ref = 2125 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2126 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2127 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2128 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2129 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2130 VD->getInit()->getType(), VK_LValue, 2131 VD->getInit()->getExprLoc()); 2132 EmitExprAsInit( 2133 &DRE, VD, 2134 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 2135 /*capturedByInit=*/false); 2136 EmitAutoVarCleanups(Emission); 2137 } else { 2138 EmitVarDecl(*VD); 2139 } 2140 } 2141 // Emit the linear steps for the linear clauses. 2142 // If a step is not constant, it is pre-calculated before the loop. 2143 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2144 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2145 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2146 // Emit calculation of the linear step. 2147 EmitIgnoredExpr(CS); 2148 } 2149 } 2150 return HasLinears; 2151 } 2152 2153 void CodeGenFunction::EmitOMPLinearClauseFinal( 2154 const OMPLoopDirective &D, 2155 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2156 if (!HaveInsertPoint()) 2157 return; 2158 llvm::BasicBlock *DoneBB = nullptr; 2159 // Emit the final values of the linear variables. 2160 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2161 auto IC = C->varlist_begin(); 2162 for (const Expr *F : C->finals()) { 2163 if (!DoneBB) { 2164 if (llvm::Value *Cond = CondGen(*this)) { 2165 // If the first post-update expression is found, emit conditional 2166 // block if it was requested. 2167 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2168 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2169 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2170 EmitBlock(ThenBB); 2171 } 2172 } 2173 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2174 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2175 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2176 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2177 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2178 CodeGenFunction::OMPPrivateScope VarScope(*this); 2179 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2180 (void)VarScope.Privatize(); 2181 EmitIgnoredExpr(F); 2182 ++IC; 2183 } 2184 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2185 EmitIgnoredExpr(PostUpdate); 2186 } 2187 if (DoneBB) 2188 EmitBlock(DoneBB, /*IsFinished=*/true); 2189 } 2190 2191 static void emitAlignedClause(CodeGenFunction &CGF, 2192 const OMPExecutableDirective &D) { 2193 if (!CGF.HaveInsertPoint()) 2194 return; 2195 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2196 llvm::APInt ClauseAlignment(64, 0); 2197 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2198 auto *AlignmentCI = 2199 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2200 ClauseAlignment = AlignmentCI->getValue(); 2201 } 2202 for (const Expr *E : Clause->varlists()) { 2203 llvm::APInt Alignment(ClauseAlignment); 2204 if (Alignment == 0) { 2205 // OpenMP [2.8.1, Description] 2206 // If no optional parameter is specified, implementation-defined default 2207 // alignments for SIMD instructions on the target platforms are assumed. 2208 Alignment = 2209 CGF.getContext() 2210 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2211 E->getType()->getPointeeType())) 2212 .getQuantity(); 2213 } 2214 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2215 "alignment is not power of 2"); 2216 if (Alignment != 0) { 2217 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2218 CGF.emitAlignmentAssumption( 2219 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2220 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2221 } 2222 } 2223 } 2224 } 2225 2226 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2227 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2228 if (!HaveInsertPoint()) 2229 return; 2230 auto I = S.private_counters().begin(); 2231 for (const Expr *E : S.counters()) { 2232 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2233 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2234 // Emit var without initialization. 2235 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2236 EmitAutoVarCleanups(VarEmission); 2237 LocalDeclMap.erase(PrivateVD); 2238 (void)LoopScope.addPrivate( 2239 VD, [&VarEmission]() { return VarEmission.getAllocatedAddress(); }); 2240 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2241 VD->hasGlobalStorage()) { 2242 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2243 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2244 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2245 E->getType(), VK_LValue, E->getExprLoc()); 2246 return EmitLValue(&DRE).getAddress(*this); 2247 }); 2248 } else { 2249 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2250 return VarEmission.getAllocatedAddress(); 2251 }); 2252 } 2253 ++I; 2254 } 2255 // Privatize extra loop counters used in loops for ordered(n) clauses. 2256 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2257 if (!C->getNumForLoops()) 2258 continue; 2259 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2260 I < E; ++I) { 2261 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2262 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2263 // Override only those variables that can be captured to avoid re-emission 2264 // of the variables declared within the loops. 2265 if (DRE->refersToEnclosingVariableOrCapture()) { 2266 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2267 return CreateMemTemp(DRE->getType(), VD->getName()); 2268 }); 2269 } 2270 } 2271 } 2272 } 2273 2274 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2275 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2276 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2277 if (!CGF.HaveInsertPoint()) 2278 return; 2279 { 2280 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2281 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2282 (void)PreCondScope.Privatize(); 2283 // Get initial values of real counters. 2284 for (const Expr *I : S.inits()) { 2285 CGF.EmitIgnoredExpr(I); 2286 } 2287 } 2288 // Create temp loop control variables with their init values to support 2289 // non-rectangular loops. 2290 CodeGenFunction::OMPMapVars PreCondVars; 2291 for (const Expr *E : S.dependent_counters()) { 2292 if (!E) 2293 continue; 2294 assert(!E->getType().getNonReferenceType()->isRecordType() && 2295 "dependent counter must not be an iterator."); 2296 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2297 Address CounterAddr = 2298 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2299 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2300 } 2301 (void)PreCondVars.apply(CGF); 2302 for (const Expr *E : S.dependent_inits()) { 2303 if (!E) 2304 continue; 2305 CGF.EmitIgnoredExpr(E); 2306 } 2307 // Check that loop is executed at least one time. 2308 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2309 PreCondVars.restore(CGF); 2310 } 2311 2312 void CodeGenFunction::EmitOMPLinearClause( 2313 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2314 if (!HaveInsertPoint()) 2315 return; 2316 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2317 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2318 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2319 for (const Expr *C : LoopDirective->counters()) { 2320 SIMDLCVs.insert( 2321 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2322 } 2323 } 2324 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2325 auto CurPrivate = C->privates().begin(); 2326 for (const Expr *E : C->varlists()) { 2327 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2328 const auto *PrivateVD = 2329 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2330 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2331 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2332 // Emit private VarDecl with copy init. 2333 EmitVarDecl(*PrivateVD); 2334 return GetAddrOfLocalVar(PrivateVD); 2335 }); 2336 assert(IsRegistered && "linear var already registered as private"); 2337 // Silence the warning about unused variable. 2338 (void)IsRegistered; 2339 } else { 2340 EmitVarDecl(*PrivateVD); 2341 } 2342 ++CurPrivate; 2343 } 2344 } 2345 } 2346 2347 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2348 const OMPExecutableDirective &D) { 2349 if (!CGF.HaveInsertPoint()) 2350 return; 2351 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2352 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2353 /*ignoreResult=*/true); 2354 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2355 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2356 // In presence of finite 'safelen', it may be unsafe to mark all 2357 // the memory instructions parallel, because loop-carried 2358 // dependences of 'safelen' iterations are possible. 2359 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2360 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2361 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2362 /*ignoreResult=*/true); 2363 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2364 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2365 // In presence of finite 'safelen', it may be unsafe to mark all 2366 // the memory instructions parallel, because loop-carried 2367 // dependences of 'safelen' iterations are possible. 2368 CGF.LoopStack.setParallel(/*Enable=*/false); 2369 } 2370 } 2371 2372 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2373 // Walk clauses and process safelen/lastprivate. 2374 LoopStack.setParallel(/*Enable=*/true); 2375 LoopStack.setVectorizeEnable(); 2376 emitSimdlenSafelenClause(*this, D); 2377 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2378 if (C->getKind() == OMPC_ORDER_concurrent) 2379 LoopStack.setParallel(/*Enable=*/true); 2380 if ((D.getDirectiveKind() == OMPD_simd || 2381 (getLangOpts().OpenMPSimd && 2382 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2383 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2384 [](const OMPReductionClause *C) { 2385 return C->getModifier() == OMPC_REDUCTION_inscan; 2386 })) 2387 // Disable parallel access in case of prefix sum. 2388 LoopStack.setParallel(/*Enable=*/false); 2389 } 2390 2391 void CodeGenFunction::EmitOMPSimdFinal( 2392 const OMPLoopDirective &D, 2393 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2394 if (!HaveInsertPoint()) 2395 return; 2396 llvm::BasicBlock *DoneBB = nullptr; 2397 auto IC = D.counters().begin(); 2398 auto IPC = D.private_counters().begin(); 2399 for (const Expr *F : D.finals()) { 2400 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2401 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2402 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2403 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2404 OrigVD->hasGlobalStorage() || CED) { 2405 if (!DoneBB) { 2406 if (llvm::Value *Cond = CondGen(*this)) { 2407 // If the first post-update expression is found, emit conditional 2408 // block if it was requested. 2409 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2410 DoneBB = createBasicBlock(".omp.final.done"); 2411 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2412 EmitBlock(ThenBB); 2413 } 2414 } 2415 Address OrigAddr = Address::invalid(); 2416 if (CED) { 2417 OrigAddr = 2418 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2419 } else { 2420 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2421 /*RefersToEnclosingVariableOrCapture=*/false, 2422 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2423 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2424 } 2425 OMPPrivateScope VarScope(*this); 2426 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2427 (void)VarScope.Privatize(); 2428 EmitIgnoredExpr(F); 2429 } 2430 ++IC; 2431 ++IPC; 2432 } 2433 if (DoneBB) 2434 EmitBlock(DoneBB, /*IsFinished=*/true); 2435 } 2436 2437 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2438 const OMPLoopDirective &S, 2439 CodeGenFunction::JumpDest LoopExit) { 2440 CGF.EmitOMPLoopBody(S, LoopExit); 2441 CGF.EmitStopPoint(&S); 2442 } 2443 2444 /// Emit a helper variable and return corresponding lvalue. 2445 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2446 const DeclRefExpr *Helper) { 2447 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2448 CGF.EmitVarDecl(*VDecl); 2449 return CGF.EmitLValue(Helper); 2450 } 2451 2452 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2453 const RegionCodeGenTy &SimdInitGen, 2454 const RegionCodeGenTy &BodyCodeGen) { 2455 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2456 PrePostActionTy &) { 2457 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2458 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2459 SimdInitGen(CGF); 2460 2461 BodyCodeGen(CGF); 2462 }; 2463 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2464 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2465 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2466 2467 BodyCodeGen(CGF); 2468 }; 2469 const Expr *IfCond = nullptr; 2470 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2471 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2472 if (CGF.getLangOpts().OpenMP >= 50 && 2473 (C->getNameModifier() == OMPD_unknown || 2474 C->getNameModifier() == OMPD_simd)) { 2475 IfCond = C->getCondition(); 2476 break; 2477 } 2478 } 2479 } 2480 if (IfCond) { 2481 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2482 } else { 2483 RegionCodeGenTy ThenRCG(ThenGen); 2484 ThenRCG(CGF); 2485 } 2486 } 2487 2488 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2489 PrePostActionTy &Action) { 2490 Action.Enter(CGF); 2491 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2492 "Expected simd directive"); 2493 OMPLoopScope PreInitScope(CGF, S); 2494 // if (PreCond) { 2495 // for (IV in 0..LastIteration) BODY; 2496 // <Final counter/linear vars updates>; 2497 // } 2498 // 2499 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2500 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2501 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2502 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2503 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2504 } 2505 2506 // Emit: if (PreCond) - begin. 2507 // If the condition constant folds and can be elided, avoid emitting the 2508 // whole loop. 2509 bool CondConstant; 2510 llvm::BasicBlock *ContBlock = nullptr; 2511 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2512 if (!CondConstant) 2513 return; 2514 } else { 2515 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2516 ContBlock = CGF.createBasicBlock("simd.if.end"); 2517 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2518 CGF.getProfileCount(&S)); 2519 CGF.EmitBlock(ThenBlock); 2520 CGF.incrementProfileCounter(&S); 2521 } 2522 2523 // Emit the loop iteration variable. 2524 const Expr *IVExpr = S.getIterationVariable(); 2525 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2526 CGF.EmitVarDecl(*IVDecl); 2527 CGF.EmitIgnoredExpr(S.getInit()); 2528 2529 // Emit the iterations count variable. 2530 // If it is not a variable, Sema decided to calculate iterations count on 2531 // each iteration (e.g., it is foldable into a constant). 2532 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2533 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2534 // Emit calculation of the iterations count. 2535 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2536 } 2537 2538 emitAlignedClause(CGF, S); 2539 (void)CGF.EmitOMPLinearClauseInit(S); 2540 { 2541 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2542 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2543 CGF.EmitOMPLinearClause(S, LoopScope); 2544 CGF.EmitOMPPrivateClause(S, LoopScope); 2545 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2546 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2547 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2548 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2549 (void)LoopScope.Privatize(); 2550 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2551 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2552 2553 emitCommonSimdLoop( 2554 CGF, S, 2555 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2556 CGF.EmitOMPSimdInit(S); 2557 }, 2558 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2559 CGF.EmitOMPInnerLoop( 2560 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2561 [&S](CodeGenFunction &CGF) { 2562 emitOMPLoopBodyWithStopPoint(CGF, S, 2563 CodeGenFunction::JumpDest()); 2564 }, 2565 [](CodeGenFunction &) {}); 2566 }); 2567 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2568 // Emit final copy of the lastprivate variables at the end of loops. 2569 if (HasLastprivateClause) 2570 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2571 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2572 emitPostUpdateForReductionClause(CGF, S, 2573 [](CodeGenFunction &) { return nullptr; }); 2574 } 2575 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2576 // Emit: if (PreCond) - end. 2577 if (ContBlock) { 2578 CGF.EmitBranch(ContBlock); 2579 CGF.EmitBlock(ContBlock, true); 2580 } 2581 } 2582 2583 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2584 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2585 OMPFirstScanLoop = true; 2586 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2587 emitOMPSimdRegion(CGF, S, Action); 2588 }; 2589 { 2590 auto LPCRegion = 2591 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2592 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2593 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2594 } 2595 // Check for outer lastprivate conditional update. 2596 checkForLastprivateConditionalUpdate(*this, S); 2597 } 2598 2599 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2600 // Emit the de-sugared statement. 2601 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2602 EmitStmt(S.getTransformedStmt()); 2603 } 2604 2605 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2606 bool UseOMPIRBuilder = CGM.getLangOpts().OpenMPIRBuilder; 2607 2608 if (UseOMPIRBuilder) { 2609 auto DL = SourceLocToDebugLoc(S.getBeginLoc()); 2610 const Stmt *Inner = S.getRawStmt(); 2611 2612 // Consume nested loop. Clear the entire remaining loop stack because a 2613 // fully unrolled loop is non-transformable. For partial unrolling the 2614 // generated outer loop is pushed back to the stack. 2615 llvm::CanonicalLoopInfo *CLI = EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2616 OMPLoopNestStack.clear(); 2617 2618 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2619 2620 bool NeedsUnrolledCLI = ExpectedOMPLoopDepth >= 1; 2621 llvm::CanonicalLoopInfo *UnrolledCLI = nullptr; 2622 2623 if (S.hasClausesOfKind<OMPFullClause>()) { 2624 assert(ExpectedOMPLoopDepth == 0); 2625 OMPBuilder.unrollLoopFull(DL, CLI); 2626 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2627 uint64_t Factor = 0; 2628 if (Expr *FactorExpr = PartialClause->getFactor()) { 2629 Factor = FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2630 assert(Factor >= 1 && "Only positive factors are valid"); 2631 } 2632 OMPBuilder.unrollLoopPartial(DL, CLI, Factor, 2633 NeedsUnrolledCLI ? &UnrolledCLI : nullptr); 2634 } else { 2635 OMPBuilder.unrollLoopHeuristic(DL, CLI); 2636 } 2637 2638 assert((!NeedsUnrolledCLI || UnrolledCLI) && 2639 "NeedsUnrolledCLI implies UnrolledCLI to be set"); 2640 if (UnrolledCLI) 2641 OMPLoopNestStack.push_back(UnrolledCLI); 2642 2643 return; 2644 } 2645 2646 // This function is only called if the unrolled loop is not consumed by any 2647 // other loop-associated construct. Such a loop-associated construct will have 2648 // used the transformed AST. 2649 2650 // Set the unroll metadata for the next emitted loop. 2651 LoopStack.setUnrollState(LoopAttributes::Enable); 2652 2653 if (S.hasClausesOfKind<OMPFullClause>()) { 2654 LoopStack.setUnrollState(LoopAttributes::Full); 2655 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2656 if (Expr *FactorExpr = PartialClause->getFactor()) { 2657 uint64_t Factor = 2658 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2659 assert(Factor >= 1 && "Only positive factors are valid"); 2660 LoopStack.setUnrollCount(Factor); 2661 } 2662 } 2663 2664 EmitStmt(S.getAssociatedStmt()); 2665 } 2666 2667 void CodeGenFunction::EmitOMPOuterLoop( 2668 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2669 CodeGenFunction::OMPPrivateScope &LoopScope, 2670 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2671 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2672 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2673 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2674 2675 const Expr *IVExpr = S.getIterationVariable(); 2676 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2677 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2678 2679 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2680 2681 // Start the loop with a block that tests the condition. 2682 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2683 EmitBlock(CondBlock); 2684 const SourceRange R = S.getSourceRange(); 2685 OMPLoopNestStack.clear(); 2686 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2687 SourceLocToDebugLoc(R.getEnd())); 2688 2689 llvm::Value *BoolCondVal = nullptr; 2690 if (!DynamicOrOrdered) { 2691 // UB = min(UB, GlobalUB) or 2692 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2693 // 'distribute parallel for') 2694 EmitIgnoredExpr(LoopArgs.EUB); 2695 // IV = LB 2696 EmitIgnoredExpr(LoopArgs.Init); 2697 // IV < UB 2698 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2699 } else { 2700 BoolCondVal = 2701 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2702 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2703 } 2704 2705 // If there are any cleanups between here and the loop-exit scope, 2706 // create a block to stage a loop exit along. 2707 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2708 if (LoopScope.requiresCleanups()) 2709 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2710 2711 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2712 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2713 if (ExitBlock != LoopExit.getBlock()) { 2714 EmitBlock(ExitBlock); 2715 EmitBranchThroughCleanup(LoopExit); 2716 } 2717 EmitBlock(LoopBody); 2718 2719 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2720 // LB for loop condition and emitted it above). 2721 if (DynamicOrOrdered) 2722 EmitIgnoredExpr(LoopArgs.Init); 2723 2724 // Create a block for the increment. 2725 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2726 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2727 2728 emitCommonSimdLoop( 2729 *this, S, 2730 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2731 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2732 // with dynamic/guided scheduling and without ordered clause. 2733 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2734 CGF.LoopStack.setParallel(!IsMonotonic); 2735 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2736 if (C->getKind() == OMPC_ORDER_concurrent) 2737 CGF.LoopStack.setParallel(/*Enable=*/true); 2738 } else { 2739 CGF.EmitOMPSimdInit(S); 2740 } 2741 }, 2742 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2743 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2744 SourceLocation Loc = S.getBeginLoc(); 2745 // when 'distribute' is not combined with a 'for': 2746 // while (idx <= UB) { BODY; ++idx; } 2747 // when 'distribute' is combined with a 'for' 2748 // (e.g. 'distribute parallel for') 2749 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2750 CGF.EmitOMPInnerLoop( 2751 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2752 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2753 CodeGenLoop(CGF, S, LoopExit); 2754 }, 2755 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2756 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2757 }); 2758 }); 2759 2760 EmitBlock(Continue.getBlock()); 2761 BreakContinueStack.pop_back(); 2762 if (!DynamicOrOrdered) { 2763 // Emit "LB = LB + Stride", "UB = UB + Stride". 2764 EmitIgnoredExpr(LoopArgs.NextLB); 2765 EmitIgnoredExpr(LoopArgs.NextUB); 2766 } 2767 2768 EmitBranch(CondBlock); 2769 OMPLoopNestStack.clear(); 2770 LoopStack.pop(); 2771 // Emit the fall-through block. 2772 EmitBlock(LoopExit.getBlock()); 2773 2774 // Tell the runtime we are done. 2775 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2776 if (!DynamicOrOrdered) 2777 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2778 S.getDirectiveKind()); 2779 }; 2780 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2781 } 2782 2783 void CodeGenFunction::EmitOMPForOuterLoop( 2784 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2785 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2786 const OMPLoopArguments &LoopArgs, 2787 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2788 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2789 2790 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2791 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind.Schedule); 2792 2793 assert((Ordered || !RT.isStaticNonchunked(ScheduleKind.Schedule, 2794 LoopArgs.Chunk != nullptr)) && 2795 "static non-chunked schedule does not need outer loop"); 2796 2797 // Emit outer loop. 2798 // 2799 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2800 // When schedule(dynamic,chunk_size) is specified, the iterations are 2801 // distributed to threads in the team in chunks as the threads request them. 2802 // Each thread executes a chunk of iterations, then requests another chunk, 2803 // until no chunks remain to be distributed. Each chunk contains chunk_size 2804 // iterations, except for the last chunk to be distributed, which may have 2805 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2806 // 2807 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2808 // to threads in the team in chunks as the executing threads request them. 2809 // Each thread executes a chunk of iterations, then requests another chunk, 2810 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2811 // each chunk is proportional to the number of unassigned iterations divided 2812 // by the number of threads in the team, decreasing to 1. For a chunk_size 2813 // with value k (greater than 1), the size of each chunk is determined in the 2814 // same way, with the restriction that the chunks do not contain fewer than k 2815 // iterations (except for the last chunk to be assigned, which may have fewer 2816 // than k iterations). 2817 // 2818 // When schedule(auto) is specified, the decision regarding scheduling is 2819 // delegated to the compiler and/or runtime system. The programmer gives the 2820 // implementation the freedom to choose any possible mapping of iterations to 2821 // threads in the team. 2822 // 2823 // When schedule(runtime) is specified, the decision regarding scheduling is 2824 // deferred until run time, and the schedule and chunk size are taken from the 2825 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2826 // implementation defined 2827 // 2828 // while(__kmpc_dispatch_next(&LB, &UB)) { 2829 // idx = LB; 2830 // while (idx <= UB) { BODY; ++idx; 2831 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2832 // } // inner loop 2833 // } 2834 // 2835 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2836 // When schedule(static, chunk_size) is specified, iterations are divided into 2837 // chunks of size chunk_size, and the chunks are assigned to the threads in 2838 // the team in a round-robin fashion in the order of the thread number. 2839 // 2840 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2841 // while (idx <= UB) { BODY; ++idx; } // inner loop 2842 // LB = LB + ST; 2843 // UB = UB + ST; 2844 // } 2845 // 2846 2847 const Expr *IVExpr = S.getIterationVariable(); 2848 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2849 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2850 2851 if (DynamicOrOrdered) { 2852 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2853 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2854 llvm::Value *LBVal = DispatchBounds.first; 2855 llvm::Value *UBVal = DispatchBounds.second; 2856 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2857 LoopArgs.Chunk}; 2858 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2859 IVSigned, Ordered, DipatchRTInputValues); 2860 } else { 2861 CGOpenMPRuntime::StaticRTInput StaticInit( 2862 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2863 LoopArgs.ST, LoopArgs.Chunk); 2864 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2865 ScheduleKind, StaticInit); 2866 } 2867 2868 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2869 const unsigned IVSize, 2870 const bool IVSigned) { 2871 if (Ordered) { 2872 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2873 IVSigned); 2874 } 2875 }; 2876 2877 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2878 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2879 OuterLoopArgs.IncExpr = S.getInc(); 2880 OuterLoopArgs.Init = S.getInit(); 2881 OuterLoopArgs.Cond = S.getCond(); 2882 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2883 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2884 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2885 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2886 } 2887 2888 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2889 const unsigned IVSize, const bool IVSigned) {} 2890 2891 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2892 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2893 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2894 const CodeGenLoopTy &CodeGenLoopContent) { 2895 2896 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2897 2898 // Emit outer loop. 2899 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2900 // dynamic 2901 // 2902 2903 const Expr *IVExpr = S.getIterationVariable(); 2904 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2905 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2906 2907 CGOpenMPRuntime::StaticRTInput StaticInit( 2908 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2909 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2910 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2911 2912 // for combined 'distribute' and 'for' the increment expression of distribute 2913 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2914 Expr *IncExpr; 2915 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2916 IncExpr = S.getDistInc(); 2917 else 2918 IncExpr = S.getInc(); 2919 2920 // this routine is shared by 'omp distribute parallel for' and 2921 // 'omp distribute': select the right EUB expression depending on the 2922 // directive 2923 OMPLoopArguments OuterLoopArgs; 2924 OuterLoopArgs.LB = LoopArgs.LB; 2925 OuterLoopArgs.UB = LoopArgs.UB; 2926 OuterLoopArgs.ST = LoopArgs.ST; 2927 OuterLoopArgs.IL = LoopArgs.IL; 2928 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2929 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2930 ? S.getCombinedEnsureUpperBound() 2931 : S.getEnsureUpperBound(); 2932 OuterLoopArgs.IncExpr = IncExpr; 2933 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2934 ? S.getCombinedInit() 2935 : S.getInit(); 2936 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2937 ? S.getCombinedCond() 2938 : S.getCond(); 2939 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2940 ? S.getCombinedNextLowerBound() 2941 : S.getNextLowerBound(); 2942 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2943 ? S.getCombinedNextUpperBound() 2944 : S.getNextUpperBound(); 2945 2946 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2947 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2948 emitEmptyOrdered); 2949 } 2950 2951 static std::pair<LValue, LValue> 2952 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2953 const OMPExecutableDirective &S) { 2954 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2955 LValue LB = 2956 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2957 LValue UB = 2958 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2959 2960 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2961 // parallel for') we need to use the 'distribute' 2962 // chunk lower and upper bounds rather than the whole loop iteration 2963 // space. These are parameters to the outlined function for 'parallel' 2964 // and we copy the bounds of the previous schedule into the 2965 // the current ones. 2966 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2967 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2968 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2969 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2970 PrevLBVal = CGF.EmitScalarConversion( 2971 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2972 LS.getIterationVariable()->getType(), 2973 LS.getPrevLowerBoundVariable()->getExprLoc()); 2974 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2975 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2976 PrevUBVal = CGF.EmitScalarConversion( 2977 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2978 LS.getIterationVariable()->getType(), 2979 LS.getPrevUpperBoundVariable()->getExprLoc()); 2980 2981 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2982 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2983 2984 return {LB, UB}; 2985 } 2986 2987 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2988 /// we need to use the LB and UB expressions generated by the worksharing 2989 /// code generation support, whereas in non combined situations we would 2990 /// just emit 0 and the LastIteration expression 2991 /// This function is necessary due to the difference of the LB and UB 2992 /// types for the RT emission routines for 'for_static_init' and 2993 /// 'for_dispatch_init' 2994 static std::pair<llvm::Value *, llvm::Value *> 2995 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2996 const OMPExecutableDirective &S, 2997 Address LB, Address UB) { 2998 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2999 const Expr *IVExpr = LS.getIterationVariable(); 3000 // when implementing a dynamic schedule for a 'for' combined with a 3001 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 3002 // is not normalized as each team only executes its own assigned 3003 // distribute chunk 3004 QualType IteratorTy = IVExpr->getType(); 3005 llvm::Value *LBVal = 3006 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3007 llvm::Value *UBVal = 3008 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3009 return {LBVal, UBVal}; 3010 } 3011 3012 static void emitDistributeParallelForDistributeInnerBoundParams( 3013 CodeGenFunction &CGF, const OMPExecutableDirective &S, 3014 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 3015 const auto &Dir = cast<OMPLoopDirective>(S); 3016 LValue LB = 3017 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 3018 llvm::Value *LBCast = 3019 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 3020 CGF.SizeTy, /*isSigned=*/false); 3021 CapturedVars.push_back(LBCast); 3022 LValue UB = 3023 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 3024 3025 llvm::Value *UBCast = 3026 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 3027 CGF.SizeTy, /*isSigned=*/false); 3028 CapturedVars.push_back(UBCast); 3029 } 3030 3031 static void 3032 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 3033 const OMPLoopDirective &S, 3034 CodeGenFunction::JumpDest LoopExit) { 3035 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 3036 PrePostActionTy &Action) { 3037 Action.Enter(CGF); 3038 bool HasCancel = false; 3039 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 3040 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 3041 HasCancel = D->hasCancel(); 3042 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 3043 HasCancel = D->hasCancel(); 3044 else if (const auto *D = 3045 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 3046 HasCancel = D->hasCancel(); 3047 } 3048 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3049 HasCancel); 3050 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 3051 emitDistributeParallelForInnerBounds, 3052 emitDistributeParallelForDispatchBounds); 3053 }; 3054 3055 emitCommonOMPParallelDirective( 3056 CGF, S, 3057 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3058 CGInlinedWorksharingLoop, 3059 emitDistributeParallelForDistributeInnerBoundParams); 3060 } 3061 3062 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3063 const OMPDistributeParallelForDirective &S) { 3064 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3065 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3066 S.getDistInc()); 3067 }; 3068 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3069 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3070 } 3071 3072 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3073 const OMPDistributeParallelForSimdDirective &S) { 3074 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3075 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3076 S.getDistInc()); 3077 }; 3078 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3079 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3080 } 3081 3082 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3083 const OMPDistributeSimdDirective &S) { 3084 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3085 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3086 }; 3087 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3088 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3089 } 3090 3091 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3092 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3093 // Emit SPMD target parallel for region as a standalone region. 3094 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3095 emitOMPSimdRegion(CGF, S, Action); 3096 }; 3097 llvm::Function *Fn; 3098 llvm::Constant *Addr; 3099 // Emit target region as a standalone region. 3100 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3101 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3102 assert(Fn && Addr && "Target device function emission failed."); 3103 } 3104 3105 void CodeGenFunction::EmitOMPTargetSimdDirective( 3106 const OMPTargetSimdDirective &S) { 3107 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3108 emitOMPSimdRegion(CGF, S, Action); 3109 }; 3110 emitCommonOMPTargetDirective(*this, S, CodeGen); 3111 } 3112 3113 namespace { 3114 struct ScheduleKindModifiersTy { 3115 OpenMPScheduleClauseKind Kind; 3116 OpenMPScheduleClauseModifier M1; 3117 OpenMPScheduleClauseModifier M2; 3118 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3119 OpenMPScheduleClauseModifier M1, 3120 OpenMPScheduleClauseModifier M2) 3121 : Kind(Kind), M1(M1), M2(M2) {} 3122 }; 3123 } // namespace 3124 3125 bool CodeGenFunction::EmitOMPWorksharingLoop( 3126 const OMPLoopDirective &S, Expr *EUB, 3127 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3128 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3129 // Emit the loop iteration variable. 3130 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3131 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3132 EmitVarDecl(*IVDecl); 3133 3134 // Emit the iterations count variable. 3135 // If it is not a variable, Sema decided to calculate iterations count on each 3136 // iteration (e.g., it is foldable into a constant). 3137 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3138 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3139 // Emit calculation of the iterations count. 3140 EmitIgnoredExpr(S.getCalcLastIteration()); 3141 } 3142 3143 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3144 3145 bool HasLastprivateClause; 3146 // Check pre-condition. 3147 { 3148 OMPLoopScope PreInitScope(*this, S); 3149 // Skip the entire loop if we don't meet the precondition. 3150 // If the condition constant folds and can be elided, avoid emitting the 3151 // whole loop. 3152 bool CondConstant; 3153 llvm::BasicBlock *ContBlock = nullptr; 3154 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3155 if (!CondConstant) 3156 return false; 3157 } else { 3158 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3159 ContBlock = createBasicBlock("omp.precond.end"); 3160 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3161 getProfileCount(&S)); 3162 EmitBlock(ThenBlock); 3163 incrementProfileCounter(&S); 3164 } 3165 3166 RunCleanupsScope DoacrossCleanupScope(*this); 3167 bool Ordered = false; 3168 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3169 if (OrderedClause->getNumForLoops()) 3170 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3171 else 3172 Ordered = true; 3173 } 3174 3175 llvm::DenseSet<const Expr *> EmittedFinals; 3176 emitAlignedClause(*this, S); 3177 bool HasLinears = EmitOMPLinearClauseInit(S); 3178 // Emit helper vars inits. 3179 3180 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3181 LValue LB = Bounds.first; 3182 LValue UB = Bounds.second; 3183 LValue ST = 3184 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3185 LValue IL = 3186 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3187 3188 // Emit 'then' code. 3189 { 3190 OMPPrivateScope LoopScope(*this); 3191 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3192 // Emit implicit barrier to synchronize threads and avoid data races on 3193 // initialization of firstprivate variables and post-update of 3194 // lastprivate variables. 3195 CGM.getOpenMPRuntime().emitBarrierCall( 3196 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3197 /*ForceSimpleCall=*/true); 3198 } 3199 EmitOMPPrivateClause(S, LoopScope); 3200 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3201 *this, S, EmitLValue(S.getIterationVariable())); 3202 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3203 EmitOMPReductionClauseInit(S, LoopScope); 3204 EmitOMPPrivateLoopCounters(S, LoopScope); 3205 EmitOMPLinearClause(S, LoopScope); 3206 (void)LoopScope.Privatize(); 3207 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3208 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3209 3210 // Detect the loop schedule kind and chunk. 3211 const Expr *ChunkExpr = nullptr; 3212 OpenMPScheduleTy ScheduleKind; 3213 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3214 ScheduleKind.Schedule = C->getScheduleKind(); 3215 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3216 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3217 ChunkExpr = C->getChunkSize(); 3218 } else { 3219 // Default behaviour for schedule clause. 3220 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3221 *this, S, ScheduleKind.Schedule, ChunkExpr); 3222 } 3223 bool HasChunkSizeOne = false; 3224 llvm::Value *Chunk = nullptr; 3225 if (ChunkExpr) { 3226 Chunk = EmitScalarExpr(ChunkExpr); 3227 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3228 S.getIterationVariable()->getType(), 3229 S.getBeginLoc()); 3230 Expr::EvalResult Result; 3231 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3232 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3233 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3234 } 3235 } 3236 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3237 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3238 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3239 // If the static schedule kind is specified or if the ordered clause is 3240 // specified, and if no monotonic modifier is specified, the effect will 3241 // be as if the monotonic modifier was specified. 3242 bool StaticChunkedOne = 3243 RT.isStaticChunked(ScheduleKind.Schedule, 3244 /* Chunked */ Chunk != nullptr) && 3245 HasChunkSizeOne && 3246 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3247 bool IsMonotonic = 3248 Ordered || 3249 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3250 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3251 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3252 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3253 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3254 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3255 /* Chunked */ Chunk != nullptr) || 3256 StaticChunkedOne) && 3257 !Ordered) { 3258 JumpDest LoopExit = 3259 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3260 emitCommonSimdLoop( 3261 *this, S, 3262 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3263 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3264 CGF.EmitOMPSimdInit(S); 3265 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3266 if (C->getKind() == OMPC_ORDER_concurrent) 3267 CGF.LoopStack.setParallel(/*Enable=*/true); 3268 } 3269 }, 3270 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3271 &S, ScheduleKind, LoopExit, 3272 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3273 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3274 // When no chunk_size is specified, the iteration space is divided 3275 // into chunks that are approximately equal in size, and at most 3276 // one chunk is distributed to each thread. Note that the size of 3277 // the chunks is unspecified in this case. 3278 CGOpenMPRuntime::StaticRTInput StaticInit( 3279 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3280 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3281 StaticChunkedOne ? Chunk : nullptr); 3282 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3283 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3284 StaticInit); 3285 // UB = min(UB, GlobalUB); 3286 if (!StaticChunkedOne) 3287 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3288 // IV = LB; 3289 CGF.EmitIgnoredExpr(S.getInit()); 3290 // For unchunked static schedule generate: 3291 // 3292 // while (idx <= UB) { 3293 // BODY; 3294 // ++idx; 3295 // } 3296 // 3297 // For static schedule with chunk one: 3298 // 3299 // while (IV <= PrevUB) { 3300 // BODY; 3301 // IV += ST; 3302 // } 3303 CGF.EmitOMPInnerLoop( 3304 S, LoopScope.requiresCleanups(), 3305 StaticChunkedOne ? S.getCombinedParForInDistCond() 3306 : S.getCond(), 3307 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3308 [&S, LoopExit](CodeGenFunction &CGF) { 3309 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3310 }, 3311 [](CodeGenFunction &) {}); 3312 }); 3313 EmitBlock(LoopExit.getBlock()); 3314 // Tell the runtime we are done. 3315 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3316 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3317 S.getDirectiveKind()); 3318 }; 3319 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3320 } else { 3321 // Emit the outer loop, which requests its work chunk [LB..UB] from 3322 // runtime and runs the inner loop to process it. 3323 const OMPLoopArguments LoopArguments( 3324 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3325 IL.getAddress(*this), Chunk, EUB); 3326 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3327 LoopArguments, CGDispatchBounds); 3328 } 3329 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3330 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3331 return CGF.Builder.CreateIsNotNull( 3332 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3333 }); 3334 } 3335 EmitOMPReductionClauseFinal( 3336 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3337 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3338 : /*Parallel only*/ OMPD_parallel); 3339 // Emit post-update of the reduction variables if IsLastIter != 0. 3340 emitPostUpdateForReductionClause( 3341 *this, S, [IL, &S](CodeGenFunction &CGF) { 3342 return CGF.Builder.CreateIsNotNull( 3343 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3344 }); 3345 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3346 if (HasLastprivateClause) 3347 EmitOMPLastprivateClauseFinal( 3348 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3349 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3350 } 3351 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3352 return CGF.Builder.CreateIsNotNull( 3353 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3354 }); 3355 DoacrossCleanupScope.ForceCleanup(); 3356 // We're now done with the loop, so jump to the continuation block. 3357 if (ContBlock) { 3358 EmitBranch(ContBlock); 3359 EmitBlock(ContBlock, /*IsFinished=*/true); 3360 } 3361 } 3362 return HasLastprivateClause; 3363 } 3364 3365 /// The following two functions generate expressions for the loop lower 3366 /// and upper bounds in case of static and dynamic (dispatch) schedule 3367 /// of the associated 'for' or 'distribute' loop. 3368 static std::pair<LValue, LValue> 3369 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3370 const auto &LS = cast<OMPLoopDirective>(S); 3371 LValue LB = 3372 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3373 LValue UB = 3374 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3375 return {LB, UB}; 3376 } 3377 3378 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3379 /// consider the lower and upper bound expressions generated by the 3380 /// worksharing loop support, but we use 0 and the iteration space size as 3381 /// constants 3382 static std::pair<llvm::Value *, llvm::Value *> 3383 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3384 Address LB, Address UB) { 3385 const auto &LS = cast<OMPLoopDirective>(S); 3386 const Expr *IVExpr = LS.getIterationVariable(); 3387 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3388 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3389 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3390 return {LBVal, UBVal}; 3391 } 3392 3393 /// Emits internal temp array declarations for the directive with inscan 3394 /// reductions. 3395 /// The code is the following: 3396 /// \code 3397 /// size num_iters = <num_iters>; 3398 /// <type> buffer[num_iters]; 3399 /// \endcode 3400 static void emitScanBasedDirectiveDecls( 3401 CodeGenFunction &CGF, const OMPLoopDirective &S, 3402 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3403 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3404 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3405 SmallVector<const Expr *, 4> Shareds; 3406 SmallVector<const Expr *, 4> Privates; 3407 SmallVector<const Expr *, 4> ReductionOps; 3408 SmallVector<const Expr *, 4> CopyArrayTemps; 3409 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3410 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3411 "Only inscan reductions are expected."); 3412 Shareds.append(C->varlist_begin(), C->varlist_end()); 3413 Privates.append(C->privates().begin(), C->privates().end()); 3414 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3415 CopyArrayTemps.append(C->copy_array_temps().begin(), 3416 C->copy_array_temps().end()); 3417 } 3418 { 3419 // Emit buffers for each reduction variables. 3420 // ReductionCodeGen is required to emit correctly the code for array 3421 // reductions. 3422 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3423 unsigned Count = 0; 3424 auto *ITA = CopyArrayTemps.begin(); 3425 for (const Expr *IRef : Privates) { 3426 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3427 // Emit variably modified arrays, used for arrays/array sections 3428 // reductions. 3429 if (PrivateVD->getType()->isVariablyModifiedType()) { 3430 RedCG.emitSharedOrigLValue(CGF, Count); 3431 RedCG.emitAggregateType(CGF, Count); 3432 } 3433 CodeGenFunction::OpaqueValueMapping DimMapping( 3434 CGF, 3435 cast<OpaqueValueExpr>( 3436 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3437 ->getSizeExpr()), 3438 RValue::get(OMPScanNumIterations)); 3439 // Emit temp buffer. 3440 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3441 ++ITA; 3442 ++Count; 3443 } 3444 } 3445 } 3446 3447 /// Emits the code for the directive with inscan reductions. 3448 /// The code is the following: 3449 /// \code 3450 /// #pragma omp ... 3451 /// for (i: 0..<num_iters>) { 3452 /// <input phase>; 3453 /// buffer[i] = red; 3454 /// } 3455 /// #pragma omp master // in parallel region 3456 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3457 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3458 /// buffer[i] op= buffer[i-pow(2,k)]; 3459 /// #pragma omp barrier // in parallel region 3460 /// #pragma omp ... 3461 /// for (0..<num_iters>) { 3462 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3463 /// <scan phase>; 3464 /// } 3465 /// \endcode 3466 static void emitScanBasedDirective( 3467 CodeGenFunction &CGF, const OMPLoopDirective &S, 3468 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3469 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3470 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3471 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3472 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3473 SmallVector<const Expr *, 4> Privates; 3474 SmallVector<const Expr *, 4> ReductionOps; 3475 SmallVector<const Expr *, 4> LHSs; 3476 SmallVector<const Expr *, 4> RHSs; 3477 SmallVector<const Expr *, 4> CopyArrayElems; 3478 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3479 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3480 "Only inscan reductions are expected."); 3481 Privates.append(C->privates().begin(), C->privates().end()); 3482 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3483 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3484 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3485 CopyArrayElems.append(C->copy_array_elems().begin(), 3486 C->copy_array_elems().end()); 3487 } 3488 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3489 { 3490 // Emit loop with input phase: 3491 // #pragma omp ... 3492 // for (i: 0..<num_iters>) { 3493 // <input phase>; 3494 // buffer[i] = red; 3495 // } 3496 CGF.OMPFirstScanLoop = true; 3497 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3498 FirstGen(CGF); 3499 } 3500 // #pragma omp barrier // in parallel region 3501 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3502 &ReductionOps, 3503 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3504 Action.Enter(CGF); 3505 // Emit prefix reduction: 3506 // #pragma omp master // in parallel region 3507 // for (int k = 0; k <= ceil(log2(n)); ++k) 3508 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3509 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3510 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3511 llvm::Function *F = 3512 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3513 llvm::Value *Arg = 3514 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3515 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3516 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3517 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3518 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3519 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3520 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3521 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3522 CGF.EmitBlock(LoopBB); 3523 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3524 // size pow2k = 1; 3525 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3526 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3527 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3528 // for (size i = n - 1; i >= 2 ^ k; --i) 3529 // tmp[i] op= tmp[i-pow2k]; 3530 llvm::BasicBlock *InnerLoopBB = 3531 CGF.createBasicBlock("omp.inner.log.scan.body"); 3532 llvm::BasicBlock *InnerExitBB = 3533 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3534 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3535 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3536 CGF.EmitBlock(InnerLoopBB); 3537 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3538 IVal->addIncoming(NMin1, LoopBB); 3539 { 3540 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3541 auto *ILHS = LHSs.begin(); 3542 auto *IRHS = RHSs.begin(); 3543 for (const Expr *CopyArrayElem : CopyArrayElems) { 3544 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3545 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3546 Address LHSAddr = Address::invalid(); 3547 { 3548 CodeGenFunction::OpaqueValueMapping IdxMapping( 3549 CGF, 3550 cast<OpaqueValueExpr>( 3551 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3552 RValue::get(IVal)); 3553 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3554 } 3555 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3556 Address RHSAddr = Address::invalid(); 3557 { 3558 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3559 CodeGenFunction::OpaqueValueMapping IdxMapping( 3560 CGF, 3561 cast<OpaqueValueExpr>( 3562 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3563 RValue::get(OffsetIVal)); 3564 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3565 } 3566 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3567 ++ILHS; 3568 ++IRHS; 3569 } 3570 PrivScope.Privatize(); 3571 CGF.CGM.getOpenMPRuntime().emitReduction( 3572 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3573 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3574 } 3575 llvm::Value *NextIVal = 3576 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3577 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3578 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3579 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3580 CGF.EmitBlock(InnerExitBB); 3581 llvm::Value *Next = 3582 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3583 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3584 // pow2k <<= 1; 3585 llvm::Value *NextPow2K = 3586 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3587 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3588 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3589 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3590 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3591 CGF.EmitBlock(ExitBB); 3592 }; 3593 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3594 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3595 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3596 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3597 /*ForceSimpleCall=*/true); 3598 } else { 3599 RegionCodeGenTy RCG(CodeGen); 3600 RCG(CGF); 3601 } 3602 3603 CGF.OMPFirstScanLoop = false; 3604 SecondGen(CGF); 3605 } 3606 3607 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3608 const OMPLoopDirective &S, 3609 bool HasCancel) { 3610 bool HasLastprivates; 3611 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3612 [](const OMPReductionClause *C) { 3613 return C->getModifier() == OMPC_REDUCTION_inscan; 3614 })) { 3615 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3616 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3617 OMPLoopScope LoopScope(CGF, S); 3618 return CGF.EmitScalarExpr(S.getNumIterations()); 3619 }; 3620 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3621 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3622 CGF, S.getDirectiveKind(), HasCancel); 3623 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3624 emitForLoopBounds, 3625 emitDispatchForLoopBounds); 3626 // Emit an implicit barrier at the end. 3627 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3628 OMPD_for); 3629 }; 3630 const auto &&SecondGen = [&S, HasCancel, 3631 &HasLastprivates](CodeGenFunction &CGF) { 3632 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3633 CGF, S.getDirectiveKind(), HasCancel); 3634 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3635 emitForLoopBounds, 3636 emitDispatchForLoopBounds); 3637 }; 3638 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3639 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3640 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3641 } else { 3642 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3643 HasCancel); 3644 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3645 emitForLoopBounds, 3646 emitDispatchForLoopBounds); 3647 } 3648 return HasLastprivates; 3649 } 3650 3651 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3652 if (S.hasCancel()) 3653 return false; 3654 for (OMPClause *C : S.clauses()) 3655 if (!isa<OMPNowaitClause>(C)) 3656 return false; 3657 3658 return true; 3659 } 3660 3661 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3662 bool HasLastprivates = false; 3663 bool UseOMPIRBuilder = 3664 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3665 auto &&CodeGen = [this, &S, &HasLastprivates, 3666 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3667 // Use the OpenMPIRBuilder if enabled. 3668 if (UseOMPIRBuilder) { 3669 // Emit the associated statement and get its loop representation. 3670 const Stmt *Inner = S.getRawStmt(); 3671 llvm::CanonicalLoopInfo *CLI = 3672 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3673 3674 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3675 llvm::OpenMPIRBuilder &OMPBuilder = 3676 CGM.getOpenMPRuntime().getOMPBuilder(); 3677 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3678 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3679 OMPBuilder.applyWorkshareLoop(Builder.getCurrentDebugLocation(), CLI, 3680 AllocaIP, NeedsBarrier); 3681 return; 3682 } 3683 3684 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3685 }; 3686 { 3687 auto LPCRegion = 3688 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3689 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3690 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3691 S.hasCancel()); 3692 } 3693 3694 if (!UseOMPIRBuilder) { 3695 // Emit an implicit barrier at the end. 3696 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3697 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3698 } 3699 // Check for outer lastprivate conditional update. 3700 checkForLastprivateConditionalUpdate(*this, S); 3701 } 3702 3703 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3704 bool HasLastprivates = false; 3705 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3706 PrePostActionTy &) { 3707 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3708 }; 3709 { 3710 auto LPCRegion = 3711 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3712 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3713 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3714 } 3715 3716 // Emit an implicit barrier at the end. 3717 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3718 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3719 // Check for outer lastprivate conditional update. 3720 checkForLastprivateConditionalUpdate(*this, S); 3721 } 3722 3723 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3724 const Twine &Name, 3725 llvm::Value *Init = nullptr) { 3726 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3727 if (Init) 3728 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3729 return LVal; 3730 } 3731 3732 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3733 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3734 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3735 bool HasLastprivates = false; 3736 auto &&CodeGen = [&S, CapturedStmt, CS, 3737 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3738 const ASTContext &C = CGF.getContext(); 3739 QualType KmpInt32Ty = 3740 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3741 // Emit helper vars inits. 3742 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3743 CGF.Builder.getInt32(0)); 3744 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3745 ? CGF.Builder.getInt32(CS->size() - 1) 3746 : CGF.Builder.getInt32(0); 3747 LValue UB = 3748 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3749 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3750 CGF.Builder.getInt32(1)); 3751 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3752 CGF.Builder.getInt32(0)); 3753 // Loop counter. 3754 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3755 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3756 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3757 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3758 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3759 // Generate condition for loop. 3760 BinaryOperator *Cond = BinaryOperator::Create( 3761 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 3762 S.getBeginLoc(), FPOptionsOverride()); 3763 // Increment for loop counter. 3764 UnaryOperator *Inc = UnaryOperator::Create( 3765 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 3766 S.getBeginLoc(), true, FPOptionsOverride()); 3767 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3768 // Iterate through all sections and emit a switch construct: 3769 // switch (IV) { 3770 // case 0: 3771 // <SectionStmt[0]>; 3772 // break; 3773 // ... 3774 // case <NumSection> - 1: 3775 // <SectionStmt[<NumSection> - 1]>; 3776 // break; 3777 // } 3778 // .omp.sections.exit: 3779 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3780 llvm::SwitchInst *SwitchStmt = 3781 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3782 ExitBB, CS == nullptr ? 1 : CS->size()); 3783 if (CS) { 3784 unsigned CaseNumber = 0; 3785 for (const Stmt *SubStmt : CS->children()) { 3786 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3787 CGF.EmitBlock(CaseBB); 3788 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3789 CGF.EmitStmt(SubStmt); 3790 CGF.EmitBranch(ExitBB); 3791 ++CaseNumber; 3792 } 3793 } else { 3794 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3795 CGF.EmitBlock(CaseBB); 3796 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3797 CGF.EmitStmt(CapturedStmt); 3798 CGF.EmitBranch(ExitBB); 3799 } 3800 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3801 }; 3802 3803 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3804 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3805 // Emit implicit barrier to synchronize threads and avoid data races on 3806 // initialization of firstprivate variables and post-update of lastprivate 3807 // variables. 3808 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3809 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3810 /*ForceSimpleCall=*/true); 3811 } 3812 CGF.EmitOMPPrivateClause(S, LoopScope); 3813 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3814 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3815 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3816 (void)LoopScope.Privatize(); 3817 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3818 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3819 3820 // Emit static non-chunked loop. 3821 OpenMPScheduleTy ScheduleKind; 3822 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3823 CGOpenMPRuntime::StaticRTInput StaticInit( 3824 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3825 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3826 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3827 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3828 // UB = min(UB, GlobalUB); 3829 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3830 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3831 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3832 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3833 // IV = LB; 3834 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3835 // while (idx <= UB) { BODY; ++idx; } 3836 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3837 [](CodeGenFunction &) {}); 3838 // Tell the runtime we are done. 3839 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3840 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3841 S.getDirectiveKind()); 3842 }; 3843 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3844 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3845 // Emit post-update of the reduction variables if IsLastIter != 0. 3846 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3847 return CGF.Builder.CreateIsNotNull( 3848 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3849 }); 3850 3851 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3852 if (HasLastprivates) 3853 CGF.EmitOMPLastprivateClauseFinal( 3854 S, /*NoFinals=*/false, 3855 CGF.Builder.CreateIsNotNull( 3856 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3857 }; 3858 3859 bool HasCancel = false; 3860 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3861 HasCancel = OSD->hasCancel(); 3862 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3863 HasCancel = OPSD->hasCancel(); 3864 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3865 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3866 HasCancel); 3867 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3868 // clause. Otherwise the barrier will be generated by the codegen for the 3869 // directive. 3870 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3871 // Emit implicit barrier to synchronize threads and avoid data races on 3872 // initialization of firstprivate variables. 3873 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3874 OMPD_unknown); 3875 } 3876 } 3877 3878 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3879 if (CGM.getLangOpts().OpenMPIRBuilder) { 3880 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3881 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3882 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 3883 3884 auto FiniCB = [this](InsertPointTy IP) { 3885 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3886 }; 3887 3888 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 3889 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3890 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3891 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 3892 if (CS) { 3893 for (const Stmt *SubStmt : CS->children()) { 3894 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 3895 InsertPointTy CodeGenIP, 3896 llvm::BasicBlock &FiniBB) { 3897 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 3898 FiniBB); 3899 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP, 3900 FiniBB); 3901 }; 3902 SectionCBVector.push_back(SectionCB); 3903 } 3904 } else { 3905 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 3906 InsertPointTy CodeGenIP, 3907 llvm::BasicBlock &FiniBB) { 3908 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3909 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP, 3910 FiniBB); 3911 }; 3912 SectionCBVector.push_back(SectionCB); 3913 } 3914 3915 // Privatization callback that performs appropriate action for 3916 // shared/private/firstprivate/lastprivate/copyin/... variables. 3917 // 3918 // TODO: This defaults to shared right now. 3919 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 3920 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 3921 // The next line is appropriate only for variables (Val) with the 3922 // data-sharing attribute "shared". 3923 ReplVal = &Val; 3924 3925 return CodeGenIP; 3926 }; 3927 3928 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 3929 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3930 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3931 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3932 Builder.restoreIP(OMPBuilder.createSections( 3933 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 3934 S.getSingleClause<OMPNowaitClause>())); 3935 return; 3936 } 3937 { 3938 auto LPCRegion = 3939 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3940 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3941 EmitSections(S); 3942 } 3943 // Emit an implicit barrier at the end. 3944 if (!S.getSingleClause<OMPNowaitClause>()) { 3945 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3946 OMPD_sections); 3947 } 3948 // Check for outer lastprivate conditional update. 3949 checkForLastprivateConditionalUpdate(*this, S); 3950 } 3951 3952 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3953 if (CGM.getLangOpts().OpenMPIRBuilder) { 3954 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3955 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3956 3957 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 3958 auto FiniCB = [this](InsertPointTy IP) { 3959 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3960 }; 3961 3962 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 3963 InsertPointTy CodeGenIP, 3964 llvm::BasicBlock &FiniBB) { 3965 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3966 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt, 3967 CodeGenIP, FiniBB); 3968 }; 3969 3970 LexicalScope Scope(*this, S.getSourceRange()); 3971 EmitStopPoint(&S); 3972 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 3973 3974 return; 3975 } 3976 LexicalScope Scope(*this, S.getSourceRange()); 3977 EmitStopPoint(&S); 3978 EmitStmt(S.getAssociatedStmt()); 3979 } 3980 3981 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3982 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3983 llvm::SmallVector<const Expr *, 8> DestExprs; 3984 llvm::SmallVector<const Expr *, 8> SrcExprs; 3985 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3986 // Check if there are any 'copyprivate' clauses associated with this 3987 // 'single' construct. 3988 // Build a list of copyprivate variables along with helper expressions 3989 // (<source>, <destination>, <destination>=<source> expressions) 3990 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3991 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3992 DestExprs.append(C->destination_exprs().begin(), 3993 C->destination_exprs().end()); 3994 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3995 AssignmentOps.append(C->assignment_ops().begin(), 3996 C->assignment_ops().end()); 3997 } 3998 // Emit code for 'single' region along with 'copyprivate' clauses 3999 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4000 Action.Enter(CGF); 4001 OMPPrivateScope SingleScope(CGF); 4002 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 4003 CGF.EmitOMPPrivateClause(S, SingleScope); 4004 (void)SingleScope.Privatize(); 4005 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4006 }; 4007 { 4008 auto LPCRegion = 4009 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4010 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4011 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 4012 CopyprivateVars, DestExprs, 4013 SrcExprs, AssignmentOps); 4014 } 4015 // Emit an implicit barrier at the end (to avoid data race on firstprivate 4016 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 4017 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 4018 CGM.getOpenMPRuntime().emitBarrierCall( 4019 *this, S.getBeginLoc(), 4020 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 4021 } 4022 // Check for outer lastprivate conditional update. 4023 checkForLastprivateConditionalUpdate(*this, S); 4024 } 4025 4026 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4027 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4028 Action.Enter(CGF); 4029 CGF.EmitStmt(S.getRawStmt()); 4030 }; 4031 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 4032 } 4033 4034 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 4035 if (CGM.getLangOpts().OpenMPIRBuilder) { 4036 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4037 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4038 4039 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 4040 4041 auto FiniCB = [this](InsertPointTy IP) { 4042 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4043 }; 4044 4045 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 4046 InsertPointTy CodeGenIP, 4047 llvm::BasicBlock &FiniBB) { 4048 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4049 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 4050 CodeGenIP, FiniBB); 4051 }; 4052 4053 LexicalScope Scope(*this, S.getSourceRange()); 4054 EmitStopPoint(&S); 4055 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4056 4057 return; 4058 } 4059 LexicalScope Scope(*this, S.getSourceRange()); 4060 EmitStopPoint(&S); 4061 emitMaster(*this, S); 4062 } 4063 4064 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4065 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4066 Action.Enter(CGF); 4067 CGF.EmitStmt(S.getRawStmt()); 4068 }; 4069 Expr *Filter = nullptr; 4070 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4071 Filter = FilterClause->getThreadID(); 4072 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4073 Filter); 4074 } 4075 4076 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4077 if (CGM.getLangOpts().OpenMPIRBuilder) { 4078 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4079 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4080 4081 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4082 const Expr *Filter = nullptr; 4083 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4084 Filter = FilterClause->getThreadID(); 4085 llvm::Value *FilterVal = Filter 4086 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4087 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4088 4089 auto FiniCB = [this](InsertPointTy IP) { 4090 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4091 }; 4092 4093 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4094 InsertPointTy CodeGenIP, 4095 llvm::BasicBlock &FiniBB) { 4096 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4097 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt, 4098 CodeGenIP, FiniBB); 4099 }; 4100 4101 LexicalScope Scope(*this, S.getSourceRange()); 4102 EmitStopPoint(&S); 4103 Builder.restoreIP( 4104 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4105 4106 return; 4107 } 4108 LexicalScope Scope(*this, S.getSourceRange()); 4109 EmitStopPoint(&S); 4110 emitMasked(*this, S); 4111 } 4112 4113 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4114 if (CGM.getLangOpts().OpenMPIRBuilder) { 4115 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4116 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4117 4118 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4119 const Expr *Hint = nullptr; 4120 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4121 Hint = HintClause->getHint(); 4122 4123 // TODO: This is slightly different from what's currently being done in 4124 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4125 // about typing is final. 4126 llvm::Value *HintInst = nullptr; 4127 if (Hint) 4128 HintInst = 4129 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4130 4131 auto FiniCB = [this](InsertPointTy IP) { 4132 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4133 }; 4134 4135 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4136 InsertPointTy CodeGenIP, 4137 llvm::BasicBlock &FiniBB) { 4138 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4139 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 4140 CodeGenIP, FiniBB); 4141 }; 4142 4143 LexicalScope Scope(*this, S.getSourceRange()); 4144 EmitStopPoint(&S); 4145 Builder.restoreIP(OMPBuilder.createCritical( 4146 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4147 HintInst)); 4148 4149 return; 4150 } 4151 4152 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4153 Action.Enter(CGF); 4154 CGF.EmitStmt(S.getAssociatedStmt()); 4155 }; 4156 const Expr *Hint = nullptr; 4157 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4158 Hint = HintClause->getHint(); 4159 LexicalScope Scope(*this, S.getSourceRange()); 4160 EmitStopPoint(&S); 4161 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4162 S.getDirectiveName().getAsString(), 4163 CodeGen, S.getBeginLoc(), Hint); 4164 } 4165 4166 void CodeGenFunction::EmitOMPParallelForDirective( 4167 const OMPParallelForDirective &S) { 4168 // Emit directive as a combined directive that consists of two implicit 4169 // directives: 'parallel' with 'for' directive. 4170 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4171 Action.Enter(CGF); 4172 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4173 }; 4174 { 4175 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4176 [](const OMPReductionClause *C) { 4177 return C->getModifier() == OMPC_REDUCTION_inscan; 4178 })) { 4179 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4180 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4181 CGCapturedStmtInfo CGSI(CR_OpenMP); 4182 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4183 OMPLoopScope LoopScope(CGF, S); 4184 return CGF.EmitScalarExpr(S.getNumIterations()); 4185 }; 4186 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4187 } 4188 auto LPCRegion = 4189 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4190 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4191 emitEmptyBoundParameters); 4192 } 4193 // Check for outer lastprivate conditional update. 4194 checkForLastprivateConditionalUpdate(*this, S); 4195 } 4196 4197 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4198 const OMPParallelForSimdDirective &S) { 4199 // Emit directive as a combined directive that consists of two implicit 4200 // directives: 'parallel' with 'for' directive. 4201 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4202 Action.Enter(CGF); 4203 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4204 }; 4205 { 4206 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4207 [](const OMPReductionClause *C) { 4208 return C->getModifier() == OMPC_REDUCTION_inscan; 4209 })) { 4210 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4211 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4212 CGCapturedStmtInfo CGSI(CR_OpenMP); 4213 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4214 OMPLoopScope LoopScope(CGF, S); 4215 return CGF.EmitScalarExpr(S.getNumIterations()); 4216 }; 4217 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4218 } 4219 auto LPCRegion = 4220 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4221 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4222 emitEmptyBoundParameters); 4223 } 4224 // Check for outer lastprivate conditional update. 4225 checkForLastprivateConditionalUpdate(*this, S); 4226 } 4227 4228 void CodeGenFunction::EmitOMPParallelMasterDirective( 4229 const OMPParallelMasterDirective &S) { 4230 // Emit directive as a combined directive that consists of two implicit 4231 // directives: 'parallel' with 'master' directive. 4232 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4233 Action.Enter(CGF); 4234 OMPPrivateScope PrivateScope(CGF); 4235 bool Copyins = CGF.EmitOMPCopyinClause(S); 4236 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4237 if (Copyins) { 4238 // Emit implicit barrier to synchronize threads and avoid data races on 4239 // propagation master's thread values of threadprivate variables to local 4240 // instances of that variables of all other implicit threads. 4241 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4242 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4243 /*ForceSimpleCall=*/true); 4244 } 4245 CGF.EmitOMPPrivateClause(S, PrivateScope); 4246 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4247 (void)PrivateScope.Privatize(); 4248 emitMaster(CGF, S); 4249 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4250 }; 4251 { 4252 auto LPCRegion = 4253 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4254 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4255 emitEmptyBoundParameters); 4256 emitPostUpdateForReductionClause(*this, S, 4257 [](CodeGenFunction &) { return nullptr; }); 4258 } 4259 // Check for outer lastprivate conditional update. 4260 checkForLastprivateConditionalUpdate(*this, S); 4261 } 4262 4263 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4264 const OMPParallelSectionsDirective &S) { 4265 // Emit directive as a combined directive that consists of two implicit 4266 // directives: 'parallel' with 'sections' directive. 4267 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4268 Action.Enter(CGF); 4269 CGF.EmitSections(S); 4270 }; 4271 { 4272 auto LPCRegion = 4273 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4274 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4275 emitEmptyBoundParameters); 4276 } 4277 // Check for outer lastprivate conditional update. 4278 checkForLastprivateConditionalUpdate(*this, S); 4279 } 4280 4281 namespace { 4282 /// Get the list of variables declared in the context of the untied tasks. 4283 class CheckVarsEscapingUntiedTaskDeclContext final 4284 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4285 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4286 4287 public: 4288 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4289 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4290 void VisitDeclStmt(const DeclStmt *S) { 4291 if (!S) 4292 return; 4293 // Need to privatize only local vars, static locals can be processed as is. 4294 for (const Decl *D : S->decls()) { 4295 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4296 if (VD->hasLocalStorage()) 4297 PrivateDecls.push_back(VD); 4298 } 4299 } 4300 void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; } 4301 void VisitCapturedStmt(const CapturedStmt *) { return; } 4302 void VisitLambdaExpr(const LambdaExpr *) { return; } 4303 void VisitBlockExpr(const BlockExpr *) { return; } 4304 void VisitStmt(const Stmt *S) { 4305 if (!S) 4306 return; 4307 for (const Stmt *Child : S->children()) 4308 if (Child) 4309 Visit(Child); 4310 } 4311 4312 /// Swaps list of vars with the provided one. 4313 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4314 }; 4315 } // anonymous namespace 4316 4317 void CodeGenFunction::EmitOMPTaskBasedDirective( 4318 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4319 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4320 OMPTaskDataTy &Data) { 4321 // Emit outlined function for task construct. 4322 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4323 auto I = CS->getCapturedDecl()->param_begin(); 4324 auto PartId = std::next(I); 4325 auto TaskT = std::next(I, 4); 4326 // Check if the task is final 4327 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4328 // If the condition constant folds and can be elided, try to avoid emitting 4329 // the condition and the dead arm of the if/else. 4330 const Expr *Cond = Clause->getCondition(); 4331 bool CondConstant; 4332 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4333 Data.Final.setInt(CondConstant); 4334 else 4335 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4336 } else { 4337 // By default the task is not final. 4338 Data.Final.setInt(/*IntVal=*/false); 4339 } 4340 // Check if the task has 'priority' clause. 4341 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4342 const Expr *Prio = Clause->getPriority(); 4343 Data.Priority.setInt(/*IntVal=*/true); 4344 Data.Priority.setPointer(EmitScalarConversion( 4345 EmitScalarExpr(Prio), Prio->getType(), 4346 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4347 Prio->getExprLoc())); 4348 } 4349 // The first function argument for tasks is a thread id, the second one is a 4350 // part id (0 for tied tasks, >=0 for untied task). 4351 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4352 // Get list of private variables. 4353 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4354 auto IRef = C->varlist_begin(); 4355 for (const Expr *IInit : C->private_copies()) { 4356 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4357 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4358 Data.PrivateVars.push_back(*IRef); 4359 Data.PrivateCopies.push_back(IInit); 4360 } 4361 ++IRef; 4362 } 4363 } 4364 EmittedAsPrivate.clear(); 4365 // Get list of firstprivate variables. 4366 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4367 auto IRef = C->varlist_begin(); 4368 auto IElemInitRef = C->inits().begin(); 4369 for (const Expr *IInit : C->private_copies()) { 4370 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4371 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4372 Data.FirstprivateVars.push_back(*IRef); 4373 Data.FirstprivateCopies.push_back(IInit); 4374 Data.FirstprivateInits.push_back(*IElemInitRef); 4375 } 4376 ++IRef; 4377 ++IElemInitRef; 4378 } 4379 } 4380 // Get list of lastprivate variables (for taskloops). 4381 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4382 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4383 auto IRef = C->varlist_begin(); 4384 auto ID = C->destination_exprs().begin(); 4385 for (const Expr *IInit : C->private_copies()) { 4386 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4387 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4388 Data.LastprivateVars.push_back(*IRef); 4389 Data.LastprivateCopies.push_back(IInit); 4390 } 4391 LastprivateDstsOrigs.insert( 4392 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4393 cast<DeclRefExpr>(*IRef))); 4394 ++IRef; 4395 ++ID; 4396 } 4397 } 4398 SmallVector<const Expr *, 4> LHSs; 4399 SmallVector<const Expr *, 4> RHSs; 4400 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4401 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4402 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4403 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4404 Data.ReductionOps.append(C->reduction_ops().begin(), 4405 C->reduction_ops().end()); 4406 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4407 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4408 } 4409 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4410 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4411 // Build list of dependences. 4412 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4413 OMPTaskDataTy::DependData &DD = 4414 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4415 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4416 } 4417 // Get list of local vars for untied tasks. 4418 if (!Data.Tied) { 4419 CheckVarsEscapingUntiedTaskDeclContext Checker; 4420 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4421 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4422 Checker.getPrivateDecls().end()); 4423 } 4424 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4425 CapturedRegion](CodeGenFunction &CGF, 4426 PrePostActionTy &Action) { 4427 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4428 std::pair<Address, Address>> 4429 UntiedLocalVars; 4430 // Set proper addresses for generated private copies. 4431 OMPPrivateScope Scope(CGF); 4432 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4433 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4434 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4435 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4436 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4437 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4438 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4439 CS->getCapturedDecl()->getParam(PrivatesParam))); 4440 // Map privates. 4441 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4442 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4443 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4444 CallArgs.push_back(PrivatesPtr); 4445 ParamTypes.push_back(PrivatesPtr->getType()); 4446 for (const Expr *E : Data.PrivateVars) { 4447 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4448 Address PrivatePtr = CGF.CreateMemTemp( 4449 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4450 PrivatePtrs.emplace_back(VD, PrivatePtr); 4451 CallArgs.push_back(PrivatePtr.getPointer()); 4452 ParamTypes.push_back(PrivatePtr.getType()); 4453 } 4454 for (const Expr *E : Data.FirstprivateVars) { 4455 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4456 Address PrivatePtr = 4457 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4458 ".firstpriv.ptr.addr"); 4459 PrivatePtrs.emplace_back(VD, PrivatePtr); 4460 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4461 CallArgs.push_back(PrivatePtr.getPointer()); 4462 ParamTypes.push_back(PrivatePtr.getType()); 4463 } 4464 for (const Expr *E : Data.LastprivateVars) { 4465 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4466 Address PrivatePtr = 4467 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4468 ".lastpriv.ptr.addr"); 4469 PrivatePtrs.emplace_back(VD, PrivatePtr); 4470 CallArgs.push_back(PrivatePtr.getPointer()); 4471 ParamTypes.push_back(PrivatePtr.getType()); 4472 } 4473 for (const VarDecl *VD : Data.PrivateLocals) { 4474 QualType Ty = VD->getType().getNonReferenceType(); 4475 if (VD->getType()->isLValueReferenceType()) 4476 Ty = CGF.getContext().getPointerType(Ty); 4477 if (isAllocatableDecl(VD)) 4478 Ty = CGF.getContext().getPointerType(Ty); 4479 Address PrivatePtr = CGF.CreateMemTemp( 4480 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4481 auto Result = UntiedLocalVars.insert( 4482 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4483 // If key exists update in place. 4484 if (Result.second == false) 4485 *Result.first = std::make_pair( 4486 VD, std::make_pair(PrivatePtr, Address::invalid())); 4487 CallArgs.push_back(PrivatePtr.getPointer()); 4488 ParamTypes.push_back(PrivatePtr.getType()); 4489 } 4490 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4491 ParamTypes, /*isVarArg=*/false); 4492 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4493 CopyFn, CopyFnTy->getPointerTo()); 4494 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4495 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4496 for (const auto &Pair : LastprivateDstsOrigs) { 4497 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4498 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4499 /*RefersToEnclosingVariableOrCapture=*/ 4500 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4501 Pair.second->getType(), VK_LValue, 4502 Pair.second->getExprLoc()); 4503 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4504 return CGF.EmitLValue(&DRE).getAddress(CGF); 4505 }); 4506 } 4507 for (const auto &Pair : PrivatePtrs) { 4508 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4509 CGF.getContext().getDeclAlign(Pair.first)); 4510 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4511 } 4512 // Adjust mapping for internal locals by mapping actual memory instead of 4513 // a pointer to this memory. 4514 for (auto &Pair : UntiedLocalVars) { 4515 if (isAllocatableDecl(Pair.first)) { 4516 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4517 Address Replacement(Ptr, CGF.getPointerAlign()); 4518 Pair.second.first = Replacement; 4519 Ptr = CGF.Builder.CreateLoad(Replacement); 4520 Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4521 Pair.second.second = Replacement; 4522 } else { 4523 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4524 Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4525 Pair.second.first = Replacement; 4526 } 4527 } 4528 } 4529 if (Data.Reductions) { 4530 OMPPrivateScope FirstprivateScope(CGF); 4531 for (const auto &Pair : FirstprivatePtrs) { 4532 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4533 CGF.getContext().getDeclAlign(Pair.first)); 4534 FirstprivateScope.addPrivate(Pair.first, 4535 [Replacement]() { return Replacement; }); 4536 } 4537 (void)FirstprivateScope.Privatize(); 4538 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4539 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4540 Data.ReductionCopies, Data.ReductionOps); 4541 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4542 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4543 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4544 RedCG.emitSharedOrigLValue(CGF, Cnt); 4545 RedCG.emitAggregateType(CGF, Cnt); 4546 // FIXME: This must removed once the runtime library is fixed. 4547 // Emit required threadprivate variables for 4548 // initializer/combiner/finalizer. 4549 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4550 RedCG, Cnt); 4551 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4552 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4553 Replacement = 4554 Address(CGF.EmitScalarConversion( 4555 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4556 CGF.getContext().getPointerType( 4557 Data.ReductionCopies[Cnt]->getType()), 4558 Data.ReductionCopies[Cnt]->getExprLoc()), 4559 Replacement.getAlignment()); 4560 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4561 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4562 [Replacement]() { return Replacement; }); 4563 } 4564 } 4565 // Privatize all private variables except for in_reduction items. 4566 (void)Scope.Privatize(); 4567 SmallVector<const Expr *, 4> InRedVars; 4568 SmallVector<const Expr *, 4> InRedPrivs; 4569 SmallVector<const Expr *, 4> InRedOps; 4570 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4571 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4572 auto IPriv = C->privates().begin(); 4573 auto IRed = C->reduction_ops().begin(); 4574 auto ITD = C->taskgroup_descriptors().begin(); 4575 for (const Expr *Ref : C->varlists()) { 4576 InRedVars.emplace_back(Ref); 4577 InRedPrivs.emplace_back(*IPriv); 4578 InRedOps.emplace_back(*IRed); 4579 TaskgroupDescriptors.emplace_back(*ITD); 4580 std::advance(IPriv, 1); 4581 std::advance(IRed, 1); 4582 std::advance(ITD, 1); 4583 } 4584 } 4585 // Privatize in_reduction items here, because taskgroup descriptors must be 4586 // privatized earlier. 4587 OMPPrivateScope InRedScope(CGF); 4588 if (!InRedVars.empty()) { 4589 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4590 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4591 RedCG.emitSharedOrigLValue(CGF, Cnt); 4592 RedCG.emitAggregateType(CGF, Cnt); 4593 // The taskgroup descriptor variable is always implicit firstprivate and 4594 // privatized already during processing of the firstprivates. 4595 // FIXME: This must removed once the runtime library is fixed. 4596 // Emit required threadprivate variables for 4597 // initializer/combiner/finalizer. 4598 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4599 RedCG, Cnt); 4600 llvm::Value *ReductionsPtr; 4601 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4602 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4603 TRExpr->getExprLoc()); 4604 } else { 4605 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4606 } 4607 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4608 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4609 Replacement = Address( 4610 CGF.EmitScalarConversion( 4611 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4612 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4613 InRedPrivs[Cnt]->getExprLoc()), 4614 Replacement.getAlignment()); 4615 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4616 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4617 [Replacement]() { return Replacement; }); 4618 } 4619 } 4620 (void)InRedScope.Privatize(); 4621 4622 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4623 UntiedLocalVars); 4624 Action.Enter(CGF); 4625 BodyGen(CGF); 4626 }; 4627 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4628 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4629 Data.NumberOfParts); 4630 OMPLexicalScope Scope(*this, S, llvm::None, 4631 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4632 !isOpenMPSimdDirective(S.getDirectiveKind())); 4633 TaskGen(*this, OutlinedFn, Data); 4634 } 4635 4636 static ImplicitParamDecl * 4637 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4638 QualType Ty, CapturedDecl *CD, 4639 SourceLocation Loc) { 4640 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4641 ImplicitParamDecl::Other); 4642 auto *OrigRef = DeclRefExpr::Create( 4643 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4644 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4645 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4646 ImplicitParamDecl::Other); 4647 auto *PrivateRef = DeclRefExpr::Create( 4648 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4649 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4650 QualType ElemType = C.getBaseElementType(Ty); 4651 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4652 ImplicitParamDecl::Other); 4653 auto *InitRef = DeclRefExpr::Create( 4654 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4655 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4656 PrivateVD->setInitStyle(VarDecl::CInit); 4657 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4658 InitRef, /*BasePath=*/nullptr, 4659 VK_PRValue, FPOptionsOverride())); 4660 Data.FirstprivateVars.emplace_back(OrigRef); 4661 Data.FirstprivateCopies.emplace_back(PrivateRef); 4662 Data.FirstprivateInits.emplace_back(InitRef); 4663 return OrigVD; 4664 } 4665 4666 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4667 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4668 OMPTargetDataInfo &InputInfo) { 4669 // Emit outlined function for task construct. 4670 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4671 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4672 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4673 auto I = CS->getCapturedDecl()->param_begin(); 4674 auto PartId = std::next(I); 4675 auto TaskT = std::next(I, 4); 4676 OMPTaskDataTy Data; 4677 // The task is not final. 4678 Data.Final.setInt(/*IntVal=*/false); 4679 // Get list of firstprivate variables. 4680 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4681 auto IRef = C->varlist_begin(); 4682 auto IElemInitRef = C->inits().begin(); 4683 for (auto *IInit : C->private_copies()) { 4684 Data.FirstprivateVars.push_back(*IRef); 4685 Data.FirstprivateCopies.push_back(IInit); 4686 Data.FirstprivateInits.push_back(*IElemInitRef); 4687 ++IRef; 4688 ++IElemInitRef; 4689 } 4690 } 4691 OMPPrivateScope TargetScope(*this); 4692 VarDecl *BPVD = nullptr; 4693 VarDecl *PVD = nullptr; 4694 VarDecl *SVD = nullptr; 4695 VarDecl *MVD = nullptr; 4696 if (InputInfo.NumberOfTargetItems > 0) { 4697 auto *CD = CapturedDecl::Create( 4698 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4699 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4700 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4701 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4702 /*IndexTypeQuals=*/0); 4703 BPVD = createImplicitFirstprivateForType( 4704 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4705 PVD = createImplicitFirstprivateForType( 4706 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4707 QualType SizesType = getContext().getConstantArrayType( 4708 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4709 ArrSize, nullptr, ArrayType::Normal, 4710 /*IndexTypeQuals=*/0); 4711 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4712 S.getBeginLoc()); 4713 TargetScope.addPrivate( 4714 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4715 TargetScope.addPrivate(PVD, 4716 [&InputInfo]() { return InputInfo.PointersArray; }); 4717 TargetScope.addPrivate(SVD, 4718 [&InputInfo]() { return InputInfo.SizesArray; }); 4719 // If there is no user-defined mapper, the mapper array will be nullptr. In 4720 // this case, we don't need to privatize it. 4721 if (!dyn_cast_or_null<llvm::ConstantPointerNull>( 4722 InputInfo.MappersArray.getPointer())) { 4723 MVD = createImplicitFirstprivateForType( 4724 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4725 TargetScope.addPrivate(MVD, 4726 [&InputInfo]() { return InputInfo.MappersArray; }); 4727 } 4728 } 4729 (void)TargetScope.Privatize(); 4730 // Build list of dependences. 4731 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4732 OMPTaskDataTy::DependData &DD = 4733 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4734 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4735 } 4736 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4737 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4738 // Set proper addresses for generated private copies. 4739 OMPPrivateScope Scope(CGF); 4740 if (!Data.FirstprivateVars.empty()) { 4741 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4742 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4743 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4744 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4745 CS->getCapturedDecl()->getParam(PrivatesParam))); 4746 // Map privates. 4747 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4748 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4749 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4750 CallArgs.push_back(PrivatesPtr); 4751 ParamTypes.push_back(PrivatesPtr->getType()); 4752 for (const Expr *E : Data.FirstprivateVars) { 4753 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4754 Address PrivatePtr = 4755 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4756 ".firstpriv.ptr.addr"); 4757 PrivatePtrs.emplace_back(VD, PrivatePtr); 4758 CallArgs.push_back(PrivatePtr.getPointer()); 4759 ParamTypes.push_back(PrivatePtr.getType()); 4760 } 4761 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4762 ParamTypes, /*isVarArg=*/false); 4763 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4764 CopyFn, CopyFnTy->getPointerTo()); 4765 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4766 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4767 for (const auto &Pair : PrivatePtrs) { 4768 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4769 CGF.getContext().getDeclAlign(Pair.first)); 4770 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4771 } 4772 } 4773 // Privatize all private variables except for in_reduction items. 4774 (void)Scope.Privatize(); 4775 if (InputInfo.NumberOfTargetItems > 0) { 4776 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4777 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4778 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4779 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4780 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4781 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4782 // If MVD is nullptr, the mapper array is not privatized 4783 if (MVD) 4784 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4785 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4786 } 4787 4788 Action.Enter(CGF); 4789 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4790 BodyGen(CGF); 4791 }; 4792 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4793 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4794 Data.NumberOfParts); 4795 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4796 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4797 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4798 SourceLocation()); 4799 4800 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4801 SharedsTy, CapturedStruct, &IfCond, Data); 4802 } 4803 4804 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4805 // Emit outlined function for task construct. 4806 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4807 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4808 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4809 const Expr *IfCond = nullptr; 4810 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4811 if (C->getNameModifier() == OMPD_unknown || 4812 C->getNameModifier() == OMPD_task) { 4813 IfCond = C->getCondition(); 4814 break; 4815 } 4816 } 4817 4818 OMPTaskDataTy Data; 4819 // Check if we should emit tied or untied task. 4820 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4821 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4822 CGF.EmitStmt(CS->getCapturedStmt()); 4823 }; 4824 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4825 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4826 const OMPTaskDataTy &Data) { 4827 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4828 SharedsTy, CapturedStruct, IfCond, 4829 Data); 4830 }; 4831 auto LPCRegion = 4832 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4833 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4834 } 4835 4836 void CodeGenFunction::EmitOMPTaskyieldDirective( 4837 const OMPTaskyieldDirective &S) { 4838 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4839 } 4840 4841 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4842 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4843 } 4844 4845 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4846 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 4847 } 4848 4849 void CodeGenFunction::EmitOMPTaskgroupDirective( 4850 const OMPTaskgroupDirective &S) { 4851 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4852 Action.Enter(CGF); 4853 if (const Expr *E = S.getReductionRef()) { 4854 SmallVector<const Expr *, 4> LHSs; 4855 SmallVector<const Expr *, 4> RHSs; 4856 OMPTaskDataTy Data; 4857 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4858 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4859 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4860 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4861 Data.ReductionOps.append(C->reduction_ops().begin(), 4862 C->reduction_ops().end()); 4863 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4864 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4865 } 4866 llvm::Value *ReductionDesc = 4867 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4868 LHSs, RHSs, Data); 4869 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4870 CGF.EmitVarDecl(*VD); 4871 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4872 /*Volatile=*/false, E->getType()); 4873 } 4874 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4875 }; 4876 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4877 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4878 } 4879 4880 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4881 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4882 ? llvm::AtomicOrdering::NotAtomic 4883 : llvm::AtomicOrdering::AcquireRelease; 4884 CGM.getOpenMPRuntime().emitFlush( 4885 *this, 4886 [&S]() -> ArrayRef<const Expr *> { 4887 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4888 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4889 FlushClause->varlist_end()); 4890 return llvm::None; 4891 }(), 4892 S.getBeginLoc(), AO); 4893 } 4894 4895 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4896 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4897 LValue DOLVal = EmitLValue(DO->getDepobj()); 4898 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4899 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4900 DC->getModifier()); 4901 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4902 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4903 *this, Dependencies, DC->getBeginLoc()); 4904 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4905 return; 4906 } 4907 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4908 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4909 return; 4910 } 4911 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4912 CGM.getOpenMPRuntime().emitUpdateClause( 4913 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4914 return; 4915 } 4916 } 4917 4918 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4919 if (!OMPParentLoopDirectiveForScan) 4920 return; 4921 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4922 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4923 SmallVector<const Expr *, 4> Shareds; 4924 SmallVector<const Expr *, 4> Privates; 4925 SmallVector<const Expr *, 4> LHSs; 4926 SmallVector<const Expr *, 4> RHSs; 4927 SmallVector<const Expr *, 4> ReductionOps; 4928 SmallVector<const Expr *, 4> CopyOps; 4929 SmallVector<const Expr *, 4> CopyArrayTemps; 4930 SmallVector<const Expr *, 4> CopyArrayElems; 4931 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4932 if (C->getModifier() != OMPC_REDUCTION_inscan) 4933 continue; 4934 Shareds.append(C->varlist_begin(), C->varlist_end()); 4935 Privates.append(C->privates().begin(), C->privates().end()); 4936 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4937 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4938 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 4939 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 4940 CopyArrayTemps.append(C->copy_array_temps().begin(), 4941 C->copy_array_temps().end()); 4942 CopyArrayElems.append(C->copy_array_elems().begin(), 4943 C->copy_array_elems().end()); 4944 } 4945 if (ParentDir.getDirectiveKind() == OMPD_simd || 4946 (getLangOpts().OpenMPSimd && 4947 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 4948 // For simd directive and simd-based directives in simd only mode, use the 4949 // following codegen: 4950 // int x = 0; 4951 // #pragma omp simd reduction(inscan, +: x) 4952 // for (..) { 4953 // <first part> 4954 // #pragma omp scan inclusive(x) 4955 // <second part> 4956 // } 4957 // is transformed to: 4958 // int x = 0; 4959 // for (..) { 4960 // int x_priv = 0; 4961 // <first part> 4962 // x = x_priv + x; 4963 // x_priv = x; 4964 // <second part> 4965 // } 4966 // and 4967 // int x = 0; 4968 // #pragma omp simd reduction(inscan, +: x) 4969 // for (..) { 4970 // <first part> 4971 // #pragma omp scan exclusive(x) 4972 // <second part> 4973 // } 4974 // to 4975 // int x = 0; 4976 // for (..) { 4977 // int x_priv = 0; 4978 // <second part> 4979 // int temp = x; 4980 // x = x_priv + x; 4981 // x_priv = temp; 4982 // <first part> 4983 // } 4984 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 4985 EmitBranch(IsInclusive 4986 ? OMPScanReduce 4987 : BreakContinueStack.back().ContinueBlock.getBlock()); 4988 EmitBlock(OMPScanDispatch); 4989 { 4990 // New scope for correct construction/destruction of temp variables for 4991 // exclusive scan. 4992 LexicalScope Scope(*this, S.getSourceRange()); 4993 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 4994 EmitBlock(OMPScanReduce); 4995 if (!IsInclusive) { 4996 // Create temp var and copy LHS value to this temp value. 4997 // TMP = LHS; 4998 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4999 const Expr *PrivateExpr = Privates[I]; 5000 const Expr *TempExpr = CopyArrayTemps[I]; 5001 EmitAutoVarDecl( 5002 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 5003 LValue DestLVal = EmitLValue(TempExpr); 5004 LValue SrcLVal = EmitLValue(LHSs[I]); 5005 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5006 SrcLVal.getAddress(*this), 5007 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5008 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5009 CopyOps[I]); 5010 } 5011 } 5012 CGM.getOpenMPRuntime().emitReduction( 5013 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 5014 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 5015 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5016 const Expr *PrivateExpr = Privates[I]; 5017 LValue DestLVal; 5018 LValue SrcLVal; 5019 if (IsInclusive) { 5020 DestLVal = EmitLValue(RHSs[I]); 5021 SrcLVal = EmitLValue(LHSs[I]); 5022 } else { 5023 const Expr *TempExpr = CopyArrayTemps[I]; 5024 DestLVal = EmitLValue(RHSs[I]); 5025 SrcLVal = EmitLValue(TempExpr); 5026 } 5027 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5028 SrcLVal.getAddress(*this), 5029 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5030 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5031 CopyOps[I]); 5032 } 5033 } 5034 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 5035 OMPScanExitBlock = IsInclusive 5036 ? BreakContinueStack.back().ContinueBlock.getBlock() 5037 : OMPScanReduce; 5038 EmitBlock(OMPAfterScanBlock); 5039 return; 5040 } 5041 if (!IsInclusive) { 5042 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5043 EmitBlock(OMPScanExitBlock); 5044 } 5045 if (OMPFirstScanLoop) { 5046 // Emit buffer[i] = red; at the end of the input phase. 5047 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5048 .getIterationVariable() 5049 ->IgnoreParenImpCasts(); 5050 LValue IdxLVal = EmitLValue(IVExpr); 5051 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5052 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5053 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5054 const Expr *PrivateExpr = Privates[I]; 5055 const Expr *OrigExpr = Shareds[I]; 5056 const Expr *CopyArrayElem = CopyArrayElems[I]; 5057 OpaqueValueMapping IdxMapping( 5058 *this, 5059 cast<OpaqueValueExpr>( 5060 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5061 RValue::get(IdxVal)); 5062 LValue DestLVal = EmitLValue(CopyArrayElem); 5063 LValue SrcLVal = EmitLValue(OrigExpr); 5064 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5065 SrcLVal.getAddress(*this), 5066 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5067 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5068 CopyOps[I]); 5069 } 5070 } 5071 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5072 if (IsInclusive) { 5073 EmitBlock(OMPScanExitBlock); 5074 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5075 } 5076 EmitBlock(OMPScanDispatch); 5077 if (!OMPFirstScanLoop) { 5078 // Emit red = buffer[i]; at the entrance to the scan phase. 5079 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5080 .getIterationVariable() 5081 ->IgnoreParenImpCasts(); 5082 LValue IdxLVal = EmitLValue(IVExpr); 5083 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5084 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5085 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5086 if (!IsInclusive) { 5087 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5088 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5089 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5090 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5091 EmitBlock(ContBB); 5092 // Use idx - 1 iteration for exclusive scan. 5093 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5094 } 5095 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5096 const Expr *PrivateExpr = Privates[I]; 5097 const Expr *OrigExpr = Shareds[I]; 5098 const Expr *CopyArrayElem = CopyArrayElems[I]; 5099 OpaqueValueMapping IdxMapping( 5100 *this, 5101 cast<OpaqueValueExpr>( 5102 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5103 RValue::get(IdxVal)); 5104 LValue SrcLVal = EmitLValue(CopyArrayElem); 5105 LValue DestLVal = EmitLValue(OrigExpr); 5106 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5107 SrcLVal.getAddress(*this), 5108 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5109 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5110 CopyOps[I]); 5111 } 5112 if (!IsInclusive) { 5113 EmitBlock(ExclusiveExitBB); 5114 } 5115 } 5116 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5117 : OMPAfterScanBlock); 5118 EmitBlock(OMPAfterScanBlock); 5119 } 5120 5121 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5122 const CodeGenLoopTy &CodeGenLoop, 5123 Expr *IncExpr) { 5124 // Emit the loop iteration variable. 5125 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5126 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5127 EmitVarDecl(*IVDecl); 5128 5129 // Emit the iterations count variable. 5130 // If it is not a variable, Sema decided to calculate iterations count on each 5131 // iteration (e.g., it is foldable into a constant). 5132 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5133 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5134 // Emit calculation of the iterations count. 5135 EmitIgnoredExpr(S.getCalcLastIteration()); 5136 } 5137 5138 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5139 5140 bool HasLastprivateClause = false; 5141 // Check pre-condition. 5142 { 5143 OMPLoopScope PreInitScope(*this, S); 5144 // Skip the entire loop if we don't meet the precondition. 5145 // If the condition constant folds and can be elided, avoid emitting the 5146 // whole loop. 5147 bool CondConstant; 5148 llvm::BasicBlock *ContBlock = nullptr; 5149 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5150 if (!CondConstant) 5151 return; 5152 } else { 5153 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5154 ContBlock = createBasicBlock("omp.precond.end"); 5155 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5156 getProfileCount(&S)); 5157 EmitBlock(ThenBlock); 5158 incrementProfileCounter(&S); 5159 } 5160 5161 emitAlignedClause(*this, S); 5162 // Emit 'then' code. 5163 { 5164 // Emit helper vars inits. 5165 5166 LValue LB = EmitOMPHelperVar( 5167 *this, cast<DeclRefExpr>( 5168 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5169 ? S.getCombinedLowerBoundVariable() 5170 : S.getLowerBoundVariable()))); 5171 LValue UB = EmitOMPHelperVar( 5172 *this, cast<DeclRefExpr>( 5173 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5174 ? S.getCombinedUpperBoundVariable() 5175 : S.getUpperBoundVariable()))); 5176 LValue ST = 5177 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5178 LValue IL = 5179 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5180 5181 OMPPrivateScope LoopScope(*this); 5182 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5183 // Emit implicit barrier to synchronize threads and avoid data races 5184 // on initialization of firstprivate variables and post-update of 5185 // lastprivate variables. 5186 CGM.getOpenMPRuntime().emitBarrierCall( 5187 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5188 /*ForceSimpleCall=*/true); 5189 } 5190 EmitOMPPrivateClause(S, LoopScope); 5191 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5192 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5193 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5194 EmitOMPReductionClauseInit(S, LoopScope); 5195 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5196 EmitOMPPrivateLoopCounters(S, LoopScope); 5197 (void)LoopScope.Privatize(); 5198 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5199 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5200 5201 // Detect the distribute schedule kind and chunk. 5202 llvm::Value *Chunk = nullptr; 5203 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5204 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5205 ScheduleKind = C->getDistScheduleKind(); 5206 if (const Expr *Ch = C->getChunkSize()) { 5207 Chunk = EmitScalarExpr(Ch); 5208 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5209 S.getIterationVariable()->getType(), 5210 S.getBeginLoc()); 5211 } 5212 } else { 5213 // Default behaviour for dist_schedule clause. 5214 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5215 *this, S, ScheduleKind, Chunk); 5216 } 5217 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5218 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5219 5220 // OpenMP [2.10.8, distribute Construct, Description] 5221 // If dist_schedule is specified, kind must be static. If specified, 5222 // iterations are divided into chunks of size chunk_size, chunks are 5223 // assigned to the teams of the league in a round-robin fashion in the 5224 // order of the team number. When no chunk_size is specified, the 5225 // iteration space is divided into chunks that are approximately equal 5226 // in size, and at most one chunk is distributed to each team of the 5227 // league. The size of the chunks is unspecified in this case. 5228 bool StaticChunked = 5229 RT.isStaticChunked(ScheduleKind, /* Chunked */ Chunk != nullptr) && 5230 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5231 if (RT.isStaticNonchunked(ScheduleKind, 5232 /* Chunked */ Chunk != nullptr) || 5233 StaticChunked) { 5234 CGOpenMPRuntime::StaticRTInput StaticInit( 5235 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5236 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5237 StaticChunked ? Chunk : nullptr); 5238 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5239 StaticInit); 5240 JumpDest LoopExit = 5241 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5242 // UB = min(UB, GlobalUB); 5243 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5244 ? S.getCombinedEnsureUpperBound() 5245 : S.getEnsureUpperBound()); 5246 // IV = LB; 5247 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5248 ? S.getCombinedInit() 5249 : S.getInit()); 5250 5251 const Expr *Cond = 5252 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5253 ? S.getCombinedCond() 5254 : S.getCond(); 5255 5256 if (StaticChunked) 5257 Cond = S.getCombinedDistCond(); 5258 5259 // For static unchunked schedules generate: 5260 // 5261 // 1. For distribute alone, codegen 5262 // while (idx <= UB) { 5263 // BODY; 5264 // ++idx; 5265 // } 5266 // 5267 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5268 // while (idx <= UB) { 5269 // <CodeGen rest of pragma>(LB, UB); 5270 // idx += ST; 5271 // } 5272 // 5273 // For static chunk one schedule generate: 5274 // 5275 // while (IV <= GlobalUB) { 5276 // <CodeGen rest of pragma>(LB, UB); 5277 // LB += ST; 5278 // UB += ST; 5279 // UB = min(UB, GlobalUB); 5280 // IV = LB; 5281 // } 5282 // 5283 emitCommonSimdLoop( 5284 *this, S, 5285 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5286 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5287 CGF.EmitOMPSimdInit(S); 5288 }, 5289 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5290 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5291 CGF.EmitOMPInnerLoop( 5292 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5293 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5294 CodeGenLoop(CGF, S, LoopExit); 5295 }, 5296 [&S, StaticChunked](CodeGenFunction &CGF) { 5297 if (StaticChunked) { 5298 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5299 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5300 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5301 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5302 } 5303 }); 5304 }); 5305 EmitBlock(LoopExit.getBlock()); 5306 // Tell the runtime we are done. 5307 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5308 } else { 5309 // Emit the outer loop, which requests its work chunk [LB..UB] from 5310 // runtime and runs the inner loop to process it. 5311 const OMPLoopArguments LoopArguments = { 5312 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5313 IL.getAddress(*this), Chunk}; 5314 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5315 CodeGenLoop); 5316 } 5317 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5318 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5319 return CGF.Builder.CreateIsNotNull( 5320 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5321 }); 5322 } 5323 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5324 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5325 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5326 EmitOMPReductionClauseFinal(S, OMPD_simd); 5327 // Emit post-update of the reduction variables if IsLastIter != 0. 5328 emitPostUpdateForReductionClause( 5329 *this, S, [IL, &S](CodeGenFunction &CGF) { 5330 return CGF.Builder.CreateIsNotNull( 5331 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5332 }); 5333 } 5334 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5335 if (HasLastprivateClause) { 5336 EmitOMPLastprivateClauseFinal( 5337 S, /*NoFinals=*/false, 5338 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5339 } 5340 } 5341 5342 // We're now done with the loop, so jump to the continuation block. 5343 if (ContBlock) { 5344 EmitBranch(ContBlock); 5345 EmitBlock(ContBlock, true); 5346 } 5347 } 5348 } 5349 5350 void CodeGenFunction::EmitOMPDistributeDirective( 5351 const OMPDistributeDirective &S) { 5352 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5353 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5354 }; 5355 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5356 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5357 } 5358 5359 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5360 const CapturedStmt *S, 5361 SourceLocation Loc) { 5362 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5363 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5364 CGF.CapturedStmtInfo = &CapStmtInfo; 5365 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5366 Fn->setDoesNotRecurse(); 5367 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 5368 Fn->addFnAttr(llvm::Attribute::AlwaysInline); 5369 return Fn; 5370 } 5371 5372 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5373 if (CGM.getLangOpts().OpenMPIRBuilder) { 5374 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5375 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5376 5377 if (S.hasClausesOfKind<OMPDependClause>()) { 5378 // The ordered directive with depend clause. 5379 assert(!S.hasAssociatedStmt() && 5380 "No associated statement must be in ordered depend construct."); 5381 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5382 AllocaInsertPt->getIterator()); 5383 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) { 5384 unsigned NumLoops = DC->getNumLoops(); 5385 QualType Int64Ty = CGM.getContext().getIntTypeForBitwidth( 5386 /*DestWidth=*/64, /*Signed=*/1); 5387 llvm::SmallVector<llvm::Value *> StoreValues; 5388 for (unsigned I = 0; I < NumLoops; I++) { 5389 const Expr *CounterVal = DC->getLoopData(I); 5390 assert(CounterVal); 5391 llvm::Value *StoreValue = EmitScalarConversion( 5392 EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, 5393 CounterVal->getExprLoc()); 5394 StoreValues.emplace_back(StoreValue); 5395 } 5396 bool IsDependSource = false; 5397 if (DC->getDependencyKind() == OMPC_DEPEND_source) 5398 IsDependSource = true; 5399 Builder.restoreIP(OMPBuilder.createOrderedDepend( 5400 Builder, AllocaIP, NumLoops, StoreValues, ".cnt.addr", 5401 IsDependSource)); 5402 } 5403 } else { 5404 // The ordered directive with threads or simd clause, or without clause. 5405 // Without clause, it behaves as if the threads clause is specified. 5406 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5407 5408 auto FiniCB = [this](InsertPointTy IP) { 5409 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 5410 }; 5411 5412 auto BodyGenCB = [&S, C, this](InsertPointTy AllocaIP, 5413 InsertPointTy CodeGenIP, 5414 llvm::BasicBlock &FiniBB) { 5415 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5416 if (C) { 5417 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5418 GenerateOpenMPCapturedVars(*CS, CapturedVars); 5419 llvm::Function *OutlinedFn = 5420 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5421 assert(S.getBeginLoc().isValid() && 5422 "Outlined function call location must be valid."); 5423 ApplyDebugLocation::CreateDefaultArtificial(*this, S.getBeginLoc()); 5424 OMPBuilderCBHelpers::EmitCaptureStmt(*this, CodeGenIP, FiniBB, 5425 OutlinedFn, CapturedVars); 5426 } else { 5427 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 5428 FiniBB); 5429 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CS->getCapturedStmt(), 5430 CodeGenIP, FiniBB); 5431 } 5432 }; 5433 5434 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5435 Builder.restoreIP( 5436 OMPBuilder.createOrderedThreadsSimd(Builder, BodyGenCB, FiniCB, !C)); 5437 } 5438 return; 5439 } 5440 5441 if (S.hasClausesOfKind<OMPDependClause>()) { 5442 assert(!S.hasAssociatedStmt() && 5443 "No associated statement must be in ordered depend construct."); 5444 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5445 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5446 return; 5447 } 5448 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5449 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5450 PrePostActionTy &Action) { 5451 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5452 if (C) { 5453 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5454 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5455 llvm::Function *OutlinedFn = 5456 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5457 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5458 OutlinedFn, CapturedVars); 5459 } else { 5460 Action.Enter(CGF); 5461 CGF.EmitStmt(CS->getCapturedStmt()); 5462 } 5463 }; 5464 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5465 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5466 } 5467 5468 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5469 QualType SrcType, QualType DestType, 5470 SourceLocation Loc) { 5471 assert(CGF.hasScalarEvaluationKind(DestType) && 5472 "DestType must have scalar evaluation kind."); 5473 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5474 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5475 DestType, Loc) 5476 : CGF.EmitComplexToScalarConversion( 5477 Val.getComplexVal(), SrcType, DestType, Loc); 5478 } 5479 5480 static CodeGenFunction::ComplexPairTy 5481 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5482 QualType DestType, SourceLocation Loc) { 5483 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5484 "DestType must have complex evaluation kind."); 5485 CodeGenFunction::ComplexPairTy ComplexVal; 5486 if (Val.isScalar()) { 5487 // Convert the input element to the element type of the complex. 5488 QualType DestElementType = 5489 DestType->castAs<ComplexType>()->getElementType(); 5490 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5491 Val.getScalarVal(), SrcType, DestElementType, Loc); 5492 ComplexVal = CodeGenFunction::ComplexPairTy( 5493 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5494 } else { 5495 assert(Val.isComplex() && "Must be a scalar or complex."); 5496 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5497 QualType DestElementType = 5498 DestType->castAs<ComplexType>()->getElementType(); 5499 ComplexVal.first = CGF.EmitScalarConversion( 5500 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5501 ComplexVal.second = CGF.EmitScalarConversion( 5502 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5503 } 5504 return ComplexVal; 5505 } 5506 5507 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5508 LValue LVal, RValue RVal) { 5509 if (LVal.isGlobalReg()) 5510 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5511 else 5512 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5513 } 5514 5515 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5516 llvm::AtomicOrdering AO, LValue LVal, 5517 SourceLocation Loc) { 5518 if (LVal.isGlobalReg()) 5519 return CGF.EmitLoadOfLValue(LVal, Loc); 5520 return CGF.EmitAtomicLoad( 5521 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5522 LVal.isVolatile()); 5523 } 5524 5525 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5526 QualType RValTy, SourceLocation Loc) { 5527 switch (getEvaluationKind(LVal.getType())) { 5528 case TEK_Scalar: 5529 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5530 *this, RVal, RValTy, LVal.getType(), Loc)), 5531 LVal); 5532 break; 5533 case TEK_Complex: 5534 EmitStoreOfComplex( 5535 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5536 /*isInit=*/false); 5537 break; 5538 case TEK_Aggregate: 5539 llvm_unreachable("Must be a scalar or complex."); 5540 } 5541 } 5542 5543 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5544 const Expr *X, const Expr *V, 5545 SourceLocation Loc) { 5546 // v = x; 5547 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5548 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5549 LValue XLValue = CGF.EmitLValue(X); 5550 LValue VLValue = CGF.EmitLValue(V); 5551 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5552 // OpenMP, 2.17.7, atomic Construct 5553 // If the read or capture clause is specified and the acquire, acq_rel, or 5554 // seq_cst clause is specified then the strong flush on exit from the atomic 5555 // operation is also an acquire flush. 5556 switch (AO) { 5557 case llvm::AtomicOrdering::Acquire: 5558 case llvm::AtomicOrdering::AcquireRelease: 5559 case llvm::AtomicOrdering::SequentiallyConsistent: 5560 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5561 llvm::AtomicOrdering::Acquire); 5562 break; 5563 case llvm::AtomicOrdering::Monotonic: 5564 case llvm::AtomicOrdering::Release: 5565 break; 5566 case llvm::AtomicOrdering::NotAtomic: 5567 case llvm::AtomicOrdering::Unordered: 5568 llvm_unreachable("Unexpected ordering."); 5569 } 5570 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5571 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5572 } 5573 5574 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5575 llvm::AtomicOrdering AO, const Expr *X, 5576 const Expr *E, SourceLocation Loc) { 5577 // x = expr; 5578 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5579 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5580 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5581 // OpenMP, 2.17.7, atomic Construct 5582 // If the write, update, or capture clause is specified and the release, 5583 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5584 // the atomic operation is also a release flush. 5585 switch (AO) { 5586 case llvm::AtomicOrdering::Release: 5587 case llvm::AtomicOrdering::AcquireRelease: 5588 case llvm::AtomicOrdering::SequentiallyConsistent: 5589 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5590 llvm::AtomicOrdering::Release); 5591 break; 5592 case llvm::AtomicOrdering::Acquire: 5593 case llvm::AtomicOrdering::Monotonic: 5594 break; 5595 case llvm::AtomicOrdering::NotAtomic: 5596 case llvm::AtomicOrdering::Unordered: 5597 llvm_unreachable("Unexpected ordering."); 5598 } 5599 } 5600 5601 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5602 RValue Update, 5603 BinaryOperatorKind BO, 5604 llvm::AtomicOrdering AO, 5605 bool IsXLHSInRHSPart) { 5606 ASTContext &Context = CGF.getContext(); 5607 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5608 // expression is simple and atomic is allowed for the given type for the 5609 // target platform. 5610 if (BO == BO_Comma || !Update.isScalar() || 5611 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5612 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5613 (Update.getScalarVal()->getType() != 5614 X.getAddress(CGF).getElementType())) || 5615 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5616 !Context.getTargetInfo().hasBuiltinAtomic( 5617 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5618 return std::make_pair(false, RValue::get(nullptr)); 5619 5620 llvm::AtomicRMWInst::BinOp RMWOp; 5621 switch (BO) { 5622 case BO_Add: 5623 RMWOp = llvm::AtomicRMWInst::Add; 5624 break; 5625 case BO_Sub: 5626 if (!IsXLHSInRHSPart) 5627 return std::make_pair(false, RValue::get(nullptr)); 5628 RMWOp = llvm::AtomicRMWInst::Sub; 5629 break; 5630 case BO_And: 5631 RMWOp = llvm::AtomicRMWInst::And; 5632 break; 5633 case BO_Or: 5634 RMWOp = llvm::AtomicRMWInst::Or; 5635 break; 5636 case BO_Xor: 5637 RMWOp = llvm::AtomicRMWInst::Xor; 5638 break; 5639 case BO_LT: 5640 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5641 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5642 : llvm::AtomicRMWInst::Max) 5643 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5644 : llvm::AtomicRMWInst::UMax); 5645 break; 5646 case BO_GT: 5647 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5648 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5649 : llvm::AtomicRMWInst::Min) 5650 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5651 : llvm::AtomicRMWInst::UMin); 5652 break; 5653 case BO_Assign: 5654 RMWOp = llvm::AtomicRMWInst::Xchg; 5655 break; 5656 case BO_Mul: 5657 case BO_Div: 5658 case BO_Rem: 5659 case BO_Shl: 5660 case BO_Shr: 5661 case BO_LAnd: 5662 case BO_LOr: 5663 return std::make_pair(false, RValue::get(nullptr)); 5664 case BO_PtrMemD: 5665 case BO_PtrMemI: 5666 case BO_LE: 5667 case BO_GE: 5668 case BO_EQ: 5669 case BO_NE: 5670 case BO_Cmp: 5671 case BO_AddAssign: 5672 case BO_SubAssign: 5673 case BO_AndAssign: 5674 case BO_OrAssign: 5675 case BO_XorAssign: 5676 case BO_MulAssign: 5677 case BO_DivAssign: 5678 case BO_RemAssign: 5679 case BO_ShlAssign: 5680 case BO_ShrAssign: 5681 case BO_Comma: 5682 llvm_unreachable("Unsupported atomic update operation"); 5683 } 5684 llvm::Value *UpdateVal = Update.getScalarVal(); 5685 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5686 UpdateVal = CGF.Builder.CreateIntCast( 5687 IC, X.getAddress(CGF).getElementType(), 5688 X.getType()->hasSignedIntegerRepresentation()); 5689 } 5690 llvm::Value *Res = 5691 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5692 return std::make_pair(true, RValue::get(Res)); 5693 } 5694 5695 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5696 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5697 llvm::AtomicOrdering AO, SourceLocation Loc, 5698 const llvm::function_ref<RValue(RValue)> CommonGen) { 5699 // Update expressions are allowed to have the following forms: 5700 // x binop= expr; -> xrval + expr; 5701 // x++, ++x -> xrval + 1; 5702 // x--, --x -> xrval - 1; 5703 // x = x binop expr; -> xrval binop expr 5704 // x = expr Op x; - > expr binop xrval; 5705 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5706 if (!Res.first) { 5707 if (X.isGlobalReg()) { 5708 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5709 // 'xrval'. 5710 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5711 } else { 5712 // Perform compare-and-swap procedure. 5713 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5714 } 5715 } 5716 return Res; 5717 } 5718 5719 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5720 llvm::AtomicOrdering AO, const Expr *X, 5721 const Expr *E, const Expr *UE, 5722 bool IsXLHSInRHSPart, SourceLocation Loc) { 5723 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5724 "Update expr in 'atomic update' must be a binary operator."); 5725 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5726 // Update expressions are allowed to have the following forms: 5727 // x binop= expr; -> xrval + expr; 5728 // x++, ++x -> xrval + 1; 5729 // x--, --x -> xrval - 1; 5730 // x = x binop expr; -> xrval binop expr 5731 // x = expr Op x; - > expr binop xrval; 5732 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5733 LValue XLValue = CGF.EmitLValue(X); 5734 RValue ExprRValue = CGF.EmitAnyExpr(E); 5735 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5736 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5737 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5738 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5739 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5740 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5741 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5742 return CGF.EmitAnyExpr(UE); 5743 }; 5744 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5745 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5746 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5747 // OpenMP, 2.17.7, atomic Construct 5748 // If the write, update, or capture clause is specified and the release, 5749 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5750 // the atomic operation is also a release flush. 5751 switch (AO) { 5752 case llvm::AtomicOrdering::Release: 5753 case llvm::AtomicOrdering::AcquireRelease: 5754 case llvm::AtomicOrdering::SequentiallyConsistent: 5755 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5756 llvm::AtomicOrdering::Release); 5757 break; 5758 case llvm::AtomicOrdering::Acquire: 5759 case llvm::AtomicOrdering::Monotonic: 5760 break; 5761 case llvm::AtomicOrdering::NotAtomic: 5762 case llvm::AtomicOrdering::Unordered: 5763 llvm_unreachable("Unexpected ordering."); 5764 } 5765 } 5766 5767 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5768 QualType SourceType, QualType ResType, 5769 SourceLocation Loc) { 5770 switch (CGF.getEvaluationKind(ResType)) { 5771 case TEK_Scalar: 5772 return RValue::get( 5773 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5774 case TEK_Complex: { 5775 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5776 return RValue::getComplex(Res.first, Res.second); 5777 } 5778 case TEK_Aggregate: 5779 break; 5780 } 5781 llvm_unreachable("Must be a scalar or complex."); 5782 } 5783 5784 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5785 llvm::AtomicOrdering AO, 5786 bool IsPostfixUpdate, const Expr *V, 5787 const Expr *X, const Expr *E, 5788 const Expr *UE, bool IsXLHSInRHSPart, 5789 SourceLocation Loc) { 5790 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5791 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5792 RValue NewVVal; 5793 LValue VLValue = CGF.EmitLValue(V); 5794 LValue XLValue = CGF.EmitLValue(X); 5795 RValue ExprRValue = CGF.EmitAnyExpr(E); 5796 QualType NewVValType; 5797 if (UE) { 5798 // 'x' is updated with some additional value. 5799 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5800 "Update expr in 'atomic capture' must be a binary operator."); 5801 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5802 // Update expressions are allowed to have the following forms: 5803 // x binop= expr; -> xrval + expr; 5804 // x++, ++x -> xrval + 1; 5805 // x--, --x -> xrval - 1; 5806 // x = x binop expr; -> xrval binop expr 5807 // x = expr Op x; - > expr binop xrval; 5808 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5809 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5810 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5811 NewVValType = XRValExpr->getType(); 5812 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5813 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5814 IsPostfixUpdate](RValue XRValue) { 5815 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5816 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5817 RValue Res = CGF.EmitAnyExpr(UE); 5818 NewVVal = IsPostfixUpdate ? XRValue : Res; 5819 return Res; 5820 }; 5821 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5822 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5823 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5824 if (Res.first) { 5825 // 'atomicrmw' instruction was generated. 5826 if (IsPostfixUpdate) { 5827 // Use old value from 'atomicrmw'. 5828 NewVVal = Res.second; 5829 } else { 5830 // 'atomicrmw' does not provide new value, so evaluate it using old 5831 // value of 'x'. 5832 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5833 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5834 NewVVal = CGF.EmitAnyExpr(UE); 5835 } 5836 } 5837 } else { 5838 // 'x' is simply rewritten with some 'expr'. 5839 NewVValType = X->getType().getNonReferenceType(); 5840 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5841 X->getType().getNonReferenceType(), Loc); 5842 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5843 NewVVal = XRValue; 5844 return ExprRValue; 5845 }; 5846 // Try to perform atomicrmw xchg, otherwise simple exchange. 5847 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5848 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5849 Loc, Gen); 5850 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5851 if (Res.first) { 5852 // 'atomicrmw' instruction was generated. 5853 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5854 } 5855 } 5856 // Emit post-update store to 'v' of old/new 'x' value. 5857 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5858 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5859 // OpenMP 5.1 removes the required flush for capture clause. 5860 if (CGF.CGM.getLangOpts().OpenMP < 51) { 5861 // OpenMP, 2.17.7, atomic Construct 5862 // If the write, update, or capture clause is specified and the release, 5863 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5864 // the atomic operation is also a release flush. 5865 // If the read or capture clause is specified and the acquire, acq_rel, or 5866 // seq_cst clause is specified then the strong flush on exit from the atomic 5867 // operation is also an acquire flush. 5868 switch (AO) { 5869 case llvm::AtomicOrdering::Release: 5870 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5871 llvm::AtomicOrdering::Release); 5872 break; 5873 case llvm::AtomicOrdering::Acquire: 5874 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5875 llvm::AtomicOrdering::Acquire); 5876 break; 5877 case llvm::AtomicOrdering::AcquireRelease: 5878 case llvm::AtomicOrdering::SequentiallyConsistent: 5879 CGF.CGM.getOpenMPRuntime().emitFlush( 5880 CGF, llvm::None, Loc, llvm::AtomicOrdering::AcquireRelease); 5881 break; 5882 case llvm::AtomicOrdering::Monotonic: 5883 break; 5884 case llvm::AtomicOrdering::NotAtomic: 5885 case llvm::AtomicOrdering::Unordered: 5886 llvm_unreachable("Unexpected ordering."); 5887 } 5888 } 5889 } 5890 5891 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5892 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5893 const Expr *X, const Expr *V, const Expr *E, 5894 const Expr *UE, bool IsXLHSInRHSPart, 5895 SourceLocation Loc) { 5896 switch (Kind) { 5897 case OMPC_read: 5898 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5899 break; 5900 case OMPC_write: 5901 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5902 break; 5903 case OMPC_unknown: 5904 case OMPC_update: 5905 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5906 break; 5907 case OMPC_capture: 5908 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5909 IsXLHSInRHSPart, Loc); 5910 break; 5911 case OMPC_if: 5912 case OMPC_final: 5913 case OMPC_num_threads: 5914 case OMPC_private: 5915 case OMPC_firstprivate: 5916 case OMPC_lastprivate: 5917 case OMPC_reduction: 5918 case OMPC_task_reduction: 5919 case OMPC_in_reduction: 5920 case OMPC_safelen: 5921 case OMPC_simdlen: 5922 case OMPC_sizes: 5923 case OMPC_full: 5924 case OMPC_partial: 5925 case OMPC_allocator: 5926 case OMPC_allocate: 5927 case OMPC_collapse: 5928 case OMPC_default: 5929 case OMPC_seq_cst: 5930 case OMPC_acq_rel: 5931 case OMPC_acquire: 5932 case OMPC_release: 5933 case OMPC_relaxed: 5934 case OMPC_shared: 5935 case OMPC_linear: 5936 case OMPC_aligned: 5937 case OMPC_copyin: 5938 case OMPC_copyprivate: 5939 case OMPC_flush: 5940 case OMPC_depobj: 5941 case OMPC_proc_bind: 5942 case OMPC_schedule: 5943 case OMPC_ordered: 5944 case OMPC_nowait: 5945 case OMPC_untied: 5946 case OMPC_threadprivate: 5947 case OMPC_depend: 5948 case OMPC_mergeable: 5949 case OMPC_device: 5950 case OMPC_threads: 5951 case OMPC_simd: 5952 case OMPC_map: 5953 case OMPC_num_teams: 5954 case OMPC_thread_limit: 5955 case OMPC_priority: 5956 case OMPC_grainsize: 5957 case OMPC_nogroup: 5958 case OMPC_num_tasks: 5959 case OMPC_hint: 5960 case OMPC_dist_schedule: 5961 case OMPC_defaultmap: 5962 case OMPC_uniform: 5963 case OMPC_to: 5964 case OMPC_from: 5965 case OMPC_use_device_ptr: 5966 case OMPC_use_device_addr: 5967 case OMPC_is_device_ptr: 5968 case OMPC_unified_address: 5969 case OMPC_unified_shared_memory: 5970 case OMPC_reverse_offload: 5971 case OMPC_dynamic_allocators: 5972 case OMPC_atomic_default_mem_order: 5973 case OMPC_device_type: 5974 case OMPC_match: 5975 case OMPC_nontemporal: 5976 case OMPC_order: 5977 case OMPC_destroy: 5978 case OMPC_detach: 5979 case OMPC_inclusive: 5980 case OMPC_exclusive: 5981 case OMPC_uses_allocators: 5982 case OMPC_affinity: 5983 case OMPC_init: 5984 case OMPC_inbranch: 5985 case OMPC_notinbranch: 5986 case OMPC_link: 5987 case OMPC_use: 5988 case OMPC_novariants: 5989 case OMPC_nocontext: 5990 case OMPC_filter: 5991 case OMPC_when: 5992 case OMPC_adjust_args: 5993 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 5994 } 5995 } 5996 5997 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 5998 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 5999 bool MemOrderingSpecified = false; 6000 if (S.getSingleClause<OMPSeqCstClause>()) { 6001 AO = llvm::AtomicOrdering::SequentiallyConsistent; 6002 MemOrderingSpecified = true; 6003 } else if (S.getSingleClause<OMPAcqRelClause>()) { 6004 AO = llvm::AtomicOrdering::AcquireRelease; 6005 MemOrderingSpecified = true; 6006 } else if (S.getSingleClause<OMPAcquireClause>()) { 6007 AO = llvm::AtomicOrdering::Acquire; 6008 MemOrderingSpecified = true; 6009 } else if (S.getSingleClause<OMPReleaseClause>()) { 6010 AO = llvm::AtomicOrdering::Release; 6011 MemOrderingSpecified = true; 6012 } else if (S.getSingleClause<OMPRelaxedClause>()) { 6013 AO = llvm::AtomicOrdering::Monotonic; 6014 MemOrderingSpecified = true; 6015 } 6016 OpenMPClauseKind Kind = OMPC_unknown; 6017 for (const OMPClause *C : S.clauses()) { 6018 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 6019 // if it is first). 6020 if (C->getClauseKind() != OMPC_seq_cst && 6021 C->getClauseKind() != OMPC_acq_rel && 6022 C->getClauseKind() != OMPC_acquire && 6023 C->getClauseKind() != OMPC_release && 6024 C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) { 6025 Kind = C->getClauseKind(); 6026 break; 6027 } 6028 } 6029 if (!MemOrderingSpecified) { 6030 llvm::AtomicOrdering DefaultOrder = 6031 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 6032 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 6033 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 6034 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 6035 Kind == OMPC_capture)) { 6036 AO = DefaultOrder; 6037 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 6038 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 6039 AO = llvm::AtomicOrdering::Release; 6040 } else if (Kind == OMPC_read) { 6041 assert(Kind == OMPC_read && "Unexpected atomic kind."); 6042 AO = llvm::AtomicOrdering::Acquire; 6043 } 6044 } 6045 } 6046 6047 LexicalScope Scope(*this, S.getSourceRange()); 6048 EmitStopPoint(S.getAssociatedStmt()); 6049 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 6050 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 6051 S.getBeginLoc()); 6052 } 6053 6054 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 6055 const OMPExecutableDirective &S, 6056 const RegionCodeGenTy &CodeGen) { 6057 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 6058 CodeGenModule &CGM = CGF.CGM; 6059 6060 // On device emit this construct as inlined code. 6061 if (CGM.getLangOpts().OpenMPIsDevice) { 6062 OMPLexicalScope Scope(CGF, S, OMPD_target); 6063 CGM.getOpenMPRuntime().emitInlinedDirective( 6064 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6065 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6066 }); 6067 return; 6068 } 6069 6070 auto LPCRegion = CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 6071 llvm::Function *Fn = nullptr; 6072 llvm::Constant *FnID = nullptr; 6073 6074 const Expr *IfCond = nullptr; 6075 // Check for the at most one if clause associated with the target region. 6076 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6077 if (C->getNameModifier() == OMPD_unknown || 6078 C->getNameModifier() == OMPD_target) { 6079 IfCond = C->getCondition(); 6080 break; 6081 } 6082 } 6083 6084 // Check if we have any device clause associated with the directive. 6085 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 6086 nullptr, OMPC_DEVICE_unknown); 6087 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 6088 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 6089 6090 // Check if we have an if clause whose conditional always evaluates to false 6091 // or if we do not have any targets specified. If so the target region is not 6092 // an offload entry point. 6093 bool IsOffloadEntry = true; 6094 if (IfCond) { 6095 bool Val; 6096 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 6097 IsOffloadEntry = false; 6098 } 6099 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6100 IsOffloadEntry = false; 6101 6102 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 6103 StringRef ParentName; 6104 // In case we have Ctors/Dtors we use the complete type variant to produce 6105 // the mangling of the device outlined kernel. 6106 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 6107 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 6108 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 6109 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 6110 else 6111 ParentName = 6112 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 6113 6114 // Emit target region as a standalone region. 6115 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 6116 IsOffloadEntry, CodeGen); 6117 OMPLexicalScope Scope(CGF, S, OMPD_task); 6118 auto &&SizeEmitter = 6119 [IsOffloadEntry](CodeGenFunction &CGF, 6120 const OMPLoopDirective &D) -> llvm::Value * { 6121 if (IsOffloadEntry) { 6122 OMPLoopScope(CGF, D); 6123 // Emit calculation of the iterations count. 6124 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6125 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6126 /*isSigned=*/false); 6127 return NumIterations; 6128 } 6129 return nullptr; 6130 }; 6131 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6132 SizeEmitter); 6133 } 6134 6135 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6136 PrePostActionTy &Action) { 6137 Action.Enter(CGF); 6138 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6139 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6140 CGF.EmitOMPPrivateClause(S, PrivateScope); 6141 (void)PrivateScope.Privatize(); 6142 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6143 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6144 6145 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6146 CGF.EnsureInsertPoint(); 6147 } 6148 6149 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6150 StringRef ParentName, 6151 const OMPTargetDirective &S) { 6152 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6153 emitTargetRegion(CGF, S, Action); 6154 }; 6155 llvm::Function *Fn; 6156 llvm::Constant *Addr; 6157 // Emit target region as a standalone region. 6158 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6159 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6160 assert(Fn && Addr && "Target device function emission failed."); 6161 } 6162 6163 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6164 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6165 emitTargetRegion(CGF, S, Action); 6166 }; 6167 emitCommonOMPTargetDirective(*this, S, CodeGen); 6168 } 6169 6170 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6171 const OMPExecutableDirective &S, 6172 OpenMPDirectiveKind InnermostKind, 6173 const RegionCodeGenTy &CodeGen) { 6174 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6175 llvm::Function *OutlinedFn = 6176 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6177 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6178 6179 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6180 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6181 if (NT || TL) { 6182 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6183 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6184 6185 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6186 S.getBeginLoc()); 6187 } 6188 6189 OMPTeamsScope Scope(CGF, S); 6190 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6191 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6192 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6193 CapturedVars); 6194 } 6195 6196 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6197 // Emit teams region as a standalone region. 6198 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6199 Action.Enter(CGF); 6200 OMPPrivateScope PrivateScope(CGF); 6201 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6202 CGF.EmitOMPPrivateClause(S, PrivateScope); 6203 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6204 (void)PrivateScope.Privatize(); 6205 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6206 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6207 }; 6208 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6209 emitPostUpdateForReductionClause(*this, S, 6210 [](CodeGenFunction &) { return nullptr; }); 6211 } 6212 6213 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6214 const OMPTargetTeamsDirective &S) { 6215 auto *CS = S.getCapturedStmt(OMPD_teams); 6216 Action.Enter(CGF); 6217 // Emit teams region as a standalone region. 6218 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6219 Action.Enter(CGF); 6220 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6221 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6222 CGF.EmitOMPPrivateClause(S, PrivateScope); 6223 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6224 (void)PrivateScope.Privatize(); 6225 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6226 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6227 CGF.EmitStmt(CS->getCapturedStmt()); 6228 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6229 }; 6230 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6231 emitPostUpdateForReductionClause(CGF, S, 6232 [](CodeGenFunction &) { return nullptr; }); 6233 } 6234 6235 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6236 CodeGenModule &CGM, StringRef ParentName, 6237 const OMPTargetTeamsDirective &S) { 6238 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6239 emitTargetTeamsRegion(CGF, Action, S); 6240 }; 6241 llvm::Function *Fn; 6242 llvm::Constant *Addr; 6243 // Emit target region as a standalone region. 6244 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6245 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6246 assert(Fn && Addr && "Target device function emission failed."); 6247 } 6248 6249 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6250 const OMPTargetTeamsDirective &S) { 6251 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6252 emitTargetTeamsRegion(CGF, Action, S); 6253 }; 6254 emitCommonOMPTargetDirective(*this, S, CodeGen); 6255 } 6256 6257 static void 6258 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6259 const OMPTargetTeamsDistributeDirective &S) { 6260 Action.Enter(CGF); 6261 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6262 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6263 }; 6264 6265 // Emit teams region as a standalone region. 6266 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6267 PrePostActionTy &Action) { 6268 Action.Enter(CGF); 6269 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6270 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6271 (void)PrivateScope.Privatize(); 6272 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6273 CodeGenDistribute); 6274 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6275 }; 6276 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6277 emitPostUpdateForReductionClause(CGF, S, 6278 [](CodeGenFunction &) { return nullptr; }); 6279 } 6280 6281 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6282 CodeGenModule &CGM, StringRef ParentName, 6283 const OMPTargetTeamsDistributeDirective &S) { 6284 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6285 emitTargetTeamsDistributeRegion(CGF, Action, S); 6286 }; 6287 llvm::Function *Fn; 6288 llvm::Constant *Addr; 6289 // Emit target region as a standalone region. 6290 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6291 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6292 assert(Fn && Addr && "Target device function emission failed."); 6293 } 6294 6295 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6296 const OMPTargetTeamsDistributeDirective &S) { 6297 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6298 emitTargetTeamsDistributeRegion(CGF, Action, S); 6299 }; 6300 emitCommonOMPTargetDirective(*this, S, CodeGen); 6301 } 6302 6303 static void emitTargetTeamsDistributeSimdRegion( 6304 CodeGenFunction &CGF, PrePostActionTy &Action, 6305 const OMPTargetTeamsDistributeSimdDirective &S) { 6306 Action.Enter(CGF); 6307 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6308 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6309 }; 6310 6311 // Emit teams region as a standalone region. 6312 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6313 PrePostActionTy &Action) { 6314 Action.Enter(CGF); 6315 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6316 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6317 (void)PrivateScope.Privatize(); 6318 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6319 CodeGenDistribute); 6320 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6321 }; 6322 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6323 emitPostUpdateForReductionClause(CGF, S, 6324 [](CodeGenFunction &) { return nullptr; }); 6325 } 6326 6327 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6328 CodeGenModule &CGM, StringRef ParentName, 6329 const OMPTargetTeamsDistributeSimdDirective &S) { 6330 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6331 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6332 }; 6333 llvm::Function *Fn; 6334 llvm::Constant *Addr; 6335 // Emit target region as a standalone region. 6336 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6337 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6338 assert(Fn && Addr && "Target device function emission failed."); 6339 } 6340 6341 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6342 const OMPTargetTeamsDistributeSimdDirective &S) { 6343 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6344 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6345 }; 6346 emitCommonOMPTargetDirective(*this, S, CodeGen); 6347 } 6348 6349 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6350 const OMPTeamsDistributeDirective &S) { 6351 6352 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6353 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6354 }; 6355 6356 // Emit teams region as a standalone region. 6357 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6358 PrePostActionTy &Action) { 6359 Action.Enter(CGF); 6360 OMPPrivateScope PrivateScope(CGF); 6361 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6362 (void)PrivateScope.Privatize(); 6363 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6364 CodeGenDistribute); 6365 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6366 }; 6367 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6368 emitPostUpdateForReductionClause(*this, S, 6369 [](CodeGenFunction &) { return nullptr; }); 6370 } 6371 6372 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6373 const OMPTeamsDistributeSimdDirective &S) { 6374 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6375 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6376 }; 6377 6378 // Emit teams region as a standalone region. 6379 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6380 PrePostActionTy &Action) { 6381 Action.Enter(CGF); 6382 OMPPrivateScope PrivateScope(CGF); 6383 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6384 (void)PrivateScope.Privatize(); 6385 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6386 CodeGenDistribute); 6387 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6388 }; 6389 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6390 emitPostUpdateForReductionClause(*this, S, 6391 [](CodeGenFunction &) { return nullptr; }); 6392 } 6393 6394 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6395 const OMPTeamsDistributeParallelForDirective &S) { 6396 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6397 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6398 S.getDistInc()); 6399 }; 6400 6401 // Emit teams region as a standalone region. 6402 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6403 PrePostActionTy &Action) { 6404 Action.Enter(CGF); 6405 OMPPrivateScope PrivateScope(CGF); 6406 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6407 (void)PrivateScope.Privatize(); 6408 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6409 CodeGenDistribute); 6410 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6411 }; 6412 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6413 emitPostUpdateForReductionClause(*this, S, 6414 [](CodeGenFunction &) { return nullptr; }); 6415 } 6416 6417 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6418 const OMPTeamsDistributeParallelForSimdDirective &S) { 6419 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6420 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6421 S.getDistInc()); 6422 }; 6423 6424 // Emit teams region as a standalone region. 6425 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6426 PrePostActionTy &Action) { 6427 Action.Enter(CGF); 6428 OMPPrivateScope PrivateScope(CGF); 6429 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6430 (void)PrivateScope.Privatize(); 6431 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6432 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6433 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6434 }; 6435 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6436 CodeGen); 6437 emitPostUpdateForReductionClause(*this, S, 6438 [](CodeGenFunction &) { return nullptr; }); 6439 } 6440 6441 static void emitTargetTeamsDistributeParallelForRegion( 6442 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 6443 PrePostActionTy &Action) { 6444 Action.Enter(CGF); 6445 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6446 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6447 S.getDistInc()); 6448 }; 6449 6450 // Emit teams region as a standalone region. 6451 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6452 PrePostActionTy &Action) { 6453 Action.Enter(CGF); 6454 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6455 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6456 (void)PrivateScope.Privatize(); 6457 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6458 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6459 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6460 }; 6461 6462 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 6463 CodeGenTeams); 6464 emitPostUpdateForReductionClause(CGF, S, 6465 [](CodeGenFunction &) { return nullptr; }); 6466 } 6467 6468 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 6469 CodeGenModule &CGM, StringRef ParentName, 6470 const OMPTargetTeamsDistributeParallelForDirective &S) { 6471 // Emit SPMD target teams distribute parallel for region as a standalone 6472 // region. 6473 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6474 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6475 }; 6476 llvm::Function *Fn; 6477 llvm::Constant *Addr; 6478 // Emit target region as a standalone region. 6479 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6480 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6481 assert(Fn && Addr && "Target device function emission failed."); 6482 } 6483 6484 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 6485 const OMPTargetTeamsDistributeParallelForDirective &S) { 6486 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6487 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6488 }; 6489 emitCommonOMPTargetDirective(*this, S, CodeGen); 6490 } 6491 6492 static void emitTargetTeamsDistributeParallelForSimdRegion( 6493 CodeGenFunction &CGF, 6494 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 6495 PrePostActionTy &Action) { 6496 Action.Enter(CGF); 6497 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6498 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6499 S.getDistInc()); 6500 }; 6501 6502 // Emit teams region as a standalone region. 6503 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6504 PrePostActionTy &Action) { 6505 Action.Enter(CGF); 6506 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6507 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6508 (void)PrivateScope.Privatize(); 6509 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6510 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6511 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6512 }; 6513 6514 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 6515 CodeGenTeams); 6516 emitPostUpdateForReductionClause(CGF, S, 6517 [](CodeGenFunction &) { return nullptr; }); 6518 } 6519 6520 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 6521 CodeGenModule &CGM, StringRef ParentName, 6522 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6523 // Emit SPMD target teams distribute parallel for simd region as a standalone 6524 // region. 6525 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6526 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6527 }; 6528 llvm::Function *Fn; 6529 llvm::Constant *Addr; 6530 // Emit target region as a standalone region. 6531 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6532 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6533 assert(Fn && Addr && "Target device function emission failed."); 6534 } 6535 6536 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 6537 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6538 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6539 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6540 }; 6541 emitCommonOMPTargetDirective(*this, S, CodeGen); 6542 } 6543 6544 void CodeGenFunction::EmitOMPCancellationPointDirective( 6545 const OMPCancellationPointDirective &S) { 6546 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 6547 S.getCancelRegion()); 6548 } 6549 6550 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 6551 const Expr *IfCond = nullptr; 6552 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6553 if (C->getNameModifier() == OMPD_unknown || 6554 C->getNameModifier() == OMPD_cancel) { 6555 IfCond = C->getCondition(); 6556 break; 6557 } 6558 } 6559 if (CGM.getLangOpts().OpenMPIRBuilder) { 6560 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6561 // TODO: This check is necessary as we only generate `omp parallel` through 6562 // the OpenMPIRBuilder for now. 6563 if (S.getCancelRegion() == OMPD_parallel || 6564 S.getCancelRegion() == OMPD_sections || 6565 S.getCancelRegion() == OMPD_section) { 6566 llvm::Value *IfCondition = nullptr; 6567 if (IfCond) 6568 IfCondition = EmitScalarExpr(IfCond, 6569 /*IgnoreResultAssign=*/true); 6570 return Builder.restoreIP( 6571 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 6572 } 6573 } 6574 6575 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 6576 S.getCancelRegion()); 6577 } 6578 6579 CodeGenFunction::JumpDest 6580 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 6581 if (Kind == OMPD_parallel || Kind == OMPD_task || 6582 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 6583 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 6584 return ReturnBlock; 6585 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 6586 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 6587 Kind == OMPD_distribute_parallel_for || 6588 Kind == OMPD_target_parallel_for || 6589 Kind == OMPD_teams_distribute_parallel_for || 6590 Kind == OMPD_target_teams_distribute_parallel_for); 6591 return OMPCancelStack.getExitBlock(); 6592 } 6593 6594 void CodeGenFunction::EmitOMPUseDevicePtrClause( 6595 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 6596 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6597 auto OrigVarIt = C.varlist_begin(); 6598 auto InitIt = C.inits().begin(); 6599 for (const Expr *PvtVarIt : C.private_copies()) { 6600 const auto *OrigVD = 6601 cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6602 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6603 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6604 6605 // In order to identify the right initializer we need to match the 6606 // declaration used by the mapping logic. In some cases we may get 6607 // OMPCapturedExprDecl that refers to the original declaration. 6608 const ValueDecl *MatchingVD = OrigVD; 6609 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6610 // OMPCapturedExprDecl are used to privative fields of the current 6611 // structure. 6612 const auto *ME = cast<MemberExpr>(OED->getInit()); 6613 assert(isa<CXXThisExpr>(ME->getBase()) && 6614 "Base should be the current struct!"); 6615 MatchingVD = ME->getMemberDecl(); 6616 } 6617 6618 // If we don't have information about the current list item, move on to 6619 // the next one. 6620 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6621 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6622 continue; 6623 6624 bool IsRegistered = PrivateScope.addPrivate( 6625 OrigVD, [this, OrigVD, InitAddrIt, InitVD, PvtVD]() { 6626 // Initialize the temporary initialization variable with the address 6627 // we get from the runtime library. We have to cast the source address 6628 // because it is always a void *. References are materialized in the 6629 // privatization scope, so the initialization here disregards the fact 6630 // the original variable is a reference. 6631 QualType AddrQTy = getContext().getPointerType( 6632 OrigVD->getType().getNonReferenceType()); 6633 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 6634 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 6635 setAddrOfLocalVar(InitVD, InitAddr); 6636 6637 // Emit private declaration, it will be initialized by the value we 6638 // declaration we just added to the local declarations map. 6639 EmitDecl(*PvtVD); 6640 6641 // The initialization variables reached its purpose in the emission 6642 // of the previous declaration, so we don't need it anymore. 6643 LocalDeclMap.erase(InitVD); 6644 6645 // Return the address of the private variable. 6646 return GetAddrOfLocalVar(PvtVD); 6647 }); 6648 assert(IsRegistered && "firstprivate var already registered as private"); 6649 // Silence the warning about unused variable. 6650 (void)IsRegistered; 6651 6652 ++OrigVarIt; 6653 ++InitIt; 6654 } 6655 } 6656 6657 static const VarDecl *getBaseDecl(const Expr *Ref) { 6658 const Expr *Base = Ref->IgnoreParenImpCasts(); 6659 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6660 Base = OASE->getBase()->IgnoreParenImpCasts(); 6661 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6662 Base = ASE->getBase()->IgnoreParenImpCasts(); 6663 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6664 } 6665 6666 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6667 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6668 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6669 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6670 for (const Expr *Ref : C.varlists()) { 6671 const VarDecl *OrigVD = getBaseDecl(Ref); 6672 if (!Processed.insert(OrigVD).second) 6673 continue; 6674 // In order to identify the right initializer we need to match the 6675 // declaration used by the mapping logic. In some cases we may get 6676 // OMPCapturedExprDecl that refers to the original declaration. 6677 const ValueDecl *MatchingVD = OrigVD; 6678 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6679 // OMPCapturedExprDecl are used to privative fields of the current 6680 // structure. 6681 const auto *ME = cast<MemberExpr>(OED->getInit()); 6682 assert(isa<CXXThisExpr>(ME->getBase()) && 6683 "Base should be the current struct!"); 6684 MatchingVD = ME->getMemberDecl(); 6685 } 6686 6687 // If we don't have information about the current list item, move on to 6688 // the next one. 6689 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6690 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6691 continue; 6692 6693 Address PrivAddr = InitAddrIt->getSecond(); 6694 // For declrefs and variable length array need to load the pointer for 6695 // correct mapping, since the pointer to the data was passed to the runtime. 6696 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6697 MatchingVD->getType()->isArrayType()) 6698 PrivAddr = 6699 EmitLoadOfPointer(PrivAddr, getContext() 6700 .getPointerType(OrigVD->getType()) 6701 ->castAs<PointerType>()); 6702 llvm::Type *RealTy = 6703 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6704 ->getPointerTo(); 6705 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6706 6707 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6708 } 6709 } 6710 6711 // Generate the instructions for '#pragma omp target data' directive. 6712 void CodeGenFunction::EmitOMPTargetDataDirective( 6713 const OMPTargetDataDirective &S) { 6714 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 6715 /*SeparateBeginEndCalls=*/true); 6716 6717 // Create a pre/post action to signal the privatization of the device pointer. 6718 // This action can be replaced by the OpenMP runtime code generation to 6719 // deactivate privatization. 6720 bool PrivatizeDevicePointers = false; 6721 class DevicePointerPrivActionTy : public PrePostActionTy { 6722 bool &PrivatizeDevicePointers; 6723 6724 public: 6725 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6726 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6727 void Enter(CodeGenFunction &CGF) override { 6728 PrivatizeDevicePointers = true; 6729 } 6730 }; 6731 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6732 6733 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6734 CodeGenFunction &CGF, PrePostActionTy &Action) { 6735 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6736 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6737 }; 6738 6739 // Codegen that selects whether to generate the privatization code or not. 6740 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6741 &InnermostCodeGen](CodeGenFunction &CGF, 6742 PrePostActionTy &Action) { 6743 RegionCodeGenTy RCG(InnermostCodeGen); 6744 PrivatizeDevicePointers = false; 6745 6746 // Call the pre-action to change the status of PrivatizeDevicePointers if 6747 // needed. 6748 Action.Enter(CGF); 6749 6750 if (PrivatizeDevicePointers) { 6751 OMPPrivateScope PrivateScope(CGF); 6752 // Emit all instances of the use_device_ptr clause. 6753 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6754 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6755 Info.CaptureDeviceAddrMap); 6756 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6757 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6758 Info.CaptureDeviceAddrMap); 6759 (void)PrivateScope.Privatize(); 6760 RCG(CGF); 6761 } else { 6762 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6763 RCG(CGF); 6764 } 6765 }; 6766 6767 // Forward the provided action to the privatization codegen. 6768 RegionCodeGenTy PrivRCG(PrivCodeGen); 6769 PrivRCG.setAction(Action); 6770 6771 // Notwithstanding the body of the region is emitted as inlined directive, 6772 // we don't use an inline scope as changes in the references inside the 6773 // region are expected to be visible outside, so we do not privative them. 6774 OMPLexicalScope Scope(CGF, S); 6775 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6776 PrivRCG); 6777 }; 6778 6779 RegionCodeGenTy RCG(CodeGen); 6780 6781 // If we don't have target devices, don't bother emitting the data mapping 6782 // code. 6783 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6784 RCG(*this); 6785 return; 6786 } 6787 6788 // Check if we have any if clause associated with the directive. 6789 const Expr *IfCond = nullptr; 6790 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6791 IfCond = C->getCondition(); 6792 6793 // Check if we have any device clause associated with the directive. 6794 const Expr *Device = nullptr; 6795 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6796 Device = C->getDevice(); 6797 6798 // Set the action to signal privatization of device pointers. 6799 RCG.setAction(PrivAction); 6800 6801 // Emit region code. 6802 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6803 Info); 6804 } 6805 6806 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6807 const OMPTargetEnterDataDirective &S) { 6808 // If we don't have target devices, don't bother emitting the data mapping 6809 // code. 6810 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6811 return; 6812 6813 // Check if we have any if clause associated with the directive. 6814 const Expr *IfCond = nullptr; 6815 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6816 IfCond = C->getCondition(); 6817 6818 // Check if we have any device clause associated with the directive. 6819 const Expr *Device = nullptr; 6820 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6821 Device = C->getDevice(); 6822 6823 OMPLexicalScope Scope(*this, S, OMPD_task); 6824 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6825 } 6826 6827 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6828 const OMPTargetExitDataDirective &S) { 6829 // If we don't have target devices, don't bother emitting the data mapping 6830 // code. 6831 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6832 return; 6833 6834 // Check if we have any if clause associated with the directive. 6835 const Expr *IfCond = nullptr; 6836 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6837 IfCond = C->getCondition(); 6838 6839 // Check if we have any device clause associated with the directive. 6840 const Expr *Device = nullptr; 6841 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6842 Device = C->getDevice(); 6843 6844 OMPLexicalScope Scope(*this, S, OMPD_task); 6845 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6846 } 6847 6848 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6849 const OMPTargetParallelDirective &S, 6850 PrePostActionTy &Action) { 6851 // Get the captured statement associated with the 'parallel' region. 6852 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6853 Action.Enter(CGF); 6854 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6855 Action.Enter(CGF); 6856 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6857 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6858 CGF.EmitOMPPrivateClause(S, PrivateScope); 6859 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6860 (void)PrivateScope.Privatize(); 6861 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6862 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6863 // TODO: Add support for clauses. 6864 CGF.EmitStmt(CS->getCapturedStmt()); 6865 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6866 }; 6867 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6868 emitEmptyBoundParameters); 6869 emitPostUpdateForReductionClause(CGF, S, 6870 [](CodeGenFunction &) { return nullptr; }); 6871 } 6872 6873 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6874 CodeGenModule &CGM, StringRef ParentName, 6875 const OMPTargetParallelDirective &S) { 6876 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6877 emitTargetParallelRegion(CGF, S, Action); 6878 }; 6879 llvm::Function *Fn; 6880 llvm::Constant *Addr; 6881 // Emit target region as a standalone region. 6882 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6883 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6884 assert(Fn && Addr && "Target device function emission failed."); 6885 } 6886 6887 void CodeGenFunction::EmitOMPTargetParallelDirective( 6888 const OMPTargetParallelDirective &S) { 6889 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6890 emitTargetParallelRegion(CGF, S, Action); 6891 }; 6892 emitCommonOMPTargetDirective(*this, S, CodeGen); 6893 } 6894 6895 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6896 const OMPTargetParallelForDirective &S, 6897 PrePostActionTy &Action) { 6898 Action.Enter(CGF); 6899 // Emit directive as a combined directive that consists of two implicit 6900 // directives: 'parallel' with 'for' directive. 6901 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6902 Action.Enter(CGF); 6903 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6904 CGF, OMPD_target_parallel_for, S.hasCancel()); 6905 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6906 emitDispatchForLoopBounds); 6907 }; 6908 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6909 emitEmptyBoundParameters); 6910 } 6911 6912 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6913 CodeGenModule &CGM, StringRef ParentName, 6914 const OMPTargetParallelForDirective &S) { 6915 // Emit SPMD target parallel for region as a standalone region. 6916 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6917 emitTargetParallelForRegion(CGF, S, Action); 6918 }; 6919 llvm::Function *Fn; 6920 llvm::Constant *Addr; 6921 // Emit target region as a standalone region. 6922 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6923 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6924 assert(Fn && Addr && "Target device function emission failed."); 6925 } 6926 6927 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6928 const OMPTargetParallelForDirective &S) { 6929 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6930 emitTargetParallelForRegion(CGF, S, Action); 6931 }; 6932 emitCommonOMPTargetDirective(*this, S, CodeGen); 6933 } 6934 6935 static void 6936 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 6937 const OMPTargetParallelForSimdDirective &S, 6938 PrePostActionTy &Action) { 6939 Action.Enter(CGF); 6940 // Emit directive as a combined directive that consists of two implicit 6941 // directives: 'parallel' with 'for' directive. 6942 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6943 Action.Enter(CGF); 6944 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6945 emitDispatchForLoopBounds); 6946 }; 6947 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 6948 emitEmptyBoundParameters); 6949 } 6950 6951 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 6952 CodeGenModule &CGM, StringRef ParentName, 6953 const OMPTargetParallelForSimdDirective &S) { 6954 // Emit SPMD target parallel for region as a standalone region. 6955 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6956 emitTargetParallelForSimdRegion(CGF, S, Action); 6957 }; 6958 llvm::Function *Fn; 6959 llvm::Constant *Addr; 6960 // Emit target region as a standalone region. 6961 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6962 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6963 assert(Fn && Addr && "Target device function emission failed."); 6964 } 6965 6966 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 6967 const OMPTargetParallelForSimdDirective &S) { 6968 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6969 emitTargetParallelForSimdRegion(CGF, S, Action); 6970 }; 6971 emitCommonOMPTargetDirective(*this, S, CodeGen); 6972 } 6973 6974 /// Emit a helper variable and return corresponding lvalue. 6975 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 6976 const ImplicitParamDecl *PVD, 6977 CodeGenFunction::OMPPrivateScope &Privates) { 6978 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 6979 Privates.addPrivate(VDecl, 6980 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 6981 } 6982 6983 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 6984 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 6985 // Emit outlined function for task construct. 6986 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 6987 Address CapturedStruct = Address::invalid(); 6988 { 6989 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6990 CapturedStruct = GenerateCapturedStmtArgument(*CS); 6991 } 6992 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 6993 const Expr *IfCond = nullptr; 6994 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6995 if (C->getNameModifier() == OMPD_unknown || 6996 C->getNameModifier() == OMPD_taskloop) { 6997 IfCond = C->getCondition(); 6998 break; 6999 } 7000 } 7001 7002 OMPTaskDataTy Data; 7003 // Check if taskloop must be emitted without taskgroup. 7004 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 7005 // TODO: Check if we should emit tied or untied task. 7006 Data.Tied = true; 7007 // Set scheduling for taskloop 7008 if (const auto *Clause = S.getSingleClause<OMPGrainsizeClause>()) { 7009 // grainsize clause 7010 Data.Schedule.setInt(/*IntVal=*/false); 7011 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 7012 } else if (const auto *Clause = S.getSingleClause<OMPNumTasksClause>()) { 7013 // num_tasks clause 7014 Data.Schedule.setInt(/*IntVal=*/true); 7015 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 7016 } 7017 7018 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 7019 // if (PreCond) { 7020 // for (IV in 0..LastIteration) BODY; 7021 // <Final counter/linear vars updates>; 7022 // } 7023 // 7024 7025 // Emit: if (PreCond) - begin. 7026 // If the condition constant folds and can be elided, avoid emitting the 7027 // whole loop. 7028 bool CondConstant; 7029 llvm::BasicBlock *ContBlock = nullptr; 7030 OMPLoopScope PreInitScope(CGF, S); 7031 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 7032 if (!CondConstant) 7033 return; 7034 } else { 7035 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 7036 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 7037 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 7038 CGF.getProfileCount(&S)); 7039 CGF.EmitBlock(ThenBlock); 7040 CGF.incrementProfileCounter(&S); 7041 } 7042 7043 (void)CGF.EmitOMPLinearClauseInit(S); 7044 7045 OMPPrivateScope LoopScope(CGF); 7046 // Emit helper vars inits. 7047 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 7048 auto *I = CS->getCapturedDecl()->param_begin(); 7049 auto *LBP = std::next(I, LowerBound); 7050 auto *UBP = std::next(I, UpperBound); 7051 auto *STP = std::next(I, Stride); 7052 auto *LIP = std::next(I, LastIter); 7053 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 7054 LoopScope); 7055 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 7056 LoopScope); 7057 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 7058 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 7059 LoopScope); 7060 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 7061 CGF.EmitOMPLinearClause(S, LoopScope); 7062 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 7063 (void)LoopScope.Privatize(); 7064 // Emit the loop iteration variable. 7065 const Expr *IVExpr = S.getIterationVariable(); 7066 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 7067 CGF.EmitVarDecl(*IVDecl); 7068 CGF.EmitIgnoredExpr(S.getInit()); 7069 7070 // Emit the iterations count variable. 7071 // If it is not a variable, Sema decided to calculate iterations count on 7072 // each iteration (e.g., it is foldable into a constant). 7073 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 7074 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 7075 // Emit calculation of the iterations count. 7076 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 7077 } 7078 7079 { 7080 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7081 emitCommonSimdLoop( 7082 CGF, S, 7083 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7084 if (isOpenMPSimdDirective(S.getDirectiveKind())) 7085 CGF.EmitOMPSimdInit(S); 7086 }, 7087 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 7088 CGF.EmitOMPInnerLoop( 7089 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 7090 [&S](CodeGenFunction &CGF) { 7091 emitOMPLoopBodyWithStopPoint(CGF, S, 7092 CodeGenFunction::JumpDest()); 7093 }, 7094 [](CodeGenFunction &) {}); 7095 }); 7096 } 7097 // Emit: if (PreCond) - end. 7098 if (ContBlock) { 7099 CGF.EmitBranch(ContBlock); 7100 CGF.EmitBlock(ContBlock, true); 7101 } 7102 // Emit final copy of the lastprivate variables if IsLastIter != 0. 7103 if (HasLastprivateClause) { 7104 CGF.EmitOMPLastprivateClauseFinal( 7105 S, isOpenMPSimdDirective(S.getDirectiveKind()), 7106 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 7107 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7108 (*LIP)->getType(), S.getBeginLoc()))); 7109 } 7110 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 7111 return CGF.Builder.CreateIsNotNull( 7112 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7113 (*LIP)->getType(), S.getBeginLoc())); 7114 }); 7115 }; 7116 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 7117 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 7118 const OMPTaskDataTy &Data) { 7119 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 7120 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 7121 OMPLoopScope PreInitScope(CGF, S); 7122 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 7123 OutlinedFn, SharedsTy, 7124 CapturedStruct, IfCond, Data); 7125 }; 7126 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7127 CodeGen); 7128 }; 7129 if (Data.Nogroup) { 7130 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7131 } else { 7132 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7133 *this, 7134 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7135 PrePostActionTy &Action) { 7136 Action.Enter(CGF); 7137 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7138 Data); 7139 }, 7140 S.getBeginLoc()); 7141 } 7142 } 7143 7144 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7145 auto LPCRegion = 7146 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7147 EmitOMPTaskLoopBasedDirective(S); 7148 } 7149 7150 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7151 const OMPTaskLoopSimdDirective &S) { 7152 auto LPCRegion = 7153 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7154 OMPLexicalScope Scope(*this, S); 7155 EmitOMPTaskLoopBasedDirective(S); 7156 } 7157 7158 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7159 const OMPMasterTaskLoopDirective &S) { 7160 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7161 Action.Enter(CGF); 7162 EmitOMPTaskLoopBasedDirective(S); 7163 }; 7164 auto LPCRegion = 7165 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7166 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 7167 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7168 } 7169 7170 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7171 const OMPMasterTaskLoopSimdDirective &S) { 7172 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7173 Action.Enter(CGF); 7174 EmitOMPTaskLoopBasedDirective(S); 7175 }; 7176 auto LPCRegion = 7177 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7178 OMPLexicalScope Scope(*this, S); 7179 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7180 } 7181 7182 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7183 const OMPParallelMasterTaskLoopDirective &S) { 7184 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7185 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7186 PrePostActionTy &Action) { 7187 Action.Enter(CGF); 7188 CGF.EmitOMPTaskLoopBasedDirective(S); 7189 }; 7190 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7191 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7192 S.getBeginLoc()); 7193 }; 7194 auto LPCRegion = 7195 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7196 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7197 emitEmptyBoundParameters); 7198 } 7199 7200 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7201 const OMPParallelMasterTaskLoopSimdDirective &S) { 7202 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7203 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7204 PrePostActionTy &Action) { 7205 Action.Enter(CGF); 7206 CGF.EmitOMPTaskLoopBasedDirective(S); 7207 }; 7208 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7209 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7210 S.getBeginLoc()); 7211 }; 7212 auto LPCRegion = 7213 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7214 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7215 emitEmptyBoundParameters); 7216 } 7217 7218 // Generate the instructions for '#pragma omp target update' directive. 7219 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7220 const OMPTargetUpdateDirective &S) { 7221 // If we don't have target devices, don't bother emitting the data mapping 7222 // code. 7223 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7224 return; 7225 7226 // Check if we have any if clause associated with the directive. 7227 const Expr *IfCond = nullptr; 7228 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7229 IfCond = C->getCondition(); 7230 7231 // Check if we have any device clause associated with the directive. 7232 const Expr *Device = nullptr; 7233 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7234 Device = C->getDevice(); 7235 7236 OMPLexicalScope Scope(*this, S, OMPD_task); 7237 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7238 } 7239 7240 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7241 const OMPExecutableDirective &D) { 7242 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7243 EmitOMPScanDirective(*SD); 7244 return; 7245 } 7246 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7247 return; 7248 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7249 OMPPrivateScope GlobalsScope(CGF); 7250 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7251 // Capture global firstprivates to avoid crash. 7252 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7253 for (const Expr *Ref : C->varlists()) { 7254 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7255 if (!DRE) 7256 continue; 7257 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7258 if (!VD || VD->hasLocalStorage()) 7259 continue; 7260 if (!CGF.LocalDeclMap.count(VD)) { 7261 LValue GlobLVal = CGF.EmitLValue(Ref); 7262 GlobalsScope.addPrivate( 7263 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7264 } 7265 } 7266 } 7267 } 7268 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7269 (void)GlobalsScope.Privatize(); 7270 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7271 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7272 } else { 7273 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7274 for (const Expr *E : LD->counters()) { 7275 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7276 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7277 LValue GlobLVal = CGF.EmitLValue(E); 7278 GlobalsScope.addPrivate( 7279 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7280 } 7281 if (isa<OMPCapturedExprDecl>(VD)) { 7282 // Emit only those that were not explicitly referenced in clauses. 7283 if (!CGF.LocalDeclMap.count(VD)) 7284 CGF.EmitVarDecl(*VD); 7285 } 7286 } 7287 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7288 if (!C->getNumForLoops()) 7289 continue; 7290 for (unsigned I = LD->getLoopsNumber(), 7291 E = C->getLoopNumIterations().size(); 7292 I < E; ++I) { 7293 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7294 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7295 // Emit only those that were not explicitly referenced in clauses. 7296 if (!CGF.LocalDeclMap.count(VD)) 7297 CGF.EmitVarDecl(*VD); 7298 } 7299 } 7300 } 7301 } 7302 (void)GlobalsScope.Privatize(); 7303 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7304 } 7305 }; 7306 if (D.getDirectiveKind() == OMPD_atomic || 7307 D.getDirectiveKind() == OMPD_critical || 7308 D.getDirectiveKind() == OMPD_section || 7309 D.getDirectiveKind() == OMPD_master || 7310 D.getDirectiveKind() == OMPD_masked) { 7311 EmitStmt(D.getAssociatedStmt()); 7312 } else { 7313 auto LPCRegion = 7314 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7315 OMPSimdLexicalScope Scope(*this, D); 7316 CGM.getOpenMPRuntime().emitInlinedDirective( 7317 *this, 7318 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7319 : D.getDirectiveKind(), 7320 CodeGen); 7321 } 7322 // Check for outer lastprivate conditional update. 7323 checkForLastprivateConditionalUpdate(*this, D); 7324 } 7325