1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/Basic/PrettyStackTrace.h" 22 using namespace clang; 23 using namespace CodeGen; 24 25 namespace { 26 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 27 /// for captured expressions. 28 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 29 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 30 for (const auto *C : S.clauses()) { 31 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 32 if (const auto *PreInit = 33 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 } else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope( 57 CodeGenFunction &CGF, const OMPExecutableDirective &S, 58 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 59 const bool EmitPreInitStmt = true) 60 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 61 InlinedShareds(CGF) { 62 if (EmitPreInitStmt) 63 emitPreInitStmt(CGF, S); 64 if (!CapturedRegion.hasValue()) 65 return; 66 assert(S.hasAssociatedStmt() && 67 "Expected associated statement for inlined directive."); 68 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 69 for (const auto &C : CS->captures()) { 70 if (C.capturesVariable() || C.capturesVariableByCopy()) { 71 auto *VD = C.getCapturedVar(); 72 assert(VD == VD->getCanonicalDecl() && 73 "Canonical decl must be captured."); 74 DeclRefExpr DRE( 75 CGF.getContext(), const_cast<VarDecl *>(VD), 76 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 77 InlinedShareds.isGlobalVarCaptured(VD)), 78 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 79 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 80 return CGF.EmitLValue(&DRE).getAddress(); 81 }); 82 } 83 } 84 (void)InlinedShareds.Privatize(); 85 } 86 }; 87 88 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 89 /// for captured expressions. 90 class OMPParallelScope final : public OMPLexicalScope { 91 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 92 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 93 return !(isOpenMPTargetExecutionDirective(Kind) || 94 isOpenMPLoopBoundSharingDirective(Kind)) && 95 isOpenMPParallelDirective(Kind); 96 } 97 98 public: 99 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 100 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 101 EmitPreInitStmt(S)) {} 102 }; 103 104 /// Lexical scope for OpenMP teams construct, that handles correct codegen 105 /// for captured expressions. 106 class OMPTeamsScope final : public OMPLexicalScope { 107 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 108 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 109 return !isOpenMPTargetExecutionDirective(Kind) && 110 isOpenMPTeamsDirective(Kind); 111 } 112 113 public: 114 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 115 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 116 EmitPreInitStmt(S)) {} 117 }; 118 119 /// Private scope for OpenMP loop-based directives, that supports capturing 120 /// of used expression from loop statement. 121 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 122 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 123 CodeGenFunction::OMPMapVars PreCondVars; 124 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 125 for (const auto *E : S.counters()) { 126 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 127 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 128 (void)PreCondVars.setVarAddr( 129 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 130 } 131 // Mark private vars as undefs. 132 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 133 for (const Expr *IRef : C->varlists()) { 134 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 135 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 136 (void)PreCondVars.setVarAddr( 137 CGF, OrigVD, 138 Address(llvm::UndefValue::get( 139 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 140 OrigVD->getType().getNonReferenceType()))), 141 CGF.getContext().getDeclAlign(OrigVD))); 142 } 143 } 144 } 145 (void)PreCondVars.apply(CGF); 146 // Emit init, __range and __end variables for C++ range loops. 147 const Stmt *Body = 148 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 149 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 150 Body = OMPLoopDirective::tryToFindNextInnerLoop( 151 Body, /*TryImperfectlyNestedLoops=*/true); 152 if (auto *For = dyn_cast<ForStmt>(Body)) { 153 Body = For->getBody(); 154 } else { 155 assert(isa<CXXForRangeStmt>(Body) && 156 "Expected canonical for loop or range-based for loop."); 157 auto *CXXFor = cast<CXXForRangeStmt>(Body); 158 if (const Stmt *Init = CXXFor->getInit()) 159 CGF.EmitStmt(Init); 160 CGF.EmitStmt(CXXFor->getRangeStmt()); 161 CGF.EmitStmt(CXXFor->getEndStmt()); 162 Body = CXXFor->getBody(); 163 } 164 } 165 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 166 for (const auto *I : PreInits->decls()) 167 CGF.EmitVarDecl(cast<VarDecl>(*I)); 168 } 169 PreCondVars.restore(CGF); 170 } 171 172 public: 173 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 174 : CodeGenFunction::RunCleanupsScope(CGF) { 175 emitPreInitStmt(CGF, S); 176 } 177 }; 178 179 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 180 CodeGenFunction::OMPPrivateScope InlinedShareds; 181 182 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 183 return CGF.LambdaCaptureFields.lookup(VD) || 184 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 185 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 186 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 187 } 188 189 public: 190 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 191 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 192 InlinedShareds(CGF) { 193 for (const auto *C : S.clauses()) { 194 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 195 if (const auto *PreInit = 196 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 197 for (const auto *I : PreInit->decls()) { 198 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 199 CGF.EmitVarDecl(cast<VarDecl>(*I)); 200 } else { 201 CodeGenFunction::AutoVarEmission Emission = 202 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 203 CGF.EmitAutoVarCleanups(Emission); 204 } 205 } 206 } 207 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 208 for (const Expr *E : UDP->varlists()) { 209 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 210 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 211 CGF.EmitVarDecl(*OED); 212 } 213 } 214 } 215 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 216 CGF.EmitOMPPrivateClause(S, InlinedShareds); 217 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 218 if (const Expr *E = TG->getReductionRef()) 219 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 220 } 221 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 222 while (CS) { 223 for (auto &C : CS->captures()) { 224 if (C.capturesVariable() || C.capturesVariableByCopy()) { 225 auto *VD = C.getCapturedVar(); 226 assert(VD == VD->getCanonicalDecl() && 227 "Canonical decl must be captured."); 228 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 229 isCapturedVar(CGF, VD) || 230 (CGF.CapturedStmtInfo && 231 InlinedShareds.isGlobalVarCaptured(VD)), 232 VD->getType().getNonReferenceType(), VK_LValue, 233 C.getLocation()); 234 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 235 return CGF.EmitLValue(&DRE).getAddress(); 236 }); 237 } 238 } 239 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 240 } 241 (void)InlinedShareds.Privatize(); 242 } 243 }; 244 245 } // namespace 246 247 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 248 const OMPExecutableDirective &S, 249 const RegionCodeGenTy &CodeGen); 250 251 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 252 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 253 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 254 OrigVD = OrigVD->getCanonicalDecl(); 255 bool IsCaptured = 256 LambdaCaptureFields.lookup(OrigVD) || 257 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 258 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 259 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 260 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 261 return EmitLValue(&DRE); 262 } 263 } 264 return EmitLValue(E); 265 } 266 267 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 268 ASTContext &C = getContext(); 269 llvm::Value *Size = nullptr; 270 auto SizeInChars = C.getTypeSizeInChars(Ty); 271 if (SizeInChars.isZero()) { 272 // getTypeSizeInChars() returns 0 for a VLA. 273 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 274 VlaSizePair VlaSize = getVLASize(VAT); 275 Ty = VlaSize.Type; 276 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 277 : VlaSize.NumElts; 278 } 279 SizeInChars = C.getTypeSizeInChars(Ty); 280 if (SizeInChars.isZero()) 281 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 282 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 283 } 284 return CGM.getSize(SizeInChars); 285 } 286 287 void CodeGenFunction::GenerateOpenMPCapturedVars( 288 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 289 const RecordDecl *RD = S.getCapturedRecordDecl(); 290 auto CurField = RD->field_begin(); 291 auto CurCap = S.captures().begin(); 292 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 293 E = S.capture_init_end(); 294 I != E; ++I, ++CurField, ++CurCap) { 295 if (CurField->hasCapturedVLAType()) { 296 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 297 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 298 CapturedVars.push_back(Val); 299 } else if (CurCap->capturesThis()) { 300 CapturedVars.push_back(CXXThisValue); 301 } else if (CurCap->capturesVariableByCopy()) { 302 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 303 304 // If the field is not a pointer, we need to save the actual value 305 // and load it as a void pointer. 306 if (!CurField->getType()->isAnyPointerType()) { 307 ASTContext &Ctx = getContext(); 308 Address DstAddr = CreateMemTemp( 309 Ctx.getUIntPtrType(), 310 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 311 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 312 313 llvm::Value *SrcAddrVal = EmitScalarConversion( 314 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 315 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 316 LValue SrcLV = 317 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 318 319 // Store the value using the source type pointer. 320 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 321 322 // Load the value using the destination type pointer. 323 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 324 } 325 CapturedVars.push_back(CV); 326 } else { 327 assert(CurCap->capturesVariable() && "Expected capture by reference."); 328 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 329 } 330 } 331 } 332 333 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 334 QualType DstType, StringRef Name, 335 LValue AddrLV) { 336 ASTContext &Ctx = CGF.getContext(); 337 338 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 339 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 340 Ctx.getPointerType(DstType), Loc); 341 Address TmpAddr = 342 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 343 .getAddress(); 344 return TmpAddr; 345 } 346 347 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 348 if (T->isLValueReferenceType()) 349 return C.getLValueReferenceType( 350 getCanonicalParamType(C, T.getNonReferenceType()), 351 /*SpelledAsLValue=*/false); 352 if (T->isPointerType()) 353 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 354 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 355 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 356 return getCanonicalParamType(C, VLA->getElementType()); 357 if (!A->isVariablyModifiedType()) 358 return C.getCanonicalType(T); 359 } 360 return C.getCanonicalParamType(T); 361 } 362 363 namespace { 364 /// Contains required data for proper outlined function codegen. 365 struct FunctionOptions { 366 /// Captured statement for which the function is generated. 367 const CapturedStmt *S = nullptr; 368 /// true if cast to/from UIntPtr is required for variables captured by 369 /// value. 370 const bool UIntPtrCastRequired = true; 371 /// true if only casted arguments must be registered as local args or VLA 372 /// sizes. 373 const bool RegisterCastedArgsOnly = false; 374 /// Name of the generated function. 375 const StringRef FunctionName; 376 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 377 bool RegisterCastedArgsOnly, 378 StringRef FunctionName) 379 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 380 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 381 FunctionName(FunctionName) {} 382 }; 383 } 384 385 static llvm::Function *emitOutlinedFunctionPrologue( 386 CodeGenFunction &CGF, FunctionArgList &Args, 387 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 388 &LocalAddrs, 389 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 390 &VLASizes, 391 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 392 const CapturedDecl *CD = FO.S->getCapturedDecl(); 393 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 394 assert(CD->hasBody() && "missing CapturedDecl body"); 395 396 CXXThisValue = nullptr; 397 // Build the argument list. 398 CodeGenModule &CGM = CGF.CGM; 399 ASTContext &Ctx = CGM.getContext(); 400 FunctionArgList TargetArgs; 401 Args.append(CD->param_begin(), 402 std::next(CD->param_begin(), CD->getContextParamPosition())); 403 TargetArgs.append( 404 CD->param_begin(), 405 std::next(CD->param_begin(), CD->getContextParamPosition())); 406 auto I = FO.S->captures().begin(); 407 FunctionDecl *DebugFunctionDecl = nullptr; 408 if (!FO.UIntPtrCastRequired) { 409 FunctionProtoType::ExtProtoInfo EPI; 410 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 411 DebugFunctionDecl = FunctionDecl::Create( 412 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 413 SourceLocation(), DeclarationName(), FunctionTy, 414 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 415 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 416 } 417 for (const FieldDecl *FD : RD->fields()) { 418 QualType ArgType = FD->getType(); 419 IdentifierInfo *II = nullptr; 420 VarDecl *CapVar = nullptr; 421 422 // If this is a capture by copy and the type is not a pointer, the outlined 423 // function argument type should be uintptr and the value properly casted to 424 // uintptr. This is necessary given that the runtime library is only able to 425 // deal with pointers. We can pass in the same way the VLA type sizes to the 426 // outlined function. 427 if (FO.UIntPtrCastRequired && 428 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 429 I->capturesVariableArrayType())) 430 ArgType = Ctx.getUIntPtrType(); 431 432 if (I->capturesVariable() || I->capturesVariableByCopy()) { 433 CapVar = I->getCapturedVar(); 434 II = CapVar->getIdentifier(); 435 } else if (I->capturesThis()) { 436 II = &Ctx.Idents.get("this"); 437 } else { 438 assert(I->capturesVariableArrayType()); 439 II = &Ctx.Idents.get("vla"); 440 } 441 if (ArgType->isVariablyModifiedType()) 442 ArgType = getCanonicalParamType(Ctx, ArgType); 443 VarDecl *Arg; 444 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 445 Arg = ParmVarDecl::Create( 446 Ctx, DebugFunctionDecl, 447 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 448 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 449 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 450 } else { 451 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 452 II, ArgType, ImplicitParamDecl::Other); 453 } 454 Args.emplace_back(Arg); 455 // Do not cast arguments if we emit function with non-original types. 456 TargetArgs.emplace_back( 457 FO.UIntPtrCastRequired 458 ? Arg 459 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 460 ++I; 461 } 462 Args.append( 463 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 464 CD->param_end()); 465 TargetArgs.append( 466 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 467 CD->param_end()); 468 469 // Create the function declaration. 470 const CGFunctionInfo &FuncInfo = 471 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 472 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 473 474 auto *F = 475 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 476 FO.FunctionName, &CGM.getModule()); 477 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 478 if (CD->isNothrow()) 479 F->setDoesNotThrow(); 480 F->setDoesNotRecurse(); 481 482 // Generate the function. 483 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 484 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 485 unsigned Cnt = CD->getContextParamPosition(); 486 I = FO.S->captures().begin(); 487 for (const FieldDecl *FD : RD->fields()) { 488 // Do not map arguments if we emit function with non-original types. 489 Address LocalAddr(Address::invalid()); 490 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 491 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 492 TargetArgs[Cnt]); 493 } else { 494 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 495 } 496 // If we are capturing a pointer by copy we don't need to do anything, just 497 // use the value that we get from the arguments. 498 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 499 const VarDecl *CurVD = I->getCapturedVar(); 500 if (!FO.RegisterCastedArgsOnly) 501 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 502 ++Cnt; 503 ++I; 504 continue; 505 } 506 507 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 508 AlignmentSource::Decl); 509 if (FD->hasCapturedVLAType()) { 510 if (FO.UIntPtrCastRequired) { 511 ArgLVal = CGF.MakeAddrLValue( 512 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 513 Args[Cnt]->getName(), ArgLVal), 514 FD->getType(), AlignmentSource::Decl); 515 } 516 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 517 const VariableArrayType *VAT = FD->getCapturedVLAType(); 518 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 519 } else if (I->capturesVariable()) { 520 const VarDecl *Var = I->getCapturedVar(); 521 QualType VarTy = Var->getType(); 522 Address ArgAddr = ArgLVal.getAddress(); 523 if (ArgLVal.getType()->isLValueReferenceType()) { 524 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 525 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 526 assert(ArgLVal.getType()->isPointerType()); 527 ArgAddr = CGF.EmitLoadOfPointer( 528 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 529 } 530 if (!FO.RegisterCastedArgsOnly) { 531 LocalAddrs.insert( 532 {Args[Cnt], 533 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 534 } 535 } else if (I->capturesVariableByCopy()) { 536 assert(!FD->getType()->isAnyPointerType() && 537 "Not expecting a captured pointer."); 538 const VarDecl *Var = I->getCapturedVar(); 539 LocalAddrs.insert({Args[Cnt], 540 {Var, FO.UIntPtrCastRequired 541 ? castValueFromUintptr( 542 CGF, I->getLocation(), FD->getType(), 543 Args[Cnt]->getName(), ArgLVal) 544 : ArgLVal.getAddress()}}); 545 } else { 546 // If 'this' is captured, load it into CXXThisValue. 547 assert(I->capturesThis()); 548 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 549 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 550 } 551 ++Cnt; 552 ++I; 553 } 554 555 return F; 556 } 557 558 llvm::Function * 559 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 560 assert( 561 CapturedStmtInfo && 562 "CapturedStmtInfo should be set when generating the captured function"); 563 const CapturedDecl *CD = S.getCapturedDecl(); 564 // Build the argument list. 565 bool NeedWrapperFunction = 566 getDebugInfo() && 567 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 568 FunctionArgList Args; 569 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 570 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 571 SmallString<256> Buffer; 572 llvm::raw_svector_ostream Out(Buffer); 573 Out << CapturedStmtInfo->getHelperName(); 574 if (NeedWrapperFunction) 575 Out << "_debug__"; 576 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 577 Out.str()); 578 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 579 VLASizes, CXXThisValue, FO); 580 CodeGenFunction::OMPPrivateScope LocalScope(*this); 581 for (const auto &LocalAddrPair : LocalAddrs) { 582 if (LocalAddrPair.second.first) { 583 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 584 return LocalAddrPair.second.second; 585 }); 586 } 587 } 588 (void)LocalScope.Privatize(); 589 for (const auto &VLASizePair : VLASizes) 590 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 591 PGO.assignRegionCounters(GlobalDecl(CD), F); 592 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 593 (void)LocalScope.ForceCleanup(); 594 FinishFunction(CD->getBodyRBrace()); 595 if (!NeedWrapperFunction) 596 return F; 597 598 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 599 /*RegisterCastedArgsOnly=*/true, 600 CapturedStmtInfo->getHelperName()); 601 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 602 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 603 Args.clear(); 604 LocalAddrs.clear(); 605 VLASizes.clear(); 606 llvm::Function *WrapperF = 607 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 608 WrapperCGF.CXXThisValue, WrapperFO); 609 llvm::SmallVector<llvm::Value *, 4> CallArgs; 610 for (const auto *Arg : Args) { 611 llvm::Value *CallArg; 612 auto I = LocalAddrs.find(Arg); 613 if (I != LocalAddrs.end()) { 614 LValue LV = WrapperCGF.MakeAddrLValue( 615 I->second.second, 616 I->second.first ? I->second.first->getType() : Arg->getType(), 617 AlignmentSource::Decl); 618 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 619 } else { 620 auto EI = VLASizes.find(Arg); 621 if (EI != VLASizes.end()) { 622 CallArg = EI->second.second; 623 } else { 624 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 625 Arg->getType(), 626 AlignmentSource::Decl); 627 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 628 } 629 } 630 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 631 } 632 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 633 F, CallArgs); 634 WrapperCGF.FinishFunction(); 635 return WrapperF; 636 } 637 638 //===----------------------------------------------------------------------===// 639 // OpenMP Directive Emission 640 //===----------------------------------------------------------------------===// 641 void CodeGenFunction::EmitOMPAggregateAssign( 642 Address DestAddr, Address SrcAddr, QualType OriginalType, 643 const llvm::function_ref<void(Address, Address)> CopyGen) { 644 // Perform element-by-element initialization. 645 QualType ElementTy; 646 647 // Drill down to the base element type on both arrays. 648 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 649 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 650 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 651 652 llvm::Value *SrcBegin = SrcAddr.getPointer(); 653 llvm::Value *DestBegin = DestAddr.getPointer(); 654 // Cast from pointer to array type to pointer to single element. 655 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 656 // The basic structure here is a while-do loop. 657 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 658 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 659 llvm::Value *IsEmpty = 660 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 661 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 662 663 // Enter the loop body, making that address the current address. 664 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 665 EmitBlock(BodyBB); 666 667 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 668 669 llvm::PHINode *SrcElementPHI = 670 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 671 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 672 Address SrcElementCurrent = 673 Address(SrcElementPHI, 674 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 675 676 llvm::PHINode *DestElementPHI = 677 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 678 DestElementPHI->addIncoming(DestBegin, EntryBB); 679 Address DestElementCurrent = 680 Address(DestElementPHI, 681 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 682 683 // Emit copy. 684 CopyGen(DestElementCurrent, SrcElementCurrent); 685 686 // Shift the address forward by one element. 687 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 688 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 689 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 690 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 691 // Check whether we've reached the end. 692 llvm::Value *Done = 693 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 694 Builder.CreateCondBr(Done, DoneBB, BodyBB); 695 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 696 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 697 698 // Done. 699 EmitBlock(DoneBB, /*IsFinished=*/true); 700 } 701 702 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 703 Address SrcAddr, const VarDecl *DestVD, 704 const VarDecl *SrcVD, const Expr *Copy) { 705 if (OriginalType->isArrayType()) { 706 const auto *BO = dyn_cast<BinaryOperator>(Copy); 707 if (BO && BO->getOpcode() == BO_Assign) { 708 // Perform simple memcpy for simple copying. 709 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 710 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 711 EmitAggregateAssign(Dest, Src, OriginalType); 712 } else { 713 // For arrays with complex element types perform element by element 714 // copying. 715 EmitOMPAggregateAssign( 716 DestAddr, SrcAddr, OriginalType, 717 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 718 // Working with the single array element, so have to remap 719 // destination and source variables to corresponding array 720 // elements. 721 CodeGenFunction::OMPPrivateScope Remap(*this); 722 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 723 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 724 (void)Remap.Privatize(); 725 EmitIgnoredExpr(Copy); 726 }); 727 } 728 } else { 729 // Remap pseudo source variable to private copy. 730 CodeGenFunction::OMPPrivateScope Remap(*this); 731 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 732 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 733 (void)Remap.Privatize(); 734 // Emit copying of the whole variable. 735 EmitIgnoredExpr(Copy); 736 } 737 } 738 739 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 740 OMPPrivateScope &PrivateScope) { 741 if (!HaveInsertPoint()) 742 return false; 743 bool DeviceConstTarget = 744 getLangOpts().OpenMPIsDevice && 745 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 746 bool FirstprivateIsLastprivate = false; 747 llvm::DenseSet<const VarDecl *> Lastprivates; 748 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 749 for (const auto *D : C->varlists()) 750 Lastprivates.insert( 751 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 752 } 753 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 754 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 755 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 756 // Force emission of the firstprivate copy if the directive does not emit 757 // outlined function, like omp for, omp simd, omp distribute etc. 758 bool MustEmitFirstprivateCopy = 759 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 760 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 761 auto IRef = C->varlist_begin(); 762 auto InitsRef = C->inits().begin(); 763 for (const Expr *IInit : C->private_copies()) { 764 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 765 bool ThisFirstprivateIsLastprivate = 766 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 767 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 768 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 769 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 770 !FD->getType()->isReferenceType() && 771 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 772 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 773 ++IRef; 774 ++InitsRef; 775 continue; 776 } 777 // Do not emit copy for firstprivate constant variables in target regions, 778 // captured by reference. 779 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 780 FD && FD->getType()->isReferenceType() && 781 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 782 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 783 OrigVD); 784 ++IRef; 785 ++InitsRef; 786 continue; 787 } 788 FirstprivateIsLastprivate = 789 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 790 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 791 const auto *VDInit = 792 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 793 bool IsRegistered; 794 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 795 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 796 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 797 LValue OriginalLVal; 798 if (!FD) { 799 // Check if the firstprivate variable is just a constant value. 800 ConstantEmission CE = tryEmitAsConstant(&DRE); 801 if (CE && !CE.isReference()) { 802 // Constant value, no need to create a copy. 803 ++IRef; 804 ++InitsRef; 805 continue; 806 } 807 if (CE && CE.isReference()) { 808 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 809 } else { 810 assert(!CE && "Expected non-constant firstprivate."); 811 OriginalLVal = EmitLValue(&DRE); 812 } 813 } else { 814 OriginalLVal = EmitLValue(&DRE); 815 } 816 QualType Type = VD->getType(); 817 if (Type->isArrayType()) { 818 // Emit VarDecl with copy init for arrays. 819 // Get the address of the original variable captured in current 820 // captured region. 821 IsRegistered = PrivateScope.addPrivate( 822 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 823 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 824 const Expr *Init = VD->getInit(); 825 if (!isa<CXXConstructExpr>(Init) || 826 isTrivialInitializer(Init)) { 827 // Perform simple memcpy. 828 LValue Dest = 829 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 830 EmitAggregateAssign(Dest, OriginalLVal, Type); 831 } else { 832 EmitOMPAggregateAssign( 833 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 834 Type, 835 [this, VDInit, Init](Address DestElement, 836 Address SrcElement) { 837 // Clean up any temporaries needed by the 838 // initialization. 839 RunCleanupsScope InitScope(*this); 840 // Emit initialization for single element. 841 setAddrOfLocalVar(VDInit, SrcElement); 842 EmitAnyExprToMem(Init, DestElement, 843 Init->getType().getQualifiers(), 844 /*IsInitializer*/ false); 845 LocalDeclMap.erase(VDInit); 846 }); 847 } 848 EmitAutoVarCleanups(Emission); 849 return Emission.getAllocatedAddress(); 850 }); 851 } else { 852 Address OriginalAddr = OriginalLVal.getAddress(); 853 IsRegistered = PrivateScope.addPrivate( 854 OrigVD, [this, VDInit, OriginalAddr, VD]() { 855 // Emit private VarDecl with copy init. 856 // Remap temp VDInit variable to the address of the original 857 // variable (for proper handling of captured global variables). 858 setAddrOfLocalVar(VDInit, OriginalAddr); 859 EmitDecl(*VD); 860 LocalDeclMap.erase(VDInit); 861 return GetAddrOfLocalVar(VD); 862 }); 863 } 864 assert(IsRegistered && 865 "firstprivate var already registered as private"); 866 // Silence the warning about unused variable. 867 (void)IsRegistered; 868 } 869 ++IRef; 870 ++InitsRef; 871 } 872 } 873 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 874 } 875 876 void CodeGenFunction::EmitOMPPrivateClause( 877 const OMPExecutableDirective &D, 878 CodeGenFunction::OMPPrivateScope &PrivateScope) { 879 if (!HaveInsertPoint()) 880 return; 881 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 882 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 883 auto IRef = C->varlist_begin(); 884 for (const Expr *IInit : C->private_copies()) { 885 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 886 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 887 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 888 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 889 // Emit private VarDecl with copy init. 890 EmitDecl(*VD); 891 return GetAddrOfLocalVar(VD); 892 }); 893 assert(IsRegistered && "private var already registered as private"); 894 // Silence the warning about unused variable. 895 (void)IsRegistered; 896 } 897 ++IRef; 898 } 899 } 900 } 901 902 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 903 if (!HaveInsertPoint()) 904 return false; 905 // threadprivate_var1 = master_threadprivate_var1; 906 // operator=(threadprivate_var2, master_threadprivate_var2); 907 // ... 908 // __kmpc_barrier(&loc, global_tid); 909 llvm::DenseSet<const VarDecl *> CopiedVars; 910 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 911 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 912 auto IRef = C->varlist_begin(); 913 auto ISrcRef = C->source_exprs().begin(); 914 auto IDestRef = C->destination_exprs().begin(); 915 for (const Expr *AssignOp : C->assignment_ops()) { 916 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 917 QualType Type = VD->getType(); 918 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 919 // Get the address of the master variable. If we are emitting code with 920 // TLS support, the address is passed from the master as field in the 921 // captured declaration. 922 Address MasterAddr = Address::invalid(); 923 if (getLangOpts().OpenMPUseTLS && 924 getContext().getTargetInfo().isTLSSupported()) { 925 assert(CapturedStmtInfo->lookup(VD) && 926 "Copyin threadprivates should have been captured!"); 927 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 928 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 929 MasterAddr = EmitLValue(&DRE).getAddress(); 930 LocalDeclMap.erase(VD); 931 } else { 932 MasterAddr = 933 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 934 : CGM.GetAddrOfGlobal(VD), 935 getContext().getDeclAlign(VD)); 936 } 937 // Get the address of the threadprivate variable. 938 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 939 if (CopiedVars.size() == 1) { 940 // At first check if current thread is a master thread. If it is, no 941 // need to copy data. 942 CopyBegin = createBasicBlock("copyin.not.master"); 943 CopyEnd = createBasicBlock("copyin.not.master.end"); 944 Builder.CreateCondBr( 945 Builder.CreateICmpNE( 946 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 947 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 948 CGM.IntPtrTy)), 949 CopyBegin, CopyEnd); 950 EmitBlock(CopyBegin); 951 } 952 const auto *SrcVD = 953 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 954 const auto *DestVD = 955 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 956 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 957 } 958 ++IRef; 959 ++ISrcRef; 960 ++IDestRef; 961 } 962 } 963 if (CopyEnd) { 964 // Exit out of copying procedure for non-master thread. 965 EmitBlock(CopyEnd, /*IsFinished=*/true); 966 return true; 967 } 968 return false; 969 } 970 971 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 972 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 973 if (!HaveInsertPoint()) 974 return false; 975 bool HasAtLeastOneLastprivate = false; 976 llvm::DenseSet<const VarDecl *> SIMDLCVs; 977 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 978 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 979 for (const Expr *C : LoopDirective->counters()) { 980 SIMDLCVs.insert( 981 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 982 } 983 } 984 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 985 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 986 HasAtLeastOneLastprivate = true; 987 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 988 !getLangOpts().OpenMPSimd) 989 break; 990 auto IRef = C->varlist_begin(); 991 auto IDestRef = C->destination_exprs().begin(); 992 for (const Expr *IInit : C->private_copies()) { 993 // Keep the address of the original variable for future update at the end 994 // of the loop. 995 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 996 // Taskloops do not require additional initialization, it is done in 997 // runtime support library. 998 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 999 const auto *DestVD = 1000 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1001 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1002 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1003 /*RefersToEnclosingVariableOrCapture=*/ 1004 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1005 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1006 return EmitLValue(&DRE).getAddress(); 1007 }); 1008 // Check if the variable is also a firstprivate: in this case IInit is 1009 // not generated. Initialization of this variable will happen in codegen 1010 // for 'firstprivate' clause. 1011 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1012 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1013 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 1014 // Emit private VarDecl with copy init. 1015 EmitDecl(*VD); 1016 return GetAddrOfLocalVar(VD); 1017 }); 1018 assert(IsRegistered && 1019 "lastprivate var already registered as private"); 1020 (void)IsRegistered; 1021 } 1022 } 1023 ++IRef; 1024 ++IDestRef; 1025 } 1026 } 1027 return HasAtLeastOneLastprivate; 1028 } 1029 1030 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1031 const OMPExecutableDirective &D, bool NoFinals, 1032 llvm::Value *IsLastIterCond) { 1033 if (!HaveInsertPoint()) 1034 return; 1035 // Emit following code: 1036 // if (<IsLastIterCond>) { 1037 // orig_var1 = private_orig_var1; 1038 // ... 1039 // orig_varn = private_orig_varn; 1040 // } 1041 llvm::BasicBlock *ThenBB = nullptr; 1042 llvm::BasicBlock *DoneBB = nullptr; 1043 if (IsLastIterCond) { 1044 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1045 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1046 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1047 EmitBlock(ThenBB); 1048 } 1049 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1050 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1051 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1052 auto IC = LoopDirective->counters().begin(); 1053 for (const Expr *F : LoopDirective->finals()) { 1054 const auto *D = 1055 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1056 if (NoFinals) 1057 AlreadyEmittedVars.insert(D); 1058 else 1059 LoopCountersAndUpdates[D] = F; 1060 ++IC; 1061 } 1062 } 1063 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1064 auto IRef = C->varlist_begin(); 1065 auto ISrcRef = C->source_exprs().begin(); 1066 auto IDestRef = C->destination_exprs().begin(); 1067 for (const Expr *AssignOp : C->assignment_ops()) { 1068 const auto *PrivateVD = 1069 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1070 QualType Type = PrivateVD->getType(); 1071 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1072 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1073 // If lastprivate variable is a loop control variable for loop-based 1074 // directive, update its value before copyin back to original 1075 // variable. 1076 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1077 EmitIgnoredExpr(FinalExpr); 1078 const auto *SrcVD = 1079 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1080 const auto *DestVD = 1081 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1082 // Get the address of the original variable. 1083 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1084 // Get the address of the private variable. 1085 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1086 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1087 PrivateAddr = 1088 Address(Builder.CreateLoad(PrivateAddr), 1089 getNaturalTypeAlignment(RefTy->getPointeeType())); 1090 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1091 } 1092 ++IRef; 1093 ++ISrcRef; 1094 ++IDestRef; 1095 } 1096 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1097 EmitIgnoredExpr(PostUpdate); 1098 } 1099 if (IsLastIterCond) 1100 EmitBlock(DoneBB, /*IsFinished=*/true); 1101 } 1102 1103 void CodeGenFunction::EmitOMPReductionClauseInit( 1104 const OMPExecutableDirective &D, 1105 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1106 if (!HaveInsertPoint()) 1107 return; 1108 SmallVector<const Expr *, 4> Shareds; 1109 SmallVector<const Expr *, 4> Privates; 1110 SmallVector<const Expr *, 4> ReductionOps; 1111 SmallVector<const Expr *, 4> LHSs; 1112 SmallVector<const Expr *, 4> RHSs; 1113 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1114 auto IPriv = C->privates().begin(); 1115 auto IRed = C->reduction_ops().begin(); 1116 auto ILHS = C->lhs_exprs().begin(); 1117 auto IRHS = C->rhs_exprs().begin(); 1118 for (const Expr *Ref : C->varlists()) { 1119 Shareds.emplace_back(Ref); 1120 Privates.emplace_back(*IPriv); 1121 ReductionOps.emplace_back(*IRed); 1122 LHSs.emplace_back(*ILHS); 1123 RHSs.emplace_back(*IRHS); 1124 std::advance(IPriv, 1); 1125 std::advance(IRed, 1); 1126 std::advance(ILHS, 1); 1127 std::advance(IRHS, 1); 1128 } 1129 } 1130 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1131 unsigned Count = 0; 1132 auto ILHS = LHSs.begin(); 1133 auto IRHS = RHSs.begin(); 1134 auto IPriv = Privates.begin(); 1135 for (const Expr *IRef : Shareds) { 1136 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1137 // Emit private VarDecl with reduction init. 1138 RedCG.emitSharedLValue(*this, Count); 1139 RedCG.emitAggregateType(*this, Count); 1140 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1141 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1142 RedCG.getSharedLValue(Count), 1143 [&Emission](CodeGenFunction &CGF) { 1144 CGF.EmitAutoVarInit(Emission); 1145 return true; 1146 }); 1147 EmitAutoVarCleanups(Emission); 1148 Address BaseAddr = RedCG.adjustPrivateAddress( 1149 *this, Count, Emission.getAllocatedAddress()); 1150 bool IsRegistered = PrivateScope.addPrivate( 1151 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1152 assert(IsRegistered && "private var already registered as private"); 1153 // Silence the warning about unused variable. 1154 (void)IsRegistered; 1155 1156 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1157 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1158 QualType Type = PrivateVD->getType(); 1159 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1160 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1161 // Store the address of the original variable associated with the LHS 1162 // implicit variable. 1163 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1164 return RedCG.getSharedLValue(Count).getAddress(); 1165 }); 1166 PrivateScope.addPrivate( 1167 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1168 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1169 isa<ArraySubscriptExpr>(IRef)) { 1170 // Store the address of the original variable associated with the LHS 1171 // implicit variable. 1172 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1173 return RedCG.getSharedLValue(Count).getAddress(); 1174 }); 1175 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1176 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1177 ConvertTypeForMem(RHSVD->getType()), 1178 "rhs.begin"); 1179 }); 1180 } else { 1181 QualType Type = PrivateVD->getType(); 1182 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1183 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1184 // Store the address of the original variable associated with the LHS 1185 // implicit variable. 1186 if (IsArray) { 1187 OriginalAddr = Builder.CreateElementBitCast( 1188 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1189 } 1190 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1191 PrivateScope.addPrivate( 1192 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1193 return IsArray 1194 ? Builder.CreateElementBitCast( 1195 GetAddrOfLocalVar(PrivateVD), 1196 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1197 : GetAddrOfLocalVar(PrivateVD); 1198 }); 1199 } 1200 ++ILHS; 1201 ++IRHS; 1202 ++IPriv; 1203 ++Count; 1204 } 1205 } 1206 1207 void CodeGenFunction::EmitOMPReductionClauseFinal( 1208 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1209 if (!HaveInsertPoint()) 1210 return; 1211 llvm::SmallVector<const Expr *, 8> Privates; 1212 llvm::SmallVector<const Expr *, 8> LHSExprs; 1213 llvm::SmallVector<const Expr *, 8> RHSExprs; 1214 llvm::SmallVector<const Expr *, 8> ReductionOps; 1215 bool HasAtLeastOneReduction = false; 1216 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1217 HasAtLeastOneReduction = true; 1218 Privates.append(C->privates().begin(), C->privates().end()); 1219 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1220 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1221 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1222 } 1223 if (HasAtLeastOneReduction) { 1224 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1225 isOpenMPParallelDirective(D.getDirectiveKind()) || 1226 ReductionKind == OMPD_simd; 1227 bool SimpleReduction = ReductionKind == OMPD_simd; 1228 // Emit nowait reduction if nowait clause is present or directive is a 1229 // parallel directive (it always has implicit barrier). 1230 CGM.getOpenMPRuntime().emitReduction( 1231 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1232 {WithNowait, SimpleReduction, ReductionKind}); 1233 } 1234 } 1235 1236 static void emitPostUpdateForReductionClause( 1237 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1238 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1239 if (!CGF.HaveInsertPoint()) 1240 return; 1241 llvm::BasicBlock *DoneBB = nullptr; 1242 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1243 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1244 if (!DoneBB) { 1245 if (llvm::Value *Cond = CondGen(CGF)) { 1246 // If the first post-update expression is found, emit conditional 1247 // block if it was requested. 1248 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1249 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1250 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1251 CGF.EmitBlock(ThenBB); 1252 } 1253 } 1254 CGF.EmitIgnoredExpr(PostUpdate); 1255 } 1256 } 1257 if (DoneBB) 1258 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1259 } 1260 1261 namespace { 1262 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1263 /// parallel function. This is necessary for combined constructs such as 1264 /// 'distribute parallel for' 1265 typedef llvm::function_ref<void(CodeGenFunction &, 1266 const OMPExecutableDirective &, 1267 llvm::SmallVectorImpl<llvm::Value *> &)> 1268 CodeGenBoundParametersTy; 1269 } // anonymous namespace 1270 1271 static void emitCommonOMPParallelDirective( 1272 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1273 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1274 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1275 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1276 llvm::Function *OutlinedFn = 1277 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1278 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1279 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1280 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1281 llvm::Value *NumThreads = 1282 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1283 /*IgnoreResultAssign=*/true); 1284 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1285 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1286 } 1287 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1288 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1289 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1290 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1291 } 1292 const Expr *IfCond = nullptr; 1293 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1294 if (C->getNameModifier() == OMPD_unknown || 1295 C->getNameModifier() == OMPD_parallel) { 1296 IfCond = C->getCondition(); 1297 break; 1298 } 1299 } 1300 1301 OMPParallelScope Scope(CGF, S); 1302 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1303 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1304 // lower and upper bounds with the pragma 'for' chunking mechanism. 1305 // The following lambda takes care of appending the lower and upper bound 1306 // parameters when necessary 1307 CodeGenBoundParameters(CGF, S, CapturedVars); 1308 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1309 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1310 CapturedVars, IfCond); 1311 } 1312 1313 static void emitEmptyBoundParameters(CodeGenFunction &, 1314 const OMPExecutableDirective &, 1315 llvm::SmallVectorImpl<llvm::Value *> &) {} 1316 1317 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1318 // Emit parallel region as a standalone region. 1319 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1320 Action.Enter(CGF); 1321 OMPPrivateScope PrivateScope(CGF); 1322 bool Copyins = CGF.EmitOMPCopyinClause(S); 1323 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1324 if (Copyins) { 1325 // Emit implicit barrier to synchronize threads and avoid data races on 1326 // propagation master's thread values of threadprivate variables to local 1327 // instances of that variables of all other implicit threads. 1328 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1329 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1330 /*ForceSimpleCall=*/true); 1331 } 1332 CGF.EmitOMPPrivateClause(S, PrivateScope); 1333 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1334 (void)PrivateScope.Privatize(); 1335 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1336 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1337 }; 1338 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1339 emitEmptyBoundParameters); 1340 emitPostUpdateForReductionClause(*this, S, 1341 [](CodeGenFunction &) { return nullptr; }); 1342 } 1343 1344 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1345 int MaxLevel, int Level = 0) { 1346 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1347 const Stmt *SimplifiedS = S->IgnoreContainers(); 1348 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1349 PrettyStackTraceLoc CrashInfo( 1350 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1351 "LLVM IR generation of compound statement ('{}')"); 1352 1353 // Keep track of the current cleanup stack depth, including debug scopes. 1354 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1355 for (const Stmt *CurStmt : CS->body()) 1356 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1357 return; 1358 } 1359 if (SimplifiedS == NextLoop) { 1360 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1361 S = For->getBody(); 1362 } else { 1363 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1364 "Expected canonical for loop or range-based for loop."); 1365 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1366 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1367 S = CXXFor->getBody(); 1368 } 1369 if (Level + 1 < MaxLevel) { 1370 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1371 S, /*TryImperfectlyNestedLoops=*/true); 1372 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1373 return; 1374 } 1375 } 1376 CGF.EmitStmt(S); 1377 } 1378 1379 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1380 JumpDest LoopExit) { 1381 RunCleanupsScope BodyScope(*this); 1382 // Update counters values on current iteration. 1383 for (const Expr *UE : D.updates()) 1384 EmitIgnoredExpr(UE); 1385 // Update the linear variables. 1386 // In distribute directives only loop counters may be marked as linear, no 1387 // need to generate the code for them. 1388 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1389 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1390 for (const Expr *UE : C->updates()) 1391 EmitIgnoredExpr(UE); 1392 } 1393 } 1394 1395 // On a continue in the body, jump to the end. 1396 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1397 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1398 for (const Expr *E : D.finals_conditions()) { 1399 if (!E) 1400 continue; 1401 // Check that loop counter in non-rectangular nest fits into the iteration 1402 // space. 1403 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1404 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1405 getProfileCount(D.getBody())); 1406 EmitBlock(NextBB); 1407 } 1408 // Emit loop variables for C++ range loops. 1409 const Stmt *Body = 1410 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1411 // Emit loop body. 1412 emitBody(*this, Body, 1413 OMPLoopDirective::tryToFindNextInnerLoop( 1414 Body, /*TryImperfectlyNestedLoops=*/true), 1415 D.getCollapsedNumber()); 1416 1417 // The end (updates/cleanups). 1418 EmitBlock(Continue.getBlock()); 1419 BreakContinueStack.pop_back(); 1420 } 1421 1422 void CodeGenFunction::EmitOMPInnerLoop( 1423 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1424 const Expr *IncExpr, 1425 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1426 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1427 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1428 1429 // Start the loop with a block that tests the condition. 1430 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1431 EmitBlock(CondBlock); 1432 const SourceRange R = S.getSourceRange(); 1433 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1434 SourceLocToDebugLoc(R.getEnd())); 1435 1436 // If there are any cleanups between here and the loop-exit scope, 1437 // create a block to stage a loop exit along. 1438 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1439 if (RequiresCleanup) 1440 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1441 1442 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1443 1444 // Emit condition. 1445 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1446 if (ExitBlock != LoopExit.getBlock()) { 1447 EmitBlock(ExitBlock); 1448 EmitBranchThroughCleanup(LoopExit); 1449 } 1450 1451 EmitBlock(LoopBody); 1452 incrementProfileCounter(&S); 1453 1454 // Create a block for the increment. 1455 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1456 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1457 1458 BodyGen(*this); 1459 1460 // Emit "IV = IV + 1" and a back-edge to the condition block. 1461 EmitBlock(Continue.getBlock()); 1462 EmitIgnoredExpr(IncExpr); 1463 PostIncGen(*this); 1464 BreakContinueStack.pop_back(); 1465 EmitBranch(CondBlock); 1466 LoopStack.pop(); 1467 // Emit the fall-through block. 1468 EmitBlock(LoopExit.getBlock()); 1469 } 1470 1471 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1472 if (!HaveInsertPoint()) 1473 return false; 1474 // Emit inits for the linear variables. 1475 bool HasLinears = false; 1476 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1477 for (const Expr *Init : C->inits()) { 1478 HasLinears = true; 1479 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1480 if (const auto *Ref = 1481 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1482 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1483 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1484 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1485 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1486 VD->getInit()->getType(), VK_LValue, 1487 VD->getInit()->getExprLoc()); 1488 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1489 VD->getType()), 1490 /*capturedByInit=*/false); 1491 EmitAutoVarCleanups(Emission); 1492 } else { 1493 EmitVarDecl(*VD); 1494 } 1495 } 1496 // Emit the linear steps for the linear clauses. 1497 // If a step is not constant, it is pre-calculated before the loop. 1498 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1499 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1500 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1501 // Emit calculation of the linear step. 1502 EmitIgnoredExpr(CS); 1503 } 1504 } 1505 return HasLinears; 1506 } 1507 1508 void CodeGenFunction::EmitOMPLinearClauseFinal( 1509 const OMPLoopDirective &D, 1510 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1511 if (!HaveInsertPoint()) 1512 return; 1513 llvm::BasicBlock *DoneBB = nullptr; 1514 // Emit the final values of the linear variables. 1515 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1516 auto IC = C->varlist_begin(); 1517 for (const Expr *F : C->finals()) { 1518 if (!DoneBB) { 1519 if (llvm::Value *Cond = CondGen(*this)) { 1520 // If the first post-update expression is found, emit conditional 1521 // block if it was requested. 1522 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1523 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1524 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1525 EmitBlock(ThenBB); 1526 } 1527 } 1528 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1529 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1530 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1531 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1532 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1533 CodeGenFunction::OMPPrivateScope VarScope(*this); 1534 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1535 (void)VarScope.Privatize(); 1536 EmitIgnoredExpr(F); 1537 ++IC; 1538 } 1539 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1540 EmitIgnoredExpr(PostUpdate); 1541 } 1542 if (DoneBB) 1543 EmitBlock(DoneBB, /*IsFinished=*/true); 1544 } 1545 1546 static void emitAlignedClause(CodeGenFunction &CGF, 1547 const OMPExecutableDirective &D) { 1548 if (!CGF.HaveInsertPoint()) 1549 return; 1550 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1551 llvm::APInt ClauseAlignment(64, 0); 1552 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1553 auto *AlignmentCI = 1554 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1555 ClauseAlignment = AlignmentCI->getValue(); 1556 } 1557 for (const Expr *E : Clause->varlists()) { 1558 llvm::APInt Alignment(ClauseAlignment); 1559 if (Alignment == 0) { 1560 // OpenMP [2.8.1, Description] 1561 // If no optional parameter is specified, implementation-defined default 1562 // alignments for SIMD instructions on the target platforms are assumed. 1563 Alignment = 1564 CGF.getContext() 1565 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1566 E->getType()->getPointeeType())) 1567 .getQuantity(); 1568 } 1569 assert((Alignment == 0 || Alignment.isPowerOf2()) && 1570 "alignment is not power of 2"); 1571 if (Alignment != 0) { 1572 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1573 CGF.EmitAlignmentAssumption( 1574 PtrValue, E, /*No second loc needed*/ SourceLocation(), 1575 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 1576 } 1577 } 1578 } 1579 } 1580 1581 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1582 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1583 if (!HaveInsertPoint()) 1584 return; 1585 auto I = S.private_counters().begin(); 1586 for (const Expr *E : S.counters()) { 1587 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1588 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1589 // Emit var without initialization. 1590 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1591 EmitAutoVarCleanups(VarEmission); 1592 LocalDeclMap.erase(PrivateVD); 1593 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1594 return VarEmission.getAllocatedAddress(); 1595 }); 1596 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1597 VD->hasGlobalStorage()) { 1598 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1599 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1600 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1601 E->getType(), VK_LValue, E->getExprLoc()); 1602 return EmitLValue(&DRE).getAddress(); 1603 }); 1604 } else { 1605 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1606 return VarEmission.getAllocatedAddress(); 1607 }); 1608 } 1609 ++I; 1610 } 1611 // Privatize extra loop counters used in loops for ordered(n) clauses. 1612 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1613 if (!C->getNumForLoops()) 1614 continue; 1615 for (unsigned I = S.getCollapsedNumber(), 1616 E = C->getLoopNumIterations().size(); 1617 I < E; ++I) { 1618 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1619 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1620 // Override only those variables that can be captured to avoid re-emission 1621 // of the variables declared within the loops. 1622 if (DRE->refersToEnclosingVariableOrCapture()) { 1623 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1624 return CreateMemTemp(DRE->getType(), VD->getName()); 1625 }); 1626 } 1627 } 1628 } 1629 } 1630 1631 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1632 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1633 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1634 if (!CGF.HaveInsertPoint()) 1635 return; 1636 { 1637 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1638 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1639 (void)PreCondScope.Privatize(); 1640 // Get initial values of real counters. 1641 for (const Expr *I : S.inits()) { 1642 CGF.EmitIgnoredExpr(I); 1643 } 1644 } 1645 // Create temp loop control variables with their init values to support 1646 // non-rectangular loops. 1647 CodeGenFunction::OMPMapVars PreCondVars; 1648 for (const Expr * E: S.dependent_counters()) { 1649 if (!E) 1650 continue; 1651 assert(!E->getType().getNonReferenceType()->isRecordType() && 1652 "dependent counter must not be an iterator."); 1653 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1654 Address CounterAddr = 1655 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 1656 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 1657 } 1658 (void)PreCondVars.apply(CGF); 1659 for (const Expr *E : S.dependent_inits()) { 1660 if (!E) 1661 continue; 1662 CGF.EmitIgnoredExpr(E); 1663 } 1664 // Check that loop is executed at least one time. 1665 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1666 PreCondVars.restore(CGF); 1667 } 1668 1669 void CodeGenFunction::EmitOMPLinearClause( 1670 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1671 if (!HaveInsertPoint()) 1672 return; 1673 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1674 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1675 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1676 for (const Expr *C : LoopDirective->counters()) { 1677 SIMDLCVs.insert( 1678 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1679 } 1680 } 1681 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1682 auto CurPrivate = C->privates().begin(); 1683 for (const Expr *E : C->varlists()) { 1684 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1685 const auto *PrivateVD = 1686 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1687 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1688 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1689 // Emit private VarDecl with copy init. 1690 EmitVarDecl(*PrivateVD); 1691 return GetAddrOfLocalVar(PrivateVD); 1692 }); 1693 assert(IsRegistered && "linear var already registered as private"); 1694 // Silence the warning about unused variable. 1695 (void)IsRegistered; 1696 } else { 1697 EmitVarDecl(*PrivateVD); 1698 } 1699 ++CurPrivate; 1700 } 1701 } 1702 } 1703 1704 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1705 const OMPExecutableDirective &D, 1706 bool IsMonotonic) { 1707 if (!CGF.HaveInsertPoint()) 1708 return; 1709 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1710 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1711 /*ignoreResult=*/true); 1712 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1713 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1714 // In presence of finite 'safelen', it may be unsafe to mark all 1715 // the memory instructions parallel, because loop-carried 1716 // dependences of 'safelen' iterations are possible. 1717 if (!IsMonotonic) 1718 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1719 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1720 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1721 /*ignoreResult=*/true); 1722 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1723 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1724 // In presence of finite 'safelen', it may be unsafe to mark all 1725 // the memory instructions parallel, because loop-carried 1726 // dependences of 'safelen' iterations are possible. 1727 CGF.LoopStack.setParallel(/*Enable=*/false); 1728 } 1729 } 1730 1731 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1732 bool IsMonotonic) { 1733 // Walk clauses and process safelen/lastprivate. 1734 LoopStack.setParallel(!IsMonotonic); 1735 LoopStack.setVectorizeEnable(); 1736 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1737 } 1738 1739 void CodeGenFunction::EmitOMPSimdFinal( 1740 const OMPLoopDirective &D, 1741 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1742 if (!HaveInsertPoint()) 1743 return; 1744 llvm::BasicBlock *DoneBB = nullptr; 1745 auto IC = D.counters().begin(); 1746 auto IPC = D.private_counters().begin(); 1747 for (const Expr *F : D.finals()) { 1748 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1749 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1750 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1751 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1752 OrigVD->hasGlobalStorage() || CED) { 1753 if (!DoneBB) { 1754 if (llvm::Value *Cond = CondGen(*this)) { 1755 // If the first post-update expression is found, emit conditional 1756 // block if it was requested. 1757 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1758 DoneBB = createBasicBlock(".omp.final.done"); 1759 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1760 EmitBlock(ThenBB); 1761 } 1762 } 1763 Address OrigAddr = Address::invalid(); 1764 if (CED) { 1765 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1766 } else { 1767 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1768 /*RefersToEnclosingVariableOrCapture=*/false, 1769 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1770 OrigAddr = EmitLValue(&DRE).getAddress(); 1771 } 1772 OMPPrivateScope VarScope(*this); 1773 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1774 (void)VarScope.Privatize(); 1775 EmitIgnoredExpr(F); 1776 } 1777 ++IC; 1778 ++IPC; 1779 } 1780 if (DoneBB) 1781 EmitBlock(DoneBB, /*IsFinished=*/true); 1782 } 1783 1784 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1785 const OMPLoopDirective &S, 1786 CodeGenFunction::JumpDest LoopExit) { 1787 CGF.EmitOMPLoopBody(S, LoopExit); 1788 CGF.EmitStopPoint(&S); 1789 } 1790 1791 /// Emit a helper variable and return corresponding lvalue. 1792 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1793 const DeclRefExpr *Helper) { 1794 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1795 CGF.EmitVarDecl(*VDecl); 1796 return CGF.EmitLValue(Helper); 1797 } 1798 1799 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1800 PrePostActionTy &Action) { 1801 Action.Enter(CGF); 1802 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1803 "Expected simd directive"); 1804 OMPLoopScope PreInitScope(CGF, S); 1805 // if (PreCond) { 1806 // for (IV in 0..LastIteration) BODY; 1807 // <Final counter/linear vars updates>; 1808 // } 1809 // 1810 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1811 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1812 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1813 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1814 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1815 } 1816 1817 // Emit: if (PreCond) - begin. 1818 // If the condition constant folds and can be elided, avoid emitting the 1819 // whole loop. 1820 bool CondConstant; 1821 llvm::BasicBlock *ContBlock = nullptr; 1822 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1823 if (!CondConstant) 1824 return; 1825 } else { 1826 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1827 ContBlock = CGF.createBasicBlock("simd.if.end"); 1828 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1829 CGF.getProfileCount(&S)); 1830 CGF.EmitBlock(ThenBlock); 1831 CGF.incrementProfileCounter(&S); 1832 } 1833 1834 // Emit the loop iteration variable. 1835 const Expr *IVExpr = S.getIterationVariable(); 1836 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1837 CGF.EmitVarDecl(*IVDecl); 1838 CGF.EmitIgnoredExpr(S.getInit()); 1839 1840 // Emit the iterations count variable. 1841 // If it is not a variable, Sema decided to calculate iterations count on 1842 // each iteration (e.g., it is foldable into a constant). 1843 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1844 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1845 // Emit calculation of the iterations count. 1846 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1847 } 1848 1849 emitAlignedClause(CGF, S); 1850 (void)CGF.EmitOMPLinearClauseInit(S); 1851 { 1852 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1853 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1854 CGF.EmitOMPLinearClause(S, LoopScope); 1855 CGF.EmitOMPPrivateClause(S, LoopScope); 1856 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1857 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1858 (void)LoopScope.Privatize(); 1859 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1860 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1861 1862 auto &&ThenGen = [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 1863 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1864 CGF.EmitOMPSimdInit(S); 1865 1866 CGF.EmitOMPInnerLoop( 1867 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1868 [&S](CodeGenFunction &CGF) { 1869 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1870 CGF.EmitStopPoint(&S); 1871 }, 1872 [](CodeGenFunction &) {}); 1873 }; 1874 auto &&ElseGen = [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 1875 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1876 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 1877 1878 CGF.EmitOMPInnerLoop( 1879 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1880 [&S](CodeGenFunction &CGF) { 1881 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1882 CGF.EmitStopPoint(&S); 1883 }, 1884 [](CodeGenFunction &) {}); 1885 }; 1886 const Expr *IfCond = nullptr; 1887 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1888 if (CGF.getLangOpts().OpenMP >= 50 && 1889 (C->getNameModifier() == OMPD_unknown || 1890 C->getNameModifier() == OMPD_simd)) { 1891 IfCond = C->getCondition(); 1892 break; 1893 } 1894 } 1895 if (IfCond) { 1896 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 1897 } else { 1898 RegionCodeGenTy ThenRCG(ThenGen); 1899 ThenRCG(CGF); 1900 } 1901 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1902 // Emit final copy of the lastprivate variables at the end of loops. 1903 if (HasLastprivateClause) 1904 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1905 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1906 emitPostUpdateForReductionClause(CGF, S, 1907 [](CodeGenFunction &) { return nullptr; }); 1908 } 1909 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1910 // Emit: if (PreCond) - end. 1911 if (ContBlock) { 1912 CGF.EmitBranch(ContBlock); 1913 CGF.EmitBlock(ContBlock, true); 1914 } 1915 } 1916 1917 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1918 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1919 emitOMPSimdRegion(CGF, S, Action); 1920 }; 1921 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1922 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1923 } 1924 1925 void CodeGenFunction::EmitOMPOuterLoop( 1926 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1927 CodeGenFunction::OMPPrivateScope &LoopScope, 1928 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1929 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1930 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1931 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1932 1933 const Expr *IVExpr = S.getIterationVariable(); 1934 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1935 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1936 1937 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1938 1939 // Start the loop with a block that tests the condition. 1940 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1941 EmitBlock(CondBlock); 1942 const SourceRange R = S.getSourceRange(); 1943 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1944 SourceLocToDebugLoc(R.getEnd())); 1945 1946 llvm::Value *BoolCondVal = nullptr; 1947 if (!DynamicOrOrdered) { 1948 // UB = min(UB, GlobalUB) or 1949 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1950 // 'distribute parallel for') 1951 EmitIgnoredExpr(LoopArgs.EUB); 1952 // IV = LB 1953 EmitIgnoredExpr(LoopArgs.Init); 1954 // IV < UB 1955 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1956 } else { 1957 BoolCondVal = 1958 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1959 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1960 } 1961 1962 // If there are any cleanups between here and the loop-exit scope, 1963 // create a block to stage a loop exit along. 1964 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1965 if (LoopScope.requiresCleanups()) 1966 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1967 1968 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1969 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1970 if (ExitBlock != LoopExit.getBlock()) { 1971 EmitBlock(ExitBlock); 1972 EmitBranchThroughCleanup(LoopExit); 1973 } 1974 EmitBlock(LoopBody); 1975 1976 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1977 // LB for loop condition and emitted it above). 1978 if (DynamicOrOrdered) 1979 EmitIgnoredExpr(LoopArgs.Init); 1980 1981 // Create a block for the increment. 1982 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1983 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1984 1985 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1986 // with dynamic/guided scheduling and without ordered clause. 1987 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1988 LoopStack.setParallel(!IsMonotonic); 1989 else 1990 EmitOMPSimdInit(S, IsMonotonic); 1991 1992 SourceLocation Loc = S.getBeginLoc(); 1993 1994 // when 'distribute' is not combined with a 'for': 1995 // while (idx <= UB) { BODY; ++idx; } 1996 // when 'distribute' is combined with a 'for' 1997 // (e.g. 'distribute parallel for') 1998 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1999 EmitOMPInnerLoop( 2000 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2001 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2002 CodeGenLoop(CGF, S, LoopExit); 2003 }, 2004 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2005 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2006 }); 2007 2008 EmitBlock(Continue.getBlock()); 2009 BreakContinueStack.pop_back(); 2010 if (!DynamicOrOrdered) { 2011 // Emit "LB = LB + Stride", "UB = UB + Stride". 2012 EmitIgnoredExpr(LoopArgs.NextLB); 2013 EmitIgnoredExpr(LoopArgs.NextUB); 2014 } 2015 2016 EmitBranch(CondBlock); 2017 LoopStack.pop(); 2018 // Emit the fall-through block. 2019 EmitBlock(LoopExit.getBlock()); 2020 2021 // Tell the runtime we are done. 2022 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2023 if (!DynamicOrOrdered) 2024 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2025 S.getDirectiveKind()); 2026 }; 2027 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2028 } 2029 2030 void CodeGenFunction::EmitOMPForOuterLoop( 2031 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2032 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2033 const OMPLoopArguments &LoopArgs, 2034 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2035 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2036 2037 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2038 const bool DynamicOrOrdered = 2039 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2040 2041 assert((Ordered || 2042 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2043 LoopArgs.Chunk != nullptr)) && 2044 "static non-chunked schedule does not need outer loop"); 2045 2046 // Emit outer loop. 2047 // 2048 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2049 // When schedule(dynamic,chunk_size) is specified, the iterations are 2050 // distributed to threads in the team in chunks as the threads request them. 2051 // Each thread executes a chunk of iterations, then requests another chunk, 2052 // until no chunks remain to be distributed. Each chunk contains chunk_size 2053 // iterations, except for the last chunk to be distributed, which may have 2054 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2055 // 2056 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2057 // to threads in the team in chunks as the executing threads request them. 2058 // Each thread executes a chunk of iterations, then requests another chunk, 2059 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2060 // each chunk is proportional to the number of unassigned iterations divided 2061 // by the number of threads in the team, decreasing to 1. For a chunk_size 2062 // with value k (greater than 1), the size of each chunk is determined in the 2063 // same way, with the restriction that the chunks do not contain fewer than k 2064 // iterations (except for the last chunk to be assigned, which may have fewer 2065 // than k iterations). 2066 // 2067 // When schedule(auto) is specified, the decision regarding scheduling is 2068 // delegated to the compiler and/or runtime system. The programmer gives the 2069 // implementation the freedom to choose any possible mapping of iterations to 2070 // threads in the team. 2071 // 2072 // When schedule(runtime) is specified, the decision regarding scheduling is 2073 // deferred until run time, and the schedule and chunk size are taken from the 2074 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2075 // implementation defined 2076 // 2077 // while(__kmpc_dispatch_next(&LB, &UB)) { 2078 // idx = LB; 2079 // while (idx <= UB) { BODY; ++idx; 2080 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2081 // } // inner loop 2082 // } 2083 // 2084 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2085 // When schedule(static, chunk_size) is specified, iterations are divided into 2086 // chunks of size chunk_size, and the chunks are assigned to the threads in 2087 // the team in a round-robin fashion in the order of the thread number. 2088 // 2089 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2090 // while (idx <= UB) { BODY; ++idx; } // inner loop 2091 // LB = LB + ST; 2092 // UB = UB + ST; 2093 // } 2094 // 2095 2096 const Expr *IVExpr = S.getIterationVariable(); 2097 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2098 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2099 2100 if (DynamicOrOrdered) { 2101 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2102 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2103 llvm::Value *LBVal = DispatchBounds.first; 2104 llvm::Value *UBVal = DispatchBounds.second; 2105 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2106 LoopArgs.Chunk}; 2107 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2108 IVSigned, Ordered, DipatchRTInputValues); 2109 } else { 2110 CGOpenMPRuntime::StaticRTInput StaticInit( 2111 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2112 LoopArgs.ST, LoopArgs.Chunk); 2113 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2114 ScheduleKind, StaticInit); 2115 } 2116 2117 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2118 const unsigned IVSize, 2119 const bool IVSigned) { 2120 if (Ordered) { 2121 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2122 IVSigned); 2123 } 2124 }; 2125 2126 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2127 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2128 OuterLoopArgs.IncExpr = S.getInc(); 2129 OuterLoopArgs.Init = S.getInit(); 2130 OuterLoopArgs.Cond = S.getCond(); 2131 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2132 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2133 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2134 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2135 } 2136 2137 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2138 const unsigned IVSize, const bool IVSigned) {} 2139 2140 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2141 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2142 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2143 const CodeGenLoopTy &CodeGenLoopContent) { 2144 2145 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2146 2147 // Emit outer loop. 2148 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2149 // dynamic 2150 // 2151 2152 const Expr *IVExpr = S.getIterationVariable(); 2153 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2154 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2155 2156 CGOpenMPRuntime::StaticRTInput StaticInit( 2157 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2158 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2159 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2160 2161 // for combined 'distribute' and 'for' the increment expression of distribute 2162 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2163 Expr *IncExpr; 2164 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2165 IncExpr = S.getDistInc(); 2166 else 2167 IncExpr = S.getInc(); 2168 2169 // this routine is shared by 'omp distribute parallel for' and 2170 // 'omp distribute': select the right EUB expression depending on the 2171 // directive 2172 OMPLoopArguments OuterLoopArgs; 2173 OuterLoopArgs.LB = LoopArgs.LB; 2174 OuterLoopArgs.UB = LoopArgs.UB; 2175 OuterLoopArgs.ST = LoopArgs.ST; 2176 OuterLoopArgs.IL = LoopArgs.IL; 2177 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2178 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2179 ? S.getCombinedEnsureUpperBound() 2180 : S.getEnsureUpperBound(); 2181 OuterLoopArgs.IncExpr = IncExpr; 2182 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2183 ? S.getCombinedInit() 2184 : S.getInit(); 2185 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2186 ? S.getCombinedCond() 2187 : S.getCond(); 2188 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2189 ? S.getCombinedNextLowerBound() 2190 : S.getNextLowerBound(); 2191 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2192 ? S.getCombinedNextUpperBound() 2193 : S.getNextUpperBound(); 2194 2195 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2196 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2197 emitEmptyOrdered); 2198 } 2199 2200 static std::pair<LValue, LValue> 2201 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2202 const OMPExecutableDirective &S) { 2203 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2204 LValue LB = 2205 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2206 LValue UB = 2207 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2208 2209 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2210 // parallel for') we need to use the 'distribute' 2211 // chunk lower and upper bounds rather than the whole loop iteration 2212 // space. These are parameters to the outlined function for 'parallel' 2213 // and we copy the bounds of the previous schedule into the 2214 // the current ones. 2215 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2216 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2217 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2218 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2219 PrevLBVal = CGF.EmitScalarConversion( 2220 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2221 LS.getIterationVariable()->getType(), 2222 LS.getPrevLowerBoundVariable()->getExprLoc()); 2223 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2224 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2225 PrevUBVal = CGF.EmitScalarConversion( 2226 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2227 LS.getIterationVariable()->getType(), 2228 LS.getPrevUpperBoundVariable()->getExprLoc()); 2229 2230 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2231 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2232 2233 return {LB, UB}; 2234 } 2235 2236 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2237 /// we need to use the LB and UB expressions generated by the worksharing 2238 /// code generation support, whereas in non combined situations we would 2239 /// just emit 0 and the LastIteration expression 2240 /// This function is necessary due to the difference of the LB and UB 2241 /// types for the RT emission routines for 'for_static_init' and 2242 /// 'for_dispatch_init' 2243 static std::pair<llvm::Value *, llvm::Value *> 2244 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2245 const OMPExecutableDirective &S, 2246 Address LB, Address UB) { 2247 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2248 const Expr *IVExpr = LS.getIterationVariable(); 2249 // when implementing a dynamic schedule for a 'for' combined with a 2250 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2251 // is not normalized as each team only executes its own assigned 2252 // distribute chunk 2253 QualType IteratorTy = IVExpr->getType(); 2254 llvm::Value *LBVal = 2255 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2256 llvm::Value *UBVal = 2257 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2258 return {LBVal, UBVal}; 2259 } 2260 2261 static void emitDistributeParallelForDistributeInnerBoundParams( 2262 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2263 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2264 const auto &Dir = cast<OMPLoopDirective>(S); 2265 LValue LB = 2266 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2267 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2268 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2269 CapturedVars.push_back(LBCast); 2270 LValue UB = 2271 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2272 2273 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2274 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2275 CapturedVars.push_back(UBCast); 2276 } 2277 2278 static void 2279 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2280 const OMPLoopDirective &S, 2281 CodeGenFunction::JumpDest LoopExit) { 2282 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2283 PrePostActionTy &Action) { 2284 Action.Enter(CGF); 2285 bool HasCancel = false; 2286 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2287 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2288 HasCancel = D->hasCancel(); 2289 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2290 HasCancel = D->hasCancel(); 2291 else if (const auto *D = 2292 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2293 HasCancel = D->hasCancel(); 2294 } 2295 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2296 HasCancel); 2297 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2298 emitDistributeParallelForInnerBounds, 2299 emitDistributeParallelForDispatchBounds); 2300 }; 2301 2302 emitCommonOMPParallelDirective( 2303 CGF, S, 2304 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2305 CGInlinedWorksharingLoop, 2306 emitDistributeParallelForDistributeInnerBoundParams); 2307 } 2308 2309 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2310 const OMPDistributeParallelForDirective &S) { 2311 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2312 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2313 S.getDistInc()); 2314 }; 2315 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2316 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2317 } 2318 2319 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2320 const OMPDistributeParallelForSimdDirective &S) { 2321 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2322 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2323 S.getDistInc()); 2324 }; 2325 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2326 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2327 } 2328 2329 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2330 const OMPDistributeSimdDirective &S) { 2331 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2332 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2333 }; 2334 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2335 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2336 } 2337 2338 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2339 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2340 // Emit SPMD target parallel for region as a standalone region. 2341 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2342 emitOMPSimdRegion(CGF, S, Action); 2343 }; 2344 llvm::Function *Fn; 2345 llvm::Constant *Addr; 2346 // Emit target region as a standalone region. 2347 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2348 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2349 assert(Fn && Addr && "Target device function emission failed."); 2350 } 2351 2352 void CodeGenFunction::EmitOMPTargetSimdDirective( 2353 const OMPTargetSimdDirective &S) { 2354 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2355 emitOMPSimdRegion(CGF, S, Action); 2356 }; 2357 emitCommonOMPTargetDirective(*this, S, CodeGen); 2358 } 2359 2360 namespace { 2361 struct ScheduleKindModifiersTy { 2362 OpenMPScheduleClauseKind Kind; 2363 OpenMPScheduleClauseModifier M1; 2364 OpenMPScheduleClauseModifier M2; 2365 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2366 OpenMPScheduleClauseModifier M1, 2367 OpenMPScheduleClauseModifier M2) 2368 : Kind(Kind), M1(M1), M2(M2) {} 2369 }; 2370 } // namespace 2371 2372 bool CodeGenFunction::EmitOMPWorksharingLoop( 2373 const OMPLoopDirective &S, Expr *EUB, 2374 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2375 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2376 // Emit the loop iteration variable. 2377 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2378 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2379 EmitVarDecl(*IVDecl); 2380 2381 // Emit the iterations count variable. 2382 // If it is not a variable, Sema decided to calculate iterations count on each 2383 // iteration (e.g., it is foldable into a constant). 2384 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2385 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2386 // Emit calculation of the iterations count. 2387 EmitIgnoredExpr(S.getCalcLastIteration()); 2388 } 2389 2390 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2391 2392 bool HasLastprivateClause; 2393 // Check pre-condition. 2394 { 2395 OMPLoopScope PreInitScope(*this, S); 2396 // Skip the entire loop if we don't meet the precondition. 2397 // If the condition constant folds and can be elided, avoid emitting the 2398 // whole loop. 2399 bool CondConstant; 2400 llvm::BasicBlock *ContBlock = nullptr; 2401 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2402 if (!CondConstant) 2403 return false; 2404 } else { 2405 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2406 ContBlock = createBasicBlock("omp.precond.end"); 2407 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2408 getProfileCount(&S)); 2409 EmitBlock(ThenBlock); 2410 incrementProfileCounter(&S); 2411 } 2412 2413 RunCleanupsScope DoacrossCleanupScope(*this); 2414 bool Ordered = false; 2415 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2416 if (OrderedClause->getNumForLoops()) 2417 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2418 else 2419 Ordered = true; 2420 } 2421 2422 llvm::DenseSet<const Expr *> EmittedFinals; 2423 emitAlignedClause(*this, S); 2424 bool HasLinears = EmitOMPLinearClauseInit(S); 2425 // Emit helper vars inits. 2426 2427 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2428 LValue LB = Bounds.first; 2429 LValue UB = Bounds.second; 2430 LValue ST = 2431 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2432 LValue IL = 2433 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2434 2435 // Emit 'then' code. 2436 { 2437 OMPPrivateScope LoopScope(*this); 2438 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2439 // Emit implicit barrier to synchronize threads and avoid data races on 2440 // initialization of firstprivate variables and post-update of 2441 // lastprivate variables. 2442 CGM.getOpenMPRuntime().emitBarrierCall( 2443 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2444 /*ForceSimpleCall=*/true); 2445 } 2446 EmitOMPPrivateClause(S, LoopScope); 2447 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2448 EmitOMPReductionClauseInit(S, LoopScope); 2449 EmitOMPPrivateLoopCounters(S, LoopScope); 2450 EmitOMPLinearClause(S, LoopScope); 2451 (void)LoopScope.Privatize(); 2452 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2453 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2454 2455 // Detect the loop schedule kind and chunk. 2456 const Expr *ChunkExpr = nullptr; 2457 OpenMPScheduleTy ScheduleKind; 2458 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2459 ScheduleKind.Schedule = C->getScheduleKind(); 2460 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2461 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2462 ChunkExpr = C->getChunkSize(); 2463 } else { 2464 // Default behaviour for schedule clause. 2465 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2466 *this, S, ScheduleKind.Schedule, ChunkExpr); 2467 } 2468 bool HasChunkSizeOne = false; 2469 llvm::Value *Chunk = nullptr; 2470 if (ChunkExpr) { 2471 Chunk = EmitScalarExpr(ChunkExpr); 2472 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2473 S.getIterationVariable()->getType(), 2474 S.getBeginLoc()); 2475 Expr::EvalResult Result; 2476 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2477 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2478 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2479 } 2480 } 2481 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2482 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2483 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2484 // If the static schedule kind is specified or if the ordered clause is 2485 // specified, and if no monotonic modifier is specified, the effect will 2486 // be as if the monotonic modifier was specified. 2487 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2488 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2489 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2490 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2491 /* Chunked */ Chunk != nullptr) || 2492 StaticChunkedOne) && 2493 !Ordered) { 2494 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2495 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2496 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2497 // When no chunk_size is specified, the iteration space is divided into 2498 // chunks that are approximately equal in size, and at most one chunk is 2499 // distributed to each thread. Note that the size of the chunks is 2500 // unspecified in this case. 2501 CGOpenMPRuntime::StaticRTInput StaticInit( 2502 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2503 UB.getAddress(), ST.getAddress(), 2504 StaticChunkedOne ? Chunk : nullptr); 2505 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2506 ScheduleKind, StaticInit); 2507 JumpDest LoopExit = 2508 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2509 // UB = min(UB, GlobalUB); 2510 if (!StaticChunkedOne) 2511 EmitIgnoredExpr(S.getEnsureUpperBound()); 2512 // IV = LB; 2513 EmitIgnoredExpr(S.getInit()); 2514 // For unchunked static schedule generate: 2515 // 2516 // while (idx <= UB) { 2517 // BODY; 2518 // ++idx; 2519 // } 2520 // 2521 // For static schedule with chunk one: 2522 // 2523 // while (IV <= PrevUB) { 2524 // BODY; 2525 // IV += ST; 2526 // } 2527 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), 2528 StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), 2529 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2530 [&S, LoopExit](CodeGenFunction &CGF) { 2531 CGF.EmitOMPLoopBody(S, LoopExit); 2532 CGF.EmitStopPoint(&S); 2533 }, 2534 [](CodeGenFunction &) {}); 2535 EmitBlock(LoopExit.getBlock()); 2536 // Tell the runtime we are done. 2537 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2538 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2539 S.getDirectiveKind()); 2540 }; 2541 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2542 } else { 2543 const bool IsMonotonic = 2544 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2545 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2546 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2547 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2548 // Emit the outer loop, which requests its work chunk [LB..UB] from 2549 // runtime and runs the inner loop to process it. 2550 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2551 ST.getAddress(), IL.getAddress(), 2552 Chunk, EUB); 2553 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2554 LoopArguments, CGDispatchBounds); 2555 } 2556 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2557 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2558 return CGF.Builder.CreateIsNotNull( 2559 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2560 }); 2561 } 2562 EmitOMPReductionClauseFinal( 2563 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2564 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2565 : /*Parallel only*/ OMPD_parallel); 2566 // Emit post-update of the reduction variables if IsLastIter != 0. 2567 emitPostUpdateForReductionClause( 2568 *this, S, [IL, &S](CodeGenFunction &CGF) { 2569 return CGF.Builder.CreateIsNotNull( 2570 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2571 }); 2572 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2573 if (HasLastprivateClause) 2574 EmitOMPLastprivateClauseFinal( 2575 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2576 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2577 } 2578 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2579 return CGF.Builder.CreateIsNotNull( 2580 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2581 }); 2582 DoacrossCleanupScope.ForceCleanup(); 2583 // We're now done with the loop, so jump to the continuation block. 2584 if (ContBlock) { 2585 EmitBranch(ContBlock); 2586 EmitBlock(ContBlock, /*IsFinished=*/true); 2587 } 2588 } 2589 return HasLastprivateClause; 2590 } 2591 2592 /// The following two functions generate expressions for the loop lower 2593 /// and upper bounds in case of static and dynamic (dispatch) schedule 2594 /// of the associated 'for' or 'distribute' loop. 2595 static std::pair<LValue, LValue> 2596 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2597 const auto &LS = cast<OMPLoopDirective>(S); 2598 LValue LB = 2599 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2600 LValue UB = 2601 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2602 return {LB, UB}; 2603 } 2604 2605 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2606 /// consider the lower and upper bound expressions generated by the 2607 /// worksharing loop support, but we use 0 and the iteration space size as 2608 /// constants 2609 static std::pair<llvm::Value *, llvm::Value *> 2610 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2611 Address LB, Address UB) { 2612 const auto &LS = cast<OMPLoopDirective>(S); 2613 const Expr *IVExpr = LS.getIterationVariable(); 2614 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2615 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2616 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2617 return {LBVal, UBVal}; 2618 } 2619 2620 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2621 bool HasLastprivates = false; 2622 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2623 PrePostActionTy &) { 2624 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2625 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2626 emitForLoopBounds, 2627 emitDispatchForLoopBounds); 2628 }; 2629 { 2630 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2631 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2632 S.hasCancel()); 2633 } 2634 2635 // Emit an implicit barrier at the end. 2636 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2637 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2638 } 2639 2640 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2641 bool HasLastprivates = false; 2642 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2643 PrePostActionTy &) { 2644 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2645 emitForLoopBounds, 2646 emitDispatchForLoopBounds); 2647 }; 2648 { 2649 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2650 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2651 } 2652 2653 // Emit an implicit barrier at the end. 2654 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2655 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2656 } 2657 2658 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2659 const Twine &Name, 2660 llvm::Value *Init = nullptr) { 2661 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2662 if (Init) 2663 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2664 return LVal; 2665 } 2666 2667 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2668 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2669 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2670 bool HasLastprivates = false; 2671 auto &&CodeGen = [&S, CapturedStmt, CS, 2672 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2673 ASTContext &C = CGF.getContext(); 2674 QualType KmpInt32Ty = 2675 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2676 // Emit helper vars inits. 2677 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2678 CGF.Builder.getInt32(0)); 2679 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2680 ? CGF.Builder.getInt32(CS->size() - 1) 2681 : CGF.Builder.getInt32(0); 2682 LValue UB = 2683 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2684 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2685 CGF.Builder.getInt32(1)); 2686 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2687 CGF.Builder.getInt32(0)); 2688 // Loop counter. 2689 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2690 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2691 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2692 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2693 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2694 // Generate condition for loop. 2695 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2696 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2697 // Increment for loop counter. 2698 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2699 S.getBeginLoc(), true); 2700 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2701 // Iterate through all sections and emit a switch construct: 2702 // switch (IV) { 2703 // case 0: 2704 // <SectionStmt[0]>; 2705 // break; 2706 // ... 2707 // case <NumSection> - 1: 2708 // <SectionStmt[<NumSection> - 1]>; 2709 // break; 2710 // } 2711 // .omp.sections.exit: 2712 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2713 llvm::SwitchInst *SwitchStmt = 2714 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2715 ExitBB, CS == nullptr ? 1 : CS->size()); 2716 if (CS) { 2717 unsigned CaseNumber = 0; 2718 for (const Stmt *SubStmt : CS->children()) { 2719 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2720 CGF.EmitBlock(CaseBB); 2721 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2722 CGF.EmitStmt(SubStmt); 2723 CGF.EmitBranch(ExitBB); 2724 ++CaseNumber; 2725 } 2726 } else { 2727 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2728 CGF.EmitBlock(CaseBB); 2729 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2730 CGF.EmitStmt(CapturedStmt); 2731 CGF.EmitBranch(ExitBB); 2732 } 2733 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2734 }; 2735 2736 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2737 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2738 // Emit implicit barrier to synchronize threads and avoid data races on 2739 // initialization of firstprivate variables and post-update of lastprivate 2740 // variables. 2741 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2742 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2743 /*ForceSimpleCall=*/true); 2744 } 2745 CGF.EmitOMPPrivateClause(S, LoopScope); 2746 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2747 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2748 (void)LoopScope.Privatize(); 2749 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2750 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2751 2752 // Emit static non-chunked loop. 2753 OpenMPScheduleTy ScheduleKind; 2754 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2755 CGOpenMPRuntime::StaticRTInput StaticInit( 2756 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2757 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2758 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2759 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2760 // UB = min(UB, GlobalUB); 2761 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2762 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2763 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2764 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2765 // IV = LB; 2766 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2767 // while (idx <= UB) { BODY; ++idx; } 2768 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2769 [](CodeGenFunction &) {}); 2770 // Tell the runtime we are done. 2771 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2772 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2773 S.getDirectiveKind()); 2774 }; 2775 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2776 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2777 // Emit post-update of the reduction variables if IsLastIter != 0. 2778 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2779 return CGF.Builder.CreateIsNotNull( 2780 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2781 }); 2782 2783 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2784 if (HasLastprivates) 2785 CGF.EmitOMPLastprivateClauseFinal( 2786 S, /*NoFinals=*/false, 2787 CGF.Builder.CreateIsNotNull( 2788 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2789 }; 2790 2791 bool HasCancel = false; 2792 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2793 HasCancel = OSD->hasCancel(); 2794 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2795 HasCancel = OPSD->hasCancel(); 2796 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2797 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2798 HasCancel); 2799 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2800 // clause. Otherwise the barrier will be generated by the codegen for the 2801 // directive. 2802 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2803 // Emit implicit barrier to synchronize threads and avoid data races on 2804 // initialization of firstprivate variables. 2805 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2806 OMPD_unknown); 2807 } 2808 } 2809 2810 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2811 { 2812 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2813 EmitSections(S); 2814 } 2815 // Emit an implicit barrier at the end. 2816 if (!S.getSingleClause<OMPNowaitClause>()) { 2817 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2818 OMPD_sections); 2819 } 2820 } 2821 2822 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2823 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2824 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2825 }; 2826 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2827 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2828 S.hasCancel()); 2829 } 2830 2831 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2832 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2833 llvm::SmallVector<const Expr *, 8> DestExprs; 2834 llvm::SmallVector<const Expr *, 8> SrcExprs; 2835 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2836 // Check if there are any 'copyprivate' clauses associated with this 2837 // 'single' construct. 2838 // Build a list of copyprivate variables along with helper expressions 2839 // (<source>, <destination>, <destination>=<source> expressions) 2840 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2841 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2842 DestExprs.append(C->destination_exprs().begin(), 2843 C->destination_exprs().end()); 2844 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2845 AssignmentOps.append(C->assignment_ops().begin(), 2846 C->assignment_ops().end()); 2847 } 2848 // Emit code for 'single' region along with 'copyprivate' clauses 2849 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2850 Action.Enter(CGF); 2851 OMPPrivateScope SingleScope(CGF); 2852 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2853 CGF.EmitOMPPrivateClause(S, SingleScope); 2854 (void)SingleScope.Privatize(); 2855 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2856 }; 2857 { 2858 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2859 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2860 CopyprivateVars, DestExprs, 2861 SrcExprs, AssignmentOps); 2862 } 2863 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2864 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2865 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2866 CGM.getOpenMPRuntime().emitBarrierCall( 2867 *this, S.getBeginLoc(), 2868 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2869 } 2870 } 2871 2872 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2873 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2874 Action.Enter(CGF); 2875 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2876 }; 2877 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2878 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2879 } 2880 2881 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2882 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2883 Action.Enter(CGF); 2884 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2885 }; 2886 const Expr *Hint = nullptr; 2887 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2888 Hint = HintClause->getHint(); 2889 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2890 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2891 S.getDirectiveName().getAsString(), 2892 CodeGen, S.getBeginLoc(), Hint); 2893 } 2894 2895 void CodeGenFunction::EmitOMPParallelForDirective( 2896 const OMPParallelForDirective &S) { 2897 // Emit directive as a combined directive that consists of two implicit 2898 // directives: 'parallel' with 'for' directive. 2899 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2900 Action.Enter(CGF); 2901 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2902 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2903 emitDispatchForLoopBounds); 2904 }; 2905 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2906 emitEmptyBoundParameters); 2907 } 2908 2909 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2910 const OMPParallelForSimdDirective &S) { 2911 // Emit directive as a combined directive that consists of two implicit 2912 // directives: 'parallel' with 'for' directive. 2913 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2914 Action.Enter(CGF); 2915 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2916 emitDispatchForLoopBounds); 2917 }; 2918 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2919 emitEmptyBoundParameters); 2920 } 2921 2922 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2923 const OMPParallelSectionsDirective &S) { 2924 // Emit directive as a combined directive that consists of two implicit 2925 // directives: 'parallel' with 'sections' directive. 2926 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2927 Action.Enter(CGF); 2928 CGF.EmitSections(S); 2929 }; 2930 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2931 emitEmptyBoundParameters); 2932 } 2933 2934 void CodeGenFunction::EmitOMPTaskBasedDirective( 2935 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2936 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2937 OMPTaskDataTy &Data) { 2938 // Emit outlined function for task construct. 2939 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2940 auto I = CS->getCapturedDecl()->param_begin(); 2941 auto PartId = std::next(I); 2942 auto TaskT = std::next(I, 4); 2943 // Check if the task is final 2944 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2945 // If the condition constant folds and can be elided, try to avoid emitting 2946 // the condition and the dead arm of the if/else. 2947 const Expr *Cond = Clause->getCondition(); 2948 bool CondConstant; 2949 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2950 Data.Final.setInt(CondConstant); 2951 else 2952 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2953 } else { 2954 // By default the task is not final. 2955 Data.Final.setInt(/*IntVal=*/false); 2956 } 2957 // Check if the task has 'priority' clause. 2958 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2959 const Expr *Prio = Clause->getPriority(); 2960 Data.Priority.setInt(/*IntVal=*/true); 2961 Data.Priority.setPointer(EmitScalarConversion( 2962 EmitScalarExpr(Prio), Prio->getType(), 2963 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2964 Prio->getExprLoc())); 2965 } 2966 // The first function argument for tasks is a thread id, the second one is a 2967 // part id (0 for tied tasks, >=0 for untied task). 2968 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2969 // Get list of private variables. 2970 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2971 auto IRef = C->varlist_begin(); 2972 for (const Expr *IInit : C->private_copies()) { 2973 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2974 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2975 Data.PrivateVars.push_back(*IRef); 2976 Data.PrivateCopies.push_back(IInit); 2977 } 2978 ++IRef; 2979 } 2980 } 2981 EmittedAsPrivate.clear(); 2982 // Get list of firstprivate variables. 2983 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2984 auto IRef = C->varlist_begin(); 2985 auto IElemInitRef = C->inits().begin(); 2986 for (const Expr *IInit : C->private_copies()) { 2987 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2988 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2989 Data.FirstprivateVars.push_back(*IRef); 2990 Data.FirstprivateCopies.push_back(IInit); 2991 Data.FirstprivateInits.push_back(*IElemInitRef); 2992 } 2993 ++IRef; 2994 ++IElemInitRef; 2995 } 2996 } 2997 // Get list of lastprivate variables (for taskloops). 2998 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2999 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3000 auto IRef = C->varlist_begin(); 3001 auto ID = C->destination_exprs().begin(); 3002 for (const Expr *IInit : C->private_copies()) { 3003 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3004 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3005 Data.LastprivateVars.push_back(*IRef); 3006 Data.LastprivateCopies.push_back(IInit); 3007 } 3008 LastprivateDstsOrigs.insert( 3009 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3010 cast<DeclRefExpr>(*IRef)}); 3011 ++IRef; 3012 ++ID; 3013 } 3014 } 3015 SmallVector<const Expr *, 4> LHSs; 3016 SmallVector<const Expr *, 4> RHSs; 3017 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3018 auto IPriv = C->privates().begin(); 3019 auto IRed = C->reduction_ops().begin(); 3020 auto ILHS = C->lhs_exprs().begin(); 3021 auto IRHS = C->rhs_exprs().begin(); 3022 for (const Expr *Ref : C->varlists()) { 3023 Data.ReductionVars.emplace_back(Ref); 3024 Data.ReductionCopies.emplace_back(*IPriv); 3025 Data.ReductionOps.emplace_back(*IRed); 3026 LHSs.emplace_back(*ILHS); 3027 RHSs.emplace_back(*IRHS); 3028 std::advance(IPriv, 1); 3029 std::advance(IRed, 1); 3030 std::advance(ILHS, 1); 3031 std::advance(IRHS, 1); 3032 } 3033 } 3034 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3035 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3036 // Build list of dependences. 3037 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3038 for (const Expr *IRef : C->varlists()) 3039 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3040 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3041 CapturedRegion](CodeGenFunction &CGF, 3042 PrePostActionTy &Action) { 3043 // Set proper addresses for generated private copies. 3044 OMPPrivateScope Scope(CGF); 3045 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3046 !Data.LastprivateVars.empty()) { 3047 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3048 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3049 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3050 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3051 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3052 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3053 CS->getCapturedDecl()->getParam(PrivatesParam))); 3054 // Map privates. 3055 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3056 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3057 CallArgs.push_back(PrivatesPtr); 3058 for (const Expr *E : Data.PrivateVars) { 3059 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3060 Address PrivatePtr = CGF.CreateMemTemp( 3061 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3062 PrivatePtrs.emplace_back(VD, PrivatePtr); 3063 CallArgs.push_back(PrivatePtr.getPointer()); 3064 } 3065 for (const Expr *E : Data.FirstprivateVars) { 3066 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3067 Address PrivatePtr = 3068 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3069 ".firstpriv.ptr.addr"); 3070 PrivatePtrs.emplace_back(VD, PrivatePtr); 3071 CallArgs.push_back(PrivatePtr.getPointer()); 3072 } 3073 for (const Expr *E : Data.LastprivateVars) { 3074 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3075 Address PrivatePtr = 3076 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3077 ".lastpriv.ptr.addr"); 3078 PrivatePtrs.emplace_back(VD, PrivatePtr); 3079 CallArgs.push_back(PrivatePtr.getPointer()); 3080 } 3081 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3082 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3083 for (const auto &Pair : LastprivateDstsOrigs) { 3084 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3085 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3086 /*RefersToEnclosingVariableOrCapture=*/ 3087 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3088 Pair.second->getType(), VK_LValue, 3089 Pair.second->getExprLoc()); 3090 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3091 return CGF.EmitLValue(&DRE).getAddress(); 3092 }); 3093 } 3094 for (const auto &Pair : PrivatePtrs) { 3095 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3096 CGF.getContext().getDeclAlign(Pair.first)); 3097 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3098 } 3099 } 3100 if (Data.Reductions) { 3101 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3102 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 3103 Data.ReductionOps); 3104 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3105 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3106 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3107 RedCG.emitSharedLValue(CGF, Cnt); 3108 RedCG.emitAggregateType(CGF, Cnt); 3109 // FIXME: This must removed once the runtime library is fixed. 3110 // Emit required threadprivate variables for 3111 // initializer/combiner/finalizer. 3112 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3113 RedCG, Cnt); 3114 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3115 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3116 Replacement = 3117 Address(CGF.EmitScalarConversion( 3118 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3119 CGF.getContext().getPointerType( 3120 Data.ReductionCopies[Cnt]->getType()), 3121 Data.ReductionCopies[Cnt]->getExprLoc()), 3122 Replacement.getAlignment()); 3123 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3124 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3125 [Replacement]() { return Replacement; }); 3126 } 3127 } 3128 // Privatize all private variables except for in_reduction items. 3129 (void)Scope.Privatize(); 3130 SmallVector<const Expr *, 4> InRedVars; 3131 SmallVector<const Expr *, 4> InRedPrivs; 3132 SmallVector<const Expr *, 4> InRedOps; 3133 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3134 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3135 auto IPriv = C->privates().begin(); 3136 auto IRed = C->reduction_ops().begin(); 3137 auto ITD = C->taskgroup_descriptors().begin(); 3138 for (const Expr *Ref : C->varlists()) { 3139 InRedVars.emplace_back(Ref); 3140 InRedPrivs.emplace_back(*IPriv); 3141 InRedOps.emplace_back(*IRed); 3142 TaskgroupDescriptors.emplace_back(*ITD); 3143 std::advance(IPriv, 1); 3144 std::advance(IRed, 1); 3145 std::advance(ITD, 1); 3146 } 3147 } 3148 // Privatize in_reduction items here, because taskgroup descriptors must be 3149 // privatized earlier. 3150 OMPPrivateScope InRedScope(CGF); 3151 if (!InRedVars.empty()) { 3152 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3153 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3154 RedCG.emitSharedLValue(CGF, Cnt); 3155 RedCG.emitAggregateType(CGF, Cnt); 3156 // The taskgroup descriptor variable is always implicit firstprivate and 3157 // privatized already during processing of the firstprivates. 3158 // FIXME: This must removed once the runtime library is fixed. 3159 // Emit required threadprivate variables for 3160 // initializer/combiner/finalizer. 3161 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3162 RedCG, Cnt); 3163 llvm::Value *ReductionsPtr = 3164 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3165 TaskgroupDescriptors[Cnt]->getExprLoc()); 3166 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3167 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3168 Replacement = Address( 3169 CGF.EmitScalarConversion( 3170 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3171 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3172 InRedPrivs[Cnt]->getExprLoc()), 3173 Replacement.getAlignment()); 3174 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3175 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3176 [Replacement]() { return Replacement; }); 3177 } 3178 } 3179 (void)InRedScope.Privatize(); 3180 3181 Action.Enter(CGF); 3182 BodyGen(CGF); 3183 }; 3184 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3185 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3186 Data.NumberOfParts); 3187 OMPLexicalScope Scope(*this, S, llvm::None, 3188 !isOpenMPParallelDirective(S.getDirectiveKind())); 3189 TaskGen(*this, OutlinedFn, Data); 3190 } 3191 3192 static ImplicitParamDecl * 3193 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3194 QualType Ty, CapturedDecl *CD, 3195 SourceLocation Loc) { 3196 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3197 ImplicitParamDecl::Other); 3198 auto *OrigRef = DeclRefExpr::Create( 3199 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3200 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3201 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3202 ImplicitParamDecl::Other); 3203 auto *PrivateRef = DeclRefExpr::Create( 3204 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3205 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3206 QualType ElemType = C.getBaseElementType(Ty); 3207 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3208 ImplicitParamDecl::Other); 3209 auto *InitRef = DeclRefExpr::Create( 3210 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3211 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3212 PrivateVD->setInitStyle(VarDecl::CInit); 3213 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3214 InitRef, /*BasePath=*/nullptr, 3215 VK_RValue)); 3216 Data.FirstprivateVars.emplace_back(OrigRef); 3217 Data.FirstprivateCopies.emplace_back(PrivateRef); 3218 Data.FirstprivateInits.emplace_back(InitRef); 3219 return OrigVD; 3220 } 3221 3222 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3223 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3224 OMPTargetDataInfo &InputInfo) { 3225 // Emit outlined function for task construct. 3226 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3227 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3228 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3229 auto I = CS->getCapturedDecl()->param_begin(); 3230 auto PartId = std::next(I); 3231 auto TaskT = std::next(I, 4); 3232 OMPTaskDataTy Data; 3233 // The task is not final. 3234 Data.Final.setInt(/*IntVal=*/false); 3235 // Get list of firstprivate variables. 3236 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3237 auto IRef = C->varlist_begin(); 3238 auto IElemInitRef = C->inits().begin(); 3239 for (auto *IInit : C->private_copies()) { 3240 Data.FirstprivateVars.push_back(*IRef); 3241 Data.FirstprivateCopies.push_back(IInit); 3242 Data.FirstprivateInits.push_back(*IElemInitRef); 3243 ++IRef; 3244 ++IElemInitRef; 3245 } 3246 } 3247 OMPPrivateScope TargetScope(*this); 3248 VarDecl *BPVD = nullptr; 3249 VarDecl *PVD = nullptr; 3250 VarDecl *SVD = nullptr; 3251 if (InputInfo.NumberOfTargetItems > 0) { 3252 auto *CD = CapturedDecl::Create( 3253 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3254 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3255 QualType BaseAndPointersType = getContext().getConstantArrayType( 3256 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 3257 /*IndexTypeQuals=*/0); 3258 BPVD = createImplicitFirstprivateForType( 3259 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3260 PVD = createImplicitFirstprivateForType( 3261 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3262 QualType SizesType = getContext().getConstantArrayType( 3263 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3264 ArrSize, nullptr, ArrayType::Normal, 3265 /*IndexTypeQuals=*/0); 3266 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3267 S.getBeginLoc()); 3268 TargetScope.addPrivate( 3269 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3270 TargetScope.addPrivate(PVD, 3271 [&InputInfo]() { return InputInfo.PointersArray; }); 3272 TargetScope.addPrivate(SVD, 3273 [&InputInfo]() { return InputInfo.SizesArray; }); 3274 } 3275 (void)TargetScope.Privatize(); 3276 // Build list of dependences. 3277 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3278 for (const Expr *IRef : C->varlists()) 3279 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3280 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3281 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3282 // Set proper addresses for generated private copies. 3283 OMPPrivateScope Scope(CGF); 3284 if (!Data.FirstprivateVars.empty()) { 3285 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3286 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3287 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3288 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3289 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3290 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3291 CS->getCapturedDecl()->getParam(PrivatesParam))); 3292 // Map privates. 3293 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3294 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3295 CallArgs.push_back(PrivatesPtr); 3296 for (const Expr *E : Data.FirstprivateVars) { 3297 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3298 Address PrivatePtr = 3299 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3300 ".firstpriv.ptr.addr"); 3301 PrivatePtrs.emplace_back(VD, PrivatePtr); 3302 CallArgs.push_back(PrivatePtr.getPointer()); 3303 } 3304 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3305 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3306 for (const auto &Pair : PrivatePtrs) { 3307 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3308 CGF.getContext().getDeclAlign(Pair.first)); 3309 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3310 } 3311 } 3312 // Privatize all private variables except for in_reduction items. 3313 (void)Scope.Privatize(); 3314 if (InputInfo.NumberOfTargetItems > 0) { 3315 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3316 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3317 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3318 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3319 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3320 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3321 } 3322 3323 Action.Enter(CGF); 3324 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3325 BodyGen(CGF); 3326 }; 3327 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3328 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3329 Data.NumberOfParts); 3330 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3331 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3332 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3333 SourceLocation()); 3334 3335 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3336 SharedsTy, CapturedStruct, &IfCond, Data); 3337 } 3338 3339 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3340 // Emit outlined function for task construct. 3341 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3342 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3343 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3344 const Expr *IfCond = nullptr; 3345 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3346 if (C->getNameModifier() == OMPD_unknown || 3347 C->getNameModifier() == OMPD_task) { 3348 IfCond = C->getCondition(); 3349 break; 3350 } 3351 } 3352 3353 OMPTaskDataTy Data; 3354 // Check if we should emit tied or untied task. 3355 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3356 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3357 CGF.EmitStmt(CS->getCapturedStmt()); 3358 }; 3359 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3360 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3361 const OMPTaskDataTy &Data) { 3362 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3363 SharedsTy, CapturedStruct, IfCond, 3364 Data); 3365 }; 3366 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3367 } 3368 3369 void CodeGenFunction::EmitOMPTaskyieldDirective( 3370 const OMPTaskyieldDirective &S) { 3371 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3372 } 3373 3374 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3375 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3376 } 3377 3378 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3379 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3380 } 3381 3382 void CodeGenFunction::EmitOMPTaskgroupDirective( 3383 const OMPTaskgroupDirective &S) { 3384 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3385 Action.Enter(CGF); 3386 if (const Expr *E = S.getReductionRef()) { 3387 SmallVector<const Expr *, 4> LHSs; 3388 SmallVector<const Expr *, 4> RHSs; 3389 OMPTaskDataTy Data; 3390 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3391 auto IPriv = C->privates().begin(); 3392 auto IRed = C->reduction_ops().begin(); 3393 auto ILHS = C->lhs_exprs().begin(); 3394 auto IRHS = C->rhs_exprs().begin(); 3395 for (const Expr *Ref : C->varlists()) { 3396 Data.ReductionVars.emplace_back(Ref); 3397 Data.ReductionCopies.emplace_back(*IPriv); 3398 Data.ReductionOps.emplace_back(*IRed); 3399 LHSs.emplace_back(*ILHS); 3400 RHSs.emplace_back(*IRHS); 3401 std::advance(IPriv, 1); 3402 std::advance(IRed, 1); 3403 std::advance(ILHS, 1); 3404 std::advance(IRHS, 1); 3405 } 3406 } 3407 llvm::Value *ReductionDesc = 3408 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3409 LHSs, RHSs, Data); 3410 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3411 CGF.EmitVarDecl(*VD); 3412 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3413 /*Volatile=*/false, E->getType()); 3414 } 3415 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3416 }; 3417 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3418 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3419 } 3420 3421 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3422 CGM.getOpenMPRuntime().emitFlush( 3423 *this, 3424 [&S]() -> ArrayRef<const Expr *> { 3425 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3426 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3427 FlushClause->varlist_end()); 3428 return llvm::None; 3429 }(), 3430 S.getBeginLoc()); 3431 } 3432 3433 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3434 const CodeGenLoopTy &CodeGenLoop, 3435 Expr *IncExpr) { 3436 // Emit the loop iteration variable. 3437 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3438 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3439 EmitVarDecl(*IVDecl); 3440 3441 // Emit the iterations count variable. 3442 // If it is not a variable, Sema decided to calculate iterations count on each 3443 // iteration (e.g., it is foldable into a constant). 3444 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3445 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3446 // Emit calculation of the iterations count. 3447 EmitIgnoredExpr(S.getCalcLastIteration()); 3448 } 3449 3450 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3451 3452 bool HasLastprivateClause = false; 3453 // Check pre-condition. 3454 { 3455 OMPLoopScope PreInitScope(*this, S); 3456 // Skip the entire loop if we don't meet the precondition. 3457 // If the condition constant folds and can be elided, avoid emitting the 3458 // whole loop. 3459 bool CondConstant; 3460 llvm::BasicBlock *ContBlock = nullptr; 3461 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3462 if (!CondConstant) 3463 return; 3464 } else { 3465 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3466 ContBlock = createBasicBlock("omp.precond.end"); 3467 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3468 getProfileCount(&S)); 3469 EmitBlock(ThenBlock); 3470 incrementProfileCounter(&S); 3471 } 3472 3473 emitAlignedClause(*this, S); 3474 // Emit 'then' code. 3475 { 3476 // Emit helper vars inits. 3477 3478 LValue LB = EmitOMPHelperVar( 3479 *this, cast<DeclRefExpr>( 3480 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3481 ? S.getCombinedLowerBoundVariable() 3482 : S.getLowerBoundVariable()))); 3483 LValue UB = EmitOMPHelperVar( 3484 *this, cast<DeclRefExpr>( 3485 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3486 ? S.getCombinedUpperBoundVariable() 3487 : S.getUpperBoundVariable()))); 3488 LValue ST = 3489 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3490 LValue IL = 3491 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3492 3493 OMPPrivateScope LoopScope(*this); 3494 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3495 // Emit implicit barrier to synchronize threads and avoid data races 3496 // on initialization of firstprivate variables and post-update of 3497 // lastprivate variables. 3498 CGM.getOpenMPRuntime().emitBarrierCall( 3499 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3500 /*ForceSimpleCall=*/true); 3501 } 3502 EmitOMPPrivateClause(S, LoopScope); 3503 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3504 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3505 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3506 EmitOMPReductionClauseInit(S, LoopScope); 3507 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3508 EmitOMPPrivateLoopCounters(S, LoopScope); 3509 (void)LoopScope.Privatize(); 3510 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3511 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3512 3513 // Detect the distribute schedule kind and chunk. 3514 llvm::Value *Chunk = nullptr; 3515 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3516 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3517 ScheduleKind = C->getDistScheduleKind(); 3518 if (const Expr *Ch = C->getChunkSize()) { 3519 Chunk = EmitScalarExpr(Ch); 3520 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3521 S.getIterationVariable()->getType(), 3522 S.getBeginLoc()); 3523 } 3524 } else { 3525 // Default behaviour for dist_schedule clause. 3526 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3527 *this, S, ScheduleKind, Chunk); 3528 } 3529 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3530 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3531 3532 // OpenMP [2.10.8, distribute Construct, Description] 3533 // If dist_schedule is specified, kind must be static. If specified, 3534 // iterations are divided into chunks of size chunk_size, chunks are 3535 // assigned to the teams of the league in a round-robin fashion in the 3536 // order of the team number. When no chunk_size is specified, the 3537 // iteration space is divided into chunks that are approximately equal 3538 // in size, and at most one chunk is distributed to each team of the 3539 // league. The size of the chunks is unspecified in this case. 3540 bool StaticChunked = RT.isStaticChunked( 3541 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3542 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3543 if (RT.isStaticNonchunked(ScheduleKind, 3544 /* Chunked */ Chunk != nullptr) || 3545 StaticChunked) { 3546 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3547 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3548 CGOpenMPRuntime::StaticRTInput StaticInit( 3549 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3550 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3551 StaticChunked ? Chunk : nullptr); 3552 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3553 StaticInit); 3554 JumpDest LoopExit = 3555 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3556 // UB = min(UB, GlobalUB); 3557 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3558 ? S.getCombinedEnsureUpperBound() 3559 : S.getEnsureUpperBound()); 3560 // IV = LB; 3561 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3562 ? S.getCombinedInit() 3563 : S.getInit()); 3564 3565 const Expr *Cond = 3566 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3567 ? S.getCombinedCond() 3568 : S.getCond(); 3569 3570 if (StaticChunked) 3571 Cond = S.getCombinedDistCond(); 3572 3573 // For static unchunked schedules generate: 3574 // 3575 // 1. For distribute alone, codegen 3576 // while (idx <= UB) { 3577 // BODY; 3578 // ++idx; 3579 // } 3580 // 3581 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3582 // while (idx <= UB) { 3583 // <CodeGen rest of pragma>(LB, UB); 3584 // idx += ST; 3585 // } 3586 // 3587 // For static chunk one schedule generate: 3588 // 3589 // while (IV <= GlobalUB) { 3590 // <CodeGen rest of pragma>(LB, UB); 3591 // LB += ST; 3592 // UB += ST; 3593 // UB = min(UB, GlobalUB); 3594 // IV = LB; 3595 // } 3596 // 3597 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3598 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3599 CodeGenLoop(CGF, S, LoopExit); 3600 }, 3601 [&S, StaticChunked](CodeGenFunction &CGF) { 3602 if (StaticChunked) { 3603 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3604 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3605 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3606 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3607 } 3608 }); 3609 EmitBlock(LoopExit.getBlock()); 3610 // Tell the runtime we are done. 3611 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3612 } else { 3613 // Emit the outer loop, which requests its work chunk [LB..UB] from 3614 // runtime and runs the inner loop to process it. 3615 const OMPLoopArguments LoopArguments = { 3616 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3617 Chunk}; 3618 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3619 CodeGenLoop); 3620 } 3621 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3622 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3623 return CGF.Builder.CreateIsNotNull( 3624 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3625 }); 3626 } 3627 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3628 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3629 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3630 EmitOMPReductionClauseFinal(S, OMPD_simd); 3631 // Emit post-update of the reduction variables if IsLastIter != 0. 3632 emitPostUpdateForReductionClause( 3633 *this, S, [IL, &S](CodeGenFunction &CGF) { 3634 return CGF.Builder.CreateIsNotNull( 3635 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3636 }); 3637 } 3638 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3639 if (HasLastprivateClause) { 3640 EmitOMPLastprivateClauseFinal( 3641 S, /*NoFinals=*/false, 3642 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3643 } 3644 } 3645 3646 // We're now done with the loop, so jump to the continuation block. 3647 if (ContBlock) { 3648 EmitBranch(ContBlock); 3649 EmitBlock(ContBlock, true); 3650 } 3651 } 3652 } 3653 3654 void CodeGenFunction::EmitOMPDistributeDirective( 3655 const OMPDistributeDirective &S) { 3656 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3657 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3658 }; 3659 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3660 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3661 } 3662 3663 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3664 const CapturedStmt *S) { 3665 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3666 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3667 CGF.CapturedStmtInfo = &CapStmtInfo; 3668 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3669 Fn->setDoesNotRecurse(); 3670 return Fn; 3671 } 3672 3673 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3674 if (S.hasClausesOfKind<OMPDependClause>()) { 3675 assert(!S.getAssociatedStmt() && 3676 "No associated statement must be in ordered depend construct."); 3677 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3678 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3679 return; 3680 } 3681 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3682 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3683 PrePostActionTy &Action) { 3684 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3685 if (C) { 3686 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3687 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3688 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3689 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3690 OutlinedFn, CapturedVars); 3691 } else { 3692 Action.Enter(CGF); 3693 CGF.EmitStmt(CS->getCapturedStmt()); 3694 } 3695 }; 3696 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3697 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3698 } 3699 3700 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3701 QualType SrcType, QualType DestType, 3702 SourceLocation Loc) { 3703 assert(CGF.hasScalarEvaluationKind(DestType) && 3704 "DestType must have scalar evaluation kind."); 3705 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3706 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3707 DestType, Loc) 3708 : CGF.EmitComplexToScalarConversion( 3709 Val.getComplexVal(), SrcType, DestType, Loc); 3710 } 3711 3712 static CodeGenFunction::ComplexPairTy 3713 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3714 QualType DestType, SourceLocation Loc) { 3715 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3716 "DestType must have complex evaluation kind."); 3717 CodeGenFunction::ComplexPairTy ComplexVal; 3718 if (Val.isScalar()) { 3719 // Convert the input element to the element type of the complex. 3720 QualType DestElementType = 3721 DestType->castAs<ComplexType>()->getElementType(); 3722 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3723 Val.getScalarVal(), SrcType, DestElementType, Loc); 3724 ComplexVal = CodeGenFunction::ComplexPairTy( 3725 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3726 } else { 3727 assert(Val.isComplex() && "Must be a scalar or complex."); 3728 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3729 QualType DestElementType = 3730 DestType->castAs<ComplexType>()->getElementType(); 3731 ComplexVal.first = CGF.EmitScalarConversion( 3732 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3733 ComplexVal.second = CGF.EmitScalarConversion( 3734 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3735 } 3736 return ComplexVal; 3737 } 3738 3739 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3740 LValue LVal, RValue RVal) { 3741 if (LVal.isGlobalReg()) { 3742 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3743 } else { 3744 CGF.EmitAtomicStore(RVal, LVal, 3745 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3746 : llvm::AtomicOrdering::Monotonic, 3747 LVal.isVolatile(), /*isInit=*/false); 3748 } 3749 } 3750 3751 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3752 QualType RValTy, SourceLocation Loc) { 3753 switch (getEvaluationKind(LVal.getType())) { 3754 case TEK_Scalar: 3755 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3756 *this, RVal, RValTy, LVal.getType(), Loc)), 3757 LVal); 3758 break; 3759 case TEK_Complex: 3760 EmitStoreOfComplex( 3761 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3762 /*isInit=*/false); 3763 break; 3764 case TEK_Aggregate: 3765 llvm_unreachable("Must be a scalar or complex."); 3766 } 3767 } 3768 3769 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3770 const Expr *X, const Expr *V, 3771 SourceLocation Loc) { 3772 // v = x; 3773 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3774 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3775 LValue XLValue = CGF.EmitLValue(X); 3776 LValue VLValue = CGF.EmitLValue(V); 3777 RValue Res = XLValue.isGlobalReg() 3778 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3779 : CGF.EmitAtomicLoad( 3780 XLValue, Loc, 3781 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3782 : llvm::AtomicOrdering::Monotonic, 3783 XLValue.isVolatile()); 3784 // OpenMP, 2.12.6, atomic Construct 3785 // Any atomic construct with a seq_cst clause forces the atomically 3786 // performed operation to include an implicit flush operation without a 3787 // list. 3788 if (IsSeqCst) 3789 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3790 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3791 } 3792 3793 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3794 const Expr *X, const Expr *E, 3795 SourceLocation Loc) { 3796 // x = expr; 3797 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3798 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3799 // OpenMP, 2.12.6, atomic Construct 3800 // Any atomic construct with a seq_cst clause forces the atomically 3801 // performed operation to include an implicit flush operation without a 3802 // list. 3803 if (IsSeqCst) 3804 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3805 } 3806 3807 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3808 RValue Update, 3809 BinaryOperatorKind BO, 3810 llvm::AtomicOrdering AO, 3811 bool IsXLHSInRHSPart) { 3812 ASTContext &Context = CGF.getContext(); 3813 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3814 // expression is simple and atomic is allowed for the given type for the 3815 // target platform. 3816 if (BO == BO_Comma || !Update.isScalar() || 3817 !Update.getScalarVal()->getType()->isIntegerTy() || 3818 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3819 (Update.getScalarVal()->getType() != 3820 X.getAddress().getElementType())) || 3821 !X.getAddress().getElementType()->isIntegerTy() || 3822 !Context.getTargetInfo().hasBuiltinAtomic( 3823 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3824 return std::make_pair(false, RValue::get(nullptr)); 3825 3826 llvm::AtomicRMWInst::BinOp RMWOp; 3827 switch (BO) { 3828 case BO_Add: 3829 RMWOp = llvm::AtomicRMWInst::Add; 3830 break; 3831 case BO_Sub: 3832 if (!IsXLHSInRHSPart) 3833 return std::make_pair(false, RValue::get(nullptr)); 3834 RMWOp = llvm::AtomicRMWInst::Sub; 3835 break; 3836 case BO_And: 3837 RMWOp = llvm::AtomicRMWInst::And; 3838 break; 3839 case BO_Or: 3840 RMWOp = llvm::AtomicRMWInst::Or; 3841 break; 3842 case BO_Xor: 3843 RMWOp = llvm::AtomicRMWInst::Xor; 3844 break; 3845 case BO_LT: 3846 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3847 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3848 : llvm::AtomicRMWInst::Max) 3849 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3850 : llvm::AtomicRMWInst::UMax); 3851 break; 3852 case BO_GT: 3853 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3854 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3855 : llvm::AtomicRMWInst::Min) 3856 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3857 : llvm::AtomicRMWInst::UMin); 3858 break; 3859 case BO_Assign: 3860 RMWOp = llvm::AtomicRMWInst::Xchg; 3861 break; 3862 case BO_Mul: 3863 case BO_Div: 3864 case BO_Rem: 3865 case BO_Shl: 3866 case BO_Shr: 3867 case BO_LAnd: 3868 case BO_LOr: 3869 return std::make_pair(false, RValue::get(nullptr)); 3870 case BO_PtrMemD: 3871 case BO_PtrMemI: 3872 case BO_LE: 3873 case BO_GE: 3874 case BO_EQ: 3875 case BO_NE: 3876 case BO_Cmp: 3877 case BO_AddAssign: 3878 case BO_SubAssign: 3879 case BO_AndAssign: 3880 case BO_OrAssign: 3881 case BO_XorAssign: 3882 case BO_MulAssign: 3883 case BO_DivAssign: 3884 case BO_RemAssign: 3885 case BO_ShlAssign: 3886 case BO_ShrAssign: 3887 case BO_Comma: 3888 llvm_unreachable("Unsupported atomic update operation"); 3889 } 3890 llvm::Value *UpdateVal = Update.getScalarVal(); 3891 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3892 UpdateVal = CGF.Builder.CreateIntCast( 3893 IC, X.getAddress().getElementType(), 3894 X.getType()->hasSignedIntegerRepresentation()); 3895 } 3896 llvm::Value *Res = 3897 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3898 return std::make_pair(true, RValue::get(Res)); 3899 } 3900 3901 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3902 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3903 llvm::AtomicOrdering AO, SourceLocation Loc, 3904 const llvm::function_ref<RValue(RValue)> CommonGen) { 3905 // Update expressions are allowed to have the following forms: 3906 // x binop= expr; -> xrval + expr; 3907 // x++, ++x -> xrval + 1; 3908 // x--, --x -> xrval - 1; 3909 // x = x binop expr; -> xrval binop expr 3910 // x = expr Op x; - > expr binop xrval; 3911 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3912 if (!Res.first) { 3913 if (X.isGlobalReg()) { 3914 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3915 // 'xrval'. 3916 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3917 } else { 3918 // Perform compare-and-swap procedure. 3919 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3920 } 3921 } 3922 return Res; 3923 } 3924 3925 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3926 const Expr *X, const Expr *E, 3927 const Expr *UE, bool IsXLHSInRHSPart, 3928 SourceLocation Loc) { 3929 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3930 "Update expr in 'atomic update' must be a binary operator."); 3931 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3932 // Update expressions are allowed to have the following forms: 3933 // x binop= expr; -> xrval + expr; 3934 // x++, ++x -> xrval + 1; 3935 // x--, --x -> xrval - 1; 3936 // x = x binop expr; -> xrval binop expr 3937 // x = expr Op x; - > expr binop xrval; 3938 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3939 LValue XLValue = CGF.EmitLValue(X); 3940 RValue ExprRValue = CGF.EmitAnyExpr(E); 3941 llvm::AtomicOrdering AO = IsSeqCst 3942 ? llvm::AtomicOrdering::SequentiallyConsistent 3943 : llvm::AtomicOrdering::Monotonic; 3944 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3945 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3946 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3947 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3948 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3949 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3950 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3951 return CGF.EmitAnyExpr(UE); 3952 }; 3953 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3954 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3955 // OpenMP, 2.12.6, atomic Construct 3956 // Any atomic construct with a seq_cst clause forces the atomically 3957 // performed operation to include an implicit flush operation without a 3958 // list. 3959 if (IsSeqCst) 3960 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3961 } 3962 3963 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3964 QualType SourceType, QualType ResType, 3965 SourceLocation Loc) { 3966 switch (CGF.getEvaluationKind(ResType)) { 3967 case TEK_Scalar: 3968 return RValue::get( 3969 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3970 case TEK_Complex: { 3971 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3972 return RValue::getComplex(Res.first, Res.second); 3973 } 3974 case TEK_Aggregate: 3975 break; 3976 } 3977 llvm_unreachable("Must be a scalar or complex."); 3978 } 3979 3980 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3981 bool IsPostfixUpdate, const Expr *V, 3982 const Expr *X, const Expr *E, 3983 const Expr *UE, bool IsXLHSInRHSPart, 3984 SourceLocation Loc) { 3985 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3986 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3987 RValue NewVVal; 3988 LValue VLValue = CGF.EmitLValue(V); 3989 LValue XLValue = CGF.EmitLValue(X); 3990 RValue ExprRValue = CGF.EmitAnyExpr(E); 3991 llvm::AtomicOrdering AO = IsSeqCst 3992 ? llvm::AtomicOrdering::SequentiallyConsistent 3993 : llvm::AtomicOrdering::Monotonic; 3994 QualType NewVValType; 3995 if (UE) { 3996 // 'x' is updated with some additional value. 3997 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3998 "Update expr in 'atomic capture' must be a binary operator."); 3999 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4000 // Update expressions are allowed to have the following forms: 4001 // x binop= expr; -> xrval + expr; 4002 // x++, ++x -> xrval + 1; 4003 // x--, --x -> xrval - 1; 4004 // x = x binop expr; -> xrval binop expr 4005 // x = expr Op x; - > expr binop xrval; 4006 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4007 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4008 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4009 NewVValType = XRValExpr->getType(); 4010 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4011 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 4012 IsPostfixUpdate](RValue XRValue) { 4013 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4014 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4015 RValue Res = CGF.EmitAnyExpr(UE); 4016 NewVVal = IsPostfixUpdate ? XRValue : Res; 4017 return Res; 4018 }; 4019 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4020 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4021 if (Res.first) { 4022 // 'atomicrmw' instruction was generated. 4023 if (IsPostfixUpdate) { 4024 // Use old value from 'atomicrmw'. 4025 NewVVal = Res.second; 4026 } else { 4027 // 'atomicrmw' does not provide new value, so evaluate it using old 4028 // value of 'x'. 4029 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4030 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 4031 NewVVal = CGF.EmitAnyExpr(UE); 4032 } 4033 } 4034 } else { 4035 // 'x' is simply rewritten with some 'expr'. 4036 NewVValType = X->getType().getNonReferenceType(); 4037 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 4038 X->getType().getNonReferenceType(), Loc); 4039 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 4040 NewVVal = XRValue; 4041 return ExprRValue; 4042 }; 4043 // Try to perform atomicrmw xchg, otherwise simple exchange. 4044 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4045 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 4046 Loc, Gen); 4047 if (Res.first) { 4048 // 'atomicrmw' instruction was generated. 4049 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 4050 } 4051 } 4052 // Emit post-update store to 'v' of old/new 'x' value. 4053 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 4054 // OpenMP, 2.12.6, atomic Construct 4055 // Any atomic construct with a seq_cst clause forces the atomically 4056 // performed operation to include an implicit flush operation without a 4057 // list. 4058 if (IsSeqCst) 4059 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4060 } 4061 4062 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 4063 bool IsSeqCst, bool IsPostfixUpdate, 4064 const Expr *X, const Expr *V, const Expr *E, 4065 const Expr *UE, bool IsXLHSInRHSPart, 4066 SourceLocation Loc) { 4067 switch (Kind) { 4068 case OMPC_read: 4069 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 4070 break; 4071 case OMPC_write: 4072 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 4073 break; 4074 case OMPC_unknown: 4075 case OMPC_update: 4076 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 4077 break; 4078 case OMPC_capture: 4079 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 4080 IsXLHSInRHSPart, Loc); 4081 break; 4082 case OMPC_if: 4083 case OMPC_final: 4084 case OMPC_num_threads: 4085 case OMPC_private: 4086 case OMPC_firstprivate: 4087 case OMPC_lastprivate: 4088 case OMPC_reduction: 4089 case OMPC_task_reduction: 4090 case OMPC_in_reduction: 4091 case OMPC_safelen: 4092 case OMPC_simdlen: 4093 case OMPC_allocator: 4094 case OMPC_allocate: 4095 case OMPC_collapse: 4096 case OMPC_default: 4097 case OMPC_seq_cst: 4098 case OMPC_shared: 4099 case OMPC_linear: 4100 case OMPC_aligned: 4101 case OMPC_copyin: 4102 case OMPC_copyprivate: 4103 case OMPC_flush: 4104 case OMPC_proc_bind: 4105 case OMPC_schedule: 4106 case OMPC_ordered: 4107 case OMPC_nowait: 4108 case OMPC_untied: 4109 case OMPC_threadprivate: 4110 case OMPC_depend: 4111 case OMPC_mergeable: 4112 case OMPC_device: 4113 case OMPC_threads: 4114 case OMPC_simd: 4115 case OMPC_map: 4116 case OMPC_num_teams: 4117 case OMPC_thread_limit: 4118 case OMPC_priority: 4119 case OMPC_grainsize: 4120 case OMPC_nogroup: 4121 case OMPC_num_tasks: 4122 case OMPC_hint: 4123 case OMPC_dist_schedule: 4124 case OMPC_defaultmap: 4125 case OMPC_uniform: 4126 case OMPC_to: 4127 case OMPC_from: 4128 case OMPC_use_device_ptr: 4129 case OMPC_is_device_ptr: 4130 case OMPC_unified_address: 4131 case OMPC_unified_shared_memory: 4132 case OMPC_reverse_offload: 4133 case OMPC_dynamic_allocators: 4134 case OMPC_atomic_default_mem_order: 4135 case OMPC_device_type: 4136 case OMPC_match: 4137 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 4138 } 4139 } 4140 4141 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4142 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4143 OpenMPClauseKind Kind = OMPC_unknown; 4144 for (const OMPClause *C : S.clauses()) { 4145 // Find first clause (skip seq_cst clause, if it is first). 4146 if (C->getClauseKind() != OMPC_seq_cst) { 4147 Kind = C->getClauseKind(); 4148 break; 4149 } 4150 } 4151 4152 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4153 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4154 enterFullExpression(FE); 4155 // Processing for statements under 'atomic capture'. 4156 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4157 for (const Stmt *C : Compound->body()) { 4158 if (const auto *FE = dyn_cast<FullExpr>(C)) 4159 enterFullExpression(FE); 4160 } 4161 } 4162 4163 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4164 PrePostActionTy &) { 4165 CGF.EmitStopPoint(CS); 4166 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4167 S.getV(), S.getExpr(), S.getUpdateExpr(), 4168 S.isXLHSInRHSPart(), S.getBeginLoc()); 4169 }; 4170 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4171 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4172 } 4173 4174 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4175 const OMPExecutableDirective &S, 4176 const RegionCodeGenTy &CodeGen) { 4177 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4178 CodeGenModule &CGM = CGF.CGM; 4179 4180 // On device emit this construct as inlined code. 4181 if (CGM.getLangOpts().OpenMPIsDevice) { 4182 OMPLexicalScope Scope(CGF, S, OMPD_target); 4183 CGM.getOpenMPRuntime().emitInlinedDirective( 4184 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4185 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4186 }); 4187 return; 4188 } 4189 4190 llvm::Function *Fn = nullptr; 4191 llvm::Constant *FnID = nullptr; 4192 4193 const Expr *IfCond = nullptr; 4194 // Check for the at most one if clause associated with the target region. 4195 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4196 if (C->getNameModifier() == OMPD_unknown || 4197 C->getNameModifier() == OMPD_target) { 4198 IfCond = C->getCondition(); 4199 break; 4200 } 4201 } 4202 4203 // Check if we have any device clause associated with the directive. 4204 const Expr *Device = nullptr; 4205 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4206 Device = C->getDevice(); 4207 4208 // Check if we have an if clause whose conditional always evaluates to false 4209 // or if we do not have any targets specified. If so the target region is not 4210 // an offload entry point. 4211 bool IsOffloadEntry = true; 4212 if (IfCond) { 4213 bool Val; 4214 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4215 IsOffloadEntry = false; 4216 } 4217 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4218 IsOffloadEntry = false; 4219 4220 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4221 StringRef ParentName; 4222 // In case we have Ctors/Dtors we use the complete type variant to produce 4223 // the mangling of the device outlined kernel. 4224 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4225 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4226 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4227 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4228 else 4229 ParentName = 4230 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4231 4232 // Emit target region as a standalone region. 4233 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4234 IsOffloadEntry, CodeGen); 4235 OMPLexicalScope Scope(CGF, S, OMPD_task); 4236 auto &&SizeEmitter = 4237 [IsOffloadEntry](CodeGenFunction &CGF, 4238 const OMPLoopDirective &D) -> llvm::Value * { 4239 if (IsOffloadEntry) { 4240 OMPLoopScope(CGF, D); 4241 // Emit calculation of the iterations count. 4242 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4243 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4244 /*isSigned=*/false); 4245 return NumIterations; 4246 } 4247 return nullptr; 4248 }; 4249 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 4250 SizeEmitter); 4251 } 4252 4253 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4254 PrePostActionTy &Action) { 4255 Action.Enter(CGF); 4256 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4257 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4258 CGF.EmitOMPPrivateClause(S, PrivateScope); 4259 (void)PrivateScope.Privatize(); 4260 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4261 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4262 4263 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4264 } 4265 4266 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4267 StringRef ParentName, 4268 const OMPTargetDirective &S) { 4269 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4270 emitTargetRegion(CGF, S, Action); 4271 }; 4272 llvm::Function *Fn; 4273 llvm::Constant *Addr; 4274 // Emit target region as a standalone region. 4275 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4276 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4277 assert(Fn && Addr && "Target device function emission failed."); 4278 } 4279 4280 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4281 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4282 emitTargetRegion(CGF, S, Action); 4283 }; 4284 emitCommonOMPTargetDirective(*this, S, CodeGen); 4285 } 4286 4287 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4288 const OMPExecutableDirective &S, 4289 OpenMPDirectiveKind InnermostKind, 4290 const RegionCodeGenTy &CodeGen) { 4291 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4292 llvm::Function *OutlinedFn = 4293 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4294 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4295 4296 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4297 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4298 if (NT || TL) { 4299 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4300 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4301 4302 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4303 S.getBeginLoc()); 4304 } 4305 4306 OMPTeamsScope Scope(CGF, S); 4307 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4308 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4309 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4310 CapturedVars); 4311 } 4312 4313 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4314 // Emit teams region as a standalone region. 4315 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4316 Action.Enter(CGF); 4317 OMPPrivateScope PrivateScope(CGF); 4318 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4319 CGF.EmitOMPPrivateClause(S, PrivateScope); 4320 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4321 (void)PrivateScope.Privatize(); 4322 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4323 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4324 }; 4325 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4326 emitPostUpdateForReductionClause(*this, S, 4327 [](CodeGenFunction &) { return nullptr; }); 4328 } 4329 4330 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4331 const OMPTargetTeamsDirective &S) { 4332 auto *CS = S.getCapturedStmt(OMPD_teams); 4333 Action.Enter(CGF); 4334 // Emit teams region as a standalone region. 4335 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4336 Action.Enter(CGF); 4337 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4338 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4339 CGF.EmitOMPPrivateClause(S, PrivateScope); 4340 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4341 (void)PrivateScope.Privatize(); 4342 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4343 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4344 CGF.EmitStmt(CS->getCapturedStmt()); 4345 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4346 }; 4347 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4348 emitPostUpdateForReductionClause(CGF, S, 4349 [](CodeGenFunction &) { return nullptr; }); 4350 } 4351 4352 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4353 CodeGenModule &CGM, StringRef ParentName, 4354 const OMPTargetTeamsDirective &S) { 4355 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4356 emitTargetTeamsRegion(CGF, Action, S); 4357 }; 4358 llvm::Function *Fn; 4359 llvm::Constant *Addr; 4360 // Emit target region as a standalone region. 4361 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4362 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4363 assert(Fn && Addr && "Target device function emission failed."); 4364 } 4365 4366 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4367 const OMPTargetTeamsDirective &S) { 4368 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4369 emitTargetTeamsRegion(CGF, Action, S); 4370 }; 4371 emitCommonOMPTargetDirective(*this, S, CodeGen); 4372 } 4373 4374 static void 4375 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4376 const OMPTargetTeamsDistributeDirective &S) { 4377 Action.Enter(CGF); 4378 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4379 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4380 }; 4381 4382 // Emit teams region as a standalone region. 4383 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4384 PrePostActionTy &Action) { 4385 Action.Enter(CGF); 4386 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4387 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4388 (void)PrivateScope.Privatize(); 4389 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4390 CodeGenDistribute); 4391 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4392 }; 4393 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4394 emitPostUpdateForReductionClause(CGF, S, 4395 [](CodeGenFunction &) { return nullptr; }); 4396 } 4397 4398 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4399 CodeGenModule &CGM, StringRef ParentName, 4400 const OMPTargetTeamsDistributeDirective &S) { 4401 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4402 emitTargetTeamsDistributeRegion(CGF, Action, S); 4403 }; 4404 llvm::Function *Fn; 4405 llvm::Constant *Addr; 4406 // Emit target region as a standalone region. 4407 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4408 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4409 assert(Fn && Addr && "Target device function emission failed."); 4410 } 4411 4412 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4413 const OMPTargetTeamsDistributeDirective &S) { 4414 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4415 emitTargetTeamsDistributeRegion(CGF, Action, S); 4416 }; 4417 emitCommonOMPTargetDirective(*this, S, CodeGen); 4418 } 4419 4420 static void emitTargetTeamsDistributeSimdRegion( 4421 CodeGenFunction &CGF, PrePostActionTy &Action, 4422 const OMPTargetTeamsDistributeSimdDirective &S) { 4423 Action.Enter(CGF); 4424 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4425 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4426 }; 4427 4428 // Emit teams region as a standalone region. 4429 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4430 PrePostActionTy &Action) { 4431 Action.Enter(CGF); 4432 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4433 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4434 (void)PrivateScope.Privatize(); 4435 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4436 CodeGenDistribute); 4437 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4438 }; 4439 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4440 emitPostUpdateForReductionClause(CGF, S, 4441 [](CodeGenFunction &) { return nullptr; }); 4442 } 4443 4444 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4445 CodeGenModule &CGM, StringRef ParentName, 4446 const OMPTargetTeamsDistributeSimdDirective &S) { 4447 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4448 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4449 }; 4450 llvm::Function *Fn; 4451 llvm::Constant *Addr; 4452 // Emit target region as a standalone region. 4453 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4454 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4455 assert(Fn && Addr && "Target device function emission failed."); 4456 } 4457 4458 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4459 const OMPTargetTeamsDistributeSimdDirective &S) { 4460 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4461 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4462 }; 4463 emitCommonOMPTargetDirective(*this, S, CodeGen); 4464 } 4465 4466 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4467 const OMPTeamsDistributeDirective &S) { 4468 4469 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4470 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4471 }; 4472 4473 // Emit teams region as a standalone region. 4474 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4475 PrePostActionTy &Action) { 4476 Action.Enter(CGF); 4477 OMPPrivateScope PrivateScope(CGF); 4478 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4479 (void)PrivateScope.Privatize(); 4480 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4481 CodeGenDistribute); 4482 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4483 }; 4484 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4485 emitPostUpdateForReductionClause(*this, S, 4486 [](CodeGenFunction &) { return nullptr; }); 4487 } 4488 4489 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4490 const OMPTeamsDistributeSimdDirective &S) { 4491 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4492 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4493 }; 4494 4495 // Emit teams region as a standalone region. 4496 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4497 PrePostActionTy &Action) { 4498 Action.Enter(CGF); 4499 OMPPrivateScope PrivateScope(CGF); 4500 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4501 (void)PrivateScope.Privatize(); 4502 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4503 CodeGenDistribute); 4504 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4505 }; 4506 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4507 emitPostUpdateForReductionClause(*this, S, 4508 [](CodeGenFunction &) { return nullptr; }); 4509 } 4510 4511 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4512 const OMPTeamsDistributeParallelForDirective &S) { 4513 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4514 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4515 S.getDistInc()); 4516 }; 4517 4518 // Emit teams region as a standalone region. 4519 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4520 PrePostActionTy &Action) { 4521 Action.Enter(CGF); 4522 OMPPrivateScope PrivateScope(CGF); 4523 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4524 (void)PrivateScope.Privatize(); 4525 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4526 CodeGenDistribute); 4527 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4528 }; 4529 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4530 emitPostUpdateForReductionClause(*this, S, 4531 [](CodeGenFunction &) { return nullptr; }); 4532 } 4533 4534 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4535 const OMPTeamsDistributeParallelForSimdDirective &S) { 4536 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4537 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4538 S.getDistInc()); 4539 }; 4540 4541 // Emit teams region as a standalone region. 4542 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4543 PrePostActionTy &Action) { 4544 Action.Enter(CGF); 4545 OMPPrivateScope PrivateScope(CGF); 4546 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4547 (void)PrivateScope.Privatize(); 4548 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4549 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4550 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4551 }; 4552 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4553 emitPostUpdateForReductionClause(*this, S, 4554 [](CodeGenFunction &) { return nullptr; }); 4555 } 4556 4557 static void emitTargetTeamsDistributeParallelForRegion( 4558 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4559 PrePostActionTy &Action) { 4560 Action.Enter(CGF); 4561 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4562 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4563 S.getDistInc()); 4564 }; 4565 4566 // Emit teams region as a standalone region. 4567 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4568 PrePostActionTy &Action) { 4569 Action.Enter(CGF); 4570 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4571 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4572 (void)PrivateScope.Privatize(); 4573 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4574 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4575 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4576 }; 4577 4578 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4579 CodeGenTeams); 4580 emitPostUpdateForReductionClause(CGF, S, 4581 [](CodeGenFunction &) { return nullptr; }); 4582 } 4583 4584 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4585 CodeGenModule &CGM, StringRef ParentName, 4586 const OMPTargetTeamsDistributeParallelForDirective &S) { 4587 // Emit SPMD target teams distribute parallel for region as a standalone 4588 // region. 4589 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4590 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4591 }; 4592 llvm::Function *Fn; 4593 llvm::Constant *Addr; 4594 // Emit target region as a standalone region. 4595 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4596 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4597 assert(Fn && Addr && "Target device function emission failed."); 4598 } 4599 4600 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4601 const OMPTargetTeamsDistributeParallelForDirective &S) { 4602 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4603 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4604 }; 4605 emitCommonOMPTargetDirective(*this, S, CodeGen); 4606 } 4607 4608 static void emitTargetTeamsDistributeParallelForSimdRegion( 4609 CodeGenFunction &CGF, 4610 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4611 PrePostActionTy &Action) { 4612 Action.Enter(CGF); 4613 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4614 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4615 S.getDistInc()); 4616 }; 4617 4618 // Emit teams region as a standalone region. 4619 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4620 PrePostActionTy &Action) { 4621 Action.Enter(CGF); 4622 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4623 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4624 (void)PrivateScope.Privatize(); 4625 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4626 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4627 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4628 }; 4629 4630 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4631 CodeGenTeams); 4632 emitPostUpdateForReductionClause(CGF, S, 4633 [](CodeGenFunction &) { return nullptr; }); 4634 } 4635 4636 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4637 CodeGenModule &CGM, StringRef ParentName, 4638 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4639 // Emit SPMD target teams distribute parallel for simd region as a standalone 4640 // region. 4641 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4642 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4643 }; 4644 llvm::Function *Fn; 4645 llvm::Constant *Addr; 4646 // Emit target region as a standalone region. 4647 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4648 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4649 assert(Fn && Addr && "Target device function emission failed."); 4650 } 4651 4652 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4653 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4654 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4655 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4656 }; 4657 emitCommonOMPTargetDirective(*this, S, CodeGen); 4658 } 4659 4660 void CodeGenFunction::EmitOMPCancellationPointDirective( 4661 const OMPCancellationPointDirective &S) { 4662 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4663 S.getCancelRegion()); 4664 } 4665 4666 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4667 const Expr *IfCond = nullptr; 4668 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4669 if (C->getNameModifier() == OMPD_unknown || 4670 C->getNameModifier() == OMPD_cancel) { 4671 IfCond = C->getCondition(); 4672 break; 4673 } 4674 } 4675 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4676 S.getCancelRegion()); 4677 } 4678 4679 CodeGenFunction::JumpDest 4680 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4681 if (Kind == OMPD_parallel || Kind == OMPD_task || 4682 Kind == OMPD_target_parallel) 4683 return ReturnBlock; 4684 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4685 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4686 Kind == OMPD_distribute_parallel_for || 4687 Kind == OMPD_target_parallel_for || 4688 Kind == OMPD_teams_distribute_parallel_for || 4689 Kind == OMPD_target_teams_distribute_parallel_for); 4690 return OMPCancelStack.getExitBlock(); 4691 } 4692 4693 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4694 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4695 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4696 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4697 auto OrigVarIt = C.varlist_begin(); 4698 auto InitIt = C.inits().begin(); 4699 for (const Expr *PvtVarIt : C.private_copies()) { 4700 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4701 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4702 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4703 4704 // In order to identify the right initializer we need to match the 4705 // declaration used by the mapping logic. In some cases we may get 4706 // OMPCapturedExprDecl that refers to the original declaration. 4707 const ValueDecl *MatchingVD = OrigVD; 4708 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4709 // OMPCapturedExprDecl are used to privative fields of the current 4710 // structure. 4711 const auto *ME = cast<MemberExpr>(OED->getInit()); 4712 assert(isa<CXXThisExpr>(ME->getBase()) && 4713 "Base should be the current struct!"); 4714 MatchingVD = ME->getMemberDecl(); 4715 } 4716 4717 // If we don't have information about the current list item, move on to 4718 // the next one. 4719 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4720 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4721 continue; 4722 4723 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4724 InitAddrIt, InitVD, 4725 PvtVD]() { 4726 // Initialize the temporary initialization variable with the address we 4727 // get from the runtime library. We have to cast the source address 4728 // because it is always a void *. References are materialized in the 4729 // privatization scope, so the initialization here disregards the fact 4730 // the original variable is a reference. 4731 QualType AddrQTy = 4732 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4733 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4734 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4735 setAddrOfLocalVar(InitVD, InitAddr); 4736 4737 // Emit private declaration, it will be initialized by the value we 4738 // declaration we just added to the local declarations map. 4739 EmitDecl(*PvtVD); 4740 4741 // The initialization variables reached its purpose in the emission 4742 // of the previous declaration, so we don't need it anymore. 4743 LocalDeclMap.erase(InitVD); 4744 4745 // Return the address of the private variable. 4746 return GetAddrOfLocalVar(PvtVD); 4747 }); 4748 assert(IsRegistered && "firstprivate var already registered as private"); 4749 // Silence the warning about unused variable. 4750 (void)IsRegistered; 4751 4752 ++OrigVarIt; 4753 ++InitIt; 4754 } 4755 } 4756 4757 // Generate the instructions for '#pragma omp target data' directive. 4758 void CodeGenFunction::EmitOMPTargetDataDirective( 4759 const OMPTargetDataDirective &S) { 4760 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4761 4762 // Create a pre/post action to signal the privatization of the device pointer. 4763 // This action can be replaced by the OpenMP runtime code generation to 4764 // deactivate privatization. 4765 bool PrivatizeDevicePointers = false; 4766 class DevicePointerPrivActionTy : public PrePostActionTy { 4767 bool &PrivatizeDevicePointers; 4768 4769 public: 4770 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4771 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4772 void Enter(CodeGenFunction &CGF) override { 4773 PrivatizeDevicePointers = true; 4774 } 4775 }; 4776 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4777 4778 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4779 CodeGenFunction &CGF, PrePostActionTy &Action) { 4780 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4781 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4782 }; 4783 4784 // Codegen that selects whether to generate the privatization code or not. 4785 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4786 &InnermostCodeGen](CodeGenFunction &CGF, 4787 PrePostActionTy &Action) { 4788 RegionCodeGenTy RCG(InnermostCodeGen); 4789 PrivatizeDevicePointers = false; 4790 4791 // Call the pre-action to change the status of PrivatizeDevicePointers if 4792 // needed. 4793 Action.Enter(CGF); 4794 4795 if (PrivatizeDevicePointers) { 4796 OMPPrivateScope PrivateScope(CGF); 4797 // Emit all instances of the use_device_ptr clause. 4798 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4799 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4800 Info.CaptureDeviceAddrMap); 4801 (void)PrivateScope.Privatize(); 4802 RCG(CGF); 4803 } else { 4804 RCG(CGF); 4805 } 4806 }; 4807 4808 // Forward the provided action to the privatization codegen. 4809 RegionCodeGenTy PrivRCG(PrivCodeGen); 4810 PrivRCG.setAction(Action); 4811 4812 // Notwithstanding the body of the region is emitted as inlined directive, 4813 // we don't use an inline scope as changes in the references inside the 4814 // region are expected to be visible outside, so we do not privative them. 4815 OMPLexicalScope Scope(CGF, S); 4816 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4817 PrivRCG); 4818 }; 4819 4820 RegionCodeGenTy RCG(CodeGen); 4821 4822 // If we don't have target devices, don't bother emitting the data mapping 4823 // code. 4824 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4825 RCG(*this); 4826 return; 4827 } 4828 4829 // Check if we have any if clause associated with the directive. 4830 const Expr *IfCond = nullptr; 4831 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4832 IfCond = C->getCondition(); 4833 4834 // Check if we have any device clause associated with the directive. 4835 const Expr *Device = nullptr; 4836 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4837 Device = C->getDevice(); 4838 4839 // Set the action to signal privatization of device pointers. 4840 RCG.setAction(PrivAction); 4841 4842 // Emit region code. 4843 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4844 Info); 4845 } 4846 4847 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4848 const OMPTargetEnterDataDirective &S) { 4849 // If we don't have target devices, don't bother emitting the data mapping 4850 // code. 4851 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4852 return; 4853 4854 // Check if we have any if clause associated with the directive. 4855 const Expr *IfCond = nullptr; 4856 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4857 IfCond = C->getCondition(); 4858 4859 // Check if we have any device clause associated with the directive. 4860 const Expr *Device = nullptr; 4861 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4862 Device = C->getDevice(); 4863 4864 OMPLexicalScope Scope(*this, S, OMPD_task); 4865 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4866 } 4867 4868 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4869 const OMPTargetExitDataDirective &S) { 4870 // If we don't have target devices, don't bother emitting the data mapping 4871 // code. 4872 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4873 return; 4874 4875 // Check if we have any if clause associated with the directive. 4876 const Expr *IfCond = nullptr; 4877 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4878 IfCond = C->getCondition(); 4879 4880 // Check if we have any device clause associated with the directive. 4881 const Expr *Device = nullptr; 4882 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4883 Device = C->getDevice(); 4884 4885 OMPLexicalScope Scope(*this, S, OMPD_task); 4886 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4887 } 4888 4889 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4890 const OMPTargetParallelDirective &S, 4891 PrePostActionTy &Action) { 4892 // Get the captured statement associated with the 'parallel' region. 4893 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4894 Action.Enter(CGF); 4895 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4896 Action.Enter(CGF); 4897 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4898 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4899 CGF.EmitOMPPrivateClause(S, PrivateScope); 4900 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4901 (void)PrivateScope.Privatize(); 4902 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4903 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4904 // TODO: Add support for clauses. 4905 CGF.EmitStmt(CS->getCapturedStmt()); 4906 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4907 }; 4908 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4909 emitEmptyBoundParameters); 4910 emitPostUpdateForReductionClause(CGF, S, 4911 [](CodeGenFunction &) { return nullptr; }); 4912 } 4913 4914 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4915 CodeGenModule &CGM, StringRef ParentName, 4916 const OMPTargetParallelDirective &S) { 4917 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4918 emitTargetParallelRegion(CGF, S, Action); 4919 }; 4920 llvm::Function *Fn; 4921 llvm::Constant *Addr; 4922 // Emit target region as a standalone region. 4923 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4924 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4925 assert(Fn && Addr && "Target device function emission failed."); 4926 } 4927 4928 void CodeGenFunction::EmitOMPTargetParallelDirective( 4929 const OMPTargetParallelDirective &S) { 4930 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4931 emitTargetParallelRegion(CGF, S, Action); 4932 }; 4933 emitCommonOMPTargetDirective(*this, S, CodeGen); 4934 } 4935 4936 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4937 const OMPTargetParallelForDirective &S, 4938 PrePostActionTy &Action) { 4939 Action.Enter(CGF); 4940 // Emit directive as a combined directive that consists of two implicit 4941 // directives: 'parallel' with 'for' directive. 4942 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4943 Action.Enter(CGF); 4944 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4945 CGF, OMPD_target_parallel_for, S.hasCancel()); 4946 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4947 emitDispatchForLoopBounds); 4948 }; 4949 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4950 emitEmptyBoundParameters); 4951 } 4952 4953 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4954 CodeGenModule &CGM, StringRef ParentName, 4955 const OMPTargetParallelForDirective &S) { 4956 // Emit SPMD target parallel for region as a standalone region. 4957 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4958 emitTargetParallelForRegion(CGF, S, Action); 4959 }; 4960 llvm::Function *Fn; 4961 llvm::Constant *Addr; 4962 // Emit target region as a standalone region. 4963 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4964 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4965 assert(Fn && Addr && "Target device function emission failed."); 4966 } 4967 4968 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4969 const OMPTargetParallelForDirective &S) { 4970 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4971 emitTargetParallelForRegion(CGF, S, Action); 4972 }; 4973 emitCommonOMPTargetDirective(*this, S, CodeGen); 4974 } 4975 4976 static void 4977 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4978 const OMPTargetParallelForSimdDirective &S, 4979 PrePostActionTy &Action) { 4980 Action.Enter(CGF); 4981 // Emit directive as a combined directive that consists of two implicit 4982 // directives: 'parallel' with 'for' directive. 4983 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4984 Action.Enter(CGF); 4985 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4986 emitDispatchForLoopBounds); 4987 }; 4988 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4989 emitEmptyBoundParameters); 4990 } 4991 4992 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4993 CodeGenModule &CGM, StringRef ParentName, 4994 const OMPTargetParallelForSimdDirective &S) { 4995 // Emit SPMD target parallel for region as a standalone region. 4996 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4997 emitTargetParallelForSimdRegion(CGF, S, Action); 4998 }; 4999 llvm::Function *Fn; 5000 llvm::Constant *Addr; 5001 // Emit target region as a standalone region. 5002 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5003 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5004 assert(Fn && Addr && "Target device function emission failed."); 5005 } 5006 5007 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 5008 const OMPTargetParallelForSimdDirective &S) { 5009 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5010 emitTargetParallelForSimdRegion(CGF, S, Action); 5011 }; 5012 emitCommonOMPTargetDirective(*this, S, CodeGen); 5013 } 5014 5015 /// Emit a helper variable and return corresponding lvalue. 5016 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 5017 const ImplicitParamDecl *PVD, 5018 CodeGenFunction::OMPPrivateScope &Privates) { 5019 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 5020 Privates.addPrivate(VDecl, 5021 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 5022 } 5023 5024 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 5025 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 5026 // Emit outlined function for task construct. 5027 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 5028 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5029 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5030 const Expr *IfCond = nullptr; 5031 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5032 if (C->getNameModifier() == OMPD_unknown || 5033 C->getNameModifier() == OMPD_taskloop) { 5034 IfCond = C->getCondition(); 5035 break; 5036 } 5037 } 5038 5039 OMPTaskDataTy Data; 5040 // Check if taskloop must be emitted without taskgroup. 5041 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 5042 // TODO: Check if we should emit tied or untied task. 5043 Data.Tied = true; 5044 // Set scheduling for taskloop 5045 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 5046 // grainsize clause 5047 Data.Schedule.setInt(/*IntVal=*/false); 5048 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 5049 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 5050 // num_tasks clause 5051 Data.Schedule.setInt(/*IntVal=*/true); 5052 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 5053 } 5054 5055 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 5056 // if (PreCond) { 5057 // for (IV in 0..LastIteration) BODY; 5058 // <Final counter/linear vars updates>; 5059 // } 5060 // 5061 5062 // Emit: if (PreCond) - begin. 5063 // If the condition constant folds and can be elided, avoid emitting the 5064 // whole loop. 5065 bool CondConstant; 5066 llvm::BasicBlock *ContBlock = nullptr; 5067 OMPLoopScope PreInitScope(CGF, S); 5068 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5069 if (!CondConstant) 5070 return; 5071 } else { 5072 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 5073 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 5074 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 5075 CGF.getProfileCount(&S)); 5076 CGF.EmitBlock(ThenBlock); 5077 CGF.incrementProfileCounter(&S); 5078 } 5079 5080 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5081 CGF.EmitOMPSimdInit(S); 5082 (void)CGF.EmitOMPLinearClauseInit(S); 5083 } 5084 5085 OMPPrivateScope LoopScope(CGF); 5086 // Emit helper vars inits. 5087 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 5088 auto *I = CS->getCapturedDecl()->param_begin(); 5089 auto *LBP = std::next(I, LowerBound); 5090 auto *UBP = std::next(I, UpperBound); 5091 auto *STP = std::next(I, Stride); 5092 auto *LIP = std::next(I, LastIter); 5093 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 5094 LoopScope); 5095 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 5096 LoopScope); 5097 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 5098 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 5099 LoopScope); 5100 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 5101 CGF.EmitOMPLinearClause(S, LoopScope); 5102 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 5103 (void)LoopScope.Privatize(); 5104 // Emit the loop iteration variable. 5105 const Expr *IVExpr = S.getIterationVariable(); 5106 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 5107 CGF.EmitVarDecl(*IVDecl); 5108 CGF.EmitIgnoredExpr(S.getInit()); 5109 5110 // Emit the iterations count variable. 5111 // If it is not a variable, Sema decided to calculate iterations count on 5112 // each iteration (e.g., it is foldable into a constant). 5113 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5114 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5115 // Emit calculation of the iterations count. 5116 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 5117 } 5118 5119 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 5120 S.getInc(), 5121 [&S](CodeGenFunction &CGF) { 5122 CGF.EmitOMPLoopBody(S, JumpDest()); 5123 CGF.EmitStopPoint(&S); 5124 }, 5125 [](CodeGenFunction &) {}); 5126 // Emit: if (PreCond) - end. 5127 if (ContBlock) { 5128 CGF.EmitBranch(ContBlock); 5129 CGF.EmitBlock(ContBlock, true); 5130 } 5131 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5132 if (HasLastprivateClause) { 5133 CGF.EmitOMPLastprivateClauseFinal( 5134 S, isOpenMPSimdDirective(S.getDirectiveKind()), 5135 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 5136 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5137 (*LIP)->getType(), S.getBeginLoc()))); 5138 } 5139 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 5140 return CGF.Builder.CreateIsNotNull( 5141 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5142 (*LIP)->getType(), S.getBeginLoc())); 5143 }); 5144 }; 5145 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5146 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5147 const OMPTaskDataTy &Data) { 5148 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 5149 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 5150 OMPLoopScope PreInitScope(CGF, S); 5151 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5152 OutlinedFn, SharedsTy, 5153 CapturedStruct, IfCond, Data); 5154 }; 5155 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5156 CodeGen); 5157 }; 5158 if (Data.Nogroup) { 5159 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5160 } else { 5161 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5162 *this, 5163 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5164 PrePostActionTy &Action) { 5165 Action.Enter(CGF); 5166 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5167 Data); 5168 }, 5169 S.getBeginLoc()); 5170 } 5171 } 5172 5173 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5174 EmitOMPTaskLoopBasedDirective(S); 5175 } 5176 5177 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5178 const OMPTaskLoopSimdDirective &S) { 5179 EmitOMPTaskLoopBasedDirective(S); 5180 } 5181 5182 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 5183 const OMPMasterTaskLoopDirective &S) { 5184 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5185 Action.Enter(CGF); 5186 EmitOMPTaskLoopBasedDirective(S); 5187 }; 5188 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5189 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5190 } 5191 5192 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 5193 const OMPMasterTaskLoopSimdDirective &S) { 5194 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5195 Action.Enter(CGF); 5196 EmitOMPTaskLoopBasedDirective(S); 5197 }; 5198 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5199 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5200 } 5201 5202 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 5203 const OMPParallelMasterTaskLoopDirective &S) { 5204 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5205 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5206 PrePostActionTy &Action) { 5207 Action.Enter(CGF); 5208 CGF.EmitOMPTaskLoopBasedDirective(S); 5209 }; 5210 OMPLexicalScope Scope(CGF, S, llvm::None, /*EmitPreInitStmt=*/false); 5211 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5212 S.getBeginLoc()); 5213 }; 5214 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 5215 emitEmptyBoundParameters); 5216 } 5217 5218 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 5219 const OMPParallelMasterTaskLoopSimdDirective &S) { 5220 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5221 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5222 PrePostActionTy &Action) { 5223 Action.Enter(CGF); 5224 CGF.EmitOMPTaskLoopBasedDirective(S); 5225 }; 5226 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 5227 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5228 S.getBeginLoc()); 5229 }; 5230 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 5231 emitEmptyBoundParameters); 5232 } 5233 5234 // Generate the instructions for '#pragma omp target update' directive. 5235 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5236 const OMPTargetUpdateDirective &S) { 5237 // If we don't have target devices, don't bother emitting the data mapping 5238 // code. 5239 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5240 return; 5241 5242 // Check if we have any if clause associated with the directive. 5243 const Expr *IfCond = nullptr; 5244 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5245 IfCond = C->getCondition(); 5246 5247 // Check if we have any device clause associated with the directive. 5248 const Expr *Device = nullptr; 5249 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5250 Device = C->getDevice(); 5251 5252 OMPLexicalScope Scope(*this, S, OMPD_task); 5253 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5254 } 5255 5256 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5257 const OMPExecutableDirective &D) { 5258 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5259 return; 5260 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5261 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5262 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5263 } else { 5264 OMPPrivateScope LoopGlobals(CGF); 5265 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5266 for (const Expr *E : LD->counters()) { 5267 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5268 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5269 LValue GlobLVal = CGF.EmitLValue(E); 5270 LoopGlobals.addPrivate( 5271 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5272 } 5273 if (isa<OMPCapturedExprDecl>(VD)) { 5274 // Emit only those that were not explicitly referenced in clauses. 5275 if (!CGF.LocalDeclMap.count(VD)) 5276 CGF.EmitVarDecl(*VD); 5277 } 5278 } 5279 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5280 if (!C->getNumForLoops()) 5281 continue; 5282 for (unsigned I = LD->getCollapsedNumber(), 5283 E = C->getLoopNumIterations().size(); 5284 I < E; ++I) { 5285 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5286 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5287 // Emit only those that were not explicitly referenced in clauses. 5288 if (!CGF.LocalDeclMap.count(VD)) 5289 CGF.EmitVarDecl(*VD); 5290 } 5291 } 5292 } 5293 } 5294 LoopGlobals.Privatize(); 5295 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5296 } 5297 }; 5298 OMPSimdLexicalScope Scope(*this, D); 5299 CGM.getOpenMPRuntime().emitInlinedDirective( 5300 *this, 5301 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5302 : D.getDirectiveKind(), 5303 CodeGen); 5304 } 5305