1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 bool AsInlined = false) 58 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 59 InlinedShareds(CGF) { 60 emitPreInitStmt(CGF, S); 61 if (AsInlined) { 62 if (S.hasAssociatedStmt()) { 63 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 64 for (auto &C : CS->captures()) { 65 if (C.capturesVariable() || C.capturesVariableByCopy()) { 66 auto *VD = C.getCapturedVar(); 67 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 68 isCapturedVar(CGF, VD) || 69 (CGF.CapturedStmtInfo && 70 InlinedShareds.isGlobalVarCaptured(VD)), 71 VD->getType().getNonReferenceType(), VK_LValue, 72 SourceLocation()); 73 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 74 return CGF.EmitLValue(&DRE).getAddress(); 75 }); 76 } 77 } 78 (void)InlinedShareds.Privatize(); 79 } 80 } 81 } 82 }; 83 84 /// Private scope for OpenMP loop-based directives, that supports capturing 85 /// of used expression from loop statement. 86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 87 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 88 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 89 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 90 for (const auto *I : PreInits->decls()) 91 CGF.EmitVarDecl(cast<VarDecl>(*I)); 92 } 93 } 94 } 95 96 public: 97 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 98 : CodeGenFunction::RunCleanupsScope(CGF) { 99 emitPreInitStmt(CGF, S); 100 } 101 }; 102 103 } // namespace 104 105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 106 auto &C = getContext(); 107 llvm::Value *Size = nullptr; 108 auto SizeInChars = C.getTypeSizeInChars(Ty); 109 if (SizeInChars.isZero()) { 110 // getTypeSizeInChars() returns 0 for a VLA. 111 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 112 llvm::Value *ArraySize; 113 std::tie(ArraySize, Ty) = getVLASize(VAT); 114 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 115 } 116 SizeInChars = C.getTypeSizeInChars(Ty); 117 if (SizeInChars.isZero()) 118 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 119 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 120 } else 121 Size = CGM.getSize(SizeInChars); 122 return Size; 123 } 124 125 void CodeGenFunction::GenerateOpenMPCapturedVars( 126 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 127 const RecordDecl *RD = S.getCapturedRecordDecl(); 128 auto CurField = RD->field_begin(); 129 auto CurCap = S.captures().begin(); 130 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 131 E = S.capture_init_end(); 132 I != E; ++I, ++CurField, ++CurCap) { 133 if (CurField->hasCapturedVLAType()) { 134 auto VAT = CurField->getCapturedVLAType(); 135 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 136 CapturedVars.push_back(Val); 137 } else if (CurCap->capturesThis()) 138 CapturedVars.push_back(CXXThisValue); 139 else if (CurCap->capturesVariableByCopy()) { 140 llvm::Value *CV = 141 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal(); 142 143 // If the field is not a pointer, we need to save the actual value 144 // and load it as a void pointer. 145 if (!CurField->getType()->isAnyPointerType()) { 146 auto &Ctx = getContext(); 147 auto DstAddr = CreateMemTemp( 148 Ctx.getUIntPtrType(), 149 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 150 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 151 152 auto *SrcAddrVal = EmitScalarConversion( 153 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 154 Ctx.getPointerType(CurField->getType()), SourceLocation()); 155 LValue SrcLV = 156 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 157 158 // Store the value using the source type pointer. 159 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 160 161 // Load the value using the destination type pointer. 162 CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal(); 163 } 164 CapturedVars.push_back(CV); 165 } else { 166 assert(CurCap->capturesVariable() && "Expected capture by reference."); 167 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 168 } 169 } 170 } 171 172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 173 StringRef Name, LValue AddrLV, 174 bool isReferenceType = false) { 175 ASTContext &Ctx = CGF.getContext(); 176 177 auto *CastedPtr = CGF.EmitScalarConversion( 178 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 179 Ctx.getPointerType(DstType), SourceLocation()); 180 auto TmpAddr = 181 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 182 .getAddress(); 183 184 // If we are dealing with references we need to return the address of the 185 // reference instead of the reference of the value. 186 if (isReferenceType) { 187 QualType RefType = Ctx.getLValueReferenceType(DstType); 188 auto *RefVal = TmpAddr.getPointer(); 189 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 190 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 191 CGF.EmitScalarInit(RefVal, TmpLVal); 192 } 193 194 return TmpAddr; 195 } 196 197 llvm::Function * 198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 199 assert( 200 CapturedStmtInfo && 201 "CapturedStmtInfo should be set when generating the captured function"); 202 const CapturedDecl *CD = S.getCapturedDecl(); 203 const RecordDecl *RD = S.getCapturedRecordDecl(); 204 assert(CD->hasBody() && "missing CapturedDecl body"); 205 206 // Build the argument list. 207 ASTContext &Ctx = CGM.getContext(); 208 FunctionArgList Args; 209 Args.append(CD->param_begin(), 210 std::next(CD->param_begin(), CD->getContextParamPosition())); 211 auto I = S.captures().begin(); 212 for (auto *FD : RD->fields()) { 213 QualType ArgType = FD->getType(); 214 IdentifierInfo *II = nullptr; 215 VarDecl *CapVar = nullptr; 216 217 // If this is a capture by copy and the type is not a pointer, the outlined 218 // function argument type should be uintptr and the value properly casted to 219 // uintptr. This is necessary given that the runtime library is only able to 220 // deal with pointers. We can pass in the same way the VLA type sizes to the 221 // outlined function. 222 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 223 I->capturesVariableArrayType()) 224 ArgType = Ctx.getUIntPtrType(); 225 226 if (I->capturesVariable() || I->capturesVariableByCopy()) { 227 CapVar = I->getCapturedVar(); 228 II = CapVar->getIdentifier(); 229 } else if (I->capturesThis()) 230 II = &getContext().Idents.get("this"); 231 else { 232 assert(I->capturesVariableArrayType()); 233 II = &getContext().Idents.get("vla"); 234 } 235 if (ArgType->isVariablyModifiedType()) 236 ArgType = getContext().getVariableArrayDecayedType(ArgType); 237 Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr, 238 FD->getLocation(), II, ArgType)); 239 ++I; 240 } 241 Args.append( 242 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 243 CD->param_end()); 244 245 // Create the function declaration. 246 FunctionType::ExtInfo ExtInfo; 247 const CGFunctionInfo &FuncInfo = 248 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 249 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 250 251 llvm::Function *F = llvm::Function::Create( 252 FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 253 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 254 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 255 if (CD->isNothrow()) 256 F->addFnAttr(llvm::Attribute::NoUnwind); 257 258 // Generate the function. 259 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 260 CD->getBody()->getLocStart()); 261 unsigned Cnt = CD->getContextParamPosition(); 262 I = S.captures().begin(); 263 for (auto *FD : RD->fields()) { 264 // If we are capturing a pointer by copy we don't need to do anything, just 265 // use the value that we get from the arguments. 266 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 267 setAddrOfLocalVar(I->getCapturedVar(), GetAddrOfLocalVar(Args[Cnt])); 268 ++Cnt; 269 ++I; 270 continue; 271 } 272 273 LValue ArgLVal = 274 MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(), 275 AlignmentSource::Decl); 276 if (FD->hasCapturedVLAType()) { 277 LValue CastedArgLVal = 278 MakeAddrLValue(castValueFromUintptr(*this, FD->getType(), 279 Args[Cnt]->getName(), ArgLVal), 280 FD->getType(), AlignmentSource::Decl); 281 auto *ExprArg = 282 EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal(); 283 auto VAT = FD->getCapturedVLAType(); 284 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 285 } else if (I->capturesVariable()) { 286 auto *Var = I->getCapturedVar(); 287 QualType VarTy = Var->getType(); 288 Address ArgAddr = ArgLVal.getAddress(); 289 if (!VarTy->isReferenceType()) { 290 ArgAddr = EmitLoadOfReference( 291 ArgAddr, ArgLVal.getType()->castAs<ReferenceType>()); 292 } 293 setAddrOfLocalVar( 294 Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var))); 295 } else if (I->capturesVariableByCopy()) { 296 assert(!FD->getType()->isAnyPointerType() && 297 "Not expecting a captured pointer."); 298 auto *Var = I->getCapturedVar(); 299 QualType VarTy = Var->getType(); 300 setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(), 301 Args[Cnt]->getName(), ArgLVal, 302 VarTy->isReferenceType())); 303 } else { 304 // If 'this' is captured, load it into CXXThisValue. 305 assert(I->capturesThis()); 306 CXXThisValue = 307 EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal(); 308 } 309 ++Cnt; 310 ++I; 311 } 312 313 PGO.assignRegionCounters(GlobalDecl(CD), F); 314 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 315 FinishFunction(CD->getBodyRBrace()); 316 317 return F; 318 } 319 320 //===----------------------------------------------------------------------===// 321 // OpenMP Directive Emission 322 //===----------------------------------------------------------------------===// 323 void CodeGenFunction::EmitOMPAggregateAssign( 324 Address DestAddr, Address SrcAddr, QualType OriginalType, 325 const llvm::function_ref<void(Address, Address)> &CopyGen) { 326 // Perform element-by-element initialization. 327 QualType ElementTy; 328 329 // Drill down to the base element type on both arrays. 330 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 331 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 332 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 333 334 auto SrcBegin = SrcAddr.getPointer(); 335 auto DestBegin = DestAddr.getPointer(); 336 // Cast from pointer to array type to pointer to single element. 337 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 338 // The basic structure here is a while-do loop. 339 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 340 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 341 auto IsEmpty = 342 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 343 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 344 345 // Enter the loop body, making that address the current address. 346 auto EntryBB = Builder.GetInsertBlock(); 347 EmitBlock(BodyBB); 348 349 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 350 351 llvm::PHINode *SrcElementPHI = 352 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 353 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 354 Address SrcElementCurrent = 355 Address(SrcElementPHI, 356 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 357 358 llvm::PHINode *DestElementPHI = 359 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 360 DestElementPHI->addIncoming(DestBegin, EntryBB); 361 Address DestElementCurrent = 362 Address(DestElementPHI, 363 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 364 365 // Emit copy. 366 CopyGen(DestElementCurrent, SrcElementCurrent); 367 368 // Shift the address forward by one element. 369 auto DestElementNext = Builder.CreateConstGEP1_32( 370 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 371 auto SrcElementNext = Builder.CreateConstGEP1_32( 372 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 373 // Check whether we've reached the end. 374 auto Done = 375 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 376 Builder.CreateCondBr(Done, DoneBB, BodyBB); 377 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 378 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 379 380 // Done. 381 EmitBlock(DoneBB, /*IsFinished=*/true); 382 } 383 384 /// Check if the combiner is a call to UDR combiner and if it is so return the 385 /// UDR decl used for reduction. 386 static const OMPDeclareReductionDecl * 387 getReductionInit(const Expr *ReductionOp) { 388 if (auto *CE = dyn_cast<CallExpr>(ReductionOp)) 389 if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) 390 if (auto *DRE = 391 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) 392 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) 393 return DRD; 394 return nullptr; 395 } 396 397 static void emitInitWithReductionInitializer(CodeGenFunction &CGF, 398 const OMPDeclareReductionDecl *DRD, 399 const Expr *InitOp, 400 Address Private, Address Original, 401 QualType Ty) { 402 if (DRD->getInitializer()) { 403 std::pair<llvm::Function *, llvm::Function *> Reduction = 404 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); 405 auto *CE = cast<CallExpr>(InitOp); 406 auto *OVE = cast<OpaqueValueExpr>(CE->getCallee()); 407 const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); 408 const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); 409 auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr()); 410 auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr()); 411 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 412 PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), 413 [=]() -> Address { return Private; }); 414 PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), 415 [=]() -> Address { return Original; }); 416 (void)PrivateScope.Privatize(); 417 RValue Func = RValue::get(Reduction.second); 418 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); 419 CGF.EmitIgnoredExpr(InitOp); 420 } else { 421 llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); 422 auto *GV = new llvm::GlobalVariable( 423 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 424 llvm::GlobalValue::PrivateLinkage, Init, ".init"); 425 LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); 426 RValue InitRVal; 427 switch (CGF.getEvaluationKind(Ty)) { 428 case TEK_Scalar: 429 InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation()); 430 break; 431 case TEK_Complex: 432 InitRVal = 433 RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation())); 434 break; 435 case TEK_Aggregate: 436 InitRVal = RValue::getAggregate(LV.getAddress()); 437 break; 438 } 439 OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue); 440 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); 441 CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), 442 /*IsInitializer=*/false); 443 } 444 } 445 446 /// \brief Emit initialization of arrays of complex types. 447 /// \param DestAddr Address of the array. 448 /// \param Type Type of array. 449 /// \param Init Initial expression of array. 450 /// \param SrcAddr Address of the original array. 451 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, 452 QualType Type, const Expr *Init, 453 Address SrcAddr = Address::invalid()) { 454 auto *DRD = getReductionInit(Init); 455 // Perform element-by-element initialization. 456 QualType ElementTy; 457 458 // Drill down to the base element type on both arrays. 459 auto ArrayTy = Type->getAsArrayTypeUnsafe(); 460 auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); 461 DestAddr = 462 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); 463 if (DRD) 464 SrcAddr = 465 CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 466 467 llvm::Value *SrcBegin = nullptr; 468 if (DRD) 469 SrcBegin = SrcAddr.getPointer(); 470 auto DestBegin = DestAddr.getPointer(); 471 // Cast from pointer to array type to pointer to single element. 472 auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); 473 // The basic structure here is a while-do loop. 474 auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); 475 auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); 476 auto IsEmpty = 477 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); 478 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 479 480 // Enter the loop body, making that address the current address. 481 auto EntryBB = CGF.Builder.GetInsertBlock(); 482 CGF.EmitBlock(BodyBB); 483 484 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); 485 486 llvm::PHINode *SrcElementPHI = nullptr; 487 Address SrcElementCurrent = Address::invalid(); 488 if (DRD) { 489 SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, 490 "omp.arraycpy.srcElementPast"); 491 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 492 SrcElementCurrent = 493 Address(SrcElementPHI, 494 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 495 } 496 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( 497 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 498 DestElementPHI->addIncoming(DestBegin, EntryBB); 499 Address DestElementCurrent = 500 Address(DestElementPHI, 501 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 502 503 // Emit copy. 504 { 505 CodeGenFunction::RunCleanupsScope InitScope(CGF); 506 if (DRD && (DRD->getInitializer() || !Init)) { 507 emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, 508 SrcElementCurrent, ElementTy); 509 } else 510 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), 511 /*IsInitializer=*/false); 512 } 513 514 if (DRD) { 515 // Shift the address forward by one element. 516 auto SrcElementNext = CGF.Builder.CreateConstGEP1_32( 517 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 518 SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); 519 } 520 521 // Shift the address forward by one element. 522 auto DestElementNext = CGF.Builder.CreateConstGEP1_32( 523 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 524 // Check whether we've reached the end. 525 auto Done = 526 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 527 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); 528 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); 529 530 // Done. 531 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 532 } 533 534 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 535 Address SrcAddr, const VarDecl *DestVD, 536 const VarDecl *SrcVD, const Expr *Copy) { 537 if (OriginalType->isArrayType()) { 538 auto *BO = dyn_cast<BinaryOperator>(Copy); 539 if (BO && BO->getOpcode() == BO_Assign) { 540 // Perform simple memcpy for simple copying. 541 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 542 } else { 543 // For arrays with complex element types perform element by element 544 // copying. 545 EmitOMPAggregateAssign( 546 DestAddr, SrcAddr, OriginalType, 547 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 548 // Working with the single array element, so have to remap 549 // destination and source variables to corresponding array 550 // elements. 551 CodeGenFunction::OMPPrivateScope Remap(*this); 552 Remap.addPrivate(DestVD, [DestElement]() -> Address { 553 return DestElement; 554 }); 555 Remap.addPrivate( 556 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 557 (void)Remap.Privatize(); 558 EmitIgnoredExpr(Copy); 559 }); 560 } 561 } else { 562 // Remap pseudo source variable to private copy. 563 CodeGenFunction::OMPPrivateScope Remap(*this); 564 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 565 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 566 (void)Remap.Privatize(); 567 // Emit copying of the whole variable. 568 EmitIgnoredExpr(Copy); 569 } 570 } 571 572 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 573 OMPPrivateScope &PrivateScope) { 574 if (!HaveInsertPoint()) 575 return false; 576 bool FirstprivateIsLastprivate = false; 577 llvm::DenseSet<const VarDecl *> Lastprivates; 578 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 579 for (const auto *D : C->varlists()) 580 Lastprivates.insert( 581 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 582 } 583 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 584 CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt())); 585 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 586 auto IRef = C->varlist_begin(); 587 auto InitsRef = C->inits().begin(); 588 for (auto IInit : C->private_copies()) { 589 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 590 bool ThisFirstprivateIsLastprivate = 591 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 592 auto *CapFD = CapturesInfo.lookup(OrigVD); 593 auto *FD = CapturedStmtInfo->lookup(OrigVD); 594 if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) && 595 !FD->getType()->isReferenceType()) { 596 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 597 ++IRef; 598 ++InitsRef; 599 continue; 600 } 601 FirstprivateIsLastprivate = 602 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 603 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 604 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 605 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 606 bool IsRegistered; 607 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 608 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 609 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 610 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 611 QualType Type = VD->getType(); 612 if (Type->isArrayType()) { 613 // Emit VarDecl with copy init for arrays. 614 // Get the address of the original variable captured in current 615 // captured region. 616 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 617 auto Emission = EmitAutoVarAlloca(*VD); 618 auto *Init = VD->getInit(); 619 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 620 // Perform simple memcpy. 621 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 622 Type); 623 } else { 624 EmitOMPAggregateAssign( 625 Emission.getAllocatedAddress(), OriginalAddr, Type, 626 [this, VDInit, Init](Address DestElement, 627 Address SrcElement) { 628 // Clean up any temporaries needed by the initialization. 629 RunCleanupsScope InitScope(*this); 630 // Emit initialization for single element. 631 setAddrOfLocalVar(VDInit, SrcElement); 632 EmitAnyExprToMem(Init, DestElement, 633 Init->getType().getQualifiers(), 634 /*IsInitializer*/ false); 635 LocalDeclMap.erase(VDInit); 636 }); 637 } 638 EmitAutoVarCleanups(Emission); 639 return Emission.getAllocatedAddress(); 640 }); 641 } else { 642 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 643 // Emit private VarDecl with copy init. 644 // Remap temp VDInit variable to the address of the original 645 // variable 646 // (for proper handling of captured global variables). 647 setAddrOfLocalVar(VDInit, OriginalAddr); 648 EmitDecl(*VD); 649 LocalDeclMap.erase(VDInit); 650 return GetAddrOfLocalVar(VD); 651 }); 652 } 653 assert(IsRegistered && 654 "firstprivate var already registered as private"); 655 // Silence the warning about unused variable. 656 (void)IsRegistered; 657 } 658 ++IRef; 659 ++InitsRef; 660 } 661 } 662 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 663 } 664 665 void CodeGenFunction::EmitOMPPrivateClause( 666 const OMPExecutableDirective &D, 667 CodeGenFunction::OMPPrivateScope &PrivateScope) { 668 if (!HaveInsertPoint()) 669 return; 670 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 671 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 672 auto IRef = C->varlist_begin(); 673 for (auto IInit : C->private_copies()) { 674 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 675 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 676 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 677 bool IsRegistered = 678 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 679 // Emit private VarDecl with copy init. 680 EmitDecl(*VD); 681 return GetAddrOfLocalVar(VD); 682 }); 683 assert(IsRegistered && "private var already registered as private"); 684 // Silence the warning about unused variable. 685 (void)IsRegistered; 686 } 687 ++IRef; 688 } 689 } 690 } 691 692 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 693 if (!HaveInsertPoint()) 694 return false; 695 // threadprivate_var1 = master_threadprivate_var1; 696 // operator=(threadprivate_var2, master_threadprivate_var2); 697 // ... 698 // __kmpc_barrier(&loc, global_tid); 699 llvm::DenseSet<const VarDecl *> CopiedVars; 700 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 701 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 702 auto IRef = C->varlist_begin(); 703 auto ISrcRef = C->source_exprs().begin(); 704 auto IDestRef = C->destination_exprs().begin(); 705 for (auto *AssignOp : C->assignment_ops()) { 706 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 707 QualType Type = VD->getType(); 708 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 709 // Get the address of the master variable. If we are emitting code with 710 // TLS support, the address is passed from the master as field in the 711 // captured declaration. 712 Address MasterAddr = Address::invalid(); 713 if (getLangOpts().OpenMPUseTLS && 714 getContext().getTargetInfo().isTLSSupported()) { 715 assert(CapturedStmtInfo->lookup(VD) && 716 "Copyin threadprivates should have been captured!"); 717 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 718 VK_LValue, (*IRef)->getExprLoc()); 719 MasterAddr = EmitLValue(&DRE).getAddress(); 720 LocalDeclMap.erase(VD); 721 } else { 722 MasterAddr = 723 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 724 : CGM.GetAddrOfGlobal(VD), 725 getContext().getDeclAlign(VD)); 726 } 727 // Get the address of the threadprivate variable. 728 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 729 if (CopiedVars.size() == 1) { 730 // At first check if current thread is a master thread. If it is, no 731 // need to copy data. 732 CopyBegin = createBasicBlock("copyin.not.master"); 733 CopyEnd = createBasicBlock("copyin.not.master.end"); 734 Builder.CreateCondBr( 735 Builder.CreateICmpNE( 736 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 737 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 738 CopyBegin, CopyEnd); 739 EmitBlock(CopyBegin); 740 } 741 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 742 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 743 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 744 } 745 ++IRef; 746 ++ISrcRef; 747 ++IDestRef; 748 } 749 } 750 if (CopyEnd) { 751 // Exit out of copying procedure for non-master thread. 752 EmitBlock(CopyEnd, /*IsFinished=*/true); 753 return true; 754 } 755 return false; 756 } 757 758 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 759 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 760 if (!HaveInsertPoint()) 761 return false; 762 bool HasAtLeastOneLastprivate = false; 763 llvm::DenseSet<const VarDecl *> SIMDLCVs; 764 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 765 auto *LoopDirective = cast<OMPLoopDirective>(&D); 766 for (auto *C : LoopDirective->counters()) { 767 SIMDLCVs.insert( 768 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 769 } 770 } 771 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 772 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 773 HasAtLeastOneLastprivate = true; 774 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) 775 break; 776 auto IRef = C->varlist_begin(); 777 auto IDestRef = C->destination_exprs().begin(); 778 for (auto *IInit : C->private_copies()) { 779 // Keep the address of the original variable for future update at the end 780 // of the loop. 781 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 782 // Taskloops do not require additional initialization, it is done in 783 // runtime support library. 784 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 785 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 786 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 787 DeclRefExpr DRE( 788 const_cast<VarDecl *>(OrigVD), 789 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 790 OrigVD) != nullptr, 791 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 792 return EmitLValue(&DRE).getAddress(); 793 }); 794 // Check if the variable is also a firstprivate: in this case IInit is 795 // not generated. Initialization of this variable will happen in codegen 796 // for 'firstprivate' clause. 797 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 798 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 799 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 800 // Emit private VarDecl with copy init. 801 EmitDecl(*VD); 802 return GetAddrOfLocalVar(VD); 803 }); 804 assert(IsRegistered && 805 "lastprivate var already registered as private"); 806 (void)IsRegistered; 807 } 808 } 809 ++IRef; 810 ++IDestRef; 811 } 812 } 813 return HasAtLeastOneLastprivate; 814 } 815 816 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 817 const OMPExecutableDirective &D, bool NoFinals, 818 llvm::Value *IsLastIterCond) { 819 if (!HaveInsertPoint()) 820 return; 821 // Emit following code: 822 // if (<IsLastIterCond>) { 823 // orig_var1 = private_orig_var1; 824 // ... 825 // orig_varn = private_orig_varn; 826 // } 827 llvm::BasicBlock *ThenBB = nullptr; 828 llvm::BasicBlock *DoneBB = nullptr; 829 if (IsLastIterCond) { 830 ThenBB = createBasicBlock(".omp.lastprivate.then"); 831 DoneBB = createBasicBlock(".omp.lastprivate.done"); 832 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 833 EmitBlock(ThenBB); 834 } 835 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 836 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 837 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 838 auto IC = LoopDirective->counters().begin(); 839 for (auto F : LoopDirective->finals()) { 840 auto *D = 841 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 842 if (NoFinals) 843 AlreadyEmittedVars.insert(D); 844 else 845 LoopCountersAndUpdates[D] = F; 846 ++IC; 847 } 848 } 849 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 850 auto IRef = C->varlist_begin(); 851 auto ISrcRef = C->source_exprs().begin(); 852 auto IDestRef = C->destination_exprs().begin(); 853 for (auto *AssignOp : C->assignment_ops()) { 854 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 855 QualType Type = PrivateVD->getType(); 856 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 857 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 858 // If lastprivate variable is a loop control variable for loop-based 859 // directive, update its value before copyin back to original 860 // variable. 861 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 862 EmitIgnoredExpr(FinalExpr); 863 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 864 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 865 // Get the address of the original variable. 866 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 867 // Get the address of the private variable. 868 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 869 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 870 PrivateAddr = 871 Address(Builder.CreateLoad(PrivateAddr), 872 getNaturalTypeAlignment(RefTy->getPointeeType())); 873 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 874 } 875 ++IRef; 876 ++ISrcRef; 877 ++IDestRef; 878 } 879 if (auto *PostUpdate = C->getPostUpdateExpr()) 880 EmitIgnoredExpr(PostUpdate); 881 } 882 if (IsLastIterCond) 883 EmitBlock(DoneBB, /*IsFinished=*/true); 884 } 885 886 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 887 LValue BaseLV, llvm::Value *Addr) { 888 Address Tmp = Address::invalid(); 889 Address TopTmp = Address::invalid(); 890 Address MostTopTmp = Address::invalid(); 891 BaseTy = BaseTy.getNonReferenceType(); 892 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 893 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 894 Tmp = CGF.CreateMemTemp(BaseTy); 895 if (TopTmp.isValid()) 896 CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); 897 else 898 MostTopTmp = Tmp; 899 TopTmp = Tmp; 900 BaseTy = BaseTy->getPointeeType(); 901 } 902 llvm::Type *Ty = BaseLV.getPointer()->getType(); 903 if (Tmp.isValid()) 904 Ty = Tmp.getElementType(); 905 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); 906 if (Tmp.isValid()) { 907 CGF.Builder.CreateStore(Addr, Tmp); 908 return MostTopTmp; 909 } 910 return Address(Addr, BaseLV.getAlignment()); 911 } 912 913 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 914 LValue BaseLV) { 915 BaseTy = BaseTy.getNonReferenceType(); 916 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 917 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 918 if (auto *PtrTy = BaseTy->getAs<PointerType>()) 919 BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy); 920 else { 921 BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(), 922 BaseTy->castAs<ReferenceType>()); 923 } 924 BaseTy = BaseTy->getPointeeType(); 925 } 926 return CGF.MakeAddrLValue( 927 Address( 928 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 929 BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()), 930 BaseLV.getAlignment()), 931 BaseLV.getType(), BaseLV.getAlignmentSource()); 932 } 933 934 void CodeGenFunction::EmitOMPReductionClauseInit( 935 const OMPExecutableDirective &D, 936 CodeGenFunction::OMPPrivateScope &PrivateScope) { 937 if (!HaveInsertPoint()) 938 return; 939 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 940 auto ILHS = C->lhs_exprs().begin(); 941 auto IRHS = C->rhs_exprs().begin(); 942 auto IPriv = C->privates().begin(); 943 auto IRed = C->reduction_ops().begin(); 944 for (auto IRef : C->varlists()) { 945 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 946 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 947 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 948 auto *DRD = getReductionInit(*IRed); 949 if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) { 950 auto *Base = OASE->getBase()->IgnoreParenImpCasts(); 951 while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 952 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 953 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 954 Base = TempASE->getBase()->IgnoreParenImpCasts(); 955 auto *DE = cast<DeclRefExpr>(Base); 956 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 957 auto OASELValueLB = EmitOMPArraySectionExpr(OASE); 958 auto OASELValueUB = 959 EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); 960 auto OriginalBaseLValue = EmitLValue(DE); 961 LValue BaseLValue = 962 loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(), 963 OriginalBaseLValue); 964 // Store the address of the original variable associated with the LHS 965 // implicit variable. 966 PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address { 967 return OASELValueLB.getAddress(); 968 }); 969 // Emit reduction copy. 970 bool IsRegistered = PrivateScope.addPrivate( 971 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB, 972 OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address { 973 // Emit VarDecl with copy init for arrays. 974 // Get the address of the original variable captured in current 975 // captured region. 976 auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(), 977 OASELValueLB.getPointer()); 978 Size = Builder.CreateNUWAdd( 979 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); 980 CodeGenFunction::OpaqueValueMapping OpaqueMap( 981 *this, cast<OpaqueValueExpr>( 982 getContext() 983 .getAsVariableArrayType(PrivateVD->getType()) 984 ->getSizeExpr()), 985 RValue::get(Size)); 986 EmitVariablyModifiedType(PrivateVD->getType()); 987 auto Emission = EmitAutoVarAlloca(*PrivateVD); 988 auto Addr = Emission.getAllocatedAddress(); 989 auto *Init = PrivateVD->getInit(); 990 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 991 DRD ? *IRed : Init, 992 OASELValueLB.getAddress()); 993 EmitAutoVarCleanups(Emission); 994 // Emit private VarDecl with reduction init. 995 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 996 OASELValueLB.getPointer()); 997 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 998 return castToBase(*this, OrigVD->getType(), 999 OASELValueLB.getType(), OriginalBaseLValue, 1000 Ptr); 1001 }); 1002 assert(IsRegistered && "private var already registered as private"); 1003 // Silence the warning about unused variable. 1004 (void)IsRegistered; 1005 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1006 return GetAddrOfLocalVar(PrivateVD); 1007 }); 1008 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) { 1009 auto *Base = ASE->getBase()->IgnoreParenImpCasts(); 1010 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 1011 Base = TempASE->getBase()->IgnoreParenImpCasts(); 1012 auto *DE = cast<DeclRefExpr>(Base); 1013 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 1014 auto ASELValue = EmitLValue(ASE); 1015 auto OriginalBaseLValue = EmitLValue(DE); 1016 LValue BaseLValue = loadToBegin( 1017 *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue); 1018 // Store the address of the original variable associated with the LHS 1019 // implicit variable. 1020 PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address { 1021 return ASELValue.getAddress(); 1022 }); 1023 // Emit reduction copy. 1024 bool IsRegistered = PrivateScope.addPrivate( 1025 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue, 1026 OriginalBaseLValue, DRD, IRed]() -> Address { 1027 // Emit private VarDecl with reduction init. 1028 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1029 auto Addr = Emission.getAllocatedAddress(); 1030 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1031 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1032 ASELValue.getAddress(), 1033 ASELValue.getType()); 1034 } else 1035 EmitAutoVarInit(Emission); 1036 EmitAutoVarCleanups(Emission); 1037 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1038 ASELValue.getPointer()); 1039 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1040 return castToBase(*this, OrigVD->getType(), ASELValue.getType(), 1041 OriginalBaseLValue, Ptr); 1042 }); 1043 assert(IsRegistered && "private var already registered as private"); 1044 // Silence the warning about unused variable. 1045 (void)IsRegistered; 1046 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1047 return Builder.CreateElementBitCast( 1048 GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()), 1049 "rhs.begin"); 1050 }); 1051 } else { 1052 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 1053 QualType Type = PrivateVD->getType(); 1054 if (getContext().getAsArrayType(Type)) { 1055 // Store the address of the original variable associated with the LHS 1056 // implicit variable. 1057 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1058 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1059 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1060 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 1061 PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr, 1062 LHSVD]() -> Address { 1063 OriginalAddr = Builder.CreateElementBitCast( 1064 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1065 return OriginalAddr; 1066 }); 1067 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 1068 if (Type->isVariablyModifiedType()) { 1069 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1070 *this, cast<OpaqueValueExpr>( 1071 getContext() 1072 .getAsVariableArrayType(PrivateVD->getType()) 1073 ->getSizeExpr()), 1074 RValue::get( 1075 getTypeSize(OrigVD->getType().getNonReferenceType()))); 1076 EmitVariablyModifiedType(Type); 1077 } 1078 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1079 auto Addr = Emission.getAllocatedAddress(); 1080 auto *Init = PrivateVD->getInit(); 1081 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1082 DRD ? *IRed : Init, OriginalAddr); 1083 EmitAutoVarCleanups(Emission); 1084 return Emission.getAllocatedAddress(); 1085 }); 1086 assert(IsRegistered && "private var already registered as private"); 1087 // Silence the warning about unused variable. 1088 (void)IsRegistered; 1089 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1090 return Builder.CreateElementBitCast( 1091 GetAddrOfLocalVar(PrivateVD), 1092 ConvertTypeForMem(RHSVD->getType()), "rhs.begin"); 1093 }); 1094 } else { 1095 // Store the address of the original variable associated with the LHS 1096 // implicit variable. 1097 Address OriginalAddr = Address::invalid(); 1098 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef, 1099 &OriginalAddr]() -> Address { 1100 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1101 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1102 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1103 OriginalAddr = EmitLValue(&DRE).getAddress(); 1104 return OriginalAddr; 1105 }); 1106 // Emit reduction copy. 1107 bool IsRegistered = PrivateScope.addPrivate( 1108 OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address { 1109 // Emit private VarDecl with reduction init. 1110 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1111 auto Addr = Emission.getAllocatedAddress(); 1112 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1113 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1114 OriginalAddr, 1115 PrivateVD->getType()); 1116 } else 1117 EmitAutoVarInit(Emission); 1118 EmitAutoVarCleanups(Emission); 1119 return Addr; 1120 }); 1121 assert(IsRegistered && "private var already registered as private"); 1122 // Silence the warning about unused variable. 1123 (void)IsRegistered; 1124 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1125 return GetAddrOfLocalVar(PrivateVD); 1126 }); 1127 } 1128 } 1129 ++ILHS; 1130 ++IRHS; 1131 ++IPriv; 1132 ++IRed; 1133 } 1134 } 1135 } 1136 1137 void CodeGenFunction::EmitOMPReductionClauseFinal( 1138 const OMPExecutableDirective &D) { 1139 if (!HaveInsertPoint()) 1140 return; 1141 llvm::SmallVector<const Expr *, 8> Privates; 1142 llvm::SmallVector<const Expr *, 8> LHSExprs; 1143 llvm::SmallVector<const Expr *, 8> RHSExprs; 1144 llvm::SmallVector<const Expr *, 8> ReductionOps; 1145 bool HasAtLeastOneReduction = false; 1146 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1147 HasAtLeastOneReduction = true; 1148 Privates.append(C->privates().begin(), C->privates().end()); 1149 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1150 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1151 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1152 } 1153 if (HasAtLeastOneReduction) { 1154 // Emit nowait reduction if nowait clause is present or directive is a 1155 // parallel directive (it always has implicit barrier). 1156 CGM.getOpenMPRuntime().emitReduction( 1157 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1158 D.getSingleClause<OMPNowaitClause>() || 1159 isOpenMPParallelDirective(D.getDirectiveKind()) || 1160 D.getDirectiveKind() == OMPD_simd, 1161 D.getDirectiveKind() == OMPD_simd); 1162 } 1163 } 1164 1165 static void emitPostUpdateForReductionClause( 1166 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1167 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1168 if (!CGF.HaveInsertPoint()) 1169 return; 1170 llvm::BasicBlock *DoneBB = nullptr; 1171 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1172 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1173 if (!DoneBB) { 1174 if (auto *Cond = CondGen(CGF)) { 1175 // If the first post-update expression is found, emit conditional 1176 // block if it was requested. 1177 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1178 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1179 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1180 CGF.EmitBlock(ThenBB); 1181 } 1182 } 1183 CGF.EmitIgnoredExpr(PostUpdate); 1184 } 1185 } 1186 if (DoneBB) 1187 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1188 } 1189 1190 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 1191 const OMPExecutableDirective &S, 1192 OpenMPDirectiveKind InnermostKind, 1193 const RegionCodeGenTy &CodeGen) { 1194 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1195 auto OutlinedFn = CGF.CGM.getOpenMPRuntime(). 1196 emitParallelOrTeamsOutlinedFunction(S, 1197 *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1198 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1199 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1200 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1201 /*IgnoreResultAssign*/ true); 1202 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1203 CGF, NumThreads, NumThreadsClause->getLocStart()); 1204 } 1205 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1206 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1207 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1208 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1209 } 1210 const Expr *IfCond = nullptr; 1211 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1212 if (C->getNameModifier() == OMPD_unknown || 1213 C->getNameModifier() == OMPD_parallel) { 1214 IfCond = C->getCondition(); 1215 break; 1216 } 1217 } 1218 1219 OMPLexicalScope Scope(CGF, S); 1220 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1221 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1222 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1223 CapturedVars, IfCond); 1224 } 1225 1226 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1227 // Emit parallel region as a standalone region. 1228 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1229 OMPPrivateScope PrivateScope(CGF); 1230 bool Copyins = CGF.EmitOMPCopyinClause(S); 1231 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1232 if (Copyins) { 1233 // Emit implicit barrier to synchronize threads and avoid data races on 1234 // propagation master's thread values of threadprivate variables to local 1235 // instances of that variables of all other implicit threads. 1236 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1237 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1238 /*ForceSimpleCall=*/true); 1239 } 1240 CGF.EmitOMPPrivateClause(S, PrivateScope); 1241 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1242 (void)PrivateScope.Privatize(); 1243 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1244 CGF.EmitOMPReductionClauseFinal(S); 1245 }; 1246 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 1247 emitPostUpdateForReductionClause( 1248 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1249 } 1250 1251 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1252 JumpDest LoopExit) { 1253 RunCleanupsScope BodyScope(*this); 1254 // Update counters values on current iteration. 1255 for (auto I : D.updates()) { 1256 EmitIgnoredExpr(I); 1257 } 1258 // Update the linear variables. 1259 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1260 for (auto *U : C->updates()) 1261 EmitIgnoredExpr(U); 1262 } 1263 1264 // On a continue in the body, jump to the end. 1265 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1266 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1267 // Emit loop body. 1268 EmitStmt(D.getBody()); 1269 // The end (updates/cleanups). 1270 EmitBlock(Continue.getBlock()); 1271 BreakContinueStack.pop_back(); 1272 } 1273 1274 void CodeGenFunction::EmitOMPInnerLoop( 1275 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1276 const Expr *IncExpr, 1277 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1278 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1279 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1280 1281 // Start the loop with a block that tests the condition. 1282 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1283 EmitBlock(CondBlock); 1284 LoopStack.push(CondBlock, Builder.getCurrentDebugLocation()); 1285 1286 // If there are any cleanups between here and the loop-exit scope, 1287 // create a block to stage a loop exit along. 1288 auto ExitBlock = LoopExit.getBlock(); 1289 if (RequiresCleanup) 1290 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1291 1292 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1293 1294 // Emit condition. 1295 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1296 if (ExitBlock != LoopExit.getBlock()) { 1297 EmitBlock(ExitBlock); 1298 EmitBranchThroughCleanup(LoopExit); 1299 } 1300 1301 EmitBlock(LoopBody); 1302 incrementProfileCounter(&S); 1303 1304 // Create a block for the increment. 1305 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1306 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1307 1308 BodyGen(*this); 1309 1310 // Emit "IV = IV + 1" and a back-edge to the condition block. 1311 EmitBlock(Continue.getBlock()); 1312 EmitIgnoredExpr(IncExpr); 1313 PostIncGen(*this); 1314 BreakContinueStack.pop_back(); 1315 EmitBranch(CondBlock); 1316 LoopStack.pop(); 1317 // Emit the fall-through block. 1318 EmitBlock(LoopExit.getBlock()); 1319 } 1320 1321 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1322 if (!HaveInsertPoint()) 1323 return; 1324 // Emit inits for the linear variables. 1325 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1326 for (auto *Init : C->inits()) { 1327 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1328 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1329 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1330 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1331 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1332 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1333 VD->getInit()->getType(), VK_LValue, 1334 VD->getInit()->getExprLoc()); 1335 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1336 VD->getType()), 1337 /*capturedByInit=*/false); 1338 EmitAutoVarCleanups(Emission); 1339 } else 1340 EmitVarDecl(*VD); 1341 } 1342 // Emit the linear steps for the linear clauses. 1343 // If a step is not constant, it is pre-calculated before the loop. 1344 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1345 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1346 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1347 // Emit calculation of the linear step. 1348 EmitIgnoredExpr(CS); 1349 } 1350 } 1351 } 1352 1353 void CodeGenFunction::EmitOMPLinearClauseFinal( 1354 const OMPLoopDirective &D, 1355 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1356 if (!HaveInsertPoint()) 1357 return; 1358 llvm::BasicBlock *DoneBB = nullptr; 1359 // Emit the final values of the linear variables. 1360 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1361 auto IC = C->varlist_begin(); 1362 for (auto *F : C->finals()) { 1363 if (!DoneBB) { 1364 if (auto *Cond = CondGen(*this)) { 1365 // If the first post-update expression is found, emit conditional 1366 // block if it was requested. 1367 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1368 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1369 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1370 EmitBlock(ThenBB); 1371 } 1372 } 1373 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1374 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1375 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1376 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1377 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1378 CodeGenFunction::OMPPrivateScope VarScope(*this); 1379 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1380 (void)VarScope.Privatize(); 1381 EmitIgnoredExpr(F); 1382 ++IC; 1383 } 1384 if (auto *PostUpdate = C->getPostUpdateExpr()) 1385 EmitIgnoredExpr(PostUpdate); 1386 } 1387 if (DoneBB) 1388 EmitBlock(DoneBB, /*IsFinished=*/true); 1389 } 1390 1391 static void emitAlignedClause(CodeGenFunction &CGF, 1392 const OMPExecutableDirective &D) { 1393 if (!CGF.HaveInsertPoint()) 1394 return; 1395 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1396 unsigned ClauseAlignment = 0; 1397 if (auto AlignmentExpr = Clause->getAlignment()) { 1398 auto AlignmentCI = 1399 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1400 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1401 } 1402 for (auto E : Clause->varlists()) { 1403 unsigned Alignment = ClauseAlignment; 1404 if (Alignment == 0) { 1405 // OpenMP [2.8.1, Description] 1406 // If no optional parameter is specified, implementation-defined default 1407 // alignments for SIMD instructions on the target platforms are assumed. 1408 Alignment = 1409 CGF.getContext() 1410 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1411 E->getType()->getPointeeType())) 1412 .getQuantity(); 1413 } 1414 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1415 "alignment is not power of 2"); 1416 if (Alignment != 0) { 1417 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1418 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1419 } 1420 } 1421 } 1422 } 1423 1424 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1425 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1426 if (!HaveInsertPoint()) 1427 return; 1428 auto I = S.private_counters().begin(); 1429 for (auto *E : S.counters()) { 1430 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1431 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1432 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1433 // Emit var without initialization. 1434 if (!LocalDeclMap.count(PrivateVD)) { 1435 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1436 EmitAutoVarCleanups(VarEmission); 1437 } 1438 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1439 /*RefersToEnclosingVariableOrCapture=*/false, 1440 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1441 return EmitLValue(&DRE).getAddress(); 1442 }); 1443 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1444 VD->hasGlobalStorage()) { 1445 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1446 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1447 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1448 E->getType(), VK_LValue, E->getExprLoc()); 1449 return EmitLValue(&DRE).getAddress(); 1450 }); 1451 } 1452 ++I; 1453 } 1454 } 1455 1456 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1457 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1458 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1459 if (!CGF.HaveInsertPoint()) 1460 return; 1461 { 1462 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1463 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1464 (void)PreCondScope.Privatize(); 1465 // Get initial values of real counters. 1466 for (auto I : S.inits()) { 1467 CGF.EmitIgnoredExpr(I); 1468 } 1469 } 1470 // Check that loop is executed at least one time. 1471 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1472 } 1473 1474 void CodeGenFunction::EmitOMPLinearClause( 1475 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1476 if (!HaveInsertPoint()) 1477 return; 1478 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1479 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1480 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1481 for (auto *C : LoopDirective->counters()) { 1482 SIMDLCVs.insert( 1483 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1484 } 1485 } 1486 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1487 auto CurPrivate = C->privates().begin(); 1488 for (auto *E : C->varlists()) { 1489 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1490 auto *PrivateVD = 1491 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1492 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1493 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1494 // Emit private VarDecl with copy init. 1495 EmitVarDecl(*PrivateVD); 1496 return GetAddrOfLocalVar(PrivateVD); 1497 }); 1498 assert(IsRegistered && "linear var already registered as private"); 1499 // Silence the warning about unused variable. 1500 (void)IsRegistered; 1501 } else 1502 EmitVarDecl(*PrivateVD); 1503 ++CurPrivate; 1504 } 1505 } 1506 } 1507 1508 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1509 const OMPExecutableDirective &D, 1510 bool IsMonotonic) { 1511 if (!CGF.HaveInsertPoint()) 1512 return; 1513 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1514 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1515 /*ignoreResult=*/true); 1516 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1517 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1518 // In presence of finite 'safelen', it may be unsafe to mark all 1519 // the memory instructions parallel, because loop-carried 1520 // dependences of 'safelen' iterations are possible. 1521 if (!IsMonotonic) 1522 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1523 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1524 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1525 /*ignoreResult=*/true); 1526 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1527 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1528 // In presence of finite 'safelen', it may be unsafe to mark all 1529 // the memory instructions parallel, because loop-carried 1530 // dependences of 'safelen' iterations are possible. 1531 CGF.LoopStack.setParallel(false); 1532 } 1533 } 1534 1535 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1536 bool IsMonotonic) { 1537 // Walk clauses and process safelen/lastprivate. 1538 LoopStack.setParallel(!IsMonotonic); 1539 LoopStack.setVectorizeEnable(true); 1540 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1541 } 1542 1543 void CodeGenFunction::EmitOMPSimdFinal( 1544 const OMPLoopDirective &D, 1545 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1546 if (!HaveInsertPoint()) 1547 return; 1548 llvm::BasicBlock *DoneBB = nullptr; 1549 auto IC = D.counters().begin(); 1550 auto IPC = D.private_counters().begin(); 1551 for (auto F : D.finals()) { 1552 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1553 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1554 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1555 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1556 OrigVD->hasGlobalStorage() || CED) { 1557 if (!DoneBB) { 1558 if (auto *Cond = CondGen(*this)) { 1559 // If the first post-update expression is found, emit conditional 1560 // block if it was requested. 1561 auto *ThenBB = createBasicBlock(".omp.final.then"); 1562 DoneBB = createBasicBlock(".omp.final.done"); 1563 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1564 EmitBlock(ThenBB); 1565 } 1566 } 1567 Address OrigAddr = Address::invalid(); 1568 if (CED) 1569 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1570 else { 1571 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1572 /*RefersToEnclosingVariableOrCapture=*/false, 1573 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1574 OrigAddr = EmitLValue(&DRE).getAddress(); 1575 } 1576 OMPPrivateScope VarScope(*this); 1577 VarScope.addPrivate(OrigVD, 1578 [OrigAddr]() -> Address { return OrigAddr; }); 1579 (void)VarScope.Privatize(); 1580 EmitIgnoredExpr(F); 1581 } 1582 ++IC; 1583 ++IPC; 1584 } 1585 if (DoneBB) 1586 EmitBlock(DoneBB, /*IsFinished=*/true); 1587 } 1588 1589 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1590 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1591 OMPLoopScope PreInitScope(CGF, S); 1592 // if (PreCond) { 1593 // for (IV in 0..LastIteration) BODY; 1594 // <Final counter/linear vars updates>; 1595 // } 1596 // 1597 1598 // Emit: if (PreCond) - begin. 1599 // If the condition constant folds and can be elided, avoid emitting the 1600 // whole loop. 1601 bool CondConstant; 1602 llvm::BasicBlock *ContBlock = nullptr; 1603 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1604 if (!CondConstant) 1605 return; 1606 } else { 1607 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1608 ContBlock = CGF.createBasicBlock("simd.if.end"); 1609 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1610 CGF.getProfileCount(&S)); 1611 CGF.EmitBlock(ThenBlock); 1612 CGF.incrementProfileCounter(&S); 1613 } 1614 1615 // Emit the loop iteration variable. 1616 const Expr *IVExpr = S.getIterationVariable(); 1617 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1618 CGF.EmitVarDecl(*IVDecl); 1619 CGF.EmitIgnoredExpr(S.getInit()); 1620 1621 // Emit the iterations count variable. 1622 // If it is not a variable, Sema decided to calculate iterations count on 1623 // each iteration (e.g., it is foldable into a constant). 1624 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1625 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1626 // Emit calculation of the iterations count. 1627 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1628 } 1629 1630 CGF.EmitOMPSimdInit(S); 1631 1632 emitAlignedClause(CGF, S); 1633 CGF.EmitOMPLinearClauseInit(S); 1634 { 1635 OMPPrivateScope LoopScope(CGF); 1636 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1637 CGF.EmitOMPLinearClause(S, LoopScope); 1638 CGF.EmitOMPPrivateClause(S, LoopScope); 1639 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1640 bool HasLastprivateClause = 1641 CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1642 (void)LoopScope.Privatize(); 1643 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1644 S.getInc(), 1645 [&S](CodeGenFunction &CGF) { 1646 CGF.EmitOMPLoopBody(S, JumpDest()); 1647 CGF.EmitStopPoint(&S); 1648 }, 1649 [](CodeGenFunction &) {}); 1650 CGF.EmitOMPSimdFinal( 1651 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1652 // Emit final copy of the lastprivate variables at the end of loops. 1653 if (HasLastprivateClause) 1654 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1655 CGF.EmitOMPReductionClauseFinal(S); 1656 emitPostUpdateForReductionClause( 1657 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1658 } 1659 CGF.EmitOMPLinearClauseFinal( 1660 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1661 // Emit: if (PreCond) - end. 1662 if (ContBlock) { 1663 CGF.EmitBranch(ContBlock); 1664 CGF.EmitBlock(ContBlock, true); 1665 } 1666 }; 1667 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1668 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1669 } 1670 1671 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 1672 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1673 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1674 auto &RT = CGM.getOpenMPRuntime(); 1675 1676 const Expr *IVExpr = S.getIterationVariable(); 1677 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1678 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1679 1680 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1681 1682 // Start the loop with a block that tests the condition. 1683 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1684 EmitBlock(CondBlock); 1685 LoopStack.push(CondBlock, Builder.getCurrentDebugLocation()); 1686 1687 llvm::Value *BoolCondVal = nullptr; 1688 if (!DynamicOrOrdered) { 1689 // UB = min(UB, GlobalUB) 1690 EmitIgnoredExpr(S.getEnsureUpperBound()); 1691 // IV = LB 1692 EmitIgnoredExpr(S.getInit()); 1693 // IV < UB 1694 BoolCondVal = EvaluateExprAsBool(S.getCond()); 1695 } else { 1696 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL, 1697 LB, UB, ST); 1698 } 1699 1700 // If there are any cleanups between here and the loop-exit scope, 1701 // create a block to stage a loop exit along. 1702 auto ExitBlock = LoopExit.getBlock(); 1703 if (LoopScope.requiresCleanups()) 1704 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1705 1706 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1707 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1708 if (ExitBlock != LoopExit.getBlock()) { 1709 EmitBlock(ExitBlock); 1710 EmitBranchThroughCleanup(LoopExit); 1711 } 1712 EmitBlock(LoopBody); 1713 1714 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1715 // LB for loop condition and emitted it above). 1716 if (DynamicOrOrdered) 1717 EmitIgnoredExpr(S.getInit()); 1718 1719 // Create a block for the increment. 1720 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1721 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1722 1723 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1724 // with dynamic/guided scheduling and without ordered clause. 1725 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1726 LoopStack.setParallel(!IsMonotonic); 1727 else 1728 EmitOMPSimdInit(S, IsMonotonic); 1729 1730 SourceLocation Loc = S.getLocStart(); 1731 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1732 [&S, LoopExit](CodeGenFunction &CGF) { 1733 CGF.EmitOMPLoopBody(S, LoopExit); 1734 CGF.EmitStopPoint(&S); 1735 }, 1736 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1737 if (Ordered) { 1738 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1739 CGF, Loc, IVSize, IVSigned); 1740 } 1741 }); 1742 1743 EmitBlock(Continue.getBlock()); 1744 BreakContinueStack.pop_back(); 1745 if (!DynamicOrOrdered) { 1746 // Emit "LB = LB + Stride", "UB = UB + Stride". 1747 EmitIgnoredExpr(S.getNextLowerBound()); 1748 EmitIgnoredExpr(S.getNextUpperBound()); 1749 } 1750 1751 EmitBranch(CondBlock); 1752 LoopStack.pop(); 1753 // Emit the fall-through block. 1754 EmitBlock(LoopExit.getBlock()); 1755 1756 // Tell the runtime we are done. 1757 if (!DynamicOrOrdered) 1758 RT.emitForStaticFinish(*this, S.getLocEnd()); 1759 1760 } 1761 1762 void CodeGenFunction::EmitOMPForOuterLoop( 1763 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1764 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1765 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1766 auto &RT = CGM.getOpenMPRuntime(); 1767 1768 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1769 const bool DynamicOrOrdered = 1770 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1771 1772 assert((Ordered || 1773 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1774 /*Chunked=*/Chunk != nullptr)) && 1775 "static non-chunked schedule does not need outer loop"); 1776 1777 // Emit outer loop. 1778 // 1779 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1780 // When schedule(dynamic,chunk_size) is specified, the iterations are 1781 // distributed to threads in the team in chunks as the threads request them. 1782 // Each thread executes a chunk of iterations, then requests another chunk, 1783 // until no chunks remain to be distributed. Each chunk contains chunk_size 1784 // iterations, except for the last chunk to be distributed, which may have 1785 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1786 // 1787 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1788 // to threads in the team in chunks as the executing threads request them. 1789 // Each thread executes a chunk of iterations, then requests another chunk, 1790 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1791 // each chunk is proportional to the number of unassigned iterations divided 1792 // by the number of threads in the team, decreasing to 1. For a chunk_size 1793 // with value k (greater than 1), the size of each chunk is determined in the 1794 // same way, with the restriction that the chunks do not contain fewer than k 1795 // iterations (except for the last chunk to be assigned, which may have fewer 1796 // than k iterations). 1797 // 1798 // When schedule(auto) is specified, the decision regarding scheduling is 1799 // delegated to the compiler and/or runtime system. The programmer gives the 1800 // implementation the freedom to choose any possible mapping of iterations to 1801 // threads in the team. 1802 // 1803 // When schedule(runtime) is specified, the decision regarding scheduling is 1804 // deferred until run time, and the schedule and chunk size are taken from the 1805 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1806 // implementation defined 1807 // 1808 // while(__kmpc_dispatch_next(&LB, &UB)) { 1809 // idx = LB; 1810 // while (idx <= UB) { BODY; ++idx; 1811 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1812 // } // inner loop 1813 // } 1814 // 1815 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1816 // When schedule(static, chunk_size) is specified, iterations are divided into 1817 // chunks of size chunk_size, and the chunks are assigned to the threads in 1818 // the team in a round-robin fashion in the order of the thread number. 1819 // 1820 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1821 // while (idx <= UB) { BODY; ++idx; } // inner loop 1822 // LB = LB + ST; 1823 // UB = UB + ST; 1824 // } 1825 // 1826 1827 const Expr *IVExpr = S.getIterationVariable(); 1828 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1829 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1830 1831 if (DynamicOrOrdered) { 1832 llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration()); 1833 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1834 IVSigned, Ordered, UBVal, Chunk); 1835 } else { 1836 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, 1837 Ordered, IL, LB, UB, ST, Chunk); 1838 } 1839 1840 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB, 1841 ST, IL, Chunk); 1842 } 1843 1844 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1845 OpenMPDistScheduleClauseKind ScheduleKind, 1846 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 1847 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1848 1849 auto &RT = CGM.getOpenMPRuntime(); 1850 1851 // Emit outer loop. 1852 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1853 // dynamic 1854 // 1855 1856 const Expr *IVExpr = S.getIterationVariable(); 1857 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1858 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1859 1860 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 1861 IVSize, IVSigned, /* Ordered = */ false, 1862 IL, LB, UB, ST, Chunk); 1863 1864 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, 1865 S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk); 1866 } 1867 1868 /// \brief Emit a helper variable and return corresponding lvalue. 1869 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1870 const DeclRefExpr *Helper) { 1871 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1872 CGF.EmitVarDecl(*VDecl); 1873 return CGF.EmitLValue(Helper); 1874 } 1875 1876 namespace { 1877 struct ScheduleKindModifiersTy { 1878 OpenMPScheduleClauseKind Kind; 1879 OpenMPScheduleClauseModifier M1; 1880 OpenMPScheduleClauseModifier M2; 1881 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 1882 OpenMPScheduleClauseModifier M1, 1883 OpenMPScheduleClauseModifier M2) 1884 : Kind(Kind), M1(M1), M2(M2) {} 1885 }; 1886 } // namespace 1887 1888 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 1889 // Emit the loop iteration variable. 1890 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 1891 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 1892 EmitVarDecl(*IVDecl); 1893 1894 // Emit the iterations count variable. 1895 // If it is not a variable, Sema decided to calculate iterations count on each 1896 // iteration (e.g., it is foldable into a constant). 1897 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1898 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1899 // Emit calculation of the iterations count. 1900 EmitIgnoredExpr(S.getCalcLastIteration()); 1901 } 1902 1903 auto &RT = CGM.getOpenMPRuntime(); 1904 1905 bool HasLastprivateClause; 1906 // Check pre-condition. 1907 { 1908 OMPLoopScope PreInitScope(*this, S); 1909 // Skip the entire loop if we don't meet the precondition. 1910 // If the condition constant folds and can be elided, avoid emitting the 1911 // whole loop. 1912 bool CondConstant; 1913 llvm::BasicBlock *ContBlock = nullptr; 1914 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1915 if (!CondConstant) 1916 return false; 1917 } else { 1918 auto *ThenBlock = createBasicBlock("omp.precond.then"); 1919 ContBlock = createBasicBlock("omp.precond.end"); 1920 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 1921 getProfileCount(&S)); 1922 EmitBlock(ThenBlock); 1923 incrementProfileCounter(&S); 1924 } 1925 1926 bool Ordered = false; 1927 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 1928 if (OrderedClause->getNumForLoops()) 1929 RT.emitDoacrossInit(*this, S); 1930 else 1931 Ordered = true; 1932 } 1933 1934 llvm::DenseSet<const Expr *> EmittedFinals; 1935 emitAlignedClause(*this, S); 1936 EmitOMPLinearClauseInit(S); 1937 // Emit helper vars inits. 1938 LValue LB = 1939 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1940 LValue UB = 1941 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1942 LValue ST = 1943 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 1944 LValue IL = 1945 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 1946 1947 // Emit 'then' code. 1948 { 1949 OMPPrivateScope LoopScope(*this); 1950 if (EmitOMPFirstprivateClause(S, LoopScope)) { 1951 // Emit implicit barrier to synchronize threads and avoid data races on 1952 // initialization of firstprivate variables and post-update of 1953 // lastprivate variables. 1954 CGM.getOpenMPRuntime().emitBarrierCall( 1955 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1956 /*ForceSimpleCall=*/true); 1957 } 1958 EmitOMPPrivateClause(S, LoopScope); 1959 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 1960 EmitOMPReductionClauseInit(S, LoopScope); 1961 EmitOMPPrivateLoopCounters(S, LoopScope); 1962 EmitOMPLinearClause(S, LoopScope); 1963 (void)LoopScope.Privatize(); 1964 1965 // Detect the loop schedule kind and chunk. 1966 llvm::Value *Chunk = nullptr; 1967 OpenMPScheduleTy ScheduleKind; 1968 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 1969 ScheduleKind.Schedule = C->getScheduleKind(); 1970 ScheduleKind.M1 = C->getFirstScheduleModifier(); 1971 ScheduleKind.M2 = C->getSecondScheduleModifier(); 1972 if (const auto *Ch = C->getChunkSize()) { 1973 Chunk = EmitScalarExpr(Ch); 1974 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 1975 S.getIterationVariable()->getType(), 1976 S.getLocStart()); 1977 } 1978 } 1979 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1980 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1981 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 1982 // If the static schedule kind is specified or if the ordered clause is 1983 // specified, and if no monotonic modifier is specified, the effect will 1984 // be as if the monotonic modifier was specified. 1985 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 1986 /* Chunked */ Chunk != nullptr) && 1987 !Ordered) { 1988 if (isOpenMPSimdDirective(S.getDirectiveKind())) 1989 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 1990 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1991 // When no chunk_size is specified, the iteration space is divided into 1992 // chunks that are approximately equal in size, and at most one chunk is 1993 // distributed to each thread. Note that the size of the chunks is 1994 // unspecified in this case. 1995 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 1996 IVSize, IVSigned, Ordered, 1997 IL.getAddress(), LB.getAddress(), 1998 UB.getAddress(), ST.getAddress()); 1999 auto LoopExit = 2000 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2001 // UB = min(UB, GlobalUB); 2002 EmitIgnoredExpr(S.getEnsureUpperBound()); 2003 // IV = LB; 2004 EmitIgnoredExpr(S.getInit()); 2005 // while (idx <= UB) { BODY; ++idx; } 2006 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2007 S.getInc(), 2008 [&S, LoopExit](CodeGenFunction &CGF) { 2009 CGF.EmitOMPLoopBody(S, LoopExit); 2010 CGF.EmitStopPoint(&S); 2011 }, 2012 [](CodeGenFunction &) {}); 2013 EmitBlock(LoopExit.getBlock()); 2014 // Tell the runtime we are done. 2015 RT.emitForStaticFinish(*this, S.getLocStart()); 2016 } else { 2017 const bool IsMonotonic = 2018 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2019 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2020 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2021 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2022 // Emit the outer loop, which requests its work chunk [LB..UB] from 2023 // runtime and runs the inner loop to process it. 2024 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2025 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2026 IL.getAddress(), Chunk); 2027 } 2028 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2029 EmitOMPSimdFinal(S, 2030 [&](CodeGenFunction &CGF) -> llvm::Value * { 2031 return CGF.Builder.CreateIsNotNull( 2032 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2033 }); 2034 } 2035 EmitOMPReductionClauseFinal(S); 2036 // Emit post-update of the reduction variables if IsLastIter != 0. 2037 emitPostUpdateForReductionClause( 2038 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2039 return CGF.Builder.CreateIsNotNull( 2040 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2041 }); 2042 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2043 if (HasLastprivateClause) 2044 EmitOMPLastprivateClauseFinal( 2045 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2046 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2047 } 2048 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2049 return CGF.Builder.CreateIsNotNull( 2050 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2051 }); 2052 // We're now done with the loop, so jump to the continuation block. 2053 if (ContBlock) { 2054 EmitBranch(ContBlock); 2055 EmitBlock(ContBlock, true); 2056 } 2057 } 2058 return HasLastprivateClause; 2059 } 2060 2061 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2062 bool HasLastprivates = false; 2063 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2064 PrePostActionTy &) { 2065 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2066 }; 2067 { 2068 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2069 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2070 S.hasCancel()); 2071 } 2072 2073 // Emit an implicit barrier at the end. 2074 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2075 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2076 } 2077 } 2078 2079 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2080 bool HasLastprivates = false; 2081 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2082 PrePostActionTy &) { 2083 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2084 }; 2085 { 2086 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2087 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2088 } 2089 2090 // Emit an implicit barrier at the end. 2091 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2092 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2093 } 2094 } 2095 2096 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2097 const Twine &Name, 2098 llvm::Value *Init = nullptr) { 2099 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2100 if (Init) 2101 CGF.EmitScalarInit(Init, LVal); 2102 return LVal; 2103 } 2104 2105 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2106 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 2107 auto *CS = dyn_cast<CompoundStmt>(Stmt); 2108 bool HasLastprivates = false; 2109 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2110 PrePostActionTy &) { 2111 auto &C = CGF.CGM.getContext(); 2112 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2113 // Emit helper vars inits. 2114 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2115 CGF.Builder.getInt32(0)); 2116 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2117 : CGF.Builder.getInt32(0); 2118 LValue UB = 2119 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2120 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2121 CGF.Builder.getInt32(1)); 2122 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2123 CGF.Builder.getInt32(0)); 2124 // Loop counter. 2125 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2126 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2127 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2128 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2129 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2130 // Generate condition for loop. 2131 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2132 OK_Ordinary, S.getLocStart(), 2133 /*fpContractable=*/false); 2134 // Increment for loop counter. 2135 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2136 S.getLocStart()); 2137 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2138 // Iterate through all sections and emit a switch construct: 2139 // switch (IV) { 2140 // case 0: 2141 // <SectionStmt[0]>; 2142 // break; 2143 // ... 2144 // case <NumSection> - 1: 2145 // <SectionStmt[<NumSection> - 1]>; 2146 // break; 2147 // } 2148 // .omp.sections.exit: 2149 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2150 auto *SwitchStmt = CGF.Builder.CreateSwitch( 2151 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 2152 CS == nullptr ? 1 : CS->size()); 2153 if (CS) { 2154 unsigned CaseNumber = 0; 2155 for (auto *SubStmt : CS->children()) { 2156 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2157 CGF.EmitBlock(CaseBB); 2158 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2159 CGF.EmitStmt(SubStmt); 2160 CGF.EmitBranch(ExitBB); 2161 ++CaseNumber; 2162 } 2163 } else { 2164 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2165 CGF.EmitBlock(CaseBB); 2166 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2167 CGF.EmitStmt(Stmt); 2168 CGF.EmitBranch(ExitBB); 2169 } 2170 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2171 }; 2172 2173 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2174 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2175 // Emit implicit barrier to synchronize threads and avoid data races on 2176 // initialization of firstprivate variables and post-update of lastprivate 2177 // variables. 2178 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2179 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2180 /*ForceSimpleCall=*/true); 2181 } 2182 CGF.EmitOMPPrivateClause(S, LoopScope); 2183 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2184 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2185 (void)LoopScope.Privatize(); 2186 2187 // Emit static non-chunked loop. 2188 OpenMPScheduleTy ScheduleKind; 2189 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2190 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2191 CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32, 2192 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(), 2193 UB.getAddress(), ST.getAddress()); 2194 // UB = min(UB, GlobalUB); 2195 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2196 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2197 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2198 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2199 // IV = LB; 2200 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2201 // while (idx <= UB) { BODY; ++idx; } 2202 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2203 [](CodeGenFunction &) {}); 2204 // Tell the runtime we are done. 2205 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart()); 2206 CGF.EmitOMPReductionClauseFinal(S); 2207 // Emit post-update of the reduction variables if IsLastIter != 0. 2208 emitPostUpdateForReductionClause( 2209 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2210 return CGF.Builder.CreateIsNotNull( 2211 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2212 }); 2213 2214 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2215 if (HasLastprivates) 2216 CGF.EmitOMPLastprivateClauseFinal( 2217 S, /*NoFinals=*/false, 2218 CGF.Builder.CreateIsNotNull( 2219 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2220 }; 2221 2222 bool HasCancel = false; 2223 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2224 HasCancel = OSD->hasCancel(); 2225 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2226 HasCancel = OPSD->hasCancel(); 2227 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2228 HasCancel); 2229 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2230 // clause. Otherwise the barrier will be generated by the codegen for the 2231 // directive. 2232 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2233 // Emit implicit barrier to synchronize threads and avoid data races on 2234 // initialization of firstprivate variables. 2235 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2236 OMPD_unknown); 2237 } 2238 } 2239 2240 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2241 { 2242 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2243 EmitSections(S); 2244 } 2245 // Emit an implicit barrier at the end. 2246 if (!S.getSingleClause<OMPNowaitClause>()) { 2247 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2248 OMPD_sections); 2249 } 2250 } 2251 2252 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2253 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2254 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2255 }; 2256 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2257 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2258 S.hasCancel()); 2259 } 2260 2261 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2262 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2263 llvm::SmallVector<const Expr *, 8> DestExprs; 2264 llvm::SmallVector<const Expr *, 8> SrcExprs; 2265 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2266 // Check if there are any 'copyprivate' clauses associated with this 2267 // 'single' construct. 2268 // Build a list of copyprivate variables along with helper expressions 2269 // (<source>, <destination>, <destination>=<source> expressions) 2270 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2271 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2272 DestExprs.append(C->destination_exprs().begin(), 2273 C->destination_exprs().end()); 2274 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2275 AssignmentOps.append(C->assignment_ops().begin(), 2276 C->assignment_ops().end()); 2277 } 2278 // Emit code for 'single' region along with 'copyprivate' clauses 2279 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2280 Action.Enter(CGF); 2281 OMPPrivateScope SingleScope(CGF); 2282 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2283 CGF.EmitOMPPrivateClause(S, SingleScope); 2284 (void)SingleScope.Privatize(); 2285 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2286 }; 2287 { 2288 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2289 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2290 CopyprivateVars, DestExprs, 2291 SrcExprs, AssignmentOps); 2292 } 2293 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2294 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2295 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2296 CGM.getOpenMPRuntime().emitBarrierCall( 2297 *this, S.getLocStart(), 2298 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2299 } 2300 } 2301 2302 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2303 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2304 Action.Enter(CGF); 2305 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2306 }; 2307 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2308 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2309 } 2310 2311 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2312 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2313 Action.Enter(CGF); 2314 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2315 }; 2316 Expr *Hint = nullptr; 2317 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2318 Hint = HintClause->getHint(); 2319 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2320 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2321 S.getDirectiveName().getAsString(), 2322 CodeGen, S.getLocStart(), Hint); 2323 } 2324 2325 void CodeGenFunction::EmitOMPParallelForDirective( 2326 const OMPParallelForDirective &S) { 2327 // Emit directive as a combined directive that consists of two implicit 2328 // directives: 'parallel' with 'for' directive. 2329 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2330 CGF.EmitOMPWorksharingLoop(S); 2331 }; 2332 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 2333 } 2334 2335 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2336 const OMPParallelForSimdDirective &S) { 2337 // Emit directive as a combined directive that consists of two implicit 2338 // directives: 'parallel' with 'for' directive. 2339 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2340 CGF.EmitOMPWorksharingLoop(S); 2341 }; 2342 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 2343 } 2344 2345 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2346 const OMPParallelSectionsDirective &S) { 2347 // Emit directive as a combined directive that consists of two implicit 2348 // directives: 'parallel' with 'sections' directive. 2349 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2350 CGF.EmitSections(S); 2351 }; 2352 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 2353 } 2354 2355 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2356 const RegionCodeGenTy &BodyGen, 2357 const TaskGenTy &TaskGen, 2358 OMPTaskDataTy &Data) { 2359 // Emit outlined function for task construct. 2360 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2361 auto *I = CS->getCapturedDecl()->param_begin(); 2362 auto *PartId = std::next(I); 2363 auto *TaskT = std::next(I, 4); 2364 // Check if the task is final 2365 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2366 // If the condition constant folds and can be elided, try to avoid emitting 2367 // the condition and the dead arm of the if/else. 2368 auto *Cond = Clause->getCondition(); 2369 bool CondConstant; 2370 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2371 Data.Final.setInt(CondConstant); 2372 else 2373 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2374 } else { 2375 // By default the task is not final. 2376 Data.Final.setInt(/*IntVal=*/false); 2377 } 2378 // Check if the task has 'priority' clause. 2379 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2380 // Runtime currently does not support codegen for priority clause argument. 2381 // TODO: Add codegen for priority clause arg when runtime lib support it. 2382 auto *Prio = Clause->getPriority(); 2383 Data.Priority.setInt(Prio); 2384 Data.Priority.setPointer(EmitScalarConversion( 2385 EmitScalarExpr(Prio), Prio->getType(), 2386 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2387 Prio->getExprLoc())); 2388 } 2389 // The first function argument for tasks is a thread id, the second one is a 2390 // part id (0 for tied tasks, >=0 for untied task). 2391 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2392 // Get list of private variables. 2393 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2394 auto IRef = C->varlist_begin(); 2395 for (auto *IInit : C->private_copies()) { 2396 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2397 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2398 Data.PrivateVars.push_back(*IRef); 2399 Data.PrivateCopies.push_back(IInit); 2400 } 2401 ++IRef; 2402 } 2403 } 2404 EmittedAsPrivate.clear(); 2405 // Get list of firstprivate variables. 2406 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2407 auto IRef = C->varlist_begin(); 2408 auto IElemInitRef = C->inits().begin(); 2409 for (auto *IInit : C->private_copies()) { 2410 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2411 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2412 Data.FirstprivateVars.push_back(*IRef); 2413 Data.FirstprivateCopies.push_back(IInit); 2414 Data.FirstprivateInits.push_back(*IElemInitRef); 2415 } 2416 ++IRef; 2417 ++IElemInitRef; 2418 } 2419 } 2420 // Get list of lastprivate variables (for taskloops). 2421 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2422 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2423 auto IRef = C->varlist_begin(); 2424 auto ID = C->destination_exprs().begin(); 2425 for (auto *IInit : C->private_copies()) { 2426 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2427 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2428 Data.LastprivateVars.push_back(*IRef); 2429 Data.LastprivateCopies.push_back(IInit); 2430 } 2431 LastprivateDstsOrigs.insert( 2432 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2433 cast<DeclRefExpr>(*IRef)}); 2434 ++IRef; 2435 ++ID; 2436 } 2437 } 2438 // Build list of dependences. 2439 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2440 for (auto *IRef : C->varlists()) 2441 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2442 auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs]( 2443 CodeGenFunction &CGF, PrePostActionTy &Action) { 2444 // Set proper addresses for generated private copies. 2445 OMPPrivateScope Scope(CGF); 2446 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2447 !Data.LastprivateVars.empty()) { 2448 auto *CopyFn = CGF.Builder.CreateLoad( 2449 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2450 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2451 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2452 // Map privates. 2453 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2454 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2455 CallArgs.push_back(PrivatesPtr); 2456 for (auto *E : Data.PrivateVars) { 2457 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2458 Address PrivatePtr = CGF.CreateMemTemp( 2459 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2460 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2461 CallArgs.push_back(PrivatePtr.getPointer()); 2462 } 2463 for (auto *E : Data.FirstprivateVars) { 2464 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2465 Address PrivatePtr = 2466 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2467 ".firstpriv.ptr.addr"); 2468 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2469 CallArgs.push_back(PrivatePtr.getPointer()); 2470 } 2471 for (auto *E : Data.LastprivateVars) { 2472 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2473 Address PrivatePtr = 2474 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2475 ".lastpriv.ptr.addr"); 2476 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2477 CallArgs.push_back(PrivatePtr.getPointer()); 2478 } 2479 CGF.EmitRuntimeCall(CopyFn, CallArgs); 2480 for (auto &&Pair : LastprivateDstsOrigs) { 2481 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2482 DeclRefExpr DRE( 2483 const_cast<VarDecl *>(OrigVD), 2484 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2485 OrigVD) != nullptr, 2486 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2487 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2488 return CGF.EmitLValue(&DRE).getAddress(); 2489 }); 2490 } 2491 for (auto &&Pair : PrivatePtrs) { 2492 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2493 CGF.getContext().getDeclAlign(Pair.first)); 2494 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2495 } 2496 } 2497 (void)Scope.Privatize(); 2498 2499 Action.Enter(CGF); 2500 BodyGen(CGF); 2501 }; 2502 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2503 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2504 Data.NumberOfParts); 2505 OMPLexicalScope Scope(*this, S); 2506 TaskGen(*this, OutlinedFn, Data); 2507 } 2508 2509 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 2510 // Emit outlined function for task construct. 2511 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2512 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 2513 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2514 const Expr *IfCond = nullptr; 2515 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2516 if (C->getNameModifier() == OMPD_unknown || 2517 C->getNameModifier() == OMPD_task) { 2518 IfCond = C->getCondition(); 2519 break; 2520 } 2521 } 2522 2523 OMPTaskDataTy Data; 2524 // Check if we should emit tied or untied task. 2525 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 2526 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 2527 CGF.EmitStmt(CS->getCapturedStmt()); 2528 }; 2529 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 2530 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 2531 const OMPTaskDataTy &Data) { 2532 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 2533 SharedsTy, CapturedStruct, IfCond, 2534 Data); 2535 }; 2536 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 2537 } 2538 2539 void CodeGenFunction::EmitOMPTaskyieldDirective( 2540 const OMPTaskyieldDirective &S) { 2541 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2542 } 2543 2544 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2545 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2546 } 2547 2548 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2549 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2550 } 2551 2552 void CodeGenFunction::EmitOMPTaskgroupDirective( 2553 const OMPTaskgroupDirective &S) { 2554 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2555 Action.Enter(CGF); 2556 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2557 }; 2558 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2559 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 2560 } 2561 2562 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 2563 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 2564 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 2565 return llvm::makeArrayRef(FlushClause->varlist_begin(), 2566 FlushClause->varlist_end()); 2567 } 2568 return llvm::None; 2569 }(), S.getLocStart()); 2570 } 2571 2572 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) { 2573 // Emit the loop iteration variable. 2574 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2575 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2576 EmitVarDecl(*IVDecl); 2577 2578 // Emit the iterations count variable. 2579 // If it is not a variable, Sema decided to calculate iterations count on each 2580 // iteration (e.g., it is foldable into a constant). 2581 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2582 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2583 // Emit calculation of the iterations count. 2584 EmitIgnoredExpr(S.getCalcLastIteration()); 2585 } 2586 2587 auto &RT = CGM.getOpenMPRuntime(); 2588 2589 // Check pre-condition. 2590 { 2591 OMPLoopScope PreInitScope(*this, S); 2592 // Skip the entire loop if we don't meet the precondition. 2593 // If the condition constant folds and can be elided, avoid emitting the 2594 // whole loop. 2595 bool CondConstant; 2596 llvm::BasicBlock *ContBlock = nullptr; 2597 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2598 if (!CondConstant) 2599 return; 2600 } else { 2601 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2602 ContBlock = createBasicBlock("omp.precond.end"); 2603 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2604 getProfileCount(&S)); 2605 EmitBlock(ThenBlock); 2606 incrementProfileCounter(&S); 2607 } 2608 2609 // Emit 'then' code. 2610 { 2611 // Emit helper vars inits. 2612 LValue LB = 2613 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2614 LValue UB = 2615 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2616 LValue ST = 2617 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2618 LValue IL = 2619 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2620 2621 OMPPrivateScope LoopScope(*this); 2622 EmitOMPPrivateLoopCounters(S, LoopScope); 2623 (void)LoopScope.Privatize(); 2624 2625 // Detect the distribute schedule kind and chunk. 2626 llvm::Value *Chunk = nullptr; 2627 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 2628 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 2629 ScheduleKind = C->getDistScheduleKind(); 2630 if (const auto *Ch = C->getChunkSize()) { 2631 Chunk = EmitScalarExpr(Ch); 2632 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2633 S.getIterationVariable()->getType(), 2634 S.getLocStart()); 2635 } 2636 } 2637 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2638 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2639 2640 // OpenMP [2.10.8, distribute Construct, Description] 2641 // If dist_schedule is specified, kind must be static. If specified, 2642 // iterations are divided into chunks of size chunk_size, chunks are 2643 // assigned to the teams of the league in a round-robin fashion in the 2644 // order of the team number. When no chunk_size is specified, the 2645 // iteration space is divided into chunks that are approximately equal 2646 // in size, and at most one chunk is distributed to each team of the 2647 // league. The size of the chunks is unspecified in this case. 2648 if (RT.isStaticNonchunked(ScheduleKind, 2649 /* Chunked */ Chunk != nullptr)) { 2650 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 2651 IVSize, IVSigned, /* Ordered = */ false, 2652 IL.getAddress(), LB.getAddress(), 2653 UB.getAddress(), ST.getAddress()); 2654 auto LoopExit = 2655 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2656 // UB = min(UB, GlobalUB); 2657 EmitIgnoredExpr(S.getEnsureUpperBound()); 2658 // IV = LB; 2659 EmitIgnoredExpr(S.getInit()); 2660 // while (idx <= UB) { BODY; ++idx; } 2661 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2662 S.getInc(), 2663 [&S, LoopExit](CodeGenFunction &CGF) { 2664 CGF.EmitOMPLoopBody(S, LoopExit); 2665 CGF.EmitStopPoint(&S); 2666 }, 2667 [](CodeGenFunction &) {}); 2668 EmitBlock(LoopExit.getBlock()); 2669 // Tell the runtime we are done. 2670 RT.emitForStaticFinish(*this, S.getLocStart()); 2671 } else { 2672 // Emit the outer loop, which requests its work chunk [LB..UB] from 2673 // runtime and runs the inner loop to process it. 2674 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, 2675 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2676 IL.getAddress(), Chunk); 2677 } 2678 } 2679 2680 // We're now done with the loop, so jump to the continuation block. 2681 if (ContBlock) { 2682 EmitBranch(ContBlock); 2683 EmitBlock(ContBlock, true); 2684 } 2685 } 2686 } 2687 2688 void CodeGenFunction::EmitOMPDistributeDirective( 2689 const OMPDistributeDirective &S) { 2690 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2691 CGF.EmitOMPDistributeLoop(S); 2692 }; 2693 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2694 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen, 2695 false); 2696 } 2697 2698 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 2699 const CapturedStmt *S) { 2700 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 2701 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 2702 CGF.CapturedStmtInfo = &CapStmtInfo; 2703 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 2704 Fn->addFnAttr(llvm::Attribute::NoInline); 2705 return Fn; 2706 } 2707 2708 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 2709 if (!S.getAssociatedStmt()) { 2710 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 2711 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 2712 return; 2713 } 2714 auto *C = S.getSingleClause<OMPSIMDClause>(); 2715 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 2716 PrePostActionTy &Action) { 2717 if (C) { 2718 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2719 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2720 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 2721 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 2722 CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars); 2723 } else { 2724 Action.Enter(CGF); 2725 CGF.EmitStmt( 2726 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2727 } 2728 }; 2729 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2730 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 2731 } 2732 2733 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 2734 QualType SrcType, QualType DestType, 2735 SourceLocation Loc) { 2736 assert(CGF.hasScalarEvaluationKind(DestType) && 2737 "DestType must have scalar evaluation kind."); 2738 assert(!Val.isAggregate() && "Must be a scalar or complex."); 2739 return Val.isScalar() 2740 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 2741 Loc) 2742 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 2743 DestType, Loc); 2744 } 2745 2746 static CodeGenFunction::ComplexPairTy 2747 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 2748 QualType DestType, SourceLocation Loc) { 2749 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 2750 "DestType must have complex evaluation kind."); 2751 CodeGenFunction::ComplexPairTy ComplexVal; 2752 if (Val.isScalar()) { 2753 // Convert the input element to the element type of the complex. 2754 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2755 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 2756 DestElementType, Loc); 2757 ComplexVal = CodeGenFunction::ComplexPairTy( 2758 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 2759 } else { 2760 assert(Val.isComplex() && "Must be a scalar or complex."); 2761 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 2762 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2763 ComplexVal.first = CGF.EmitScalarConversion( 2764 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 2765 ComplexVal.second = CGF.EmitScalarConversion( 2766 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 2767 } 2768 return ComplexVal; 2769 } 2770 2771 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 2772 LValue LVal, RValue RVal) { 2773 if (LVal.isGlobalReg()) { 2774 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 2775 } else { 2776 CGF.EmitAtomicStore(RVal, LVal, 2777 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2778 : llvm::AtomicOrdering::Monotonic, 2779 LVal.isVolatile(), /*IsInit=*/false); 2780 } 2781 } 2782 2783 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 2784 QualType RValTy, SourceLocation Loc) { 2785 switch (getEvaluationKind(LVal.getType())) { 2786 case TEK_Scalar: 2787 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 2788 *this, RVal, RValTy, LVal.getType(), Loc)), 2789 LVal); 2790 break; 2791 case TEK_Complex: 2792 EmitStoreOfComplex( 2793 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 2794 /*isInit=*/false); 2795 break; 2796 case TEK_Aggregate: 2797 llvm_unreachable("Must be a scalar or complex."); 2798 } 2799 } 2800 2801 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 2802 const Expr *X, const Expr *V, 2803 SourceLocation Loc) { 2804 // v = x; 2805 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 2806 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 2807 LValue XLValue = CGF.EmitLValue(X); 2808 LValue VLValue = CGF.EmitLValue(V); 2809 RValue Res = XLValue.isGlobalReg() 2810 ? CGF.EmitLoadOfLValue(XLValue, Loc) 2811 : CGF.EmitAtomicLoad( 2812 XLValue, Loc, 2813 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2814 : llvm::AtomicOrdering::Monotonic, 2815 XLValue.isVolatile()); 2816 // OpenMP, 2.12.6, atomic Construct 2817 // Any atomic construct with a seq_cst clause forces the atomically 2818 // performed operation to include an implicit flush operation without a 2819 // list. 2820 if (IsSeqCst) 2821 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2822 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 2823 } 2824 2825 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 2826 const Expr *X, const Expr *E, 2827 SourceLocation Loc) { 2828 // x = expr; 2829 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 2830 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 2831 // OpenMP, 2.12.6, atomic Construct 2832 // Any atomic construct with a seq_cst clause forces the atomically 2833 // performed operation to include an implicit flush operation without a 2834 // list. 2835 if (IsSeqCst) 2836 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2837 } 2838 2839 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 2840 RValue Update, 2841 BinaryOperatorKind BO, 2842 llvm::AtomicOrdering AO, 2843 bool IsXLHSInRHSPart) { 2844 auto &Context = CGF.CGM.getContext(); 2845 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 2846 // expression is simple and atomic is allowed for the given type for the 2847 // target platform. 2848 if (BO == BO_Comma || !Update.isScalar() || 2849 !Update.getScalarVal()->getType()->isIntegerTy() || 2850 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 2851 (Update.getScalarVal()->getType() != 2852 X.getAddress().getElementType())) || 2853 !X.getAddress().getElementType()->isIntegerTy() || 2854 !Context.getTargetInfo().hasBuiltinAtomic( 2855 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 2856 return std::make_pair(false, RValue::get(nullptr)); 2857 2858 llvm::AtomicRMWInst::BinOp RMWOp; 2859 switch (BO) { 2860 case BO_Add: 2861 RMWOp = llvm::AtomicRMWInst::Add; 2862 break; 2863 case BO_Sub: 2864 if (!IsXLHSInRHSPart) 2865 return std::make_pair(false, RValue::get(nullptr)); 2866 RMWOp = llvm::AtomicRMWInst::Sub; 2867 break; 2868 case BO_And: 2869 RMWOp = llvm::AtomicRMWInst::And; 2870 break; 2871 case BO_Or: 2872 RMWOp = llvm::AtomicRMWInst::Or; 2873 break; 2874 case BO_Xor: 2875 RMWOp = llvm::AtomicRMWInst::Xor; 2876 break; 2877 case BO_LT: 2878 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2879 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 2880 : llvm::AtomicRMWInst::Max) 2881 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 2882 : llvm::AtomicRMWInst::UMax); 2883 break; 2884 case BO_GT: 2885 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2886 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 2887 : llvm::AtomicRMWInst::Min) 2888 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 2889 : llvm::AtomicRMWInst::UMin); 2890 break; 2891 case BO_Assign: 2892 RMWOp = llvm::AtomicRMWInst::Xchg; 2893 break; 2894 case BO_Mul: 2895 case BO_Div: 2896 case BO_Rem: 2897 case BO_Shl: 2898 case BO_Shr: 2899 case BO_LAnd: 2900 case BO_LOr: 2901 return std::make_pair(false, RValue::get(nullptr)); 2902 case BO_PtrMemD: 2903 case BO_PtrMemI: 2904 case BO_LE: 2905 case BO_GE: 2906 case BO_EQ: 2907 case BO_NE: 2908 case BO_AddAssign: 2909 case BO_SubAssign: 2910 case BO_AndAssign: 2911 case BO_OrAssign: 2912 case BO_XorAssign: 2913 case BO_MulAssign: 2914 case BO_DivAssign: 2915 case BO_RemAssign: 2916 case BO_ShlAssign: 2917 case BO_ShrAssign: 2918 case BO_Comma: 2919 llvm_unreachable("Unsupported atomic update operation"); 2920 } 2921 auto *UpdateVal = Update.getScalarVal(); 2922 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 2923 UpdateVal = CGF.Builder.CreateIntCast( 2924 IC, X.getAddress().getElementType(), 2925 X.getType()->hasSignedIntegerRepresentation()); 2926 } 2927 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 2928 return std::make_pair(true, RValue::get(Res)); 2929 } 2930 2931 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 2932 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2933 llvm::AtomicOrdering AO, SourceLocation Loc, 2934 const llvm::function_ref<RValue(RValue)> &CommonGen) { 2935 // Update expressions are allowed to have the following forms: 2936 // x binop= expr; -> xrval + expr; 2937 // x++, ++x -> xrval + 1; 2938 // x--, --x -> xrval - 1; 2939 // x = x binop expr; -> xrval binop expr 2940 // x = expr Op x; - > expr binop xrval; 2941 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 2942 if (!Res.first) { 2943 if (X.isGlobalReg()) { 2944 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 2945 // 'xrval'. 2946 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 2947 } else { 2948 // Perform compare-and-swap procedure. 2949 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 2950 } 2951 } 2952 return Res; 2953 } 2954 2955 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 2956 const Expr *X, const Expr *E, 2957 const Expr *UE, bool IsXLHSInRHSPart, 2958 SourceLocation Loc) { 2959 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 2960 "Update expr in 'atomic update' must be a binary operator."); 2961 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 2962 // Update expressions are allowed to have the following forms: 2963 // x binop= expr; -> xrval + expr; 2964 // x++, ++x -> xrval + 1; 2965 // x--, --x -> xrval - 1; 2966 // x = x binop expr; -> xrval binop expr 2967 // x = expr Op x; - > expr binop xrval; 2968 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 2969 LValue XLValue = CGF.EmitLValue(X); 2970 RValue ExprRValue = CGF.EmitAnyExpr(E); 2971 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2972 : llvm::AtomicOrdering::Monotonic; 2973 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 2974 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 2975 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 2976 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 2977 auto Gen = 2978 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 2979 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 2980 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 2981 return CGF.EmitAnyExpr(UE); 2982 }; 2983 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 2984 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 2985 // OpenMP, 2.12.6, atomic Construct 2986 // Any atomic construct with a seq_cst clause forces the atomically 2987 // performed operation to include an implicit flush operation without a 2988 // list. 2989 if (IsSeqCst) 2990 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2991 } 2992 2993 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 2994 QualType SourceType, QualType ResType, 2995 SourceLocation Loc) { 2996 switch (CGF.getEvaluationKind(ResType)) { 2997 case TEK_Scalar: 2998 return RValue::get( 2999 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3000 case TEK_Complex: { 3001 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3002 return RValue::getComplex(Res.first, Res.second); 3003 } 3004 case TEK_Aggregate: 3005 break; 3006 } 3007 llvm_unreachable("Must be a scalar or complex."); 3008 } 3009 3010 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3011 bool IsPostfixUpdate, const Expr *V, 3012 const Expr *X, const Expr *E, 3013 const Expr *UE, bool IsXLHSInRHSPart, 3014 SourceLocation Loc) { 3015 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3016 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3017 RValue NewVVal; 3018 LValue VLValue = CGF.EmitLValue(V); 3019 LValue XLValue = CGF.EmitLValue(X); 3020 RValue ExprRValue = CGF.EmitAnyExpr(E); 3021 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3022 : llvm::AtomicOrdering::Monotonic; 3023 QualType NewVValType; 3024 if (UE) { 3025 // 'x' is updated with some additional value. 3026 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3027 "Update expr in 'atomic capture' must be a binary operator."); 3028 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3029 // Update expressions are allowed to have the following forms: 3030 // x binop= expr; -> xrval + expr; 3031 // x++, ++x -> xrval + 1; 3032 // x--, --x -> xrval - 1; 3033 // x = x binop expr; -> xrval binop expr 3034 // x = expr Op x; - > expr binop xrval; 3035 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3036 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3037 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3038 NewVValType = XRValExpr->getType(); 3039 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3040 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3041 IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue { 3042 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3043 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3044 RValue Res = CGF.EmitAnyExpr(UE); 3045 NewVVal = IsPostfixUpdate ? XRValue : Res; 3046 return Res; 3047 }; 3048 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3049 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3050 if (Res.first) { 3051 // 'atomicrmw' instruction was generated. 3052 if (IsPostfixUpdate) { 3053 // Use old value from 'atomicrmw'. 3054 NewVVal = Res.second; 3055 } else { 3056 // 'atomicrmw' does not provide new value, so evaluate it using old 3057 // value of 'x'. 3058 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3059 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3060 NewVVal = CGF.EmitAnyExpr(UE); 3061 } 3062 } 3063 } else { 3064 // 'x' is simply rewritten with some 'expr'. 3065 NewVValType = X->getType().getNonReferenceType(); 3066 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3067 X->getType().getNonReferenceType(), Loc); 3068 auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue { 3069 NewVVal = XRValue; 3070 return ExprRValue; 3071 }; 3072 // Try to perform atomicrmw xchg, otherwise simple exchange. 3073 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3074 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3075 Loc, Gen); 3076 if (Res.first) { 3077 // 'atomicrmw' instruction was generated. 3078 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3079 } 3080 } 3081 // Emit post-update store to 'v' of old/new 'x' value. 3082 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3083 // OpenMP, 2.12.6, atomic Construct 3084 // Any atomic construct with a seq_cst clause forces the atomically 3085 // performed operation to include an implicit flush operation without a 3086 // list. 3087 if (IsSeqCst) 3088 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3089 } 3090 3091 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3092 bool IsSeqCst, bool IsPostfixUpdate, 3093 const Expr *X, const Expr *V, const Expr *E, 3094 const Expr *UE, bool IsXLHSInRHSPart, 3095 SourceLocation Loc) { 3096 switch (Kind) { 3097 case OMPC_read: 3098 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3099 break; 3100 case OMPC_write: 3101 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3102 break; 3103 case OMPC_unknown: 3104 case OMPC_update: 3105 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3106 break; 3107 case OMPC_capture: 3108 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3109 IsXLHSInRHSPart, Loc); 3110 break; 3111 case OMPC_if: 3112 case OMPC_final: 3113 case OMPC_num_threads: 3114 case OMPC_private: 3115 case OMPC_firstprivate: 3116 case OMPC_lastprivate: 3117 case OMPC_reduction: 3118 case OMPC_safelen: 3119 case OMPC_simdlen: 3120 case OMPC_collapse: 3121 case OMPC_default: 3122 case OMPC_seq_cst: 3123 case OMPC_shared: 3124 case OMPC_linear: 3125 case OMPC_aligned: 3126 case OMPC_copyin: 3127 case OMPC_copyprivate: 3128 case OMPC_flush: 3129 case OMPC_proc_bind: 3130 case OMPC_schedule: 3131 case OMPC_ordered: 3132 case OMPC_nowait: 3133 case OMPC_untied: 3134 case OMPC_threadprivate: 3135 case OMPC_depend: 3136 case OMPC_mergeable: 3137 case OMPC_device: 3138 case OMPC_threads: 3139 case OMPC_simd: 3140 case OMPC_map: 3141 case OMPC_num_teams: 3142 case OMPC_thread_limit: 3143 case OMPC_priority: 3144 case OMPC_grainsize: 3145 case OMPC_nogroup: 3146 case OMPC_num_tasks: 3147 case OMPC_hint: 3148 case OMPC_dist_schedule: 3149 case OMPC_defaultmap: 3150 case OMPC_uniform: 3151 case OMPC_to: 3152 case OMPC_from: 3153 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3154 } 3155 } 3156 3157 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3158 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3159 OpenMPClauseKind Kind = OMPC_unknown; 3160 for (auto *C : S.clauses()) { 3161 // Find first clause (skip seq_cst clause, if it is first). 3162 if (C->getClauseKind() != OMPC_seq_cst) { 3163 Kind = C->getClauseKind(); 3164 break; 3165 } 3166 } 3167 3168 const auto *CS = 3169 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 3170 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3171 enterFullExpression(EWC); 3172 } 3173 // Processing for statements under 'atomic capture'. 3174 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3175 for (const auto *C : Compound->body()) { 3176 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3177 enterFullExpression(EWC); 3178 } 3179 } 3180 } 3181 3182 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3183 PrePostActionTy &) { 3184 CGF.EmitStopPoint(CS); 3185 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3186 S.getV(), S.getExpr(), S.getUpdateExpr(), 3187 S.isXLHSInRHSPart(), S.getLocStart()); 3188 }; 3189 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3190 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3191 } 3192 3193 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/> 3194 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction( 3195 CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName, 3196 bool IsOffloadEntry) { 3197 llvm::Function *OutlinedFn = nullptr; 3198 llvm::Constant *OutlinedFnID = nullptr; 3199 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3200 OMPPrivateScope PrivateScope(CGF); 3201 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3202 CGF.EmitOMPPrivateClause(S, PrivateScope); 3203 (void)PrivateScope.Privatize(); 3204 3205 Action.Enter(CGF); 3206 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3207 }; 3208 // Emit target region as a standalone region. 3209 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3210 S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); 3211 return std::make_pair(OutlinedFn, OutlinedFnID); 3212 } 3213 3214 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3215 const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt()); 3216 3217 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3218 GenerateOpenMPCapturedVars(CS, CapturedVars); 3219 3220 llvm::Function *Fn = nullptr; 3221 llvm::Constant *FnID = nullptr; 3222 3223 // Check if we have any if clause associated with the directive. 3224 const Expr *IfCond = nullptr; 3225 3226 if (auto *C = S.getSingleClause<OMPIfClause>()) { 3227 IfCond = C->getCondition(); 3228 } 3229 3230 // Check if we have any device clause associated with the directive. 3231 const Expr *Device = nullptr; 3232 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3233 Device = C->getDevice(); 3234 } 3235 3236 // Check if we have an if clause whose conditional always evaluates to false 3237 // or if we do not have any targets specified. If so the target region is not 3238 // an offload entry point. 3239 bool IsOffloadEntry = true; 3240 if (IfCond) { 3241 bool Val; 3242 if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3243 IsOffloadEntry = false; 3244 } 3245 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3246 IsOffloadEntry = false; 3247 3248 assert(CurFuncDecl && "No parent declaration for target region!"); 3249 StringRef ParentName; 3250 // In case we have Ctors/Dtors we use the complete type variant to produce 3251 // the mangling of the device outlined kernel. 3252 if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl)) 3253 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3254 else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl)) 3255 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3256 else 3257 ParentName = 3258 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl))); 3259 3260 std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction( 3261 CGM, S, ParentName, IsOffloadEntry); 3262 OMPLexicalScope Scope(*this, S); 3263 CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device, 3264 CapturedVars); 3265 } 3266 3267 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3268 const OMPExecutableDirective &S, 3269 OpenMPDirectiveKind InnermostKind, 3270 const RegionCodeGenTy &CodeGen) { 3271 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3272 auto OutlinedFn = CGF.CGM.getOpenMPRuntime(). 3273 emitParallelOrTeamsOutlinedFunction(S, 3274 *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 3275 3276 const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S); 3277 const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>(); 3278 const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>(); 3279 if (NT || TL) { 3280 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 3281 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 3282 3283 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 3284 S.getLocStart()); 3285 } 3286 3287 OMPLexicalScope Scope(CGF, S); 3288 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3289 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3290 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 3291 CapturedVars); 3292 } 3293 3294 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 3295 // Emit parallel region as a standalone region. 3296 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3297 OMPPrivateScope PrivateScope(CGF); 3298 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3299 CGF.EmitOMPPrivateClause(S, PrivateScope); 3300 (void)PrivateScope.Privatize(); 3301 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3302 }; 3303 emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen); 3304 } 3305 3306 void CodeGenFunction::EmitOMPCancellationPointDirective( 3307 const OMPCancellationPointDirective &S) { 3308 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 3309 S.getCancelRegion()); 3310 } 3311 3312 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 3313 const Expr *IfCond = nullptr; 3314 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3315 if (C->getNameModifier() == OMPD_unknown || 3316 C->getNameModifier() == OMPD_cancel) { 3317 IfCond = C->getCondition(); 3318 break; 3319 } 3320 } 3321 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 3322 S.getCancelRegion()); 3323 } 3324 3325 CodeGenFunction::JumpDest 3326 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 3327 if (Kind == OMPD_parallel || Kind == OMPD_task) 3328 return ReturnBlock; 3329 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 3330 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for); 3331 return BreakContinueStack.back().BreakBlock; 3332 } 3333 3334 // Generate the instructions for '#pragma omp target data' directive. 3335 void CodeGenFunction::EmitOMPTargetDataDirective( 3336 const OMPTargetDataDirective &S) { 3337 // The target data enclosed region is implemented just by emitting the 3338 // statement. 3339 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3340 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3341 }; 3342 3343 // If we don't have target devices, don't bother emitting the data mapping 3344 // code. 3345 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 3346 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3347 3348 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_target_data, 3349 CodeGen); 3350 return; 3351 } 3352 3353 // Check if we have any if clause associated with the directive. 3354 const Expr *IfCond = nullptr; 3355 if (auto *C = S.getSingleClause<OMPIfClause>()) 3356 IfCond = C->getCondition(); 3357 3358 // Check if we have any device clause associated with the directive. 3359 const Expr *Device = nullptr; 3360 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3361 Device = C->getDevice(); 3362 3363 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, CodeGen); 3364 } 3365 3366 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 3367 const OMPTargetEnterDataDirective &S) { 3368 // If we don't have target devices, don't bother emitting the data mapping 3369 // code. 3370 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3371 return; 3372 3373 // Check if we have any if clause associated with the directive. 3374 const Expr *IfCond = nullptr; 3375 if (auto *C = S.getSingleClause<OMPIfClause>()) 3376 IfCond = C->getCondition(); 3377 3378 // Check if we have any device clause associated with the directive. 3379 const Expr *Device = nullptr; 3380 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3381 Device = C->getDevice(); 3382 3383 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3384 } 3385 3386 void CodeGenFunction::EmitOMPTargetExitDataDirective( 3387 const OMPTargetExitDataDirective &S) { 3388 // If we don't have target devices, don't bother emitting the data mapping 3389 // code. 3390 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3391 return; 3392 3393 // Check if we have any if clause associated with the directive. 3394 const Expr *IfCond = nullptr; 3395 if (auto *C = S.getSingleClause<OMPIfClause>()) 3396 IfCond = C->getCondition(); 3397 3398 // Check if we have any device clause associated with the directive. 3399 const Expr *Device = nullptr; 3400 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3401 Device = C->getDevice(); 3402 3403 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3404 } 3405 3406 void CodeGenFunction::EmitOMPTargetParallelDirective( 3407 const OMPTargetParallelDirective &S) { 3408 // TODO: codegen for target parallel. 3409 } 3410 3411 void CodeGenFunction::EmitOMPTargetParallelForDirective( 3412 const OMPTargetParallelForDirective &S) { 3413 // TODO: codegen for target parallel for. 3414 } 3415 3416 /// Emit a helper variable and return corresponding lvalue. 3417 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 3418 const ImplicitParamDecl *PVD, 3419 CodeGenFunction::OMPPrivateScope &Privates) { 3420 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 3421 Privates.addPrivate( 3422 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 3423 } 3424 3425 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 3426 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 3427 // Emit outlined function for task construct. 3428 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3429 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3430 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3431 const Expr *IfCond = nullptr; 3432 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3433 if (C->getNameModifier() == OMPD_unknown || 3434 C->getNameModifier() == OMPD_taskloop) { 3435 IfCond = C->getCondition(); 3436 break; 3437 } 3438 } 3439 3440 OMPTaskDataTy Data; 3441 // Check if taskloop must be emitted without taskgroup. 3442 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 3443 // TODO: Check if we should emit tied or untied task. 3444 Data.Tied = true; 3445 // Set scheduling for taskloop 3446 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 3447 // grainsize clause 3448 Data.Schedule.setInt(/*IntVal=*/false); 3449 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 3450 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 3451 // num_tasks clause 3452 Data.Schedule.setInt(/*IntVal=*/true); 3453 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 3454 } 3455 3456 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 3457 // if (PreCond) { 3458 // for (IV in 0..LastIteration) BODY; 3459 // <Final counter/linear vars updates>; 3460 // } 3461 // 3462 3463 // Emit: if (PreCond) - begin. 3464 // If the condition constant folds and can be elided, avoid emitting the 3465 // whole loop. 3466 bool CondConstant; 3467 llvm::BasicBlock *ContBlock = nullptr; 3468 OMPLoopScope PreInitScope(CGF, S); 3469 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3470 if (!CondConstant) 3471 return; 3472 } else { 3473 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 3474 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 3475 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 3476 CGF.getProfileCount(&S)); 3477 CGF.EmitBlock(ThenBlock); 3478 CGF.incrementProfileCounter(&S); 3479 } 3480 3481 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3482 CGF.EmitOMPSimdInit(S); 3483 3484 OMPPrivateScope LoopScope(CGF); 3485 // Emit helper vars inits. 3486 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 3487 auto *I = CS->getCapturedDecl()->param_begin(); 3488 auto *LBP = std::next(I, LowerBound); 3489 auto *UBP = std::next(I, UpperBound); 3490 auto *STP = std::next(I, Stride); 3491 auto *LIP = std::next(I, LastIter); 3492 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 3493 LoopScope); 3494 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 3495 LoopScope); 3496 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 3497 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 3498 LoopScope); 3499 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 3500 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3501 (void)LoopScope.Privatize(); 3502 // Emit the loop iteration variable. 3503 const Expr *IVExpr = S.getIterationVariable(); 3504 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 3505 CGF.EmitVarDecl(*IVDecl); 3506 CGF.EmitIgnoredExpr(S.getInit()); 3507 3508 // Emit the iterations count variable. 3509 // If it is not a variable, Sema decided to calculate iterations count on 3510 // each iteration (e.g., it is foldable into a constant). 3511 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3512 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3513 // Emit calculation of the iterations count. 3514 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 3515 } 3516 3517 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 3518 S.getInc(), 3519 [&S](CodeGenFunction &CGF) { 3520 CGF.EmitOMPLoopBody(S, JumpDest()); 3521 CGF.EmitStopPoint(&S); 3522 }, 3523 [](CodeGenFunction &) {}); 3524 // Emit: if (PreCond) - end. 3525 if (ContBlock) { 3526 CGF.EmitBranch(ContBlock); 3527 CGF.EmitBlock(ContBlock, true); 3528 } 3529 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3530 if (HasLastprivateClause) { 3531 CGF.EmitOMPLastprivateClauseFinal( 3532 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3533 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 3534 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 3535 (*LIP)->getType(), S.getLocStart()))); 3536 } 3537 }; 3538 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3539 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3540 const OMPTaskDataTy &Data) { 3541 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 3542 OMPLoopScope PreInitScope(CGF, S); 3543 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 3544 OutlinedFn, SharedsTy, 3545 CapturedStruct, IfCond, Data); 3546 }; 3547 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 3548 CodeGen); 3549 }; 3550 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 3551 } 3552 3553 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 3554 EmitOMPTaskLoopBasedDirective(S); 3555 } 3556 3557 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 3558 const OMPTaskLoopSimdDirective &S) { 3559 EmitOMPTaskLoopBasedDirective(S); 3560 } 3561 3562 // Generate the instructions for '#pragma omp target update' directive. 3563 void CodeGenFunction::EmitOMPTargetUpdateDirective( 3564 const OMPTargetUpdateDirective &S) { 3565 // If we don't have target devices, don't bother emitting the data mapping 3566 // code. 3567 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3568 return; 3569 3570 // Check if we have any if clause associated with the directive. 3571 const Expr *IfCond = nullptr; 3572 if (auto *C = S.getSingleClause<OMPIfClause>()) 3573 IfCond = C->getCondition(); 3574 3575 // Check if we have any device clause associated with the directive. 3576 const Expr *Device = nullptr; 3577 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3578 Device = C->getDevice(); 3579 3580 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3581 } 3582