1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
34           for (const auto *I : PreInit->decls()) {
35             if (!I->hasAttr<OMPCaptureNoInitAttr>())
36               CGF.EmitVarDecl(cast<VarDecl>(*I));
37             else {
38               CodeGenFunction::AutoVarEmission Emission =
39                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
40               CGF.EmitAutoVarCleanups(Emission);
41             }
42           }
43         }
44       }
45     }
46   }
47   CodeGenFunction::OMPPrivateScope InlinedShareds;
48 
49   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
50     return CGF.LambdaCaptureFields.lookup(VD) ||
51            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
52            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
53   }
54 
55 public:
56   OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S,
57                   bool AsInlined = false)
58       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
59         InlinedShareds(CGF) {
60     emitPreInitStmt(CGF, S);
61     if (AsInlined) {
62       if (S.hasAssociatedStmt()) {
63         auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
64         for (auto &C : CS->captures()) {
65           if (C.capturesVariable() || C.capturesVariableByCopy()) {
66             auto *VD = C.getCapturedVar();
67             DeclRefExpr DRE(const_cast<VarDecl *>(VD),
68                             isCapturedVar(CGF, VD) ||
69                                 (CGF.CapturedStmtInfo &&
70                                  InlinedShareds.isGlobalVarCaptured(VD)),
71                             VD->getType().getNonReferenceType(), VK_LValue,
72                             SourceLocation());
73             InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
74               return CGF.EmitLValue(&DRE).getAddress();
75             });
76           }
77         }
78         (void)InlinedShareds.Privatize();
79       }
80     }
81   }
82 };
83 
84 /// Private scope for OpenMP loop-based directives, that supports capturing
85 /// of used expression from loop statement.
86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
87   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
88     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
89       if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) {
90         for (const auto *I : PreInits->decls())
91           CGF.EmitVarDecl(cast<VarDecl>(*I));
92       }
93     }
94   }
95 
96 public:
97   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
98       : CodeGenFunction::RunCleanupsScope(CGF) {
99     emitPreInitStmt(CGF, S);
100   }
101 };
102 
103 } // namespace
104 
105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
106   auto &C = getContext();
107   llvm::Value *Size = nullptr;
108   auto SizeInChars = C.getTypeSizeInChars(Ty);
109   if (SizeInChars.isZero()) {
110     // getTypeSizeInChars() returns 0 for a VLA.
111     while (auto *VAT = C.getAsVariableArrayType(Ty)) {
112       llvm::Value *ArraySize;
113       std::tie(ArraySize, Ty) = getVLASize(VAT);
114       Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize;
115     }
116     SizeInChars = C.getTypeSizeInChars(Ty);
117     if (SizeInChars.isZero())
118       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
119     Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
120   } else
121     Size = CGM.getSize(SizeInChars);
122   return Size;
123 }
124 
125 void CodeGenFunction::GenerateOpenMPCapturedVars(
126     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
127   const RecordDecl *RD = S.getCapturedRecordDecl();
128   auto CurField = RD->field_begin();
129   auto CurCap = S.captures().begin();
130   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
131                                                  E = S.capture_init_end();
132        I != E; ++I, ++CurField, ++CurCap) {
133     if (CurField->hasCapturedVLAType()) {
134       auto VAT = CurField->getCapturedVLAType();
135       auto *Val = VLASizeMap[VAT->getSizeExpr()];
136       CapturedVars.push_back(Val);
137     } else if (CurCap->capturesThis())
138       CapturedVars.push_back(CXXThisValue);
139     else if (CurCap->capturesVariableByCopy()) {
140       llvm::Value *CV =
141           EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal();
142 
143       // If the field is not a pointer, we need to save the actual value
144       // and load it as a void pointer.
145       if (!CurField->getType()->isAnyPointerType()) {
146         auto &Ctx = getContext();
147         auto DstAddr = CreateMemTemp(
148             Ctx.getUIntPtrType(),
149             Twine(CurCap->getCapturedVar()->getName()) + ".casted");
150         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
151 
152         auto *SrcAddrVal = EmitScalarConversion(
153             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
154             Ctx.getPointerType(CurField->getType()), SourceLocation());
155         LValue SrcLV =
156             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
157 
158         // Store the value using the source type pointer.
159         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
160 
161         // Load the value using the destination type pointer.
162         CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal();
163       }
164       CapturedVars.push_back(CV);
165     } else {
166       assert(CurCap->capturesVariable() && "Expected capture by reference.");
167       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
168     }
169   }
170 }
171 
172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
173                                     StringRef Name, LValue AddrLV,
174                                     bool isReferenceType = false) {
175   ASTContext &Ctx = CGF.getContext();
176 
177   auto *CastedPtr = CGF.EmitScalarConversion(
178       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
179       Ctx.getPointerType(DstType), SourceLocation());
180   auto TmpAddr =
181       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
182           .getAddress();
183 
184   // If we are dealing with references we need to return the address of the
185   // reference instead of the reference of the value.
186   if (isReferenceType) {
187     QualType RefType = Ctx.getLValueReferenceType(DstType);
188     auto *RefVal = TmpAddr.getPointer();
189     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
190     auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
191     CGF.EmitScalarInit(RefVal, TmpLVal);
192   }
193 
194   return TmpAddr;
195 }
196 
197 llvm::Function *
198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
199   assert(
200       CapturedStmtInfo &&
201       "CapturedStmtInfo should be set when generating the captured function");
202   const CapturedDecl *CD = S.getCapturedDecl();
203   const RecordDecl *RD = S.getCapturedRecordDecl();
204   assert(CD->hasBody() && "missing CapturedDecl body");
205 
206   // Build the argument list.
207   ASTContext &Ctx = CGM.getContext();
208   FunctionArgList Args;
209   Args.append(CD->param_begin(),
210               std::next(CD->param_begin(), CD->getContextParamPosition()));
211   auto I = S.captures().begin();
212   for (auto *FD : RD->fields()) {
213     QualType ArgType = FD->getType();
214     IdentifierInfo *II = nullptr;
215     VarDecl *CapVar = nullptr;
216 
217     // If this is a capture by copy and the type is not a pointer, the outlined
218     // function argument type should be uintptr and the value properly casted to
219     // uintptr. This is necessary given that the runtime library is only able to
220     // deal with pointers. We can pass in the same way the VLA type sizes to the
221     // outlined function.
222     if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
223         I->capturesVariableArrayType())
224       ArgType = Ctx.getUIntPtrType();
225 
226     if (I->capturesVariable() || I->capturesVariableByCopy()) {
227       CapVar = I->getCapturedVar();
228       II = CapVar->getIdentifier();
229     } else if (I->capturesThis())
230       II = &getContext().Idents.get("this");
231     else {
232       assert(I->capturesVariableArrayType());
233       II = &getContext().Idents.get("vla");
234     }
235     if (ArgType->isVariablyModifiedType())
236       ArgType = getContext().getVariableArrayDecayedType(ArgType);
237     Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr,
238                                              FD->getLocation(), II, ArgType));
239     ++I;
240   }
241   Args.append(
242       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
243       CD->param_end());
244 
245   // Create the function declaration.
246   FunctionType::ExtInfo ExtInfo;
247   const CGFunctionInfo &FuncInfo =
248       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
249   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
250 
251   llvm::Function *F = llvm::Function::Create(
252       FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
253       CapturedStmtInfo->getHelperName(), &CGM.getModule());
254   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
255   if (CD->isNothrow())
256     F->addFnAttr(llvm::Attribute::NoUnwind);
257 
258   // Generate the function.
259   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
260                 CD->getBody()->getLocStart());
261   unsigned Cnt = CD->getContextParamPosition();
262   I = S.captures().begin();
263   for (auto *FD : RD->fields()) {
264     // If we are capturing a pointer by copy we don't need to do anything, just
265     // use the value that we get from the arguments.
266     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
267       setAddrOfLocalVar(I->getCapturedVar(), GetAddrOfLocalVar(Args[Cnt]));
268       ++Cnt;
269       ++I;
270       continue;
271     }
272 
273     LValue ArgLVal =
274         MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(),
275                        AlignmentSource::Decl);
276     if (FD->hasCapturedVLAType()) {
277       LValue CastedArgLVal =
278           MakeAddrLValue(castValueFromUintptr(*this, FD->getType(),
279                                               Args[Cnt]->getName(), ArgLVal),
280                          FD->getType(), AlignmentSource::Decl);
281       auto *ExprArg =
282           EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal();
283       auto VAT = FD->getCapturedVLAType();
284       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
285     } else if (I->capturesVariable()) {
286       auto *Var = I->getCapturedVar();
287       QualType VarTy = Var->getType();
288       Address ArgAddr = ArgLVal.getAddress();
289       if (!VarTy->isReferenceType()) {
290         ArgAddr = EmitLoadOfReference(
291             ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
292       }
293       setAddrOfLocalVar(
294           Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var)));
295     } else if (I->capturesVariableByCopy()) {
296       assert(!FD->getType()->isAnyPointerType() &&
297              "Not expecting a captured pointer.");
298       auto *Var = I->getCapturedVar();
299       QualType VarTy = Var->getType();
300       setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(),
301                                                   Args[Cnt]->getName(), ArgLVal,
302                                                   VarTy->isReferenceType()));
303     } else {
304       // If 'this' is captured, load it into CXXThisValue.
305       assert(I->capturesThis());
306       CXXThisValue =
307           EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal();
308     }
309     ++Cnt;
310     ++I;
311   }
312 
313   PGO.assignRegionCounters(GlobalDecl(CD), F);
314   CapturedStmtInfo->EmitBody(*this, CD->getBody());
315   FinishFunction(CD->getBodyRBrace());
316 
317   return F;
318 }
319 
320 //===----------------------------------------------------------------------===//
321 //                              OpenMP Directive Emission
322 //===----------------------------------------------------------------------===//
323 void CodeGenFunction::EmitOMPAggregateAssign(
324     Address DestAddr, Address SrcAddr, QualType OriginalType,
325     const llvm::function_ref<void(Address, Address)> &CopyGen) {
326   // Perform element-by-element initialization.
327   QualType ElementTy;
328 
329   // Drill down to the base element type on both arrays.
330   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
331   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
332   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
333 
334   auto SrcBegin = SrcAddr.getPointer();
335   auto DestBegin = DestAddr.getPointer();
336   // Cast from pointer to array type to pointer to single element.
337   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
338   // The basic structure here is a while-do loop.
339   auto BodyBB = createBasicBlock("omp.arraycpy.body");
340   auto DoneBB = createBasicBlock("omp.arraycpy.done");
341   auto IsEmpty =
342       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
343   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
344 
345   // Enter the loop body, making that address the current address.
346   auto EntryBB = Builder.GetInsertBlock();
347   EmitBlock(BodyBB);
348 
349   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
350 
351   llvm::PHINode *SrcElementPHI =
352     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
353   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
354   Address SrcElementCurrent =
355       Address(SrcElementPHI,
356               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
357 
358   llvm::PHINode *DestElementPHI =
359     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
360   DestElementPHI->addIncoming(DestBegin, EntryBB);
361   Address DestElementCurrent =
362     Address(DestElementPHI,
363             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
364 
365   // Emit copy.
366   CopyGen(DestElementCurrent, SrcElementCurrent);
367 
368   // Shift the address forward by one element.
369   auto DestElementNext = Builder.CreateConstGEP1_32(
370       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
371   auto SrcElementNext = Builder.CreateConstGEP1_32(
372       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
373   // Check whether we've reached the end.
374   auto Done =
375       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
376   Builder.CreateCondBr(Done, DoneBB, BodyBB);
377   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
378   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
379 
380   // Done.
381   EmitBlock(DoneBB, /*IsFinished=*/true);
382 }
383 
384 /// Check if the combiner is a call to UDR combiner and if it is so return the
385 /// UDR decl used for reduction.
386 static const OMPDeclareReductionDecl *
387 getReductionInit(const Expr *ReductionOp) {
388   if (auto *CE = dyn_cast<CallExpr>(ReductionOp))
389     if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
390       if (auto *DRE =
391               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
392         if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
393           return DRD;
394   return nullptr;
395 }
396 
397 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
398                                              const OMPDeclareReductionDecl *DRD,
399                                              const Expr *InitOp,
400                                              Address Private, Address Original,
401                                              QualType Ty) {
402   if (DRD->getInitializer()) {
403     std::pair<llvm::Function *, llvm::Function *> Reduction =
404         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
405     auto *CE = cast<CallExpr>(InitOp);
406     auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
407     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
408     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
409     auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
410     auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
411     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
412     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
413                             [=]() -> Address { return Private; });
414     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
415                             [=]() -> Address { return Original; });
416     (void)PrivateScope.Privatize();
417     RValue Func = RValue::get(Reduction.second);
418     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
419     CGF.EmitIgnoredExpr(InitOp);
420   } else {
421     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
422     auto *GV = new llvm::GlobalVariable(
423         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
424         llvm::GlobalValue::PrivateLinkage, Init, ".init");
425     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
426     RValue InitRVal;
427     switch (CGF.getEvaluationKind(Ty)) {
428     case TEK_Scalar:
429       InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation());
430       break;
431     case TEK_Complex:
432       InitRVal =
433           RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation()));
434       break;
435     case TEK_Aggregate:
436       InitRVal = RValue::getAggregate(LV.getAddress());
437       break;
438     }
439     OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue);
440     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
441     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
442                          /*IsInitializer=*/false);
443   }
444 }
445 
446 /// \brief Emit initialization of arrays of complex types.
447 /// \param DestAddr Address of the array.
448 /// \param Type Type of array.
449 /// \param Init Initial expression of array.
450 /// \param SrcAddr Address of the original array.
451 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
452                                  QualType Type, const Expr *Init,
453                                  Address SrcAddr = Address::invalid()) {
454   auto *DRD = getReductionInit(Init);
455   // Perform element-by-element initialization.
456   QualType ElementTy;
457 
458   // Drill down to the base element type on both arrays.
459   auto ArrayTy = Type->getAsArrayTypeUnsafe();
460   auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
461   DestAddr =
462       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
463   if (DRD)
464     SrcAddr =
465         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
466 
467   llvm::Value *SrcBegin = nullptr;
468   if (DRD)
469     SrcBegin = SrcAddr.getPointer();
470   auto DestBegin = DestAddr.getPointer();
471   // Cast from pointer to array type to pointer to single element.
472   auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
473   // The basic structure here is a while-do loop.
474   auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
475   auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
476   auto IsEmpty =
477       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
478   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
479 
480   // Enter the loop body, making that address the current address.
481   auto EntryBB = CGF.Builder.GetInsertBlock();
482   CGF.EmitBlock(BodyBB);
483 
484   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
485 
486   llvm::PHINode *SrcElementPHI = nullptr;
487   Address SrcElementCurrent = Address::invalid();
488   if (DRD) {
489     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
490                                           "omp.arraycpy.srcElementPast");
491     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
492     SrcElementCurrent =
493         Address(SrcElementPHI,
494                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
495   }
496   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
497       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
498   DestElementPHI->addIncoming(DestBegin, EntryBB);
499   Address DestElementCurrent =
500       Address(DestElementPHI,
501               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
502 
503   // Emit copy.
504   {
505     CodeGenFunction::RunCleanupsScope InitScope(CGF);
506     if (DRD && (DRD->getInitializer() || !Init)) {
507       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
508                                        SrcElementCurrent, ElementTy);
509     } else
510       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
511                            /*IsInitializer=*/false);
512   }
513 
514   if (DRD) {
515     // Shift the address forward by one element.
516     auto SrcElementNext = CGF.Builder.CreateConstGEP1_32(
517         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
518     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
519   }
520 
521   // Shift the address forward by one element.
522   auto DestElementNext = CGF.Builder.CreateConstGEP1_32(
523       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
524   // Check whether we've reached the end.
525   auto Done =
526       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
527   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
528   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
529 
530   // Done.
531   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
532 }
533 
534 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
535                                   Address SrcAddr, const VarDecl *DestVD,
536                                   const VarDecl *SrcVD, const Expr *Copy) {
537   if (OriginalType->isArrayType()) {
538     auto *BO = dyn_cast<BinaryOperator>(Copy);
539     if (BO && BO->getOpcode() == BO_Assign) {
540       // Perform simple memcpy for simple copying.
541       EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
542     } else {
543       // For arrays with complex element types perform element by element
544       // copying.
545       EmitOMPAggregateAssign(
546           DestAddr, SrcAddr, OriginalType,
547           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
548             // Working with the single array element, so have to remap
549             // destination and source variables to corresponding array
550             // elements.
551             CodeGenFunction::OMPPrivateScope Remap(*this);
552             Remap.addPrivate(DestVD, [DestElement]() -> Address {
553               return DestElement;
554             });
555             Remap.addPrivate(
556                 SrcVD, [SrcElement]() -> Address { return SrcElement; });
557             (void)Remap.Privatize();
558             EmitIgnoredExpr(Copy);
559           });
560     }
561   } else {
562     // Remap pseudo source variable to private copy.
563     CodeGenFunction::OMPPrivateScope Remap(*this);
564     Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
565     Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
566     (void)Remap.Privatize();
567     // Emit copying of the whole variable.
568     EmitIgnoredExpr(Copy);
569   }
570 }
571 
572 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
573                                                 OMPPrivateScope &PrivateScope) {
574   if (!HaveInsertPoint())
575     return false;
576   bool FirstprivateIsLastprivate = false;
577   llvm::DenseSet<const VarDecl *> Lastprivates;
578   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
579     for (const auto *D : C->varlists())
580       Lastprivates.insert(
581           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
582   }
583   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
584   CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt()));
585   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
586     auto IRef = C->varlist_begin();
587     auto InitsRef = C->inits().begin();
588     for (auto IInit : C->private_copies()) {
589       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
590       bool ThisFirstprivateIsLastprivate =
591           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
592       auto *CapFD = CapturesInfo.lookup(OrigVD);
593       auto *FD = CapturedStmtInfo->lookup(OrigVD);
594       if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) &&
595           !FD->getType()->isReferenceType()) {
596         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
597         ++IRef;
598         ++InitsRef;
599         continue;
600       }
601       FirstprivateIsLastprivate =
602           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
603       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
604         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
605         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
606         bool IsRegistered;
607         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
608                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
609                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
610         Address OriginalAddr = EmitLValue(&DRE).getAddress();
611         QualType Type = VD->getType();
612         if (Type->isArrayType()) {
613           // Emit VarDecl with copy init for arrays.
614           // Get the address of the original variable captured in current
615           // captured region.
616           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
617             auto Emission = EmitAutoVarAlloca(*VD);
618             auto *Init = VD->getInit();
619             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
620               // Perform simple memcpy.
621               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
622                                   Type);
623             } else {
624               EmitOMPAggregateAssign(
625                   Emission.getAllocatedAddress(), OriginalAddr, Type,
626                   [this, VDInit, Init](Address DestElement,
627                                        Address SrcElement) {
628                     // Clean up any temporaries needed by the initialization.
629                     RunCleanupsScope InitScope(*this);
630                     // Emit initialization for single element.
631                     setAddrOfLocalVar(VDInit, SrcElement);
632                     EmitAnyExprToMem(Init, DestElement,
633                                      Init->getType().getQualifiers(),
634                                      /*IsInitializer*/ false);
635                     LocalDeclMap.erase(VDInit);
636                   });
637             }
638             EmitAutoVarCleanups(Emission);
639             return Emission.getAllocatedAddress();
640           });
641         } else {
642           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
643             // Emit private VarDecl with copy init.
644             // Remap temp VDInit variable to the address of the original
645             // variable
646             // (for proper handling of captured global variables).
647             setAddrOfLocalVar(VDInit, OriginalAddr);
648             EmitDecl(*VD);
649             LocalDeclMap.erase(VDInit);
650             return GetAddrOfLocalVar(VD);
651           });
652         }
653         assert(IsRegistered &&
654                "firstprivate var already registered as private");
655         // Silence the warning about unused variable.
656         (void)IsRegistered;
657       }
658       ++IRef;
659       ++InitsRef;
660     }
661   }
662   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
663 }
664 
665 void CodeGenFunction::EmitOMPPrivateClause(
666     const OMPExecutableDirective &D,
667     CodeGenFunction::OMPPrivateScope &PrivateScope) {
668   if (!HaveInsertPoint())
669     return;
670   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
671   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
672     auto IRef = C->varlist_begin();
673     for (auto IInit : C->private_copies()) {
674       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
675       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
676         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
677         bool IsRegistered =
678             PrivateScope.addPrivate(OrigVD, [&]() -> Address {
679               // Emit private VarDecl with copy init.
680               EmitDecl(*VD);
681               return GetAddrOfLocalVar(VD);
682             });
683         assert(IsRegistered && "private var already registered as private");
684         // Silence the warning about unused variable.
685         (void)IsRegistered;
686       }
687       ++IRef;
688     }
689   }
690 }
691 
692 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
693   if (!HaveInsertPoint())
694     return false;
695   // threadprivate_var1 = master_threadprivate_var1;
696   // operator=(threadprivate_var2, master_threadprivate_var2);
697   // ...
698   // __kmpc_barrier(&loc, global_tid);
699   llvm::DenseSet<const VarDecl *> CopiedVars;
700   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
701   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
702     auto IRef = C->varlist_begin();
703     auto ISrcRef = C->source_exprs().begin();
704     auto IDestRef = C->destination_exprs().begin();
705     for (auto *AssignOp : C->assignment_ops()) {
706       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
707       QualType Type = VD->getType();
708       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
709         // Get the address of the master variable. If we are emitting code with
710         // TLS support, the address is passed from the master as field in the
711         // captured declaration.
712         Address MasterAddr = Address::invalid();
713         if (getLangOpts().OpenMPUseTLS &&
714             getContext().getTargetInfo().isTLSSupported()) {
715           assert(CapturedStmtInfo->lookup(VD) &&
716                  "Copyin threadprivates should have been captured!");
717           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
718                           VK_LValue, (*IRef)->getExprLoc());
719           MasterAddr = EmitLValue(&DRE).getAddress();
720           LocalDeclMap.erase(VD);
721         } else {
722           MasterAddr =
723             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
724                                         : CGM.GetAddrOfGlobal(VD),
725                     getContext().getDeclAlign(VD));
726         }
727         // Get the address of the threadprivate variable.
728         Address PrivateAddr = EmitLValue(*IRef).getAddress();
729         if (CopiedVars.size() == 1) {
730           // At first check if current thread is a master thread. If it is, no
731           // need to copy data.
732           CopyBegin = createBasicBlock("copyin.not.master");
733           CopyEnd = createBasicBlock("copyin.not.master.end");
734           Builder.CreateCondBr(
735               Builder.CreateICmpNE(
736                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
737                   Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
738               CopyBegin, CopyEnd);
739           EmitBlock(CopyBegin);
740         }
741         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
742         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
743         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
744       }
745       ++IRef;
746       ++ISrcRef;
747       ++IDestRef;
748     }
749   }
750   if (CopyEnd) {
751     // Exit out of copying procedure for non-master thread.
752     EmitBlock(CopyEnd, /*IsFinished=*/true);
753     return true;
754   }
755   return false;
756 }
757 
758 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
759     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
760   if (!HaveInsertPoint())
761     return false;
762   bool HasAtLeastOneLastprivate = false;
763   llvm::DenseSet<const VarDecl *> SIMDLCVs;
764   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
765     auto *LoopDirective = cast<OMPLoopDirective>(&D);
766     for (auto *C : LoopDirective->counters()) {
767       SIMDLCVs.insert(
768           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
769     }
770   }
771   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
772   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
773     HasAtLeastOneLastprivate = true;
774     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()))
775       break;
776     auto IRef = C->varlist_begin();
777     auto IDestRef = C->destination_exprs().begin();
778     for (auto *IInit : C->private_copies()) {
779       // Keep the address of the original variable for future update at the end
780       // of the loop.
781       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
782       // Taskloops do not require additional initialization, it is done in
783       // runtime support library.
784       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
785         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
786         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
787           DeclRefExpr DRE(
788               const_cast<VarDecl *>(OrigVD),
789               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
790                   OrigVD) != nullptr,
791               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
792           return EmitLValue(&DRE).getAddress();
793         });
794         // Check if the variable is also a firstprivate: in this case IInit is
795         // not generated. Initialization of this variable will happen in codegen
796         // for 'firstprivate' clause.
797         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
798           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
799           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
800             // Emit private VarDecl with copy init.
801             EmitDecl(*VD);
802             return GetAddrOfLocalVar(VD);
803           });
804           assert(IsRegistered &&
805                  "lastprivate var already registered as private");
806           (void)IsRegistered;
807         }
808       }
809       ++IRef;
810       ++IDestRef;
811     }
812   }
813   return HasAtLeastOneLastprivate;
814 }
815 
816 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
817     const OMPExecutableDirective &D, bool NoFinals,
818     llvm::Value *IsLastIterCond) {
819   if (!HaveInsertPoint())
820     return;
821   // Emit following code:
822   // if (<IsLastIterCond>) {
823   //   orig_var1 = private_orig_var1;
824   //   ...
825   //   orig_varn = private_orig_varn;
826   // }
827   llvm::BasicBlock *ThenBB = nullptr;
828   llvm::BasicBlock *DoneBB = nullptr;
829   if (IsLastIterCond) {
830     ThenBB = createBasicBlock(".omp.lastprivate.then");
831     DoneBB = createBasicBlock(".omp.lastprivate.done");
832     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
833     EmitBlock(ThenBB);
834   }
835   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
836   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
837   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
838     auto IC = LoopDirective->counters().begin();
839     for (auto F : LoopDirective->finals()) {
840       auto *D =
841           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
842       if (NoFinals)
843         AlreadyEmittedVars.insert(D);
844       else
845         LoopCountersAndUpdates[D] = F;
846       ++IC;
847     }
848   }
849   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
850     auto IRef = C->varlist_begin();
851     auto ISrcRef = C->source_exprs().begin();
852     auto IDestRef = C->destination_exprs().begin();
853     for (auto *AssignOp : C->assignment_ops()) {
854       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
855       QualType Type = PrivateVD->getType();
856       auto *CanonicalVD = PrivateVD->getCanonicalDecl();
857       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
858         // If lastprivate variable is a loop control variable for loop-based
859         // directive, update its value before copyin back to original
860         // variable.
861         if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
862           EmitIgnoredExpr(FinalExpr);
863         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
864         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
865         // Get the address of the original variable.
866         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
867         // Get the address of the private variable.
868         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
869         if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
870           PrivateAddr =
871               Address(Builder.CreateLoad(PrivateAddr),
872                       getNaturalTypeAlignment(RefTy->getPointeeType()));
873         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
874       }
875       ++IRef;
876       ++ISrcRef;
877       ++IDestRef;
878     }
879     if (auto *PostUpdate = C->getPostUpdateExpr())
880       EmitIgnoredExpr(PostUpdate);
881   }
882   if (IsLastIterCond)
883     EmitBlock(DoneBB, /*IsFinished=*/true);
884 }
885 
886 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
887                           LValue BaseLV, llvm::Value *Addr) {
888   Address Tmp = Address::invalid();
889   Address TopTmp = Address::invalid();
890   Address MostTopTmp = Address::invalid();
891   BaseTy = BaseTy.getNonReferenceType();
892   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
893          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
894     Tmp = CGF.CreateMemTemp(BaseTy);
895     if (TopTmp.isValid())
896       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
897     else
898       MostTopTmp = Tmp;
899     TopTmp = Tmp;
900     BaseTy = BaseTy->getPointeeType();
901   }
902   llvm::Type *Ty = BaseLV.getPointer()->getType();
903   if (Tmp.isValid())
904     Ty = Tmp.getElementType();
905   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
906   if (Tmp.isValid()) {
907     CGF.Builder.CreateStore(Addr, Tmp);
908     return MostTopTmp;
909   }
910   return Address(Addr, BaseLV.getAlignment());
911 }
912 
913 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
914                           LValue BaseLV) {
915   BaseTy = BaseTy.getNonReferenceType();
916   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
917          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
918     if (auto *PtrTy = BaseTy->getAs<PointerType>())
919       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
920     else {
921       BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(),
922                                              BaseTy->castAs<ReferenceType>());
923     }
924     BaseTy = BaseTy->getPointeeType();
925   }
926   return CGF.MakeAddrLValue(
927       Address(
928           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
929               BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()),
930           BaseLV.getAlignment()),
931       BaseLV.getType(), BaseLV.getAlignmentSource());
932 }
933 
934 void CodeGenFunction::EmitOMPReductionClauseInit(
935     const OMPExecutableDirective &D,
936     CodeGenFunction::OMPPrivateScope &PrivateScope) {
937   if (!HaveInsertPoint())
938     return;
939   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
940     auto ILHS = C->lhs_exprs().begin();
941     auto IRHS = C->rhs_exprs().begin();
942     auto IPriv = C->privates().begin();
943     auto IRed = C->reduction_ops().begin();
944     for (auto IRef : C->varlists()) {
945       auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
946       auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
947       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
948       auto *DRD = getReductionInit(*IRed);
949       if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) {
950         auto *Base = OASE->getBase()->IgnoreParenImpCasts();
951         while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
952           Base = TempOASE->getBase()->IgnoreParenImpCasts();
953         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
954           Base = TempASE->getBase()->IgnoreParenImpCasts();
955         auto *DE = cast<DeclRefExpr>(Base);
956         auto *OrigVD = cast<VarDecl>(DE->getDecl());
957         auto OASELValueLB = EmitOMPArraySectionExpr(OASE);
958         auto OASELValueUB =
959             EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
960         auto OriginalBaseLValue = EmitLValue(DE);
961         LValue BaseLValue =
962             loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(),
963                         OriginalBaseLValue);
964         // Store the address of the original variable associated with the LHS
965         // implicit variable.
966         PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address {
967           return OASELValueLB.getAddress();
968         });
969         // Emit reduction copy.
970         bool IsRegistered = PrivateScope.addPrivate(
971             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB,
972                      OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address {
973               // Emit VarDecl with copy init for arrays.
974               // Get the address of the original variable captured in current
975               // captured region.
976               auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(),
977                                                  OASELValueLB.getPointer());
978               Size = Builder.CreateNUWAdd(
979                   Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
980               CodeGenFunction::OpaqueValueMapping OpaqueMap(
981                   *this, cast<OpaqueValueExpr>(
982                              getContext()
983                                  .getAsVariableArrayType(PrivateVD->getType())
984                                  ->getSizeExpr()),
985                   RValue::get(Size));
986               EmitVariablyModifiedType(PrivateVD->getType());
987               auto Emission = EmitAutoVarAlloca(*PrivateVD);
988               auto Addr = Emission.getAllocatedAddress();
989               auto *Init = PrivateVD->getInit();
990               EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
991                                    DRD ? *IRed : Init,
992                                    OASELValueLB.getAddress());
993               EmitAutoVarCleanups(Emission);
994               // Emit private VarDecl with reduction init.
995               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
996                                                    OASELValueLB.getPointer());
997               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
998               return castToBase(*this, OrigVD->getType(),
999                                 OASELValueLB.getType(), OriginalBaseLValue,
1000                                 Ptr);
1001             });
1002         assert(IsRegistered && "private var already registered as private");
1003         // Silence the warning about unused variable.
1004         (void)IsRegistered;
1005         PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1006           return GetAddrOfLocalVar(PrivateVD);
1007         });
1008       } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) {
1009         auto *Base = ASE->getBase()->IgnoreParenImpCasts();
1010         while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1011           Base = TempASE->getBase()->IgnoreParenImpCasts();
1012         auto *DE = cast<DeclRefExpr>(Base);
1013         auto *OrigVD = cast<VarDecl>(DE->getDecl());
1014         auto ASELValue = EmitLValue(ASE);
1015         auto OriginalBaseLValue = EmitLValue(DE);
1016         LValue BaseLValue = loadToBegin(
1017             *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue);
1018         // Store the address of the original variable associated with the LHS
1019         // implicit variable.
1020         PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address {
1021           return ASELValue.getAddress();
1022         });
1023         // Emit reduction copy.
1024         bool IsRegistered = PrivateScope.addPrivate(
1025             OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue,
1026                      OriginalBaseLValue, DRD, IRed]() -> Address {
1027               // Emit private VarDecl with reduction init.
1028               AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1029               auto Addr = Emission.getAllocatedAddress();
1030               if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1031                 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1032                                                  ASELValue.getAddress(),
1033                                                  ASELValue.getType());
1034               } else
1035                 EmitAutoVarInit(Emission);
1036               EmitAutoVarCleanups(Emission);
1037               auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
1038                                                    ASELValue.getPointer());
1039               auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
1040               return castToBase(*this, OrigVD->getType(), ASELValue.getType(),
1041                                 OriginalBaseLValue, Ptr);
1042             });
1043         assert(IsRegistered && "private var already registered as private");
1044         // Silence the warning about unused variable.
1045         (void)IsRegistered;
1046         PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1047           return Builder.CreateElementBitCast(
1048               GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()),
1049               "rhs.begin");
1050         });
1051       } else {
1052         auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
1053         QualType Type = PrivateVD->getType();
1054         if (getContext().getAsArrayType(Type)) {
1055           // Store the address of the original variable associated with the LHS
1056           // implicit variable.
1057           DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1058                           CapturedStmtInfo->lookup(OrigVD) != nullptr,
1059                           IRef->getType(), VK_LValue, IRef->getExprLoc());
1060           Address OriginalAddr = EmitLValue(&DRE).getAddress();
1061           PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr,
1062                                           LHSVD]() -> Address {
1063             OriginalAddr = Builder.CreateElementBitCast(
1064                 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1065             return OriginalAddr;
1066           });
1067           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
1068             if (Type->isVariablyModifiedType()) {
1069               CodeGenFunction::OpaqueValueMapping OpaqueMap(
1070                   *this, cast<OpaqueValueExpr>(
1071                              getContext()
1072                                  .getAsVariableArrayType(PrivateVD->getType())
1073                                  ->getSizeExpr()),
1074                   RValue::get(
1075                       getTypeSize(OrigVD->getType().getNonReferenceType())));
1076               EmitVariablyModifiedType(Type);
1077             }
1078             auto Emission = EmitAutoVarAlloca(*PrivateVD);
1079             auto Addr = Emission.getAllocatedAddress();
1080             auto *Init = PrivateVD->getInit();
1081             EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(),
1082                                  DRD ? *IRed : Init, OriginalAddr);
1083             EmitAutoVarCleanups(Emission);
1084             return Emission.getAllocatedAddress();
1085           });
1086           assert(IsRegistered && "private var already registered as private");
1087           // Silence the warning about unused variable.
1088           (void)IsRegistered;
1089           PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1090             return Builder.CreateElementBitCast(
1091                 GetAddrOfLocalVar(PrivateVD),
1092                 ConvertTypeForMem(RHSVD->getType()), "rhs.begin");
1093           });
1094         } else {
1095           // Store the address of the original variable associated with the LHS
1096           // implicit variable.
1097           Address OriginalAddr = Address::invalid();
1098           PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef,
1099                                           &OriginalAddr]() -> Address {
1100             DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1101                             CapturedStmtInfo->lookup(OrigVD) != nullptr,
1102                             IRef->getType(), VK_LValue, IRef->getExprLoc());
1103             OriginalAddr = EmitLValue(&DRE).getAddress();
1104             return OriginalAddr;
1105           });
1106           // Emit reduction copy.
1107           bool IsRegistered = PrivateScope.addPrivate(
1108               OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address {
1109                 // Emit private VarDecl with reduction init.
1110                 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1111                 auto Addr = Emission.getAllocatedAddress();
1112                 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1113                   emitInitWithReductionInitializer(*this, DRD, *IRed, Addr,
1114                                                    OriginalAddr,
1115                                                    PrivateVD->getType());
1116                 } else
1117                   EmitAutoVarInit(Emission);
1118                 EmitAutoVarCleanups(Emission);
1119                 return Addr;
1120               });
1121           assert(IsRegistered && "private var already registered as private");
1122           // Silence the warning about unused variable.
1123           (void)IsRegistered;
1124           PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1125             return GetAddrOfLocalVar(PrivateVD);
1126           });
1127         }
1128       }
1129       ++ILHS;
1130       ++IRHS;
1131       ++IPriv;
1132       ++IRed;
1133     }
1134   }
1135 }
1136 
1137 void CodeGenFunction::EmitOMPReductionClauseFinal(
1138     const OMPExecutableDirective &D) {
1139   if (!HaveInsertPoint())
1140     return;
1141   llvm::SmallVector<const Expr *, 8> Privates;
1142   llvm::SmallVector<const Expr *, 8> LHSExprs;
1143   llvm::SmallVector<const Expr *, 8> RHSExprs;
1144   llvm::SmallVector<const Expr *, 8> ReductionOps;
1145   bool HasAtLeastOneReduction = false;
1146   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1147     HasAtLeastOneReduction = true;
1148     Privates.append(C->privates().begin(), C->privates().end());
1149     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1150     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1151     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1152   }
1153   if (HasAtLeastOneReduction) {
1154     // Emit nowait reduction if nowait clause is present or directive is a
1155     // parallel directive (it always has implicit barrier).
1156     CGM.getOpenMPRuntime().emitReduction(
1157         *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
1158         D.getSingleClause<OMPNowaitClause>() ||
1159             isOpenMPParallelDirective(D.getDirectiveKind()) ||
1160             D.getDirectiveKind() == OMPD_simd,
1161         D.getDirectiveKind() == OMPD_simd);
1162   }
1163 }
1164 
1165 static void emitPostUpdateForReductionClause(
1166     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1167     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1168   if (!CGF.HaveInsertPoint())
1169     return;
1170   llvm::BasicBlock *DoneBB = nullptr;
1171   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1172     if (auto *PostUpdate = C->getPostUpdateExpr()) {
1173       if (!DoneBB) {
1174         if (auto *Cond = CondGen(CGF)) {
1175           // If the first post-update expression is found, emit conditional
1176           // block if it was requested.
1177           auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1178           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1179           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1180           CGF.EmitBlock(ThenBB);
1181         }
1182       }
1183       CGF.EmitIgnoredExpr(PostUpdate);
1184     }
1185   }
1186   if (DoneBB)
1187     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1188 }
1189 
1190 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
1191                                            const OMPExecutableDirective &S,
1192                                            OpenMPDirectiveKind InnermostKind,
1193                                            const RegionCodeGenTy &CodeGen) {
1194   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
1195   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
1196       emitParallelOrTeamsOutlinedFunction(S,
1197           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1198   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1199     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1200     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1201                                          /*IgnoreResultAssign*/ true);
1202     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1203         CGF, NumThreads, NumThreadsClause->getLocStart());
1204   }
1205   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1206     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1207     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1208         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
1209   }
1210   const Expr *IfCond = nullptr;
1211   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1212     if (C->getNameModifier() == OMPD_unknown ||
1213         C->getNameModifier() == OMPD_parallel) {
1214       IfCond = C->getCondition();
1215       break;
1216     }
1217   }
1218 
1219   OMPLexicalScope Scope(CGF, S);
1220   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1221   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1222   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
1223                                               CapturedVars, IfCond);
1224 }
1225 
1226 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1227   // Emit parallel region as a standalone region.
1228   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1229     OMPPrivateScope PrivateScope(CGF);
1230     bool Copyins = CGF.EmitOMPCopyinClause(S);
1231     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1232     if (Copyins) {
1233       // Emit implicit barrier to synchronize threads and avoid data races on
1234       // propagation master's thread values of threadprivate variables to local
1235       // instances of that variables of all other implicit threads.
1236       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1237           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
1238           /*ForceSimpleCall=*/true);
1239     }
1240     CGF.EmitOMPPrivateClause(S, PrivateScope);
1241     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1242     (void)PrivateScope.Privatize();
1243     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1244     CGF.EmitOMPReductionClauseFinal(S);
1245   };
1246   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
1247   emitPostUpdateForReductionClause(
1248       *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1249 }
1250 
1251 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1252                                       JumpDest LoopExit) {
1253   RunCleanupsScope BodyScope(*this);
1254   // Update counters values on current iteration.
1255   for (auto I : D.updates()) {
1256     EmitIgnoredExpr(I);
1257   }
1258   // Update the linear variables.
1259   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1260     for (auto *U : C->updates())
1261       EmitIgnoredExpr(U);
1262   }
1263 
1264   // On a continue in the body, jump to the end.
1265   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
1266   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1267   // Emit loop body.
1268   EmitStmt(D.getBody());
1269   // The end (updates/cleanups).
1270   EmitBlock(Continue.getBlock());
1271   BreakContinueStack.pop_back();
1272 }
1273 
1274 void CodeGenFunction::EmitOMPInnerLoop(
1275     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1276     const Expr *IncExpr,
1277     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
1278     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
1279   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1280 
1281   // Start the loop with a block that tests the condition.
1282   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1283   EmitBlock(CondBlock);
1284   LoopStack.push(CondBlock, Builder.getCurrentDebugLocation());
1285 
1286   // If there are any cleanups between here and the loop-exit scope,
1287   // create a block to stage a loop exit along.
1288   auto ExitBlock = LoopExit.getBlock();
1289   if (RequiresCleanup)
1290     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1291 
1292   auto LoopBody = createBasicBlock("omp.inner.for.body");
1293 
1294   // Emit condition.
1295   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1296   if (ExitBlock != LoopExit.getBlock()) {
1297     EmitBlock(ExitBlock);
1298     EmitBranchThroughCleanup(LoopExit);
1299   }
1300 
1301   EmitBlock(LoopBody);
1302   incrementProfileCounter(&S);
1303 
1304   // Create a block for the increment.
1305   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1306   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1307 
1308   BodyGen(*this);
1309 
1310   // Emit "IV = IV + 1" and a back-edge to the condition block.
1311   EmitBlock(Continue.getBlock());
1312   EmitIgnoredExpr(IncExpr);
1313   PostIncGen(*this);
1314   BreakContinueStack.pop_back();
1315   EmitBranch(CondBlock);
1316   LoopStack.pop();
1317   // Emit the fall-through block.
1318   EmitBlock(LoopExit.getBlock());
1319 }
1320 
1321 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1322   if (!HaveInsertPoint())
1323     return;
1324   // Emit inits for the linear variables.
1325   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1326     for (auto *Init : C->inits()) {
1327       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1328       if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1329         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1330         auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1331         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1332                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1333                         VD->getInit()->getType(), VK_LValue,
1334                         VD->getInit()->getExprLoc());
1335         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1336                                                 VD->getType()),
1337                        /*capturedByInit=*/false);
1338         EmitAutoVarCleanups(Emission);
1339       } else
1340         EmitVarDecl(*VD);
1341     }
1342     // Emit the linear steps for the linear clauses.
1343     // If a step is not constant, it is pre-calculated before the loop.
1344     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1345       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1346         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1347         // Emit calculation of the linear step.
1348         EmitIgnoredExpr(CS);
1349       }
1350   }
1351 }
1352 
1353 void CodeGenFunction::EmitOMPLinearClauseFinal(
1354     const OMPLoopDirective &D,
1355     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1356   if (!HaveInsertPoint())
1357     return;
1358   llvm::BasicBlock *DoneBB = nullptr;
1359   // Emit the final values of the linear variables.
1360   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1361     auto IC = C->varlist_begin();
1362     for (auto *F : C->finals()) {
1363       if (!DoneBB) {
1364         if (auto *Cond = CondGen(*this)) {
1365           // If the first post-update expression is found, emit conditional
1366           // block if it was requested.
1367           auto *ThenBB = createBasicBlock(".omp.linear.pu");
1368           DoneBB = createBasicBlock(".omp.linear.pu.done");
1369           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1370           EmitBlock(ThenBB);
1371         }
1372       }
1373       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1374       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1375                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1376                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1377       Address OrigAddr = EmitLValue(&DRE).getAddress();
1378       CodeGenFunction::OMPPrivateScope VarScope(*this);
1379       VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; });
1380       (void)VarScope.Privatize();
1381       EmitIgnoredExpr(F);
1382       ++IC;
1383     }
1384     if (auto *PostUpdate = C->getPostUpdateExpr())
1385       EmitIgnoredExpr(PostUpdate);
1386   }
1387   if (DoneBB)
1388     EmitBlock(DoneBB, /*IsFinished=*/true);
1389 }
1390 
1391 static void emitAlignedClause(CodeGenFunction &CGF,
1392                               const OMPExecutableDirective &D) {
1393   if (!CGF.HaveInsertPoint())
1394     return;
1395   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1396     unsigned ClauseAlignment = 0;
1397     if (auto AlignmentExpr = Clause->getAlignment()) {
1398       auto AlignmentCI =
1399           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1400       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1401     }
1402     for (auto E : Clause->varlists()) {
1403       unsigned Alignment = ClauseAlignment;
1404       if (Alignment == 0) {
1405         // OpenMP [2.8.1, Description]
1406         // If no optional parameter is specified, implementation-defined default
1407         // alignments for SIMD instructions on the target platforms are assumed.
1408         Alignment =
1409             CGF.getContext()
1410                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1411                     E->getType()->getPointeeType()))
1412                 .getQuantity();
1413       }
1414       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1415              "alignment is not power of 2");
1416       if (Alignment != 0) {
1417         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1418         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1419       }
1420     }
1421   }
1422 }
1423 
1424 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1425     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1426   if (!HaveInsertPoint())
1427     return;
1428   auto I = S.private_counters().begin();
1429   for (auto *E : S.counters()) {
1430     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1431     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1432     (void)LoopScope.addPrivate(VD, [&]() -> Address {
1433       // Emit var without initialization.
1434       if (!LocalDeclMap.count(PrivateVD)) {
1435         auto VarEmission = EmitAutoVarAlloca(*PrivateVD);
1436         EmitAutoVarCleanups(VarEmission);
1437       }
1438       DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1439                       /*RefersToEnclosingVariableOrCapture=*/false,
1440                       (*I)->getType(), VK_LValue, (*I)->getExprLoc());
1441       return EmitLValue(&DRE).getAddress();
1442     });
1443     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1444         VD->hasGlobalStorage()) {
1445       (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
1446         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1447                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1448                         E->getType(), VK_LValue, E->getExprLoc());
1449         return EmitLValue(&DRE).getAddress();
1450       });
1451     }
1452     ++I;
1453   }
1454 }
1455 
1456 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1457                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1458                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1459   if (!CGF.HaveInsertPoint())
1460     return;
1461   {
1462     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1463     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1464     (void)PreCondScope.Privatize();
1465     // Get initial values of real counters.
1466     for (auto I : S.inits()) {
1467       CGF.EmitIgnoredExpr(I);
1468     }
1469   }
1470   // Check that loop is executed at least one time.
1471   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1472 }
1473 
1474 void CodeGenFunction::EmitOMPLinearClause(
1475     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1476   if (!HaveInsertPoint())
1477     return;
1478   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1479   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1480     auto *LoopDirective = cast<OMPLoopDirective>(&D);
1481     for (auto *C : LoopDirective->counters()) {
1482       SIMDLCVs.insert(
1483           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1484     }
1485   }
1486   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1487     auto CurPrivate = C->privates().begin();
1488     for (auto *E : C->varlists()) {
1489       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1490       auto *PrivateVD =
1491           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1492       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1493         bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
1494           // Emit private VarDecl with copy init.
1495           EmitVarDecl(*PrivateVD);
1496           return GetAddrOfLocalVar(PrivateVD);
1497         });
1498         assert(IsRegistered && "linear var already registered as private");
1499         // Silence the warning about unused variable.
1500         (void)IsRegistered;
1501       } else
1502         EmitVarDecl(*PrivateVD);
1503       ++CurPrivate;
1504     }
1505   }
1506 }
1507 
1508 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1509                                      const OMPExecutableDirective &D,
1510                                      bool IsMonotonic) {
1511   if (!CGF.HaveInsertPoint())
1512     return;
1513   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1514     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1515                                  /*ignoreResult=*/true);
1516     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1517     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1518     // In presence of finite 'safelen', it may be unsafe to mark all
1519     // the memory instructions parallel, because loop-carried
1520     // dependences of 'safelen' iterations are possible.
1521     if (!IsMonotonic)
1522       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1523   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1524     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1525                                  /*ignoreResult=*/true);
1526     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1527     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1528     // In presence of finite 'safelen', it may be unsafe to mark all
1529     // the memory instructions parallel, because loop-carried
1530     // dependences of 'safelen' iterations are possible.
1531     CGF.LoopStack.setParallel(false);
1532   }
1533 }
1534 
1535 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1536                                       bool IsMonotonic) {
1537   // Walk clauses and process safelen/lastprivate.
1538   LoopStack.setParallel(!IsMonotonic);
1539   LoopStack.setVectorizeEnable(true);
1540   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1541 }
1542 
1543 void CodeGenFunction::EmitOMPSimdFinal(
1544     const OMPLoopDirective &D,
1545     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1546   if (!HaveInsertPoint())
1547     return;
1548   llvm::BasicBlock *DoneBB = nullptr;
1549   auto IC = D.counters().begin();
1550   auto IPC = D.private_counters().begin();
1551   for (auto F : D.finals()) {
1552     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1553     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1554     auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1555     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1556         OrigVD->hasGlobalStorage() || CED) {
1557       if (!DoneBB) {
1558         if (auto *Cond = CondGen(*this)) {
1559           // If the first post-update expression is found, emit conditional
1560           // block if it was requested.
1561           auto *ThenBB = createBasicBlock(".omp.final.then");
1562           DoneBB = createBasicBlock(".omp.final.done");
1563           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1564           EmitBlock(ThenBB);
1565         }
1566       }
1567       Address OrigAddr = Address::invalid();
1568       if (CED)
1569         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1570       else {
1571         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1572                         /*RefersToEnclosingVariableOrCapture=*/false,
1573                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1574         OrigAddr = EmitLValue(&DRE).getAddress();
1575       }
1576       OMPPrivateScope VarScope(*this);
1577       VarScope.addPrivate(OrigVD,
1578                           [OrigAddr]() -> Address { return OrigAddr; });
1579       (void)VarScope.Privatize();
1580       EmitIgnoredExpr(F);
1581     }
1582     ++IC;
1583     ++IPC;
1584   }
1585   if (DoneBB)
1586     EmitBlock(DoneBB, /*IsFinished=*/true);
1587 }
1588 
1589 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1590   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1591     OMPLoopScope PreInitScope(CGF, S);
1592     // if (PreCond) {
1593     //   for (IV in 0..LastIteration) BODY;
1594     //   <Final counter/linear vars updates>;
1595     // }
1596     //
1597 
1598     // Emit: if (PreCond) - begin.
1599     // If the condition constant folds and can be elided, avoid emitting the
1600     // whole loop.
1601     bool CondConstant;
1602     llvm::BasicBlock *ContBlock = nullptr;
1603     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1604       if (!CondConstant)
1605         return;
1606     } else {
1607       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
1608       ContBlock = CGF.createBasicBlock("simd.if.end");
1609       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1610                   CGF.getProfileCount(&S));
1611       CGF.EmitBlock(ThenBlock);
1612       CGF.incrementProfileCounter(&S);
1613     }
1614 
1615     // Emit the loop iteration variable.
1616     const Expr *IVExpr = S.getIterationVariable();
1617     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1618     CGF.EmitVarDecl(*IVDecl);
1619     CGF.EmitIgnoredExpr(S.getInit());
1620 
1621     // Emit the iterations count variable.
1622     // If it is not a variable, Sema decided to calculate iterations count on
1623     // each iteration (e.g., it is foldable into a constant).
1624     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1625       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1626       // Emit calculation of the iterations count.
1627       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1628     }
1629 
1630     CGF.EmitOMPSimdInit(S);
1631 
1632     emitAlignedClause(CGF, S);
1633     CGF.EmitOMPLinearClauseInit(S);
1634     {
1635       OMPPrivateScope LoopScope(CGF);
1636       CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1637       CGF.EmitOMPLinearClause(S, LoopScope);
1638       CGF.EmitOMPPrivateClause(S, LoopScope);
1639       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1640       bool HasLastprivateClause =
1641           CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1642       (void)LoopScope.Privatize();
1643       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1644                            S.getInc(),
1645                            [&S](CodeGenFunction &CGF) {
1646                              CGF.EmitOMPLoopBody(S, JumpDest());
1647                              CGF.EmitStopPoint(&S);
1648                            },
1649                            [](CodeGenFunction &) {});
1650       CGF.EmitOMPSimdFinal(
1651           S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1652       // Emit final copy of the lastprivate variables at the end of loops.
1653       if (HasLastprivateClause)
1654         CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1655       CGF.EmitOMPReductionClauseFinal(S);
1656       emitPostUpdateForReductionClause(
1657           CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1658     }
1659     CGF.EmitOMPLinearClauseFinal(
1660         S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1661     // Emit: if (PreCond) - end.
1662     if (ContBlock) {
1663       CGF.EmitBranch(ContBlock);
1664       CGF.EmitBlock(ContBlock, true);
1665     }
1666   };
1667   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1668   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1669 }
1670 
1671 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
1672     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1673     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1674   auto &RT = CGM.getOpenMPRuntime();
1675 
1676   const Expr *IVExpr = S.getIterationVariable();
1677   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1678   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1679 
1680   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1681 
1682   // Start the loop with a block that tests the condition.
1683   auto CondBlock = createBasicBlock("omp.dispatch.cond");
1684   EmitBlock(CondBlock);
1685   LoopStack.push(CondBlock, Builder.getCurrentDebugLocation());
1686 
1687   llvm::Value *BoolCondVal = nullptr;
1688   if (!DynamicOrOrdered) {
1689     // UB = min(UB, GlobalUB)
1690     EmitIgnoredExpr(S.getEnsureUpperBound());
1691     // IV = LB
1692     EmitIgnoredExpr(S.getInit());
1693     // IV < UB
1694     BoolCondVal = EvaluateExprAsBool(S.getCond());
1695   } else {
1696     BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL,
1697                                  LB, UB, ST);
1698   }
1699 
1700   // If there are any cleanups between here and the loop-exit scope,
1701   // create a block to stage a loop exit along.
1702   auto ExitBlock = LoopExit.getBlock();
1703   if (LoopScope.requiresCleanups())
1704     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1705 
1706   auto LoopBody = createBasicBlock("omp.dispatch.body");
1707   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1708   if (ExitBlock != LoopExit.getBlock()) {
1709     EmitBlock(ExitBlock);
1710     EmitBranchThroughCleanup(LoopExit);
1711   }
1712   EmitBlock(LoopBody);
1713 
1714   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1715   // LB for loop condition and emitted it above).
1716   if (DynamicOrOrdered)
1717     EmitIgnoredExpr(S.getInit());
1718 
1719   // Create a block for the increment.
1720   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1721   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1722 
1723   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1724   // with dynamic/guided scheduling and without ordered clause.
1725   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1726     LoopStack.setParallel(!IsMonotonic);
1727   else
1728     EmitOMPSimdInit(S, IsMonotonic);
1729 
1730   SourceLocation Loc = S.getLocStart();
1731   EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
1732                    [&S, LoopExit](CodeGenFunction &CGF) {
1733                      CGF.EmitOMPLoopBody(S, LoopExit);
1734                      CGF.EmitStopPoint(&S);
1735                    },
1736                    [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
1737                      if (Ordered) {
1738                        CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
1739                            CGF, Loc, IVSize, IVSigned);
1740                      }
1741                    });
1742 
1743   EmitBlock(Continue.getBlock());
1744   BreakContinueStack.pop_back();
1745   if (!DynamicOrOrdered) {
1746     // Emit "LB = LB + Stride", "UB = UB + Stride".
1747     EmitIgnoredExpr(S.getNextLowerBound());
1748     EmitIgnoredExpr(S.getNextUpperBound());
1749   }
1750 
1751   EmitBranch(CondBlock);
1752   LoopStack.pop();
1753   // Emit the fall-through block.
1754   EmitBlock(LoopExit.getBlock());
1755 
1756   // Tell the runtime we are done.
1757   if (!DynamicOrOrdered)
1758     RT.emitForStaticFinish(*this, S.getLocEnd());
1759 
1760 }
1761 
1762 void CodeGenFunction::EmitOMPForOuterLoop(
1763     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1764     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1765     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1766   auto &RT = CGM.getOpenMPRuntime();
1767 
1768   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1769   const bool DynamicOrOrdered =
1770       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1771 
1772   assert((Ordered ||
1773           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1774                                  /*Chunked=*/Chunk != nullptr)) &&
1775          "static non-chunked schedule does not need outer loop");
1776 
1777   // Emit outer loop.
1778   //
1779   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1780   // When schedule(dynamic,chunk_size) is specified, the iterations are
1781   // distributed to threads in the team in chunks as the threads request them.
1782   // Each thread executes a chunk of iterations, then requests another chunk,
1783   // until no chunks remain to be distributed. Each chunk contains chunk_size
1784   // iterations, except for the last chunk to be distributed, which may have
1785   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1786   //
1787   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1788   // to threads in the team in chunks as the executing threads request them.
1789   // Each thread executes a chunk of iterations, then requests another chunk,
1790   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1791   // each chunk is proportional to the number of unassigned iterations divided
1792   // by the number of threads in the team, decreasing to 1. For a chunk_size
1793   // with value k (greater than 1), the size of each chunk is determined in the
1794   // same way, with the restriction that the chunks do not contain fewer than k
1795   // iterations (except for the last chunk to be assigned, which may have fewer
1796   // than k iterations).
1797   //
1798   // When schedule(auto) is specified, the decision regarding scheduling is
1799   // delegated to the compiler and/or runtime system. The programmer gives the
1800   // implementation the freedom to choose any possible mapping of iterations to
1801   // threads in the team.
1802   //
1803   // When schedule(runtime) is specified, the decision regarding scheduling is
1804   // deferred until run time, and the schedule and chunk size are taken from the
1805   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1806   // implementation defined
1807   //
1808   // while(__kmpc_dispatch_next(&LB, &UB)) {
1809   //   idx = LB;
1810   //   while (idx <= UB) { BODY; ++idx;
1811   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1812   //   } // inner loop
1813   // }
1814   //
1815   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1816   // When schedule(static, chunk_size) is specified, iterations are divided into
1817   // chunks of size chunk_size, and the chunks are assigned to the threads in
1818   // the team in a round-robin fashion in the order of the thread number.
1819   //
1820   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1821   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1822   //   LB = LB + ST;
1823   //   UB = UB + ST;
1824   // }
1825   //
1826 
1827   const Expr *IVExpr = S.getIterationVariable();
1828   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1829   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1830 
1831   if (DynamicOrOrdered) {
1832     llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration());
1833     RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize,
1834                            IVSigned, Ordered, UBVal, Chunk);
1835   } else {
1836     RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
1837                          Ordered, IL, LB, UB, ST, Chunk);
1838   }
1839 
1840   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB,
1841                    ST, IL, Chunk);
1842 }
1843 
1844 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1845     OpenMPDistScheduleClauseKind ScheduleKind,
1846     const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
1847     Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
1848 
1849   auto &RT = CGM.getOpenMPRuntime();
1850 
1851   // Emit outer loop.
1852   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1853   // dynamic
1854   //
1855 
1856   const Expr *IVExpr = S.getIterationVariable();
1857   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1858   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1859 
1860   RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
1861                               IVSize, IVSigned, /* Ordered = */ false,
1862                               IL, LB, UB, ST, Chunk);
1863 
1864   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false,
1865                    S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk);
1866 }
1867 
1868 /// \brief Emit a helper variable and return corresponding lvalue.
1869 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1870                                const DeclRefExpr *Helper) {
1871   auto VDecl = cast<VarDecl>(Helper->getDecl());
1872   CGF.EmitVarDecl(*VDecl);
1873   return CGF.EmitLValue(Helper);
1874 }
1875 
1876 namespace {
1877   struct ScheduleKindModifiersTy {
1878     OpenMPScheduleClauseKind Kind;
1879     OpenMPScheduleClauseModifier M1;
1880     OpenMPScheduleClauseModifier M2;
1881     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
1882                             OpenMPScheduleClauseModifier M1,
1883                             OpenMPScheduleClauseModifier M2)
1884         : Kind(Kind), M1(M1), M2(M2) {}
1885   };
1886 } // namespace
1887 
1888 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
1889   // Emit the loop iteration variable.
1890   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
1891   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
1892   EmitVarDecl(*IVDecl);
1893 
1894   // Emit the iterations count variable.
1895   // If it is not a variable, Sema decided to calculate iterations count on each
1896   // iteration (e.g., it is foldable into a constant).
1897   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1898     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1899     // Emit calculation of the iterations count.
1900     EmitIgnoredExpr(S.getCalcLastIteration());
1901   }
1902 
1903   auto &RT = CGM.getOpenMPRuntime();
1904 
1905   bool HasLastprivateClause;
1906   // Check pre-condition.
1907   {
1908     OMPLoopScope PreInitScope(*this, S);
1909     // Skip the entire loop if we don't meet the precondition.
1910     // If the condition constant folds and can be elided, avoid emitting the
1911     // whole loop.
1912     bool CondConstant;
1913     llvm::BasicBlock *ContBlock = nullptr;
1914     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1915       if (!CondConstant)
1916         return false;
1917     } else {
1918       auto *ThenBlock = createBasicBlock("omp.precond.then");
1919       ContBlock = createBasicBlock("omp.precond.end");
1920       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
1921                   getProfileCount(&S));
1922       EmitBlock(ThenBlock);
1923       incrementProfileCounter(&S);
1924     }
1925 
1926     bool Ordered = false;
1927     if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
1928       if (OrderedClause->getNumForLoops())
1929         RT.emitDoacrossInit(*this, S);
1930       else
1931         Ordered = true;
1932     }
1933 
1934     llvm::DenseSet<const Expr *> EmittedFinals;
1935     emitAlignedClause(*this, S);
1936     EmitOMPLinearClauseInit(S);
1937     // Emit helper vars inits.
1938     LValue LB =
1939         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1940     LValue UB =
1941         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
1942     LValue ST =
1943         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
1944     LValue IL =
1945         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
1946 
1947     // Emit 'then' code.
1948     {
1949       OMPPrivateScope LoopScope(*this);
1950       if (EmitOMPFirstprivateClause(S, LoopScope)) {
1951         // Emit implicit barrier to synchronize threads and avoid data races on
1952         // initialization of firstprivate variables and post-update of
1953         // lastprivate variables.
1954         CGM.getOpenMPRuntime().emitBarrierCall(
1955             *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
1956             /*ForceSimpleCall=*/true);
1957       }
1958       EmitOMPPrivateClause(S, LoopScope);
1959       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
1960       EmitOMPReductionClauseInit(S, LoopScope);
1961       EmitOMPPrivateLoopCounters(S, LoopScope);
1962       EmitOMPLinearClause(S, LoopScope);
1963       (void)LoopScope.Privatize();
1964 
1965       // Detect the loop schedule kind and chunk.
1966       llvm::Value *Chunk = nullptr;
1967       OpenMPScheduleTy ScheduleKind;
1968       if (auto *C = S.getSingleClause<OMPScheduleClause>()) {
1969         ScheduleKind.Schedule = C->getScheduleKind();
1970         ScheduleKind.M1 = C->getFirstScheduleModifier();
1971         ScheduleKind.M2 = C->getSecondScheduleModifier();
1972         if (const auto *Ch = C->getChunkSize()) {
1973           Chunk = EmitScalarExpr(Ch);
1974           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
1975                                        S.getIterationVariable()->getType(),
1976                                        S.getLocStart());
1977         }
1978       }
1979       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1980       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1981       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
1982       // If the static schedule kind is specified or if the ordered clause is
1983       // specified, and if no monotonic modifier is specified, the effect will
1984       // be as if the monotonic modifier was specified.
1985       if (RT.isStaticNonchunked(ScheduleKind.Schedule,
1986                                 /* Chunked */ Chunk != nullptr) &&
1987           !Ordered) {
1988         if (isOpenMPSimdDirective(S.getDirectiveKind()))
1989           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
1990         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1991         // When no chunk_size is specified, the iteration space is divided into
1992         // chunks that are approximately equal in size, and at most one chunk is
1993         // distributed to each thread. Note that the size of the chunks is
1994         // unspecified in this case.
1995         RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
1996                              IVSize, IVSigned, Ordered,
1997                              IL.getAddress(), LB.getAddress(),
1998                              UB.getAddress(), ST.getAddress());
1999         auto LoopExit =
2000             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2001         // UB = min(UB, GlobalUB);
2002         EmitIgnoredExpr(S.getEnsureUpperBound());
2003         // IV = LB;
2004         EmitIgnoredExpr(S.getInit());
2005         // while (idx <= UB) { BODY; ++idx; }
2006         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2007                          S.getInc(),
2008                          [&S, LoopExit](CodeGenFunction &CGF) {
2009                            CGF.EmitOMPLoopBody(S, LoopExit);
2010                            CGF.EmitStopPoint(&S);
2011                          },
2012                          [](CodeGenFunction &) {});
2013         EmitBlock(LoopExit.getBlock());
2014         // Tell the runtime we are done.
2015         RT.emitForStaticFinish(*this, S.getLocStart());
2016       } else {
2017         const bool IsMonotonic =
2018             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2019             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2020             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2021             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2022         // Emit the outer loop, which requests its work chunk [LB..UB] from
2023         // runtime and runs the inner loop to process it.
2024         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2025                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2026                             IL.getAddress(), Chunk);
2027       }
2028       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2029         EmitOMPSimdFinal(S,
2030                          [&](CodeGenFunction &CGF) -> llvm::Value * {
2031                            return CGF.Builder.CreateIsNotNull(
2032                                CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2033                          });
2034       }
2035       EmitOMPReductionClauseFinal(S);
2036       // Emit post-update of the reduction variables if IsLastIter != 0.
2037       emitPostUpdateForReductionClause(
2038           *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2039             return CGF.Builder.CreateIsNotNull(
2040                 CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2041           });
2042       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2043       if (HasLastprivateClause)
2044         EmitOMPLastprivateClauseFinal(
2045             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2046             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
2047     }
2048     EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2049       return CGF.Builder.CreateIsNotNull(
2050           CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2051     });
2052     // We're now done with the loop, so jump to the continuation block.
2053     if (ContBlock) {
2054       EmitBranch(ContBlock);
2055       EmitBlock(ContBlock, true);
2056     }
2057   }
2058   return HasLastprivateClause;
2059 }
2060 
2061 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2062   bool HasLastprivates = false;
2063   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2064                                           PrePostActionTy &) {
2065     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2066   };
2067   {
2068     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2069     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2070                                                 S.hasCancel());
2071   }
2072 
2073   // Emit an implicit barrier at the end.
2074   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2075     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2076   }
2077 }
2078 
2079 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2080   bool HasLastprivates = false;
2081   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2082                                           PrePostActionTy &) {
2083     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
2084   };
2085   {
2086     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2087     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2088   }
2089 
2090   // Emit an implicit barrier at the end.
2091   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2092     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2093   }
2094 }
2095 
2096 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2097                                 const Twine &Name,
2098                                 llvm::Value *Init = nullptr) {
2099   auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2100   if (Init)
2101     CGF.EmitScalarInit(Init, LVal);
2102   return LVal;
2103 }
2104 
2105 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2106   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
2107   auto *CS = dyn_cast<CompoundStmt>(Stmt);
2108   bool HasLastprivates = false;
2109   auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF,
2110                                                     PrePostActionTy &) {
2111     auto &C = CGF.CGM.getContext();
2112     auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2113     // Emit helper vars inits.
2114     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2115                                   CGF.Builder.getInt32(0));
2116     auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1)
2117                                       : CGF.Builder.getInt32(0);
2118     LValue UB =
2119         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2120     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2121                                   CGF.Builder.getInt32(1));
2122     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2123                                   CGF.Builder.getInt32(0));
2124     // Loop counter.
2125     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2126     OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2127     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2128     OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2129     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2130     // Generate condition for loop.
2131     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2132                         OK_Ordinary, S.getLocStart(),
2133                         /*fpContractable=*/false);
2134     // Increment for loop counter.
2135     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2136                       S.getLocStart());
2137     auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) {
2138       // Iterate through all sections and emit a switch construct:
2139       // switch (IV) {
2140       //   case 0:
2141       //     <SectionStmt[0]>;
2142       //     break;
2143       // ...
2144       //   case <NumSection> - 1:
2145       //     <SectionStmt[<NumSection> - 1]>;
2146       //     break;
2147       // }
2148       // .omp.sections.exit:
2149       auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2150       auto *SwitchStmt = CGF.Builder.CreateSwitch(
2151           CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
2152           CS == nullptr ? 1 : CS->size());
2153       if (CS) {
2154         unsigned CaseNumber = 0;
2155         for (auto *SubStmt : CS->children()) {
2156           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2157           CGF.EmitBlock(CaseBB);
2158           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2159           CGF.EmitStmt(SubStmt);
2160           CGF.EmitBranch(ExitBB);
2161           ++CaseNumber;
2162         }
2163       } else {
2164         auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2165         CGF.EmitBlock(CaseBB);
2166         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2167         CGF.EmitStmt(Stmt);
2168         CGF.EmitBranch(ExitBB);
2169       }
2170       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2171     };
2172 
2173     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2174     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2175       // Emit implicit barrier to synchronize threads and avoid data races on
2176       // initialization of firstprivate variables and post-update of lastprivate
2177       // variables.
2178       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2179           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2180           /*ForceSimpleCall=*/true);
2181     }
2182     CGF.EmitOMPPrivateClause(S, LoopScope);
2183     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2184     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2185     (void)LoopScope.Privatize();
2186 
2187     // Emit static non-chunked loop.
2188     OpenMPScheduleTy ScheduleKind;
2189     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2190     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2191         CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32,
2192         /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(),
2193         UB.getAddress(), ST.getAddress());
2194     // UB = min(UB, GlobalUB);
2195     auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
2196     auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
2197         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2198     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2199     // IV = LB;
2200     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
2201     // while (idx <= UB) { BODY; ++idx; }
2202     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2203                          [](CodeGenFunction &) {});
2204     // Tell the runtime we are done.
2205     CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
2206     CGF.EmitOMPReductionClauseFinal(S);
2207     // Emit post-update of the reduction variables if IsLastIter != 0.
2208     emitPostUpdateForReductionClause(
2209         CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2210           return CGF.Builder.CreateIsNotNull(
2211               CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2212         });
2213 
2214     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2215     if (HasLastprivates)
2216       CGF.EmitOMPLastprivateClauseFinal(
2217           S, /*NoFinals=*/false,
2218           CGF.Builder.CreateIsNotNull(
2219               CGF.EmitLoadOfScalar(IL, S.getLocStart())));
2220   };
2221 
2222   bool HasCancel = false;
2223   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2224     HasCancel = OSD->hasCancel();
2225   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2226     HasCancel = OPSD->hasCancel();
2227   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2228                                               HasCancel);
2229   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2230   // clause. Otherwise the barrier will be generated by the codegen for the
2231   // directive.
2232   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2233     // Emit implicit barrier to synchronize threads and avoid data races on
2234     // initialization of firstprivate variables.
2235     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2236                                            OMPD_unknown);
2237   }
2238 }
2239 
2240 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2241   {
2242     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2243     EmitSections(S);
2244   }
2245   // Emit an implicit barrier at the end.
2246   if (!S.getSingleClause<OMPNowaitClause>()) {
2247     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2248                                            OMPD_sections);
2249   }
2250 }
2251 
2252 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2253   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2254     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2255   };
2256   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2257   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2258                                               S.hasCancel());
2259 }
2260 
2261 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2262   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2263   llvm::SmallVector<const Expr *, 8> DestExprs;
2264   llvm::SmallVector<const Expr *, 8> SrcExprs;
2265   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2266   // Check if there are any 'copyprivate' clauses associated with this
2267   // 'single' construct.
2268   // Build a list of copyprivate variables along with helper expressions
2269   // (<source>, <destination>, <destination>=<source> expressions)
2270   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2271     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2272     DestExprs.append(C->destination_exprs().begin(),
2273                      C->destination_exprs().end());
2274     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2275     AssignmentOps.append(C->assignment_ops().begin(),
2276                          C->assignment_ops().end());
2277   }
2278   // Emit code for 'single' region along with 'copyprivate' clauses
2279   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2280     Action.Enter(CGF);
2281     OMPPrivateScope SingleScope(CGF);
2282     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2283     CGF.EmitOMPPrivateClause(S, SingleScope);
2284     (void)SingleScope.Privatize();
2285     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2286   };
2287   {
2288     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2289     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
2290                                             CopyprivateVars, DestExprs,
2291                                             SrcExprs, AssignmentOps);
2292   }
2293   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2294   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2295   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2296     CGM.getOpenMPRuntime().emitBarrierCall(
2297         *this, S.getLocStart(),
2298         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2299   }
2300 }
2301 
2302 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2303   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2304     Action.Enter(CGF);
2305     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2306   };
2307   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2308   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
2309 }
2310 
2311 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2312   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2313     Action.Enter(CGF);
2314     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2315   };
2316   Expr *Hint = nullptr;
2317   if (auto *HintClause = S.getSingleClause<OMPHintClause>())
2318     Hint = HintClause->getHint();
2319   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2320   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2321                                             S.getDirectiveName().getAsString(),
2322                                             CodeGen, S.getLocStart(), Hint);
2323 }
2324 
2325 void CodeGenFunction::EmitOMPParallelForDirective(
2326     const OMPParallelForDirective &S) {
2327   // Emit directive as a combined directive that consists of two implicit
2328   // directives: 'parallel' with 'for' directive.
2329   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2330     CGF.EmitOMPWorksharingLoop(S);
2331   };
2332   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
2333 }
2334 
2335 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2336     const OMPParallelForSimdDirective &S) {
2337   // Emit directive as a combined directive that consists of two implicit
2338   // directives: 'parallel' with 'for' directive.
2339   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2340     CGF.EmitOMPWorksharingLoop(S);
2341   };
2342   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
2343 }
2344 
2345 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2346     const OMPParallelSectionsDirective &S) {
2347   // Emit directive as a combined directive that consists of two implicit
2348   // directives: 'parallel' with 'sections' directive.
2349   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2350     CGF.EmitSections(S);
2351   };
2352   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
2353 }
2354 
2355 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2356                                                 const RegionCodeGenTy &BodyGen,
2357                                                 const TaskGenTy &TaskGen,
2358                                                 OMPTaskDataTy &Data) {
2359   // Emit outlined function for task construct.
2360   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2361   auto *I = CS->getCapturedDecl()->param_begin();
2362   auto *PartId = std::next(I);
2363   auto *TaskT = std::next(I, 4);
2364   // Check if the task is final
2365   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2366     // If the condition constant folds and can be elided, try to avoid emitting
2367     // the condition and the dead arm of the if/else.
2368     auto *Cond = Clause->getCondition();
2369     bool CondConstant;
2370     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2371       Data.Final.setInt(CondConstant);
2372     else
2373       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2374   } else {
2375     // By default the task is not final.
2376     Data.Final.setInt(/*IntVal=*/false);
2377   }
2378   // Check if the task has 'priority' clause.
2379   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2380     // Runtime currently does not support codegen for priority clause argument.
2381     // TODO: Add codegen for priority clause arg when runtime lib support it.
2382     auto *Prio = Clause->getPriority();
2383     Data.Priority.setInt(Prio);
2384     Data.Priority.setPointer(EmitScalarConversion(
2385         EmitScalarExpr(Prio), Prio->getType(),
2386         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2387         Prio->getExprLoc()));
2388   }
2389   // The first function argument for tasks is a thread id, the second one is a
2390   // part id (0 for tied tasks, >=0 for untied task).
2391   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2392   // Get list of private variables.
2393   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2394     auto IRef = C->varlist_begin();
2395     for (auto *IInit : C->private_copies()) {
2396       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2397       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2398         Data.PrivateVars.push_back(*IRef);
2399         Data.PrivateCopies.push_back(IInit);
2400       }
2401       ++IRef;
2402     }
2403   }
2404   EmittedAsPrivate.clear();
2405   // Get list of firstprivate variables.
2406   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2407     auto IRef = C->varlist_begin();
2408     auto IElemInitRef = C->inits().begin();
2409     for (auto *IInit : C->private_copies()) {
2410       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2411       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2412         Data.FirstprivateVars.push_back(*IRef);
2413         Data.FirstprivateCopies.push_back(IInit);
2414         Data.FirstprivateInits.push_back(*IElemInitRef);
2415       }
2416       ++IRef;
2417       ++IElemInitRef;
2418     }
2419   }
2420   // Get list of lastprivate variables (for taskloops).
2421   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2422   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2423     auto IRef = C->varlist_begin();
2424     auto ID = C->destination_exprs().begin();
2425     for (auto *IInit : C->private_copies()) {
2426       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2427       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2428         Data.LastprivateVars.push_back(*IRef);
2429         Data.LastprivateCopies.push_back(IInit);
2430       }
2431       LastprivateDstsOrigs.insert(
2432           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2433            cast<DeclRefExpr>(*IRef)});
2434       ++IRef;
2435       ++ID;
2436     }
2437   }
2438   // Build list of dependences.
2439   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2440     for (auto *IRef : C->varlists())
2441       Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
2442   auto &&CodeGen = [PartId, &S, &Data, CS, &BodyGen, &LastprivateDstsOrigs](
2443       CodeGenFunction &CGF, PrePostActionTy &Action) {
2444     // Set proper addresses for generated private copies.
2445     OMPPrivateScope Scope(CGF);
2446     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2447         !Data.LastprivateVars.empty()) {
2448       auto *CopyFn = CGF.Builder.CreateLoad(
2449           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
2450       auto *PrivatesPtr = CGF.Builder.CreateLoad(
2451           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
2452       // Map privates.
2453       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2454       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2455       CallArgs.push_back(PrivatesPtr);
2456       for (auto *E : Data.PrivateVars) {
2457         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2458         Address PrivatePtr = CGF.CreateMemTemp(
2459             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2460         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2461         CallArgs.push_back(PrivatePtr.getPointer());
2462       }
2463       for (auto *E : Data.FirstprivateVars) {
2464         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2465         Address PrivatePtr =
2466             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2467                               ".firstpriv.ptr.addr");
2468         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2469         CallArgs.push_back(PrivatePtr.getPointer());
2470       }
2471       for (auto *E : Data.LastprivateVars) {
2472         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2473         Address PrivatePtr =
2474             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2475                               ".lastpriv.ptr.addr");
2476         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2477         CallArgs.push_back(PrivatePtr.getPointer());
2478       }
2479       CGF.EmitRuntimeCall(CopyFn, CallArgs);
2480       for (auto &&Pair : LastprivateDstsOrigs) {
2481         auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2482         DeclRefExpr DRE(
2483             const_cast<VarDecl *>(OrigVD),
2484             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2485                 OrigVD) != nullptr,
2486             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2487         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2488           return CGF.EmitLValue(&DRE).getAddress();
2489         });
2490       }
2491       for (auto &&Pair : PrivatePtrs) {
2492         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2493                             CGF.getContext().getDeclAlign(Pair.first));
2494         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2495       }
2496     }
2497     (void)Scope.Privatize();
2498 
2499     Action.Enter(CGF);
2500     BodyGen(CGF);
2501   };
2502   auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
2503       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
2504       Data.NumberOfParts);
2505   OMPLexicalScope Scope(*this, S);
2506   TaskGen(*this, OutlinedFn, Data);
2507 }
2508 
2509 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
2510   // Emit outlined function for task construct.
2511   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2512   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
2513   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
2514   const Expr *IfCond = nullptr;
2515   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2516     if (C->getNameModifier() == OMPD_unknown ||
2517         C->getNameModifier() == OMPD_task) {
2518       IfCond = C->getCondition();
2519       break;
2520     }
2521   }
2522 
2523   OMPTaskDataTy Data;
2524   // Check if we should emit tied or untied task.
2525   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
2526   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
2527     CGF.EmitStmt(CS->getCapturedStmt());
2528   };
2529   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
2530                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
2531                             const OMPTaskDataTy &Data) {
2532     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn,
2533                                             SharedsTy, CapturedStruct, IfCond,
2534                                             Data);
2535   };
2536   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
2537 }
2538 
2539 void CodeGenFunction::EmitOMPTaskyieldDirective(
2540     const OMPTaskyieldDirective &S) {
2541   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
2542 }
2543 
2544 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
2545   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
2546 }
2547 
2548 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
2549   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
2550 }
2551 
2552 void CodeGenFunction::EmitOMPTaskgroupDirective(
2553     const OMPTaskgroupDirective &S) {
2554   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2555     Action.Enter(CGF);
2556     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2557   };
2558   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2559   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
2560 }
2561 
2562 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
2563   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
2564     if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
2565       return llvm::makeArrayRef(FlushClause->varlist_begin(),
2566                                 FlushClause->varlist_end());
2567     }
2568     return llvm::None;
2569   }(), S.getLocStart());
2570 }
2571 
2572 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) {
2573   // Emit the loop iteration variable.
2574   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2575   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
2576   EmitVarDecl(*IVDecl);
2577 
2578   // Emit the iterations count variable.
2579   // If it is not a variable, Sema decided to calculate iterations count on each
2580   // iteration (e.g., it is foldable into a constant).
2581   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2582     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2583     // Emit calculation of the iterations count.
2584     EmitIgnoredExpr(S.getCalcLastIteration());
2585   }
2586 
2587   auto &RT = CGM.getOpenMPRuntime();
2588 
2589   // Check pre-condition.
2590   {
2591     OMPLoopScope PreInitScope(*this, S);
2592     // Skip the entire loop if we don't meet the precondition.
2593     // If the condition constant folds and can be elided, avoid emitting the
2594     // whole loop.
2595     bool CondConstant;
2596     llvm::BasicBlock *ContBlock = nullptr;
2597     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2598       if (!CondConstant)
2599         return;
2600     } else {
2601       auto *ThenBlock = createBasicBlock("omp.precond.then");
2602       ContBlock = createBasicBlock("omp.precond.end");
2603       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2604                   getProfileCount(&S));
2605       EmitBlock(ThenBlock);
2606       incrementProfileCounter(&S);
2607     }
2608 
2609     // Emit 'then' code.
2610     {
2611       // Emit helper vars inits.
2612       LValue LB =
2613           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2614       LValue UB =
2615           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2616       LValue ST =
2617           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2618       LValue IL =
2619           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2620 
2621       OMPPrivateScope LoopScope(*this);
2622       EmitOMPPrivateLoopCounters(S, LoopScope);
2623       (void)LoopScope.Privatize();
2624 
2625       // Detect the distribute schedule kind and chunk.
2626       llvm::Value *Chunk = nullptr;
2627       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
2628       if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
2629         ScheduleKind = C->getDistScheduleKind();
2630         if (const auto *Ch = C->getChunkSize()) {
2631           Chunk = EmitScalarExpr(Ch);
2632           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2633           S.getIterationVariable()->getType(),
2634           S.getLocStart());
2635         }
2636       }
2637       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2638       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2639 
2640       // OpenMP [2.10.8, distribute Construct, Description]
2641       // If dist_schedule is specified, kind must be static. If specified,
2642       // iterations are divided into chunks of size chunk_size, chunks are
2643       // assigned to the teams of the league in a round-robin fashion in the
2644       // order of the team number. When no chunk_size is specified, the
2645       // iteration space is divided into chunks that are approximately equal
2646       // in size, and at most one chunk is distributed to each team of the
2647       // league. The size of the chunks is unspecified in this case.
2648       if (RT.isStaticNonchunked(ScheduleKind,
2649                                 /* Chunked */ Chunk != nullptr)) {
2650         RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
2651                              IVSize, IVSigned, /* Ordered = */ false,
2652                              IL.getAddress(), LB.getAddress(),
2653                              UB.getAddress(), ST.getAddress());
2654         auto LoopExit =
2655             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2656         // UB = min(UB, GlobalUB);
2657         EmitIgnoredExpr(S.getEnsureUpperBound());
2658         // IV = LB;
2659         EmitIgnoredExpr(S.getInit());
2660         // while (idx <= UB) { BODY; ++idx; }
2661         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2662                          S.getInc(),
2663                          [&S, LoopExit](CodeGenFunction &CGF) {
2664                            CGF.EmitOMPLoopBody(S, LoopExit);
2665                            CGF.EmitStopPoint(&S);
2666                          },
2667                          [](CodeGenFunction &) {});
2668         EmitBlock(LoopExit.getBlock());
2669         // Tell the runtime we are done.
2670         RT.emitForStaticFinish(*this, S.getLocStart());
2671       } else {
2672         // Emit the outer loop, which requests its work chunk [LB..UB] from
2673         // runtime and runs the inner loop to process it.
2674         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope,
2675                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
2676                             IL.getAddress(), Chunk);
2677       }
2678     }
2679 
2680     // We're now done with the loop, so jump to the continuation block.
2681     if (ContBlock) {
2682       EmitBranch(ContBlock);
2683       EmitBlock(ContBlock, true);
2684     }
2685   }
2686 }
2687 
2688 void CodeGenFunction::EmitOMPDistributeDirective(
2689     const OMPDistributeDirective &S) {
2690   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2691     CGF.EmitOMPDistributeLoop(S);
2692   };
2693   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2694   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen,
2695                                               false);
2696 }
2697 
2698 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
2699                                                    const CapturedStmt *S) {
2700   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
2701   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
2702   CGF.CapturedStmtInfo = &CapStmtInfo;
2703   auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
2704   Fn->addFnAttr(llvm::Attribute::NoInline);
2705   return Fn;
2706 }
2707 
2708 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
2709   if (!S.getAssociatedStmt()) {
2710     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
2711       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
2712     return;
2713   }
2714   auto *C = S.getSingleClause<OMPSIMDClause>();
2715   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
2716                                  PrePostActionTy &Action) {
2717     if (C) {
2718       auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2719       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
2720       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
2721       auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
2722       CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars);
2723     } else {
2724       Action.Enter(CGF);
2725       CGF.EmitStmt(
2726           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2727     }
2728   };
2729   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2730   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
2731 }
2732 
2733 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
2734                                          QualType SrcType, QualType DestType,
2735                                          SourceLocation Loc) {
2736   assert(CGF.hasScalarEvaluationKind(DestType) &&
2737          "DestType must have scalar evaluation kind.");
2738   assert(!Val.isAggregate() && "Must be a scalar or complex.");
2739   return Val.isScalar()
2740              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
2741                                         Loc)
2742              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
2743                                                  DestType, Loc);
2744 }
2745 
2746 static CodeGenFunction::ComplexPairTy
2747 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
2748                       QualType DestType, SourceLocation Loc) {
2749   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
2750          "DestType must have complex evaluation kind.");
2751   CodeGenFunction::ComplexPairTy ComplexVal;
2752   if (Val.isScalar()) {
2753     // Convert the input element to the element type of the complex.
2754     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2755     auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
2756                                               DestElementType, Loc);
2757     ComplexVal = CodeGenFunction::ComplexPairTy(
2758         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
2759   } else {
2760     assert(Val.isComplex() && "Must be a scalar or complex.");
2761     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
2762     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
2763     ComplexVal.first = CGF.EmitScalarConversion(
2764         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
2765     ComplexVal.second = CGF.EmitScalarConversion(
2766         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
2767   }
2768   return ComplexVal;
2769 }
2770 
2771 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
2772                                   LValue LVal, RValue RVal) {
2773   if (LVal.isGlobalReg()) {
2774     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
2775   } else {
2776     CGF.EmitAtomicStore(RVal, LVal,
2777                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2778                                  : llvm::AtomicOrdering::Monotonic,
2779                         LVal.isVolatile(), /*IsInit=*/false);
2780   }
2781 }
2782 
2783 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
2784                                          QualType RValTy, SourceLocation Loc) {
2785   switch (getEvaluationKind(LVal.getType())) {
2786   case TEK_Scalar:
2787     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
2788                                *this, RVal, RValTy, LVal.getType(), Loc)),
2789                            LVal);
2790     break;
2791   case TEK_Complex:
2792     EmitStoreOfComplex(
2793         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
2794         /*isInit=*/false);
2795     break;
2796   case TEK_Aggregate:
2797     llvm_unreachable("Must be a scalar or complex.");
2798   }
2799 }
2800 
2801 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
2802                                   const Expr *X, const Expr *V,
2803                                   SourceLocation Loc) {
2804   // v = x;
2805   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
2806   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
2807   LValue XLValue = CGF.EmitLValue(X);
2808   LValue VLValue = CGF.EmitLValue(V);
2809   RValue Res = XLValue.isGlobalReg()
2810                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
2811                    : CGF.EmitAtomicLoad(
2812                          XLValue, Loc,
2813                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2814                                   : llvm::AtomicOrdering::Monotonic,
2815                          XLValue.isVolatile());
2816   // OpenMP, 2.12.6, atomic Construct
2817   // Any atomic construct with a seq_cst clause forces the atomically
2818   // performed operation to include an implicit flush operation without a
2819   // list.
2820   if (IsSeqCst)
2821     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2822   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
2823 }
2824 
2825 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
2826                                    const Expr *X, const Expr *E,
2827                                    SourceLocation Loc) {
2828   // x = expr;
2829   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
2830   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
2831   // OpenMP, 2.12.6, atomic Construct
2832   // Any atomic construct with a seq_cst clause forces the atomically
2833   // performed operation to include an implicit flush operation without a
2834   // list.
2835   if (IsSeqCst)
2836     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2837 }
2838 
2839 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
2840                                                 RValue Update,
2841                                                 BinaryOperatorKind BO,
2842                                                 llvm::AtomicOrdering AO,
2843                                                 bool IsXLHSInRHSPart) {
2844   auto &Context = CGF.CGM.getContext();
2845   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
2846   // expression is simple and atomic is allowed for the given type for the
2847   // target platform.
2848   if (BO == BO_Comma || !Update.isScalar() ||
2849       !Update.getScalarVal()->getType()->isIntegerTy() ||
2850       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
2851                         (Update.getScalarVal()->getType() !=
2852                          X.getAddress().getElementType())) ||
2853       !X.getAddress().getElementType()->isIntegerTy() ||
2854       !Context.getTargetInfo().hasBuiltinAtomic(
2855           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
2856     return std::make_pair(false, RValue::get(nullptr));
2857 
2858   llvm::AtomicRMWInst::BinOp RMWOp;
2859   switch (BO) {
2860   case BO_Add:
2861     RMWOp = llvm::AtomicRMWInst::Add;
2862     break;
2863   case BO_Sub:
2864     if (!IsXLHSInRHSPart)
2865       return std::make_pair(false, RValue::get(nullptr));
2866     RMWOp = llvm::AtomicRMWInst::Sub;
2867     break;
2868   case BO_And:
2869     RMWOp = llvm::AtomicRMWInst::And;
2870     break;
2871   case BO_Or:
2872     RMWOp = llvm::AtomicRMWInst::Or;
2873     break;
2874   case BO_Xor:
2875     RMWOp = llvm::AtomicRMWInst::Xor;
2876     break;
2877   case BO_LT:
2878     RMWOp = X.getType()->hasSignedIntegerRepresentation()
2879                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
2880                                    : llvm::AtomicRMWInst::Max)
2881                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
2882                                    : llvm::AtomicRMWInst::UMax);
2883     break;
2884   case BO_GT:
2885     RMWOp = X.getType()->hasSignedIntegerRepresentation()
2886                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
2887                                    : llvm::AtomicRMWInst::Min)
2888                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
2889                                    : llvm::AtomicRMWInst::UMin);
2890     break;
2891   case BO_Assign:
2892     RMWOp = llvm::AtomicRMWInst::Xchg;
2893     break;
2894   case BO_Mul:
2895   case BO_Div:
2896   case BO_Rem:
2897   case BO_Shl:
2898   case BO_Shr:
2899   case BO_LAnd:
2900   case BO_LOr:
2901     return std::make_pair(false, RValue::get(nullptr));
2902   case BO_PtrMemD:
2903   case BO_PtrMemI:
2904   case BO_LE:
2905   case BO_GE:
2906   case BO_EQ:
2907   case BO_NE:
2908   case BO_AddAssign:
2909   case BO_SubAssign:
2910   case BO_AndAssign:
2911   case BO_OrAssign:
2912   case BO_XorAssign:
2913   case BO_MulAssign:
2914   case BO_DivAssign:
2915   case BO_RemAssign:
2916   case BO_ShlAssign:
2917   case BO_ShrAssign:
2918   case BO_Comma:
2919     llvm_unreachable("Unsupported atomic update operation");
2920   }
2921   auto *UpdateVal = Update.getScalarVal();
2922   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
2923     UpdateVal = CGF.Builder.CreateIntCast(
2924         IC, X.getAddress().getElementType(),
2925         X.getType()->hasSignedIntegerRepresentation());
2926   }
2927   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
2928   return std::make_pair(true, RValue::get(Res));
2929 }
2930 
2931 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
2932     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2933     llvm::AtomicOrdering AO, SourceLocation Loc,
2934     const llvm::function_ref<RValue(RValue)> &CommonGen) {
2935   // Update expressions are allowed to have the following forms:
2936   // x binop= expr; -> xrval + expr;
2937   // x++, ++x -> xrval + 1;
2938   // x--, --x -> xrval - 1;
2939   // x = x binop expr; -> xrval binop expr
2940   // x = expr Op x; - > expr binop xrval;
2941   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
2942   if (!Res.first) {
2943     if (X.isGlobalReg()) {
2944       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
2945       // 'xrval'.
2946       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
2947     } else {
2948       // Perform compare-and-swap procedure.
2949       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
2950     }
2951   }
2952   return Res;
2953 }
2954 
2955 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
2956                                     const Expr *X, const Expr *E,
2957                                     const Expr *UE, bool IsXLHSInRHSPart,
2958                                     SourceLocation Loc) {
2959   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
2960          "Update expr in 'atomic update' must be a binary operator.");
2961   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
2962   // Update expressions are allowed to have the following forms:
2963   // x binop= expr; -> xrval + expr;
2964   // x++, ++x -> xrval + 1;
2965   // x--, --x -> xrval - 1;
2966   // x = x binop expr; -> xrval binop expr
2967   // x = expr Op x; - > expr binop xrval;
2968   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
2969   LValue XLValue = CGF.EmitLValue(X);
2970   RValue ExprRValue = CGF.EmitAnyExpr(E);
2971   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
2972                      : llvm::AtomicOrdering::Monotonic;
2973   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
2974   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
2975   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
2976   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
2977   auto Gen =
2978       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
2979         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
2980         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
2981         return CGF.EmitAnyExpr(UE);
2982       };
2983   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
2984       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
2985   // OpenMP, 2.12.6, atomic Construct
2986   // Any atomic construct with a seq_cst clause forces the atomically
2987   // performed operation to include an implicit flush operation without a
2988   // list.
2989   if (IsSeqCst)
2990     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2991 }
2992 
2993 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
2994                             QualType SourceType, QualType ResType,
2995                             SourceLocation Loc) {
2996   switch (CGF.getEvaluationKind(ResType)) {
2997   case TEK_Scalar:
2998     return RValue::get(
2999         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3000   case TEK_Complex: {
3001     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3002     return RValue::getComplex(Res.first, Res.second);
3003   }
3004   case TEK_Aggregate:
3005     break;
3006   }
3007   llvm_unreachable("Must be a scalar or complex.");
3008 }
3009 
3010 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3011                                      bool IsPostfixUpdate, const Expr *V,
3012                                      const Expr *X, const Expr *E,
3013                                      const Expr *UE, bool IsXLHSInRHSPart,
3014                                      SourceLocation Loc) {
3015   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3016   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3017   RValue NewVVal;
3018   LValue VLValue = CGF.EmitLValue(V);
3019   LValue XLValue = CGF.EmitLValue(X);
3020   RValue ExprRValue = CGF.EmitAnyExpr(E);
3021   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3022                      : llvm::AtomicOrdering::Monotonic;
3023   QualType NewVValType;
3024   if (UE) {
3025     // 'x' is updated with some additional value.
3026     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3027            "Update expr in 'atomic capture' must be a binary operator.");
3028     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3029     // Update expressions are allowed to have the following forms:
3030     // x binop= expr; -> xrval + expr;
3031     // x++, ++x -> xrval + 1;
3032     // x--, --x -> xrval - 1;
3033     // x = x binop expr; -> xrval binop expr
3034     // x = expr Op x; - > expr binop xrval;
3035     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3036     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3037     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3038     NewVValType = XRValExpr->getType();
3039     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3040     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3041                   IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
3042       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3043       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3044       RValue Res = CGF.EmitAnyExpr(UE);
3045       NewVVal = IsPostfixUpdate ? XRValue : Res;
3046       return Res;
3047     };
3048     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3049         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3050     if (Res.first) {
3051       // 'atomicrmw' instruction was generated.
3052       if (IsPostfixUpdate) {
3053         // Use old value from 'atomicrmw'.
3054         NewVVal = Res.second;
3055       } else {
3056         // 'atomicrmw' does not provide new value, so evaluate it using old
3057         // value of 'x'.
3058         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3059         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3060         NewVVal = CGF.EmitAnyExpr(UE);
3061       }
3062     }
3063   } else {
3064     // 'x' is simply rewritten with some 'expr'.
3065     NewVValType = X->getType().getNonReferenceType();
3066     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3067                                X->getType().getNonReferenceType(), Loc);
3068     auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
3069       NewVVal = XRValue;
3070       return ExprRValue;
3071     };
3072     // Try to perform atomicrmw xchg, otherwise simple exchange.
3073     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3074         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3075         Loc, Gen);
3076     if (Res.first) {
3077       // 'atomicrmw' instruction was generated.
3078       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3079     }
3080   }
3081   // Emit post-update store to 'v' of old/new 'x' value.
3082   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3083   // OpenMP, 2.12.6, atomic Construct
3084   // Any atomic construct with a seq_cst clause forces the atomically
3085   // performed operation to include an implicit flush operation without a
3086   // list.
3087   if (IsSeqCst)
3088     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3089 }
3090 
3091 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3092                               bool IsSeqCst, bool IsPostfixUpdate,
3093                               const Expr *X, const Expr *V, const Expr *E,
3094                               const Expr *UE, bool IsXLHSInRHSPart,
3095                               SourceLocation Loc) {
3096   switch (Kind) {
3097   case OMPC_read:
3098     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3099     break;
3100   case OMPC_write:
3101     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3102     break;
3103   case OMPC_unknown:
3104   case OMPC_update:
3105     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3106     break;
3107   case OMPC_capture:
3108     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3109                              IsXLHSInRHSPart, Loc);
3110     break;
3111   case OMPC_if:
3112   case OMPC_final:
3113   case OMPC_num_threads:
3114   case OMPC_private:
3115   case OMPC_firstprivate:
3116   case OMPC_lastprivate:
3117   case OMPC_reduction:
3118   case OMPC_safelen:
3119   case OMPC_simdlen:
3120   case OMPC_collapse:
3121   case OMPC_default:
3122   case OMPC_seq_cst:
3123   case OMPC_shared:
3124   case OMPC_linear:
3125   case OMPC_aligned:
3126   case OMPC_copyin:
3127   case OMPC_copyprivate:
3128   case OMPC_flush:
3129   case OMPC_proc_bind:
3130   case OMPC_schedule:
3131   case OMPC_ordered:
3132   case OMPC_nowait:
3133   case OMPC_untied:
3134   case OMPC_threadprivate:
3135   case OMPC_depend:
3136   case OMPC_mergeable:
3137   case OMPC_device:
3138   case OMPC_threads:
3139   case OMPC_simd:
3140   case OMPC_map:
3141   case OMPC_num_teams:
3142   case OMPC_thread_limit:
3143   case OMPC_priority:
3144   case OMPC_grainsize:
3145   case OMPC_nogroup:
3146   case OMPC_num_tasks:
3147   case OMPC_hint:
3148   case OMPC_dist_schedule:
3149   case OMPC_defaultmap:
3150   case OMPC_uniform:
3151   case OMPC_to:
3152   case OMPC_from:
3153     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3154   }
3155 }
3156 
3157 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3158   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3159   OpenMPClauseKind Kind = OMPC_unknown;
3160   for (auto *C : S.clauses()) {
3161     // Find first clause (skip seq_cst clause, if it is first).
3162     if (C->getClauseKind() != OMPC_seq_cst) {
3163       Kind = C->getClauseKind();
3164       break;
3165     }
3166   }
3167 
3168   const auto *CS =
3169       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
3170   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
3171     enterFullExpression(EWC);
3172   }
3173   // Processing for statements under 'atomic capture'.
3174   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3175     for (const auto *C : Compound->body()) {
3176       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
3177         enterFullExpression(EWC);
3178       }
3179     }
3180   }
3181 
3182   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
3183                                             PrePostActionTy &) {
3184     CGF.EmitStopPoint(CS);
3185     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
3186                       S.getV(), S.getExpr(), S.getUpdateExpr(),
3187                       S.isXLHSInRHSPart(), S.getLocStart());
3188   };
3189   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3190   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
3191 }
3192 
3193 std::pair<llvm::Function * /*OutlinedFn*/, llvm::Constant * /*OutlinedFnID*/>
3194 CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction(
3195     CodeGenModule &CGM, const OMPTargetDirective &S, StringRef ParentName,
3196     bool IsOffloadEntry) {
3197   llvm::Function *OutlinedFn = nullptr;
3198   llvm::Constant *OutlinedFnID = nullptr;
3199   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3200     OMPPrivateScope PrivateScope(CGF);
3201     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3202     CGF.EmitOMPPrivateClause(S, PrivateScope);
3203     (void)PrivateScope.Privatize();
3204 
3205     Action.Enter(CGF);
3206     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3207   };
3208   // Emit target region as a standalone region.
3209   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3210       S, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen);
3211   return std::make_pair(OutlinedFn, OutlinedFnID);
3212 }
3213 
3214 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
3215   const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());
3216 
3217   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3218   GenerateOpenMPCapturedVars(CS, CapturedVars);
3219 
3220   llvm::Function *Fn = nullptr;
3221   llvm::Constant *FnID = nullptr;
3222 
3223   // Check if we have any if clause associated with the directive.
3224   const Expr *IfCond = nullptr;
3225 
3226   if (auto *C = S.getSingleClause<OMPIfClause>()) {
3227     IfCond = C->getCondition();
3228   }
3229 
3230   // Check if we have any device clause associated with the directive.
3231   const Expr *Device = nullptr;
3232   if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
3233     Device = C->getDevice();
3234   }
3235 
3236   // Check if we have an if clause whose conditional always evaluates to false
3237   // or if we do not have any targets specified. If so the target region is not
3238   // an offload entry point.
3239   bool IsOffloadEntry = true;
3240   if (IfCond) {
3241     bool Val;
3242     if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
3243       IsOffloadEntry = false;
3244   }
3245   if (CGM.getLangOpts().OMPTargetTriples.empty())
3246     IsOffloadEntry = false;
3247 
3248   assert(CurFuncDecl && "No parent declaration for target region!");
3249   StringRef ParentName;
3250   // In case we have Ctors/Dtors we use the complete type variant to produce
3251   // the mangling of the device outlined kernel.
3252   if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl))
3253     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
3254   else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl))
3255     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
3256   else
3257     ParentName =
3258         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl)));
3259 
3260   std::tie(Fn, FnID) = EmitOMPTargetDirectiveOutlinedFunction(
3261       CGM, S, ParentName, IsOffloadEntry);
3262   OMPLexicalScope Scope(*this, S);
3263   CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device,
3264                                         CapturedVars);
3265 }
3266 
3267 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
3268                                         const OMPExecutableDirective &S,
3269                                         OpenMPDirectiveKind InnermostKind,
3270                                         const RegionCodeGenTy &CodeGen) {
3271   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3272   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().
3273       emitParallelOrTeamsOutlinedFunction(S,
3274           *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
3275 
3276   const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S);
3277   const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>();
3278   const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>();
3279   if (NT || TL) {
3280     Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr;
3281     Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr;
3282 
3283     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
3284                                                   S.getLocStart());
3285   }
3286 
3287   OMPLexicalScope Scope(CGF, S);
3288   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3289   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3290   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn,
3291                                            CapturedVars);
3292 }
3293 
3294 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
3295   // Emit parallel region as a standalone region.
3296   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3297     OMPPrivateScope PrivateScope(CGF);
3298     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3299     CGF.EmitOMPPrivateClause(S, PrivateScope);
3300     (void)PrivateScope.Privatize();
3301     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3302   };
3303   emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen);
3304 }
3305 
3306 void CodeGenFunction::EmitOMPCancellationPointDirective(
3307     const OMPCancellationPointDirective &S) {
3308   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
3309                                                    S.getCancelRegion());
3310 }
3311 
3312 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
3313   const Expr *IfCond = nullptr;
3314   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3315     if (C->getNameModifier() == OMPD_unknown ||
3316         C->getNameModifier() == OMPD_cancel) {
3317       IfCond = C->getCondition();
3318       break;
3319     }
3320   }
3321   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
3322                                         S.getCancelRegion());
3323 }
3324 
3325 CodeGenFunction::JumpDest
3326 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
3327   if (Kind == OMPD_parallel || Kind == OMPD_task)
3328     return ReturnBlock;
3329   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
3330          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for);
3331   return BreakContinueStack.back().BreakBlock;
3332 }
3333 
3334 // Generate the instructions for '#pragma omp target data' directive.
3335 void CodeGenFunction::EmitOMPTargetDataDirective(
3336     const OMPTargetDataDirective &S) {
3337   // The target data enclosed region is implemented just by emitting the
3338   // statement.
3339   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3340     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3341   };
3342 
3343   // If we don't have target devices, don't bother emitting the data mapping
3344   // code.
3345   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
3346     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3347 
3348     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_target_data,
3349                                                 CodeGen);
3350     return;
3351   }
3352 
3353   // Check if we have any if clause associated with the directive.
3354   const Expr *IfCond = nullptr;
3355   if (auto *C = S.getSingleClause<OMPIfClause>())
3356     IfCond = C->getCondition();
3357 
3358   // Check if we have any device clause associated with the directive.
3359   const Expr *Device = nullptr;
3360   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3361     Device = C->getDevice();
3362 
3363   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, CodeGen);
3364 }
3365 
3366 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
3367     const OMPTargetEnterDataDirective &S) {
3368   // If we don't have target devices, don't bother emitting the data mapping
3369   // code.
3370   if (CGM.getLangOpts().OMPTargetTriples.empty())
3371     return;
3372 
3373   // Check if we have any if clause associated with the directive.
3374   const Expr *IfCond = nullptr;
3375   if (auto *C = S.getSingleClause<OMPIfClause>())
3376     IfCond = C->getCondition();
3377 
3378   // Check if we have any device clause associated with the directive.
3379   const Expr *Device = nullptr;
3380   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3381     Device = C->getDevice();
3382 
3383   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3384 }
3385 
3386 void CodeGenFunction::EmitOMPTargetExitDataDirective(
3387     const OMPTargetExitDataDirective &S) {
3388   // If we don't have target devices, don't bother emitting the data mapping
3389   // code.
3390   if (CGM.getLangOpts().OMPTargetTriples.empty())
3391     return;
3392 
3393   // Check if we have any if clause associated with the directive.
3394   const Expr *IfCond = nullptr;
3395   if (auto *C = S.getSingleClause<OMPIfClause>())
3396     IfCond = C->getCondition();
3397 
3398   // Check if we have any device clause associated with the directive.
3399   const Expr *Device = nullptr;
3400   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3401     Device = C->getDevice();
3402 
3403   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3404 }
3405 
3406 void CodeGenFunction::EmitOMPTargetParallelDirective(
3407     const OMPTargetParallelDirective &S) {
3408   // TODO: codegen for target parallel.
3409 }
3410 
3411 void CodeGenFunction::EmitOMPTargetParallelForDirective(
3412     const OMPTargetParallelForDirective &S) {
3413   // TODO: codegen for target parallel for.
3414 }
3415 
3416 /// Emit a helper variable and return corresponding lvalue.
3417 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
3418                      const ImplicitParamDecl *PVD,
3419                      CodeGenFunction::OMPPrivateScope &Privates) {
3420   auto *VDecl = cast<VarDecl>(Helper->getDecl());
3421   Privates.addPrivate(
3422       VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); });
3423 }
3424 
3425 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
3426   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
3427   // Emit outlined function for task construct.
3428   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3429   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
3430   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3431   const Expr *IfCond = nullptr;
3432   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3433     if (C->getNameModifier() == OMPD_unknown ||
3434         C->getNameModifier() == OMPD_taskloop) {
3435       IfCond = C->getCondition();
3436       break;
3437     }
3438   }
3439 
3440   OMPTaskDataTy Data;
3441   // Check if taskloop must be emitted without taskgroup.
3442   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
3443   // TODO: Check if we should emit tied or untied task.
3444   Data.Tied = true;
3445   // Set scheduling for taskloop
3446   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
3447     // grainsize clause
3448     Data.Schedule.setInt(/*IntVal=*/false);
3449     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
3450   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
3451     // num_tasks clause
3452     Data.Schedule.setInt(/*IntVal=*/true);
3453     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
3454   }
3455 
3456   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
3457     // if (PreCond) {
3458     //   for (IV in 0..LastIteration) BODY;
3459     //   <Final counter/linear vars updates>;
3460     // }
3461     //
3462 
3463     // Emit: if (PreCond) - begin.
3464     // If the condition constant folds and can be elided, avoid emitting the
3465     // whole loop.
3466     bool CondConstant;
3467     llvm::BasicBlock *ContBlock = nullptr;
3468     OMPLoopScope PreInitScope(CGF, S);
3469     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3470       if (!CondConstant)
3471         return;
3472     } else {
3473       auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
3474       ContBlock = CGF.createBasicBlock("taskloop.if.end");
3475       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
3476                   CGF.getProfileCount(&S));
3477       CGF.EmitBlock(ThenBlock);
3478       CGF.incrementProfileCounter(&S);
3479     }
3480 
3481     if (isOpenMPSimdDirective(S.getDirectiveKind()))
3482       CGF.EmitOMPSimdInit(S);
3483 
3484     OMPPrivateScope LoopScope(CGF);
3485     // Emit helper vars inits.
3486     enum { LowerBound = 5, UpperBound, Stride, LastIter };
3487     auto *I = CS->getCapturedDecl()->param_begin();
3488     auto *LBP = std::next(I, LowerBound);
3489     auto *UBP = std::next(I, UpperBound);
3490     auto *STP = std::next(I, Stride);
3491     auto *LIP = std::next(I, LastIter);
3492     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
3493              LoopScope);
3494     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
3495              LoopScope);
3496     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
3497     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
3498              LoopScope);
3499     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
3500     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3501     (void)LoopScope.Privatize();
3502     // Emit the loop iteration variable.
3503     const Expr *IVExpr = S.getIterationVariable();
3504     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
3505     CGF.EmitVarDecl(*IVDecl);
3506     CGF.EmitIgnoredExpr(S.getInit());
3507 
3508     // Emit the iterations count variable.
3509     // If it is not a variable, Sema decided to calculate iterations count on
3510     // each iteration (e.g., it is foldable into a constant).
3511     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3512       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3513       // Emit calculation of the iterations count.
3514       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
3515     }
3516 
3517     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
3518                          S.getInc(),
3519                          [&S](CodeGenFunction &CGF) {
3520                            CGF.EmitOMPLoopBody(S, JumpDest());
3521                            CGF.EmitStopPoint(&S);
3522                          },
3523                          [](CodeGenFunction &) {});
3524     // Emit: if (PreCond) - end.
3525     if (ContBlock) {
3526       CGF.EmitBranch(ContBlock);
3527       CGF.EmitBlock(ContBlock, true);
3528     }
3529     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3530     if (HasLastprivateClause) {
3531       CGF.EmitOMPLastprivateClauseFinal(
3532           S, isOpenMPSimdDirective(S.getDirectiveKind()),
3533           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
3534               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
3535               (*LIP)->getType(), S.getLocStart())));
3536     }
3537   };
3538   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3539                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
3540                             const OMPTaskDataTy &Data) {
3541     auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) {
3542       OMPLoopScope PreInitScope(CGF, S);
3543       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S,
3544                                                   OutlinedFn, SharedsTy,
3545                                                   CapturedStruct, IfCond, Data);
3546     };
3547     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
3548                                                     CodeGen);
3549   };
3550   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
3551 }
3552 
3553 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
3554   EmitOMPTaskLoopBasedDirective(S);
3555 }
3556 
3557 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
3558     const OMPTaskLoopSimdDirective &S) {
3559   EmitOMPTaskLoopBasedDirective(S);
3560 }
3561 
3562 // Generate the instructions for '#pragma omp target update' directive.
3563 void CodeGenFunction::EmitOMPTargetUpdateDirective(
3564     const OMPTargetUpdateDirective &S) {
3565   // If we don't have target devices, don't bother emitting the data mapping
3566   // code.
3567   if (CGM.getLangOpts().OMPTargetTriples.empty())
3568     return;
3569 
3570   // Check if we have any if clause associated with the directive.
3571   const Expr *IfCond = nullptr;
3572   if (auto *C = S.getSingleClause<OMPIfClause>())
3573     IfCond = C->getCondition();
3574 
3575   // Check if we have any device clause associated with the directive.
3576   const Expr *Device = nullptr;
3577   if (auto *C = S.getSingleClause<OMPDeviceClause>())
3578     Device = C->getDevice();
3579 
3580   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
3581 }
3582