1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit OpenMP nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCleanup.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/DeclOpenMP.h"
21 #include "clang/AST/OpenMPClause.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/StmtOpenMP.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/OpenMPKinds.h"
26 #include "clang/Basic/PrettyStackTrace.h"
27 #include "llvm/Frontend/OpenMP/OMPConstants.h"
28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/Support/AtomicOrdering.h"
32 using namespace clang;
33 using namespace CodeGen;
34 using namespace llvm::omp;
35 
36 static const VarDecl *getBaseDecl(const Expr *Ref);
37 
38 namespace {
39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
40 /// for captured expressions.
41 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
42   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
43     for (const auto *C : S.clauses()) {
44       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
45         if (const auto *PreInit =
46                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
47           for (const auto *I : PreInit->decls()) {
48             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
49               CGF.EmitVarDecl(cast<VarDecl>(*I));
50             } else {
51               CodeGenFunction::AutoVarEmission Emission =
52                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
53               CGF.EmitAutoVarCleanups(Emission);
54             }
55           }
56         }
57       }
58     }
59   }
60   CodeGenFunction::OMPPrivateScope InlinedShareds;
61 
62   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
63     return CGF.LambdaCaptureFields.lookup(VD) ||
64            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
65            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
66             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
67   }
68 
69 public:
70   OMPLexicalScope(
71       CodeGenFunction &CGF, const OMPExecutableDirective &S,
72       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
73       const bool EmitPreInitStmt = true)
74       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
75         InlinedShareds(CGF) {
76     if (EmitPreInitStmt)
77       emitPreInitStmt(CGF, S);
78     if (!CapturedRegion.hasValue())
79       return;
80     assert(S.hasAssociatedStmt() &&
81            "Expected associated statement for inlined directive.");
82     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
83     for (const auto &C : CS->captures()) {
84       if (C.capturesVariable() || C.capturesVariableByCopy()) {
85         auto *VD = C.getCapturedVar();
86         assert(VD == VD->getCanonicalDecl() &&
87                "Canonical decl must be captured.");
88         DeclRefExpr DRE(
89             CGF.getContext(), const_cast<VarDecl *>(VD),
90             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
91                                        InlinedShareds.isGlobalVarCaptured(VD)),
92             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
93         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
94           return CGF.EmitLValue(&DRE).getAddress(CGF);
95         });
96       }
97     }
98     (void)InlinedShareds.Privatize();
99   }
100 };
101 
102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
103 /// for captured expressions.
104 class OMPParallelScope final : public OMPLexicalScope {
105   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
106     OpenMPDirectiveKind Kind = S.getDirectiveKind();
107     return !(isOpenMPTargetExecutionDirective(Kind) ||
108              isOpenMPLoopBoundSharingDirective(Kind)) &&
109            isOpenMPParallelDirective(Kind);
110   }
111 
112 public:
113   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
114       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
115                         EmitPreInitStmt(S)) {}
116 };
117 
118 /// Lexical scope for OpenMP teams construct, that handles correct codegen
119 /// for captured expressions.
120 class OMPTeamsScope final : public OMPLexicalScope {
121   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
122     OpenMPDirectiveKind Kind = S.getDirectiveKind();
123     return !isOpenMPTargetExecutionDirective(Kind) &&
124            isOpenMPTeamsDirective(Kind);
125   }
126 
127 public:
128   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
129       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
130                         EmitPreInitStmt(S)) {}
131 };
132 
133 /// Private scope for OpenMP loop-based directives, that supports capturing
134 /// of used expression from loop statement.
135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
136   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) {
137     const DeclStmt *PreInits;
138     CodeGenFunction::OMPMapVars PreCondVars;
139     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
140       llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
141       for (const auto *E : LD->counters()) {
142         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
143         EmittedAsPrivate.insert(VD->getCanonicalDecl());
144         (void)PreCondVars.setVarAddr(
145             CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
146       }
147       // Mark private vars as undefs.
148       for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) {
149         for (const Expr *IRef : C->varlists()) {
150           const auto *OrigVD =
151               cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
152           if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
153             (void)PreCondVars.setVarAddr(
154                 CGF, OrigVD,
155                 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem(
156                             CGF.getContext().getPointerType(
157                                 OrigVD->getType().getNonReferenceType()))),
158                         CGF.getContext().getDeclAlign(OrigVD)));
159           }
160         }
161       }
162       (void)PreCondVars.apply(CGF);
163       // Emit init, __range and __end variables for C++ range loops.
164       (void)OMPLoopBasedDirective::doForAllLoops(
165           LD->getInnermostCapturedStmt()->getCapturedStmt(),
166           /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(),
167           [&CGF](unsigned Cnt, const Stmt *CurStmt) {
168             if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) {
169               if (const Stmt *Init = CXXFor->getInit())
170                 CGF.EmitStmt(Init);
171               CGF.EmitStmt(CXXFor->getRangeStmt());
172               CGF.EmitStmt(CXXFor->getEndStmt());
173             }
174             return false;
175           });
176       PreInits = cast_or_null<DeclStmt>(LD->getPreInits());
177     } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) {
178       PreInits = cast_or_null<DeclStmt>(Tile->getPreInits());
179     } else {
180       llvm_unreachable("Unknown loop-based directive kind.");
181     }
182     if (PreInits) {
183       for (const auto *I : PreInits->decls())
184         CGF.EmitVarDecl(cast<VarDecl>(*I));
185     }
186     PreCondVars.restore(CGF);
187   }
188 
189 public:
190   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S)
191       : CodeGenFunction::RunCleanupsScope(CGF) {
192     emitPreInitStmt(CGF, S);
193   }
194 };
195 
196 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
197   CodeGenFunction::OMPPrivateScope InlinedShareds;
198 
199   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
200     return CGF.LambdaCaptureFields.lookup(VD) ||
201            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
202            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
203             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
204   }
205 
206 public:
207   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
208       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
209         InlinedShareds(CGF) {
210     for (const auto *C : S.clauses()) {
211       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
212         if (const auto *PreInit =
213                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
214           for (const auto *I : PreInit->decls()) {
215             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
216               CGF.EmitVarDecl(cast<VarDecl>(*I));
217             } else {
218               CodeGenFunction::AutoVarEmission Emission =
219                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
220               CGF.EmitAutoVarCleanups(Emission);
221             }
222           }
223         }
224       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
225         for (const Expr *E : UDP->varlists()) {
226           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
227           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
228             CGF.EmitVarDecl(*OED);
229         }
230       } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) {
231         for (const Expr *E : UDP->varlists()) {
232           const Decl *D = getBaseDecl(E);
233           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
234             CGF.EmitVarDecl(*OED);
235         }
236       }
237     }
238     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
239       CGF.EmitOMPPrivateClause(S, InlinedShareds);
240     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
241       if (const Expr *E = TG->getReductionRef())
242         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
243     }
244     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
245     while (CS) {
246       for (auto &C : CS->captures()) {
247         if (C.capturesVariable() || C.capturesVariableByCopy()) {
248           auto *VD = C.getCapturedVar();
249           assert(VD == VD->getCanonicalDecl() &&
250                  "Canonical decl must be captured.");
251           DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
252                           isCapturedVar(CGF, VD) ||
253                               (CGF.CapturedStmtInfo &&
254                                InlinedShareds.isGlobalVarCaptured(VD)),
255                           VD->getType().getNonReferenceType(), VK_LValue,
256                           C.getLocation());
257           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
258             return CGF.EmitLValue(&DRE).getAddress(CGF);
259           });
260         }
261       }
262       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
263     }
264     (void)InlinedShareds.Privatize();
265   }
266 };
267 
268 } // namespace
269 
270 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
271                                          const OMPExecutableDirective &S,
272                                          const RegionCodeGenTy &CodeGen);
273 
274 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
275   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
276     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
277       OrigVD = OrigVD->getCanonicalDecl();
278       bool IsCaptured =
279           LambdaCaptureFields.lookup(OrigVD) ||
280           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
281           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
282       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured,
283                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
284       return EmitLValue(&DRE);
285     }
286   }
287   return EmitLValue(E);
288 }
289 
290 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
291   ASTContext &C = getContext();
292   llvm::Value *Size = nullptr;
293   auto SizeInChars = C.getTypeSizeInChars(Ty);
294   if (SizeInChars.isZero()) {
295     // getTypeSizeInChars() returns 0 for a VLA.
296     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
297       VlaSizePair VlaSize = getVLASize(VAT);
298       Ty = VlaSize.Type;
299       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
300                   : VlaSize.NumElts;
301     }
302     SizeInChars = C.getTypeSizeInChars(Ty);
303     if (SizeInChars.isZero())
304       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
305     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
306   }
307   return CGM.getSize(SizeInChars);
308 }
309 
310 void CodeGenFunction::GenerateOpenMPCapturedVars(
311     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
312   const RecordDecl *RD = S.getCapturedRecordDecl();
313   auto CurField = RD->field_begin();
314   auto CurCap = S.captures().begin();
315   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
316                                                  E = S.capture_init_end();
317        I != E; ++I, ++CurField, ++CurCap) {
318     if (CurField->hasCapturedVLAType()) {
319       const VariableArrayType *VAT = CurField->getCapturedVLAType();
320       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
321       CapturedVars.push_back(Val);
322     } else if (CurCap->capturesThis()) {
323       CapturedVars.push_back(CXXThisValue);
324     } else if (CurCap->capturesVariableByCopy()) {
325       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
326 
327       // If the field is not a pointer, we need to save the actual value
328       // and load it as a void pointer.
329       if (!CurField->getType()->isAnyPointerType()) {
330         ASTContext &Ctx = getContext();
331         Address DstAddr = CreateMemTemp(
332             Ctx.getUIntPtrType(),
333             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
334         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
335 
336         llvm::Value *SrcAddrVal = EmitScalarConversion(
337             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
338             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
339         LValue SrcLV =
340             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
341 
342         // Store the value using the source type pointer.
343         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
344 
345         // Load the value using the destination type pointer.
346         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
347       }
348       CapturedVars.push_back(CV);
349     } else {
350       assert(CurCap->capturesVariable() && "Expected capture by reference.");
351       CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer());
352     }
353   }
354 }
355 
356 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
357                                     QualType DstType, StringRef Name,
358                                     LValue AddrLV) {
359   ASTContext &Ctx = CGF.getContext();
360 
361   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
362       AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(),
363       Ctx.getPointerType(DstType), Loc);
364   Address TmpAddr =
365       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
366           .getAddress(CGF);
367   return TmpAddr;
368 }
369 
370 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
371   if (T->isLValueReferenceType())
372     return C.getLValueReferenceType(
373         getCanonicalParamType(C, T.getNonReferenceType()),
374         /*SpelledAsLValue=*/false);
375   if (T->isPointerType())
376     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
377   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
378     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
379       return getCanonicalParamType(C, VLA->getElementType());
380     if (!A->isVariablyModifiedType())
381       return C.getCanonicalType(T);
382   }
383   return C.getCanonicalParamType(T);
384 }
385 
386 namespace {
387 /// Contains required data for proper outlined function codegen.
388 struct FunctionOptions {
389   /// Captured statement for which the function is generated.
390   const CapturedStmt *S = nullptr;
391   /// true if cast to/from  UIntPtr is required for variables captured by
392   /// value.
393   const bool UIntPtrCastRequired = true;
394   /// true if only casted arguments must be registered as local args or VLA
395   /// sizes.
396   const bool RegisterCastedArgsOnly = false;
397   /// Name of the generated function.
398   const StringRef FunctionName;
399   /// Location of the non-debug version of the outlined function.
400   SourceLocation Loc;
401   explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
402                            bool RegisterCastedArgsOnly, StringRef FunctionName,
403                            SourceLocation Loc)
404       : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
405         RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
406         FunctionName(FunctionName), Loc(Loc) {}
407 };
408 } // namespace
409 
410 static llvm::Function *emitOutlinedFunctionPrologue(
411     CodeGenFunction &CGF, FunctionArgList &Args,
412     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
413         &LocalAddrs,
414     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
415         &VLASizes,
416     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
417   const CapturedDecl *CD = FO.S->getCapturedDecl();
418   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
419   assert(CD->hasBody() && "missing CapturedDecl body");
420 
421   CXXThisValue = nullptr;
422   // Build the argument list.
423   CodeGenModule &CGM = CGF.CGM;
424   ASTContext &Ctx = CGM.getContext();
425   FunctionArgList TargetArgs;
426   Args.append(CD->param_begin(),
427               std::next(CD->param_begin(), CD->getContextParamPosition()));
428   TargetArgs.append(
429       CD->param_begin(),
430       std::next(CD->param_begin(), CD->getContextParamPosition()));
431   auto I = FO.S->captures().begin();
432   FunctionDecl *DebugFunctionDecl = nullptr;
433   if (!FO.UIntPtrCastRequired) {
434     FunctionProtoType::ExtProtoInfo EPI;
435     QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI);
436     DebugFunctionDecl = FunctionDecl::Create(
437         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
438         SourceLocation(), DeclarationName(), FunctionTy,
439         Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static,
440         /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
441   }
442   for (const FieldDecl *FD : RD->fields()) {
443     QualType ArgType = FD->getType();
444     IdentifierInfo *II = nullptr;
445     VarDecl *CapVar = nullptr;
446 
447     // If this is a capture by copy and the type is not a pointer, the outlined
448     // function argument type should be uintptr and the value properly casted to
449     // uintptr. This is necessary given that the runtime library is only able to
450     // deal with pointers. We can pass in the same way the VLA type sizes to the
451     // outlined function.
452     if (FO.UIntPtrCastRequired &&
453         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
454          I->capturesVariableArrayType()))
455       ArgType = Ctx.getUIntPtrType();
456 
457     if (I->capturesVariable() || I->capturesVariableByCopy()) {
458       CapVar = I->getCapturedVar();
459       II = CapVar->getIdentifier();
460     } else if (I->capturesThis()) {
461       II = &Ctx.Idents.get("this");
462     } else {
463       assert(I->capturesVariableArrayType());
464       II = &Ctx.Idents.get("vla");
465     }
466     if (ArgType->isVariablyModifiedType())
467       ArgType = getCanonicalParamType(Ctx, ArgType);
468     VarDecl *Arg;
469     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
470       Arg = ParmVarDecl::Create(
471           Ctx, DebugFunctionDecl,
472           CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
473           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
474           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
475     } else {
476       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
477                                       II, ArgType, ImplicitParamDecl::Other);
478     }
479     Args.emplace_back(Arg);
480     // Do not cast arguments if we emit function with non-original types.
481     TargetArgs.emplace_back(
482         FO.UIntPtrCastRequired
483             ? Arg
484             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
485     ++I;
486   }
487   Args.append(
488       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
489       CD->param_end());
490   TargetArgs.append(
491       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
492       CD->param_end());
493 
494   // Create the function declaration.
495   const CGFunctionInfo &FuncInfo =
496       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
497   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
498 
499   auto *F =
500       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
501                              FO.FunctionName, &CGM.getModule());
502   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
503   if (CD->isNothrow())
504     F->setDoesNotThrow();
505   F->setDoesNotRecurse();
506 
507   // Generate the function.
508   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
509                     FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(),
510                     FO.UIntPtrCastRequired ? FO.Loc
511                                            : CD->getBody()->getBeginLoc());
512   unsigned Cnt = CD->getContextParamPosition();
513   I = FO.S->captures().begin();
514   for (const FieldDecl *FD : RD->fields()) {
515     // Do not map arguments if we emit function with non-original types.
516     Address LocalAddr(Address::invalid());
517     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
518       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
519                                                              TargetArgs[Cnt]);
520     } else {
521       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
522     }
523     // If we are capturing a pointer by copy we don't need to do anything, just
524     // use the value that we get from the arguments.
525     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
526       const VarDecl *CurVD = I->getCapturedVar();
527       if (!FO.RegisterCastedArgsOnly)
528         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
529       ++Cnt;
530       ++I;
531       continue;
532     }
533 
534     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
535                                         AlignmentSource::Decl);
536     if (FD->hasCapturedVLAType()) {
537       if (FO.UIntPtrCastRequired) {
538         ArgLVal = CGF.MakeAddrLValue(
539             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
540                                  Args[Cnt]->getName(), ArgLVal),
541             FD->getType(), AlignmentSource::Decl);
542       }
543       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
544       const VariableArrayType *VAT = FD->getCapturedVLAType();
545       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
546     } else if (I->capturesVariable()) {
547       const VarDecl *Var = I->getCapturedVar();
548       QualType VarTy = Var->getType();
549       Address ArgAddr = ArgLVal.getAddress(CGF);
550       if (ArgLVal.getType()->isLValueReferenceType()) {
551         ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
552       } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
553         assert(ArgLVal.getType()->isPointerType());
554         ArgAddr = CGF.EmitLoadOfPointer(
555             ArgAddr, ArgLVal.getType()->castAs<PointerType>());
556       }
557       if (!FO.RegisterCastedArgsOnly) {
558         LocalAddrs.insert(
559             {Args[Cnt],
560              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
561       }
562     } else if (I->capturesVariableByCopy()) {
563       assert(!FD->getType()->isAnyPointerType() &&
564              "Not expecting a captured pointer.");
565       const VarDecl *Var = I->getCapturedVar();
566       LocalAddrs.insert({Args[Cnt],
567                          {Var, FO.UIntPtrCastRequired
568                                    ? castValueFromUintptr(
569                                          CGF, I->getLocation(), FD->getType(),
570                                          Args[Cnt]->getName(), ArgLVal)
571                                    : ArgLVal.getAddress(CGF)}});
572     } else {
573       // If 'this' is captured, load it into CXXThisValue.
574       assert(I->capturesThis());
575       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
576       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}});
577     }
578     ++Cnt;
579     ++I;
580   }
581 
582   return F;
583 }
584 
585 llvm::Function *
586 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
587                                                     SourceLocation Loc) {
588   assert(
589       CapturedStmtInfo &&
590       "CapturedStmtInfo should be set when generating the captured function");
591   const CapturedDecl *CD = S.getCapturedDecl();
592   // Build the argument list.
593   bool NeedWrapperFunction =
594       getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo();
595   FunctionArgList Args;
596   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
597   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
598   SmallString<256> Buffer;
599   llvm::raw_svector_ostream Out(Buffer);
600   Out << CapturedStmtInfo->getHelperName();
601   if (NeedWrapperFunction)
602     Out << "_debug__";
603   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
604                      Out.str(), Loc);
605   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
606                                                    VLASizes, CXXThisValue, FO);
607   CodeGenFunction::OMPPrivateScope LocalScope(*this);
608   for (const auto &LocalAddrPair : LocalAddrs) {
609     if (LocalAddrPair.second.first) {
610       LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() {
611         return LocalAddrPair.second.second;
612       });
613     }
614   }
615   (void)LocalScope.Privatize();
616   for (const auto &VLASizePair : VLASizes)
617     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
618   PGO.assignRegionCounters(GlobalDecl(CD), F);
619   CapturedStmtInfo->EmitBody(*this, CD->getBody());
620   (void)LocalScope.ForceCleanup();
621   FinishFunction(CD->getBodyRBrace());
622   if (!NeedWrapperFunction)
623     return F;
624 
625   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
626                             /*RegisterCastedArgsOnly=*/true,
627                             CapturedStmtInfo->getHelperName(), Loc);
628   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
629   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
630   Args.clear();
631   LocalAddrs.clear();
632   VLASizes.clear();
633   llvm::Function *WrapperF =
634       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
635                                    WrapperCGF.CXXThisValue, WrapperFO);
636   llvm::SmallVector<llvm::Value *, 4> CallArgs;
637   for (const auto *Arg : Args) {
638     llvm::Value *CallArg;
639     auto I = LocalAddrs.find(Arg);
640     if (I != LocalAddrs.end()) {
641       LValue LV = WrapperCGF.MakeAddrLValue(
642           I->second.second,
643           I->second.first ? I->second.first->getType() : Arg->getType(),
644           AlignmentSource::Decl);
645       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
646     } else {
647       auto EI = VLASizes.find(Arg);
648       if (EI != VLASizes.end()) {
649         CallArg = EI->second.second;
650       } else {
651         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
652                                               Arg->getType(),
653                                               AlignmentSource::Decl);
654         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
655       }
656     }
657     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
658   }
659   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs);
660   WrapperCGF.FinishFunction();
661   return WrapperF;
662 }
663 
664 //===----------------------------------------------------------------------===//
665 //                              OpenMP Directive Emission
666 //===----------------------------------------------------------------------===//
667 void CodeGenFunction::EmitOMPAggregateAssign(
668     Address DestAddr, Address SrcAddr, QualType OriginalType,
669     const llvm::function_ref<void(Address, Address)> CopyGen) {
670   // Perform element-by-element initialization.
671   QualType ElementTy;
672 
673   // Drill down to the base element type on both arrays.
674   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
675   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
676   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
677 
678   llvm::Value *SrcBegin = SrcAddr.getPointer();
679   llvm::Value *DestBegin = DestAddr.getPointer();
680   // Cast from pointer to array type to pointer to single element.
681   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
682   // The basic structure here is a while-do loop.
683   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
684   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
685   llvm::Value *IsEmpty =
686       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
687   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
688 
689   // Enter the loop body, making that address the current address.
690   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
691   EmitBlock(BodyBB);
692 
693   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
694 
695   llvm::PHINode *SrcElementPHI =
696     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
697   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
698   Address SrcElementCurrent =
699       Address(SrcElementPHI,
700               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
701 
702   llvm::PHINode *DestElementPHI =
703     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
704   DestElementPHI->addIncoming(DestBegin, EntryBB);
705   Address DestElementCurrent =
706     Address(DestElementPHI,
707             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
708 
709   // Emit copy.
710   CopyGen(DestElementCurrent, SrcElementCurrent);
711 
712   // Shift the address forward by one element.
713   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
714       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
715   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
716       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
717   // Check whether we've reached the end.
718   llvm::Value *Done =
719       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
720   Builder.CreateCondBr(Done, DoneBB, BodyBB);
721   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
722   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
723 
724   // Done.
725   EmitBlock(DoneBB, /*IsFinished=*/true);
726 }
727 
728 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
729                                   Address SrcAddr, const VarDecl *DestVD,
730                                   const VarDecl *SrcVD, const Expr *Copy) {
731   if (OriginalType->isArrayType()) {
732     const auto *BO = dyn_cast<BinaryOperator>(Copy);
733     if (BO && BO->getOpcode() == BO_Assign) {
734       // Perform simple memcpy for simple copying.
735       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
736       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
737       EmitAggregateAssign(Dest, Src, OriginalType);
738     } else {
739       // For arrays with complex element types perform element by element
740       // copying.
741       EmitOMPAggregateAssign(
742           DestAddr, SrcAddr, OriginalType,
743           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
744             // Working with the single array element, so have to remap
745             // destination and source variables to corresponding array
746             // elements.
747             CodeGenFunction::OMPPrivateScope Remap(*this);
748             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
749             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
750             (void)Remap.Privatize();
751             EmitIgnoredExpr(Copy);
752           });
753     }
754   } else {
755     // Remap pseudo source variable to private copy.
756     CodeGenFunction::OMPPrivateScope Remap(*this);
757     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
758     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
759     (void)Remap.Privatize();
760     // Emit copying of the whole variable.
761     EmitIgnoredExpr(Copy);
762   }
763 }
764 
765 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
766                                                 OMPPrivateScope &PrivateScope) {
767   if (!HaveInsertPoint())
768     return false;
769   bool DeviceConstTarget =
770       getLangOpts().OpenMPIsDevice &&
771       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
772   bool FirstprivateIsLastprivate = false;
773   llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates;
774   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
775     for (const auto *D : C->varlists())
776       Lastprivates.try_emplace(
777           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(),
778           C->getKind());
779   }
780   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
781   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
782   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
783   // Force emission of the firstprivate copy if the directive does not emit
784   // outlined function, like omp for, omp simd, omp distribute etc.
785   bool MustEmitFirstprivateCopy =
786       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
787   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
788     const auto *IRef = C->varlist_begin();
789     const auto *InitsRef = C->inits().begin();
790     for (const Expr *IInit : C->private_copies()) {
791       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
792       bool ThisFirstprivateIsLastprivate =
793           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
794       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
795       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
796       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
797           !FD->getType()->isReferenceType() &&
798           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
799         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
800         ++IRef;
801         ++InitsRef;
802         continue;
803       }
804       // Do not emit copy for firstprivate constant variables in target regions,
805       // captured by reference.
806       if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) &&
807           FD && FD->getType()->isReferenceType() &&
808           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
809         (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this,
810                                                                     OrigVD);
811         ++IRef;
812         ++InitsRef;
813         continue;
814       }
815       FirstprivateIsLastprivate =
816           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
817       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
818         const auto *VDInit =
819             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
820         bool IsRegistered;
821         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
822                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
823                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
824         LValue OriginalLVal;
825         if (!FD) {
826           // Check if the firstprivate variable is just a constant value.
827           ConstantEmission CE = tryEmitAsConstant(&DRE);
828           if (CE && !CE.isReference()) {
829             // Constant value, no need to create a copy.
830             ++IRef;
831             ++InitsRef;
832             continue;
833           }
834           if (CE && CE.isReference()) {
835             OriginalLVal = CE.getReferenceLValue(*this, &DRE);
836           } else {
837             assert(!CE && "Expected non-constant firstprivate.");
838             OriginalLVal = EmitLValue(&DRE);
839           }
840         } else {
841           OriginalLVal = EmitLValue(&DRE);
842         }
843         QualType Type = VD->getType();
844         if (Type->isArrayType()) {
845           // Emit VarDecl with copy init for arrays.
846           // Get the address of the original variable captured in current
847           // captured region.
848           IsRegistered = PrivateScope.addPrivate(
849               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
850                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
851                 const Expr *Init = VD->getInit();
852                 if (!isa<CXXConstructExpr>(Init) ||
853                     isTrivialInitializer(Init)) {
854                   // Perform simple memcpy.
855                   LValue Dest =
856                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
857                   EmitAggregateAssign(Dest, OriginalLVal, Type);
858                 } else {
859                   EmitOMPAggregateAssign(
860                       Emission.getAllocatedAddress(),
861                       OriginalLVal.getAddress(*this), Type,
862                       [this, VDInit, Init](Address DestElement,
863                                            Address SrcElement) {
864                         // Clean up any temporaries needed by the
865                         // initialization.
866                         RunCleanupsScope InitScope(*this);
867                         // Emit initialization for single element.
868                         setAddrOfLocalVar(VDInit, SrcElement);
869                         EmitAnyExprToMem(Init, DestElement,
870                                          Init->getType().getQualifiers(),
871                                          /*IsInitializer*/ false);
872                         LocalDeclMap.erase(VDInit);
873                       });
874                 }
875                 EmitAutoVarCleanups(Emission);
876                 return Emission.getAllocatedAddress();
877               });
878         } else {
879           Address OriginalAddr = OriginalLVal.getAddress(*this);
880           IsRegistered =
881               PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD,
882                                                ThisFirstprivateIsLastprivate,
883                                                OrigVD, &Lastprivates, IRef]() {
884                 // Emit private VarDecl with copy init.
885                 // Remap temp VDInit variable to the address of the original
886                 // variable (for proper handling of captured global variables).
887                 setAddrOfLocalVar(VDInit, OriginalAddr);
888                 EmitDecl(*VD);
889                 LocalDeclMap.erase(VDInit);
890                 if (ThisFirstprivateIsLastprivate &&
891                     Lastprivates[OrigVD->getCanonicalDecl()] ==
892                         OMPC_LASTPRIVATE_conditional) {
893                   // Create/init special variable for lastprivate conditionals.
894                   Address VDAddr =
895                       CGM.getOpenMPRuntime().emitLastprivateConditionalInit(
896                           *this, OrigVD);
897                   llvm::Value *V = EmitLoadOfScalar(
898                       MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(),
899                                      AlignmentSource::Decl),
900                       (*IRef)->getExprLoc());
901                   EmitStoreOfScalar(V,
902                                     MakeAddrLValue(VDAddr, (*IRef)->getType(),
903                                                    AlignmentSource::Decl));
904                   LocalDeclMap.erase(VD);
905                   setAddrOfLocalVar(VD, VDAddr);
906                   return VDAddr;
907                 }
908                 return GetAddrOfLocalVar(VD);
909               });
910         }
911         assert(IsRegistered &&
912                "firstprivate var already registered as private");
913         // Silence the warning about unused variable.
914         (void)IsRegistered;
915       }
916       ++IRef;
917       ++InitsRef;
918     }
919   }
920   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
921 }
922 
923 void CodeGenFunction::EmitOMPPrivateClause(
924     const OMPExecutableDirective &D,
925     CodeGenFunction::OMPPrivateScope &PrivateScope) {
926   if (!HaveInsertPoint())
927     return;
928   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
929   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
930     auto IRef = C->varlist_begin();
931     for (const Expr *IInit : C->private_copies()) {
932       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
933       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
934         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
935         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
936           // Emit private VarDecl with copy init.
937           EmitDecl(*VD);
938           return GetAddrOfLocalVar(VD);
939         });
940         assert(IsRegistered && "private var already registered as private");
941         // Silence the warning about unused variable.
942         (void)IsRegistered;
943       }
944       ++IRef;
945     }
946   }
947 }
948 
949 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
950   if (!HaveInsertPoint())
951     return false;
952   // threadprivate_var1 = master_threadprivate_var1;
953   // operator=(threadprivate_var2, master_threadprivate_var2);
954   // ...
955   // __kmpc_barrier(&loc, global_tid);
956   llvm::DenseSet<const VarDecl *> CopiedVars;
957   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
958   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
959     auto IRef = C->varlist_begin();
960     auto ISrcRef = C->source_exprs().begin();
961     auto IDestRef = C->destination_exprs().begin();
962     for (const Expr *AssignOp : C->assignment_ops()) {
963       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
964       QualType Type = VD->getType();
965       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
966         // Get the address of the master variable. If we are emitting code with
967         // TLS support, the address is passed from the master as field in the
968         // captured declaration.
969         Address MasterAddr = Address::invalid();
970         if (getLangOpts().OpenMPUseTLS &&
971             getContext().getTargetInfo().isTLSSupported()) {
972           assert(CapturedStmtInfo->lookup(VD) &&
973                  "Copyin threadprivates should have been captured!");
974           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true,
975                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
976           MasterAddr = EmitLValue(&DRE).getAddress(*this);
977           LocalDeclMap.erase(VD);
978         } else {
979           MasterAddr =
980             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
981                                         : CGM.GetAddrOfGlobal(VD),
982                     getContext().getDeclAlign(VD));
983         }
984         // Get the address of the threadprivate variable.
985         Address PrivateAddr = EmitLValue(*IRef).getAddress(*this);
986         if (CopiedVars.size() == 1) {
987           // At first check if current thread is a master thread. If it is, no
988           // need to copy data.
989           CopyBegin = createBasicBlock("copyin.not.master");
990           CopyEnd = createBasicBlock("copyin.not.master.end");
991           Builder.CreateCondBr(
992               Builder.CreateICmpNE(
993                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
994                   Builder.CreatePtrToInt(PrivateAddr.getPointer(),
995                                          CGM.IntPtrTy)),
996               CopyBegin, CopyEnd);
997           EmitBlock(CopyBegin);
998         }
999         const auto *SrcVD =
1000             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1001         const auto *DestVD =
1002             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1003         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
1004       }
1005       ++IRef;
1006       ++ISrcRef;
1007       ++IDestRef;
1008     }
1009   }
1010   if (CopyEnd) {
1011     // Exit out of copying procedure for non-master thread.
1012     EmitBlock(CopyEnd, /*IsFinished=*/true);
1013     return true;
1014   }
1015   return false;
1016 }
1017 
1018 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
1019     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
1020   if (!HaveInsertPoint())
1021     return false;
1022   bool HasAtLeastOneLastprivate = false;
1023   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1024   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1025     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1026     for (const Expr *C : LoopDirective->counters()) {
1027       SIMDLCVs.insert(
1028           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1029     }
1030   }
1031   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1032   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1033     HasAtLeastOneLastprivate = true;
1034     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
1035         !getLangOpts().OpenMPSimd)
1036       break;
1037     const auto *IRef = C->varlist_begin();
1038     const auto *IDestRef = C->destination_exprs().begin();
1039     for (const Expr *IInit : C->private_copies()) {
1040       // Keep the address of the original variable for future update at the end
1041       // of the loop.
1042       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1043       // Taskloops do not require additional initialization, it is done in
1044       // runtime support library.
1045       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
1046         const auto *DestVD =
1047             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1048         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
1049           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1050                           /*RefersToEnclosingVariableOrCapture=*/
1051                               CapturedStmtInfo->lookup(OrigVD) != nullptr,
1052                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
1053           return EmitLValue(&DRE).getAddress(*this);
1054         });
1055         // Check if the variable is also a firstprivate: in this case IInit is
1056         // not generated. Initialization of this variable will happen in codegen
1057         // for 'firstprivate' clause.
1058         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
1059           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
1060           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C,
1061                                                                OrigVD]() {
1062             if (C->getKind() == OMPC_LASTPRIVATE_conditional) {
1063               Address VDAddr =
1064                   CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this,
1065                                                                         OrigVD);
1066               setAddrOfLocalVar(VD, VDAddr);
1067               return VDAddr;
1068             }
1069             // Emit private VarDecl with copy init.
1070             EmitDecl(*VD);
1071             return GetAddrOfLocalVar(VD);
1072           });
1073           assert(IsRegistered &&
1074                  "lastprivate var already registered as private");
1075           (void)IsRegistered;
1076         }
1077       }
1078       ++IRef;
1079       ++IDestRef;
1080     }
1081   }
1082   return HasAtLeastOneLastprivate;
1083 }
1084 
1085 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
1086     const OMPExecutableDirective &D, bool NoFinals,
1087     llvm::Value *IsLastIterCond) {
1088   if (!HaveInsertPoint())
1089     return;
1090   // Emit following code:
1091   // if (<IsLastIterCond>) {
1092   //   orig_var1 = private_orig_var1;
1093   //   ...
1094   //   orig_varn = private_orig_varn;
1095   // }
1096   llvm::BasicBlock *ThenBB = nullptr;
1097   llvm::BasicBlock *DoneBB = nullptr;
1098   if (IsLastIterCond) {
1099     // Emit implicit barrier if at least one lastprivate conditional is found
1100     // and this is not a simd mode.
1101     if (!getLangOpts().OpenMPSimd &&
1102         llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(),
1103                      [](const OMPLastprivateClause *C) {
1104                        return C->getKind() == OMPC_LASTPRIVATE_conditional;
1105                      })) {
1106       CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(),
1107                                              OMPD_unknown,
1108                                              /*EmitChecks=*/false,
1109                                              /*ForceSimpleCall=*/true);
1110     }
1111     ThenBB = createBasicBlock(".omp.lastprivate.then");
1112     DoneBB = createBasicBlock(".omp.lastprivate.done");
1113     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1114     EmitBlock(ThenBB);
1115   }
1116   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1117   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1118   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1119     auto IC = LoopDirective->counters().begin();
1120     for (const Expr *F : LoopDirective->finals()) {
1121       const auto *D =
1122           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1123       if (NoFinals)
1124         AlreadyEmittedVars.insert(D);
1125       else
1126         LoopCountersAndUpdates[D] = F;
1127       ++IC;
1128     }
1129   }
1130   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1131     auto IRef = C->varlist_begin();
1132     auto ISrcRef = C->source_exprs().begin();
1133     auto IDestRef = C->destination_exprs().begin();
1134     for (const Expr *AssignOp : C->assignment_ops()) {
1135       const auto *PrivateVD =
1136           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1137       QualType Type = PrivateVD->getType();
1138       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1139       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1140         // If lastprivate variable is a loop control variable for loop-based
1141         // directive, update its value before copyin back to original
1142         // variable.
1143         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1144           EmitIgnoredExpr(FinalExpr);
1145         const auto *SrcVD =
1146             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1147         const auto *DestVD =
1148             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1149         // Get the address of the private variable.
1150         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1151         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1152           PrivateAddr =
1153               Address(Builder.CreateLoad(PrivateAddr),
1154                       CGM.getNaturalTypeAlignment(RefTy->getPointeeType()));
1155         // Store the last value to the private copy in the last iteration.
1156         if (C->getKind() == OMPC_LASTPRIVATE_conditional)
1157           CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate(
1158               *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD,
1159               (*IRef)->getExprLoc());
1160         // Get the address of the original variable.
1161         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1162         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1163       }
1164       ++IRef;
1165       ++ISrcRef;
1166       ++IDestRef;
1167     }
1168     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1169       EmitIgnoredExpr(PostUpdate);
1170   }
1171   if (IsLastIterCond)
1172     EmitBlock(DoneBB, /*IsFinished=*/true);
1173 }
1174 
1175 void CodeGenFunction::EmitOMPReductionClauseInit(
1176     const OMPExecutableDirective &D,
1177     CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) {
1178   if (!HaveInsertPoint())
1179     return;
1180   SmallVector<const Expr *, 4> Shareds;
1181   SmallVector<const Expr *, 4> Privates;
1182   SmallVector<const Expr *, 4> ReductionOps;
1183   SmallVector<const Expr *, 4> LHSs;
1184   SmallVector<const Expr *, 4> RHSs;
1185   OMPTaskDataTy Data;
1186   SmallVector<const Expr *, 4> TaskLHSs;
1187   SmallVector<const Expr *, 4> TaskRHSs;
1188   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1189     if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan))
1190       continue;
1191     Shareds.append(C->varlist_begin(), C->varlist_end());
1192     Privates.append(C->privates().begin(), C->privates().end());
1193     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1194     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1195     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1196     if (C->getModifier() == OMPC_REDUCTION_task) {
1197       Data.ReductionVars.append(C->privates().begin(), C->privates().end());
1198       Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
1199       Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
1200       Data.ReductionOps.append(C->reduction_ops().begin(),
1201                                C->reduction_ops().end());
1202       TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1203       TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1204     }
1205   }
1206   ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps);
1207   unsigned Count = 0;
1208   auto *ILHS = LHSs.begin();
1209   auto *IRHS = RHSs.begin();
1210   auto *IPriv = Privates.begin();
1211   for (const Expr *IRef : Shareds) {
1212     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1213     // Emit private VarDecl with reduction init.
1214     RedCG.emitSharedOrigLValue(*this, Count);
1215     RedCG.emitAggregateType(*this, Count);
1216     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1217     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1218                              RedCG.getSharedLValue(Count),
1219                              [&Emission](CodeGenFunction &CGF) {
1220                                CGF.EmitAutoVarInit(Emission);
1221                                return true;
1222                              });
1223     EmitAutoVarCleanups(Emission);
1224     Address BaseAddr = RedCG.adjustPrivateAddress(
1225         *this, Count, Emission.getAllocatedAddress());
1226     bool IsRegistered = PrivateScope.addPrivate(
1227         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1228     assert(IsRegistered && "private var already registered as private");
1229     // Silence the warning about unused variable.
1230     (void)IsRegistered;
1231 
1232     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1233     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1234     QualType Type = PrivateVD->getType();
1235     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1236     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1237       // Store the address of the original variable associated with the LHS
1238       // implicit variable.
1239       PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
1240         return RedCG.getSharedLValue(Count).getAddress(*this);
1241       });
1242       PrivateScope.addPrivate(
1243           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1244     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1245                isa<ArraySubscriptExpr>(IRef)) {
1246       // Store the address of the original variable associated with the LHS
1247       // implicit variable.
1248       PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
1249         return RedCG.getSharedLValue(Count).getAddress(*this);
1250       });
1251       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1252         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1253                                             ConvertTypeForMem(RHSVD->getType()),
1254                                             "rhs.begin");
1255       });
1256     } else {
1257       QualType Type = PrivateVD->getType();
1258       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1259       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this);
1260       // Store the address of the original variable associated with the LHS
1261       // implicit variable.
1262       if (IsArray) {
1263         OriginalAddr = Builder.CreateElementBitCast(
1264             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1265       }
1266       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1267       PrivateScope.addPrivate(
1268           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1269             return IsArray
1270                        ? Builder.CreateElementBitCast(
1271                              GetAddrOfLocalVar(PrivateVD),
1272                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1273                        : GetAddrOfLocalVar(PrivateVD);
1274           });
1275     }
1276     ++ILHS;
1277     ++IRHS;
1278     ++IPriv;
1279     ++Count;
1280   }
1281   if (!Data.ReductionVars.empty()) {
1282     Data.IsReductionWithTaskMod = true;
1283     Data.IsWorksharingReduction =
1284         isOpenMPWorksharingDirective(D.getDirectiveKind());
1285     llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit(
1286         *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data);
1287     const Expr *TaskRedRef = nullptr;
1288     switch (D.getDirectiveKind()) {
1289     case OMPD_parallel:
1290       TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr();
1291       break;
1292     case OMPD_for:
1293       TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr();
1294       break;
1295     case OMPD_sections:
1296       TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr();
1297       break;
1298     case OMPD_parallel_for:
1299       TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr();
1300       break;
1301     case OMPD_parallel_master:
1302       TaskRedRef =
1303           cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr();
1304       break;
1305     case OMPD_parallel_sections:
1306       TaskRedRef =
1307           cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr();
1308       break;
1309     case OMPD_target_parallel:
1310       TaskRedRef =
1311           cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr();
1312       break;
1313     case OMPD_target_parallel_for:
1314       TaskRedRef =
1315           cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr();
1316       break;
1317     case OMPD_distribute_parallel_for:
1318       TaskRedRef =
1319           cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr();
1320       break;
1321     case OMPD_teams_distribute_parallel_for:
1322       TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D)
1323                        .getTaskReductionRefExpr();
1324       break;
1325     case OMPD_target_teams_distribute_parallel_for:
1326       TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D)
1327                        .getTaskReductionRefExpr();
1328       break;
1329     case OMPD_simd:
1330     case OMPD_for_simd:
1331     case OMPD_section:
1332     case OMPD_single:
1333     case OMPD_master:
1334     case OMPD_critical:
1335     case OMPD_parallel_for_simd:
1336     case OMPD_task:
1337     case OMPD_taskyield:
1338     case OMPD_barrier:
1339     case OMPD_taskwait:
1340     case OMPD_taskgroup:
1341     case OMPD_flush:
1342     case OMPD_depobj:
1343     case OMPD_scan:
1344     case OMPD_ordered:
1345     case OMPD_atomic:
1346     case OMPD_teams:
1347     case OMPD_target:
1348     case OMPD_cancellation_point:
1349     case OMPD_cancel:
1350     case OMPD_target_data:
1351     case OMPD_target_enter_data:
1352     case OMPD_target_exit_data:
1353     case OMPD_taskloop:
1354     case OMPD_taskloop_simd:
1355     case OMPD_master_taskloop:
1356     case OMPD_master_taskloop_simd:
1357     case OMPD_parallel_master_taskloop:
1358     case OMPD_parallel_master_taskloop_simd:
1359     case OMPD_distribute:
1360     case OMPD_target_update:
1361     case OMPD_distribute_parallel_for_simd:
1362     case OMPD_distribute_simd:
1363     case OMPD_target_parallel_for_simd:
1364     case OMPD_target_simd:
1365     case OMPD_teams_distribute:
1366     case OMPD_teams_distribute_simd:
1367     case OMPD_teams_distribute_parallel_for_simd:
1368     case OMPD_target_teams:
1369     case OMPD_target_teams_distribute:
1370     case OMPD_target_teams_distribute_parallel_for_simd:
1371     case OMPD_target_teams_distribute_simd:
1372     case OMPD_declare_target:
1373     case OMPD_end_declare_target:
1374     case OMPD_threadprivate:
1375     case OMPD_allocate:
1376     case OMPD_declare_reduction:
1377     case OMPD_declare_mapper:
1378     case OMPD_declare_simd:
1379     case OMPD_requires:
1380     case OMPD_declare_variant:
1381     case OMPD_begin_declare_variant:
1382     case OMPD_end_declare_variant:
1383     case OMPD_unknown:
1384     default:
1385       llvm_unreachable("Enexpected directive with task reductions.");
1386     }
1387 
1388     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl());
1389     EmitVarDecl(*VD);
1390     EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD),
1391                       /*Volatile=*/false, TaskRedRef->getType());
1392   }
1393 }
1394 
1395 void CodeGenFunction::EmitOMPReductionClauseFinal(
1396     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1397   if (!HaveInsertPoint())
1398     return;
1399   llvm::SmallVector<const Expr *, 8> Privates;
1400   llvm::SmallVector<const Expr *, 8> LHSExprs;
1401   llvm::SmallVector<const Expr *, 8> RHSExprs;
1402   llvm::SmallVector<const Expr *, 8> ReductionOps;
1403   bool HasAtLeastOneReduction = false;
1404   bool IsReductionWithTaskMod = false;
1405   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1406     // Do not emit for inscan reductions.
1407     if (C->getModifier() == OMPC_REDUCTION_inscan)
1408       continue;
1409     HasAtLeastOneReduction = true;
1410     Privates.append(C->privates().begin(), C->privates().end());
1411     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1412     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1413     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1414     IsReductionWithTaskMod =
1415         IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task;
1416   }
1417   if (HasAtLeastOneReduction) {
1418     if (IsReductionWithTaskMod) {
1419       CGM.getOpenMPRuntime().emitTaskReductionFini(
1420           *this, D.getBeginLoc(),
1421           isOpenMPWorksharingDirective(D.getDirectiveKind()));
1422     }
1423     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1424                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1425                       ReductionKind == OMPD_simd;
1426     bool SimpleReduction = ReductionKind == OMPD_simd;
1427     // Emit nowait reduction if nowait clause is present or directive is a
1428     // parallel directive (it always has implicit barrier).
1429     CGM.getOpenMPRuntime().emitReduction(
1430         *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
1431         {WithNowait, SimpleReduction, ReductionKind});
1432   }
1433 }
1434 
1435 static void emitPostUpdateForReductionClause(
1436     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1437     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1438   if (!CGF.HaveInsertPoint())
1439     return;
1440   llvm::BasicBlock *DoneBB = nullptr;
1441   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1442     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1443       if (!DoneBB) {
1444         if (llvm::Value *Cond = CondGen(CGF)) {
1445           // If the first post-update expression is found, emit conditional
1446           // block if it was requested.
1447           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1448           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1449           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1450           CGF.EmitBlock(ThenBB);
1451         }
1452       }
1453       CGF.EmitIgnoredExpr(PostUpdate);
1454     }
1455   }
1456   if (DoneBB)
1457     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1458 }
1459 
1460 namespace {
1461 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1462 /// parallel function. This is necessary for combined constructs such as
1463 /// 'distribute parallel for'
1464 typedef llvm::function_ref<void(CodeGenFunction &,
1465                                 const OMPExecutableDirective &,
1466                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1467     CodeGenBoundParametersTy;
1468 } // anonymous namespace
1469 
1470 static void
1471 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF,
1472                                      const OMPExecutableDirective &S) {
1473   if (CGF.getLangOpts().OpenMP < 50)
1474     return;
1475   llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls;
1476   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
1477     for (const Expr *Ref : C->varlists()) {
1478       if (!Ref->getType()->isScalarType())
1479         continue;
1480       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1481       if (!DRE)
1482         continue;
1483       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1484       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1485     }
1486   }
1487   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
1488     for (const Expr *Ref : C->varlists()) {
1489       if (!Ref->getType()->isScalarType())
1490         continue;
1491       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1492       if (!DRE)
1493         continue;
1494       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1495       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1496     }
1497   }
1498   for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
1499     for (const Expr *Ref : C->varlists()) {
1500       if (!Ref->getType()->isScalarType())
1501         continue;
1502       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1503       if (!DRE)
1504         continue;
1505       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1506       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1507     }
1508   }
1509   // Privates should ne analyzed since they are not captured at all.
1510   // Task reductions may be skipped - tasks are ignored.
1511   // Firstprivates do not return value but may be passed by reference - no need
1512   // to check for updated lastprivate conditional.
1513   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
1514     for (const Expr *Ref : C->varlists()) {
1515       if (!Ref->getType()->isScalarType())
1516         continue;
1517       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1518       if (!DRE)
1519         continue;
1520       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1521     }
1522   }
1523   CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional(
1524       CGF, S, PrivateDecls);
1525 }
1526 
1527 static void emitCommonOMPParallelDirective(
1528     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1529     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1530     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1531   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1532   llvm::Function *OutlinedFn =
1533       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1534           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1535   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1536     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1537     llvm::Value *NumThreads =
1538         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1539                            /*IgnoreResultAssign=*/true);
1540     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1541         CGF, NumThreads, NumThreadsClause->getBeginLoc());
1542   }
1543   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1544     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1545     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1546         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
1547   }
1548   const Expr *IfCond = nullptr;
1549   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1550     if (C->getNameModifier() == OMPD_unknown ||
1551         C->getNameModifier() == OMPD_parallel) {
1552       IfCond = C->getCondition();
1553       break;
1554     }
1555   }
1556 
1557   OMPParallelScope Scope(CGF, S);
1558   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1559   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1560   // lower and upper bounds with the pragma 'for' chunking mechanism.
1561   // The following lambda takes care of appending the lower and upper bound
1562   // parameters when necessary
1563   CodeGenBoundParameters(CGF, S, CapturedVars);
1564   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1565   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
1566                                               CapturedVars, IfCond);
1567 }
1568 
1569 static bool isAllocatableDecl(const VarDecl *VD) {
1570   const VarDecl *CVD = VD->getCanonicalDecl();
1571   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
1572     return false;
1573   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
1574   // Use the default allocation.
1575   return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc ||
1576             AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) &&
1577            !AA->getAllocator());
1578 }
1579 
1580 static void emitEmptyBoundParameters(CodeGenFunction &,
1581                                      const OMPExecutableDirective &,
1582                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1583 
1584 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable(
1585     CodeGenFunction &CGF, const VarDecl *VD) {
1586   CodeGenModule &CGM = CGF.CGM;
1587   auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1588 
1589   if (!VD)
1590     return Address::invalid();
1591   const VarDecl *CVD = VD->getCanonicalDecl();
1592   if (!isAllocatableDecl(CVD))
1593     return Address::invalid();
1594   llvm::Value *Size;
1595   CharUnits Align = CGM.getContext().getDeclAlign(CVD);
1596   if (CVD->getType()->isVariablyModifiedType()) {
1597     Size = CGF.getTypeSize(CVD->getType());
1598     // Align the size: ((size + align - 1) / align) * align
1599     Size = CGF.Builder.CreateNUWAdd(
1600         Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
1601     Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
1602     Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
1603   } else {
1604     CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
1605     Size = CGM.getSize(Sz.alignTo(Align));
1606   }
1607 
1608   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
1609   assert(AA->getAllocator() &&
1610          "Expected allocator expression for non-default allocator.");
1611   llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
1612   // According to the standard, the original allocator type is a enum (integer).
1613   // Convert to pointer type, if required.
1614   if (Allocator->getType()->isIntegerTy())
1615     Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
1616   else if (Allocator->getType()->isPointerTy())
1617     Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
1618                                                                 CGM.VoidPtrTy);
1619 
1620   llvm::Value *Addr = OMPBuilder.createOMPAlloc(
1621       CGF.Builder, Size, Allocator,
1622       getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", "."));
1623   llvm::CallInst *FreeCI =
1624       OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator);
1625 
1626   CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI);
1627   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1628       Addr,
1629       CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
1630       getNameWithSeparators({CVD->getName(), ".addr"}, ".", "."));
1631   return Address(Addr, Align);
1632 }
1633 
1634 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
1635     CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr,
1636     SourceLocation Loc) {
1637   CodeGenModule &CGM = CGF.CGM;
1638   if (CGM.getLangOpts().OpenMPUseTLS &&
1639       CGM.getContext().getTargetInfo().isTLSSupported())
1640     return VDAddr;
1641 
1642   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1643 
1644   llvm::Type *VarTy = VDAddr.getElementType();
1645   llvm::Value *Data =
1646       CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy);
1647   llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy));
1648   std::string Suffix = getNameWithSeparators({"cache", ""});
1649   llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix);
1650 
1651   llvm::CallInst *ThreadPrivateCacheCall =
1652       OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName);
1653 
1654   return Address(ThreadPrivateCacheCall, VDAddr.getAlignment());
1655 }
1656 
1657 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators(
1658     ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) {
1659   SmallString<128> Buffer;
1660   llvm::raw_svector_ostream OS(Buffer);
1661   StringRef Sep = FirstSeparator;
1662   for (StringRef Part : Parts) {
1663     OS << Sep << Part;
1664     Sep = Separator;
1665   }
1666   return OS.str().str();
1667 }
1668 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1669   if (CGM.getLangOpts().OpenMPIRBuilder) {
1670     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1671     // Check if we have any if clause associated with the directive.
1672     llvm::Value *IfCond = nullptr;
1673     if (const auto *C = S.getSingleClause<OMPIfClause>())
1674       IfCond = EmitScalarExpr(C->getCondition(),
1675                               /*IgnoreResultAssign=*/true);
1676 
1677     llvm::Value *NumThreads = nullptr;
1678     if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>())
1679       NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(),
1680                                   /*IgnoreResultAssign=*/true);
1681 
1682     ProcBindKind ProcBind = OMP_PROC_BIND_default;
1683     if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>())
1684       ProcBind = ProcBindClause->getProcBindKind();
1685 
1686     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1687 
1688     // The cleanup callback that finalizes all variabels at the given location,
1689     // thus calls destructors etc.
1690     auto FiniCB = [this](InsertPointTy IP) {
1691       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
1692     };
1693 
1694     // Privatization callback that performs appropriate action for
1695     // shared/private/firstprivate/lastprivate/copyin/... variables.
1696     //
1697     // TODO: This defaults to shared right now.
1698     auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
1699                      llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) {
1700       // The next line is appropriate only for variables (Val) with the
1701       // data-sharing attribute "shared".
1702       ReplVal = &Val;
1703 
1704       return CodeGenIP;
1705     };
1706 
1707     const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1708     const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt();
1709 
1710     auto BodyGenCB = [ParallelRegionBodyStmt,
1711                       this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
1712                             llvm::BasicBlock &ContinuationBB) {
1713       OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP,
1714                                                       ContinuationBB);
1715       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt,
1716                                              CodeGenIP, ContinuationBB);
1717     };
1718 
1719     CGCapturedStmtInfo CGSI(*CS, CR_OpenMP);
1720     CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI);
1721     llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
1722         AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
1723     Builder.restoreIP(
1724         OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB,
1725                                   IfCond, NumThreads, ProcBind, S.hasCancel()));
1726     return;
1727   }
1728 
1729   // Emit parallel region as a standalone region.
1730   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1731     Action.Enter(CGF);
1732     OMPPrivateScope PrivateScope(CGF);
1733     bool Copyins = CGF.EmitOMPCopyinClause(S);
1734     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1735     if (Copyins) {
1736       // Emit implicit barrier to synchronize threads and avoid data races on
1737       // propagation master's thread values of threadprivate variables to local
1738       // instances of that variables of all other implicit threads.
1739       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1740           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
1741           /*ForceSimpleCall=*/true);
1742     }
1743     CGF.EmitOMPPrivateClause(S, PrivateScope);
1744     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1745     (void)PrivateScope.Privatize();
1746     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1747     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1748   };
1749   {
1750     auto LPCRegion =
1751         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
1752     emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1753                                    emitEmptyBoundParameters);
1754     emitPostUpdateForReductionClause(*this, S,
1755                                      [](CodeGenFunction &) { return nullptr; });
1756   }
1757   // Check for outer lastprivate conditional update.
1758   checkForLastprivateConditionalUpdate(*this, S);
1759 }
1760 
1761 namespace {
1762 /// RAII to handle scopes for loop transformation directives.
1763 class OMPTransformDirectiveScopeRAII {
1764   OMPLoopScope *Scope = nullptr;
1765   CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr;
1766   CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr;
1767 
1768 public:
1769   OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) {
1770     if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) {
1771       Scope = new OMPLoopScope(CGF, *Dir);
1772       CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP);
1773       CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI);
1774     }
1775   }
1776   ~OMPTransformDirectiveScopeRAII() {
1777     if (!Scope)
1778       return;
1779     delete CapInfoRAII;
1780     delete CGSI;
1781     delete Scope;
1782   }
1783 };
1784 } // namespace
1785 
1786 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop,
1787                      int MaxLevel, int Level = 0) {
1788   assert(Level < MaxLevel && "Too deep lookup during loop body codegen.");
1789   const Stmt *SimplifiedS = S->IgnoreContainers();
1790   if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) {
1791     PrettyStackTraceLoc CrashInfo(
1792         CGF.getContext().getSourceManager(), CS->getLBracLoc(),
1793         "LLVM IR generation of compound statement ('{}')");
1794 
1795     // Keep track of the current cleanup stack depth, including debug scopes.
1796     CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange());
1797     for (const Stmt *CurStmt : CS->body())
1798       emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level);
1799     return;
1800   }
1801   if (SimplifiedS == NextLoop) {
1802     OMPTransformDirectiveScopeRAII PossiblyTransformDirectiveScope(CGF,
1803                                                                    SimplifiedS);
1804     if (auto *Dir = dyn_cast<OMPTileDirective>(SimplifiedS))
1805       SimplifiedS = Dir->getTransformedStmt();
1806     if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS))
1807       SimplifiedS = CanonLoop->getLoopStmt();
1808     if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) {
1809       S = For->getBody();
1810     } else {
1811       assert(isa<CXXForRangeStmt>(SimplifiedS) &&
1812              "Expected canonical for loop or range-based for loop.");
1813       const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS);
1814       CGF.EmitStmt(CXXFor->getLoopVarStmt());
1815       S = CXXFor->getBody();
1816     }
1817     if (Level + 1 < MaxLevel) {
1818       NextLoop = OMPLoopDirective::tryToFindNextInnerLoop(
1819           S, /*TryImperfectlyNestedLoops=*/true);
1820       emitBody(CGF, S, NextLoop, MaxLevel, Level + 1);
1821       return;
1822     }
1823   }
1824   CGF.EmitStmt(S);
1825 }
1826 
1827 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1828                                       JumpDest LoopExit) {
1829   RunCleanupsScope BodyScope(*this);
1830   // Update counters values on current iteration.
1831   for (const Expr *UE : D.updates())
1832     EmitIgnoredExpr(UE);
1833   // Update the linear variables.
1834   // In distribute directives only loop counters may be marked as linear, no
1835   // need to generate the code for them.
1836   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1837     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1838       for (const Expr *UE : C->updates())
1839         EmitIgnoredExpr(UE);
1840     }
1841   }
1842 
1843   // On a continue in the body, jump to the end.
1844   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1845   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1846   for (const Expr *E : D.finals_conditions()) {
1847     if (!E)
1848       continue;
1849     // Check that loop counter in non-rectangular nest fits into the iteration
1850     // space.
1851     llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next");
1852     EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(),
1853                          getProfileCount(D.getBody()));
1854     EmitBlock(NextBB);
1855   }
1856 
1857   OMPPrivateScope InscanScope(*this);
1858   EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true);
1859   bool IsInscanRegion = InscanScope.Privatize();
1860   if (IsInscanRegion) {
1861     // Need to remember the block before and after scan directive
1862     // to dispatch them correctly depending on the clause used in
1863     // this directive, inclusive or exclusive. For inclusive scan the natural
1864     // order of the blocks is used, for exclusive clause the blocks must be
1865     // executed in reverse order.
1866     OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb");
1867     OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb");
1868     // No need to allocate inscan exit block, in simd mode it is selected in the
1869     // codegen for the scan directive.
1870     if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd)
1871       OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb");
1872     OMPScanDispatch = createBasicBlock("omp.inscan.dispatch");
1873     EmitBranch(OMPScanDispatch);
1874     EmitBlock(OMPBeforeScanBlock);
1875   }
1876 
1877   // Emit loop variables for C++ range loops.
1878   const Stmt *Body =
1879       D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
1880   // Emit loop body.
1881   emitBody(*this, Body,
1882            OMPLoopBasedDirective::tryToFindNextInnerLoop(
1883                Body, /*TryImperfectlyNestedLoops=*/true),
1884            D.getLoopsNumber());
1885 
1886   // Jump to the dispatcher at the end of the loop body.
1887   if (IsInscanRegion)
1888     EmitBranch(OMPScanExitBlock);
1889 
1890   // The end (updates/cleanups).
1891   EmitBlock(Continue.getBlock());
1892   BreakContinueStack.pop_back();
1893 }
1894 
1895 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>;
1896 
1897 /// Emit a captured statement and return the function as well as its captured
1898 /// closure context.
1899 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF,
1900                                              const CapturedStmt *S) {
1901   LValue CapStruct = ParentCGF.InitCapturedStruct(*S);
1902   CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true);
1903   std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI =
1904       std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S);
1905   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get());
1906   llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S);
1907 
1908   return {F, CapStruct.getPointer(ParentCGF)};
1909 }
1910 
1911 /// Emit a call to a previously captured closure.
1912 static llvm::CallInst *
1913 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap,
1914                      llvm::ArrayRef<llvm::Value *> Args) {
1915   // Append the closure context to the argument.
1916   SmallVector<llvm::Value *> EffectiveArgs;
1917   EffectiveArgs.reserve(Args.size() + 1);
1918   llvm::append_range(EffectiveArgs, Args);
1919   EffectiveArgs.push_back(Cap.second);
1920 
1921   return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs);
1922 }
1923 
1924 llvm::CanonicalLoopInfo *
1925 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) {
1926   assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented");
1927 
1928   EmitStmt(S);
1929   assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops");
1930 
1931   // The last added loop is the outermost one.
1932   return OMPLoopNestStack.back();
1933 }
1934 
1935 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) {
1936   const Stmt *SyntacticalLoop = S->getLoopStmt();
1937   if (!getLangOpts().OpenMPIRBuilder) {
1938     // Ignore if OpenMPIRBuilder is not enabled.
1939     EmitStmt(SyntacticalLoop);
1940     return;
1941   }
1942 
1943   LexicalScope ForScope(*this, S->getSourceRange());
1944 
1945   // Emit init statements. The Distance/LoopVar funcs may reference variable
1946   // declarations they contain.
1947   const Stmt *BodyStmt;
1948   if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) {
1949     if (const Stmt *InitStmt = For->getInit())
1950       EmitStmt(InitStmt);
1951     BodyStmt = For->getBody();
1952   } else if (const auto *RangeFor =
1953                  dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) {
1954     if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt())
1955       EmitStmt(RangeStmt);
1956     if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt())
1957       EmitStmt(BeginStmt);
1958     if (const DeclStmt *EndStmt = RangeFor->getEndStmt())
1959       EmitStmt(EndStmt);
1960     if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt())
1961       EmitStmt(LoopVarStmt);
1962     BodyStmt = RangeFor->getBody();
1963   } else
1964     llvm_unreachable("Expected for-stmt or range-based for-stmt");
1965 
1966   // Emit closure for later use. By-value captures will be captured here.
1967   const CapturedStmt *DistanceFunc = S->getDistanceFunc();
1968   EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc);
1969   const CapturedStmt *LoopVarFunc = S->getLoopVarFunc();
1970   EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc);
1971 
1972   // Call the distance function to get the number of iterations of the loop to
1973   // come.
1974   QualType LogicalTy = DistanceFunc->getCapturedDecl()
1975                            ->getParam(0)
1976                            ->getType()
1977                            .getNonReferenceType();
1978   Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr");
1979   emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()});
1980   llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count");
1981 
1982   // Emit the loop structure.
1983   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1984   auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP,
1985                            llvm::Value *IndVar) {
1986     Builder.restoreIP(CodeGenIP);
1987 
1988     // Emit the loop body: Convert the logical iteration number to the loop
1989     // variable and emit the body.
1990     const DeclRefExpr *LoopVarRef = S->getLoopVarRef();
1991     LValue LCVal = EmitLValue(LoopVarRef);
1992     Address LoopVarAddress = LCVal.getAddress(*this);
1993     emitCapturedStmtCall(*this, LoopVarClosure,
1994                          {LoopVarAddress.getPointer(), IndVar});
1995 
1996     RunCleanupsScope BodyScope(*this);
1997     EmitStmt(BodyStmt);
1998   };
1999   llvm::CanonicalLoopInfo *CL =
2000       OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal);
2001 
2002   // Finish up the loop.
2003   Builder.restoreIP(CL->getAfterIP());
2004   ForScope.ForceCleanup();
2005 
2006   // Remember the CanonicalLoopInfo for parent AST nodes consuming it.
2007   OMPLoopNestStack.push_back(CL);
2008 }
2009 
2010 void CodeGenFunction::EmitOMPInnerLoop(
2011     const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond,
2012     const Expr *IncExpr,
2013     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
2014     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
2015   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
2016 
2017   // Start the loop with a block that tests the condition.
2018   auto CondBlock = createBasicBlock("omp.inner.for.cond");
2019   EmitBlock(CondBlock);
2020   const SourceRange R = S.getSourceRange();
2021 
2022   // If attributes are attached, push to the basic block with them.
2023   const auto &OMPED = cast<OMPExecutableDirective>(S);
2024   const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt();
2025   const Stmt *SS = ICS->getCapturedStmt();
2026   const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS);
2027   OMPLoopNestStack.clear();
2028   if (AS)
2029     LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(),
2030                    AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()),
2031                    SourceLocToDebugLoc(R.getEnd()));
2032   else
2033     LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
2034                    SourceLocToDebugLoc(R.getEnd()));
2035 
2036   // If there are any cleanups between here and the loop-exit scope,
2037   // create a block to stage a loop exit along.
2038   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
2039   if (RequiresCleanup)
2040     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
2041 
2042   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
2043 
2044   // Emit condition.
2045   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
2046   if (ExitBlock != LoopExit.getBlock()) {
2047     EmitBlock(ExitBlock);
2048     EmitBranchThroughCleanup(LoopExit);
2049   }
2050 
2051   EmitBlock(LoopBody);
2052   incrementProfileCounter(&S);
2053 
2054   // Create a block for the increment.
2055   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
2056   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
2057 
2058   BodyGen(*this);
2059 
2060   // Emit "IV = IV + 1" and a back-edge to the condition block.
2061   EmitBlock(Continue.getBlock());
2062   EmitIgnoredExpr(IncExpr);
2063   PostIncGen(*this);
2064   BreakContinueStack.pop_back();
2065   EmitBranch(CondBlock);
2066   LoopStack.pop();
2067   // Emit the fall-through block.
2068   EmitBlock(LoopExit.getBlock());
2069 }
2070 
2071 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
2072   if (!HaveInsertPoint())
2073     return false;
2074   // Emit inits for the linear variables.
2075   bool HasLinears = false;
2076   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2077     for (const Expr *Init : C->inits()) {
2078       HasLinears = true;
2079       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
2080       if (const auto *Ref =
2081               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
2082         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
2083         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
2084         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
2085                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
2086                         VD->getInit()->getType(), VK_LValue,
2087                         VD->getInit()->getExprLoc());
2088         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
2089                                                 VD->getType()),
2090                        /*capturedByInit=*/false);
2091         EmitAutoVarCleanups(Emission);
2092       } else {
2093         EmitVarDecl(*VD);
2094       }
2095     }
2096     // Emit the linear steps for the linear clauses.
2097     // If a step is not constant, it is pre-calculated before the loop.
2098     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
2099       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
2100         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
2101         // Emit calculation of the linear step.
2102         EmitIgnoredExpr(CS);
2103       }
2104   }
2105   return HasLinears;
2106 }
2107 
2108 void CodeGenFunction::EmitOMPLinearClauseFinal(
2109     const OMPLoopDirective &D,
2110     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
2111   if (!HaveInsertPoint())
2112     return;
2113   llvm::BasicBlock *DoneBB = nullptr;
2114   // Emit the final values of the linear variables.
2115   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2116     auto IC = C->varlist_begin();
2117     for (const Expr *F : C->finals()) {
2118       if (!DoneBB) {
2119         if (llvm::Value *Cond = CondGen(*this)) {
2120           // If the first post-update expression is found, emit conditional
2121           // block if it was requested.
2122           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
2123           DoneBB = createBasicBlock(".omp.linear.pu.done");
2124           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
2125           EmitBlock(ThenBB);
2126         }
2127       }
2128       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
2129       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
2130                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
2131                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
2132       Address OrigAddr = EmitLValue(&DRE).getAddress(*this);
2133       CodeGenFunction::OMPPrivateScope VarScope(*this);
2134       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
2135       (void)VarScope.Privatize();
2136       EmitIgnoredExpr(F);
2137       ++IC;
2138     }
2139     if (const Expr *PostUpdate = C->getPostUpdateExpr())
2140       EmitIgnoredExpr(PostUpdate);
2141   }
2142   if (DoneBB)
2143     EmitBlock(DoneBB, /*IsFinished=*/true);
2144 }
2145 
2146 static void emitAlignedClause(CodeGenFunction &CGF,
2147                               const OMPExecutableDirective &D) {
2148   if (!CGF.HaveInsertPoint())
2149     return;
2150   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
2151     llvm::APInt ClauseAlignment(64, 0);
2152     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
2153       auto *AlignmentCI =
2154           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
2155       ClauseAlignment = AlignmentCI->getValue();
2156     }
2157     for (const Expr *E : Clause->varlists()) {
2158       llvm::APInt Alignment(ClauseAlignment);
2159       if (Alignment == 0) {
2160         // OpenMP [2.8.1, Description]
2161         // If no optional parameter is specified, implementation-defined default
2162         // alignments for SIMD instructions on the target platforms are assumed.
2163         Alignment =
2164             CGF.getContext()
2165                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2166                     E->getType()->getPointeeType()))
2167                 .getQuantity();
2168       }
2169       assert((Alignment == 0 || Alignment.isPowerOf2()) &&
2170              "alignment is not power of 2");
2171       if (Alignment != 0) {
2172         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
2173         CGF.emitAlignmentAssumption(
2174             PtrValue, E, /*No second loc needed*/ SourceLocation(),
2175             llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment));
2176       }
2177     }
2178   }
2179 }
2180 
2181 void CodeGenFunction::EmitOMPPrivateLoopCounters(
2182     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
2183   if (!HaveInsertPoint())
2184     return;
2185   auto I = S.private_counters().begin();
2186   for (const Expr *E : S.counters()) {
2187     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2188     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
2189     // Emit var without initialization.
2190     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
2191     EmitAutoVarCleanups(VarEmission);
2192     LocalDeclMap.erase(PrivateVD);
2193     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
2194       return VarEmission.getAllocatedAddress();
2195     });
2196     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
2197         VD->hasGlobalStorage()) {
2198       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
2199         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD),
2200                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
2201                         E->getType(), VK_LValue, E->getExprLoc());
2202         return EmitLValue(&DRE).getAddress(*this);
2203       });
2204     } else {
2205       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
2206         return VarEmission.getAllocatedAddress();
2207       });
2208     }
2209     ++I;
2210   }
2211   // Privatize extra loop counters used in loops for ordered(n) clauses.
2212   for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
2213     if (!C->getNumForLoops())
2214       continue;
2215     for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size();
2216          I < E; ++I) {
2217       const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
2218       const auto *VD = cast<VarDecl>(DRE->getDecl());
2219       // Override only those variables that can be captured to avoid re-emission
2220       // of the variables declared within the loops.
2221       if (DRE->refersToEnclosingVariableOrCapture()) {
2222         (void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
2223           return CreateMemTemp(DRE->getType(), VD->getName());
2224         });
2225       }
2226     }
2227   }
2228 }
2229 
2230 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
2231                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
2232                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
2233   if (!CGF.HaveInsertPoint())
2234     return;
2235   {
2236     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
2237     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
2238     (void)PreCondScope.Privatize();
2239     // Get initial values of real counters.
2240     for (const Expr *I : S.inits()) {
2241       CGF.EmitIgnoredExpr(I);
2242     }
2243   }
2244   // Create temp loop control variables with their init values to support
2245   // non-rectangular loops.
2246   CodeGenFunction::OMPMapVars PreCondVars;
2247   for (const Expr * E: S.dependent_counters()) {
2248     if (!E)
2249       continue;
2250     assert(!E->getType().getNonReferenceType()->isRecordType() &&
2251            "dependent counter must not be an iterator.");
2252     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2253     Address CounterAddr =
2254         CGF.CreateMemTemp(VD->getType().getNonReferenceType());
2255     (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr);
2256   }
2257   (void)PreCondVars.apply(CGF);
2258   for (const Expr *E : S.dependent_inits()) {
2259     if (!E)
2260       continue;
2261     CGF.EmitIgnoredExpr(E);
2262   }
2263   // Check that loop is executed at least one time.
2264   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
2265   PreCondVars.restore(CGF);
2266 }
2267 
2268 void CodeGenFunction::EmitOMPLinearClause(
2269     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
2270   if (!HaveInsertPoint())
2271     return;
2272   llvm::DenseSet<const VarDecl *> SIMDLCVs;
2273   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
2274     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
2275     for (const Expr *C : LoopDirective->counters()) {
2276       SIMDLCVs.insert(
2277           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
2278     }
2279   }
2280   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2281     auto CurPrivate = C->privates().begin();
2282     for (const Expr *E : C->varlists()) {
2283       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2284       const auto *PrivateVD =
2285           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
2286       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
2287         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
2288           // Emit private VarDecl with copy init.
2289           EmitVarDecl(*PrivateVD);
2290           return GetAddrOfLocalVar(PrivateVD);
2291         });
2292         assert(IsRegistered && "linear var already registered as private");
2293         // Silence the warning about unused variable.
2294         (void)IsRegistered;
2295       } else {
2296         EmitVarDecl(*PrivateVD);
2297       }
2298       ++CurPrivate;
2299     }
2300   }
2301 }
2302 
2303 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
2304                                      const OMPExecutableDirective &D,
2305                                      bool IsMonotonic) {
2306   if (!CGF.HaveInsertPoint())
2307     return;
2308   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
2309     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
2310                                  /*ignoreResult=*/true);
2311     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
2312     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
2313     // In presence of finite 'safelen', it may be unsafe to mark all
2314     // the memory instructions parallel, because loop-carried
2315     // dependences of 'safelen' iterations are possible.
2316     if (!IsMonotonic)
2317       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
2318   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
2319     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
2320                                  /*ignoreResult=*/true);
2321     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
2322     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
2323     // In presence of finite 'safelen', it may be unsafe to mark all
2324     // the memory instructions parallel, because loop-carried
2325     // dependences of 'safelen' iterations are possible.
2326     CGF.LoopStack.setParallel(/*Enable=*/false);
2327   }
2328 }
2329 
2330 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
2331                                       bool IsMonotonic) {
2332   // Walk clauses and process safelen/lastprivate.
2333   LoopStack.setParallel(!IsMonotonic);
2334   LoopStack.setVectorizeEnable();
2335   emitSimdlenSafelenClause(*this, D, IsMonotonic);
2336   if (const auto *C = D.getSingleClause<OMPOrderClause>())
2337     if (C->getKind() == OMPC_ORDER_concurrent)
2338       LoopStack.setParallel(/*Enable=*/true);
2339   if ((D.getDirectiveKind() == OMPD_simd ||
2340        (getLangOpts().OpenMPSimd &&
2341         isOpenMPSimdDirective(D.getDirectiveKind()))) &&
2342       llvm::any_of(D.getClausesOfKind<OMPReductionClause>(),
2343                    [](const OMPReductionClause *C) {
2344                      return C->getModifier() == OMPC_REDUCTION_inscan;
2345                    }))
2346     // Disable parallel access in case of prefix sum.
2347     LoopStack.setParallel(/*Enable=*/false);
2348 }
2349 
2350 void CodeGenFunction::EmitOMPSimdFinal(
2351     const OMPLoopDirective &D,
2352     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
2353   if (!HaveInsertPoint())
2354     return;
2355   llvm::BasicBlock *DoneBB = nullptr;
2356   auto IC = D.counters().begin();
2357   auto IPC = D.private_counters().begin();
2358   for (const Expr *F : D.finals()) {
2359     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
2360     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
2361     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
2362     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
2363         OrigVD->hasGlobalStorage() || CED) {
2364       if (!DoneBB) {
2365         if (llvm::Value *Cond = CondGen(*this)) {
2366           // If the first post-update expression is found, emit conditional
2367           // block if it was requested.
2368           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
2369           DoneBB = createBasicBlock(".omp.final.done");
2370           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
2371           EmitBlock(ThenBB);
2372         }
2373       }
2374       Address OrigAddr = Address::invalid();
2375       if (CED) {
2376         OrigAddr =
2377             EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this);
2378       } else {
2379         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD),
2380                         /*RefersToEnclosingVariableOrCapture=*/false,
2381                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
2382         OrigAddr = EmitLValue(&DRE).getAddress(*this);
2383       }
2384       OMPPrivateScope VarScope(*this);
2385       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
2386       (void)VarScope.Privatize();
2387       EmitIgnoredExpr(F);
2388     }
2389     ++IC;
2390     ++IPC;
2391   }
2392   if (DoneBB)
2393     EmitBlock(DoneBB, /*IsFinished=*/true);
2394 }
2395 
2396 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
2397                                          const OMPLoopDirective &S,
2398                                          CodeGenFunction::JumpDest LoopExit) {
2399   CGF.EmitOMPLoopBody(S, LoopExit);
2400   CGF.EmitStopPoint(&S);
2401 }
2402 
2403 /// Emit a helper variable and return corresponding lvalue.
2404 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
2405                                const DeclRefExpr *Helper) {
2406   auto VDecl = cast<VarDecl>(Helper->getDecl());
2407   CGF.EmitVarDecl(*VDecl);
2408   return CGF.EmitLValue(Helper);
2409 }
2410 
2411 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S,
2412                                const RegionCodeGenTy &SimdInitGen,
2413                                const RegionCodeGenTy &BodyCodeGen) {
2414   auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF,
2415                                                     PrePostActionTy &) {
2416     CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S);
2417     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
2418     SimdInitGen(CGF);
2419 
2420     BodyCodeGen(CGF);
2421   };
2422   auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
2423     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
2424     CGF.LoopStack.setVectorizeEnable(/*Enable=*/false);
2425 
2426     BodyCodeGen(CGF);
2427   };
2428   const Expr *IfCond = nullptr;
2429   if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2430     for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2431       if (CGF.getLangOpts().OpenMP >= 50 &&
2432           (C->getNameModifier() == OMPD_unknown ||
2433            C->getNameModifier() == OMPD_simd)) {
2434         IfCond = C->getCondition();
2435         break;
2436       }
2437     }
2438   }
2439   if (IfCond) {
2440     CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2441   } else {
2442     RegionCodeGenTy ThenRCG(ThenGen);
2443     ThenRCG(CGF);
2444   }
2445 }
2446 
2447 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
2448                               PrePostActionTy &Action) {
2449   Action.Enter(CGF);
2450   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
2451          "Expected simd directive");
2452   OMPLoopScope PreInitScope(CGF, S);
2453   // if (PreCond) {
2454   //   for (IV in 0..LastIteration) BODY;
2455   //   <Final counter/linear vars updates>;
2456   // }
2457   //
2458   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
2459       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
2460       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
2461     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2462     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2463   }
2464 
2465   // Emit: if (PreCond) - begin.
2466   // If the condition constant folds and can be elided, avoid emitting the
2467   // whole loop.
2468   bool CondConstant;
2469   llvm::BasicBlock *ContBlock = nullptr;
2470   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2471     if (!CondConstant)
2472       return;
2473   } else {
2474     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
2475     ContBlock = CGF.createBasicBlock("simd.if.end");
2476     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
2477                 CGF.getProfileCount(&S));
2478     CGF.EmitBlock(ThenBlock);
2479     CGF.incrementProfileCounter(&S);
2480   }
2481 
2482   // Emit the loop iteration variable.
2483   const Expr *IVExpr = S.getIterationVariable();
2484   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
2485   CGF.EmitVarDecl(*IVDecl);
2486   CGF.EmitIgnoredExpr(S.getInit());
2487 
2488   // Emit the iterations count variable.
2489   // If it is not a variable, Sema decided to calculate iterations count on
2490   // each iteration (e.g., it is foldable into a constant).
2491   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2492     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2493     // Emit calculation of the iterations count.
2494     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
2495   }
2496 
2497   emitAlignedClause(CGF, S);
2498   (void)CGF.EmitOMPLinearClauseInit(S);
2499   {
2500     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2501     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
2502     CGF.EmitOMPLinearClause(S, LoopScope);
2503     CGF.EmitOMPPrivateClause(S, LoopScope);
2504     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2505     CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
2506         CGF, S, CGF.EmitLValue(S.getIterationVariable()));
2507     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2508     (void)LoopScope.Privatize();
2509     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2510       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
2511 
2512     emitCommonSimdLoop(
2513         CGF, S,
2514         [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2515           CGF.EmitOMPSimdInit(S);
2516         },
2517         [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2518           CGF.EmitOMPInnerLoop(
2519               S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
2520               [&S](CodeGenFunction &CGF) {
2521                 emitOMPLoopBodyWithStopPoint(CGF, S,
2522                                              CodeGenFunction::JumpDest());
2523               },
2524               [](CodeGenFunction &) {});
2525         });
2526     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
2527     // Emit final copy of the lastprivate variables at the end of loops.
2528     if (HasLastprivateClause)
2529       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
2530     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
2531     emitPostUpdateForReductionClause(CGF, S,
2532                                      [](CodeGenFunction &) { return nullptr; });
2533   }
2534   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
2535   // Emit: if (PreCond) - end.
2536   if (ContBlock) {
2537     CGF.EmitBranch(ContBlock);
2538     CGF.EmitBlock(ContBlock, true);
2539   }
2540 }
2541 
2542 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
2543   ParentLoopDirectiveForScanRegion ScanRegion(*this, S);
2544   OMPFirstScanLoop = true;
2545   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2546     emitOMPSimdRegion(CGF, S, Action);
2547   };
2548   {
2549     auto LPCRegion =
2550         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
2551     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2552     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2553   }
2554   // Check for outer lastprivate conditional update.
2555   checkForLastprivateConditionalUpdate(*this, S);
2556 }
2557 
2558 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) {
2559   // Emit the de-sugared statement.
2560   OMPTransformDirectiveScopeRAII TileScope(*this, &S);
2561   EmitStmt(S.getTransformedStmt());
2562 }
2563 
2564 void CodeGenFunction::EmitOMPOuterLoop(
2565     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
2566     CodeGenFunction::OMPPrivateScope &LoopScope,
2567     const CodeGenFunction::OMPLoopArguments &LoopArgs,
2568     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
2569     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
2570   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2571 
2572   const Expr *IVExpr = S.getIterationVariable();
2573   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2574   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2575 
2576   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
2577 
2578   // Start the loop with a block that tests the condition.
2579   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
2580   EmitBlock(CondBlock);
2581   const SourceRange R = S.getSourceRange();
2582   OMPLoopNestStack.clear();
2583   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
2584                  SourceLocToDebugLoc(R.getEnd()));
2585 
2586   llvm::Value *BoolCondVal = nullptr;
2587   if (!DynamicOrOrdered) {
2588     // UB = min(UB, GlobalUB) or
2589     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
2590     // 'distribute parallel for')
2591     EmitIgnoredExpr(LoopArgs.EUB);
2592     // IV = LB
2593     EmitIgnoredExpr(LoopArgs.Init);
2594     // IV < UB
2595     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
2596   } else {
2597     BoolCondVal =
2598         RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
2599                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
2600   }
2601 
2602   // If there are any cleanups between here and the loop-exit scope,
2603   // create a block to stage a loop exit along.
2604   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
2605   if (LoopScope.requiresCleanups())
2606     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
2607 
2608   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
2609   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
2610   if (ExitBlock != LoopExit.getBlock()) {
2611     EmitBlock(ExitBlock);
2612     EmitBranchThroughCleanup(LoopExit);
2613   }
2614   EmitBlock(LoopBody);
2615 
2616   // Emit "IV = LB" (in case of static schedule, we have already calculated new
2617   // LB for loop condition and emitted it above).
2618   if (DynamicOrOrdered)
2619     EmitIgnoredExpr(LoopArgs.Init);
2620 
2621   // Create a block for the increment.
2622   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
2623   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
2624 
2625   emitCommonSimdLoop(
2626       *this, S,
2627       [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) {
2628         // Generate !llvm.loop.parallel metadata for loads and stores for loops
2629         // with dynamic/guided scheduling and without ordered clause.
2630         if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2631           CGF.LoopStack.setParallel(!IsMonotonic);
2632           if (const auto *C = S.getSingleClause<OMPOrderClause>())
2633             if (C->getKind() == OMPC_ORDER_concurrent)
2634               CGF.LoopStack.setParallel(/*Enable=*/true);
2635         } else {
2636           CGF.EmitOMPSimdInit(S, IsMonotonic);
2637         }
2638       },
2639       [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered,
2640        &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2641         SourceLocation Loc = S.getBeginLoc();
2642         // when 'distribute' is not combined with a 'for':
2643         // while (idx <= UB) { BODY; ++idx; }
2644         // when 'distribute' is combined with a 'for'
2645         // (e.g. 'distribute parallel for')
2646         // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
2647         CGF.EmitOMPInnerLoop(
2648             S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
2649             [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
2650               CodeGenLoop(CGF, S, LoopExit);
2651             },
2652             [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
2653               CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
2654             });
2655       });
2656 
2657   EmitBlock(Continue.getBlock());
2658   BreakContinueStack.pop_back();
2659   if (!DynamicOrOrdered) {
2660     // Emit "LB = LB + Stride", "UB = UB + Stride".
2661     EmitIgnoredExpr(LoopArgs.NextLB);
2662     EmitIgnoredExpr(LoopArgs.NextUB);
2663   }
2664 
2665   EmitBranch(CondBlock);
2666   OMPLoopNestStack.clear();
2667   LoopStack.pop();
2668   // Emit the fall-through block.
2669   EmitBlock(LoopExit.getBlock());
2670 
2671   // Tell the runtime we are done.
2672   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
2673     if (!DynamicOrOrdered)
2674       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2675                                                      S.getDirectiveKind());
2676   };
2677   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2678 }
2679 
2680 void CodeGenFunction::EmitOMPForOuterLoop(
2681     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
2682     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2683     const OMPLoopArguments &LoopArgs,
2684     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2685   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2686 
2687   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
2688   const bool DynamicOrOrdered =
2689       Ordered || RT.isDynamic(ScheduleKind.Schedule);
2690 
2691   assert((Ordered ||
2692           !RT.isStaticNonchunked(ScheduleKind.Schedule,
2693                                  LoopArgs.Chunk != nullptr)) &&
2694          "static non-chunked schedule does not need outer loop");
2695 
2696   // Emit outer loop.
2697   //
2698   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2699   // When schedule(dynamic,chunk_size) is specified, the iterations are
2700   // distributed to threads in the team in chunks as the threads request them.
2701   // Each thread executes a chunk of iterations, then requests another chunk,
2702   // until no chunks remain to be distributed. Each chunk contains chunk_size
2703   // iterations, except for the last chunk to be distributed, which may have
2704   // fewer iterations. When no chunk_size is specified, it defaults to 1.
2705   //
2706   // When schedule(guided,chunk_size) is specified, the iterations are assigned
2707   // to threads in the team in chunks as the executing threads request them.
2708   // Each thread executes a chunk of iterations, then requests another chunk,
2709   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
2710   // each chunk is proportional to the number of unassigned iterations divided
2711   // by the number of threads in the team, decreasing to 1. For a chunk_size
2712   // with value k (greater than 1), the size of each chunk is determined in the
2713   // same way, with the restriction that the chunks do not contain fewer than k
2714   // iterations (except for the last chunk to be assigned, which may have fewer
2715   // than k iterations).
2716   //
2717   // When schedule(auto) is specified, the decision regarding scheduling is
2718   // delegated to the compiler and/or runtime system. The programmer gives the
2719   // implementation the freedom to choose any possible mapping of iterations to
2720   // threads in the team.
2721   //
2722   // When schedule(runtime) is specified, the decision regarding scheduling is
2723   // deferred until run time, and the schedule and chunk size are taken from the
2724   // run-sched-var ICV. If the ICV is set to auto, the schedule is
2725   // implementation defined
2726   //
2727   // while(__kmpc_dispatch_next(&LB, &UB)) {
2728   //   idx = LB;
2729   //   while (idx <= UB) { BODY; ++idx;
2730   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
2731   //   } // inner loop
2732   // }
2733   //
2734   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2735   // When schedule(static, chunk_size) is specified, iterations are divided into
2736   // chunks of size chunk_size, and the chunks are assigned to the threads in
2737   // the team in a round-robin fashion in the order of the thread number.
2738   //
2739   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
2740   //   while (idx <= UB) { BODY; ++idx; } // inner loop
2741   //   LB = LB + ST;
2742   //   UB = UB + ST;
2743   // }
2744   //
2745 
2746   const Expr *IVExpr = S.getIterationVariable();
2747   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2748   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2749 
2750   if (DynamicOrOrdered) {
2751     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
2752         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
2753     llvm::Value *LBVal = DispatchBounds.first;
2754     llvm::Value *UBVal = DispatchBounds.second;
2755     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
2756                                                              LoopArgs.Chunk};
2757     RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
2758                            IVSigned, Ordered, DipatchRTInputValues);
2759   } else {
2760     CGOpenMPRuntime::StaticRTInput StaticInit(
2761         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
2762         LoopArgs.ST, LoopArgs.Chunk);
2763     RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2764                          ScheduleKind, StaticInit);
2765   }
2766 
2767   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
2768                                     const unsigned IVSize,
2769                                     const bool IVSigned) {
2770     if (Ordered) {
2771       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
2772                                                             IVSigned);
2773     }
2774   };
2775 
2776   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
2777                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
2778   OuterLoopArgs.IncExpr = S.getInc();
2779   OuterLoopArgs.Init = S.getInit();
2780   OuterLoopArgs.Cond = S.getCond();
2781   OuterLoopArgs.NextLB = S.getNextLowerBound();
2782   OuterLoopArgs.NextUB = S.getNextUpperBound();
2783   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
2784                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
2785 }
2786 
2787 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
2788                              const unsigned IVSize, const bool IVSigned) {}
2789 
2790 void CodeGenFunction::EmitOMPDistributeOuterLoop(
2791     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
2792     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
2793     const CodeGenLoopTy &CodeGenLoopContent) {
2794 
2795   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2796 
2797   // Emit outer loop.
2798   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
2799   // dynamic
2800   //
2801 
2802   const Expr *IVExpr = S.getIterationVariable();
2803   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2804   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2805 
2806   CGOpenMPRuntime::StaticRTInput StaticInit(
2807       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
2808       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
2809   RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
2810 
2811   // for combined 'distribute' and 'for' the increment expression of distribute
2812   // is stored in DistInc. For 'distribute' alone, it is in Inc.
2813   Expr *IncExpr;
2814   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
2815     IncExpr = S.getDistInc();
2816   else
2817     IncExpr = S.getInc();
2818 
2819   // this routine is shared by 'omp distribute parallel for' and
2820   // 'omp distribute': select the right EUB expression depending on the
2821   // directive
2822   OMPLoopArguments OuterLoopArgs;
2823   OuterLoopArgs.LB = LoopArgs.LB;
2824   OuterLoopArgs.UB = LoopArgs.UB;
2825   OuterLoopArgs.ST = LoopArgs.ST;
2826   OuterLoopArgs.IL = LoopArgs.IL;
2827   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2828   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2829                           ? S.getCombinedEnsureUpperBound()
2830                           : S.getEnsureUpperBound();
2831   OuterLoopArgs.IncExpr = IncExpr;
2832   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2833                            ? S.getCombinedInit()
2834                            : S.getInit();
2835   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2836                            ? S.getCombinedCond()
2837                            : S.getCond();
2838   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2839                              ? S.getCombinedNextLowerBound()
2840                              : S.getNextLowerBound();
2841   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2842                              ? S.getCombinedNextUpperBound()
2843                              : S.getNextUpperBound();
2844 
2845   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2846                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2847                    emitEmptyOrdered);
2848 }
2849 
2850 static std::pair<LValue, LValue>
2851 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2852                                      const OMPExecutableDirective &S) {
2853   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2854   LValue LB =
2855       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2856   LValue UB =
2857       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2858 
2859   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2860   // parallel for') we need to use the 'distribute'
2861   // chunk lower and upper bounds rather than the whole loop iteration
2862   // space. These are parameters to the outlined function for 'parallel'
2863   // and we copy the bounds of the previous schedule into the
2864   // the current ones.
2865   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2866   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2867   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2868       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2869   PrevLBVal = CGF.EmitScalarConversion(
2870       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2871       LS.getIterationVariable()->getType(),
2872       LS.getPrevLowerBoundVariable()->getExprLoc());
2873   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2874       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2875   PrevUBVal = CGF.EmitScalarConversion(
2876       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2877       LS.getIterationVariable()->getType(),
2878       LS.getPrevUpperBoundVariable()->getExprLoc());
2879 
2880   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2881   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2882 
2883   return {LB, UB};
2884 }
2885 
2886 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2887 /// we need to use the LB and UB expressions generated by the worksharing
2888 /// code generation support, whereas in non combined situations we would
2889 /// just emit 0 and the LastIteration expression
2890 /// This function is necessary due to the difference of the LB and UB
2891 /// types for the RT emission routines for 'for_static_init' and
2892 /// 'for_dispatch_init'
2893 static std::pair<llvm::Value *, llvm::Value *>
2894 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2895                                         const OMPExecutableDirective &S,
2896                                         Address LB, Address UB) {
2897   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2898   const Expr *IVExpr = LS.getIterationVariable();
2899   // when implementing a dynamic schedule for a 'for' combined with a
2900   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2901   // is not normalized as each team only executes its own assigned
2902   // distribute chunk
2903   QualType IteratorTy = IVExpr->getType();
2904   llvm::Value *LBVal =
2905       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2906   llvm::Value *UBVal =
2907       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2908   return {LBVal, UBVal};
2909 }
2910 
2911 static void emitDistributeParallelForDistributeInnerBoundParams(
2912     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2913     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2914   const auto &Dir = cast<OMPLoopDirective>(S);
2915   LValue LB =
2916       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2917   llvm::Value *LBCast =
2918       CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)),
2919                                 CGF.SizeTy, /*isSigned=*/false);
2920   CapturedVars.push_back(LBCast);
2921   LValue UB =
2922       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2923 
2924   llvm::Value *UBCast =
2925       CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)),
2926                                 CGF.SizeTy, /*isSigned=*/false);
2927   CapturedVars.push_back(UBCast);
2928 }
2929 
2930 static void
2931 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2932                                  const OMPLoopDirective &S,
2933                                  CodeGenFunction::JumpDest LoopExit) {
2934   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2935                                          PrePostActionTy &Action) {
2936     Action.Enter(CGF);
2937     bool HasCancel = false;
2938     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2939       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2940         HasCancel = D->hasCancel();
2941       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2942         HasCancel = D->hasCancel();
2943       else if (const auto *D =
2944                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2945         HasCancel = D->hasCancel();
2946     }
2947     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2948                                                      HasCancel);
2949     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2950                                emitDistributeParallelForInnerBounds,
2951                                emitDistributeParallelForDispatchBounds);
2952   };
2953 
2954   emitCommonOMPParallelDirective(
2955       CGF, S,
2956       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2957       CGInlinedWorksharingLoop,
2958       emitDistributeParallelForDistributeInnerBoundParams);
2959 }
2960 
2961 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2962     const OMPDistributeParallelForDirective &S) {
2963   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2964     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2965                               S.getDistInc());
2966   };
2967   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2968   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2969 }
2970 
2971 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2972     const OMPDistributeParallelForSimdDirective &S) {
2973   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2974     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2975                               S.getDistInc());
2976   };
2977   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2978   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2979 }
2980 
2981 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2982     const OMPDistributeSimdDirective &S) {
2983   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2984     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
2985   };
2986   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2987   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2988 }
2989 
2990 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
2991     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
2992   // Emit SPMD target parallel for region as a standalone region.
2993   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2994     emitOMPSimdRegion(CGF, S, Action);
2995   };
2996   llvm::Function *Fn;
2997   llvm::Constant *Addr;
2998   // Emit target region as a standalone region.
2999   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3000       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
3001   assert(Fn && Addr && "Target device function emission failed.");
3002 }
3003 
3004 void CodeGenFunction::EmitOMPTargetSimdDirective(
3005     const OMPTargetSimdDirective &S) {
3006   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3007     emitOMPSimdRegion(CGF, S, Action);
3008   };
3009   emitCommonOMPTargetDirective(*this, S, CodeGen);
3010 }
3011 
3012 namespace {
3013   struct ScheduleKindModifiersTy {
3014     OpenMPScheduleClauseKind Kind;
3015     OpenMPScheduleClauseModifier M1;
3016     OpenMPScheduleClauseModifier M2;
3017     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
3018                             OpenMPScheduleClauseModifier M1,
3019                             OpenMPScheduleClauseModifier M2)
3020         : Kind(Kind), M1(M1), M2(M2) {}
3021   };
3022 } // namespace
3023 
3024 bool CodeGenFunction::EmitOMPWorksharingLoop(
3025     const OMPLoopDirective &S, Expr *EUB,
3026     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3027     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
3028   // Emit the loop iteration variable.
3029   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3030   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3031   EmitVarDecl(*IVDecl);
3032 
3033   // Emit the iterations count variable.
3034   // If it is not a variable, Sema decided to calculate iterations count on each
3035   // iteration (e.g., it is foldable into a constant).
3036   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3037     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3038     // Emit calculation of the iterations count.
3039     EmitIgnoredExpr(S.getCalcLastIteration());
3040   }
3041 
3042   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3043 
3044   bool HasLastprivateClause;
3045   // Check pre-condition.
3046   {
3047     OMPLoopScope PreInitScope(*this, S);
3048     // Skip the entire loop if we don't meet the precondition.
3049     // If the condition constant folds and can be elided, avoid emitting the
3050     // whole loop.
3051     bool CondConstant;
3052     llvm::BasicBlock *ContBlock = nullptr;
3053     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3054       if (!CondConstant)
3055         return false;
3056     } else {
3057       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3058       ContBlock = createBasicBlock("omp.precond.end");
3059       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3060                   getProfileCount(&S));
3061       EmitBlock(ThenBlock);
3062       incrementProfileCounter(&S);
3063     }
3064 
3065     RunCleanupsScope DoacrossCleanupScope(*this);
3066     bool Ordered = false;
3067     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
3068       if (OrderedClause->getNumForLoops())
3069         RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
3070       else
3071         Ordered = true;
3072     }
3073 
3074     llvm::DenseSet<const Expr *> EmittedFinals;
3075     emitAlignedClause(*this, S);
3076     bool HasLinears = EmitOMPLinearClauseInit(S);
3077     // Emit helper vars inits.
3078 
3079     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
3080     LValue LB = Bounds.first;
3081     LValue UB = Bounds.second;
3082     LValue ST =
3083         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3084     LValue IL =
3085         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3086 
3087     // Emit 'then' code.
3088     {
3089       OMPPrivateScope LoopScope(*this);
3090       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
3091         // Emit implicit barrier to synchronize threads and avoid data races on
3092         // initialization of firstprivate variables and post-update of
3093         // lastprivate variables.
3094         CGM.getOpenMPRuntime().emitBarrierCall(
3095             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3096             /*ForceSimpleCall=*/true);
3097       }
3098       EmitOMPPrivateClause(S, LoopScope);
3099       CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
3100           *this, S, EmitLValue(S.getIterationVariable()));
3101       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3102       EmitOMPReductionClauseInit(S, LoopScope);
3103       EmitOMPPrivateLoopCounters(S, LoopScope);
3104       EmitOMPLinearClause(S, LoopScope);
3105       (void)LoopScope.Privatize();
3106       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3107         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
3108 
3109       // Detect the loop schedule kind and chunk.
3110       const Expr *ChunkExpr = nullptr;
3111       OpenMPScheduleTy ScheduleKind;
3112       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
3113         ScheduleKind.Schedule = C->getScheduleKind();
3114         ScheduleKind.M1 = C->getFirstScheduleModifier();
3115         ScheduleKind.M2 = C->getSecondScheduleModifier();
3116         ChunkExpr = C->getChunkSize();
3117       } else {
3118         // Default behaviour for schedule clause.
3119         CGM.getOpenMPRuntime().getDefaultScheduleAndChunk(
3120             *this, S, ScheduleKind.Schedule, ChunkExpr);
3121       }
3122       bool HasChunkSizeOne = false;
3123       llvm::Value *Chunk = nullptr;
3124       if (ChunkExpr) {
3125         Chunk = EmitScalarExpr(ChunkExpr);
3126         Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(),
3127                                      S.getIterationVariable()->getType(),
3128                                      S.getBeginLoc());
3129         Expr::EvalResult Result;
3130         if (ChunkExpr->EvaluateAsInt(Result, getContext())) {
3131           llvm::APSInt EvaluatedChunk = Result.Val.getInt();
3132           HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1);
3133         }
3134       }
3135       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3136       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3137       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
3138       // If the static schedule kind is specified or if the ordered clause is
3139       // specified, and if no monotonic modifier is specified, the effect will
3140       // be as if the monotonic modifier was specified.
3141       bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule,
3142           /* Chunked */ Chunk != nullptr) && HasChunkSizeOne &&
3143           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
3144       bool IsMonotonic =
3145           Ordered ||
3146           ((ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
3147             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown) &&
3148            !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic ||
3149              ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) ||
3150           ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
3151           ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
3152       if ((RT.isStaticNonchunked(ScheduleKind.Schedule,
3153                                  /* Chunked */ Chunk != nullptr) ||
3154            StaticChunkedOne) &&
3155           !Ordered) {
3156         JumpDest LoopExit =
3157             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3158         emitCommonSimdLoop(
3159             *this, S,
3160             [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) {
3161               if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3162                 CGF.EmitOMPSimdInit(S, IsMonotonic);
3163               } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) {
3164                 if (C->getKind() == OMPC_ORDER_concurrent)
3165                   CGF.LoopStack.setParallel(/*Enable=*/true);
3166               }
3167             },
3168             [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk,
3169              &S, ScheduleKind, LoopExit,
3170              &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
3171               // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
3172               // When no chunk_size is specified, the iteration space is divided
3173               // into chunks that are approximately equal in size, and at most
3174               // one chunk is distributed to each thread. Note that the size of
3175               // the chunks is unspecified in this case.
3176               CGOpenMPRuntime::StaticRTInput StaticInit(
3177                   IVSize, IVSigned, Ordered, IL.getAddress(CGF),
3178                   LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF),
3179                   StaticChunkedOne ? Chunk : nullptr);
3180               CGF.CGM.getOpenMPRuntime().emitForStaticInit(
3181                   CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind,
3182                   StaticInit);
3183               // UB = min(UB, GlobalUB);
3184               if (!StaticChunkedOne)
3185                 CGF.EmitIgnoredExpr(S.getEnsureUpperBound());
3186               // IV = LB;
3187               CGF.EmitIgnoredExpr(S.getInit());
3188               // For unchunked static schedule generate:
3189               //
3190               // while (idx <= UB) {
3191               //   BODY;
3192               //   ++idx;
3193               // }
3194               //
3195               // For static schedule with chunk one:
3196               //
3197               // while (IV <= PrevUB) {
3198               //   BODY;
3199               //   IV += ST;
3200               // }
3201               CGF.EmitOMPInnerLoop(
3202                   S, LoopScope.requiresCleanups(),
3203                   StaticChunkedOne ? S.getCombinedParForInDistCond()
3204                                    : S.getCond(),
3205                   StaticChunkedOne ? S.getDistInc() : S.getInc(),
3206                   [&S, LoopExit](CodeGenFunction &CGF) {
3207                     emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit);
3208                   },
3209                   [](CodeGenFunction &) {});
3210             });
3211         EmitBlock(LoopExit.getBlock());
3212         // Tell the runtime we are done.
3213         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
3214           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
3215                                                          S.getDirectiveKind());
3216         };
3217         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
3218       } else {
3219         // Emit the outer loop, which requests its work chunk [LB..UB] from
3220         // runtime and runs the inner loop to process it.
3221         const OMPLoopArguments LoopArguments(
3222             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
3223             IL.getAddress(*this), Chunk, EUB);
3224         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
3225                             LoopArguments, CGDispatchBounds);
3226       }
3227       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3228         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3229           return CGF.Builder.CreateIsNotNull(
3230               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3231         });
3232       }
3233       EmitOMPReductionClauseFinal(
3234           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
3235                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
3236                  : /*Parallel only*/ OMPD_parallel);
3237       // Emit post-update of the reduction variables if IsLastIter != 0.
3238       emitPostUpdateForReductionClause(
3239           *this, S, [IL, &S](CodeGenFunction &CGF) {
3240             return CGF.Builder.CreateIsNotNull(
3241                 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3242           });
3243       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3244       if (HasLastprivateClause)
3245         EmitOMPLastprivateClauseFinal(
3246             S, isOpenMPSimdDirective(S.getDirectiveKind()),
3247             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
3248     }
3249     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
3250       return CGF.Builder.CreateIsNotNull(
3251           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3252     });
3253     DoacrossCleanupScope.ForceCleanup();
3254     // We're now done with the loop, so jump to the continuation block.
3255     if (ContBlock) {
3256       EmitBranch(ContBlock);
3257       EmitBlock(ContBlock, /*IsFinished=*/true);
3258     }
3259   }
3260   return HasLastprivateClause;
3261 }
3262 
3263 /// The following two functions generate expressions for the loop lower
3264 /// and upper bounds in case of static and dynamic (dispatch) schedule
3265 /// of the associated 'for' or 'distribute' loop.
3266 static std::pair<LValue, LValue>
3267 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3268   const auto &LS = cast<OMPLoopDirective>(S);
3269   LValue LB =
3270       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
3271   LValue UB =
3272       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
3273   return {LB, UB};
3274 }
3275 
3276 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
3277 /// consider the lower and upper bound expressions generated by the
3278 /// worksharing loop support, but we use 0 and the iteration space size as
3279 /// constants
3280 static std::pair<llvm::Value *, llvm::Value *>
3281 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
3282                           Address LB, Address UB) {
3283   const auto &LS = cast<OMPLoopDirective>(S);
3284   const Expr *IVExpr = LS.getIterationVariable();
3285   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
3286   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
3287   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
3288   return {LBVal, UBVal};
3289 }
3290 
3291 /// Emits the code for the directive with inscan reductions.
3292 /// The code is the following:
3293 /// \code
3294 /// size num_iters = <num_iters>;
3295 /// <type> buffer[num_iters];
3296 /// #pragma omp ...
3297 /// for (i: 0..<num_iters>) {
3298 ///   <input phase>;
3299 ///   buffer[i] = red;
3300 /// }
3301 /// for (int k = 0; k != ceil(log2(num_iters)); ++k)
3302 /// for (size cnt = last_iter; cnt >= pow(2, k); --k)
3303 ///   buffer[i] op= buffer[i-pow(2,k)];
3304 /// #pragma omp ...
3305 /// for (0..<num_iters>) {
3306 ///   red = InclusiveScan ? buffer[i] : buffer[i-1];
3307 ///   <scan phase>;
3308 /// }
3309 /// \endcode
3310 static void emitScanBasedDirective(
3311     CodeGenFunction &CGF, const OMPLoopDirective &S,
3312     llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen,
3313     llvm::function_ref<void(CodeGenFunction &)> FirstGen,
3314     llvm::function_ref<void(CodeGenFunction &)> SecondGen) {
3315   llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast(
3316       NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false);
3317   SmallVector<const Expr *, 4> Shareds;
3318   SmallVector<const Expr *, 4> Privates;
3319   SmallVector<const Expr *, 4> ReductionOps;
3320   SmallVector<const Expr *, 4> LHSs;
3321   SmallVector<const Expr *, 4> RHSs;
3322   SmallVector<const Expr *, 4> CopyOps;
3323   SmallVector<const Expr *, 4> CopyArrayTemps;
3324   SmallVector<const Expr *, 4> CopyArrayElems;
3325   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
3326     assert(C->getModifier() == OMPC_REDUCTION_inscan &&
3327            "Only inscan reductions are expected.");
3328     Shareds.append(C->varlist_begin(), C->varlist_end());
3329     Privates.append(C->privates().begin(), C->privates().end());
3330     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
3331     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
3332     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
3333     CopyOps.append(C->copy_ops().begin(), C->copy_ops().end());
3334     CopyArrayTemps.append(C->copy_array_temps().begin(),
3335                           C->copy_array_temps().end());
3336     CopyArrayElems.append(C->copy_array_elems().begin(),
3337                           C->copy_array_elems().end());
3338   }
3339   {
3340     // Emit buffers for each reduction variables.
3341     // ReductionCodeGen is required to emit correctly the code for array
3342     // reductions.
3343     ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps);
3344     unsigned Count = 0;
3345     auto *ITA = CopyArrayTemps.begin();
3346     for (const Expr *IRef : Privates) {
3347       const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
3348       // Emit variably modified arrays, used for arrays/array sections
3349       // reductions.
3350       if (PrivateVD->getType()->isVariablyModifiedType()) {
3351         RedCG.emitSharedOrigLValue(CGF, Count);
3352         RedCG.emitAggregateType(CGF, Count);
3353       }
3354       CodeGenFunction::OpaqueValueMapping DimMapping(
3355           CGF,
3356           cast<OpaqueValueExpr>(
3357               cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe())
3358                   ->getSizeExpr()),
3359           RValue::get(OMPScanNumIterations));
3360       // Emit temp buffer.
3361       CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl()));
3362       ++ITA;
3363       ++Count;
3364     }
3365   }
3366   CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S);
3367   {
3368     // Emit loop with input phase:
3369     // #pragma omp ...
3370     // for (i: 0..<num_iters>) {
3371     //   <input phase>;
3372     //   buffer[i] = red;
3373     // }
3374     CGF.OMPFirstScanLoop = true;
3375     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
3376     FirstGen(CGF);
3377   }
3378   // Emit prefix reduction:
3379   // for (int k = 0; k <= ceil(log2(n)); ++k)
3380   llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock();
3381   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body");
3382   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit");
3383   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy);
3384   llvm::Value *Arg =
3385       CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy);
3386   llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg);
3387   F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy);
3388   LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal);
3389   LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy);
3390   llvm::Value *NMin1 = CGF.Builder.CreateNUWSub(
3391       OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1));
3392   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc());
3393   CGF.EmitBlock(LoopBB);
3394   auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2);
3395   // size pow2k = 1;
3396   auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2);
3397   Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB);
3398   Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB);
3399   // for (size i = n - 1; i >= 2 ^ k; --i)
3400   //   tmp[i] op= tmp[i-pow2k];
3401   llvm::BasicBlock *InnerLoopBB =
3402       CGF.createBasicBlock("omp.inner.log.scan.body");
3403   llvm::BasicBlock *InnerExitBB =
3404       CGF.createBasicBlock("omp.inner.log.scan.exit");
3405   llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K);
3406   CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB);
3407   CGF.EmitBlock(InnerLoopBB);
3408   auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2);
3409   IVal->addIncoming(NMin1, LoopBB);
3410   {
3411     CodeGenFunction::OMPPrivateScope PrivScope(CGF);
3412     auto *ILHS = LHSs.begin();
3413     auto *IRHS = RHSs.begin();
3414     for (const Expr *CopyArrayElem : CopyArrayElems) {
3415       const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
3416       const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
3417       Address LHSAddr = Address::invalid();
3418       {
3419         CodeGenFunction::OpaqueValueMapping IdxMapping(
3420             CGF,
3421             cast<OpaqueValueExpr>(
3422                 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
3423             RValue::get(IVal));
3424         LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF);
3425       }
3426       PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; });
3427       Address RHSAddr = Address::invalid();
3428       {
3429         llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K);
3430         CodeGenFunction::OpaqueValueMapping IdxMapping(
3431             CGF,
3432             cast<OpaqueValueExpr>(
3433                 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
3434             RValue::get(OffsetIVal));
3435         RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF);
3436       }
3437       PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; });
3438       ++ILHS;
3439       ++IRHS;
3440     }
3441     PrivScope.Privatize();
3442     CGF.CGM.getOpenMPRuntime().emitReduction(
3443         CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps,
3444         {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown});
3445   }
3446   llvm::Value *NextIVal =
3447       CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1));
3448   IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock());
3449   CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K);
3450   CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB);
3451   CGF.EmitBlock(InnerExitBB);
3452   llvm::Value *Next =
3453       CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1));
3454   Counter->addIncoming(Next, CGF.Builder.GetInsertBlock());
3455   // pow2k <<= 1;
3456   llvm::Value *NextPow2K = CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true);
3457   Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock());
3458   llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal);
3459   CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB);
3460   auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc());
3461   CGF.EmitBlock(ExitBB);
3462 
3463   CGF.OMPFirstScanLoop = false;
3464   SecondGen(CGF);
3465 }
3466 
3467 static bool emitWorksharingDirective(CodeGenFunction &CGF,
3468                                      const OMPLoopDirective &S,
3469                                      bool HasCancel) {
3470   bool HasLastprivates;
3471   if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(),
3472                    [](const OMPReductionClause *C) {
3473                      return C->getModifier() == OMPC_REDUCTION_inscan;
3474                    })) {
3475     const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) {
3476       CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
3477       OMPLoopScope LoopScope(CGF, S);
3478       return CGF.EmitScalarExpr(S.getNumIterations());
3479     };
3480     const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) {
3481       CodeGenFunction::OMPCancelStackRAII CancelRegion(
3482           CGF, S.getDirectiveKind(), HasCancel);
3483       (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3484                                        emitForLoopBounds,
3485                                        emitDispatchForLoopBounds);
3486       // Emit an implicit barrier at the end.
3487       CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(),
3488                                                  OMPD_for);
3489     };
3490     const auto &&SecondGen = [&S, HasCancel,
3491                               &HasLastprivates](CodeGenFunction &CGF) {
3492       CodeGenFunction::OMPCancelStackRAII CancelRegion(
3493           CGF, S.getDirectiveKind(), HasCancel);
3494       HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3495                                                    emitForLoopBounds,
3496                                                    emitDispatchForLoopBounds);
3497     };
3498     emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen);
3499   } else {
3500     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
3501                                                      HasCancel);
3502     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3503                                                  emitForLoopBounds,
3504                                                  emitDispatchForLoopBounds);
3505   }
3506   return HasLastprivates;
3507 }
3508 
3509 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) {
3510   if (S.hasCancel())
3511     return false;
3512   for (OMPClause *C : S.clauses())
3513     if (!isa<OMPNowaitClause>(C))
3514       return false;
3515 
3516   return true;
3517 }
3518 
3519 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
3520   bool HasLastprivates = false;
3521   bool UseOMPIRBuilder =
3522       CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S);
3523   auto &&CodeGen = [this, &S, &HasLastprivates,
3524                     UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) {
3525     // Use the OpenMPIRBuilder if enabled.
3526     if (UseOMPIRBuilder) {
3527       // Emit the associated statement and get its loop representation.
3528       const Stmt *Inner = S.getRawStmt();
3529       llvm::CanonicalLoopInfo *CLI =
3530           EmitOMPCollapsedCanonicalLoopNest(Inner, 1);
3531 
3532       bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>();
3533       llvm::OpenMPIRBuilder &OMPBuilder =
3534           CGM.getOpenMPRuntime().getOMPBuilder();
3535       llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
3536           AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
3537       OMPBuilder.createWorkshareLoop(Builder, CLI, AllocaIP, NeedsBarrier);
3538       return;
3539     }
3540 
3541     HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel());
3542   };
3543   {
3544     auto LPCRegion =
3545         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3546     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3547     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
3548                                                 S.hasCancel());
3549   }
3550 
3551   if (!UseOMPIRBuilder) {
3552     // Emit an implicit barrier at the end.
3553     if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
3554       CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
3555   }
3556   // Check for outer lastprivate conditional update.
3557   checkForLastprivateConditionalUpdate(*this, S);
3558 }
3559 
3560 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
3561   bool HasLastprivates = false;
3562   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
3563                                           PrePostActionTy &) {
3564     HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false);
3565   };
3566   {
3567     auto LPCRegion =
3568         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3569     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3570     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
3571   }
3572 
3573   // Emit an implicit barrier at the end.
3574   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
3575     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
3576   // Check for outer lastprivate conditional update.
3577   checkForLastprivateConditionalUpdate(*this, S);
3578 }
3579 
3580 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
3581                                 const Twine &Name,
3582                                 llvm::Value *Init = nullptr) {
3583   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
3584   if (Init)
3585     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
3586   return LVal;
3587 }
3588 
3589 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
3590   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
3591   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
3592   bool HasLastprivates = false;
3593   auto &&CodeGen = [&S, CapturedStmt, CS,
3594                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
3595     const ASTContext &C = CGF.getContext();
3596     QualType KmpInt32Ty =
3597         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
3598     // Emit helper vars inits.
3599     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
3600                                   CGF.Builder.getInt32(0));
3601     llvm::ConstantInt *GlobalUBVal = CS != nullptr
3602                                          ? CGF.Builder.getInt32(CS->size() - 1)
3603                                          : CGF.Builder.getInt32(0);
3604     LValue UB =
3605         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
3606     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
3607                                   CGF.Builder.getInt32(1));
3608     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
3609                                   CGF.Builder.getInt32(0));
3610     // Loop counter.
3611     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
3612     OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
3613     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
3614     OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
3615     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
3616     // Generate condition for loop.
3617     BinaryOperator *Cond = BinaryOperator::Create(
3618         C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, OK_Ordinary,
3619         S.getBeginLoc(), FPOptionsOverride());
3620     // Increment for loop counter.
3621     UnaryOperator *Inc = UnaryOperator::Create(
3622         C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
3623         S.getBeginLoc(), true, FPOptionsOverride());
3624     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
3625       // Iterate through all sections and emit a switch construct:
3626       // switch (IV) {
3627       //   case 0:
3628       //     <SectionStmt[0]>;
3629       //     break;
3630       // ...
3631       //   case <NumSection> - 1:
3632       //     <SectionStmt[<NumSection> - 1]>;
3633       //     break;
3634       // }
3635       // .omp.sections.exit:
3636       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
3637       llvm::SwitchInst *SwitchStmt =
3638           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
3639                                    ExitBB, CS == nullptr ? 1 : CS->size());
3640       if (CS) {
3641         unsigned CaseNumber = 0;
3642         for (const Stmt *SubStmt : CS->children()) {
3643           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
3644           CGF.EmitBlock(CaseBB);
3645           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
3646           CGF.EmitStmt(SubStmt);
3647           CGF.EmitBranch(ExitBB);
3648           ++CaseNumber;
3649         }
3650       } else {
3651         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
3652         CGF.EmitBlock(CaseBB);
3653         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
3654         CGF.EmitStmt(CapturedStmt);
3655         CGF.EmitBranch(ExitBB);
3656       }
3657       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3658     };
3659 
3660     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
3661     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
3662       // Emit implicit barrier to synchronize threads and avoid data races on
3663       // initialization of firstprivate variables and post-update of lastprivate
3664       // variables.
3665       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
3666           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3667           /*ForceSimpleCall=*/true);
3668     }
3669     CGF.EmitOMPPrivateClause(S, LoopScope);
3670     CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV);
3671     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3672     CGF.EmitOMPReductionClauseInit(S, LoopScope);
3673     (void)LoopScope.Privatize();
3674     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3675       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
3676 
3677     // Emit static non-chunked loop.
3678     OpenMPScheduleTy ScheduleKind;
3679     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
3680     CGOpenMPRuntime::StaticRTInput StaticInit(
3681         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF),
3682         LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF));
3683     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
3684         CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
3685     // UB = min(UB, GlobalUB);
3686     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
3687     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
3688         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
3689     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
3690     // IV = LB;
3691     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
3692     // while (idx <= UB) { BODY; ++idx; }
3693     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen,
3694                          [](CodeGenFunction &) {});
3695     // Tell the runtime we are done.
3696     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
3697       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
3698                                                      S.getDirectiveKind());
3699     };
3700     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
3701     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
3702     // Emit post-update of the reduction variables if IsLastIter != 0.
3703     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
3704       return CGF.Builder.CreateIsNotNull(
3705           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3706     });
3707 
3708     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3709     if (HasLastprivates)
3710       CGF.EmitOMPLastprivateClauseFinal(
3711           S, /*NoFinals=*/false,
3712           CGF.Builder.CreateIsNotNull(
3713               CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
3714   };
3715 
3716   bool HasCancel = false;
3717   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
3718     HasCancel = OSD->hasCancel();
3719   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
3720     HasCancel = OPSD->hasCancel();
3721   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
3722   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
3723                                               HasCancel);
3724   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
3725   // clause. Otherwise the barrier will be generated by the codegen for the
3726   // directive.
3727   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
3728     // Emit implicit barrier to synchronize threads and avoid data races on
3729     // initialization of firstprivate variables.
3730     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
3731                                            OMPD_unknown);
3732   }
3733 }
3734 
3735 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
3736   {
3737     auto LPCRegion =
3738         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3739     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3740     EmitSections(S);
3741   }
3742   // Emit an implicit barrier at the end.
3743   if (!S.getSingleClause<OMPNowaitClause>()) {
3744     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
3745                                            OMPD_sections);
3746   }
3747   // Check for outer lastprivate conditional update.
3748   checkForLastprivateConditionalUpdate(*this, S);
3749 }
3750 
3751 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
3752   LexicalScope Scope(*this, S.getSourceRange());
3753   EmitStopPoint(&S);
3754   EmitStmt(S.getAssociatedStmt());
3755 }
3756 
3757 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
3758   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
3759   llvm::SmallVector<const Expr *, 8> DestExprs;
3760   llvm::SmallVector<const Expr *, 8> SrcExprs;
3761   llvm::SmallVector<const Expr *, 8> AssignmentOps;
3762   // Check if there are any 'copyprivate' clauses associated with this
3763   // 'single' construct.
3764   // Build a list of copyprivate variables along with helper expressions
3765   // (<source>, <destination>, <destination>=<source> expressions)
3766   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
3767     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
3768     DestExprs.append(C->destination_exprs().begin(),
3769                      C->destination_exprs().end());
3770     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
3771     AssignmentOps.append(C->assignment_ops().begin(),
3772                          C->assignment_ops().end());
3773   }
3774   // Emit code for 'single' region along with 'copyprivate' clauses
3775   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3776     Action.Enter(CGF);
3777     OMPPrivateScope SingleScope(CGF);
3778     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
3779     CGF.EmitOMPPrivateClause(S, SingleScope);
3780     (void)SingleScope.Privatize();
3781     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3782   };
3783   {
3784     auto LPCRegion =
3785         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3786     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3787     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
3788                                             CopyprivateVars, DestExprs,
3789                                             SrcExprs, AssignmentOps);
3790   }
3791   // Emit an implicit barrier at the end (to avoid data race on firstprivate
3792   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
3793   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
3794     CGM.getOpenMPRuntime().emitBarrierCall(
3795         *this, S.getBeginLoc(),
3796         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
3797   }
3798   // Check for outer lastprivate conditional update.
3799   checkForLastprivateConditionalUpdate(*this, S);
3800 }
3801 
3802 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3803   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3804     Action.Enter(CGF);
3805     CGF.EmitStmt(S.getRawStmt());
3806   };
3807   CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc());
3808 }
3809 
3810 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
3811   if (CGM.getLangOpts().OpenMPIRBuilder) {
3812     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
3813     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
3814 
3815     const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt();
3816 
3817     auto FiniCB = [this](InsertPointTy IP) {
3818       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
3819     };
3820 
3821     auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP,
3822                                                   InsertPointTy CodeGenIP,
3823                                                   llvm::BasicBlock &FiniBB) {
3824       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
3825       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt,
3826                                              CodeGenIP, FiniBB);
3827     };
3828 
3829     LexicalScope Scope(*this, S.getSourceRange());
3830     EmitStopPoint(&S);
3831     Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB));
3832 
3833     return;
3834   }
3835   LexicalScope Scope(*this, S.getSourceRange());
3836   EmitStopPoint(&S);
3837   emitMaster(*this, S);
3838 }
3839 
3840 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
3841   if (CGM.getLangOpts().OpenMPIRBuilder) {
3842     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
3843     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
3844 
3845     const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt();
3846     const Expr *Hint = nullptr;
3847     if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
3848       Hint = HintClause->getHint();
3849 
3850     // TODO: This is slightly different from what's currently being done in
3851     // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything
3852     // about typing is final.
3853     llvm::Value *HintInst = nullptr;
3854     if (Hint)
3855       HintInst =
3856           Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false);
3857 
3858     auto FiniCB = [this](InsertPointTy IP) {
3859       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
3860     };
3861 
3862     auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP,
3863                                                     InsertPointTy CodeGenIP,
3864                                                     llvm::BasicBlock &FiniBB) {
3865       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
3866       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt,
3867                                              CodeGenIP, FiniBB);
3868     };
3869 
3870     LexicalScope Scope(*this, S.getSourceRange());
3871     EmitStopPoint(&S);
3872     Builder.restoreIP(OMPBuilder.createCritical(
3873         Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(),
3874         HintInst));
3875 
3876     return;
3877   }
3878 
3879   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3880     Action.Enter(CGF);
3881     CGF.EmitStmt(S.getAssociatedStmt());
3882   };
3883   const Expr *Hint = nullptr;
3884   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
3885     Hint = HintClause->getHint();
3886   LexicalScope Scope(*this, S.getSourceRange());
3887   EmitStopPoint(&S);
3888   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
3889                                             S.getDirectiveName().getAsString(),
3890                                             CodeGen, S.getBeginLoc(), Hint);
3891 }
3892 
3893 void CodeGenFunction::EmitOMPParallelForDirective(
3894     const OMPParallelForDirective &S) {
3895   // Emit directive as a combined directive that consists of two implicit
3896   // directives: 'parallel' with 'for' directive.
3897   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3898     Action.Enter(CGF);
3899     (void)emitWorksharingDirective(CGF, S, S.hasCancel());
3900   };
3901   {
3902     auto LPCRegion =
3903         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3904     emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
3905                                    emitEmptyBoundParameters);
3906   }
3907   // Check for outer lastprivate conditional update.
3908   checkForLastprivateConditionalUpdate(*this, S);
3909 }
3910 
3911 void CodeGenFunction::EmitOMPParallelForSimdDirective(
3912     const OMPParallelForSimdDirective &S) {
3913   // Emit directive as a combined directive that consists of two implicit
3914   // directives: 'parallel' with 'for' directive.
3915   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3916     Action.Enter(CGF);
3917     (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false);
3918   };
3919   {
3920     auto LPCRegion =
3921         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3922     emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen,
3923                                    emitEmptyBoundParameters);
3924   }
3925   // Check for outer lastprivate conditional update.
3926   checkForLastprivateConditionalUpdate(*this, S);
3927 }
3928 
3929 void CodeGenFunction::EmitOMPParallelMasterDirective(
3930     const OMPParallelMasterDirective &S) {
3931   // Emit directive as a combined directive that consists of two implicit
3932   // directives: 'parallel' with 'master' directive.
3933   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3934     Action.Enter(CGF);
3935     OMPPrivateScope PrivateScope(CGF);
3936     bool Copyins = CGF.EmitOMPCopyinClause(S);
3937     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3938     if (Copyins) {
3939       // Emit implicit barrier to synchronize threads and avoid data races on
3940       // propagation master's thread values of threadprivate variables to local
3941       // instances of that variables of all other implicit threads.
3942       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
3943           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3944           /*ForceSimpleCall=*/true);
3945     }
3946     CGF.EmitOMPPrivateClause(S, PrivateScope);
3947     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
3948     (void)PrivateScope.Privatize();
3949     emitMaster(CGF, S);
3950     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
3951   };
3952   {
3953     auto LPCRegion =
3954         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3955     emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen,
3956                                    emitEmptyBoundParameters);
3957     emitPostUpdateForReductionClause(*this, S,
3958                                      [](CodeGenFunction &) { return nullptr; });
3959   }
3960   // Check for outer lastprivate conditional update.
3961   checkForLastprivateConditionalUpdate(*this, S);
3962 }
3963 
3964 void CodeGenFunction::EmitOMPParallelSectionsDirective(
3965     const OMPParallelSectionsDirective &S) {
3966   // Emit directive as a combined directive that consists of two implicit
3967   // directives: 'parallel' with 'sections' directive.
3968   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3969     Action.Enter(CGF);
3970     CGF.EmitSections(S);
3971   };
3972   {
3973     auto LPCRegion =
3974         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3975     emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
3976                                    emitEmptyBoundParameters);
3977   }
3978   // Check for outer lastprivate conditional update.
3979   checkForLastprivateConditionalUpdate(*this, S);
3980 }
3981 
3982 namespace {
3983 /// Get the list of variables declared in the context of the untied tasks.
3984 class CheckVarsEscapingUntiedTaskDeclContext final
3985     : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> {
3986   llvm::SmallVector<const VarDecl *, 4> PrivateDecls;
3987 
3988 public:
3989   explicit CheckVarsEscapingUntiedTaskDeclContext() = default;
3990   virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default;
3991   void VisitDeclStmt(const DeclStmt *S) {
3992     if (!S)
3993       return;
3994     // Need to privatize only local vars, static locals can be processed as is.
3995     for (const Decl *D : S->decls()) {
3996       if (const auto *VD = dyn_cast_or_null<VarDecl>(D))
3997         if (VD->hasLocalStorage())
3998           PrivateDecls.push_back(VD);
3999     }
4000   }
4001   void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; }
4002   void VisitCapturedStmt(const CapturedStmt *) { return; }
4003   void VisitLambdaExpr(const LambdaExpr *) { return; }
4004   void VisitBlockExpr(const BlockExpr *) { return; }
4005   void VisitStmt(const Stmt *S) {
4006     if (!S)
4007       return;
4008     for (const Stmt *Child : S->children())
4009       if (Child)
4010         Visit(Child);
4011   }
4012 
4013   /// Swaps list of vars with the provided one.
4014   ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; }
4015 };
4016 } // anonymous namespace
4017 
4018 void CodeGenFunction::EmitOMPTaskBasedDirective(
4019     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
4020     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
4021     OMPTaskDataTy &Data) {
4022   // Emit outlined function for task construct.
4023   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
4024   auto I = CS->getCapturedDecl()->param_begin();
4025   auto PartId = std::next(I);
4026   auto TaskT = std::next(I, 4);
4027   // Check if the task is final
4028   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
4029     // If the condition constant folds and can be elided, try to avoid emitting
4030     // the condition and the dead arm of the if/else.
4031     const Expr *Cond = Clause->getCondition();
4032     bool CondConstant;
4033     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
4034       Data.Final.setInt(CondConstant);
4035     else
4036       Data.Final.setPointer(EvaluateExprAsBool(Cond));
4037   } else {
4038     // By default the task is not final.
4039     Data.Final.setInt(/*IntVal=*/false);
4040   }
4041   // Check if the task has 'priority' clause.
4042   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
4043     const Expr *Prio = Clause->getPriority();
4044     Data.Priority.setInt(/*IntVal=*/true);
4045     Data.Priority.setPointer(EmitScalarConversion(
4046         EmitScalarExpr(Prio), Prio->getType(),
4047         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
4048         Prio->getExprLoc()));
4049   }
4050   // The first function argument for tasks is a thread id, the second one is a
4051   // part id (0 for tied tasks, >=0 for untied task).
4052   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
4053   // Get list of private variables.
4054   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
4055     auto IRef = C->varlist_begin();
4056     for (const Expr *IInit : C->private_copies()) {
4057       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4058       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4059         Data.PrivateVars.push_back(*IRef);
4060         Data.PrivateCopies.push_back(IInit);
4061       }
4062       ++IRef;
4063     }
4064   }
4065   EmittedAsPrivate.clear();
4066   // Get list of firstprivate variables.
4067   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
4068     auto IRef = C->varlist_begin();
4069     auto IElemInitRef = C->inits().begin();
4070     for (const Expr *IInit : C->private_copies()) {
4071       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4072       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4073         Data.FirstprivateVars.push_back(*IRef);
4074         Data.FirstprivateCopies.push_back(IInit);
4075         Data.FirstprivateInits.push_back(*IElemInitRef);
4076       }
4077       ++IRef;
4078       ++IElemInitRef;
4079     }
4080   }
4081   // Get list of lastprivate variables (for taskloops).
4082   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
4083   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
4084     auto IRef = C->varlist_begin();
4085     auto ID = C->destination_exprs().begin();
4086     for (const Expr *IInit : C->private_copies()) {
4087       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4088       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4089         Data.LastprivateVars.push_back(*IRef);
4090         Data.LastprivateCopies.push_back(IInit);
4091       }
4092       LastprivateDstsOrigs.insert(
4093           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
4094            cast<DeclRefExpr>(*IRef)});
4095       ++IRef;
4096       ++ID;
4097     }
4098   }
4099   SmallVector<const Expr *, 4> LHSs;
4100   SmallVector<const Expr *, 4> RHSs;
4101   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
4102     Data.ReductionVars.append(C->varlist_begin(), C->varlist_end());
4103     Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
4104     Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
4105     Data.ReductionOps.append(C->reduction_ops().begin(),
4106                              C->reduction_ops().end());
4107     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4108     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4109   }
4110   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
4111       *this, S.getBeginLoc(), LHSs, RHSs, Data);
4112   // Build list of dependences.
4113   for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
4114     OMPTaskDataTy::DependData &DD =
4115         Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier());
4116     DD.DepExprs.append(C->varlist_begin(), C->varlist_end());
4117   }
4118   // Get list of local vars for untied tasks.
4119   if (!Data.Tied) {
4120     CheckVarsEscapingUntiedTaskDeclContext Checker;
4121     Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt());
4122     Data.PrivateLocals.append(Checker.getPrivateDecls().begin(),
4123                               Checker.getPrivateDecls().end());
4124   }
4125   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
4126                     CapturedRegion](CodeGenFunction &CGF,
4127                                     PrePostActionTy &Action) {
4128     llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, std::pair<Address, Address>>
4129         UntiedLocalVars;
4130     // Set proper addresses for generated private copies.
4131     OMPPrivateScope Scope(CGF);
4132     llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs;
4133     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
4134         !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) {
4135       llvm::FunctionType *CopyFnTy = llvm::FunctionType::get(
4136           CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true);
4137       enum { PrivatesParam = 2, CopyFnParam = 3 };
4138       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
4139           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
4140       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
4141           CS->getCapturedDecl()->getParam(PrivatesParam)));
4142       // Map privates.
4143       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
4144       llvm::SmallVector<llvm::Value *, 16> CallArgs;
4145       CallArgs.push_back(PrivatesPtr);
4146       for (const Expr *E : Data.PrivateVars) {
4147         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4148         Address PrivatePtr = CGF.CreateMemTemp(
4149             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
4150         PrivatePtrs.emplace_back(VD, PrivatePtr);
4151         CallArgs.push_back(PrivatePtr.getPointer());
4152       }
4153       for (const Expr *E : Data.FirstprivateVars) {
4154         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4155         Address PrivatePtr =
4156             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4157                               ".firstpriv.ptr.addr");
4158         PrivatePtrs.emplace_back(VD, PrivatePtr);
4159         FirstprivatePtrs.emplace_back(VD, PrivatePtr);
4160         CallArgs.push_back(PrivatePtr.getPointer());
4161       }
4162       for (const Expr *E : Data.LastprivateVars) {
4163         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4164         Address PrivatePtr =
4165             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4166                               ".lastpriv.ptr.addr");
4167         PrivatePtrs.emplace_back(VD, PrivatePtr);
4168         CallArgs.push_back(PrivatePtr.getPointer());
4169       }
4170       for (const VarDecl *VD : Data.PrivateLocals) {
4171         QualType Ty = VD->getType().getNonReferenceType();
4172         if (VD->getType()->isLValueReferenceType())
4173           Ty = CGF.getContext().getPointerType(Ty);
4174         if (isAllocatableDecl(VD))
4175           Ty = CGF.getContext().getPointerType(Ty);
4176         Address PrivatePtr = CGF.CreateMemTemp(
4177             CGF.getContext().getPointerType(Ty), ".local.ptr.addr");
4178         UntiedLocalVars.try_emplace(VD, PrivatePtr, Address::invalid());
4179         CallArgs.push_back(PrivatePtr.getPointer());
4180       }
4181       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
4182           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
4183       for (const auto &Pair : LastprivateDstsOrigs) {
4184         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
4185         DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD),
4186                         /*RefersToEnclosingVariableOrCapture=*/
4187                             CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
4188                         Pair.second->getType(), VK_LValue,
4189                         Pair.second->getExprLoc());
4190         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
4191           return CGF.EmitLValue(&DRE).getAddress(CGF);
4192         });
4193       }
4194       for (const auto &Pair : PrivatePtrs) {
4195         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4196                             CGF.getContext().getDeclAlign(Pair.first));
4197         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
4198       }
4199       // Adjust mapping for internal locals by mapping actual memory instead of
4200       // a pointer to this memory.
4201       for (auto &Pair : UntiedLocalVars) {
4202         if (isAllocatableDecl(Pair.first)) {
4203           llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first);
4204           Address Replacement(Ptr, CGF.getPointerAlign());
4205           Pair.getSecond().first = Replacement;
4206           Ptr = CGF.Builder.CreateLoad(Replacement);
4207           Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first));
4208           Pair.getSecond().second = Replacement;
4209         } else {
4210           llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first);
4211           Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first));
4212           Pair.getSecond().first = Replacement;
4213         }
4214       }
4215     }
4216     if (Data.Reductions) {
4217       OMPPrivateScope FirstprivateScope(CGF);
4218       for (const auto &Pair : FirstprivatePtrs) {
4219         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4220                             CGF.getContext().getDeclAlign(Pair.first));
4221         FirstprivateScope.addPrivate(Pair.first,
4222                                      [Replacement]() { return Replacement; });
4223       }
4224       (void)FirstprivateScope.Privatize();
4225       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
4226       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars,
4227                              Data.ReductionCopies, Data.ReductionOps);
4228       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
4229           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
4230       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
4231         RedCG.emitSharedOrigLValue(CGF, Cnt);
4232         RedCG.emitAggregateType(CGF, Cnt);
4233         // FIXME: This must removed once the runtime library is fixed.
4234         // Emit required threadprivate variables for
4235         // initializer/combiner/finalizer.
4236         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
4237                                                            RedCG, Cnt);
4238         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
4239             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
4240         Replacement =
4241             Address(CGF.EmitScalarConversion(
4242                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
4243                         CGF.getContext().getPointerType(
4244                             Data.ReductionCopies[Cnt]->getType()),
4245                         Data.ReductionCopies[Cnt]->getExprLoc()),
4246                     Replacement.getAlignment());
4247         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
4248         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
4249                          [Replacement]() { return Replacement; });
4250       }
4251     }
4252     // Privatize all private variables except for in_reduction items.
4253     (void)Scope.Privatize();
4254     SmallVector<const Expr *, 4> InRedVars;
4255     SmallVector<const Expr *, 4> InRedPrivs;
4256     SmallVector<const Expr *, 4> InRedOps;
4257     SmallVector<const Expr *, 4> TaskgroupDescriptors;
4258     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
4259       auto IPriv = C->privates().begin();
4260       auto IRed = C->reduction_ops().begin();
4261       auto ITD = C->taskgroup_descriptors().begin();
4262       for (const Expr *Ref : C->varlists()) {
4263         InRedVars.emplace_back(Ref);
4264         InRedPrivs.emplace_back(*IPriv);
4265         InRedOps.emplace_back(*IRed);
4266         TaskgroupDescriptors.emplace_back(*ITD);
4267         std::advance(IPriv, 1);
4268         std::advance(IRed, 1);
4269         std::advance(ITD, 1);
4270       }
4271     }
4272     // Privatize in_reduction items here, because taskgroup descriptors must be
4273     // privatized earlier.
4274     OMPPrivateScope InRedScope(CGF);
4275     if (!InRedVars.empty()) {
4276       ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps);
4277       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
4278         RedCG.emitSharedOrigLValue(CGF, Cnt);
4279         RedCG.emitAggregateType(CGF, Cnt);
4280         // The taskgroup descriptor variable is always implicit firstprivate and
4281         // privatized already during processing of the firstprivates.
4282         // FIXME: This must removed once the runtime library is fixed.
4283         // Emit required threadprivate variables for
4284         // initializer/combiner/finalizer.
4285         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
4286                                                            RedCG, Cnt);
4287         llvm::Value *ReductionsPtr;
4288         if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) {
4289           ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr),
4290                                                TRExpr->getExprLoc());
4291         } else {
4292           ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4293         }
4294         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
4295             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
4296         Replacement = Address(
4297             CGF.EmitScalarConversion(
4298                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
4299                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
4300                 InRedPrivs[Cnt]->getExprLoc()),
4301             Replacement.getAlignment());
4302         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
4303         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
4304                               [Replacement]() { return Replacement; });
4305       }
4306     }
4307     (void)InRedScope.Privatize();
4308 
4309     CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF,
4310                                                              UntiedLocalVars);
4311     Action.Enter(CGF);
4312     BodyGen(CGF);
4313   };
4314   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
4315       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
4316       Data.NumberOfParts);
4317   OMPLexicalScope Scope(*this, S, llvm::None,
4318                         !isOpenMPParallelDirective(S.getDirectiveKind()) &&
4319                             !isOpenMPSimdDirective(S.getDirectiveKind()));
4320   TaskGen(*this, OutlinedFn, Data);
4321 }
4322 
4323 static ImplicitParamDecl *
4324 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
4325                                   QualType Ty, CapturedDecl *CD,
4326                                   SourceLocation Loc) {
4327   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
4328                                            ImplicitParamDecl::Other);
4329   auto *OrigRef = DeclRefExpr::Create(
4330       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
4331       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
4332   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
4333                                               ImplicitParamDecl::Other);
4334   auto *PrivateRef = DeclRefExpr::Create(
4335       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
4336       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
4337   QualType ElemType = C.getBaseElementType(Ty);
4338   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
4339                                            ImplicitParamDecl::Other);
4340   auto *InitRef = DeclRefExpr::Create(
4341       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
4342       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
4343   PrivateVD->setInitStyle(VarDecl::CInit);
4344   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
4345                                               InitRef, /*BasePath=*/nullptr,
4346                                               VK_RValue, FPOptionsOverride()));
4347   Data.FirstprivateVars.emplace_back(OrigRef);
4348   Data.FirstprivateCopies.emplace_back(PrivateRef);
4349   Data.FirstprivateInits.emplace_back(InitRef);
4350   return OrigVD;
4351 }
4352 
4353 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
4354     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
4355     OMPTargetDataInfo &InputInfo) {
4356   // Emit outlined function for task construct.
4357   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
4358   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4359   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4360   auto I = CS->getCapturedDecl()->param_begin();
4361   auto PartId = std::next(I);
4362   auto TaskT = std::next(I, 4);
4363   OMPTaskDataTy Data;
4364   // The task is not final.
4365   Data.Final.setInt(/*IntVal=*/false);
4366   // Get list of firstprivate variables.
4367   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
4368     auto IRef = C->varlist_begin();
4369     auto IElemInitRef = C->inits().begin();
4370     for (auto *IInit : C->private_copies()) {
4371       Data.FirstprivateVars.push_back(*IRef);
4372       Data.FirstprivateCopies.push_back(IInit);
4373       Data.FirstprivateInits.push_back(*IElemInitRef);
4374       ++IRef;
4375       ++IElemInitRef;
4376     }
4377   }
4378   OMPPrivateScope TargetScope(*this);
4379   VarDecl *BPVD = nullptr;
4380   VarDecl *PVD = nullptr;
4381   VarDecl *SVD = nullptr;
4382   VarDecl *MVD = nullptr;
4383   if (InputInfo.NumberOfTargetItems > 0) {
4384     auto *CD = CapturedDecl::Create(
4385         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
4386     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
4387     QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType(
4388         getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal,
4389         /*IndexTypeQuals=*/0);
4390     BPVD = createImplicitFirstprivateForType(
4391         getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4392     PVD = createImplicitFirstprivateForType(
4393         getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4394     QualType SizesType = getContext().getConstantArrayType(
4395         getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1),
4396         ArrSize, nullptr, ArrayType::Normal,
4397         /*IndexTypeQuals=*/0);
4398     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
4399                                             S.getBeginLoc());
4400     TargetScope.addPrivate(
4401         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
4402     TargetScope.addPrivate(PVD,
4403                            [&InputInfo]() { return InputInfo.PointersArray; });
4404     TargetScope.addPrivate(SVD,
4405                            [&InputInfo]() { return InputInfo.SizesArray; });
4406     // If there is no user-defined mapper, the mapper array will be nullptr. In
4407     // this case, we don't need to privatize it.
4408     if (!dyn_cast_or_null<llvm::ConstantPointerNull>(
4409             InputInfo.MappersArray.getPointer())) {
4410       MVD = createImplicitFirstprivateForType(
4411           getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4412       TargetScope.addPrivate(MVD,
4413                              [&InputInfo]() { return InputInfo.MappersArray; });
4414     }
4415   }
4416   (void)TargetScope.Privatize();
4417   // Build list of dependences.
4418   for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
4419     OMPTaskDataTy::DependData &DD =
4420         Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier());
4421     DD.DepExprs.append(C->varlist_begin(), C->varlist_end());
4422   }
4423   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD,
4424                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
4425     // Set proper addresses for generated private copies.
4426     OMPPrivateScope Scope(CGF);
4427     if (!Data.FirstprivateVars.empty()) {
4428       llvm::FunctionType *CopyFnTy = llvm::FunctionType::get(
4429           CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true);
4430       enum { PrivatesParam = 2, CopyFnParam = 3 };
4431       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
4432           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
4433       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
4434           CS->getCapturedDecl()->getParam(PrivatesParam)));
4435       // Map privates.
4436       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
4437       llvm::SmallVector<llvm::Value *, 16> CallArgs;
4438       CallArgs.push_back(PrivatesPtr);
4439       for (const Expr *E : Data.FirstprivateVars) {
4440         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4441         Address PrivatePtr =
4442             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4443                               ".firstpriv.ptr.addr");
4444         PrivatePtrs.emplace_back(VD, PrivatePtr);
4445         CallArgs.push_back(PrivatePtr.getPointer());
4446       }
4447       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
4448           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
4449       for (const auto &Pair : PrivatePtrs) {
4450         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4451                             CGF.getContext().getDeclAlign(Pair.first));
4452         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
4453       }
4454     }
4455     // Privatize all private variables except for in_reduction items.
4456     (void)Scope.Privatize();
4457     if (InputInfo.NumberOfTargetItems > 0) {
4458       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
4459           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0);
4460       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
4461           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0);
4462       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
4463           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0);
4464       // If MVD is nullptr, the mapper array is not privatized
4465       if (MVD)
4466         InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP(
4467             CGF.GetAddrOfLocalVar(MVD), /*Index=*/0);
4468     }
4469 
4470     Action.Enter(CGF);
4471     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
4472     BodyGen(CGF);
4473   };
4474   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
4475       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
4476       Data.NumberOfParts);
4477   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
4478   IntegerLiteral IfCond(getContext(), TrueOrFalse,
4479                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
4480                         SourceLocation());
4481 
4482   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
4483                                       SharedsTy, CapturedStruct, &IfCond, Data);
4484 }
4485 
4486 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
4487   // Emit outlined function for task construct.
4488   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
4489   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4490   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4491   const Expr *IfCond = nullptr;
4492   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4493     if (C->getNameModifier() == OMPD_unknown ||
4494         C->getNameModifier() == OMPD_task) {
4495       IfCond = C->getCondition();
4496       break;
4497     }
4498   }
4499 
4500   OMPTaskDataTy Data;
4501   // Check if we should emit tied or untied task.
4502   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
4503   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
4504     CGF.EmitStmt(CS->getCapturedStmt());
4505   };
4506   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
4507                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
4508                             const OMPTaskDataTy &Data) {
4509     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
4510                                             SharedsTy, CapturedStruct, IfCond,
4511                                             Data);
4512   };
4513   auto LPCRegion =
4514       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
4515   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
4516 }
4517 
4518 void CodeGenFunction::EmitOMPTaskyieldDirective(
4519     const OMPTaskyieldDirective &S) {
4520   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
4521 }
4522 
4523 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
4524   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
4525 }
4526 
4527 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
4528   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
4529 }
4530 
4531 void CodeGenFunction::EmitOMPTaskgroupDirective(
4532     const OMPTaskgroupDirective &S) {
4533   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4534     Action.Enter(CGF);
4535     if (const Expr *E = S.getReductionRef()) {
4536       SmallVector<const Expr *, 4> LHSs;
4537       SmallVector<const Expr *, 4> RHSs;
4538       OMPTaskDataTy Data;
4539       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
4540         Data.ReductionVars.append(C->varlist_begin(), C->varlist_end());
4541         Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
4542         Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
4543         Data.ReductionOps.append(C->reduction_ops().begin(),
4544                                  C->reduction_ops().end());
4545         LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4546         RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4547       }
4548       llvm::Value *ReductionDesc =
4549           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
4550                                                            LHSs, RHSs, Data);
4551       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4552       CGF.EmitVarDecl(*VD);
4553       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
4554                             /*Volatile=*/false, E->getType());
4555     }
4556     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4557   };
4558   OMPLexicalScope Scope(*this, S, OMPD_unknown);
4559   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
4560 }
4561 
4562 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
4563   llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>()
4564                                 ? llvm::AtomicOrdering::NotAtomic
4565                                 : llvm::AtomicOrdering::AcquireRelease;
4566   CGM.getOpenMPRuntime().emitFlush(
4567       *this,
4568       [&S]() -> ArrayRef<const Expr *> {
4569         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
4570           return llvm::makeArrayRef(FlushClause->varlist_begin(),
4571                                     FlushClause->varlist_end());
4572         return llvm::None;
4573       }(),
4574       S.getBeginLoc(), AO);
4575 }
4576 
4577 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) {
4578   const auto *DO = S.getSingleClause<OMPDepobjClause>();
4579   LValue DOLVal = EmitLValue(DO->getDepobj());
4580   if (const auto *DC = S.getSingleClause<OMPDependClause>()) {
4581     OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(),
4582                                            DC->getModifier());
4583     Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end());
4584     Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause(
4585         *this, Dependencies, DC->getBeginLoc());
4586     EmitStoreOfScalar(DepAddr.getPointer(), DOLVal);
4587     return;
4588   }
4589   if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) {
4590     CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc());
4591     return;
4592   }
4593   if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) {
4594     CGM.getOpenMPRuntime().emitUpdateClause(
4595         *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc());
4596     return;
4597   }
4598 }
4599 
4600 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) {
4601   if (!OMPParentLoopDirectiveForScan)
4602     return;
4603   const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan;
4604   bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>();
4605   SmallVector<const Expr *, 4> Shareds;
4606   SmallVector<const Expr *, 4> Privates;
4607   SmallVector<const Expr *, 4> LHSs;
4608   SmallVector<const Expr *, 4> RHSs;
4609   SmallVector<const Expr *, 4> ReductionOps;
4610   SmallVector<const Expr *, 4> CopyOps;
4611   SmallVector<const Expr *, 4> CopyArrayTemps;
4612   SmallVector<const Expr *, 4> CopyArrayElems;
4613   for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) {
4614     if (C->getModifier() != OMPC_REDUCTION_inscan)
4615       continue;
4616     Shareds.append(C->varlist_begin(), C->varlist_end());
4617     Privates.append(C->privates().begin(), C->privates().end());
4618     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4619     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4620     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
4621     CopyOps.append(C->copy_ops().begin(), C->copy_ops().end());
4622     CopyArrayTemps.append(C->copy_array_temps().begin(),
4623                           C->copy_array_temps().end());
4624     CopyArrayElems.append(C->copy_array_elems().begin(),
4625                           C->copy_array_elems().end());
4626   }
4627   if (ParentDir.getDirectiveKind() == OMPD_simd ||
4628       (getLangOpts().OpenMPSimd &&
4629        isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) {
4630     // For simd directive and simd-based directives in simd only mode, use the
4631     // following codegen:
4632     // int x = 0;
4633     // #pragma omp simd reduction(inscan, +: x)
4634     // for (..) {
4635     //   <first part>
4636     //   #pragma omp scan inclusive(x)
4637     //   <second part>
4638     //  }
4639     // is transformed to:
4640     // int x = 0;
4641     // for (..) {
4642     //   int x_priv = 0;
4643     //   <first part>
4644     //   x = x_priv + x;
4645     //   x_priv = x;
4646     //   <second part>
4647     // }
4648     // and
4649     // int x = 0;
4650     // #pragma omp simd reduction(inscan, +: x)
4651     // for (..) {
4652     //   <first part>
4653     //   #pragma omp scan exclusive(x)
4654     //   <second part>
4655     // }
4656     // to
4657     // int x = 0;
4658     // for (..) {
4659     //   int x_priv = 0;
4660     //   <second part>
4661     //   int temp = x;
4662     //   x = x_priv + x;
4663     //   x_priv = temp;
4664     //   <first part>
4665     // }
4666     llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce");
4667     EmitBranch(IsInclusive
4668                    ? OMPScanReduce
4669                    : BreakContinueStack.back().ContinueBlock.getBlock());
4670     EmitBlock(OMPScanDispatch);
4671     {
4672       // New scope for correct construction/destruction of temp variables for
4673       // exclusive scan.
4674       LexicalScope Scope(*this, S.getSourceRange());
4675       EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock);
4676       EmitBlock(OMPScanReduce);
4677       if (!IsInclusive) {
4678         // Create temp var and copy LHS value to this temp value.
4679         // TMP = LHS;
4680         for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4681           const Expr *PrivateExpr = Privates[I];
4682           const Expr *TempExpr = CopyArrayTemps[I];
4683           EmitAutoVarDecl(
4684               *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl()));
4685           LValue DestLVal = EmitLValue(TempExpr);
4686           LValue SrcLVal = EmitLValue(LHSs[I]);
4687           EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4688                       SrcLVal.getAddress(*this),
4689                       cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4690                       cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4691                       CopyOps[I]);
4692         }
4693       }
4694       CGM.getOpenMPRuntime().emitReduction(
4695           *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps,
4696           {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd});
4697       for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4698         const Expr *PrivateExpr = Privates[I];
4699         LValue DestLVal;
4700         LValue SrcLVal;
4701         if (IsInclusive) {
4702           DestLVal = EmitLValue(RHSs[I]);
4703           SrcLVal = EmitLValue(LHSs[I]);
4704         } else {
4705           const Expr *TempExpr = CopyArrayTemps[I];
4706           DestLVal = EmitLValue(RHSs[I]);
4707           SrcLVal = EmitLValue(TempExpr);
4708         }
4709         EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4710                     SrcLVal.getAddress(*this),
4711                     cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4712                     cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4713                     CopyOps[I]);
4714       }
4715     }
4716     EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock);
4717     OMPScanExitBlock = IsInclusive
4718                            ? BreakContinueStack.back().ContinueBlock.getBlock()
4719                            : OMPScanReduce;
4720     EmitBlock(OMPAfterScanBlock);
4721     return;
4722   }
4723   if (!IsInclusive) {
4724     EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4725     EmitBlock(OMPScanExitBlock);
4726   }
4727   if (OMPFirstScanLoop) {
4728     // Emit buffer[i] = red; at the end of the input phase.
4729     const auto *IVExpr = cast<OMPLoopDirective>(ParentDir)
4730                              .getIterationVariable()
4731                              ->IgnoreParenImpCasts();
4732     LValue IdxLVal = EmitLValue(IVExpr);
4733     llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc());
4734     IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false);
4735     for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4736       const Expr *PrivateExpr = Privates[I];
4737       const Expr *OrigExpr = Shareds[I];
4738       const Expr *CopyArrayElem = CopyArrayElems[I];
4739       OpaqueValueMapping IdxMapping(
4740           *this,
4741           cast<OpaqueValueExpr>(
4742               cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
4743           RValue::get(IdxVal));
4744       LValue DestLVal = EmitLValue(CopyArrayElem);
4745       LValue SrcLVal = EmitLValue(OrigExpr);
4746       EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4747                   SrcLVal.getAddress(*this),
4748                   cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4749                   cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4750                   CopyOps[I]);
4751     }
4752   }
4753   EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4754   if (IsInclusive) {
4755     EmitBlock(OMPScanExitBlock);
4756     EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4757   }
4758   EmitBlock(OMPScanDispatch);
4759   if (!OMPFirstScanLoop) {
4760     // Emit red = buffer[i]; at the entrance to the scan phase.
4761     const auto *IVExpr = cast<OMPLoopDirective>(ParentDir)
4762                              .getIterationVariable()
4763                              ->IgnoreParenImpCasts();
4764     LValue IdxLVal = EmitLValue(IVExpr);
4765     llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc());
4766     IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false);
4767     llvm::BasicBlock *ExclusiveExitBB = nullptr;
4768     if (!IsInclusive) {
4769       llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec");
4770       ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit");
4771       llvm::Value *Cmp = Builder.CreateIsNull(IdxVal);
4772       Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB);
4773       EmitBlock(ContBB);
4774       // Use idx - 1 iteration for exclusive scan.
4775       IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1));
4776     }
4777     for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4778       const Expr *PrivateExpr = Privates[I];
4779       const Expr *OrigExpr = Shareds[I];
4780       const Expr *CopyArrayElem = CopyArrayElems[I];
4781       OpaqueValueMapping IdxMapping(
4782           *this,
4783           cast<OpaqueValueExpr>(
4784               cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
4785           RValue::get(IdxVal));
4786       LValue SrcLVal = EmitLValue(CopyArrayElem);
4787       LValue DestLVal = EmitLValue(OrigExpr);
4788       EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4789                   SrcLVal.getAddress(*this),
4790                   cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4791                   cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4792                   CopyOps[I]);
4793     }
4794     if (!IsInclusive) {
4795       EmitBlock(ExclusiveExitBB);
4796     }
4797   }
4798   EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock
4799                                                : OMPAfterScanBlock);
4800   EmitBlock(OMPAfterScanBlock);
4801 }
4802 
4803 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
4804                                             const CodeGenLoopTy &CodeGenLoop,
4805                                             Expr *IncExpr) {
4806   // Emit the loop iteration variable.
4807   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
4808   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
4809   EmitVarDecl(*IVDecl);
4810 
4811   // Emit the iterations count variable.
4812   // If it is not a variable, Sema decided to calculate iterations count on each
4813   // iteration (e.g., it is foldable into a constant).
4814   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
4815     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
4816     // Emit calculation of the iterations count.
4817     EmitIgnoredExpr(S.getCalcLastIteration());
4818   }
4819 
4820   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
4821 
4822   bool HasLastprivateClause = false;
4823   // Check pre-condition.
4824   {
4825     OMPLoopScope PreInitScope(*this, S);
4826     // Skip the entire loop if we don't meet the precondition.
4827     // If the condition constant folds and can be elided, avoid emitting the
4828     // whole loop.
4829     bool CondConstant;
4830     llvm::BasicBlock *ContBlock = nullptr;
4831     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
4832       if (!CondConstant)
4833         return;
4834     } else {
4835       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
4836       ContBlock = createBasicBlock("omp.precond.end");
4837       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
4838                   getProfileCount(&S));
4839       EmitBlock(ThenBlock);
4840       incrementProfileCounter(&S);
4841     }
4842 
4843     emitAlignedClause(*this, S);
4844     // Emit 'then' code.
4845     {
4846       // Emit helper vars inits.
4847 
4848       LValue LB = EmitOMPHelperVar(
4849           *this, cast<DeclRefExpr>(
4850                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4851                           ? S.getCombinedLowerBoundVariable()
4852                           : S.getLowerBoundVariable())));
4853       LValue UB = EmitOMPHelperVar(
4854           *this, cast<DeclRefExpr>(
4855                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4856                           ? S.getCombinedUpperBoundVariable()
4857                           : S.getUpperBoundVariable())));
4858       LValue ST =
4859           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
4860       LValue IL =
4861           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
4862 
4863       OMPPrivateScope LoopScope(*this);
4864       if (EmitOMPFirstprivateClause(S, LoopScope)) {
4865         // Emit implicit barrier to synchronize threads and avoid data races
4866         // on initialization of firstprivate variables and post-update of
4867         // lastprivate variables.
4868         CGM.getOpenMPRuntime().emitBarrierCall(
4869             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
4870             /*ForceSimpleCall=*/true);
4871       }
4872       EmitOMPPrivateClause(S, LoopScope);
4873       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
4874           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
4875           !isOpenMPTeamsDirective(S.getDirectiveKind()))
4876         EmitOMPReductionClauseInit(S, LoopScope);
4877       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
4878       EmitOMPPrivateLoopCounters(S, LoopScope);
4879       (void)LoopScope.Privatize();
4880       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4881         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
4882 
4883       // Detect the distribute schedule kind and chunk.
4884       llvm::Value *Chunk = nullptr;
4885       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
4886       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
4887         ScheduleKind = C->getDistScheduleKind();
4888         if (const Expr *Ch = C->getChunkSize()) {
4889           Chunk = EmitScalarExpr(Ch);
4890           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
4891                                        S.getIterationVariable()->getType(),
4892                                        S.getBeginLoc());
4893         }
4894       } else {
4895         // Default behaviour for dist_schedule clause.
4896         CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk(
4897             *this, S, ScheduleKind, Chunk);
4898       }
4899       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
4900       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
4901 
4902       // OpenMP [2.10.8, distribute Construct, Description]
4903       // If dist_schedule is specified, kind must be static. If specified,
4904       // iterations are divided into chunks of size chunk_size, chunks are
4905       // assigned to the teams of the league in a round-robin fashion in the
4906       // order of the team number. When no chunk_size is specified, the
4907       // iteration space is divided into chunks that are approximately equal
4908       // in size, and at most one chunk is distributed to each team of the
4909       // league. The size of the chunks is unspecified in this case.
4910       bool StaticChunked = RT.isStaticChunked(
4911           ScheduleKind, /* Chunked */ Chunk != nullptr) &&
4912           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
4913       if (RT.isStaticNonchunked(ScheduleKind,
4914                                 /* Chunked */ Chunk != nullptr) ||
4915           StaticChunked) {
4916         CGOpenMPRuntime::StaticRTInput StaticInit(
4917             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this),
4918             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
4919             StaticChunked ? Chunk : nullptr);
4920         RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
4921                                     StaticInit);
4922         JumpDest LoopExit =
4923             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
4924         // UB = min(UB, GlobalUB);
4925         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4926                             ? S.getCombinedEnsureUpperBound()
4927                             : S.getEnsureUpperBound());
4928         // IV = LB;
4929         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4930                             ? S.getCombinedInit()
4931                             : S.getInit());
4932 
4933         const Expr *Cond =
4934             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4935                 ? S.getCombinedCond()
4936                 : S.getCond();
4937 
4938         if (StaticChunked)
4939           Cond = S.getCombinedDistCond();
4940 
4941         // For static unchunked schedules generate:
4942         //
4943         //  1. For distribute alone, codegen
4944         //    while (idx <= UB) {
4945         //      BODY;
4946         //      ++idx;
4947         //    }
4948         //
4949         //  2. When combined with 'for' (e.g. as in 'distribute parallel for')
4950         //    while (idx <= UB) {
4951         //      <CodeGen rest of pragma>(LB, UB);
4952         //      idx += ST;
4953         //    }
4954         //
4955         // For static chunk one schedule generate:
4956         //
4957         // while (IV <= GlobalUB) {
4958         //   <CodeGen rest of pragma>(LB, UB);
4959         //   LB += ST;
4960         //   UB += ST;
4961         //   UB = min(UB, GlobalUB);
4962         //   IV = LB;
4963         // }
4964         //
4965         emitCommonSimdLoop(
4966             *this, S,
4967             [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4968               if (isOpenMPSimdDirective(S.getDirectiveKind()))
4969                 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true);
4970             },
4971             [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop,
4972              StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) {
4973               CGF.EmitOMPInnerLoop(
4974                   S, LoopScope.requiresCleanups(), Cond, IncExpr,
4975                   [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
4976                     CodeGenLoop(CGF, S, LoopExit);
4977                   },
4978                   [&S, StaticChunked](CodeGenFunction &CGF) {
4979                     if (StaticChunked) {
4980                       CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound());
4981                       CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound());
4982                       CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound());
4983                       CGF.EmitIgnoredExpr(S.getCombinedInit());
4984                     }
4985                   });
4986             });
4987         EmitBlock(LoopExit.getBlock());
4988         // Tell the runtime we are done.
4989         RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind());
4990       } else {
4991         // Emit the outer loop, which requests its work chunk [LB..UB] from
4992         // runtime and runs the inner loop to process it.
4993         const OMPLoopArguments LoopArguments = {
4994             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
4995             IL.getAddress(*this), Chunk};
4996         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
4997                                    CodeGenLoop);
4998       }
4999       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
5000         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
5001           return CGF.Builder.CreateIsNotNull(
5002               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
5003         });
5004       }
5005       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
5006           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
5007           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
5008         EmitOMPReductionClauseFinal(S, OMPD_simd);
5009         // Emit post-update of the reduction variables if IsLastIter != 0.
5010         emitPostUpdateForReductionClause(
5011             *this, S, [IL, &S](CodeGenFunction &CGF) {
5012               return CGF.Builder.CreateIsNotNull(
5013                   CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
5014             });
5015       }
5016       // Emit final copy of the lastprivate variables if IsLastIter != 0.
5017       if (HasLastprivateClause) {
5018         EmitOMPLastprivateClauseFinal(
5019             S, /*NoFinals=*/false,
5020             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
5021       }
5022     }
5023 
5024     // We're now done with the loop, so jump to the continuation block.
5025     if (ContBlock) {
5026       EmitBranch(ContBlock);
5027       EmitBlock(ContBlock, true);
5028     }
5029   }
5030 }
5031 
5032 void CodeGenFunction::EmitOMPDistributeDirective(
5033     const OMPDistributeDirective &S) {
5034   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5035     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5036   };
5037   OMPLexicalScope Scope(*this, S, OMPD_unknown);
5038   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
5039 }
5040 
5041 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
5042                                                    const CapturedStmt *S,
5043                                                    SourceLocation Loc) {
5044   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
5045   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
5046   CGF.CapturedStmtInfo = &CapStmtInfo;
5047   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc);
5048   Fn->setDoesNotRecurse();
5049   return Fn;
5050 }
5051 
5052 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
5053   if (S.hasClausesOfKind<OMPDependClause>()) {
5054     assert(!S.hasAssociatedStmt() &&
5055            "No associated statement must be in ordered depend construct.");
5056     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
5057       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
5058     return;
5059   }
5060   const auto *C = S.getSingleClause<OMPSIMDClause>();
5061   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
5062                                  PrePostActionTy &Action) {
5063     const CapturedStmt *CS = S.getInnermostCapturedStmt();
5064     if (C) {
5065       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
5066       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
5067       llvm::Function *OutlinedFn =
5068           emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc());
5069       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
5070                                                       OutlinedFn, CapturedVars);
5071     } else {
5072       Action.Enter(CGF);
5073       CGF.EmitStmt(CS->getCapturedStmt());
5074     }
5075   };
5076   OMPLexicalScope Scope(*this, S, OMPD_unknown);
5077   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
5078 }
5079 
5080 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
5081                                          QualType SrcType, QualType DestType,
5082                                          SourceLocation Loc) {
5083   assert(CGF.hasScalarEvaluationKind(DestType) &&
5084          "DestType must have scalar evaluation kind.");
5085   assert(!Val.isAggregate() && "Must be a scalar or complex.");
5086   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
5087                                                    DestType, Loc)
5088                         : CGF.EmitComplexToScalarConversion(
5089                               Val.getComplexVal(), SrcType, DestType, Loc);
5090 }
5091 
5092 static CodeGenFunction::ComplexPairTy
5093 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
5094                       QualType DestType, SourceLocation Loc) {
5095   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
5096          "DestType must have complex evaluation kind.");
5097   CodeGenFunction::ComplexPairTy ComplexVal;
5098   if (Val.isScalar()) {
5099     // Convert the input element to the element type of the complex.
5100     QualType DestElementType =
5101         DestType->castAs<ComplexType>()->getElementType();
5102     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
5103         Val.getScalarVal(), SrcType, DestElementType, Loc);
5104     ComplexVal = CodeGenFunction::ComplexPairTy(
5105         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
5106   } else {
5107     assert(Val.isComplex() && "Must be a scalar or complex.");
5108     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
5109     QualType DestElementType =
5110         DestType->castAs<ComplexType>()->getElementType();
5111     ComplexVal.first = CGF.EmitScalarConversion(
5112         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
5113     ComplexVal.second = CGF.EmitScalarConversion(
5114         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
5115   }
5116   return ComplexVal;
5117 }
5118 
5119 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
5120                                   LValue LVal, RValue RVal) {
5121   if (LVal.isGlobalReg())
5122     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
5123   else
5124     CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false);
5125 }
5126 
5127 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF,
5128                                    llvm::AtomicOrdering AO, LValue LVal,
5129                                    SourceLocation Loc) {
5130   if (LVal.isGlobalReg())
5131     return CGF.EmitLoadOfLValue(LVal, Loc);
5132   return CGF.EmitAtomicLoad(
5133       LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO),
5134       LVal.isVolatile());
5135 }
5136 
5137 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
5138                                          QualType RValTy, SourceLocation Loc) {
5139   switch (getEvaluationKind(LVal.getType())) {
5140   case TEK_Scalar:
5141     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
5142                                *this, RVal, RValTy, LVal.getType(), Loc)),
5143                            LVal);
5144     break;
5145   case TEK_Complex:
5146     EmitStoreOfComplex(
5147         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
5148         /*isInit=*/false);
5149     break;
5150   case TEK_Aggregate:
5151     llvm_unreachable("Must be a scalar or complex.");
5152   }
5153 }
5154 
5155 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
5156                                   const Expr *X, const Expr *V,
5157                                   SourceLocation Loc) {
5158   // v = x;
5159   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
5160   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
5161   LValue XLValue = CGF.EmitLValue(X);
5162   LValue VLValue = CGF.EmitLValue(V);
5163   RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc);
5164   // OpenMP, 2.17.7, atomic Construct
5165   // If the read or capture clause is specified and the acquire, acq_rel, or
5166   // seq_cst clause is specified then the strong flush on exit from the atomic
5167   // operation is also an acquire flush.
5168   switch (AO) {
5169   case llvm::AtomicOrdering::Acquire:
5170   case llvm::AtomicOrdering::AcquireRelease:
5171   case llvm::AtomicOrdering::SequentiallyConsistent:
5172     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5173                                          llvm::AtomicOrdering::Acquire);
5174     break;
5175   case llvm::AtomicOrdering::Monotonic:
5176   case llvm::AtomicOrdering::Release:
5177     break;
5178   case llvm::AtomicOrdering::NotAtomic:
5179   case llvm::AtomicOrdering::Unordered:
5180     llvm_unreachable("Unexpected ordering.");
5181   }
5182   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
5183   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
5184 }
5185 
5186 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF,
5187                                    llvm::AtomicOrdering AO, const Expr *X,
5188                                    const Expr *E, SourceLocation Loc) {
5189   // x = expr;
5190   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
5191   emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
5192   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5193   // OpenMP, 2.17.7, atomic Construct
5194   // If the write, update, or capture clause is specified and the release,
5195   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5196   // the atomic operation is also a release flush.
5197   switch (AO) {
5198   case llvm::AtomicOrdering::Release:
5199   case llvm::AtomicOrdering::AcquireRelease:
5200   case llvm::AtomicOrdering::SequentiallyConsistent:
5201     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5202                                          llvm::AtomicOrdering::Release);
5203     break;
5204   case llvm::AtomicOrdering::Acquire:
5205   case llvm::AtomicOrdering::Monotonic:
5206     break;
5207   case llvm::AtomicOrdering::NotAtomic:
5208   case llvm::AtomicOrdering::Unordered:
5209     llvm_unreachable("Unexpected ordering.");
5210   }
5211 }
5212 
5213 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
5214                                                 RValue Update,
5215                                                 BinaryOperatorKind BO,
5216                                                 llvm::AtomicOrdering AO,
5217                                                 bool IsXLHSInRHSPart) {
5218   ASTContext &Context = CGF.getContext();
5219   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
5220   // expression is simple and atomic is allowed for the given type for the
5221   // target platform.
5222   if (BO == BO_Comma || !Update.isScalar() ||
5223       !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() ||
5224       (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
5225        (Update.getScalarVal()->getType() !=
5226         X.getAddress(CGF).getElementType())) ||
5227       !X.getAddress(CGF).getElementType()->isIntegerTy() ||
5228       !Context.getTargetInfo().hasBuiltinAtomic(
5229           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
5230     return std::make_pair(false, RValue::get(nullptr));
5231 
5232   llvm::AtomicRMWInst::BinOp RMWOp;
5233   switch (BO) {
5234   case BO_Add:
5235     RMWOp = llvm::AtomicRMWInst::Add;
5236     break;
5237   case BO_Sub:
5238     if (!IsXLHSInRHSPart)
5239       return std::make_pair(false, RValue::get(nullptr));
5240     RMWOp = llvm::AtomicRMWInst::Sub;
5241     break;
5242   case BO_And:
5243     RMWOp = llvm::AtomicRMWInst::And;
5244     break;
5245   case BO_Or:
5246     RMWOp = llvm::AtomicRMWInst::Or;
5247     break;
5248   case BO_Xor:
5249     RMWOp = llvm::AtomicRMWInst::Xor;
5250     break;
5251   case BO_LT:
5252     RMWOp = X.getType()->hasSignedIntegerRepresentation()
5253                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
5254                                    : llvm::AtomicRMWInst::Max)
5255                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
5256                                    : llvm::AtomicRMWInst::UMax);
5257     break;
5258   case BO_GT:
5259     RMWOp = X.getType()->hasSignedIntegerRepresentation()
5260                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
5261                                    : llvm::AtomicRMWInst::Min)
5262                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
5263                                    : llvm::AtomicRMWInst::UMin);
5264     break;
5265   case BO_Assign:
5266     RMWOp = llvm::AtomicRMWInst::Xchg;
5267     break;
5268   case BO_Mul:
5269   case BO_Div:
5270   case BO_Rem:
5271   case BO_Shl:
5272   case BO_Shr:
5273   case BO_LAnd:
5274   case BO_LOr:
5275     return std::make_pair(false, RValue::get(nullptr));
5276   case BO_PtrMemD:
5277   case BO_PtrMemI:
5278   case BO_LE:
5279   case BO_GE:
5280   case BO_EQ:
5281   case BO_NE:
5282   case BO_Cmp:
5283   case BO_AddAssign:
5284   case BO_SubAssign:
5285   case BO_AndAssign:
5286   case BO_OrAssign:
5287   case BO_XorAssign:
5288   case BO_MulAssign:
5289   case BO_DivAssign:
5290   case BO_RemAssign:
5291   case BO_ShlAssign:
5292   case BO_ShrAssign:
5293   case BO_Comma:
5294     llvm_unreachable("Unsupported atomic update operation");
5295   }
5296   llvm::Value *UpdateVal = Update.getScalarVal();
5297   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
5298     UpdateVal = CGF.Builder.CreateIntCast(
5299         IC, X.getAddress(CGF).getElementType(),
5300         X.getType()->hasSignedIntegerRepresentation());
5301   }
5302   llvm::Value *Res =
5303       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO);
5304   return std::make_pair(true, RValue::get(Res));
5305 }
5306 
5307 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
5308     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
5309     llvm::AtomicOrdering AO, SourceLocation Loc,
5310     const llvm::function_ref<RValue(RValue)> CommonGen) {
5311   // Update expressions are allowed to have the following forms:
5312   // x binop= expr; -> xrval + expr;
5313   // x++, ++x -> xrval + 1;
5314   // x--, --x -> xrval - 1;
5315   // x = x binop expr; -> xrval binop expr
5316   // x = expr Op x; - > expr binop xrval;
5317   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
5318   if (!Res.first) {
5319     if (X.isGlobalReg()) {
5320       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
5321       // 'xrval'.
5322       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
5323     } else {
5324       // Perform compare-and-swap procedure.
5325       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
5326     }
5327   }
5328   return Res;
5329 }
5330 
5331 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF,
5332                                     llvm::AtomicOrdering AO, const Expr *X,
5333                                     const Expr *E, const Expr *UE,
5334                                     bool IsXLHSInRHSPart, SourceLocation Loc) {
5335   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
5336          "Update expr in 'atomic update' must be a binary operator.");
5337   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
5338   // Update expressions are allowed to have the following forms:
5339   // x binop= expr; -> xrval + expr;
5340   // x++, ++x -> xrval + 1;
5341   // x--, --x -> xrval - 1;
5342   // x = x binop expr; -> xrval binop expr
5343   // x = expr Op x; - > expr binop xrval;
5344   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
5345   LValue XLValue = CGF.EmitLValue(X);
5346   RValue ExprRValue = CGF.EmitAnyExpr(E);
5347   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
5348   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
5349   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
5350   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
5351   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
5352     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5353     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
5354     return CGF.EmitAnyExpr(UE);
5355   };
5356   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
5357       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
5358   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5359   // OpenMP, 2.17.7, atomic Construct
5360   // If the write, update, or capture clause is specified and the release,
5361   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5362   // the atomic operation is also a release flush.
5363   switch (AO) {
5364   case llvm::AtomicOrdering::Release:
5365   case llvm::AtomicOrdering::AcquireRelease:
5366   case llvm::AtomicOrdering::SequentiallyConsistent:
5367     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5368                                          llvm::AtomicOrdering::Release);
5369     break;
5370   case llvm::AtomicOrdering::Acquire:
5371   case llvm::AtomicOrdering::Monotonic:
5372     break;
5373   case llvm::AtomicOrdering::NotAtomic:
5374   case llvm::AtomicOrdering::Unordered:
5375     llvm_unreachable("Unexpected ordering.");
5376   }
5377 }
5378 
5379 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
5380                             QualType SourceType, QualType ResType,
5381                             SourceLocation Loc) {
5382   switch (CGF.getEvaluationKind(ResType)) {
5383   case TEK_Scalar:
5384     return RValue::get(
5385         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
5386   case TEK_Complex: {
5387     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
5388     return RValue::getComplex(Res.first, Res.second);
5389   }
5390   case TEK_Aggregate:
5391     break;
5392   }
5393   llvm_unreachable("Must be a scalar or complex.");
5394 }
5395 
5396 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF,
5397                                      llvm::AtomicOrdering AO,
5398                                      bool IsPostfixUpdate, const Expr *V,
5399                                      const Expr *X, const Expr *E,
5400                                      const Expr *UE, bool IsXLHSInRHSPart,
5401                                      SourceLocation Loc) {
5402   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
5403   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
5404   RValue NewVVal;
5405   LValue VLValue = CGF.EmitLValue(V);
5406   LValue XLValue = CGF.EmitLValue(X);
5407   RValue ExprRValue = CGF.EmitAnyExpr(E);
5408   QualType NewVValType;
5409   if (UE) {
5410     // 'x' is updated with some additional value.
5411     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
5412            "Update expr in 'atomic capture' must be a binary operator.");
5413     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
5414     // Update expressions are allowed to have the following forms:
5415     // x binop= expr; -> xrval + expr;
5416     // x++, ++x -> xrval + 1;
5417     // x--, --x -> xrval - 1;
5418     // x = x binop expr; -> xrval binop expr
5419     // x = expr Op x; - > expr binop xrval;
5420     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
5421     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
5422     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
5423     NewVValType = XRValExpr->getType();
5424     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
5425     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
5426                   IsPostfixUpdate](RValue XRValue) {
5427       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5428       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
5429       RValue Res = CGF.EmitAnyExpr(UE);
5430       NewVVal = IsPostfixUpdate ? XRValue : Res;
5431       return Res;
5432     };
5433     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
5434         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
5435     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5436     if (Res.first) {
5437       // 'atomicrmw' instruction was generated.
5438       if (IsPostfixUpdate) {
5439         // Use old value from 'atomicrmw'.
5440         NewVVal = Res.second;
5441       } else {
5442         // 'atomicrmw' does not provide new value, so evaluate it using old
5443         // value of 'x'.
5444         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5445         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
5446         NewVVal = CGF.EmitAnyExpr(UE);
5447       }
5448     }
5449   } else {
5450     // 'x' is simply rewritten with some 'expr'.
5451     NewVValType = X->getType().getNonReferenceType();
5452     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
5453                                X->getType().getNonReferenceType(), Loc);
5454     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
5455       NewVVal = XRValue;
5456       return ExprRValue;
5457     };
5458     // Try to perform atomicrmw xchg, otherwise simple exchange.
5459     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
5460         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
5461         Loc, Gen);
5462     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5463     if (Res.first) {
5464       // 'atomicrmw' instruction was generated.
5465       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
5466     }
5467   }
5468   // Emit post-update store to 'v' of old/new 'x' value.
5469   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
5470   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
5471   // OpenMP, 2.17.7, atomic Construct
5472   // If the write, update, or capture clause is specified and the release,
5473   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5474   // the atomic operation is also a release flush.
5475   // If the read or capture clause is specified and the acquire, acq_rel, or
5476   // seq_cst clause is specified then the strong flush on exit from the atomic
5477   // operation is also an acquire flush.
5478   switch (AO) {
5479   case llvm::AtomicOrdering::Release:
5480     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5481                                          llvm::AtomicOrdering::Release);
5482     break;
5483   case llvm::AtomicOrdering::Acquire:
5484     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5485                                          llvm::AtomicOrdering::Acquire);
5486     break;
5487   case llvm::AtomicOrdering::AcquireRelease:
5488   case llvm::AtomicOrdering::SequentiallyConsistent:
5489     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5490                                          llvm::AtomicOrdering::AcquireRelease);
5491     break;
5492   case llvm::AtomicOrdering::Monotonic:
5493     break;
5494   case llvm::AtomicOrdering::NotAtomic:
5495   case llvm::AtomicOrdering::Unordered:
5496     llvm_unreachable("Unexpected ordering.");
5497   }
5498 }
5499 
5500 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
5501                               llvm::AtomicOrdering AO, bool IsPostfixUpdate,
5502                               const Expr *X, const Expr *V, const Expr *E,
5503                               const Expr *UE, bool IsXLHSInRHSPart,
5504                               SourceLocation Loc) {
5505   switch (Kind) {
5506   case OMPC_read:
5507     emitOMPAtomicReadExpr(CGF, AO, X, V, Loc);
5508     break;
5509   case OMPC_write:
5510     emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc);
5511     break;
5512   case OMPC_unknown:
5513   case OMPC_update:
5514     emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc);
5515     break;
5516   case OMPC_capture:
5517     emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE,
5518                              IsXLHSInRHSPart, Loc);
5519     break;
5520   case OMPC_if:
5521   case OMPC_final:
5522   case OMPC_num_threads:
5523   case OMPC_private:
5524   case OMPC_firstprivate:
5525   case OMPC_lastprivate:
5526   case OMPC_reduction:
5527   case OMPC_task_reduction:
5528   case OMPC_in_reduction:
5529   case OMPC_safelen:
5530   case OMPC_simdlen:
5531   case OMPC_sizes:
5532   case OMPC_allocator:
5533   case OMPC_allocate:
5534   case OMPC_collapse:
5535   case OMPC_default:
5536   case OMPC_seq_cst:
5537   case OMPC_acq_rel:
5538   case OMPC_acquire:
5539   case OMPC_release:
5540   case OMPC_relaxed:
5541   case OMPC_shared:
5542   case OMPC_linear:
5543   case OMPC_aligned:
5544   case OMPC_copyin:
5545   case OMPC_copyprivate:
5546   case OMPC_flush:
5547   case OMPC_depobj:
5548   case OMPC_proc_bind:
5549   case OMPC_schedule:
5550   case OMPC_ordered:
5551   case OMPC_nowait:
5552   case OMPC_untied:
5553   case OMPC_threadprivate:
5554   case OMPC_depend:
5555   case OMPC_mergeable:
5556   case OMPC_device:
5557   case OMPC_threads:
5558   case OMPC_simd:
5559   case OMPC_map:
5560   case OMPC_num_teams:
5561   case OMPC_thread_limit:
5562   case OMPC_priority:
5563   case OMPC_grainsize:
5564   case OMPC_nogroup:
5565   case OMPC_num_tasks:
5566   case OMPC_hint:
5567   case OMPC_dist_schedule:
5568   case OMPC_defaultmap:
5569   case OMPC_uniform:
5570   case OMPC_to:
5571   case OMPC_from:
5572   case OMPC_use_device_ptr:
5573   case OMPC_use_device_addr:
5574   case OMPC_is_device_ptr:
5575   case OMPC_unified_address:
5576   case OMPC_unified_shared_memory:
5577   case OMPC_reverse_offload:
5578   case OMPC_dynamic_allocators:
5579   case OMPC_atomic_default_mem_order:
5580   case OMPC_device_type:
5581   case OMPC_match:
5582   case OMPC_nontemporal:
5583   case OMPC_order:
5584   case OMPC_destroy:
5585   case OMPC_detach:
5586   case OMPC_inclusive:
5587   case OMPC_exclusive:
5588   case OMPC_uses_allocators:
5589   case OMPC_affinity:
5590   default:
5591     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
5592   }
5593 }
5594 
5595 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
5596   llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic;
5597   bool MemOrderingSpecified = false;
5598   if (S.getSingleClause<OMPSeqCstClause>()) {
5599     AO = llvm::AtomicOrdering::SequentiallyConsistent;
5600     MemOrderingSpecified = true;
5601   } else if (S.getSingleClause<OMPAcqRelClause>()) {
5602     AO = llvm::AtomicOrdering::AcquireRelease;
5603     MemOrderingSpecified = true;
5604   } else if (S.getSingleClause<OMPAcquireClause>()) {
5605     AO = llvm::AtomicOrdering::Acquire;
5606     MemOrderingSpecified = true;
5607   } else if (S.getSingleClause<OMPReleaseClause>()) {
5608     AO = llvm::AtomicOrdering::Release;
5609     MemOrderingSpecified = true;
5610   } else if (S.getSingleClause<OMPRelaxedClause>()) {
5611     AO = llvm::AtomicOrdering::Monotonic;
5612     MemOrderingSpecified = true;
5613   }
5614   OpenMPClauseKind Kind = OMPC_unknown;
5615   for (const OMPClause *C : S.clauses()) {
5616     // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause,
5617     // if it is first).
5618     if (C->getClauseKind() != OMPC_seq_cst &&
5619         C->getClauseKind() != OMPC_acq_rel &&
5620         C->getClauseKind() != OMPC_acquire &&
5621         C->getClauseKind() != OMPC_release &&
5622         C->getClauseKind() != OMPC_relaxed) {
5623       Kind = C->getClauseKind();
5624       break;
5625     }
5626   }
5627   if (!MemOrderingSpecified) {
5628     llvm::AtomicOrdering DefaultOrder =
5629         CGM.getOpenMPRuntime().getDefaultMemoryOrdering();
5630     if (DefaultOrder == llvm::AtomicOrdering::Monotonic ||
5631         DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent ||
5632         (DefaultOrder == llvm::AtomicOrdering::AcquireRelease &&
5633          Kind == OMPC_capture)) {
5634       AO = DefaultOrder;
5635     } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) {
5636       if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) {
5637         AO = llvm::AtomicOrdering::Release;
5638       } else if (Kind == OMPC_read) {
5639         assert(Kind == OMPC_read && "Unexpected atomic kind.");
5640         AO = llvm::AtomicOrdering::Acquire;
5641       }
5642     }
5643   }
5644 
5645   LexicalScope Scope(*this, S.getSourceRange());
5646   EmitStopPoint(S.getAssociatedStmt());
5647   emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(),
5648                     S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(),
5649                     S.getBeginLoc());
5650 }
5651 
5652 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
5653                                          const OMPExecutableDirective &S,
5654                                          const RegionCodeGenTy &CodeGen) {
5655   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
5656   CodeGenModule &CGM = CGF.CGM;
5657 
5658   // On device emit this construct as inlined code.
5659   if (CGM.getLangOpts().OpenMPIsDevice) {
5660     OMPLexicalScope Scope(CGF, S, OMPD_target);
5661     CGM.getOpenMPRuntime().emitInlinedDirective(
5662         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5663           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
5664         });
5665     return;
5666   }
5667 
5668   auto LPCRegion =
5669       CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S);
5670   llvm::Function *Fn = nullptr;
5671   llvm::Constant *FnID = nullptr;
5672 
5673   const Expr *IfCond = nullptr;
5674   // Check for the at most one if clause associated with the target region.
5675   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
5676     if (C->getNameModifier() == OMPD_unknown ||
5677         C->getNameModifier() == OMPD_target) {
5678       IfCond = C->getCondition();
5679       break;
5680     }
5681   }
5682 
5683   // Check if we have any device clause associated with the directive.
5684   llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device(
5685       nullptr, OMPC_DEVICE_unknown);
5686   if (auto *C = S.getSingleClause<OMPDeviceClause>())
5687     Device.setPointerAndInt(C->getDevice(), C->getModifier());
5688 
5689   // Check if we have an if clause whose conditional always evaluates to false
5690   // or if we do not have any targets specified. If so the target region is not
5691   // an offload entry point.
5692   bool IsOffloadEntry = true;
5693   if (IfCond) {
5694     bool Val;
5695     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
5696       IsOffloadEntry = false;
5697   }
5698   if (CGM.getLangOpts().OMPTargetTriples.empty())
5699     IsOffloadEntry = false;
5700 
5701   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
5702   StringRef ParentName;
5703   // In case we have Ctors/Dtors we use the complete type variant to produce
5704   // the mangling of the device outlined kernel.
5705   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
5706     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
5707   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
5708     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
5709   else
5710     ParentName =
5711         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
5712 
5713   // Emit target region as a standalone region.
5714   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
5715                                                     IsOffloadEntry, CodeGen);
5716   OMPLexicalScope Scope(CGF, S, OMPD_task);
5717   auto &&SizeEmitter =
5718       [IsOffloadEntry](CodeGenFunction &CGF,
5719                        const OMPLoopDirective &D) -> llvm::Value * {
5720     if (IsOffloadEntry) {
5721       OMPLoopScope(CGF, D);
5722       // Emit calculation of the iterations count.
5723       llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations());
5724       NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty,
5725                                                 /*isSigned=*/false);
5726       return NumIterations;
5727     }
5728     return nullptr;
5729   };
5730   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device,
5731                                         SizeEmitter);
5732 }
5733 
5734 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
5735                              PrePostActionTy &Action) {
5736   Action.Enter(CGF);
5737   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5738   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5739   CGF.EmitOMPPrivateClause(S, PrivateScope);
5740   (void)PrivateScope.Privatize();
5741   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
5742     CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
5743 
5744   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
5745   CGF.EnsureInsertPoint();
5746 }
5747 
5748 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
5749                                                   StringRef ParentName,
5750                                                   const OMPTargetDirective &S) {
5751   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5752     emitTargetRegion(CGF, S, Action);
5753   };
5754   llvm::Function *Fn;
5755   llvm::Constant *Addr;
5756   // Emit target region as a standalone region.
5757   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5758       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5759   assert(Fn && Addr && "Target device function emission failed.");
5760 }
5761 
5762 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
5763   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5764     emitTargetRegion(CGF, S, Action);
5765   };
5766   emitCommonOMPTargetDirective(*this, S, CodeGen);
5767 }
5768 
5769 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
5770                                         const OMPExecutableDirective &S,
5771                                         OpenMPDirectiveKind InnermostKind,
5772                                         const RegionCodeGenTy &CodeGen) {
5773   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
5774   llvm::Function *OutlinedFn =
5775       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
5776           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
5777 
5778   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
5779   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
5780   if (NT || TL) {
5781     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
5782     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
5783 
5784     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
5785                                                   S.getBeginLoc());
5786   }
5787 
5788   OMPTeamsScope Scope(CGF, S);
5789   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
5790   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
5791   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
5792                                            CapturedVars);
5793 }
5794 
5795 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
5796   // Emit teams region as a standalone region.
5797   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5798     Action.Enter(CGF);
5799     OMPPrivateScope PrivateScope(CGF);
5800     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5801     CGF.EmitOMPPrivateClause(S, PrivateScope);
5802     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5803     (void)PrivateScope.Privatize();
5804     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
5805     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5806   };
5807   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
5808   emitPostUpdateForReductionClause(*this, S,
5809                                    [](CodeGenFunction &) { return nullptr; });
5810 }
5811 
5812 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
5813                                   const OMPTargetTeamsDirective &S) {
5814   auto *CS = S.getCapturedStmt(OMPD_teams);
5815   Action.Enter(CGF);
5816   // Emit teams region as a standalone region.
5817   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
5818     Action.Enter(CGF);
5819     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5820     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5821     CGF.EmitOMPPrivateClause(S, PrivateScope);
5822     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5823     (void)PrivateScope.Privatize();
5824     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
5825       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
5826     CGF.EmitStmt(CS->getCapturedStmt());
5827     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5828   };
5829   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
5830   emitPostUpdateForReductionClause(CGF, S,
5831                                    [](CodeGenFunction &) { return nullptr; });
5832 }
5833 
5834 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
5835     CodeGenModule &CGM, StringRef ParentName,
5836     const OMPTargetTeamsDirective &S) {
5837   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5838     emitTargetTeamsRegion(CGF, Action, S);
5839   };
5840   llvm::Function *Fn;
5841   llvm::Constant *Addr;
5842   // Emit target region as a standalone region.
5843   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5844       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5845   assert(Fn && Addr && "Target device function emission failed.");
5846 }
5847 
5848 void CodeGenFunction::EmitOMPTargetTeamsDirective(
5849     const OMPTargetTeamsDirective &S) {
5850   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5851     emitTargetTeamsRegion(CGF, Action, S);
5852   };
5853   emitCommonOMPTargetDirective(*this, S, CodeGen);
5854 }
5855 
5856 static void
5857 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
5858                                 const OMPTargetTeamsDistributeDirective &S) {
5859   Action.Enter(CGF);
5860   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5861     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5862   };
5863 
5864   // Emit teams region as a standalone region.
5865   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5866                                             PrePostActionTy &Action) {
5867     Action.Enter(CGF);
5868     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5869     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5870     (void)PrivateScope.Privatize();
5871     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
5872                                                     CodeGenDistribute);
5873     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5874   };
5875   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
5876   emitPostUpdateForReductionClause(CGF, S,
5877                                    [](CodeGenFunction &) { return nullptr; });
5878 }
5879 
5880 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
5881     CodeGenModule &CGM, StringRef ParentName,
5882     const OMPTargetTeamsDistributeDirective &S) {
5883   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5884     emitTargetTeamsDistributeRegion(CGF, Action, S);
5885   };
5886   llvm::Function *Fn;
5887   llvm::Constant *Addr;
5888   // Emit target region as a standalone region.
5889   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5890       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5891   assert(Fn && Addr && "Target device function emission failed.");
5892 }
5893 
5894 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
5895     const OMPTargetTeamsDistributeDirective &S) {
5896   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5897     emitTargetTeamsDistributeRegion(CGF, Action, S);
5898   };
5899   emitCommonOMPTargetDirective(*this, S, CodeGen);
5900 }
5901 
5902 static void emitTargetTeamsDistributeSimdRegion(
5903     CodeGenFunction &CGF, PrePostActionTy &Action,
5904     const OMPTargetTeamsDistributeSimdDirective &S) {
5905   Action.Enter(CGF);
5906   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5907     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5908   };
5909 
5910   // Emit teams region as a standalone region.
5911   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5912                                             PrePostActionTy &Action) {
5913     Action.Enter(CGF);
5914     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5915     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5916     (void)PrivateScope.Privatize();
5917     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
5918                                                     CodeGenDistribute);
5919     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5920   };
5921   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
5922   emitPostUpdateForReductionClause(CGF, S,
5923                                    [](CodeGenFunction &) { return nullptr; });
5924 }
5925 
5926 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
5927     CodeGenModule &CGM, StringRef ParentName,
5928     const OMPTargetTeamsDistributeSimdDirective &S) {
5929   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5930     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
5931   };
5932   llvm::Function *Fn;
5933   llvm::Constant *Addr;
5934   // Emit target region as a standalone region.
5935   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5936       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5937   assert(Fn && Addr && "Target device function emission failed.");
5938 }
5939 
5940 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
5941     const OMPTargetTeamsDistributeSimdDirective &S) {
5942   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5943     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
5944   };
5945   emitCommonOMPTargetDirective(*this, S, CodeGen);
5946 }
5947 
5948 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
5949     const OMPTeamsDistributeDirective &S) {
5950 
5951   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5952     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5953   };
5954 
5955   // Emit teams region as a standalone region.
5956   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5957                                             PrePostActionTy &Action) {
5958     Action.Enter(CGF);
5959     OMPPrivateScope PrivateScope(CGF);
5960     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5961     (void)PrivateScope.Privatize();
5962     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
5963                                                     CodeGenDistribute);
5964     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5965   };
5966   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
5967   emitPostUpdateForReductionClause(*this, S,
5968                                    [](CodeGenFunction &) { return nullptr; });
5969 }
5970 
5971 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
5972     const OMPTeamsDistributeSimdDirective &S) {
5973   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5974     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5975   };
5976 
5977   // Emit teams region as a standalone region.
5978   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5979                                             PrePostActionTy &Action) {
5980     Action.Enter(CGF);
5981     OMPPrivateScope PrivateScope(CGF);
5982     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5983     (void)PrivateScope.Privatize();
5984     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
5985                                                     CodeGenDistribute);
5986     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5987   };
5988   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
5989   emitPostUpdateForReductionClause(*this, S,
5990                                    [](CodeGenFunction &) { return nullptr; });
5991 }
5992 
5993 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
5994     const OMPTeamsDistributeParallelForDirective &S) {
5995   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5996     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
5997                               S.getDistInc());
5998   };
5999 
6000   // Emit teams region as a standalone region.
6001   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6002                                             PrePostActionTy &Action) {
6003     Action.Enter(CGF);
6004     OMPPrivateScope PrivateScope(CGF);
6005     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6006     (void)PrivateScope.Privatize();
6007     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
6008                                                     CodeGenDistribute);
6009     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6010   };
6011   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
6012   emitPostUpdateForReductionClause(*this, S,
6013                                    [](CodeGenFunction &) { return nullptr; });
6014 }
6015 
6016 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
6017     const OMPTeamsDistributeParallelForSimdDirective &S) {
6018   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6019     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6020                               S.getDistInc());
6021   };
6022 
6023   // Emit teams region as a standalone region.
6024   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6025                                             PrePostActionTy &Action) {
6026     Action.Enter(CGF);
6027     OMPPrivateScope PrivateScope(CGF);
6028     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6029     (void)PrivateScope.Privatize();
6030     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6031         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6032     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6033   };
6034   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd,
6035                               CodeGen);
6036   emitPostUpdateForReductionClause(*this, S,
6037                                    [](CodeGenFunction &) { return nullptr; });
6038 }
6039 
6040 static void emitTargetTeamsDistributeParallelForRegion(
6041     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
6042     PrePostActionTy &Action) {
6043   Action.Enter(CGF);
6044   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6045     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6046                               S.getDistInc());
6047   };
6048 
6049   // Emit teams region as a standalone region.
6050   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6051                                                  PrePostActionTy &Action) {
6052     Action.Enter(CGF);
6053     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6054     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6055     (void)PrivateScope.Privatize();
6056     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6057         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6058     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6059   };
6060 
6061   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
6062                               CodeGenTeams);
6063   emitPostUpdateForReductionClause(CGF, S,
6064                                    [](CodeGenFunction &) { return nullptr; });
6065 }
6066 
6067 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
6068     CodeGenModule &CGM, StringRef ParentName,
6069     const OMPTargetTeamsDistributeParallelForDirective &S) {
6070   // Emit SPMD target teams distribute parallel for region as a standalone
6071   // region.
6072   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6073     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
6074   };
6075   llvm::Function *Fn;
6076   llvm::Constant *Addr;
6077   // Emit target region as a standalone region.
6078   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6079       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6080   assert(Fn && Addr && "Target device function emission failed.");
6081 }
6082 
6083 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
6084     const OMPTargetTeamsDistributeParallelForDirective &S) {
6085   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6086     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
6087   };
6088   emitCommonOMPTargetDirective(*this, S, CodeGen);
6089 }
6090 
6091 static void emitTargetTeamsDistributeParallelForSimdRegion(
6092     CodeGenFunction &CGF,
6093     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
6094     PrePostActionTy &Action) {
6095   Action.Enter(CGF);
6096   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6097     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6098                               S.getDistInc());
6099   };
6100 
6101   // Emit teams region as a standalone region.
6102   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6103                                                  PrePostActionTy &Action) {
6104     Action.Enter(CGF);
6105     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6106     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6107     (void)PrivateScope.Privatize();
6108     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6109         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6110     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6111   };
6112 
6113   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
6114                               CodeGenTeams);
6115   emitPostUpdateForReductionClause(CGF, S,
6116                                    [](CodeGenFunction &) { return nullptr; });
6117 }
6118 
6119 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
6120     CodeGenModule &CGM, StringRef ParentName,
6121     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
6122   // Emit SPMD target teams distribute parallel for simd region as a standalone
6123   // region.
6124   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6125     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
6126   };
6127   llvm::Function *Fn;
6128   llvm::Constant *Addr;
6129   // Emit target region as a standalone region.
6130   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6131       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6132   assert(Fn && Addr && "Target device function emission failed.");
6133 }
6134 
6135 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
6136     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
6137   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6138     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
6139   };
6140   emitCommonOMPTargetDirective(*this, S, CodeGen);
6141 }
6142 
6143 void CodeGenFunction::EmitOMPCancellationPointDirective(
6144     const OMPCancellationPointDirective &S) {
6145   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
6146                                                    S.getCancelRegion());
6147 }
6148 
6149 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
6150   const Expr *IfCond = nullptr;
6151   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
6152     if (C->getNameModifier() == OMPD_unknown ||
6153         C->getNameModifier() == OMPD_cancel) {
6154       IfCond = C->getCondition();
6155       break;
6156     }
6157   }
6158   if (CGM.getLangOpts().OpenMPIRBuilder) {
6159     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
6160     // TODO: This check is necessary as we only generate `omp parallel` through
6161     // the OpenMPIRBuilder for now.
6162     if (S.getCancelRegion() == OMPD_parallel) {
6163       llvm::Value *IfCondition = nullptr;
6164       if (IfCond)
6165         IfCondition = EmitScalarExpr(IfCond,
6166                                      /*IgnoreResultAssign=*/true);
6167       return Builder.restoreIP(
6168           OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion()));
6169     }
6170   }
6171 
6172   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
6173                                         S.getCancelRegion());
6174 }
6175 
6176 CodeGenFunction::JumpDest
6177 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
6178   if (Kind == OMPD_parallel || Kind == OMPD_task ||
6179       Kind == OMPD_target_parallel || Kind == OMPD_taskloop ||
6180       Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop)
6181     return ReturnBlock;
6182   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
6183          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
6184          Kind == OMPD_distribute_parallel_for ||
6185          Kind == OMPD_target_parallel_for ||
6186          Kind == OMPD_teams_distribute_parallel_for ||
6187          Kind == OMPD_target_teams_distribute_parallel_for);
6188   return OMPCancelStack.getExitBlock();
6189 }
6190 
6191 void CodeGenFunction::EmitOMPUseDevicePtrClause(
6192     const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
6193     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
6194   auto OrigVarIt = C.varlist_begin();
6195   auto InitIt = C.inits().begin();
6196   for (const Expr *PvtVarIt : C.private_copies()) {
6197     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
6198     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
6199     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
6200 
6201     // In order to identify the right initializer we need to match the
6202     // declaration used by the mapping logic. In some cases we may get
6203     // OMPCapturedExprDecl that refers to the original declaration.
6204     const ValueDecl *MatchingVD = OrigVD;
6205     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
6206       // OMPCapturedExprDecl are used to privative fields of the current
6207       // structure.
6208       const auto *ME = cast<MemberExpr>(OED->getInit());
6209       assert(isa<CXXThisExpr>(ME->getBase()) &&
6210              "Base should be the current struct!");
6211       MatchingVD = ME->getMemberDecl();
6212     }
6213 
6214     // If we don't have information about the current list item, move on to
6215     // the next one.
6216     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
6217     if (InitAddrIt == CaptureDeviceAddrMap.end())
6218       continue;
6219 
6220     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
6221                                                          InitAddrIt, InitVD,
6222                                                          PvtVD]() {
6223       // Initialize the temporary initialization variable with the address we
6224       // get from the runtime library. We have to cast the source address
6225       // because it is always a void *. References are materialized in the
6226       // privatization scope, so the initialization here disregards the fact
6227       // the original variable is a reference.
6228       QualType AddrQTy =
6229           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
6230       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
6231       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
6232       setAddrOfLocalVar(InitVD, InitAddr);
6233 
6234       // Emit private declaration, it will be initialized by the value we
6235       // declaration we just added to the local declarations map.
6236       EmitDecl(*PvtVD);
6237 
6238       // The initialization variables reached its purpose in the emission
6239       // of the previous declaration, so we don't need it anymore.
6240       LocalDeclMap.erase(InitVD);
6241 
6242       // Return the address of the private variable.
6243       return GetAddrOfLocalVar(PvtVD);
6244     });
6245     assert(IsRegistered && "firstprivate var already registered as private");
6246     // Silence the warning about unused variable.
6247     (void)IsRegistered;
6248 
6249     ++OrigVarIt;
6250     ++InitIt;
6251   }
6252 }
6253 
6254 static const VarDecl *getBaseDecl(const Expr *Ref) {
6255   const Expr *Base = Ref->IgnoreParenImpCasts();
6256   while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base))
6257     Base = OASE->getBase()->IgnoreParenImpCasts();
6258   while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base))
6259     Base = ASE->getBase()->IgnoreParenImpCasts();
6260   return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl());
6261 }
6262 
6263 void CodeGenFunction::EmitOMPUseDeviceAddrClause(
6264     const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
6265     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
6266   llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
6267   for (const Expr *Ref : C.varlists()) {
6268     const VarDecl *OrigVD = getBaseDecl(Ref);
6269     if (!Processed.insert(OrigVD).second)
6270       continue;
6271     // In order to identify the right initializer we need to match the
6272     // declaration used by the mapping logic. In some cases we may get
6273     // OMPCapturedExprDecl that refers to the original declaration.
6274     const ValueDecl *MatchingVD = OrigVD;
6275     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
6276       // OMPCapturedExprDecl are used to privative fields of the current
6277       // structure.
6278       const auto *ME = cast<MemberExpr>(OED->getInit());
6279       assert(isa<CXXThisExpr>(ME->getBase()) &&
6280              "Base should be the current struct!");
6281       MatchingVD = ME->getMemberDecl();
6282     }
6283 
6284     // If we don't have information about the current list item, move on to
6285     // the next one.
6286     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
6287     if (InitAddrIt == CaptureDeviceAddrMap.end())
6288       continue;
6289 
6290     Address PrivAddr = InitAddrIt->getSecond();
6291     // For declrefs and variable length array need to load the pointer for
6292     // correct mapping, since the pointer to the data was passed to the runtime.
6293     if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) ||
6294         MatchingVD->getType()->isArrayType())
6295       PrivAddr =
6296           EmitLoadOfPointer(PrivAddr, getContext()
6297                                           .getPointerType(OrigVD->getType())
6298                                           ->castAs<PointerType>());
6299     llvm::Type *RealTy =
6300         ConvertTypeForMem(OrigVD->getType().getNonReferenceType())
6301             ->getPointerTo();
6302     PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy);
6303 
6304     (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; });
6305   }
6306 }
6307 
6308 // Generate the instructions for '#pragma omp target data' directive.
6309 void CodeGenFunction::EmitOMPTargetDataDirective(
6310     const OMPTargetDataDirective &S) {
6311   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true,
6312                                        /*SeparateBeginEndCalls=*/true);
6313 
6314   // Create a pre/post action to signal the privatization of the device pointer.
6315   // This action can be replaced by the OpenMP runtime code generation to
6316   // deactivate privatization.
6317   bool PrivatizeDevicePointers = false;
6318   class DevicePointerPrivActionTy : public PrePostActionTy {
6319     bool &PrivatizeDevicePointers;
6320 
6321   public:
6322     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
6323         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
6324     void Enter(CodeGenFunction &CGF) override {
6325       PrivatizeDevicePointers = true;
6326     }
6327   };
6328   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
6329 
6330   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
6331                        CodeGenFunction &CGF, PrePostActionTy &Action) {
6332     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6333       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
6334     };
6335 
6336     // Codegen that selects whether to generate the privatization code or not.
6337     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
6338                           &InnermostCodeGen](CodeGenFunction &CGF,
6339                                              PrePostActionTy &Action) {
6340       RegionCodeGenTy RCG(InnermostCodeGen);
6341       PrivatizeDevicePointers = false;
6342 
6343       // Call the pre-action to change the status of PrivatizeDevicePointers if
6344       // needed.
6345       Action.Enter(CGF);
6346 
6347       if (PrivatizeDevicePointers) {
6348         OMPPrivateScope PrivateScope(CGF);
6349         // Emit all instances of the use_device_ptr clause.
6350         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
6351           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
6352                                         Info.CaptureDeviceAddrMap);
6353         for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>())
6354           CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope,
6355                                          Info.CaptureDeviceAddrMap);
6356         (void)PrivateScope.Privatize();
6357         RCG(CGF);
6358       } else {
6359         OMPLexicalScope Scope(CGF, S, OMPD_unknown);
6360         RCG(CGF);
6361       }
6362     };
6363 
6364     // Forward the provided action to the privatization codegen.
6365     RegionCodeGenTy PrivRCG(PrivCodeGen);
6366     PrivRCG.setAction(Action);
6367 
6368     // Notwithstanding the body of the region is emitted as inlined directive,
6369     // we don't use an inline scope as changes in the references inside the
6370     // region are expected to be visible outside, so we do not privative them.
6371     OMPLexicalScope Scope(CGF, S);
6372     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
6373                                                     PrivRCG);
6374   };
6375 
6376   RegionCodeGenTy RCG(CodeGen);
6377 
6378   // If we don't have target devices, don't bother emitting the data mapping
6379   // code.
6380   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
6381     RCG(*this);
6382     return;
6383   }
6384 
6385   // Check if we have any if clause associated with the directive.
6386   const Expr *IfCond = nullptr;
6387   if (const auto *C = S.getSingleClause<OMPIfClause>())
6388     IfCond = C->getCondition();
6389 
6390   // Check if we have any device clause associated with the directive.
6391   const Expr *Device = nullptr;
6392   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6393     Device = C->getDevice();
6394 
6395   // Set the action to signal privatization of device pointers.
6396   RCG.setAction(PrivAction);
6397 
6398   // Emit region code.
6399   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
6400                                              Info);
6401 }
6402 
6403 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
6404     const OMPTargetEnterDataDirective &S) {
6405   // If we don't have target devices, don't bother emitting the data mapping
6406   // code.
6407   if (CGM.getLangOpts().OMPTargetTriples.empty())
6408     return;
6409 
6410   // Check if we have any if clause associated with the directive.
6411   const Expr *IfCond = nullptr;
6412   if (const auto *C = S.getSingleClause<OMPIfClause>())
6413     IfCond = C->getCondition();
6414 
6415   // Check if we have any device clause associated with the directive.
6416   const Expr *Device = nullptr;
6417   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6418     Device = C->getDevice();
6419 
6420   OMPLexicalScope Scope(*this, S, OMPD_task);
6421   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6422 }
6423 
6424 void CodeGenFunction::EmitOMPTargetExitDataDirective(
6425     const OMPTargetExitDataDirective &S) {
6426   // If we don't have target devices, don't bother emitting the data mapping
6427   // code.
6428   if (CGM.getLangOpts().OMPTargetTriples.empty())
6429     return;
6430 
6431   // Check if we have any if clause associated with the directive.
6432   const Expr *IfCond = nullptr;
6433   if (const auto *C = S.getSingleClause<OMPIfClause>())
6434     IfCond = C->getCondition();
6435 
6436   // Check if we have any device clause associated with the directive.
6437   const Expr *Device = nullptr;
6438   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6439     Device = C->getDevice();
6440 
6441   OMPLexicalScope Scope(*this, S, OMPD_task);
6442   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6443 }
6444 
6445 static void emitTargetParallelRegion(CodeGenFunction &CGF,
6446                                      const OMPTargetParallelDirective &S,
6447                                      PrePostActionTy &Action) {
6448   // Get the captured statement associated with the 'parallel' region.
6449   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
6450   Action.Enter(CGF);
6451   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
6452     Action.Enter(CGF);
6453     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6454     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
6455     CGF.EmitOMPPrivateClause(S, PrivateScope);
6456     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6457     (void)PrivateScope.Privatize();
6458     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
6459       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
6460     // TODO: Add support for clauses.
6461     CGF.EmitStmt(CS->getCapturedStmt());
6462     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
6463   };
6464   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
6465                                  emitEmptyBoundParameters);
6466   emitPostUpdateForReductionClause(CGF, S,
6467                                    [](CodeGenFunction &) { return nullptr; });
6468 }
6469 
6470 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
6471     CodeGenModule &CGM, StringRef ParentName,
6472     const OMPTargetParallelDirective &S) {
6473   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6474     emitTargetParallelRegion(CGF, S, Action);
6475   };
6476   llvm::Function *Fn;
6477   llvm::Constant *Addr;
6478   // Emit target region as a standalone region.
6479   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6480       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6481   assert(Fn && Addr && "Target device function emission failed.");
6482 }
6483 
6484 void CodeGenFunction::EmitOMPTargetParallelDirective(
6485     const OMPTargetParallelDirective &S) {
6486   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6487     emitTargetParallelRegion(CGF, S, Action);
6488   };
6489   emitCommonOMPTargetDirective(*this, S, CodeGen);
6490 }
6491 
6492 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
6493                                         const OMPTargetParallelForDirective &S,
6494                                         PrePostActionTy &Action) {
6495   Action.Enter(CGF);
6496   // Emit directive as a combined directive that consists of two implicit
6497   // directives: 'parallel' with 'for' directive.
6498   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6499     Action.Enter(CGF);
6500     CodeGenFunction::OMPCancelStackRAII CancelRegion(
6501         CGF, OMPD_target_parallel_for, S.hasCancel());
6502     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
6503                                emitDispatchForLoopBounds);
6504   };
6505   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
6506                                  emitEmptyBoundParameters);
6507 }
6508 
6509 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
6510     CodeGenModule &CGM, StringRef ParentName,
6511     const OMPTargetParallelForDirective &S) {
6512   // Emit SPMD target parallel for region as a standalone region.
6513   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6514     emitTargetParallelForRegion(CGF, S, Action);
6515   };
6516   llvm::Function *Fn;
6517   llvm::Constant *Addr;
6518   // Emit target region as a standalone region.
6519   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6520       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6521   assert(Fn && Addr && "Target device function emission failed.");
6522 }
6523 
6524 void CodeGenFunction::EmitOMPTargetParallelForDirective(
6525     const OMPTargetParallelForDirective &S) {
6526   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6527     emitTargetParallelForRegion(CGF, S, Action);
6528   };
6529   emitCommonOMPTargetDirective(*this, S, CodeGen);
6530 }
6531 
6532 static void
6533 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
6534                                 const OMPTargetParallelForSimdDirective &S,
6535                                 PrePostActionTy &Action) {
6536   Action.Enter(CGF);
6537   // Emit directive as a combined directive that consists of two implicit
6538   // directives: 'parallel' with 'for' directive.
6539   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6540     Action.Enter(CGF);
6541     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
6542                                emitDispatchForLoopBounds);
6543   };
6544   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
6545                                  emitEmptyBoundParameters);
6546 }
6547 
6548 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
6549     CodeGenModule &CGM, StringRef ParentName,
6550     const OMPTargetParallelForSimdDirective &S) {
6551   // Emit SPMD target parallel for region as a standalone region.
6552   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6553     emitTargetParallelForSimdRegion(CGF, S, Action);
6554   };
6555   llvm::Function *Fn;
6556   llvm::Constant *Addr;
6557   // Emit target region as a standalone region.
6558   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6559       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6560   assert(Fn && Addr && "Target device function emission failed.");
6561 }
6562 
6563 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
6564     const OMPTargetParallelForSimdDirective &S) {
6565   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6566     emitTargetParallelForSimdRegion(CGF, S, Action);
6567   };
6568   emitCommonOMPTargetDirective(*this, S, CodeGen);
6569 }
6570 
6571 /// Emit a helper variable and return corresponding lvalue.
6572 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
6573                      const ImplicitParamDecl *PVD,
6574                      CodeGenFunction::OMPPrivateScope &Privates) {
6575   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
6576   Privates.addPrivate(VDecl,
6577                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
6578 }
6579 
6580 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
6581   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
6582   // Emit outlined function for task construct.
6583   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
6584   Address CapturedStruct = Address::invalid();
6585   {
6586     OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
6587     CapturedStruct = GenerateCapturedStmtArgument(*CS);
6588   }
6589   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
6590   const Expr *IfCond = nullptr;
6591   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
6592     if (C->getNameModifier() == OMPD_unknown ||
6593         C->getNameModifier() == OMPD_taskloop) {
6594       IfCond = C->getCondition();
6595       break;
6596     }
6597   }
6598 
6599   OMPTaskDataTy Data;
6600   // Check if taskloop must be emitted without taskgroup.
6601   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
6602   // TODO: Check if we should emit tied or untied task.
6603   Data.Tied = true;
6604   // Set scheduling for taskloop
6605   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
6606     // grainsize clause
6607     Data.Schedule.setInt(/*IntVal=*/false);
6608     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
6609   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
6610     // num_tasks clause
6611     Data.Schedule.setInt(/*IntVal=*/true);
6612     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
6613   }
6614 
6615   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
6616     // if (PreCond) {
6617     //   for (IV in 0..LastIteration) BODY;
6618     //   <Final counter/linear vars updates>;
6619     // }
6620     //
6621 
6622     // Emit: if (PreCond) - begin.
6623     // If the condition constant folds and can be elided, avoid emitting the
6624     // whole loop.
6625     bool CondConstant;
6626     llvm::BasicBlock *ContBlock = nullptr;
6627     OMPLoopScope PreInitScope(CGF, S);
6628     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
6629       if (!CondConstant)
6630         return;
6631     } else {
6632       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
6633       ContBlock = CGF.createBasicBlock("taskloop.if.end");
6634       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
6635                   CGF.getProfileCount(&S));
6636       CGF.EmitBlock(ThenBlock);
6637       CGF.incrementProfileCounter(&S);
6638     }
6639 
6640     (void)CGF.EmitOMPLinearClauseInit(S);
6641 
6642     OMPPrivateScope LoopScope(CGF);
6643     // Emit helper vars inits.
6644     enum { LowerBound = 5, UpperBound, Stride, LastIter };
6645     auto *I = CS->getCapturedDecl()->param_begin();
6646     auto *LBP = std::next(I, LowerBound);
6647     auto *UBP = std::next(I, UpperBound);
6648     auto *STP = std::next(I, Stride);
6649     auto *LIP = std::next(I, LastIter);
6650     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
6651              LoopScope);
6652     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
6653              LoopScope);
6654     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
6655     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
6656              LoopScope);
6657     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
6658     CGF.EmitOMPLinearClause(S, LoopScope);
6659     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
6660     (void)LoopScope.Privatize();
6661     // Emit the loop iteration variable.
6662     const Expr *IVExpr = S.getIterationVariable();
6663     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
6664     CGF.EmitVarDecl(*IVDecl);
6665     CGF.EmitIgnoredExpr(S.getInit());
6666 
6667     // Emit the iterations count variable.
6668     // If it is not a variable, Sema decided to calculate iterations count on
6669     // each iteration (e.g., it is foldable into a constant).
6670     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
6671       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
6672       // Emit calculation of the iterations count.
6673       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
6674     }
6675 
6676     {
6677       OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
6678       emitCommonSimdLoop(
6679           CGF, S,
6680           [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6681             if (isOpenMPSimdDirective(S.getDirectiveKind()))
6682               CGF.EmitOMPSimdInit(S);
6683           },
6684           [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
6685             CGF.EmitOMPInnerLoop(
6686                 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
6687                 [&S](CodeGenFunction &CGF) {
6688                   emitOMPLoopBodyWithStopPoint(CGF, S,
6689                                                CodeGenFunction::JumpDest());
6690                 },
6691                 [](CodeGenFunction &) {});
6692           });
6693     }
6694     // Emit: if (PreCond) - end.
6695     if (ContBlock) {
6696       CGF.EmitBranch(ContBlock);
6697       CGF.EmitBlock(ContBlock, true);
6698     }
6699     // Emit final copy of the lastprivate variables if IsLastIter != 0.
6700     if (HasLastprivateClause) {
6701       CGF.EmitOMPLastprivateClauseFinal(
6702           S, isOpenMPSimdDirective(S.getDirectiveKind()),
6703           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
6704               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
6705               (*LIP)->getType(), S.getBeginLoc())));
6706     }
6707     CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) {
6708       return CGF.Builder.CreateIsNotNull(
6709           CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
6710                                (*LIP)->getType(), S.getBeginLoc()));
6711     });
6712   };
6713   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
6714                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
6715                             const OMPTaskDataTy &Data) {
6716     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
6717                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
6718       OMPLoopScope PreInitScope(CGF, S);
6719       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
6720                                                   OutlinedFn, SharedsTy,
6721                                                   CapturedStruct, IfCond, Data);
6722     };
6723     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
6724                                                     CodeGen);
6725   };
6726   if (Data.Nogroup) {
6727     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
6728   } else {
6729     CGM.getOpenMPRuntime().emitTaskgroupRegion(
6730         *this,
6731         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
6732                                         PrePostActionTy &Action) {
6733           Action.Enter(CGF);
6734           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
6735                                         Data);
6736         },
6737         S.getBeginLoc());
6738   }
6739 }
6740 
6741 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
6742   auto LPCRegion =
6743       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6744   EmitOMPTaskLoopBasedDirective(S);
6745 }
6746 
6747 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
6748     const OMPTaskLoopSimdDirective &S) {
6749   auto LPCRegion =
6750       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6751   OMPLexicalScope Scope(*this, S);
6752   EmitOMPTaskLoopBasedDirective(S);
6753 }
6754 
6755 void CodeGenFunction::EmitOMPMasterTaskLoopDirective(
6756     const OMPMasterTaskLoopDirective &S) {
6757   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6758     Action.Enter(CGF);
6759     EmitOMPTaskLoopBasedDirective(S);
6760   };
6761   auto LPCRegion =
6762       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6763   OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false);
6764   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
6765 }
6766 
6767 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective(
6768     const OMPMasterTaskLoopSimdDirective &S) {
6769   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6770     Action.Enter(CGF);
6771     EmitOMPTaskLoopBasedDirective(S);
6772   };
6773   auto LPCRegion =
6774       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6775   OMPLexicalScope Scope(*this, S);
6776   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
6777 }
6778 
6779 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective(
6780     const OMPParallelMasterTaskLoopDirective &S) {
6781   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6782     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
6783                                   PrePostActionTy &Action) {
6784       Action.Enter(CGF);
6785       CGF.EmitOMPTaskLoopBasedDirective(S);
6786     };
6787     OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
6788     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
6789                                             S.getBeginLoc());
6790   };
6791   auto LPCRegion =
6792       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6793   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen,
6794                                  emitEmptyBoundParameters);
6795 }
6796 
6797 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective(
6798     const OMPParallelMasterTaskLoopSimdDirective &S) {
6799   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6800     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
6801                                   PrePostActionTy &Action) {
6802       Action.Enter(CGF);
6803       CGF.EmitOMPTaskLoopBasedDirective(S);
6804     };
6805     OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
6806     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
6807                                             S.getBeginLoc());
6808   };
6809   auto LPCRegion =
6810       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6811   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen,
6812                                  emitEmptyBoundParameters);
6813 }
6814 
6815 // Generate the instructions for '#pragma omp target update' directive.
6816 void CodeGenFunction::EmitOMPTargetUpdateDirective(
6817     const OMPTargetUpdateDirective &S) {
6818   // If we don't have target devices, don't bother emitting the data mapping
6819   // code.
6820   if (CGM.getLangOpts().OMPTargetTriples.empty())
6821     return;
6822 
6823   // Check if we have any if clause associated with the directive.
6824   const Expr *IfCond = nullptr;
6825   if (const auto *C = S.getSingleClause<OMPIfClause>())
6826     IfCond = C->getCondition();
6827 
6828   // Check if we have any device clause associated with the directive.
6829   const Expr *Device = nullptr;
6830   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6831     Device = C->getDevice();
6832 
6833   OMPLexicalScope Scope(*this, S, OMPD_task);
6834   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6835 }
6836 
6837 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
6838     const OMPExecutableDirective &D) {
6839   if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) {
6840     EmitOMPScanDirective(*SD);
6841     return;
6842   }
6843   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
6844     return;
6845   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
6846     OMPPrivateScope GlobalsScope(CGF);
6847     if (isOpenMPTaskingDirective(D.getDirectiveKind())) {
6848       // Capture global firstprivates to avoid crash.
6849       for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
6850         for (const Expr *Ref : C->varlists()) {
6851           const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
6852           if (!DRE)
6853             continue;
6854           const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6855           if (!VD || VD->hasLocalStorage())
6856             continue;
6857           if (!CGF.LocalDeclMap.count(VD)) {
6858             LValue GlobLVal = CGF.EmitLValue(Ref);
6859             GlobalsScope.addPrivate(
6860                 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
6861           }
6862         }
6863       }
6864     }
6865     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
6866       (void)GlobalsScope.Privatize();
6867       ParentLoopDirectiveForScanRegion ScanRegion(CGF, D);
6868       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
6869     } else {
6870       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
6871         for (const Expr *E : LD->counters()) {
6872           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
6873           if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) {
6874             LValue GlobLVal = CGF.EmitLValue(E);
6875             GlobalsScope.addPrivate(
6876                 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
6877           }
6878           if (isa<OMPCapturedExprDecl>(VD)) {
6879             // Emit only those that were not explicitly referenced in clauses.
6880             if (!CGF.LocalDeclMap.count(VD))
6881               CGF.EmitVarDecl(*VD);
6882           }
6883         }
6884         for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
6885           if (!C->getNumForLoops())
6886             continue;
6887           for (unsigned I = LD->getLoopsNumber(),
6888                         E = C->getLoopNumIterations().size();
6889                I < E; ++I) {
6890             if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
6891                     cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
6892               // Emit only those that were not explicitly referenced in clauses.
6893               if (!CGF.LocalDeclMap.count(VD))
6894                 CGF.EmitVarDecl(*VD);
6895             }
6896           }
6897         }
6898       }
6899       (void)GlobalsScope.Privatize();
6900       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
6901     }
6902   };
6903   if (D.getDirectiveKind() == OMPD_atomic ||
6904       D.getDirectiveKind() == OMPD_critical ||
6905       D.getDirectiveKind() == OMPD_section ||
6906       D.getDirectiveKind() == OMPD_master) {
6907     EmitStmt(D.getAssociatedStmt());
6908   } else {
6909     auto LPCRegion =
6910         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D);
6911     OMPSimdLexicalScope Scope(*this, D);
6912     CGM.getOpenMPRuntime().emitInlinedDirective(
6913         *this,
6914         isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
6915                                                     : D.getDirectiveKind(),
6916         CodeGen);
6917   }
6918   // Check for outer lastprivate conditional update.
6919   checkForLastprivateConditionalUpdate(*this, D);
6920 }
6921