1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/Frontend/OpenMP/OMPConstants.h" 28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/Support/AtomicOrdering.h" 32 using namespace clang; 33 using namespace CodeGen; 34 using namespace llvm::omp; 35 36 static const VarDecl *getBaseDecl(const Expr *Ref); 37 38 namespace { 39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 40 /// for captured expressions. 41 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 42 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 43 for (const auto *C : S.clauses()) { 44 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 45 if (const auto *PreInit = 46 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 47 for (const auto *I : PreInit->decls()) { 48 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 49 CGF.EmitVarDecl(cast<VarDecl>(*I)); 50 } else { 51 CodeGenFunction::AutoVarEmission Emission = 52 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 53 CGF.EmitAutoVarCleanups(Emission); 54 } 55 } 56 } 57 } 58 } 59 } 60 CodeGenFunction::OMPPrivateScope InlinedShareds; 61 62 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 63 return CGF.LambdaCaptureFields.lookup(VD) || 64 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 65 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 66 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 67 } 68 69 public: 70 OMPLexicalScope( 71 CodeGenFunction &CGF, const OMPExecutableDirective &S, 72 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 73 const bool EmitPreInitStmt = true) 74 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 75 InlinedShareds(CGF) { 76 if (EmitPreInitStmt) 77 emitPreInitStmt(CGF, S); 78 if (!CapturedRegion.hasValue()) 79 return; 80 assert(S.hasAssociatedStmt() && 81 "Expected associated statement for inlined directive."); 82 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 83 for (const auto &C : CS->captures()) { 84 if (C.capturesVariable() || C.capturesVariableByCopy()) { 85 auto *VD = C.getCapturedVar(); 86 assert(VD == VD->getCanonicalDecl() && 87 "Canonical decl must be captured."); 88 DeclRefExpr DRE( 89 CGF.getContext(), const_cast<VarDecl *>(VD), 90 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 91 InlinedShareds.isGlobalVarCaptured(VD)), 92 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 93 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 94 return CGF.EmitLValue(&DRE).getAddress(CGF); 95 }); 96 } 97 } 98 (void)InlinedShareds.Privatize(); 99 } 100 }; 101 102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 103 /// for captured expressions. 104 class OMPParallelScope final : public OMPLexicalScope { 105 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 106 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 107 return !(isOpenMPTargetExecutionDirective(Kind) || 108 isOpenMPLoopBoundSharingDirective(Kind)) && 109 isOpenMPParallelDirective(Kind); 110 } 111 112 public: 113 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Lexical scope for OpenMP teams construct, that handles correct codegen 119 /// for captured expressions. 120 class OMPTeamsScope final : public OMPLexicalScope { 121 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 122 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 123 return !isOpenMPTargetExecutionDirective(Kind) && 124 isOpenMPTeamsDirective(Kind); 125 } 126 127 public: 128 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 129 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 130 EmitPreInitStmt(S)) {} 131 }; 132 133 /// Private scope for OpenMP loop-based directives, that supports capturing 134 /// of used expression from loop statement. 135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 136 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 137 CodeGenFunction::OMPMapVars PreCondVars; 138 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 139 for (const auto *E : S.counters()) { 140 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 141 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 142 (void)PreCondVars.setVarAddr( 143 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 144 } 145 // Mark private vars as undefs. 146 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 147 for (const Expr *IRef : C->varlists()) { 148 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 149 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 150 (void)PreCondVars.setVarAddr( 151 CGF, OrigVD, 152 Address(llvm::UndefValue::get( 153 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 154 OrigVD->getType().getNonReferenceType()))), 155 CGF.getContext().getDeclAlign(OrigVD))); 156 } 157 } 158 } 159 (void)PreCondVars.apply(CGF); 160 // Emit init, __range and __end variables for C++ range loops. 161 const Stmt *Body = 162 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 163 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 164 Body = OMPLoopDirective::tryToFindNextInnerLoop( 165 Body, /*TryImperfectlyNestedLoops=*/true); 166 if (auto *For = dyn_cast<ForStmt>(Body)) { 167 Body = For->getBody(); 168 } else { 169 assert(isa<CXXForRangeStmt>(Body) && 170 "Expected canonical for loop or range-based for loop."); 171 auto *CXXFor = cast<CXXForRangeStmt>(Body); 172 if (const Stmt *Init = CXXFor->getInit()) 173 CGF.EmitStmt(Init); 174 CGF.EmitStmt(CXXFor->getRangeStmt()); 175 CGF.EmitStmt(CXXFor->getEndStmt()); 176 Body = CXXFor->getBody(); 177 } 178 } 179 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 180 for (const auto *I : PreInits->decls()) 181 CGF.EmitVarDecl(cast<VarDecl>(*I)); 182 } 183 PreCondVars.restore(CGF); 184 } 185 186 public: 187 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 188 : CodeGenFunction::RunCleanupsScope(CGF) { 189 emitPreInitStmt(CGF, S); 190 } 191 }; 192 193 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 194 CodeGenFunction::OMPPrivateScope InlinedShareds; 195 196 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 197 return CGF.LambdaCaptureFields.lookup(VD) || 198 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 199 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 200 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 201 } 202 203 public: 204 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 205 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 206 InlinedShareds(CGF) { 207 for (const auto *C : S.clauses()) { 208 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 209 if (const auto *PreInit = 210 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 211 for (const auto *I : PreInit->decls()) { 212 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 213 CGF.EmitVarDecl(cast<VarDecl>(*I)); 214 } else { 215 CodeGenFunction::AutoVarEmission Emission = 216 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 217 CGF.EmitAutoVarCleanups(Emission); 218 } 219 } 220 } 221 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 222 for (const Expr *E : UDP->varlists()) { 223 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 224 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 225 CGF.EmitVarDecl(*OED); 226 } 227 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 228 for (const Expr *E : UDP->varlists()) { 229 const Decl *D = getBaseDecl(E); 230 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 231 CGF.EmitVarDecl(*OED); 232 } 233 } 234 } 235 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 236 CGF.EmitOMPPrivateClause(S, InlinedShareds); 237 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 238 if (const Expr *E = TG->getReductionRef()) 239 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 240 } 241 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 242 while (CS) { 243 for (auto &C : CS->captures()) { 244 if (C.capturesVariable() || C.capturesVariableByCopy()) { 245 auto *VD = C.getCapturedVar(); 246 assert(VD == VD->getCanonicalDecl() && 247 "Canonical decl must be captured."); 248 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 249 isCapturedVar(CGF, VD) || 250 (CGF.CapturedStmtInfo && 251 InlinedShareds.isGlobalVarCaptured(VD)), 252 VD->getType().getNonReferenceType(), VK_LValue, 253 C.getLocation()); 254 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 255 return CGF.EmitLValue(&DRE).getAddress(CGF); 256 }); 257 } 258 } 259 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 260 } 261 (void)InlinedShareds.Privatize(); 262 } 263 }; 264 265 } // namespace 266 267 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 268 const OMPExecutableDirective &S, 269 const RegionCodeGenTy &CodeGen); 270 271 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 272 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 273 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 274 OrigVD = OrigVD->getCanonicalDecl(); 275 bool IsCaptured = 276 LambdaCaptureFields.lookup(OrigVD) || 277 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 278 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 279 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 280 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 281 return EmitLValue(&DRE); 282 } 283 } 284 return EmitLValue(E); 285 } 286 287 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 288 ASTContext &C = getContext(); 289 llvm::Value *Size = nullptr; 290 auto SizeInChars = C.getTypeSizeInChars(Ty); 291 if (SizeInChars.isZero()) { 292 // getTypeSizeInChars() returns 0 for a VLA. 293 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 294 VlaSizePair VlaSize = getVLASize(VAT); 295 Ty = VlaSize.Type; 296 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 297 : VlaSize.NumElts; 298 } 299 SizeInChars = C.getTypeSizeInChars(Ty); 300 if (SizeInChars.isZero()) 301 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 302 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 303 } 304 return CGM.getSize(SizeInChars); 305 } 306 307 void CodeGenFunction::GenerateOpenMPCapturedVars( 308 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 309 const RecordDecl *RD = S.getCapturedRecordDecl(); 310 auto CurField = RD->field_begin(); 311 auto CurCap = S.captures().begin(); 312 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 313 E = S.capture_init_end(); 314 I != E; ++I, ++CurField, ++CurCap) { 315 if (CurField->hasCapturedVLAType()) { 316 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 317 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 318 CapturedVars.push_back(Val); 319 } else if (CurCap->capturesThis()) { 320 CapturedVars.push_back(CXXThisValue); 321 } else if (CurCap->capturesVariableByCopy()) { 322 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 323 324 // If the field is not a pointer, we need to save the actual value 325 // and load it as a void pointer. 326 if (!CurField->getType()->isAnyPointerType()) { 327 ASTContext &Ctx = getContext(); 328 Address DstAddr = CreateMemTemp( 329 Ctx.getUIntPtrType(), 330 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 331 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 332 333 llvm::Value *SrcAddrVal = EmitScalarConversion( 334 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 335 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 336 LValue SrcLV = 337 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 338 339 // Store the value using the source type pointer. 340 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 341 342 // Load the value using the destination type pointer. 343 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 344 } 345 CapturedVars.push_back(CV); 346 } else { 347 assert(CurCap->capturesVariable() && "Expected capture by reference."); 348 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 349 } 350 } 351 } 352 353 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 354 QualType DstType, StringRef Name, 355 LValue AddrLV) { 356 ASTContext &Ctx = CGF.getContext(); 357 358 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 359 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 360 Ctx.getPointerType(DstType), Loc); 361 Address TmpAddr = 362 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 363 .getAddress(CGF); 364 return TmpAddr; 365 } 366 367 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 368 if (T->isLValueReferenceType()) 369 return C.getLValueReferenceType( 370 getCanonicalParamType(C, T.getNonReferenceType()), 371 /*SpelledAsLValue=*/false); 372 if (T->isPointerType()) 373 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 374 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 375 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 376 return getCanonicalParamType(C, VLA->getElementType()); 377 if (!A->isVariablyModifiedType()) 378 return C.getCanonicalType(T); 379 } 380 return C.getCanonicalParamType(T); 381 } 382 383 namespace { 384 /// Contains required data for proper outlined function codegen. 385 struct FunctionOptions { 386 /// Captured statement for which the function is generated. 387 const CapturedStmt *S = nullptr; 388 /// true if cast to/from UIntPtr is required for variables captured by 389 /// value. 390 const bool UIntPtrCastRequired = true; 391 /// true if only casted arguments must be registered as local args or VLA 392 /// sizes. 393 const bool RegisterCastedArgsOnly = false; 394 /// Name of the generated function. 395 const StringRef FunctionName; 396 /// Location of the non-debug version of the outlined function. 397 SourceLocation Loc; 398 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 399 bool RegisterCastedArgsOnly, StringRef FunctionName, 400 SourceLocation Loc) 401 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 402 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 403 FunctionName(FunctionName), Loc(Loc) {} 404 }; 405 } // namespace 406 407 static llvm::Function *emitOutlinedFunctionPrologue( 408 CodeGenFunction &CGF, FunctionArgList &Args, 409 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 410 &LocalAddrs, 411 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 412 &VLASizes, 413 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 414 const CapturedDecl *CD = FO.S->getCapturedDecl(); 415 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 416 assert(CD->hasBody() && "missing CapturedDecl body"); 417 418 CXXThisValue = nullptr; 419 // Build the argument list. 420 CodeGenModule &CGM = CGF.CGM; 421 ASTContext &Ctx = CGM.getContext(); 422 FunctionArgList TargetArgs; 423 Args.append(CD->param_begin(), 424 std::next(CD->param_begin(), CD->getContextParamPosition())); 425 TargetArgs.append( 426 CD->param_begin(), 427 std::next(CD->param_begin(), CD->getContextParamPosition())); 428 auto I = FO.S->captures().begin(); 429 FunctionDecl *DebugFunctionDecl = nullptr; 430 if (!FO.UIntPtrCastRequired) { 431 FunctionProtoType::ExtProtoInfo EPI; 432 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 433 DebugFunctionDecl = FunctionDecl::Create( 434 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 435 SourceLocation(), DeclarationName(), FunctionTy, 436 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 437 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 438 } 439 for (const FieldDecl *FD : RD->fields()) { 440 QualType ArgType = FD->getType(); 441 IdentifierInfo *II = nullptr; 442 VarDecl *CapVar = nullptr; 443 444 // If this is a capture by copy and the type is not a pointer, the outlined 445 // function argument type should be uintptr and the value properly casted to 446 // uintptr. This is necessary given that the runtime library is only able to 447 // deal with pointers. We can pass in the same way the VLA type sizes to the 448 // outlined function. 449 if (FO.UIntPtrCastRequired && 450 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 451 I->capturesVariableArrayType())) 452 ArgType = Ctx.getUIntPtrType(); 453 454 if (I->capturesVariable() || I->capturesVariableByCopy()) { 455 CapVar = I->getCapturedVar(); 456 II = CapVar->getIdentifier(); 457 } else if (I->capturesThis()) { 458 II = &Ctx.Idents.get("this"); 459 } else { 460 assert(I->capturesVariableArrayType()); 461 II = &Ctx.Idents.get("vla"); 462 } 463 if (ArgType->isVariablyModifiedType()) 464 ArgType = getCanonicalParamType(Ctx, ArgType); 465 VarDecl *Arg; 466 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 467 Arg = ParmVarDecl::Create( 468 Ctx, DebugFunctionDecl, 469 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 470 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 471 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 472 } else { 473 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 474 II, ArgType, ImplicitParamDecl::Other); 475 } 476 Args.emplace_back(Arg); 477 // Do not cast arguments if we emit function with non-original types. 478 TargetArgs.emplace_back( 479 FO.UIntPtrCastRequired 480 ? Arg 481 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 482 ++I; 483 } 484 Args.append( 485 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 486 CD->param_end()); 487 TargetArgs.append( 488 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 489 CD->param_end()); 490 491 // Create the function declaration. 492 const CGFunctionInfo &FuncInfo = 493 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 494 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 495 496 auto *F = 497 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 498 FO.FunctionName, &CGM.getModule()); 499 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 500 if (CD->isNothrow()) 501 F->setDoesNotThrow(); 502 F->setDoesNotRecurse(); 503 504 // Generate the function. 505 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 506 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 507 FO.UIntPtrCastRequired ? FO.Loc 508 : CD->getBody()->getBeginLoc()); 509 unsigned Cnt = CD->getContextParamPosition(); 510 I = FO.S->captures().begin(); 511 for (const FieldDecl *FD : RD->fields()) { 512 // Do not map arguments if we emit function with non-original types. 513 Address LocalAddr(Address::invalid()); 514 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 515 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 516 TargetArgs[Cnt]); 517 } else { 518 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 519 } 520 // If we are capturing a pointer by copy we don't need to do anything, just 521 // use the value that we get from the arguments. 522 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 523 const VarDecl *CurVD = I->getCapturedVar(); 524 if (!FO.RegisterCastedArgsOnly) 525 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 526 ++Cnt; 527 ++I; 528 continue; 529 } 530 531 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 532 AlignmentSource::Decl); 533 if (FD->hasCapturedVLAType()) { 534 if (FO.UIntPtrCastRequired) { 535 ArgLVal = CGF.MakeAddrLValue( 536 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 537 Args[Cnt]->getName(), ArgLVal), 538 FD->getType(), AlignmentSource::Decl); 539 } 540 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 541 const VariableArrayType *VAT = FD->getCapturedVLAType(); 542 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 543 } else if (I->capturesVariable()) { 544 const VarDecl *Var = I->getCapturedVar(); 545 QualType VarTy = Var->getType(); 546 Address ArgAddr = ArgLVal.getAddress(CGF); 547 if (ArgLVal.getType()->isLValueReferenceType()) { 548 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 549 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 550 assert(ArgLVal.getType()->isPointerType()); 551 ArgAddr = CGF.EmitLoadOfPointer( 552 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 553 } 554 if (!FO.RegisterCastedArgsOnly) { 555 LocalAddrs.insert( 556 {Args[Cnt], 557 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 558 } 559 } else if (I->capturesVariableByCopy()) { 560 assert(!FD->getType()->isAnyPointerType() && 561 "Not expecting a captured pointer."); 562 const VarDecl *Var = I->getCapturedVar(); 563 LocalAddrs.insert({Args[Cnt], 564 {Var, FO.UIntPtrCastRequired 565 ? castValueFromUintptr( 566 CGF, I->getLocation(), FD->getType(), 567 Args[Cnt]->getName(), ArgLVal) 568 : ArgLVal.getAddress(CGF)}}); 569 } else { 570 // If 'this' is captured, load it into CXXThisValue. 571 assert(I->capturesThis()); 572 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 573 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 574 } 575 ++Cnt; 576 ++I; 577 } 578 579 return F; 580 } 581 582 llvm::Function * 583 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 584 SourceLocation Loc) { 585 assert( 586 CapturedStmtInfo && 587 "CapturedStmtInfo should be set when generating the captured function"); 588 const CapturedDecl *CD = S.getCapturedDecl(); 589 // Build the argument list. 590 bool NeedWrapperFunction = 591 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 592 FunctionArgList Args; 593 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 594 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 595 SmallString<256> Buffer; 596 llvm::raw_svector_ostream Out(Buffer); 597 Out << CapturedStmtInfo->getHelperName(); 598 if (NeedWrapperFunction) 599 Out << "_debug__"; 600 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 601 Out.str(), Loc); 602 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 603 VLASizes, CXXThisValue, FO); 604 CodeGenFunction::OMPPrivateScope LocalScope(*this); 605 for (const auto &LocalAddrPair : LocalAddrs) { 606 if (LocalAddrPair.second.first) { 607 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 608 return LocalAddrPair.second.second; 609 }); 610 } 611 } 612 (void)LocalScope.Privatize(); 613 for (const auto &VLASizePair : VLASizes) 614 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 615 PGO.assignRegionCounters(GlobalDecl(CD), F); 616 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 617 (void)LocalScope.ForceCleanup(); 618 FinishFunction(CD->getBodyRBrace()); 619 if (!NeedWrapperFunction) 620 return F; 621 622 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 623 /*RegisterCastedArgsOnly=*/true, 624 CapturedStmtInfo->getHelperName(), Loc); 625 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 626 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 627 Args.clear(); 628 LocalAddrs.clear(); 629 VLASizes.clear(); 630 llvm::Function *WrapperF = 631 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 632 WrapperCGF.CXXThisValue, WrapperFO); 633 llvm::SmallVector<llvm::Value *, 4> CallArgs; 634 for (const auto *Arg : Args) { 635 llvm::Value *CallArg; 636 auto I = LocalAddrs.find(Arg); 637 if (I != LocalAddrs.end()) { 638 LValue LV = WrapperCGF.MakeAddrLValue( 639 I->second.second, 640 I->second.first ? I->second.first->getType() : Arg->getType(), 641 AlignmentSource::Decl); 642 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 643 } else { 644 auto EI = VLASizes.find(Arg); 645 if (EI != VLASizes.end()) { 646 CallArg = EI->second.second; 647 } else { 648 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 649 Arg->getType(), 650 AlignmentSource::Decl); 651 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 652 } 653 } 654 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 655 } 656 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 657 WrapperCGF.FinishFunction(); 658 return WrapperF; 659 } 660 661 //===----------------------------------------------------------------------===// 662 // OpenMP Directive Emission 663 //===----------------------------------------------------------------------===// 664 void CodeGenFunction::EmitOMPAggregateAssign( 665 Address DestAddr, Address SrcAddr, QualType OriginalType, 666 const llvm::function_ref<void(Address, Address)> CopyGen) { 667 // Perform element-by-element initialization. 668 QualType ElementTy; 669 670 // Drill down to the base element type on both arrays. 671 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 672 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 673 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 674 675 llvm::Value *SrcBegin = SrcAddr.getPointer(); 676 llvm::Value *DestBegin = DestAddr.getPointer(); 677 // Cast from pointer to array type to pointer to single element. 678 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 679 // The basic structure here is a while-do loop. 680 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 681 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 682 llvm::Value *IsEmpty = 683 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 684 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 685 686 // Enter the loop body, making that address the current address. 687 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 688 EmitBlock(BodyBB); 689 690 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 691 692 llvm::PHINode *SrcElementPHI = 693 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 694 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 695 Address SrcElementCurrent = 696 Address(SrcElementPHI, 697 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 698 699 llvm::PHINode *DestElementPHI = 700 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 701 DestElementPHI->addIncoming(DestBegin, EntryBB); 702 Address DestElementCurrent = 703 Address(DestElementPHI, 704 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 705 706 // Emit copy. 707 CopyGen(DestElementCurrent, SrcElementCurrent); 708 709 // Shift the address forward by one element. 710 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 711 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 712 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 713 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 714 // Check whether we've reached the end. 715 llvm::Value *Done = 716 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 717 Builder.CreateCondBr(Done, DoneBB, BodyBB); 718 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 719 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 720 721 // Done. 722 EmitBlock(DoneBB, /*IsFinished=*/true); 723 } 724 725 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 726 Address SrcAddr, const VarDecl *DestVD, 727 const VarDecl *SrcVD, const Expr *Copy) { 728 if (OriginalType->isArrayType()) { 729 const auto *BO = dyn_cast<BinaryOperator>(Copy); 730 if (BO && BO->getOpcode() == BO_Assign) { 731 // Perform simple memcpy for simple copying. 732 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 733 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 734 EmitAggregateAssign(Dest, Src, OriginalType); 735 } else { 736 // For arrays with complex element types perform element by element 737 // copying. 738 EmitOMPAggregateAssign( 739 DestAddr, SrcAddr, OriginalType, 740 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 741 // Working with the single array element, so have to remap 742 // destination and source variables to corresponding array 743 // elements. 744 CodeGenFunction::OMPPrivateScope Remap(*this); 745 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 746 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 747 (void)Remap.Privatize(); 748 EmitIgnoredExpr(Copy); 749 }); 750 } 751 } else { 752 // Remap pseudo source variable to private copy. 753 CodeGenFunction::OMPPrivateScope Remap(*this); 754 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 755 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 756 (void)Remap.Privatize(); 757 // Emit copying of the whole variable. 758 EmitIgnoredExpr(Copy); 759 } 760 } 761 762 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 763 OMPPrivateScope &PrivateScope) { 764 if (!HaveInsertPoint()) 765 return false; 766 bool DeviceConstTarget = 767 getLangOpts().OpenMPIsDevice && 768 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 769 bool FirstprivateIsLastprivate = false; 770 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 771 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 772 for (const auto *D : C->varlists()) 773 Lastprivates.try_emplace( 774 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 775 C->getKind()); 776 } 777 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 778 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 779 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 780 // Force emission of the firstprivate copy if the directive does not emit 781 // outlined function, like omp for, omp simd, omp distribute etc. 782 bool MustEmitFirstprivateCopy = 783 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 784 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 785 const auto *IRef = C->varlist_begin(); 786 const auto *InitsRef = C->inits().begin(); 787 for (const Expr *IInit : C->private_copies()) { 788 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 789 bool ThisFirstprivateIsLastprivate = 790 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 791 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 792 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 793 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 794 !FD->getType()->isReferenceType() && 795 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 796 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 797 ++IRef; 798 ++InitsRef; 799 continue; 800 } 801 // Do not emit copy for firstprivate constant variables in target regions, 802 // captured by reference. 803 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 804 FD && FD->getType()->isReferenceType() && 805 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 806 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 807 OrigVD); 808 ++IRef; 809 ++InitsRef; 810 continue; 811 } 812 FirstprivateIsLastprivate = 813 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 814 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 815 const auto *VDInit = 816 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 817 bool IsRegistered; 818 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 819 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 820 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 821 LValue OriginalLVal; 822 if (!FD) { 823 // Check if the firstprivate variable is just a constant value. 824 ConstantEmission CE = tryEmitAsConstant(&DRE); 825 if (CE && !CE.isReference()) { 826 // Constant value, no need to create a copy. 827 ++IRef; 828 ++InitsRef; 829 continue; 830 } 831 if (CE && CE.isReference()) { 832 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 833 } else { 834 assert(!CE && "Expected non-constant firstprivate."); 835 OriginalLVal = EmitLValue(&DRE); 836 } 837 } else { 838 OriginalLVal = EmitLValue(&DRE); 839 } 840 QualType Type = VD->getType(); 841 if (Type->isArrayType()) { 842 // Emit VarDecl with copy init for arrays. 843 // Get the address of the original variable captured in current 844 // captured region. 845 IsRegistered = PrivateScope.addPrivate( 846 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 847 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 848 const Expr *Init = VD->getInit(); 849 if (!isa<CXXConstructExpr>(Init) || 850 isTrivialInitializer(Init)) { 851 // Perform simple memcpy. 852 LValue Dest = 853 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 854 EmitAggregateAssign(Dest, OriginalLVal, Type); 855 } else { 856 EmitOMPAggregateAssign( 857 Emission.getAllocatedAddress(), 858 OriginalLVal.getAddress(*this), Type, 859 [this, VDInit, Init](Address DestElement, 860 Address SrcElement) { 861 // Clean up any temporaries needed by the 862 // initialization. 863 RunCleanupsScope InitScope(*this); 864 // Emit initialization for single element. 865 setAddrOfLocalVar(VDInit, SrcElement); 866 EmitAnyExprToMem(Init, DestElement, 867 Init->getType().getQualifiers(), 868 /*IsInitializer*/ false); 869 LocalDeclMap.erase(VDInit); 870 }); 871 } 872 EmitAutoVarCleanups(Emission); 873 return Emission.getAllocatedAddress(); 874 }); 875 } else { 876 Address OriginalAddr = OriginalLVal.getAddress(*this); 877 IsRegistered = 878 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 879 ThisFirstprivateIsLastprivate, 880 OrigVD, &Lastprivates, IRef]() { 881 // Emit private VarDecl with copy init. 882 // Remap temp VDInit variable to the address of the original 883 // variable (for proper handling of captured global variables). 884 setAddrOfLocalVar(VDInit, OriginalAddr); 885 EmitDecl(*VD); 886 LocalDeclMap.erase(VDInit); 887 if (ThisFirstprivateIsLastprivate && 888 Lastprivates[OrigVD->getCanonicalDecl()] == 889 OMPC_LASTPRIVATE_conditional) { 890 // Create/init special variable for lastprivate conditionals. 891 Address VDAddr = 892 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 893 *this, OrigVD); 894 llvm::Value *V = EmitLoadOfScalar( 895 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 896 AlignmentSource::Decl), 897 (*IRef)->getExprLoc()); 898 EmitStoreOfScalar(V, 899 MakeAddrLValue(VDAddr, (*IRef)->getType(), 900 AlignmentSource::Decl)); 901 LocalDeclMap.erase(VD); 902 setAddrOfLocalVar(VD, VDAddr); 903 return VDAddr; 904 } 905 return GetAddrOfLocalVar(VD); 906 }); 907 } 908 assert(IsRegistered && 909 "firstprivate var already registered as private"); 910 // Silence the warning about unused variable. 911 (void)IsRegistered; 912 } 913 ++IRef; 914 ++InitsRef; 915 } 916 } 917 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 918 } 919 920 void CodeGenFunction::EmitOMPPrivateClause( 921 const OMPExecutableDirective &D, 922 CodeGenFunction::OMPPrivateScope &PrivateScope) { 923 if (!HaveInsertPoint()) 924 return; 925 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 926 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 927 auto IRef = C->varlist_begin(); 928 for (const Expr *IInit : C->private_copies()) { 929 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 930 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 931 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 932 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 933 // Emit private VarDecl with copy init. 934 EmitDecl(*VD); 935 return GetAddrOfLocalVar(VD); 936 }); 937 assert(IsRegistered && "private var already registered as private"); 938 // Silence the warning about unused variable. 939 (void)IsRegistered; 940 } 941 ++IRef; 942 } 943 } 944 } 945 946 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 947 if (!HaveInsertPoint()) 948 return false; 949 // threadprivate_var1 = master_threadprivate_var1; 950 // operator=(threadprivate_var2, master_threadprivate_var2); 951 // ... 952 // __kmpc_barrier(&loc, global_tid); 953 llvm::DenseSet<const VarDecl *> CopiedVars; 954 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 955 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 956 auto IRef = C->varlist_begin(); 957 auto ISrcRef = C->source_exprs().begin(); 958 auto IDestRef = C->destination_exprs().begin(); 959 for (const Expr *AssignOp : C->assignment_ops()) { 960 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 961 QualType Type = VD->getType(); 962 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 963 // Get the address of the master variable. If we are emitting code with 964 // TLS support, the address is passed from the master as field in the 965 // captured declaration. 966 Address MasterAddr = Address::invalid(); 967 if (getLangOpts().OpenMPUseTLS && 968 getContext().getTargetInfo().isTLSSupported()) { 969 assert(CapturedStmtInfo->lookup(VD) && 970 "Copyin threadprivates should have been captured!"); 971 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 972 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 973 MasterAddr = EmitLValue(&DRE).getAddress(*this); 974 LocalDeclMap.erase(VD); 975 } else { 976 MasterAddr = 977 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 978 : CGM.GetAddrOfGlobal(VD), 979 getContext().getDeclAlign(VD)); 980 } 981 // Get the address of the threadprivate variable. 982 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 983 if (CopiedVars.size() == 1) { 984 // At first check if current thread is a master thread. If it is, no 985 // need to copy data. 986 CopyBegin = createBasicBlock("copyin.not.master"); 987 CopyEnd = createBasicBlock("copyin.not.master.end"); 988 Builder.CreateCondBr( 989 Builder.CreateICmpNE( 990 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 991 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 992 CGM.IntPtrTy)), 993 CopyBegin, CopyEnd); 994 EmitBlock(CopyBegin); 995 } 996 const auto *SrcVD = 997 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 998 const auto *DestVD = 999 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1000 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1001 } 1002 ++IRef; 1003 ++ISrcRef; 1004 ++IDestRef; 1005 } 1006 } 1007 if (CopyEnd) { 1008 // Exit out of copying procedure for non-master thread. 1009 EmitBlock(CopyEnd, /*IsFinished=*/true); 1010 return true; 1011 } 1012 return false; 1013 } 1014 1015 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1016 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1017 if (!HaveInsertPoint()) 1018 return false; 1019 bool HasAtLeastOneLastprivate = false; 1020 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1021 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1022 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1023 for (const Expr *C : LoopDirective->counters()) { 1024 SIMDLCVs.insert( 1025 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1026 } 1027 } 1028 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1029 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1030 HasAtLeastOneLastprivate = true; 1031 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1032 !getLangOpts().OpenMPSimd) 1033 break; 1034 const auto *IRef = C->varlist_begin(); 1035 const auto *IDestRef = C->destination_exprs().begin(); 1036 for (const Expr *IInit : C->private_copies()) { 1037 // Keep the address of the original variable for future update at the end 1038 // of the loop. 1039 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1040 // Taskloops do not require additional initialization, it is done in 1041 // runtime support library. 1042 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1043 const auto *DestVD = 1044 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1045 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1046 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1047 /*RefersToEnclosingVariableOrCapture=*/ 1048 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1049 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1050 return EmitLValue(&DRE).getAddress(*this); 1051 }); 1052 // Check if the variable is also a firstprivate: in this case IInit is 1053 // not generated. Initialization of this variable will happen in codegen 1054 // for 'firstprivate' clause. 1055 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1056 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1057 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1058 OrigVD]() { 1059 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1060 Address VDAddr = 1061 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1062 OrigVD); 1063 setAddrOfLocalVar(VD, VDAddr); 1064 return VDAddr; 1065 } 1066 // Emit private VarDecl with copy init. 1067 EmitDecl(*VD); 1068 return GetAddrOfLocalVar(VD); 1069 }); 1070 assert(IsRegistered && 1071 "lastprivate var already registered as private"); 1072 (void)IsRegistered; 1073 } 1074 } 1075 ++IRef; 1076 ++IDestRef; 1077 } 1078 } 1079 return HasAtLeastOneLastprivate; 1080 } 1081 1082 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1083 const OMPExecutableDirective &D, bool NoFinals, 1084 llvm::Value *IsLastIterCond) { 1085 if (!HaveInsertPoint()) 1086 return; 1087 // Emit following code: 1088 // if (<IsLastIterCond>) { 1089 // orig_var1 = private_orig_var1; 1090 // ... 1091 // orig_varn = private_orig_varn; 1092 // } 1093 llvm::BasicBlock *ThenBB = nullptr; 1094 llvm::BasicBlock *DoneBB = nullptr; 1095 if (IsLastIterCond) { 1096 // Emit implicit barrier if at least one lastprivate conditional is found 1097 // and this is not a simd mode. 1098 if (!getLangOpts().OpenMPSimd && 1099 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1100 [](const OMPLastprivateClause *C) { 1101 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1102 })) { 1103 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1104 OMPD_unknown, 1105 /*EmitChecks=*/false, 1106 /*ForceSimpleCall=*/true); 1107 } 1108 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1109 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1110 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1111 EmitBlock(ThenBB); 1112 } 1113 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1114 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1115 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1116 auto IC = LoopDirective->counters().begin(); 1117 for (const Expr *F : LoopDirective->finals()) { 1118 const auto *D = 1119 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1120 if (NoFinals) 1121 AlreadyEmittedVars.insert(D); 1122 else 1123 LoopCountersAndUpdates[D] = F; 1124 ++IC; 1125 } 1126 } 1127 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1128 auto IRef = C->varlist_begin(); 1129 auto ISrcRef = C->source_exprs().begin(); 1130 auto IDestRef = C->destination_exprs().begin(); 1131 for (const Expr *AssignOp : C->assignment_ops()) { 1132 const auto *PrivateVD = 1133 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1134 QualType Type = PrivateVD->getType(); 1135 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1136 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1137 // If lastprivate variable is a loop control variable for loop-based 1138 // directive, update its value before copyin back to original 1139 // variable. 1140 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1141 EmitIgnoredExpr(FinalExpr); 1142 const auto *SrcVD = 1143 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1144 const auto *DestVD = 1145 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1146 // Get the address of the private variable. 1147 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1148 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1149 PrivateAddr = 1150 Address(Builder.CreateLoad(PrivateAddr), 1151 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1152 // Store the last value to the private copy in the last iteration. 1153 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1154 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1155 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1156 (*IRef)->getExprLoc()); 1157 // Get the address of the original variable. 1158 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1159 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1160 } 1161 ++IRef; 1162 ++ISrcRef; 1163 ++IDestRef; 1164 } 1165 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1166 EmitIgnoredExpr(PostUpdate); 1167 } 1168 if (IsLastIterCond) 1169 EmitBlock(DoneBB, /*IsFinished=*/true); 1170 } 1171 1172 void CodeGenFunction::EmitOMPReductionClauseInit( 1173 const OMPExecutableDirective &D, 1174 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1175 if (!HaveInsertPoint()) 1176 return; 1177 SmallVector<const Expr *, 4> Shareds; 1178 SmallVector<const Expr *, 4> Privates; 1179 SmallVector<const Expr *, 4> ReductionOps; 1180 SmallVector<const Expr *, 4> LHSs; 1181 SmallVector<const Expr *, 4> RHSs; 1182 OMPTaskDataTy Data; 1183 SmallVector<const Expr *, 4> TaskLHSs; 1184 SmallVector<const Expr *, 4> TaskRHSs; 1185 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1186 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1187 continue; 1188 Shareds.append(C->varlist_begin(), C->varlist_end()); 1189 Privates.append(C->privates().begin(), C->privates().end()); 1190 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1191 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1192 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1193 if (C->getModifier() == OMPC_REDUCTION_task) { 1194 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1195 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1196 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1197 Data.ReductionOps.append(C->reduction_ops().begin(), 1198 C->reduction_ops().end()); 1199 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1200 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1201 } 1202 } 1203 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1204 unsigned Count = 0; 1205 auto *ILHS = LHSs.begin(); 1206 auto *IRHS = RHSs.begin(); 1207 auto *IPriv = Privates.begin(); 1208 for (const Expr *IRef : Shareds) { 1209 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1210 // Emit private VarDecl with reduction init. 1211 RedCG.emitSharedOrigLValue(*this, Count); 1212 RedCG.emitAggregateType(*this, Count); 1213 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1214 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1215 RedCG.getSharedLValue(Count), 1216 [&Emission](CodeGenFunction &CGF) { 1217 CGF.EmitAutoVarInit(Emission); 1218 return true; 1219 }); 1220 EmitAutoVarCleanups(Emission); 1221 Address BaseAddr = RedCG.adjustPrivateAddress( 1222 *this, Count, Emission.getAllocatedAddress()); 1223 bool IsRegistered = PrivateScope.addPrivate( 1224 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1225 assert(IsRegistered && "private var already registered as private"); 1226 // Silence the warning about unused variable. 1227 (void)IsRegistered; 1228 1229 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1230 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1231 QualType Type = PrivateVD->getType(); 1232 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1233 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1234 // Store the address of the original variable associated with the LHS 1235 // implicit variable. 1236 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1237 return RedCG.getSharedLValue(Count).getAddress(*this); 1238 }); 1239 PrivateScope.addPrivate( 1240 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1241 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1242 isa<ArraySubscriptExpr>(IRef)) { 1243 // Store the address of the original variable associated with the LHS 1244 // implicit variable. 1245 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1246 return RedCG.getSharedLValue(Count).getAddress(*this); 1247 }); 1248 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1249 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1250 ConvertTypeForMem(RHSVD->getType()), 1251 "rhs.begin"); 1252 }); 1253 } else { 1254 QualType Type = PrivateVD->getType(); 1255 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1256 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1257 // Store the address of the original variable associated with the LHS 1258 // implicit variable. 1259 if (IsArray) { 1260 OriginalAddr = Builder.CreateElementBitCast( 1261 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1262 } 1263 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1264 PrivateScope.addPrivate( 1265 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1266 return IsArray 1267 ? Builder.CreateElementBitCast( 1268 GetAddrOfLocalVar(PrivateVD), 1269 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1270 : GetAddrOfLocalVar(PrivateVD); 1271 }); 1272 } 1273 ++ILHS; 1274 ++IRHS; 1275 ++IPriv; 1276 ++Count; 1277 } 1278 if (!Data.ReductionVars.empty()) { 1279 Data.IsReductionWithTaskMod = true; 1280 Data.IsWorksharingReduction = 1281 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1282 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1283 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1284 const Expr *TaskRedRef = nullptr; 1285 switch (D.getDirectiveKind()) { 1286 case OMPD_parallel: 1287 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1288 break; 1289 case OMPD_for: 1290 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1291 break; 1292 case OMPD_sections: 1293 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1294 break; 1295 case OMPD_parallel_for: 1296 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1297 break; 1298 case OMPD_parallel_master: 1299 TaskRedRef = 1300 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1301 break; 1302 case OMPD_parallel_sections: 1303 TaskRedRef = 1304 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1305 break; 1306 case OMPD_target_parallel: 1307 TaskRedRef = 1308 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1309 break; 1310 case OMPD_target_parallel_for: 1311 TaskRedRef = 1312 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1313 break; 1314 case OMPD_distribute_parallel_for: 1315 TaskRedRef = 1316 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1317 break; 1318 case OMPD_teams_distribute_parallel_for: 1319 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1320 .getTaskReductionRefExpr(); 1321 break; 1322 case OMPD_target_teams_distribute_parallel_for: 1323 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1324 .getTaskReductionRefExpr(); 1325 break; 1326 case OMPD_simd: 1327 case OMPD_for_simd: 1328 case OMPD_section: 1329 case OMPD_single: 1330 case OMPD_master: 1331 case OMPD_critical: 1332 case OMPD_parallel_for_simd: 1333 case OMPD_task: 1334 case OMPD_taskyield: 1335 case OMPD_barrier: 1336 case OMPD_taskwait: 1337 case OMPD_taskgroup: 1338 case OMPD_flush: 1339 case OMPD_depobj: 1340 case OMPD_scan: 1341 case OMPD_ordered: 1342 case OMPD_atomic: 1343 case OMPD_teams: 1344 case OMPD_target: 1345 case OMPD_cancellation_point: 1346 case OMPD_cancel: 1347 case OMPD_target_data: 1348 case OMPD_target_enter_data: 1349 case OMPD_target_exit_data: 1350 case OMPD_taskloop: 1351 case OMPD_taskloop_simd: 1352 case OMPD_master_taskloop: 1353 case OMPD_master_taskloop_simd: 1354 case OMPD_parallel_master_taskloop: 1355 case OMPD_parallel_master_taskloop_simd: 1356 case OMPD_distribute: 1357 case OMPD_target_update: 1358 case OMPD_distribute_parallel_for_simd: 1359 case OMPD_distribute_simd: 1360 case OMPD_target_parallel_for_simd: 1361 case OMPD_target_simd: 1362 case OMPD_teams_distribute: 1363 case OMPD_teams_distribute_simd: 1364 case OMPD_teams_distribute_parallel_for_simd: 1365 case OMPD_target_teams: 1366 case OMPD_target_teams_distribute: 1367 case OMPD_target_teams_distribute_parallel_for_simd: 1368 case OMPD_target_teams_distribute_simd: 1369 case OMPD_declare_target: 1370 case OMPD_end_declare_target: 1371 case OMPD_threadprivate: 1372 case OMPD_allocate: 1373 case OMPD_declare_reduction: 1374 case OMPD_declare_mapper: 1375 case OMPD_declare_simd: 1376 case OMPD_requires: 1377 case OMPD_declare_variant: 1378 case OMPD_begin_declare_variant: 1379 case OMPD_end_declare_variant: 1380 case OMPD_unknown: 1381 default: 1382 llvm_unreachable("Enexpected directive with task reductions."); 1383 } 1384 1385 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1386 EmitVarDecl(*VD); 1387 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1388 /*Volatile=*/false, TaskRedRef->getType()); 1389 } 1390 } 1391 1392 void CodeGenFunction::EmitOMPReductionClauseFinal( 1393 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1394 if (!HaveInsertPoint()) 1395 return; 1396 llvm::SmallVector<const Expr *, 8> Privates; 1397 llvm::SmallVector<const Expr *, 8> LHSExprs; 1398 llvm::SmallVector<const Expr *, 8> RHSExprs; 1399 llvm::SmallVector<const Expr *, 8> ReductionOps; 1400 bool HasAtLeastOneReduction = false; 1401 bool IsReductionWithTaskMod = false; 1402 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1403 // Do not emit for inscan reductions. 1404 if (C->getModifier() == OMPC_REDUCTION_inscan) 1405 continue; 1406 HasAtLeastOneReduction = true; 1407 Privates.append(C->privates().begin(), C->privates().end()); 1408 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1409 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1410 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1411 IsReductionWithTaskMod = 1412 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1413 } 1414 if (HasAtLeastOneReduction) { 1415 if (IsReductionWithTaskMod) { 1416 CGM.getOpenMPRuntime().emitTaskReductionFini( 1417 *this, D.getBeginLoc(), 1418 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1419 } 1420 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1421 isOpenMPParallelDirective(D.getDirectiveKind()) || 1422 ReductionKind == OMPD_simd; 1423 bool SimpleReduction = ReductionKind == OMPD_simd; 1424 // Emit nowait reduction if nowait clause is present or directive is a 1425 // parallel directive (it always has implicit barrier). 1426 CGM.getOpenMPRuntime().emitReduction( 1427 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1428 {WithNowait, SimpleReduction, ReductionKind}); 1429 } 1430 } 1431 1432 static void emitPostUpdateForReductionClause( 1433 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1434 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1435 if (!CGF.HaveInsertPoint()) 1436 return; 1437 llvm::BasicBlock *DoneBB = nullptr; 1438 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1439 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1440 if (!DoneBB) { 1441 if (llvm::Value *Cond = CondGen(CGF)) { 1442 // If the first post-update expression is found, emit conditional 1443 // block if it was requested. 1444 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1445 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1446 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1447 CGF.EmitBlock(ThenBB); 1448 } 1449 } 1450 CGF.EmitIgnoredExpr(PostUpdate); 1451 } 1452 } 1453 if (DoneBB) 1454 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1455 } 1456 1457 namespace { 1458 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1459 /// parallel function. This is necessary for combined constructs such as 1460 /// 'distribute parallel for' 1461 typedef llvm::function_ref<void(CodeGenFunction &, 1462 const OMPExecutableDirective &, 1463 llvm::SmallVectorImpl<llvm::Value *> &)> 1464 CodeGenBoundParametersTy; 1465 } // anonymous namespace 1466 1467 static void 1468 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1469 const OMPExecutableDirective &S) { 1470 if (CGF.getLangOpts().OpenMP < 50) 1471 return; 1472 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1473 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1474 for (const Expr *Ref : C->varlists()) { 1475 if (!Ref->getType()->isScalarType()) 1476 continue; 1477 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1478 if (!DRE) 1479 continue; 1480 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1481 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1482 } 1483 } 1484 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1485 for (const Expr *Ref : C->varlists()) { 1486 if (!Ref->getType()->isScalarType()) 1487 continue; 1488 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1489 if (!DRE) 1490 continue; 1491 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1492 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1493 } 1494 } 1495 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1496 for (const Expr *Ref : C->varlists()) { 1497 if (!Ref->getType()->isScalarType()) 1498 continue; 1499 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1500 if (!DRE) 1501 continue; 1502 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1503 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1504 } 1505 } 1506 // Privates should ne analyzed since they are not captured at all. 1507 // Task reductions may be skipped - tasks are ignored. 1508 // Firstprivates do not return value but may be passed by reference - no need 1509 // to check for updated lastprivate conditional. 1510 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1511 for (const Expr *Ref : C->varlists()) { 1512 if (!Ref->getType()->isScalarType()) 1513 continue; 1514 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1515 if (!DRE) 1516 continue; 1517 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1518 } 1519 } 1520 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1521 CGF, S, PrivateDecls); 1522 } 1523 1524 static void emitCommonOMPParallelDirective( 1525 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1526 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1527 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1528 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1529 llvm::Function *OutlinedFn = 1530 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1531 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1532 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1533 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1534 llvm::Value *NumThreads = 1535 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1536 /*IgnoreResultAssign=*/true); 1537 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1538 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1539 } 1540 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1541 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1542 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1543 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1544 } 1545 const Expr *IfCond = nullptr; 1546 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1547 if (C->getNameModifier() == OMPD_unknown || 1548 C->getNameModifier() == OMPD_parallel) { 1549 IfCond = C->getCondition(); 1550 break; 1551 } 1552 } 1553 1554 OMPParallelScope Scope(CGF, S); 1555 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1556 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1557 // lower and upper bounds with the pragma 'for' chunking mechanism. 1558 // The following lambda takes care of appending the lower and upper bound 1559 // parameters when necessary 1560 CodeGenBoundParameters(CGF, S, CapturedVars); 1561 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1562 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1563 CapturedVars, IfCond); 1564 } 1565 1566 static bool isAllocatableDecl(const VarDecl *VD) { 1567 const VarDecl *CVD = VD->getCanonicalDecl(); 1568 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1569 return false; 1570 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1571 // Use the default allocation. 1572 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1573 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1574 !AA->getAllocator()); 1575 } 1576 1577 static void emitEmptyBoundParameters(CodeGenFunction &, 1578 const OMPExecutableDirective &, 1579 llvm::SmallVectorImpl<llvm::Value *> &) {} 1580 1581 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1582 CodeGenFunction &CGF, const VarDecl *VD) { 1583 CodeGenModule &CGM = CGF.CGM; 1584 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1585 1586 if (!VD) 1587 return Address::invalid(); 1588 const VarDecl *CVD = VD->getCanonicalDecl(); 1589 if (!isAllocatableDecl(CVD)) 1590 return Address::invalid(); 1591 llvm::Value *Size; 1592 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1593 if (CVD->getType()->isVariablyModifiedType()) { 1594 Size = CGF.getTypeSize(CVD->getType()); 1595 // Align the size: ((size + align - 1) / align) * align 1596 Size = CGF.Builder.CreateNUWAdd( 1597 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1598 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1599 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1600 } else { 1601 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1602 Size = CGM.getSize(Sz.alignTo(Align)); 1603 } 1604 1605 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1606 assert(AA->getAllocator() && 1607 "Expected allocator expression for non-default allocator."); 1608 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1609 // According to the standard, the original allocator type is a enum (integer). 1610 // Convert to pointer type, if required. 1611 if (Allocator->getType()->isIntegerTy()) 1612 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1613 else if (Allocator->getType()->isPointerTy()) 1614 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1615 CGM.VoidPtrTy); 1616 1617 llvm::Value *Addr = OMPBuilder.CreateOMPAlloc( 1618 CGF.Builder, Size, Allocator, 1619 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1620 llvm::CallInst *FreeCI = 1621 OMPBuilder.CreateOMPFree(CGF.Builder, Addr, Allocator); 1622 1623 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1624 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1625 Addr, 1626 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1627 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1628 return Address(Addr, Align); 1629 } 1630 1631 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1632 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1633 SourceLocation Loc) { 1634 CodeGenModule &CGM = CGF.CGM; 1635 if (CGM.getLangOpts().OpenMPUseTLS && 1636 CGM.getContext().getTargetInfo().isTLSSupported()) 1637 return VDAddr; 1638 1639 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1640 1641 llvm::Type *VarTy = VDAddr.getElementType(); 1642 llvm::Value *Data = 1643 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1644 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1645 std::string Suffix = getNameWithSeparators({"cache", ""}); 1646 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1647 1648 llvm::CallInst *ThreadPrivateCacheCall = 1649 OMPBuilder.CreateCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1650 1651 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1652 } 1653 1654 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1655 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1656 SmallString<128> Buffer; 1657 llvm::raw_svector_ostream OS(Buffer); 1658 StringRef Sep = FirstSeparator; 1659 for (StringRef Part : Parts) { 1660 OS << Sep << Part; 1661 Sep = Separator; 1662 } 1663 return OS.str().str(); 1664 } 1665 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1666 if (CGM.getLangOpts().OpenMPIRBuilder) { 1667 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1668 // Check if we have any if clause associated with the directive. 1669 llvm::Value *IfCond = nullptr; 1670 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1671 IfCond = EmitScalarExpr(C->getCondition(), 1672 /*IgnoreResultAssign=*/true); 1673 1674 llvm::Value *NumThreads = nullptr; 1675 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1676 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1677 /*IgnoreResultAssign=*/true); 1678 1679 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1680 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1681 ProcBind = ProcBindClause->getProcBindKind(); 1682 1683 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1684 1685 // The cleanup callback that finalizes all variabels at the given location, 1686 // thus calls destructors etc. 1687 auto FiniCB = [this](InsertPointTy IP) { 1688 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1689 }; 1690 1691 // Privatization callback that performs appropriate action for 1692 // shared/private/firstprivate/lastprivate/copyin/... variables. 1693 // 1694 // TODO: This defaults to shared right now. 1695 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1696 llvm::Value &Val, llvm::Value *&ReplVal) { 1697 // The next line is appropriate only for variables (Val) with the 1698 // data-sharing attribute "shared". 1699 ReplVal = &Val; 1700 1701 return CodeGenIP; 1702 }; 1703 1704 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1705 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1706 1707 auto BodyGenCB = [ParallelRegionBodyStmt, 1708 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1709 llvm::BasicBlock &ContinuationBB) { 1710 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1711 ContinuationBB); 1712 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1713 CodeGenIP, ContinuationBB); 1714 }; 1715 1716 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1717 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1718 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1719 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1720 Builder.restoreIP( 1721 OMPBuilder.CreateParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1722 IfCond, NumThreads, ProcBind, S.hasCancel())); 1723 return; 1724 } 1725 1726 // Emit parallel region as a standalone region. 1727 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1728 Action.Enter(CGF); 1729 OMPPrivateScope PrivateScope(CGF); 1730 bool Copyins = CGF.EmitOMPCopyinClause(S); 1731 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1732 if (Copyins) { 1733 // Emit implicit barrier to synchronize threads and avoid data races on 1734 // propagation master's thread values of threadprivate variables to local 1735 // instances of that variables of all other implicit threads. 1736 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1737 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1738 /*ForceSimpleCall=*/true); 1739 } 1740 CGF.EmitOMPPrivateClause(S, PrivateScope); 1741 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1742 (void)PrivateScope.Privatize(); 1743 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1744 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1745 }; 1746 { 1747 auto LPCRegion = 1748 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1749 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1750 emitEmptyBoundParameters); 1751 emitPostUpdateForReductionClause(*this, S, 1752 [](CodeGenFunction &) { return nullptr; }); 1753 } 1754 // Check for outer lastprivate conditional update. 1755 checkForLastprivateConditionalUpdate(*this, S); 1756 } 1757 1758 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1759 int MaxLevel, int Level = 0) { 1760 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1761 const Stmt *SimplifiedS = S->IgnoreContainers(); 1762 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1763 PrettyStackTraceLoc CrashInfo( 1764 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1765 "LLVM IR generation of compound statement ('{}')"); 1766 1767 // Keep track of the current cleanup stack depth, including debug scopes. 1768 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1769 for (const Stmt *CurStmt : CS->body()) 1770 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1771 return; 1772 } 1773 if (SimplifiedS == NextLoop) { 1774 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1775 S = For->getBody(); 1776 } else { 1777 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1778 "Expected canonical for loop or range-based for loop."); 1779 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1780 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1781 S = CXXFor->getBody(); 1782 } 1783 if (Level + 1 < MaxLevel) { 1784 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1785 S, /*TryImperfectlyNestedLoops=*/true); 1786 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1787 return; 1788 } 1789 } 1790 CGF.EmitStmt(S); 1791 } 1792 1793 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1794 JumpDest LoopExit) { 1795 RunCleanupsScope BodyScope(*this); 1796 // Update counters values on current iteration. 1797 for (const Expr *UE : D.updates()) 1798 EmitIgnoredExpr(UE); 1799 // Update the linear variables. 1800 // In distribute directives only loop counters may be marked as linear, no 1801 // need to generate the code for them. 1802 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1803 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1804 for (const Expr *UE : C->updates()) 1805 EmitIgnoredExpr(UE); 1806 } 1807 } 1808 1809 // On a continue in the body, jump to the end. 1810 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1811 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1812 for (const Expr *E : D.finals_conditions()) { 1813 if (!E) 1814 continue; 1815 // Check that loop counter in non-rectangular nest fits into the iteration 1816 // space. 1817 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1818 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1819 getProfileCount(D.getBody())); 1820 EmitBlock(NextBB); 1821 } 1822 1823 OMPPrivateScope InscanScope(*this); 1824 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1825 bool IsInscanRegion = InscanScope.Privatize(); 1826 if (IsInscanRegion) { 1827 // Need to remember the block before and after scan directive 1828 // to dispatch them correctly depending on the clause used in 1829 // this directive, inclusive or exclusive. For inclusive scan the natural 1830 // order of the blocks is used, for exclusive clause the blocks must be 1831 // executed in reverse order. 1832 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1833 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1834 // No need to allocate inscan exit block, in simd mode it is selected in the 1835 // codegen for the scan directive. 1836 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1837 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1838 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1839 EmitBranch(OMPScanDispatch); 1840 EmitBlock(OMPBeforeScanBlock); 1841 } 1842 1843 // Emit loop variables for C++ range loops. 1844 const Stmt *Body = 1845 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1846 // Emit loop body. 1847 emitBody(*this, Body, 1848 OMPLoopDirective::tryToFindNextInnerLoop( 1849 Body, /*TryImperfectlyNestedLoops=*/true), 1850 D.getCollapsedNumber()); 1851 1852 // Jump to the dispatcher at the end of the loop body. 1853 if (IsInscanRegion) 1854 EmitBranch(OMPScanExitBlock); 1855 1856 // The end (updates/cleanups). 1857 EmitBlock(Continue.getBlock()); 1858 BreakContinueStack.pop_back(); 1859 } 1860 1861 void CodeGenFunction::EmitOMPInnerLoop( 1862 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 1863 const Expr *IncExpr, 1864 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1865 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1866 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1867 1868 // Start the loop with a block that tests the condition. 1869 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1870 EmitBlock(CondBlock); 1871 const SourceRange R = S.getSourceRange(); 1872 1873 // If attributes are attached, push to the basic block with them. 1874 const auto &OMPED = cast<OMPExecutableDirective>(S); 1875 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 1876 const Stmt *SS = ICS->getCapturedStmt(); 1877 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 1878 if (AS) 1879 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 1880 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 1881 SourceLocToDebugLoc(R.getEnd())); 1882 else 1883 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1884 SourceLocToDebugLoc(R.getEnd())); 1885 1886 // If there are any cleanups between here and the loop-exit scope, 1887 // create a block to stage a loop exit along. 1888 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1889 if (RequiresCleanup) 1890 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1891 1892 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1893 1894 // Emit condition. 1895 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1896 if (ExitBlock != LoopExit.getBlock()) { 1897 EmitBlock(ExitBlock); 1898 EmitBranchThroughCleanup(LoopExit); 1899 } 1900 1901 EmitBlock(LoopBody); 1902 incrementProfileCounter(&S); 1903 1904 // Create a block for the increment. 1905 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1906 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1907 1908 BodyGen(*this); 1909 1910 // Emit "IV = IV + 1" and a back-edge to the condition block. 1911 EmitBlock(Continue.getBlock()); 1912 EmitIgnoredExpr(IncExpr); 1913 PostIncGen(*this); 1914 BreakContinueStack.pop_back(); 1915 EmitBranch(CondBlock); 1916 LoopStack.pop(); 1917 // Emit the fall-through block. 1918 EmitBlock(LoopExit.getBlock()); 1919 } 1920 1921 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1922 if (!HaveInsertPoint()) 1923 return false; 1924 // Emit inits for the linear variables. 1925 bool HasLinears = false; 1926 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1927 for (const Expr *Init : C->inits()) { 1928 HasLinears = true; 1929 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1930 if (const auto *Ref = 1931 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1932 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1933 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1934 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1935 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1936 VD->getInit()->getType(), VK_LValue, 1937 VD->getInit()->getExprLoc()); 1938 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1939 VD->getType()), 1940 /*capturedByInit=*/false); 1941 EmitAutoVarCleanups(Emission); 1942 } else { 1943 EmitVarDecl(*VD); 1944 } 1945 } 1946 // Emit the linear steps for the linear clauses. 1947 // If a step is not constant, it is pre-calculated before the loop. 1948 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1949 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1950 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1951 // Emit calculation of the linear step. 1952 EmitIgnoredExpr(CS); 1953 } 1954 } 1955 return HasLinears; 1956 } 1957 1958 void CodeGenFunction::EmitOMPLinearClauseFinal( 1959 const OMPLoopDirective &D, 1960 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1961 if (!HaveInsertPoint()) 1962 return; 1963 llvm::BasicBlock *DoneBB = nullptr; 1964 // Emit the final values of the linear variables. 1965 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1966 auto IC = C->varlist_begin(); 1967 for (const Expr *F : C->finals()) { 1968 if (!DoneBB) { 1969 if (llvm::Value *Cond = CondGen(*this)) { 1970 // If the first post-update expression is found, emit conditional 1971 // block if it was requested. 1972 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1973 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1974 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1975 EmitBlock(ThenBB); 1976 } 1977 } 1978 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1979 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1980 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1981 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1982 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1983 CodeGenFunction::OMPPrivateScope VarScope(*this); 1984 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1985 (void)VarScope.Privatize(); 1986 EmitIgnoredExpr(F); 1987 ++IC; 1988 } 1989 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1990 EmitIgnoredExpr(PostUpdate); 1991 } 1992 if (DoneBB) 1993 EmitBlock(DoneBB, /*IsFinished=*/true); 1994 } 1995 1996 static void emitAlignedClause(CodeGenFunction &CGF, 1997 const OMPExecutableDirective &D) { 1998 if (!CGF.HaveInsertPoint()) 1999 return; 2000 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2001 llvm::APInt ClauseAlignment(64, 0); 2002 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2003 auto *AlignmentCI = 2004 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2005 ClauseAlignment = AlignmentCI->getValue(); 2006 } 2007 for (const Expr *E : Clause->varlists()) { 2008 llvm::APInt Alignment(ClauseAlignment); 2009 if (Alignment == 0) { 2010 // OpenMP [2.8.1, Description] 2011 // If no optional parameter is specified, implementation-defined default 2012 // alignments for SIMD instructions on the target platforms are assumed. 2013 Alignment = 2014 CGF.getContext() 2015 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2016 E->getType()->getPointeeType())) 2017 .getQuantity(); 2018 } 2019 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2020 "alignment is not power of 2"); 2021 if (Alignment != 0) { 2022 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2023 CGF.emitAlignmentAssumption( 2024 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2025 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2026 } 2027 } 2028 } 2029 } 2030 2031 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2032 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2033 if (!HaveInsertPoint()) 2034 return; 2035 auto I = S.private_counters().begin(); 2036 for (const Expr *E : S.counters()) { 2037 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2038 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2039 // Emit var without initialization. 2040 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2041 EmitAutoVarCleanups(VarEmission); 2042 LocalDeclMap.erase(PrivateVD); 2043 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 2044 return VarEmission.getAllocatedAddress(); 2045 }); 2046 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2047 VD->hasGlobalStorage()) { 2048 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2049 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2050 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2051 E->getType(), VK_LValue, E->getExprLoc()); 2052 return EmitLValue(&DRE).getAddress(*this); 2053 }); 2054 } else { 2055 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2056 return VarEmission.getAllocatedAddress(); 2057 }); 2058 } 2059 ++I; 2060 } 2061 // Privatize extra loop counters used in loops for ordered(n) clauses. 2062 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2063 if (!C->getNumForLoops()) 2064 continue; 2065 for (unsigned I = S.getCollapsedNumber(), 2066 E = C->getLoopNumIterations().size(); 2067 I < E; ++I) { 2068 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2069 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2070 // Override only those variables that can be captured to avoid re-emission 2071 // of the variables declared within the loops. 2072 if (DRE->refersToEnclosingVariableOrCapture()) { 2073 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2074 return CreateMemTemp(DRE->getType(), VD->getName()); 2075 }); 2076 } 2077 } 2078 } 2079 } 2080 2081 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2082 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2083 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2084 if (!CGF.HaveInsertPoint()) 2085 return; 2086 { 2087 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2088 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2089 (void)PreCondScope.Privatize(); 2090 // Get initial values of real counters. 2091 for (const Expr *I : S.inits()) { 2092 CGF.EmitIgnoredExpr(I); 2093 } 2094 } 2095 // Create temp loop control variables with their init values to support 2096 // non-rectangular loops. 2097 CodeGenFunction::OMPMapVars PreCondVars; 2098 for (const Expr * E: S.dependent_counters()) { 2099 if (!E) 2100 continue; 2101 assert(!E->getType().getNonReferenceType()->isRecordType() && 2102 "dependent counter must not be an iterator."); 2103 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2104 Address CounterAddr = 2105 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2106 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2107 } 2108 (void)PreCondVars.apply(CGF); 2109 for (const Expr *E : S.dependent_inits()) { 2110 if (!E) 2111 continue; 2112 CGF.EmitIgnoredExpr(E); 2113 } 2114 // Check that loop is executed at least one time. 2115 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2116 PreCondVars.restore(CGF); 2117 } 2118 2119 void CodeGenFunction::EmitOMPLinearClause( 2120 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2121 if (!HaveInsertPoint()) 2122 return; 2123 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2124 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2125 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2126 for (const Expr *C : LoopDirective->counters()) { 2127 SIMDLCVs.insert( 2128 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2129 } 2130 } 2131 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2132 auto CurPrivate = C->privates().begin(); 2133 for (const Expr *E : C->varlists()) { 2134 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2135 const auto *PrivateVD = 2136 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2137 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2138 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2139 // Emit private VarDecl with copy init. 2140 EmitVarDecl(*PrivateVD); 2141 return GetAddrOfLocalVar(PrivateVD); 2142 }); 2143 assert(IsRegistered && "linear var already registered as private"); 2144 // Silence the warning about unused variable. 2145 (void)IsRegistered; 2146 } else { 2147 EmitVarDecl(*PrivateVD); 2148 } 2149 ++CurPrivate; 2150 } 2151 } 2152 } 2153 2154 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2155 const OMPExecutableDirective &D, 2156 bool IsMonotonic) { 2157 if (!CGF.HaveInsertPoint()) 2158 return; 2159 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2160 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2161 /*ignoreResult=*/true); 2162 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2163 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2164 // In presence of finite 'safelen', it may be unsafe to mark all 2165 // the memory instructions parallel, because loop-carried 2166 // dependences of 'safelen' iterations are possible. 2167 if (!IsMonotonic) 2168 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2169 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2170 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2171 /*ignoreResult=*/true); 2172 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2173 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2174 // In presence of finite 'safelen', it may be unsafe to mark all 2175 // the memory instructions parallel, because loop-carried 2176 // dependences of 'safelen' iterations are possible. 2177 CGF.LoopStack.setParallel(/*Enable=*/false); 2178 } 2179 } 2180 2181 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 2182 bool IsMonotonic) { 2183 // Walk clauses and process safelen/lastprivate. 2184 LoopStack.setParallel(!IsMonotonic); 2185 LoopStack.setVectorizeEnable(); 2186 emitSimdlenSafelenClause(*this, D, IsMonotonic); 2187 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2188 if (C->getKind() == OMPC_ORDER_concurrent) 2189 LoopStack.setParallel(/*Enable=*/true); 2190 if ((D.getDirectiveKind() == OMPD_simd || 2191 (getLangOpts().OpenMPSimd && 2192 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2193 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2194 [](const OMPReductionClause *C) { 2195 return C->getModifier() == OMPC_REDUCTION_inscan; 2196 })) 2197 // Disable parallel access in case of prefix sum. 2198 LoopStack.setParallel(/*Enable=*/false); 2199 } 2200 2201 void CodeGenFunction::EmitOMPSimdFinal( 2202 const OMPLoopDirective &D, 2203 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2204 if (!HaveInsertPoint()) 2205 return; 2206 llvm::BasicBlock *DoneBB = nullptr; 2207 auto IC = D.counters().begin(); 2208 auto IPC = D.private_counters().begin(); 2209 for (const Expr *F : D.finals()) { 2210 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2211 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2212 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2213 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2214 OrigVD->hasGlobalStorage() || CED) { 2215 if (!DoneBB) { 2216 if (llvm::Value *Cond = CondGen(*this)) { 2217 // If the first post-update expression is found, emit conditional 2218 // block if it was requested. 2219 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2220 DoneBB = createBasicBlock(".omp.final.done"); 2221 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2222 EmitBlock(ThenBB); 2223 } 2224 } 2225 Address OrigAddr = Address::invalid(); 2226 if (CED) { 2227 OrigAddr = 2228 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2229 } else { 2230 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2231 /*RefersToEnclosingVariableOrCapture=*/false, 2232 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2233 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2234 } 2235 OMPPrivateScope VarScope(*this); 2236 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2237 (void)VarScope.Privatize(); 2238 EmitIgnoredExpr(F); 2239 } 2240 ++IC; 2241 ++IPC; 2242 } 2243 if (DoneBB) 2244 EmitBlock(DoneBB, /*IsFinished=*/true); 2245 } 2246 2247 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2248 const OMPLoopDirective &S, 2249 CodeGenFunction::JumpDest LoopExit) { 2250 CGF.EmitOMPLoopBody(S, LoopExit); 2251 CGF.EmitStopPoint(&S); 2252 } 2253 2254 /// Emit a helper variable and return corresponding lvalue. 2255 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2256 const DeclRefExpr *Helper) { 2257 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2258 CGF.EmitVarDecl(*VDecl); 2259 return CGF.EmitLValue(Helper); 2260 } 2261 2262 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2263 const RegionCodeGenTy &SimdInitGen, 2264 const RegionCodeGenTy &BodyCodeGen) { 2265 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2266 PrePostActionTy &) { 2267 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2268 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2269 SimdInitGen(CGF); 2270 2271 BodyCodeGen(CGF); 2272 }; 2273 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2274 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2275 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2276 2277 BodyCodeGen(CGF); 2278 }; 2279 const Expr *IfCond = nullptr; 2280 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2281 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2282 if (CGF.getLangOpts().OpenMP >= 50 && 2283 (C->getNameModifier() == OMPD_unknown || 2284 C->getNameModifier() == OMPD_simd)) { 2285 IfCond = C->getCondition(); 2286 break; 2287 } 2288 } 2289 } 2290 if (IfCond) { 2291 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2292 } else { 2293 RegionCodeGenTy ThenRCG(ThenGen); 2294 ThenRCG(CGF); 2295 } 2296 } 2297 2298 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2299 PrePostActionTy &Action) { 2300 Action.Enter(CGF); 2301 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2302 "Expected simd directive"); 2303 OMPLoopScope PreInitScope(CGF, S); 2304 // if (PreCond) { 2305 // for (IV in 0..LastIteration) BODY; 2306 // <Final counter/linear vars updates>; 2307 // } 2308 // 2309 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2310 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2311 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2312 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2313 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2314 } 2315 2316 // Emit: if (PreCond) - begin. 2317 // If the condition constant folds and can be elided, avoid emitting the 2318 // whole loop. 2319 bool CondConstant; 2320 llvm::BasicBlock *ContBlock = nullptr; 2321 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2322 if (!CondConstant) 2323 return; 2324 } else { 2325 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2326 ContBlock = CGF.createBasicBlock("simd.if.end"); 2327 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2328 CGF.getProfileCount(&S)); 2329 CGF.EmitBlock(ThenBlock); 2330 CGF.incrementProfileCounter(&S); 2331 } 2332 2333 // Emit the loop iteration variable. 2334 const Expr *IVExpr = S.getIterationVariable(); 2335 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2336 CGF.EmitVarDecl(*IVDecl); 2337 CGF.EmitIgnoredExpr(S.getInit()); 2338 2339 // Emit the iterations count variable. 2340 // If it is not a variable, Sema decided to calculate iterations count on 2341 // each iteration (e.g., it is foldable into a constant). 2342 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2343 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2344 // Emit calculation of the iterations count. 2345 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2346 } 2347 2348 emitAlignedClause(CGF, S); 2349 (void)CGF.EmitOMPLinearClauseInit(S); 2350 { 2351 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2352 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2353 CGF.EmitOMPLinearClause(S, LoopScope); 2354 CGF.EmitOMPPrivateClause(S, LoopScope); 2355 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2356 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2357 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2358 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2359 (void)LoopScope.Privatize(); 2360 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2361 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2362 2363 emitCommonSimdLoop( 2364 CGF, S, 2365 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2366 CGF.EmitOMPSimdInit(S); 2367 }, 2368 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2369 CGF.EmitOMPInnerLoop( 2370 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2371 [&S](CodeGenFunction &CGF) { 2372 emitOMPLoopBodyWithStopPoint(CGF, S, 2373 CodeGenFunction::JumpDest()); 2374 }, 2375 [](CodeGenFunction &) {}); 2376 }); 2377 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2378 // Emit final copy of the lastprivate variables at the end of loops. 2379 if (HasLastprivateClause) 2380 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2381 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2382 emitPostUpdateForReductionClause(CGF, S, 2383 [](CodeGenFunction &) { return nullptr; }); 2384 } 2385 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2386 // Emit: if (PreCond) - end. 2387 if (ContBlock) { 2388 CGF.EmitBranch(ContBlock); 2389 CGF.EmitBlock(ContBlock, true); 2390 } 2391 } 2392 2393 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2394 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2395 OMPFirstScanLoop = true; 2396 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2397 emitOMPSimdRegion(CGF, S, Action); 2398 }; 2399 { 2400 auto LPCRegion = 2401 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2402 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2403 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2404 } 2405 // Check for outer lastprivate conditional update. 2406 checkForLastprivateConditionalUpdate(*this, S); 2407 } 2408 2409 void CodeGenFunction::EmitOMPOuterLoop( 2410 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2411 CodeGenFunction::OMPPrivateScope &LoopScope, 2412 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2413 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2414 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2415 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2416 2417 const Expr *IVExpr = S.getIterationVariable(); 2418 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2419 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2420 2421 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2422 2423 // Start the loop with a block that tests the condition. 2424 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2425 EmitBlock(CondBlock); 2426 const SourceRange R = S.getSourceRange(); 2427 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2428 SourceLocToDebugLoc(R.getEnd())); 2429 2430 llvm::Value *BoolCondVal = nullptr; 2431 if (!DynamicOrOrdered) { 2432 // UB = min(UB, GlobalUB) or 2433 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2434 // 'distribute parallel for') 2435 EmitIgnoredExpr(LoopArgs.EUB); 2436 // IV = LB 2437 EmitIgnoredExpr(LoopArgs.Init); 2438 // IV < UB 2439 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2440 } else { 2441 BoolCondVal = 2442 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2443 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2444 } 2445 2446 // If there are any cleanups between here and the loop-exit scope, 2447 // create a block to stage a loop exit along. 2448 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2449 if (LoopScope.requiresCleanups()) 2450 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2451 2452 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2453 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2454 if (ExitBlock != LoopExit.getBlock()) { 2455 EmitBlock(ExitBlock); 2456 EmitBranchThroughCleanup(LoopExit); 2457 } 2458 EmitBlock(LoopBody); 2459 2460 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2461 // LB for loop condition and emitted it above). 2462 if (DynamicOrOrdered) 2463 EmitIgnoredExpr(LoopArgs.Init); 2464 2465 // Create a block for the increment. 2466 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2467 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2468 2469 emitCommonSimdLoop( 2470 *this, S, 2471 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2472 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2473 // with dynamic/guided scheduling and without ordered clause. 2474 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2475 CGF.LoopStack.setParallel(!IsMonotonic); 2476 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2477 if (C->getKind() == OMPC_ORDER_concurrent) 2478 CGF.LoopStack.setParallel(/*Enable=*/true); 2479 } else { 2480 CGF.EmitOMPSimdInit(S, IsMonotonic); 2481 } 2482 }, 2483 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2484 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2485 SourceLocation Loc = S.getBeginLoc(); 2486 // when 'distribute' is not combined with a 'for': 2487 // while (idx <= UB) { BODY; ++idx; } 2488 // when 'distribute' is combined with a 'for' 2489 // (e.g. 'distribute parallel for') 2490 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2491 CGF.EmitOMPInnerLoop( 2492 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2493 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2494 CodeGenLoop(CGF, S, LoopExit); 2495 }, 2496 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2497 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2498 }); 2499 }); 2500 2501 EmitBlock(Continue.getBlock()); 2502 BreakContinueStack.pop_back(); 2503 if (!DynamicOrOrdered) { 2504 // Emit "LB = LB + Stride", "UB = UB + Stride". 2505 EmitIgnoredExpr(LoopArgs.NextLB); 2506 EmitIgnoredExpr(LoopArgs.NextUB); 2507 } 2508 2509 EmitBranch(CondBlock); 2510 LoopStack.pop(); 2511 // Emit the fall-through block. 2512 EmitBlock(LoopExit.getBlock()); 2513 2514 // Tell the runtime we are done. 2515 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2516 if (!DynamicOrOrdered) 2517 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2518 S.getDirectiveKind()); 2519 }; 2520 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2521 } 2522 2523 void CodeGenFunction::EmitOMPForOuterLoop( 2524 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2525 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2526 const OMPLoopArguments &LoopArgs, 2527 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2528 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2529 2530 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2531 const bool DynamicOrOrdered = 2532 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2533 2534 assert((Ordered || 2535 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2536 LoopArgs.Chunk != nullptr)) && 2537 "static non-chunked schedule does not need outer loop"); 2538 2539 // Emit outer loop. 2540 // 2541 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2542 // When schedule(dynamic,chunk_size) is specified, the iterations are 2543 // distributed to threads in the team in chunks as the threads request them. 2544 // Each thread executes a chunk of iterations, then requests another chunk, 2545 // until no chunks remain to be distributed. Each chunk contains chunk_size 2546 // iterations, except for the last chunk to be distributed, which may have 2547 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2548 // 2549 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2550 // to threads in the team in chunks as the executing threads request them. 2551 // Each thread executes a chunk of iterations, then requests another chunk, 2552 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2553 // each chunk is proportional to the number of unassigned iterations divided 2554 // by the number of threads in the team, decreasing to 1. For a chunk_size 2555 // with value k (greater than 1), the size of each chunk is determined in the 2556 // same way, with the restriction that the chunks do not contain fewer than k 2557 // iterations (except for the last chunk to be assigned, which may have fewer 2558 // than k iterations). 2559 // 2560 // When schedule(auto) is specified, the decision regarding scheduling is 2561 // delegated to the compiler and/or runtime system. The programmer gives the 2562 // implementation the freedom to choose any possible mapping of iterations to 2563 // threads in the team. 2564 // 2565 // When schedule(runtime) is specified, the decision regarding scheduling is 2566 // deferred until run time, and the schedule and chunk size are taken from the 2567 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2568 // implementation defined 2569 // 2570 // while(__kmpc_dispatch_next(&LB, &UB)) { 2571 // idx = LB; 2572 // while (idx <= UB) { BODY; ++idx; 2573 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2574 // } // inner loop 2575 // } 2576 // 2577 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2578 // When schedule(static, chunk_size) is specified, iterations are divided into 2579 // chunks of size chunk_size, and the chunks are assigned to the threads in 2580 // the team in a round-robin fashion in the order of the thread number. 2581 // 2582 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2583 // while (idx <= UB) { BODY; ++idx; } // inner loop 2584 // LB = LB + ST; 2585 // UB = UB + ST; 2586 // } 2587 // 2588 2589 const Expr *IVExpr = S.getIterationVariable(); 2590 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2591 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2592 2593 if (DynamicOrOrdered) { 2594 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2595 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2596 llvm::Value *LBVal = DispatchBounds.first; 2597 llvm::Value *UBVal = DispatchBounds.second; 2598 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2599 LoopArgs.Chunk}; 2600 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2601 IVSigned, Ordered, DipatchRTInputValues); 2602 } else { 2603 CGOpenMPRuntime::StaticRTInput StaticInit( 2604 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2605 LoopArgs.ST, LoopArgs.Chunk); 2606 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2607 ScheduleKind, StaticInit); 2608 } 2609 2610 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2611 const unsigned IVSize, 2612 const bool IVSigned) { 2613 if (Ordered) { 2614 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2615 IVSigned); 2616 } 2617 }; 2618 2619 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2620 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2621 OuterLoopArgs.IncExpr = S.getInc(); 2622 OuterLoopArgs.Init = S.getInit(); 2623 OuterLoopArgs.Cond = S.getCond(); 2624 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2625 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2626 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2627 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2628 } 2629 2630 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2631 const unsigned IVSize, const bool IVSigned) {} 2632 2633 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2634 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2635 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2636 const CodeGenLoopTy &CodeGenLoopContent) { 2637 2638 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2639 2640 // Emit outer loop. 2641 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2642 // dynamic 2643 // 2644 2645 const Expr *IVExpr = S.getIterationVariable(); 2646 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2647 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2648 2649 CGOpenMPRuntime::StaticRTInput StaticInit( 2650 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2651 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2652 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2653 2654 // for combined 'distribute' and 'for' the increment expression of distribute 2655 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2656 Expr *IncExpr; 2657 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2658 IncExpr = S.getDistInc(); 2659 else 2660 IncExpr = S.getInc(); 2661 2662 // this routine is shared by 'omp distribute parallel for' and 2663 // 'omp distribute': select the right EUB expression depending on the 2664 // directive 2665 OMPLoopArguments OuterLoopArgs; 2666 OuterLoopArgs.LB = LoopArgs.LB; 2667 OuterLoopArgs.UB = LoopArgs.UB; 2668 OuterLoopArgs.ST = LoopArgs.ST; 2669 OuterLoopArgs.IL = LoopArgs.IL; 2670 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2671 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2672 ? S.getCombinedEnsureUpperBound() 2673 : S.getEnsureUpperBound(); 2674 OuterLoopArgs.IncExpr = IncExpr; 2675 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2676 ? S.getCombinedInit() 2677 : S.getInit(); 2678 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2679 ? S.getCombinedCond() 2680 : S.getCond(); 2681 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2682 ? S.getCombinedNextLowerBound() 2683 : S.getNextLowerBound(); 2684 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2685 ? S.getCombinedNextUpperBound() 2686 : S.getNextUpperBound(); 2687 2688 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2689 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2690 emitEmptyOrdered); 2691 } 2692 2693 static std::pair<LValue, LValue> 2694 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2695 const OMPExecutableDirective &S) { 2696 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2697 LValue LB = 2698 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2699 LValue UB = 2700 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2701 2702 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2703 // parallel for') we need to use the 'distribute' 2704 // chunk lower and upper bounds rather than the whole loop iteration 2705 // space. These are parameters to the outlined function for 'parallel' 2706 // and we copy the bounds of the previous schedule into the 2707 // the current ones. 2708 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2709 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2710 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2711 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2712 PrevLBVal = CGF.EmitScalarConversion( 2713 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2714 LS.getIterationVariable()->getType(), 2715 LS.getPrevLowerBoundVariable()->getExprLoc()); 2716 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2717 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2718 PrevUBVal = CGF.EmitScalarConversion( 2719 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2720 LS.getIterationVariable()->getType(), 2721 LS.getPrevUpperBoundVariable()->getExprLoc()); 2722 2723 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2724 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2725 2726 return {LB, UB}; 2727 } 2728 2729 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2730 /// we need to use the LB and UB expressions generated by the worksharing 2731 /// code generation support, whereas in non combined situations we would 2732 /// just emit 0 and the LastIteration expression 2733 /// This function is necessary due to the difference of the LB and UB 2734 /// types for the RT emission routines for 'for_static_init' and 2735 /// 'for_dispatch_init' 2736 static std::pair<llvm::Value *, llvm::Value *> 2737 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2738 const OMPExecutableDirective &S, 2739 Address LB, Address UB) { 2740 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2741 const Expr *IVExpr = LS.getIterationVariable(); 2742 // when implementing a dynamic schedule for a 'for' combined with a 2743 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2744 // is not normalized as each team only executes its own assigned 2745 // distribute chunk 2746 QualType IteratorTy = IVExpr->getType(); 2747 llvm::Value *LBVal = 2748 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2749 llvm::Value *UBVal = 2750 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2751 return {LBVal, UBVal}; 2752 } 2753 2754 static void emitDistributeParallelForDistributeInnerBoundParams( 2755 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2756 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2757 const auto &Dir = cast<OMPLoopDirective>(S); 2758 LValue LB = 2759 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2760 llvm::Value *LBCast = 2761 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2762 CGF.SizeTy, /*isSigned=*/false); 2763 CapturedVars.push_back(LBCast); 2764 LValue UB = 2765 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2766 2767 llvm::Value *UBCast = 2768 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2769 CGF.SizeTy, /*isSigned=*/false); 2770 CapturedVars.push_back(UBCast); 2771 } 2772 2773 static void 2774 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2775 const OMPLoopDirective &S, 2776 CodeGenFunction::JumpDest LoopExit) { 2777 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2778 PrePostActionTy &Action) { 2779 Action.Enter(CGF); 2780 bool HasCancel = false; 2781 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2782 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2783 HasCancel = D->hasCancel(); 2784 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2785 HasCancel = D->hasCancel(); 2786 else if (const auto *D = 2787 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2788 HasCancel = D->hasCancel(); 2789 } 2790 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2791 HasCancel); 2792 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2793 emitDistributeParallelForInnerBounds, 2794 emitDistributeParallelForDispatchBounds); 2795 }; 2796 2797 emitCommonOMPParallelDirective( 2798 CGF, S, 2799 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2800 CGInlinedWorksharingLoop, 2801 emitDistributeParallelForDistributeInnerBoundParams); 2802 } 2803 2804 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2805 const OMPDistributeParallelForDirective &S) { 2806 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2807 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2808 S.getDistInc()); 2809 }; 2810 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2811 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2812 } 2813 2814 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2815 const OMPDistributeParallelForSimdDirective &S) { 2816 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2817 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2818 S.getDistInc()); 2819 }; 2820 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2821 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2822 } 2823 2824 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2825 const OMPDistributeSimdDirective &S) { 2826 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2827 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2828 }; 2829 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2830 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2831 } 2832 2833 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2834 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2835 // Emit SPMD target parallel for region as a standalone region. 2836 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2837 emitOMPSimdRegion(CGF, S, Action); 2838 }; 2839 llvm::Function *Fn; 2840 llvm::Constant *Addr; 2841 // Emit target region as a standalone region. 2842 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2843 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2844 assert(Fn && Addr && "Target device function emission failed."); 2845 } 2846 2847 void CodeGenFunction::EmitOMPTargetSimdDirective( 2848 const OMPTargetSimdDirective &S) { 2849 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2850 emitOMPSimdRegion(CGF, S, Action); 2851 }; 2852 emitCommonOMPTargetDirective(*this, S, CodeGen); 2853 } 2854 2855 namespace { 2856 struct ScheduleKindModifiersTy { 2857 OpenMPScheduleClauseKind Kind; 2858 OpenMPScheduleClauseModifier M1; 2859 OpenMPScheduleClauseModifier M2; 2860 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2861 OpenMPScheduleClauseModifier M1, 2862 OpenMPScheduleClauseModifier M2) 2863 : Kind(Kind), M1(M1), M2(M2) {} 2864 }; 2865 } // namespace 2866 2867 bool CodeGenFunction::EmitOMPWorksharingLoop( 2868 const OMPLoopDirective &S, Expr *EUB, 2869 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2870 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2871 // Emit the loop iteration variable. 2872 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2873 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2874 EmitVarDecl(*IVDecl); 2875 2876 // Emit the iterations count variable. 2877 // If it is not a variable, Sema decided to calculate iterations count on each 2878 // iteration (e.g., it is foldable into a constant). 2879 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2880 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2881 // Emit calculation of the iterations count. 2882 EmitIgnoredExpr(S.getCalcLastIteration()); 2883 } 2884 2885 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2886 2887 bool HasLastprivateClause; 2888 // Check pre-condition. 2889 { 2890 OMPLoopScope PreInitScope(*this, S); 2891 // Skip the entire loop if we don't meet the precondition. 2892 // If the condition constant folds and can be elided, avoid emitting the 2893 // whole loop. 2894 bool CondConstant; 2895 llvm::BasicBlock *ContBlock = nullptr; 2896 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2897 if (!CondConstant) 2898 return false; 2899 } else { 2900 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2901 ContBlock = createBasicBlock("omp.precond.end"); 2902 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2903 getProfileCount(&S)); 2904 EmitBlock(ThenBlock); 2905 incrementProfileCounter(&S); 2906 } 2907 2908 RunCleanupsScope DoacrossCleanupScope(*this); 2909 bool Ordered = false; 2910 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2911 if (OrderedClause->getNumForLoops()) 2912 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2913 else 2914 Ordered = true; 2915 } 2916 2917 llvm::DenseSet<const Expr *> EmittedFinals; 2918 emitAlignedClause(*this, S); 2919 bool HasLinears = EmitOMPLinearClauseInit(S); 2920 // Emit helper vars inits. 2921 2922 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2923 LValue LB = Bounds.first; 2924 LValue UB = Bounds.second; 2925 LValue ST = 2926 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2927 LValue IL = 2928 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2929 2930 // Emit 'then' code. 2931 { 2932 OMPPrivateScope LoopScope(*this); 2933 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2934 // Emit implicit barrier to synchronize threads and avoid data races on 2935 // initialization of firstprivate variables and post-update of 2936 // lastprivate variables. 2937 CGM.getOpenMPRuntime().emitBarrierCall( 2938 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2939 /*ForceSimpleCall=*/true); 2940 } 2941 EmitOMPPrivateClause(S, LoopScope); 2942 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2943 *this, S, EmitLValue(S.getIterationVariable())); 2944 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2945 EmitOMPReductionClauseInit(S, LoopScope); 2946 EmitOMPPrivateLoopCounters(S, LoopScope); 2947 EmitOMPLinearClause(S, LoopScope); 2948 (void)LoopScope.Privatize(); 2949 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2950 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2951 2952 // Detect the loop schedule kind and chunk. 2953 const Expr *ChunkExpr = nullptr; 2954 OpenMPScheduleTy ScheduleKind; 2955 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2956 ScheduleKind.Schedule = C->getScheduleKind(); 2957 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2958 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2959 ChunkExpr = C->getChunkSize(); 2960 } else { 2961 // Default behaviour for schedule clause. 2962 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2963 *this, S, ScheduleKind.Schedule, ChunkExpr); 2964 } 2965 bool HasChunkSizeOne = false; 2966 llvm::Value *Chunk = nullptr; 2967 if (ChunkExpr) { 2968 Chunk = EmitScalarExpr(ChunkExpr); 2969 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2970 S.getIterationVariable()->getType(), 2971 S.getBeginLoc()); 2972 Expr::EvalResult Result; 2973 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2974 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2975 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2976 } 2977 } 2978 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2979 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2980 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2981 // If the static schedule kind is specified or if the ordered clause is 2982 // specified, and if no monotonic modifier is specified, the effect will 2983 // be as if the monotonic modifier was specified. 2984 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2985 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2986 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2987 bool IsMonotonic = 2988 Ordered || 2989 ((ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2990 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown) && 2991 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 2992 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 2993 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2994 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2995 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2996 /* Chunked */ Chunk != nullptr) || 2997 StaticChunkedOne) && 2998 !Ordered) { 2999 JumpDest LoopExit = 3000 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3001 emitCommonSimdLoop( 3002 *this, S, 3003 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 3004 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3005 CGF.EmitOMPSimdInit(S, IsMonotonic); 3006 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3007 if (C->getKind() == OMPC_ORDER_concurrent) 3008 CGF.LoopStack.setParallel(/*Enable=*/true); 3009 } 3010 }, 3011 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3012 &S, ScheduleKind, LoopExit, 3013 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3014 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3015 // When no chunk_size is specified, the iteration space is divided 3016 // into chunks that are approximately equal in size, and at most 3017 // one chunk is distributed to each thread. Note that the size of 3018 // the chunks is unspecified in this case. 3019 CGOpenMPRuntime::StaticRTInput StaticInit( 3020 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3021 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3022 StaticChunkedOne ? Chunk : nullptr); 3023 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3024 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3025 StaticInit); 3026 // UB = min(UB, GlobalUB); 3027 if (!StaticChunkedOne) 3028 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3029 // IV = LB; 3030 CGF.EmitIgnoredExpr(S.getInit()); 3031 // For unchunked static schedule generate: 3032 // 3033 // while (idx <= UB) { 3034 // BODY; 3035 // ++idx; 3036 // } 3037 // 3038 // For static schedule with chunk one: 3039 // 3040 // while (IV <= PrevUB) { 3041 // BODY; 3042 // IV += ST; 3043 // } 3044 CGF.EmitOMPInnerLoop( 3045 S, LoopScope.requiresCleanups(), 3046 StaticChunkedOne ? S.getCombinedParForInDistCond() 3047 : S.getCond(), 3048 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3049 [&S, LoopExit](CodeGenFunction &CGF) { 3050 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3051 }, 3052 [](CodeGenFunction &) {}); 3053 }); 3054 EmitBlock(LoopExit.getBlock()); 3055 // Tell the runtime we are done. 3056 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3057 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3058 S.getDirectiveKind()); 3059 }; 3060 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3061 } else { 3062 // Emit the outer loop, which requests its work chunk [LB..UB] from 3063 // runtime and runs the inner loop to process it. 3064 const OMPLoopArguments LoopArguments( 3065 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3066 IL.getAddress(*this), Chunk, EUB); 3067 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3068 LoopArguments, CGDispatchBounds); 3069 } 3070 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3071 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3072 return CGF.Builder.CreateIsNotNull( 3073 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3074 }); 3075 } 3076 EmitOMPReductionClauseFinal( 3077 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3078 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3079 : /*Parallel only*/ OMPD_parallel); 3080 // Emit post-update of the reduction variables if IsLastIter != 0. 3081 emitPostUpdateForReductionClause( 3082 *this, S, [IL, &S](CodeGenFunction &CGF) { 3083 return CGF.Builder.CreateIsNotNull( 3084 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3085 }); 3086 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3087 if (HasLastprivateClause) 3088 EmitOMPLastprivateClauseFinal( 3089 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3090 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3091 } 3092 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3093 return CGF.Builder.CreateIsNotNull( 3094 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3095 }); 3096 DoacrossCleanupScope.ForceCleanup(); 3097 // We're now done with the loop, so jump to the continuation block. 3098 if (ContBlock) { 3099 EmitBranch(ContBlock); 3100 EmitBlock(ContBlock, /*IsFinished=*/true); 3101 } 3102 } 3103 return HasLastprivateClause; 3104 } 3105 3106 /// The following two functions generate expressions for the loop lower 3107 /// and upper bounds in case of static and dynamic (dispatch) schedule 3108 /// of the associated 'for' or 'distribute' loop. 3109 static std::pair<LValue, LValue> 3110 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3111 const auto &LS = cast<OMPLoopDirective>(S); 3112 LValue LB = 3113 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3114 LValue UB = 3115 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3116 return {LB, UB}; 3117 } 3118 3119 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3120 /// consider the lower and upper bound expressions generated by the 3121 /// worksharing loop support, but we use 0 and the iteration space size as 3122 /// constants 3123 static std::pair<llvm::Value *, llvm::Value *> 3124 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3125 Address LB, Address UB) { 3126 const auto &LS = cast<OMPLoopDirective>(S); 3127 const Expr *IVExpr = LS.getIterationVariable(); 3128 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3129 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3130 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3131 return {LBVal, UBVal}; 3132 } 3133 3134 /// Emits the code for the directive with inscan reductions. 3135 /// The code is the following: 3136 /// \code 3137 /// size num_iters = <num_iters>; 3138 /// <type> buffer[num_iters]; 3139 /// #pragma omp ... 3140 /// for (i: 0..<num_iters>) { 3141 /// <input phase>; 3142 /// buffer[i] = red; 3143 /// } 3144 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3145 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3146 /// buffer[i] op= buffer[i-pow(2,k)]; 3147 /// #pragma omp ... 3148 /// for (0..<num_iters>) { 3149 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3150 /// <scan phase>; 3151 /// } 3152 /// \endcode 3153 static void emitScanBasedDirective( 3154 CodeGenFunction &CGF, const OMPLoopDirective &S, 3155 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3156 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3157 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3158 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3159 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3160 SmallVector<const Expr *, 4> Shareds; 3161 SmallVector<const Expr *, 4> Privates; 3162 SmallVector<const Expr *, 4> ReductionOps; 3163 SmallVector<const Expr *, 4> LHSs; 3164 SmallVector<const Expr *, 4> RHSs; 3165 SmallVector<const Expr *, 4> CopyOps; 3166 SmallVector<const Expr *, 4> CopyArrayTemps; 3167 SmallVector<const Expr *, 4> CopyArrayElems; 3168 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3169 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3170 "Only inscan reductions are expected."); 3171 Shareds.append(C->varlist_begin(), C->varlist_end()); 3172 Privates.append(C->privates().begin(), C->privates().end()); 3173 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3174 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3175 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3176 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 3177 CopyArrayTemps.append(C->copy_array_temps().begin(), 3178 C->copy_array_temps().end()); 3179 CopyArrayElems.append(C->copy_array_elems().begin(), 3180 C->copy_array_elems().end()); 3181 } 3182 { 3183 // Emit buffers for each reduction variables. 3184 // ReductionCodeGen is required to emit correctly the code for array 3185 // reductions. 3186 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3187 unsigned Count = 0; 3188 auto *ITA = CopyArrayTemps.begin(); 3189 for (const Expr *IRef : Privates) { 3190 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3191 // Emit variably modified arrays, used for arrays/array sections 3192 // reductions. 3193 if (PrivateVD->getType()->isVariablyModifiedType()) { 3194 RedCG.emitSharedOrigLValue(CGF, Count); 3195 RedCG.emitAggregateType(CGF, Count); 3196 } 3197 CodeGenFunction::OpaqueValueMapping DimMapping( 3198 CGF, 3199 cast<OpaqueValueExpr>( 3200 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3201 ->getSizeExpr()), 3202 RValue::get(OMPScanNumIterations)); 3203 // Emit temp buffer. 3204 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3205 ++ITA; 3206 ++Count; 3207 } 3208 } 3209 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3210 { 3211 // Emit loop with input phase: 3212 // #pragma omp ... 3213 // for (i: 0..<num_iters>) { 3214 // <input phase>; 3215 // buffer[i] = red; 3216 // } 3217 CGF.OMPFirstScanLoop = true; 3218 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3219 FirstGen(CGF); 3220 } 3221 // Emit prefix reduction: 3222 // for (int k = 0; k <= ceil(log2(n)); ++k) 3223 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3224 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3225 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3226 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3227 llvm::Value *Arg = 3228 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3229 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3230 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3231 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3232 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3233 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3234 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3235 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3236 CGF.EmitBlock(LoopBB); 3237 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3238 // size pow2k = 1; 3239 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3240 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3241 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3242 // for (size i = n - 1; i >= 2 ^ k; --i) 3243 // tmp[i] op= tmp[i-pow2k]; 3244 llvm::BasicBlock *InnerLoopBB = 3245 CGF.createBasicBlock("omp.inner.log.scan.body"); 3246 llvm::BasicBlock *InnerExitBB = 3247 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3248 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3249 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3250 CGF.EmitBlock(InnerLoopBB); 3251 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3252 IVal->addIncoming(NMin1, LoopBB); 3253 { 3254 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3255 auto *ILHS = LHSs.begin(); 3256 auto *IRHS = RHSs.begin(); 3257 for (const Expr *CopyArrayElem : CopyArrayElems) { 3258 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3259 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3260 Address LHSAddr = Address::invalid(); 3261 { 3262 CodeGenFunction::OpaqueValueMapping IdxMapping( 3263 CGF, 3264 cast<OpaqueValueExpr>( 3265 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3266 RValue::get(IVal)); 3267 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3268 } 3269 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3270 Address RHSAddr = Address::invalid(); 3271 { 3272 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3273 CodeGenFunction::OpaqueValueMapping IdxMapping( 3274 CGF, 3275 cast<OpaqueValueExpr>( 3276 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3277 RValue::get(OffsetIVal)); 3278 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3279 } 3280 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3281 ++ILHS; 3282 ++IRHS; 3283 } 3284 PrivScope.Privatize(); 3285 CGF.CGM.getOpenMPRuntime().emitReduction( 3286 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3287 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3288 } 3289 llvm::Value *NextIVal = 3290 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3291 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3292 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3293 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3294 CGF.EmitBlock(InnerExitBB); 3295 llvm::Value *Next = 3296 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3297 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3298 // pow2k <<= 1; 3299 llvm::Value *NextPow2K = CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3300 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3301 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3302 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3303 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3304 CGF.EmitBlock(ExitBB); 3305 3306 CGF.OMPFirstScanLoop = false; 3307 SecondGen(CGF); 3308 } 3309 3310 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3311 const OMPLoopDirective &S, 3312 bool HasCancel) { 3313 bool HasLastprivates; 3314 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3315 [](const OMPReductionClause *C) { 3316 return C->getModifier() == OMPC_REDUCTION_inscan; 3317 })) { 3318 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3319 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3320 OMPLoopScope LoopScope(CGF, S); 3321 return CGF.EmitScalarExpr(S.getNumIterations()); 3322 }; 3323 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3324 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3325 CGF, S.getDirectiveKind(), HasCancel); 3326 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3327 emitForLoopBounds, 3328 emitDispatchForLoopBounds); 3329 // Emit an implicit barrier at the end. 3330 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3331 OMPD_for); 3332 }; 3333 const auto &&SecondGen = [&S, HasCancel, 3334 &HasLastprivates](CodeGenFunction &CGF) { 3335 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3336 CGF, S.getDirectiveKind(), HasCancel); 3337 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3338 emitForLoopBounds, 3339 emitDispatchForLoopBounds); 3340 }; 3341 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3342 } else { 3343 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3344 HasCancel); 3345 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3346 emitForLoopBounds, 3347 emitDispatchForLoopBounds); 3348 } 3349 return HasLastprivates; 3350 } 3351 3352 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3353 bool HasLastprivates = false; 3354 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3355 PrePostActionTy &) { 3356 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3357 }; 3358 { 3359 auto LPCRegion = 3360 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3361 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3362 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3363 S.hasCancel()); 3364 } 3365 3366 // Emit an implicit barrier at the end. 3367 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3368 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3369 // Check for outer lastprivate conditional update. 3370 checkForLastprivateConditionalUpdate(*this, S); 3371 } 3372 3373 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3374 bool HasLastprivates = false; 3375 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3376 PrePostActionTy &) { 3377 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3378 }; 3379 { 3380 auto LPCRegion = 3381 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3382 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3383 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3384 } 3385 3386 // Emit an implicit barrier at the end. 3387 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3388 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3389 // Check for outer lastprivate conditional update. 3390 checkForLastprivateConditionalUpdate(*this, S); 3391 } 3392 3393 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3394 const Twine &Name, 3395 llvm::Value *Init = nullptr) { 3396 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3397 if (Init) 3398 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3399 return LVal; 3400 } 3401 3402 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3403 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3404 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3405 bool HasLastprivates = false; 3406 auto &&CodeGen = [&S, CapturedStmt, CS, 3407 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3408 const ASTContext &C = CGF.getContext(); 3409 QualType KmpInt32Ty = 3410 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3411 // Emit helper vars inits. 3412 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3413 CGF.Builder.getInt32(0)); 3414 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3415 ? CGF.Builder.getInt32(CS->size() - 1) 3416 : CGF.Builder.getInt32(0); 3417 LValue UB = 3418 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3419 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3420 CGF.Builder.getInt32(1)); 3421 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3422 CGF.Builder.getInt32(0)); 3423 // Loop counter. 3424 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3425 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3426 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3427 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3428 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3429 // Generate condition for loop. 3430 BinaryOperator *Cond = BinaryOperator::Create( 3431 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, OK_Ordinary, 3432 S.getBeginLoc(), FPOptionsOverride()); 3433 // Increment for loop counter. 3434 UnaryOperator *Inc = UnaryOperator::Create( 3435 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 3436 S.getBeginLoc(), true, FPOptionsOverride()); 3437 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3438 // Iterate through all sections and emit a switch construct: 3439 // switch (IV) { 3440 // case 0: 3441 // <SectionStmt[0]>; 3442 // break; 3443 // ... 3444 // case <NumSection> - 1: 3445 // <SectionStmt[<NumSection> - 1]>; 3446 // break; 3447 // } 3448 // .omp.sections.exit: 3449 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3450 llvm::SwitchInst *SwitchStmt = 3451 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3452 ExitBB, CS == nullptr ? 1 : CS->size()); 3453 if (CS) { 3454 unsigned CaseNumber = 0; 3455 for (const Stmt *SubStmt : CS->children()) { 3456 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3457 CGF.EmitBlock(CaseBB); 3458 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3459 CGF.EmitStmt(SubStmt); 3460 CGF.EmitBranch(ExitBB); 3461 ++CaseNumber; 3462 } 3463 } else { 3464 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3465 CGF.EmitBlock(CaseBB); 3466 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3467 CGF.EmitStmt(CapturedStmt); 3468 CGF.EmitBranch(ExitBB); 3469 } 3470 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3471 }; 3472 3473 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3474 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3475 // Emit implicit barrier to synchronize threads and avoid data races on 3476 // initialization of firstprivate variables and post-update of lastprivate 3477 // variables. 3478 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3479 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3480 /*ForceSimpleCall=*/true); 3481 } 3482 CGF.EmitOMPPrivateClause(S, LoopScope); 3483 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3484 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3485 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3486 (void)LoopScope.Privatize(); 3487 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3488 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3489 3490 // Emit static non-chunked loop. 3491 OpenMPScheduleTy ScheduleKind; 3492 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3493 CGOpenMPRuntime::StaticRTInput StaticInit( 3494 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3495 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3496 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3497 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3498 // UB = min(UB, GlobalUB); 3499 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3500 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3501 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3502 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3503 // IV = LB; 3504 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3505 // while (idx <= UB) { BODY; ++idx; } 3506 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3507 [](CodeGenFunction &) {}); 3508 // Tell the runtime we are done. 3509 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3510 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3511 S.getDirectiveKind()); 3512 }; 3513 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3514 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3515 // Emit post-update of the reduction variables if IsLastIter != 0. 3516 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3517 return CGF.Builder.CreateIsNotNull( 3518 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3519 }); 3520 3521 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3522 if (HasLastprivates) 3523 CGF.EmitOMPLastprivateClauseFinal( 3524 S, /*NoFinals=*/false, 3525 CGF.Builder.CreateIsNotNull( 3526 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3527 }; 3528 3529 bool HasCancel = false; 3530 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3531 HasCancel = OSD->hasCancel(); 3532 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3533 HasCancel = OPSD->hasCancel(); 3534 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3535 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3536 HasCancel); 3537 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3538 // clause. Otherwise the barrier will be generated by the codegen for the 3539 // directive. 3540 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3541 // Emit implicit barrier to synchronize threads and avoid data races on 3542 // initialization of firstprivate variables. 3543 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3544 OMPD_unknown); 3545 } 3546 } 3547 3548 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3549 { 3550 auto LPCRegion = 3551 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3552 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3553 EmitSections(S); 3554 } 3555 // Emit an implicit barrier at the end. 3556 if (!S.getSingleClause<OMPNowaitClause>()) { 3557 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3558 OMPD_sections); 3559 } 3560 // Check for outer lastprivate conditional update. 3561 checkForLastprivateConditionalUpdate(*this, S); 3562 } 3563 3564 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3565 LexicalScope Scope(*this, S.getSourceRange()); 3566 EmitStopPoint(&S); 3567 EmitStmt(S.getAssociatedStmt()); 3568 } 3569 3570 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3571 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3572 llvm::SmallVector<const Expr *, 8> DestExprs; 3573 llvm::SmallVector<const Expr *, 8> SrcExprs; 3574 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3575 // Check if there are any 'copyprivate' clauses associated with this 3576 // 'single' construct. 3577 // Build a list of copyprivate variables along with helper expressions 3578 // (<source>, <destination>, <destination>=<source> expressions) 3579 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3580 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3581 DestExprs.append(C->destination_exprs().begin(), 3582 C->destination_exprs().end()); 3583 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3584 AssignmentOps.append(C->assignment_ops().begin(), 3585 C->assignment_ops().end()); 3586 } 3587 // Emit code for 'single' region along with 'copyprivate' clauses 3588 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3589 Action.Enter(CGF); 3590 OMPPrivateScope SingleScope(CGF); 3591 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3592 CGF.EmitOMPPrivateClause(S, SingleScope); 3593 (void)SingleScope.Privatize(); 3594 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3595 }; 3596 { 3597 auto LPCRegion = 3598 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3599 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3600 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3601 CopyprivateVars, DestExprs, 3602 SrcExprs, AssignmentOps); 3603 } 3604 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3605 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3606 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3607 CGM.getOpenMPRuntime().emitBarrierCall( 3608 *this, S.getBeginLoc(), 3609 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3610 } 3611 // Check for outer lastprivate conditional update. 3612 checkForLastprivateConditionalUpdate(*this, S); 3613 } 3614 3615 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3616 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3617 Action.Enter(CGF); 3618 CGF.EmitStmt(S.getRawStmt()); 3619 }; 3620 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3621 } 3622 3623 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3624 if (CGM.getLangOpts().OpenMPIRBuilder) { 3625 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3626 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3627 3628 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 3629 3630 auto FiniCB = [this](InsertPointTy IP) { 3631 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3632 }; 3633 3634 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 3635 InsertPointTy CodeGenIP, 3636 llvm::BasicBlock &FiniBB) { 3637 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3638 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 3639 CodeGenIP, FiniBB); 3640 }; 3641 3642 LexicalScope Scope(*this, S.getSourceRange()); 3643 EmitStopPoint(&S); 3644 Builder.restoreIP(OMPBuilder.CreateMaster(Builder, BodyGenCB, FiniCB)); 3645 3646 return; 3647 } 3648 LexicalScope Scope(*this, S.getSourceRange()); 3649 EmitStopPoint(&S); 3650 emitMaster(*this, S); 3651 } 3652 3653 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 3654 if (CGM.getLangOpts().OpenMPIRBuilder) { 3655 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3656 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3657 3658 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 3659 const Expr *Hint = nullptr; 3660 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3661 Hint = HintClause->getHint(); 3662 3663 // TODO: This is slightly different from what's currently being done in 3664 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 3665 // about typing is final. 3666 llvm::Value *HintInst = nullptr; 3667 if (Hint) 3668 HintInst = 3669 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 3670 3671 auto FiniCB = [this](InsertPointTy IP) { 3672 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3673 }; 3674 3675 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 3676 InsertPointTy CodeGenIP, 3677 llvm::BasicBlock &FiniBB) { 3678 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3679 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 3680 CodeGenIP, FiniBB); 3681 }; 3682 3683 LexicalScope Scope(*this, S.getSourceRange()); 3684 EmitStopPoint(&S); 3685 Builder.restoreIP(OMPBuilder.CreateCritical( 3686 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 3687 HintInst)); 3688 3689 return; 3690 } 3691 3692 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3693 Action.Enter(CGF); 3694 CGF.EmitStmt(S.getAssociatedStmt()); 3695 }; 3696 const Expr *Hint = nullptr; 3697 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3698 Hint = HintClause->getHint(); 3699 LexicalScope Scope(*this, S.getSourceRange()); 3700 EmitStopPoint(&S); 3701 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 3702 S.getDirectiveName().getAsString(), 3703 CodeGen, S.getBeginLoc(), Hint); 3704 } 3705 3706 void CodeGenFunction::EmitOMPParallelForDirective( 3707 const OMPParallelForDirective &S) { 3708 // Emit directive as a combined directive that consists of two implicit 3709 // directives: 'parallel' with 'for' directive. 3710 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3711 Action.Enter(CGF); 3712 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 3713 }; 3714 { 3715 auto LPCRegion = 3716 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3717 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 3718 emitEmptyBoundParameters); 3719 } 3720 // Check for outer lastprivate conditional update. 3721 checkForLastprivateConditionalUpdate(*this, S); 3722 } 3723 3724 void CodeGenFunction::EmitOMPParallelForSimdDirective( 3725 const OMPParallelForSimdDirective &S) { 3726 // Emit directive as a combined directive that consists of two implicit 3727 // directives: 'parallel' with 'for' directive. 3728 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3729 Action.Enter(CGF); 3730 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3731 }; 3732 { 3733 auto LPCRegion = 3734 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3735 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 3736 emitEmptyBoundParameters); 3737 } 3738 // Check for outer lastprivate conditional update. 3739 checkForLastprivateConditionalUpdate(*this, S); 3740 } 3741 3742 void CodeGenFunction::EmitOMPParallelMasterDirective( 3743 const OMPParallelMasterDirective &S) { 3744 // Emit directive as a combined directive that consists of two implicit 3745 // directives: 'parallel' with 'master' directive. 3746 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3747 Action.Enter(CGF); 3748 OMPPrivateScope PrivateScope(CGF); 3749 bool Copyins = CGF.EmitOMPCopyinClause(S); 3750 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3751 if (Copyins) { 3752 // Emit implicit barrier to synchronize threads and avoid data races on 3753 // propagation master's thread values of threadprivate variables to local 3754 // instances of that variables of all other implicit threads. 3755 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3756 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3757 /*ForceSimpleCall=*/true); 3758 } 3759 CGF.EmitOMPPrivateClause(S, PrivateScope); 3760 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3761 (void)PrivateScope.Privatize(); 3762 emitMaster(CGF, S); 3763 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3764 }; 3765 { 3766 auto LPCRegion = 3767 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3768 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 3769 emitEmptyBoundParameters); 3770 emitPostUpdateForReductionClause(*this, S, 3771 [](CodeGenFunction &) { return nullptr; }); 3772 } 3773 // Check for outer lastprivate conditional update. 3774 checkForLastprivateConditionalUpdate(*this, S); 3775 } 3776 3777 void CodeGenFunction::EmitOMPParallelSectionsDirective( 3778 const OMPParallelSectionsDirective &S) { 3779 // Emit directive as a combined directive that consists of two implicit 3780 // directives: 'parallel' with 'sections' directive. 3781 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3782 Action.Enter(CGF); 3783 CGF.EmitSections(S); 3784 }; 3785 { 3786 auto LPCRegion = 3787 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3788 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 3789 emitEmptyBoundParameters); 3790 } 3791 // Check for outer lastprivate conditional update. 3792 checkForLastprivateConditionalUpdate(*this, S); 3793 } 3794 3795 namespace { 3796 /// Get the list of variables declared in the context of the untied tasks. 3797 class CheckVarsEscapingUntiedTaskDeclContext final 3798 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 3799 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 3800 3801 public: 3802 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 3803 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 3804 void VisitDeclStmt(const DeclStmt *S) { 3805 if (!S) 3806 return; 3807 // Need to privatize only local vars, static locals can be processed as is. 3808 for (const Decl *D : S->decls()) { 3809 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 3810 if (VD->hasLocalStorage()) 3811 PrivateDecls.push_back(VD); 3812 } 3813 } 3814 void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; } 3815 void VisitCapturedStmt(const CapturedStmt *) { return; } 3816 void VisitLambdaExpr(const LambdaExpr *) { return; } 3817 void VisitBlockExpr(const BlockExpr *) { return; } 3818 void VisitStmt(const Stmt *S) { 3819 if (!S) 3820 return; 3821 for (const Stmt *Child : S->children()) 3822 if (Child) 3823 Visit(Child); 3824 } 3825 3826 /// Swaps list of vars with the provided one. 3827 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 3828 }; 3829 } // anonymous namespace 3830 3831 void CodeGenFunction::EmitOMPTaskBasedDirective( 3832 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3833 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3834 OMPTaskDataTy &Data) { 3835 // Emit outlined function for task construct. 3836 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3837 auto I = CS->getCapturedDecl()->param_begin(); 3838 auto PartId = std::next(I); 3839 auto TaskT = std::next(I, 4); 3840 // Check if the task is final 3841 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3842 // If the condition constant folds and can be elided, try to avoid emitting 3843 // the condition and the dead arm of the if/else. 3844 const Expr *Cond = Clause->getCondition(); 3845 bool CondConstant; 3846 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3847 Data.Final.setInt(CondConstant); 3848 else 3849 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3850 } else { 3851 // By default the task is not final. 3852 Data.Final.setInt(/*IntVal=*/false); 3853 } 3854 // Check if the task has 'priority' clause. 3855 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3856 const Expr *Prio = Clause->getPriority(); 3857 Data.Priority.setInt(/*IntVal=*/true); 3858 Data.Priority.setPointer(EmitScalarConversion( 3859 EmitScalarExpr(Prio), Prio->getType(), 3860 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3861 Prio->getExprLoc())); 3862 } 3863 // The first function argument for tasks is a thread id, the second one is a 3864 // part id (0 for tied tasks, >=0 for untied task). 3865 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3866 // Get list of private variables. 3867 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3868 auto IRef = C->varlist_begin(); 3869 for (const Expr *IInit : C->private_copies()) { 3870 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3871 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3872 Data.PrivateVars.push_back(*IRef); 3873 Data.PrivateCopies.push_back(IInit); 3874 } 3875 ++IRef; 3876 } 3877 } 3878 EmittedAsPrivate.clear(); 3879 // Get list of firstprivate variables. 3880 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3881 auto IRef = C->varlist_begin(); 3882 auto IElemInitRef = C->inits().begin(); 3883 for (const Expr *IInit : C->private_copies()) { 3884 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3885 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3886 Data.FirstprivateVars.push_back(*IRef); 3887 Data.FirstprivateCopies.push_back(IInit); 3888 Data.FirstprivateInits.push_back(*IElemInitRef); 3889 } 3890 ++IRef; 3891 ++IElemInitRef; 3892 } 3893 } 3894 // Get list of lastprivate variables (for taskloops). 3895 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3896 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3897 auto IRef = C->varlist_begin(); 3898 auto ID = C->destination_exprs().begin(); 3899 for (const Expr *IInit : C->private_copies()) { 3900 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3901 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3902 Data.LastprivateVars.push_back(*IRef); 3903 Data.LastprivateCopies.push_back(IInit); 3904 } 3905 LastprivateDstsOrigs.insert( 3906 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3907 cast<DeclRefExpr>(*IRef)}); 3908 ++IRef; 3909 ++ID; 3910 } 3911 } 3912 SmallVector<const Expr *, 4> LHSs; 3913 SmallVector<const Expr *, 4> RHSs; 3914 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3915 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 3916 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 3917 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 3918 Data.ReductionOps.append(C->reduction_ops().begin(), 3919 C->reduction_ops().end()); 3920 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3921 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3922 } 3923 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3924 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3925 // Build list of dependences. 3926 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 3927 OMPTaskDataTy::DependData &DD = 3928 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 3929 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 3930 } 3931 // Get list of local vars for untied tasks. 3932 if (!Data.Tied) { 3933 CheckVarsEscapingUntiedTaskDeclContext Checker; 3934 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 3935 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 3936 Checker.getPrivateDecls().end()); 3937 } 3938 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3939 CapturedRegion](CodeGenFunction &CGF, 3940 PrePostActionTy &Action) { 3941 llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, std::pair<Address, Address>> 3942 UntiedLocalVars; 3943 // Set proper addresses for generated private copies. 3944 OMPPrivateScope Scope(CGF); 3945 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 3946 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3947 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 3948 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3949 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3950 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3951 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3952 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3953 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3954 CS->getCapturedDecl()->getParam(PrivatesParam))); 3955 // Map privates. 3956 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3957 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3958 CallArgs.push_back(PrivatesPtr); 3959 for (const Expr *E : Data.PrivateVars) { 3960 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3961 Address PrivatePtr = CGF.CreateMemTemp( 3962 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3963 PrivatePtrs.emplace_back(VD, PrivatePtr); 3964 CallArgs.push_back(PrivatePtr.getPointer()); 3965 } 3966 for (const Expr *E : Data.FirstprivateVars) { 3967 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3968 Address PrivatePtr = 3969 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3970 ".firstpriv.ptr.addr"); 3971 PrivatePtrs.emplace_back(VD, PrivatePtr); 3972 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 3973 CallArgs.push_back(PrivatePtr.getPointer()); 3974 } 3975 for (const Expr *E : Data.LastprivateVars) { 3976 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3977 Address PrivatePtr = 3978 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3979 ".lastpriv.ptr.addr"); 3980 PrivatePtrs.emplace_back(VD, PrivatePtr); 3981 CallArgs.push_back(PrivatePtr.getPointer()); 3982 } 3983 for (const VarDecl *VD : Data.PrivateLocals) { 3984 QualType Ty = VD->getType().getNonReferenceType(); 3985 if (VD->getType()->isLValueReferenceType()) 3986 Ty = CGF.getContext().getPointerType(Ty); 3987 if (isAllocatableDecl(VD)) 3988 Ty = CGF.getContext().getPointerType(Ty); 3989 Address PrivatePtr = CGF.CreateMemTemp( 3990 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 3991 UntiedLocalVars.try_emplace(VD, PrivatePtr, Address::invalid()); 3992 CallArgs.push_back(PrivatePtr.getPointer()); 3993 } 3994 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3995 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3996 for (const auto &Pair : LastprivateDstsOrigs) { 3997 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3998 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3999 /*RefersToEnclosingVariableOrCapture=*/ 4000 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4001 Pair.second->getType(), VK_LValue, 4002 Pair.second->getExprLoc()); 4003 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4004 return CGF.EmitLValue(&DRE).getAddress(CGF); 4005 }); 4006 } 4007 for (const auto &Pair : PrivatePtrs) { 4008 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4009 CGF.getContext().getDeclAlign(Pair.first)); 4010 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4011 } 4012 // Adjust mapping for internal locals by mapping actual memory instead of 4013 // a pointer to this memory. 4014 for (auto &Pair : UntiedLocalVars) { 4015 if (isAllocatableDecl(Pair.first)) { 4016 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4017 Address Replacement(Ptr, CGF.getPointerAlign()); 4018 Pair.getSecond().first = Replacement; 4019 Ptr = CGF.Builder.CreateLoad(Replacement); 4020 Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4021 Pair.getSecond().second = Replacement; 4022 } else { 4023 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4024 Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4025 Pair.getSecond().first = Replacement; 4026 } 4027 } 4028 } 4029 if (Data.Reductions) { 4030 OMPPrivateScope FirstprivateScope(CGF); 4031 for (const auto &Pair : FirstprivatePtrs) { 4032 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4033 CGF.getContext().getDeclAlign(Pair.first)); 4034 FirstprivateScope.addPrivate(Pair.first, 4035 [Replacement]() { return Replacement; }); 4036 } 4037 (void)FirstprivateScope.Privatize(); 4038 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4039 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4040 Data.ReductionCopies, Data.ReductionOps); 4041 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4042 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4043 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4044 RedCG.emitSharedOrigLValue(CGF, Cnt); 4045 RedCG.emitAggregateType(CGF, Cnt); 4046 // FIXME: This must removed once the runtime library is fixed. 4047 // Emit required threadprivate variables for 4048 // initializer/combiner/finalizer. 4049 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4050 RedCG, Cnt); 4051 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4052 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4053 Replacement = 4054 Address(CGF.EmitScalarConversion( 4055 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4056 CGF.getContext().getPointerType( 4057 Data.ReductionCopies[Cnt]->getType()), 4058 Data.ReductionCopies[Cnt]->getExprLoc()), 4059 Replacement.getAlignment()); 4060 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4061 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4062 [Replacement]() { return Replacement; }); 4063 } 4064 } 4065 // Privatize all private variables except for in_reduction items. 4066 (void)Scope.Privatize(); 4067 SmallVector<const Expr *, 4> InRedVars; 4068 SmallVector<const Expr *, 4> InRedPrivs; 4069 SmallVector<const Expr *, 4> InRedOps; 4070 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4071 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4072 auto IPriv = C->privates().begin(); 4073 auto IRed = C->reduction_ops().begin(); 4074 auto ITD = C->taskgroup_descriptors().begin(); 4075 for (const Expr *Ref : C->varlists()) { 4076 InRedVars.emplace_back(Ref); 4077 InRedPrivs.emplace_back(*IPriv); 4078 InRedOps.emplace_back(*IRed); 4079 TaskgroupDescriptors.emplace_back(*ITD); 4080 std::advance(IPriv, 1); 4081 std::advance(IRed, 1); 4082 std::advance(ITD, 1); 4083 } 4084 } 4085 // Privatize in_reduction items here, because taskgroup descriptors must be 4086 // privatized earlier. 4087 OMPPrivateScope InRedScope(CGF); 4088 if (!InRedVars.empty()) { 4089 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4090 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4091 RedCG.emitSharedOrigLValue(CGF, Cnt); 4092 RedCG.emitAggregateType(CGF, Cnt); 4093 // The taskgroup descriptor variable is always implicit firstprivate and 4094 // privatized already during processing of the firstprivates. 4095 // FIXME: This must removed once the runtime library is fixed. 4096 // Emit required threadprivate variables for 4097 // initializer/combiner/finalizer. 4098 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4099 RedCG, Cnt); 4100 llvm::Value *ReductionsPtr; 4101 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4102 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4103 TRExpr->getExprLoc()); 4104 } else { 4105 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4106 } 4107 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4108 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4109 Replacement = Address( 4110 CGF.EmitScalarConversion( 4111 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4112 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4113 InRedPrivs[Cnt]->getExprLoc()), 4114 Replacement.getAlignment()); 4115 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4116 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4117 [Replacement]() { return Replacement; }); 4118 } 4119 } 4120 (void)InRedScope.Privatize(); 4121 4122 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4123 UntiedLocalVars); 4124 Action.Enter(CGF); 4125 BodyGen(CGF); 4126 }; 4127 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4128 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4129 Data.NumberOfParts); 4130 OMPLexicalScope Scope(*this, S, llvm::None, 4131 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4132 !isOpenMPSimdDirective(S.getDirectiveKind())); 4133 TaskGen(*this, OutlinedFn, Data); 4134 } 4135 4136 static ImplicitParamDecl * 4137 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4138 QualType Ty, CapturedDecl *CD, 4139 SourceLocation Loc) { 4140 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4141 ImplicitParamDecl::Other); 4142 auto *OrigRef = DeclRefExpr::Create( 4143 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4144 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4145 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4146 ImplicitParamDecl::Other); 4147 auto *PrivateRef = DeclRefExpr::Create( 4148 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4149 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4150 QualType ElemType = C.getBaseElementType(Ty); 4151 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4152 ImplicitParamDecl::Other); 4153 auto *InitRef = DeclRefExpr::Create( 4154 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4155 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4156 PrivateVD->setInitStyle(VarDecl::CInit); 4157 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4158 InitRef, /*BasePath=*/nullptr, 4159 VK_RValue, FPOptionsOverride())); 4160 Data.FirstprivateVars.emplace_back(OrigRef); 4161 Data.FirstprivateCopies.emplace_back(PrivateRef); 4162 Data.FirstprivateInits.emplace_back(InitRef); 4163 return OrigVD; 4164 } 4165 4166 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4167 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4168 OMPTargetDataInfo &InputInfo) { 4169 // Emit outlined function for task construct. 4170 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4171 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4172 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4173 auto I = CS->getCapturedDecl()->param_begin(); 4174 auto PartId = std::next(I); 4175 auto TaskT = std::next(I, 4); 4176 OMPTaskDataTy Data; 4177 // The task is not final. 4178 Data.Final.setInt(/*IntVal=*/false); 4179 // Get list of firstprivate variables. 4180 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4181 auto IRef = C->varlist_begin(); 4182 auto IElemInitRef = C->inits().begin(); 4183 for (auto *IInit : C->private_copies()) { 4184 Data.FirstprivateVars.push_back(*IRef); 4185 Data.FirstprivateCopies.push_back(IInit); 4186 Data.FirstprivateInits.push_back(*IElemInitRef); 4187 ++IRef; 4188 ++IElemInitRef; 4189 } 4190 } 4191 OMPPrivateScope TargetScope(*this); 4192 VarDecl *BPVD = nullptr; 4193 VarDecl *PVD = nullptr; 4194 VarDecl *SVD = nullptr; 4195 VarDecl *MVD = nullptr; 4196 if (InputInfo.NumberOfTargetItems > 0) { 4197 auto *CD = CapturedDecl::Create( 4198 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4199 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4200 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4201 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4202 /*IndexTypeQuals=*/0); 4203 BPVD = createImplicitFirstprivateForType( 4204 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4205 PVD = createImplicitFirstprivateForType( 4206 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4207 QualType SizesType = getContext().getConstantArrayType( 4208 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4209 ArrSize, nullptr, ArrayType::Normal, 4210 /*IndexTypeQuals=*/0); 4211 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4212 S.getBeginLoc()); 4213 MVD = createImplicitFirstprivateForType( 4214 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4215 TargetScope.addPrivate( 4216 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4217 TargetScope.addPrivate(PVD, 4218 [&InputInfo]() { return InputInfo.PointersArray; }); 4219 TargetScope.addPrivate(SVD, 4220 [&InputInfo]() { return InputInfo.SizesArray; }); 4221 TargetScope.addPrivate(MVD, 4222 [&InputInfo]() { return InputInfo.MappersArray; }); 4223 } 4224 (void)TargetScope.Privatize(); 4225 // Build list of dependences. 4226 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4227 OMPTaskDataTy::DependData &DD = 4228 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4229 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4230 } 4231 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4232 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4233 // Set proper addresses for generated private copies. 4234 OMPPrivateScope Scope(CGF); 4235 if (!Data.FirstprivateVars.empty()) { 4236 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 4237 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 4238 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4239 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4240 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4241 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4242 CS->getCapturedDecl()->getParam(PrivatesParam))); 4243 // Map privates. 4244 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4245 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4246 CallArgs.push_back(PrivatesPtr); 4247 for (const Expr *E : Data.FirstprivateVars) { 4248 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4249 Address PrivatePtr = 4250 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4251 ".firstpriv.ptr.addr"); 4252 PrivatePtrs.emplace_back(VD, PrivatePtr); 4253 CallArgs.push_back(PrivatePtr.getPointer()); 4254 } 4255 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4256 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4257 for (const auto &Pair : PrivatePtrs) { 4258 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4259 CGF.getContext().getDeclAlign(Pair.first)); 4260 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4261 } 4262 } 4263 // Privatize all private variables except for in_reduction items. 4264 (void)Scope.Privatize(); 4265 if (InputInfo.NumberOfTargetItems > 0) { 4266 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4267 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4268 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4269 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4270 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4271 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4272 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4273 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4274 } 4275 4276 Action.Enter(CGF); 4277 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4278 BodyGen(CGF); 4279 }; 4280 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4281 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4282 Data.NumberOfParts); 4283 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4284 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4285 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4286 SourceLocation()); 4287 4288 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4289 SharedsTy, CapturedStruct, &IfCond, Data); 4290 } 4291 4292 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4293 // Emit outlined function for task construct. 4294 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4295 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4296 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4297 const Expr *IfCond = nullptr; 4298 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4299 if (C->getNameModifier() == OMPD_unknown || 4300 C->getNameModifier() == OMPD_task) { 4301 IfCond = C->getCondition(); 4302 break; 4303 } 4304 } 4305 4306 OMPTaskDataTy Data; 4307 // Check if we should emit tied or untied task. 4308 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4309 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4310 CGF.EmitStmt(CS->getCapturedStmt()); 4311 }; 4312 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4313 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4314 const OMPTaskDataTy &Data) { 4315 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4316 SharedsTy, CapturedStruct, IfCond, 4317 Data); 4318 }; 4319 auto LPCRegion = 4320 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4321 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4322 } 4323 4324 void CodeGenFunction::EmitOMPTaskyieldDirective( 4325 const OMPTaskyieldDirective &S) { 4326 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4327 } 4328 4329 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4330 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4331 } 4332 4333 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4334 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 4335 } 4336 4337 void CodeGenFunction::EmitOMPTaskgroupDirective( 4338 const OMPTaskgroupDirective &S) { 4339 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4340 Action.Enter(CGF); 4341 if (const Expr *E = S.getReductionRef()) { 4342 SmallVector<const Expr *, 4> LHSs; 4343 SmallVector<const Expr *, 4> RHSs; 4344 OMPTaskDataTy Data; 4345 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4346 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4347 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4348 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4349 Data.ReductionOps.append(C->reduction_ops().begin(), 4350 C->reduction_ops().end()); 4351 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4352 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4353 } 4354 llvm::Value *ReductionDesc = 4355 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4356 LHSs, RHSs, Data); 4357 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4358 CGF.EmitVarDecl(*VD); 4359 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4360 /*Volatile=*/false, E->getType()); 4361 } 4362 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4363 }; 4364 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4365 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4366 } 4367 4368 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4369 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4370 ? llvm::AtomicOrdering::NotAtomic 4371 : llvm::AtomicOrdering::AcquireRelease; 4372 CGM.getOpenMPRuntime().emitFlush( 4373 *this, 4374 [&S]() -> ArrayRef<const Expr *> { 4375 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4376 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4377 FlushClause->varlist_end()); 4378 return llvm::None; 4379 }(), 4380 S.getBeginLoc(), AO); 4381 } 4382 4383 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4384 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4385 LValue DOLVal = EmitLValue(DO->getDepobj()); 4386 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4387 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4388 DC->getModifier()); 4389 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4390 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4391 *this, Dependencies, DC->getBeginLoc()); 4392 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4393 return; 4394 } 4395 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4396 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4397 return; 4398 } 4399 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4400 CGM.getOpenMPRuntime().emitUpdateClause( 4401 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4402 return; 4403 } 4404 } 4405 4406 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4407 if (!OMPParentLoopDirectiveForScan) 4408 return; 4409 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4410 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4411 SmallVector<const Expr *, 4> Shareds; 4412 SmallVector<const Expr *, 4> Privates; 4413 SmallVector<const Expr *, 4> LHSs; 4414 SmallVector<const Expr *, 4> RHSs; 4415 SmallVector<const Expr *, 4> ReductionOps; 4416 SmallVector<const Expr *, 4> CopyOps; 4417 SmallVector<const Expr *, 4> CopyArrayTemps; 4418 SmallVector<const Expr *, 4> CopyArrayElems; 4419 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4420 if (C->getModifier() != OMPC_REDUCTION_inscan) 4421 continue; 4422 Shareds.append(C->varlist_begin(), C->varlist_end()); 4423 Privates.append(C->privates().begin(), C->privates().end()); 4424 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4425 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4426 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 4427 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 4428 CopyArrayTemps.append(C->copy_array_temps().begin(), 4429 C->copy_array_temps().end()); 4430 CopyArrayElems.append(C->copy_array_elems().begin(), 4431 C->copy_array_elems().end()); 4432 } 4433 if (ParentDir.getDirectiveKind() == OMPD_simd || 4434 (getLangOpts().OpenMPSimd && 4435 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 4436 // For simd directive and simd-based directives in simd only mode, use the 4437 // following codegen: 4438 // int x = 0; 4439 // #pragma omp simd reduction(inscan, +: x) 4440 // for (..) { 4441 // <first part> 4442 // #pragma omp scan inclusive(x) 4443 // <second part> 4444 // } 4445 // is transformed to: 4446 // int x = 0; 4447 // for (..) { 4448 // int x_priv = 0; 4449 // <first part> 4450 // x = x_priv + x; 4451 // x_priv = x; 4452 // <second part> 4453 // } 4454 // and 4455 // int x = 0; 4456 // #pragma omp simd reduction(inscan, +: x) 4457 // for (..) { 4458 // <first part> 4459 // #pragma omp scan exclusive(x) 4460 // <second part> 4461 // } 4462 // to 4463 // int x = 0; 4464 // for (..) { 4465 // int x_priv = 0; 4466 // <second part> 4467 // int temp = x; 4468 // x = x_priv + x; 4469 // x_priv = temp; 4470 // <first part> 4471 // } 4472 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 4473 EmitBranch(IsInclusive 4474 ? OMPScanReduce 4475 : BreakContinueStack.back().ContinueBlock.getBlock()); 4476 EmitBlock(OMPScanDispatch); 4477 { 4478 // New scope for correct construction/destruction of temp variables for 4479 // exclusive scan. 4480 LexicalScope Scope(*this, S.getSourceRange()); 4481 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 4482 EmitBlock(OMPScanReduce); 4483 if (!IsInclusive) { 4484 // Create temp var and copy LHS value to this temp value. 4485 // TMP = LHS; 4486 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4487 const Expr *PrivateExpr = Privates[I]; 4488 const Expr *TempExpr = CopyArrayTemps[I]; 4489 EmitAutoVarDecl( 4490 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 4491 LValue DestLVal = EmitLValue(TempExpr); 4492 LValue SrcLVal = EmitLValue(LHSs[I]); 4493 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4494 SrcLVal.getAddress(*this), 4495 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4496 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4497 CopyOps[I]); 4498 } 4499 } 4500 CGM.getOpenMPRuntime().emitReduction( 4501 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 4502 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 4503 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4504 const Expr *PrivateExpr = Privates[I]; 4505 LValue DestLVal; 4506 LValue SrcLVal; 4507 if (IsInclusive) { 4508 DestLVal = EmitLValue(RHSs[I]); 4509 SrcLVal = EmitLValue(LHSs[I]); 4510 } else { 4511 const Expr *TempExpr = CopyArrayTemps[I]; 4512 DestLVal = EmitLValue(RHSs[I]); 4513 SrcLVal = EmitLValue(TempExpr); 4514 } 4515 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4516 SrcLVal.getAddress(*this), 4517 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4518 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4519 CopyOps[I]); 4520 } 4521 } 4522 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 4523 OMPScanExitBlock = IsInclusive 4524 ? BreakContinueStack.back().ContinueBlock.getBlock() 4525 : OMPScanReduce; 4526 EmitBlock(OMPAfterScanBlock); 4527 return; 4528 } 4529 if (!IsInclusive) { 4530 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4531 EmitBlock(OMPScanExitBlock); 4532 } 4533 if (OMPFirstScanLoop) { 4534 // Emit buffer[i] = red; at the end of the input phase. 4535 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4536 .getIterationVariable() 4537 ->IgnoreParenImpCasts(); 4538 LValue IdxLVal = EmitLValue(IVExpr); 4539 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4540 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4541 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4542 const Expr *PrivateExpr = Privates[I]; 4543 const Expr *OrigExpr = Shareds[I]; 4544 const Expr *CopyArrayElem = CopyArrayElems[I]; 4545 OpaqueValueMapping IdxMapping( 4546 *this, 4547 cast<OpaqueValueExpr>( 4548 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 4549 RValue::get(IdxVal)); 4550 LValue DestLVal = EmitLValue(CopyArrayElem); 4551 LValue SrcLVal = EmitLValue(OrigExpr); 4552 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4553 SrcLVal.getAddress(*this), 4554 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4555 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4556 CopyOps[I]); 4557 } 4558 } 4559 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4560 if (IsInclusive) { 4561 EmitBlock(OMPScanExitBlock); 4562 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4563 } 4564 EmitBlock(OMPScanDispatch); 4565 if (!OMPFirstScanLoop) { 4566 // Emit red = buffer[i]; at the entrance to the scan phase. 4567 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4568 .getIterationVariable() 4569 ->IgnoreParenImpCasts(); 4570 LValue IdxLVal = EmitLValue(IVExpr); 4571 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4572 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4573 llvm::BasicBlock *ExclusiveExitBB = nullptr; 4574 if (!IsInclusive) { 4575 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 4576 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 4577 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 4578 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 4579 EmitBlock(ContBB); 4580 // Use idx - 1 iteration for exclusive scan. 4581 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 4582 } 4583 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4584 const Expr *PrivateExpr = Privates[I]; 4585 const Expr *OrigExpr = Shareds[I]; 4586 const Expr *CopyArrayElem = CopyArrayElems[I]; 4587 OpaqueValueMapping IdxMapping( 4588 *this, 4589 cast<OpaqueValueExpr>( 4590 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 4591 RValue::get(IdxVal)); 4592 LValue SrcLVal = EmitLValue(CopyArrayElem); 4593 LValue DestLVal = EmitLValue(OrigExpr); 4594 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4595 SrcLVal.getAddress(*this), 4596 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4597 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4598 CopyOps[I]); 4599 } 4600 if (!IsInclusive) { 4601 EmitBlock(ExclusiveExitBB); 4602 } 4603 } 4604 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 4605 : OMPAfterScanBlock); 4606 EmitBlock(OMPAfterScanBlock); 4607 } 4608 4609 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 4610 const CodeGenLoopTy &CodeGenLoop, 4611 Expr *IncExpr) { 4612 // Emit the loop iteration variable. 4613 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 4614 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 4615 EmitVarDecl(*IVDecl); 4616 4617 // Emit the iterations count variable. 4618 // If it is not a variable, Sema decided to calculate iterations count on each 4619 // iteration (e.g., it is foldable into a constant). 4620 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4621 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4622 // Emit calculation of the iterations count. 4623 EmitIgnoredExpr(S.getCalcLastIteration()); 4624 } 4625 4626 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 4627 4628 bool HasLastprivateClause = false; 4629 // Check pre-condition. 4630 { 4631 OMPLoopScope PreInitScope(*this, S); 4632 // Skip the entire loop if we don't meet the precondition. 4633 // If the condition constant folds and can be elided, avoid emitting the 4634 // whole loop. 4635 bool CondConstant; 4636 llvm::BasicBlock *ContBlock = nullptr; 4637 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4638 if (!CondConstant) 4639 return; 4640 } else { 4641 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 4642 ContBlock = createBasicBlock("omp.precond.end"); 4643 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 4644 getProfileCount(&S)); 4645 EmitBlock(ThenBlock); 4646 incrementProfileCounter(&S); 4647 } 4648 4649 emitAlignedClause(*this, S); 4650 // Emit 'then' code. 4651 { 4652 // Emit helper vars inits. 4653 4654 LValue LB = EmitOMPHelperVar( 4655 *this, cast<DeclRefExpr>( 4656 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4657 ? S.getCombinedLowerBoundVariable() 4658 : S.getLowerBoundVariable()))); 4659 LValue UB = EmitOMPHelperVar( 4660 *this, cast<DeclRefExpr>( 4661 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4662 ? S.getCombinedUpperBoundVariable() 4663 : S.getUpperBoundVariable()))); 4664 LValue ST = 4665 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 4666 LValue IL = 4667 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 4668 4669 OMPPrivateScope LoopScope(*this); 4670 if (EmitOMPFirstprivateClause(S, LoopScope)) { 4671 // Emit implicit barrier to synchronize threads and avoid data races 4672 // on initialization of firstprivate variables and post-update of 4673 // lastprivate variables. 4674 CGM.getOpenMPRuntime().emitBarrierCall( 4675 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4676 /*ForceSimpleCall=*/true); 4677 } 4678 EmitOMPPrivateClause(S, LoopScope); 4679 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4680 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4681 !isOpenMPTeamsDirective(S.getDirectiveKind())) 4682 EmitOMPReductionClauseInit(S, LoopScope); 4683 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 4684 EmitOMPPrivateLoopCounters(S, LoopScope); 4685 (void)LoopScope.Privatize(); 4686 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4687 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 4688 4689 // Detect the distribute schedule kind and chunk. 4690 llvm::Value *Chunk = nullptr; 4691 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 4692 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 4693 ScheduleKind = C->getDistScheduleKind(); 4694 if (const Expr *Ch = C->getChunkSize()) { 4695 Chunk = EmitScalarExpr(Ch); 4696 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 4697 S.getIterationVariable()->getType(), 4698 S.getBeginLoc()); 4699 } 4700 } else { 4701 // Default behaviour for dist_schedule clause. 4702 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 4703 *this, S, ScheduleKind, Chunk); 4704 } 4705 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 4706 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 4707 4708 // OpenMP [2.10.8, distribute Construct, Description] 4709 // If dist_schedule is specified, kind must be static. If specified, 4710 // iterations are divided into chunks of size chunk_size, chunks are 4711 // assigned to the teams of the league in a round-robin fashion in the 4712 // order of the team number. When no chunk_size is specified, the 4713 // iteration space is divided into chunks that are approximately equal 4714 // in size, and at most one chunk is distributed to each team of the 4715 // league. The size of the chunks is unspecified in this case. 4716 bool StaticChunked = RT.isStaticChunked( 4717 ScheduleKind, /* Chunked */ Chunk != nullptr) && 4718 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 4719 if (RT.isStaticNonchunked(ScheduleKind, 4720 /* Chunked */ Chunk != nullptr) || 4721 StaticChunked) { 4722 CGOpenMPRuntime::StaticRTInput StaticInit( 4723 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 4724 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4725 StaticChunked ? Chunk : nullptr); 4726 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 4727 StaticInit); 4728 JumpDest LoopExit = 4729 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 4730 // UB = min(UB, GlobalUB); 4731 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4732 ? S.getCombinedEnsureUpperBound() 4733 : S.getEnsureUpperBound()); 4734 // IV = LB; 4735 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4736 ? S.getCombinedInit() 4737 : S.getInit()); 4738 4739 const Expr *Cond = 4740 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4741 ? S.getCombinedCond() 4742 : S.getCond(); 4743 4744 if (StaticChunked) 4745 Cond = S.getCombinedDistCond(); 4746 4747 // For static unchunked schedules generate: 4748 // 4749 // 1. For distribute alone, codegen 4750 // while (idx <= UB) { 4751 // BODY; 4752 // ++idx; 4753 // } 4754 // 4755 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 4756 // while (idx <= UB) { 4757 // <CodeGen rest of pragma>(LB, UB); 4758 // idx += ST; 4759 // } 4760 // 4761 // For static chunk one schedule generate: 4762 // 4763 // while (IV <= GlobalUB) { 4764 // <CodeGen rest of pragma>(LB, UB); 4765 // LB += ST; 4766 // UB += ST; 4767 // UB = min(UB, GlobalUB); 4768 // IV = LB; 4769 // } 4770 // 4771 emitCommonSimdLoop( 4772 *this, S, 4773 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4774 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4775 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 4776 }, 4777 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 4778 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 4779 CGF.EmitOMPInnerLoop( 4780 S, LoopScope.requiresCleanups(), Cond, IncExpr, 4781 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 4782 CodeGenLoop(CGF, S, LoopExit); 4783 }, 4784 [&S, StaticChunked](CodeGenFunction &CGF) { 4785 if (StaticChunked) { 4786 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 4787 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 4788 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 4789 CGF.EmitIgnoredExpr(S.getCombinedInit()); 4790 } 4791 }); 4792 }); 4793 EmitBlock(LoopExit.getBlock()); 4794 // Tell the runtime we are done. 4795 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 4796 } else { 4797 // Emit the outer loop, which requests its work chunk [LB..UB] from 4798 // runtime and runs the inner loop to process it. 4799 const OMPLoopArguments LoopArguments = { 4800 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4801 IL.getAddress(*this), Chunk}; 4802 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 4803 CodeGenLoop); 4804 } 4805 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 4806 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 4807 return CGF.Builder.CreateIsNotNull( 4808 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4809 }); 4810 } 4811 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4812 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4813 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 4814 EmitOMPReductionClauseFinal(S, OMPD_simd); 4815 // Emit post-update of the reduction variables if IsLastIter != 0. 4816 emitPostUpdateForReductionClause( 4817 *this, S, [IL, &S](CodeGenFunction &CGF) { 4818 return CGF.Builder.CreateIsNotNull( 4819 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4820 }); 4821 } 4822 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4823 if (HasLastprivateClause) { 4824 EmitOMPLastprivateClauseFinal( 4825 S, /*NoFinals=*/false, 4826 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 4827 } 4828 } 4829 4830 // We're now done with the loop, so jump to the continuation block. 4831 if (ContBlock) { 4832 EmitBranch(ContBlock); 4833 EmitBlock(ContBlock, true); 4834 } 4835 } 4836 } 4837 4838 void CodeGenFunction::EmitOMPDistributeDirective( 4839 const OMPDistributeDirective &S) { 4840 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4841 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4842 }; 4843 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4844 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 4845 } 4846 4847 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 4848 const CapturedStmt *S, 4849 SourceLocation Loc) { 4850 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 4851 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 4852 CGF.CapturedStmtInfo = &CapStmtInfo; 4853 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 4854 Fn->setDoesNotRecurse(); 4855 return Fn; 4856 } 4857 4858 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 4859 if (S.hasClausesOfKind<OMPDependClause>()) { 4860 assert(!S.hasAssociatedStmt() && 4861 "No associated statement must be in ordered depend construct."); 4862 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 4863 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 4864 return; 4865 } 4866 const auto *C = S.getSingleClause<OMPSIMDClause>(); 4867 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 4868 PrePostActionTy &Action) { 4869 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 4870 if (C) { 4871 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4872 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4873 llvm::Function *OutlinedFn = 4874 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 4875 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 4876 OutlinedFn, CapturedVars); 4877 } else { 4878 Action.Enter(CGF); 4879 CGF.EmitStmt(CS->getCapturedStmt()); 4880 } 4881 }; 4882 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4883 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 4884 } 4885 4886 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 4887 QualType SrcType, QualType DestType, 4888 SourceLocation Loc) { 4889 assert(CGF.hasScalarEvaluationKind(DestType) && 4890 "DestType must have scalar evaluation kind."); 4891 assert(!Val.isAggregate() && "Must be a scalar or complex."); 4892 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 4893 DestType, Loc) 4894 : CGF.EmitComplexToScalarConversion( 4895 Val.getComplexVal(), SrcType, DestType, Loc); 4896 } 4897 4898 static CodeGenFunction::ComplexPairTy 4899 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 4900 QualType DestType, SourceLocation Loc) { 4901 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 4902 "DestType must have complex evaluation kind."); 4903 CodeGenFunction::ComplexPairTy ComplexVal; 4904 if (Val.isScalar()) { 4905 // Convert the input element to the element type of the complex. 4906 QualType DestElementType = 4907 DestType->castAs<ComplexType>()->getElementType(); 4908 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 4909 Val.getScalarVal(), SrcType, DestElementType, Loc); 4910 ComplexVal = CodeGenFunction::ComplexPairTy( 4911 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 4912 } else { 4913 assert(Val.isComplex() && "Must be a scalar or complex."); 4914 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 4915 QualType DestElementType = 4916 DestType->castAs<ComplexType>()->getElementType(); 4917 ComplexVal.first = CGF.EmitScalarConversion( 4918 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 4919 ComplexVal.second = CGF.EmitScalarConversion( 4920 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 4921 } 4922 return ComplexVal; 4923 } 4924 4925 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4926 LValue LVal, RValue RVal) { 4927 if (LVal.isGlobalReg()) 4928 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 4929 else 4930 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 4931 } 4932 4933 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 4934 llvm::AtomicOrdering AO, LValue LVal, 4935 SourceLocation Loc) { 4936 if (LVal.isGlobalReg()) 4937 return CGF.EmitLoadOfLValue(LVal, Loc); 4938 return CGF.EmitAtomicLoad( 4939 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 4940 LVal.isVolatile()); 4941 } 4942 4943 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 4944 QualType RValTy, SourceLocation Loc) { 4945 switch (getEvaluationKind(LVal.getType())) { 4946 case TEK_Scalar: 4947 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 4948 *this, RVal, RValTy, LVal.getType(), Loc)), 4949 LVal); 4950 break; 4951 case TEK_Complex: 4952 EmitStoreOfComplex( 4953 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 4954 /*isInit=*/false); 4955 break; 4956 case TEK_Aggregate: 4957 llvm_unreachable("Must be a scalar or complex."); 4958 } 4959 } 4960 4961 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4962 const Expr *X, const Expr *V, 4963 SourceLocation Loc) { 4964 // v = x; 4965 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 4966 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 4967 LValue XLValue = CGF.EmitLValue(X); 4968 LValue VLValue = CGF.EmitLValue(V); 4969 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 4970 // OpenMP, 2.17.7, atomic Construct 4971 // If the read or capture clause is specified and the acquire, acq_rel, or 4972 // seq_cst clause is specified then the strong flush on exit from the atomic 4973 // operation is also an acquire flush. 4974 switch (AO) { 4975 case llvm::AtomicOrdering::Acquire: 4976 case llvm::AtomicOrdering::AcquireRelease: 4977 case llvm::AtomicOrdering::SequentiallyConsistent: 4978 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4979 llvm::AtomicOrdering::Acquire); 4980 break; 4981 case llvm::AtomicOrdering::Monotonic: 4982 case llvm::AtomicOrdering::Release: 4983 break; 4984 case llvm::AtomicOrdering::NotAtomic: 4985 case llvm::AtomicOrdering::Unordered: 4986 llvm_unreachable("Unexpected ordering."); 4987 } 4988 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 4989 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 4990 } 4991 4992 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 4993 llvm::AtomicOrdering AO, const Expr *X, 4994 const Expr *E, SourceLocation Loc) { 4995 // x = expr; 4996 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 4997 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 4998 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4999 // OpenMP, 2.17.7, atomic Construct 5000 // If the write, update, or capture clause is specified and the release, 5001 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5002 // the atomic operation is also a release flush. 5003 switch (AO) { 5004 case llvm::AtomicOrdering::Release: 5005 case llvm::AtomicOrdering::AcquireRelease: 5006 case llvm::AtomicOrdering::SequentiallyConsistent: 5007 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5008 llvm::AtomicOrdering::Release); 5009 break; 5010 case llvm::AtomicOrdering::Acquire: 5011 case llvm::AtomicOrdering::Monotonic: 5012 break; 5013 case llvm::AtomicOrdering::NotAtomic: 5014 case llvm::AtomicOrdering::Unordered: 5015 llvm_unreachable("Unexpected ordering."); 5016 } 5017 } 5018 5019 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5020 RValue Update, 5021 BinaryOperatorKind BO, 5022 llvm::AtomicOrdering AO, 5023 bool IsXLHSInRHSPart) { 5024 ASTContext &Context = CGF.getContext(); 5025 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5026 // expression is simple and atomic is allowed for the given type for the 5027 // target platform. 5028 if (BO == BO_Comma || !Update.isScalar() || 5029 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5030 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5031 (Update.getScalarVal()->getType() != 5032 X.getAddress(CGF).getElementType())) || 5033 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5034 !Context.getTargetInfo().hasBuiltinAtomic( 5035 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5036 return std::make_pair(false, RValue::get(nullptr)); 5037 5038 llvm::AtomicRMWInst::BinOp RMWOp; 5039 switch (BO) { 5040 case BO_Add: 5041 RMWOp = llvm::AtomicRMWInst::Add; 5042 break; 5043 case BO_Sub: 5044 if (!IsXLHSInRHSPart) 5045 return std::make_pair(false, RValue::get(nullptr)); 5046 RMWOp = llvm::AtomicRMWInst::Sub; 5047 break; 5048 case BO_And: 5049 RMWOp = llvm::AtomicRMWInst::And; 5050 break; 5051 case BO_Or: 5052 RMWOp = llvm::AtomicRMWInst::Or; 5053 break; 5054 case BO_Xor: 5055 RMWOp = llvm::AtomicRMWInst::Xor; 5056 break; 5057 case BO_LT: 5058 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5059 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5060 : llvm::AtomicRMWInst::Max) 5061 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5062 : llvm::AtomicRMWInst::UMax); 5063 break; 5064 case BO_GT: 5065 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5066 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5067 : llvm::AtomicRMWInst::Min) 5068 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5069 : llvm::AtomicRMWInst::UMin); 5070 break; 5071 case BO_Assign: 5072 RMWOp = llvm::AtomicRMWInst::Xchg; 5073 break; 5074 case BO_Mul: 5075 case BO_Div: 5076 case BO_Rem: 5077 case BO_Shl: 5078 case BO_Shr: 5079 case BO_LAnd: 5080 case BO_LOr: 5081 return std::make_pair(false, RValue::get(nullptr)); 5082 case BO_PtrMemD: 5083 case BO_PtrMemI: 5084 case BO_LE: 5085 case BO_GE: 5086 case BO_EQ: 5087 case BO_NE: 5088 case BO_Cmp: 5089 case BO_AddAssign: 5090 case BO_SubAssign: 5091 case BO_AndAssign: 5092 case BO_OrAssign: 5093 case BO_XorAssign: 5094 case BO_MulAssign: 5095 case BO_DivAssign: 5096 case BO_RemAssign: 5097 case BO_ShlAssign: 5098 case BO_ShrAssign: 5099 case BO_Comma: 5100 llvm_unreachable("Unsupported atomic update operation"); 5101 } 5102 llvm::Value *UpdateVal = Update.getScalarVal(); 5103 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5104 UpdateVal = CGF.Builder.CreateIntCast( 5105 IC, X.getAddress(CGF).getElementType(), 5106 X.getType()->hasSignedIntegerRepresentation()); 5107 } 5108 llvm::Value *Res = 5109 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5110 return std::make_pair(true, RValue::get(Res)); 5111 } 5112 5113 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5114 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5115 llvm::AtomicOrdering AO, SourceLocation Loc, 5116 const llvm::function_ref<RValue(RValue)> CommonGen) { 5117 // Update expressions are allowed to have the following forms: 5118 // x binop= expr; -> xrval + expr; 5119 // x++, ++x -> xrval + 1; 5120 // x--, --x -> xrval - 1; 5121 // x = x binop expr; -> xrval binop expr 5122 // x = expr Op x; - > expr binop xrval; 5123 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5124 if (!Res.first) { 5125 if (X.isGlobalReg()) { 5126 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5127 // 'xrval'. 5128 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5129 } else { 5130 // Perform compare-and-swap procedure. 5131 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5132 } 5133 } 5134 return Res; 5135 } 5136 5137 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5138 llvm::AtomicOrdering AO, const Expr *X, 5139 const Expr *E, const Expr *UE, 5140 bool IsXLHSInRHSPart, SourceLocation Loc) { 5141 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5142 "Update expr in 'atomic update' must be a binary operator."); 5143 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5144 // Update expressions are allowed to have the following forms: 5145 // x binop= expr; -> xrval + expr; 5146 // x++, ++x -> xrval + 1; 5147 // x--, --x -> xrval - 1; 5148 // x = x binop expr; -> xrval binop expr 5149 // x = expr Op x; - > expr binop xrval; 5150 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5151 LValue XLValue = CGF.EmitLValue(X); 5152 RValue ExprRValue = CGF.EmitAnyExpr(E); 5153 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5154 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5155 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5156 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5157 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5158 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5159 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5160 return CGF.EmitAnyExpr(UE); 5161 }; 5162 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5163 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5164 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5165 // OpenMP, 2.17.7, atomic Construct 5166 // If the write, update, or capture clause is specified and the release, 5167 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5168 // the atomic operation is also a release flush. 5169 switch (AO) { 5170 case llvm::AtomicOrdering::Release: 5171 case llvm::AtomicOrdering::AcquireRelease: 5172 case llvm::AtomicOrdering::SequentiallyConsistent: 5173 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5174 llvm::AtomicOrdering::Release); 5175 break; 5176 case llvm::AtomicOrdering::Acquire: 5177 case llvm::AtomicOrdering::Monotonic: 5178 break; 5179 case llvm::AtomicOrdering::NotAtomic: 5180 case llvm::AtomicOrdering::Unordered: 5181 llvm_unreachable("Unexpected ordering."); 5182 } 5183 } 5184 5185 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5186 QualType SourceType, QualType ResType, 5187 SourceLocation Loc) { 5188 switch (CGF.getEvaluationKind(ResType)) { 5189 case TEK_Scalar: 5190 return RValue::get( 5191 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5192 case TEK_Complex: { 5193 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5194 return RValue::getComplex(Res.first, Res.second); 5195 } 5196 case TEK_Aggregate: 5197 break; 5198 } 5199 llvm_unreachable("Must be a scalar or complex."); 5200 } 5201 5202 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5203 llvm::AtomicOrdering AO, 5204 bool IsPostfixUpdate, const Expr *V, 5205 const Expr *X, const Expr *E, 5206 const Expr *UE, bool IsXLHSInRHSPart, 5207 SourceLocation Loc) { 5208 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5209 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5210 RValue NewVVal; 5211 LValue VLValue = CGF.EmitLValue(V); 5212 LValue XLValue = CGF.EmitLValue(X); 5213 RValue ExprRValue = CGF.EmitAnyExpr(E); 5214 QualType NewVValType; 5215 if (UE) { 5216 // 'x' is updated with some additional value. 5217 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5218 "Update expr in 'atomic capture' must be a binary operator."); 5219 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5220 // Update expressions are allowed to have the following forms: 5221 // x binop= expr; -> xrval + expr; 5222 // x++, ++x -> xrval + 1; 5223 // x--, --x -> xrval - 1; 5224 // x = x binop expr; -> xrval binop expr 5225 // x = expr Op x; - > expr binop xrval; 5226 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5227 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5228 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5229 NewVValType = XRValExpr->getType(); 5230 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5231 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5232 IsPostfixUpdate](RValue XRValue) { 5233 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5234 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5235 RValue Res = CGF.EmitAnyExpr(UE); 5236 NewVVal = IsPostfixUpdate ? XRValue : Res; 5237 return Res; 5238 }; 5239 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5240 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5241 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5242 if (Res.first) { 5243 // 'atomicrmw' instruction was generated. 5244 if (IsPostfixUpdate) { 5245 // Use old value from 'atomicrmw'. 5246 NewVVal = Res.second; 5247 } else { 5248 // 'atomicrmw' does not provide new value, so evaluate it using old 5249 // value of 'x'. 5250 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5251 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5252 NewVVal = CGF.EmitAnyExpr(UE); 5253 } 5254 } 5255 } else { 5256 // 'x' is simply rewritten with some 'expr'. 5257 NewVValType = X->getType().getNonReferenceType(); 5258 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5259 X->getType().getNonReferenceType(), Loc); 5260 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5261 NewVVal = XRValue; 5262 return ExprRValue; 5263 }; 5264 // Try to perform atomicrmw xchg, otherwise simple exchange. 5265 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5266 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5267 Loc, Gen); 5268 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5269 if (Res.first) { 5270 // 'atomicrmw' instruction was generated. 5271 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5272 } 5273 } 5274 // Emit post-update store to 'v' of old/new 'x' value. 5275 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5276 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5277 // OpenMP, 2.17.7, atomic Construct 5278 // If the write, update, or capture clause is specified and the release, 5279 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5280 // the atomic operation is also a release flush. 5281 // If the read or capture clause is specified and the acquire, acq_rel, or 5282 // seq_cst clause is specified then the strong flush on exit from the atomic 5283 // operation is also an acquire flush. 5284 switch (AO) { 5285 case llvm::AtomicOrdering::Release: 5286 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5287 llvm::AtomicOrdering::Release); 5288 break; 5289 case llvm::AtomicOrdering::Acquire: 5290 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5291 llvm::AtomicOrdering::Acquire); 5292 break; 5293 case llvm::AtomicOrdering::AcquireRelease: 5294 case llvm::AtomicOrdering::SequentiallyConsistent: 5295 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5296 llvm::AtomicOrdering::AcquireRelease); 5297 break; 5298 case llvm::AtomicOrdering::Monotonic: 5299 break; 5300 case llvm::AtomicOrdering::NotAtomic: 5301 case llvm::AtomicOrdering::Unordered: 5302 llvm_unreachable("Unexpected ordering."); 5303 } 5304 } 5305 5306 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5307 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5308 const Expr *X, const Expr *V, const Expr *E, 5309 const Expr *UE, bool IsXLHSInRHSPart, 5310 SourceLocation Loc) { 5311 switch (Kind) { 5312 case OMPC_read: 5313 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5314 break; 5315 case OMPC_write: 5316 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5317 break; 5318 case OMPC_unknown: 5319 case OMPC_update: 5320 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5321 break; 5322 case OMPC_capture: 5323 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5324 IsXLHSInRHSPart, Loc); 5325 break; 5326 case OMPC_if: 5327 case OMPC_final: 5328 case OMPC_num_threads: 5329 case OMPC_private: 5330 case OMPC_firstprivate: 5331 case OMPC_lastprivate: 5332 case OMPC_reduction: 5333 case OMPC_task_reduction: 5334 case OMPC_in_reduction: 5335 case OMPC_safelen: 5336 case OMPC_simdlen: 5337 case OMPC_allocator: 5338 case OMPC_allocate: 5339 case OMPC_collapse: 5340 case OMPC_default: 5341 case OMPC_seq_cst: 5342 case OMPC_acq_rel: 5343 case OMPC_acquire: 5344 case OMPC_release: 5345 case OMPC_relaxed: 5346 case OMPC_shared: 5347 case OMPC_linear: 5348 case OMPC_aligned: 5349 case OMPC_copyin: 5350 case OMPC_copyprivate: 5351 case OMPC_flush: 5352 case OMPC_depobj: 5353 case OMPC_proc_bind: 5354 case OMPC_schedule: 5355 case OMPC_ordered: 5356 case OMPC_nowait: 5357 case OMPC_untied: 5358 case OMPC_threadprivate: 5359 case OMPC_depend: 5360 case OMPC_mergeable: 5361 case OMPC_device: 5362 case OMPC_threads: 5363 case OMPC_simd: 5364 case OMPC_map: 5365 case OMPC_num_teams: 5366 case OMPC_thread_limit: 5367 case OMPC_priority: 5368 case OMPC_grainsize: 5369 case OMPC_nogroup: 5370 case OMPC_num_tasks: 5371 case OMPC_hint: 5372 case OMPC_dist_schedule: 5373 case OMPC_defaultmap: 5374 case OMPC_uniform: 5375 case OMPC_to: 5376 case OMPC_from: 5377 case OMPC_use_device_ptr: 5378 case OMPC_use_device_addr: 5379 case OMPC_is_device_ptr: 5380 case OMPC_unified_address: 5381 case OMPC_unified_shared_memory: 5382 case OMPC_reverse_offload: 5383 case OMPC_dynamic_allocators: 5384 case OMPC_atomic_default_mem_order: 5385 case OMPC_device_type: 5386 case OMPC_match: 5387 case OMPC_nontemporal: 5388 case OMPC_order: 5389 case OMPC_destroy: 5390 case OMPC_detach: 5391 case OMPC_inclusive: 5392 case OMPC_exclusive: 5393 case OMPC_uses_allocators: 5394 case OMPC_affinity: 5395 default: 5396 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 5397 } 5398 } 5399 5400 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 5401 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 5402 bool MemOrderingSpecified = false; 5403 if (S.getSingleClause<OMPSeqCstClause>()) { 5404 AO = llvm::AtomicOrdering::SequentiallyConsistent; 5405 MemOrderingSpecified = true; 5406 } else if (S.getSingleClause<OMPAcqRelClause>()) { 5407 AO = llvm::AtomicOrdering::AcquireRelease; 5408 MemOrderingSpecified = true; 5409 } else if (S.getSingleClause<OMPAcquireClause>()) { 5410 AO = llvm::AtomicOrdering::Acquire; 5411 MemOrderingSpecified = true; 5412 } else if (S.getSingleClause<OMPReleaseClause>()) { 5413 AO = llvm::AtomicOrdering::Release; 5414 MemOrderingSpecified = true; 5415 } else if (S.getSingleClause<OMPRelaxedClause>()) { 5416 AO = llvm::AtomicOrdering::Monotonic; 5417 MemOrderingSpecified = true; 5418 } 5419 OpenMPClauseKind Kind = OMPC_unknown; 5420 for (const OMPClause *C : S.clauses()) { 5421 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 5422 // if it is first). 5423 if (C->getClauseKind() != OMPC_seq_cst && 5424 C->getClauseKind() != OMPC_acq_rel && 5425 C->getClauseKind() != OMPC_acquire && 5426 C->getClauseKind() != OMPC_release && 5427 C->getClauseKind() != OMPC_relaxed) { 5428 Kind = C->getClauseKind(); 5429 break; 5430 } 5431 } 5432 if (!MemOrderingSpecified) { 5433 llvm::AtomicOrdering DefaultOrder = 5434 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 5435 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 5436 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 5437 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 5438 Kind == OMPC_capture)) { 5439 AO = DefaultOrder; 5440 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 5441 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 5442 AO = llvm::AtomicOrdering::Release; 5443 } else if (Kind == OMPC_read) { 5444 assert(Kind == OMPC_read && "Unexpected atomic kind."); 5445 AO = llvm::AtomicOrdering::Acquire; 5446 } 5447 } 5448 } 5449 5450 LexicalScope Scope(*this, S.getSourceRange()); 5451 EmitStopPoint(S.getAssociatedStmt()); 5452 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 5453 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 5454 S.getBeginLoc()); 5455 } 5456 5457 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 5458 const OMPExecutableDirective &S, 5459 const RegionCodeGenTy &CodeGen) { 5460 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 5461 CodeGenModule &CGM = CGF.CGM; 5462 5463 // On device emit this construct as inlined code. 5464 if (CGM.getLangOpts().OpenMPIsDevice) { 5465 OMPLexicalScope Scope(CGF, S, OMPD_target); 5466 CGM.getOpenMPRuntime().emitInlinedDirective( 5467 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5468 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5469 }); 5470 return; 5471 } 5472 5473 auto LPCRegion = 5474 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 5475 llvm::Function *Fn = nullptr; 5476 llvm::Constant *FnID = nullptr; 5477 5478 const Expr *IfCond = nullptr; 5479 // Check for the at most one if clause associated with the target region. 5480 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5481 if (C->getNameModifier() == OMPD_unknown || 5482 C->getNameModifier() == OMPD_target) { 5483 IfCond = C->getCondition(); 5484 break; 5485 } 5486 } 5487 5488 // Check if we have any device clause associated with the directive. 5489 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 5490 nullptr, OMPC_DEVICE_unknown); 5491 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 5492 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 5493 5494 // Check if we have an if clause whose conditional always evaluates to false 5495 // or if we do not have any targets specified. If so the target region is not 5496 // an offload entry point. 5497 bool IsOffloadEntry = true; 5498 if (IfCond) { 5499 bool Val; 5500 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 5501 IsOffloadEntry = false; 5502 } 5503 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5504 IsOffloadEntry = false; 5505 5506 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 5507 StringRef ParentName; 5508 // In case we have Ctors/Dtors we use the complete type variant to produce 5509 // the mangling of the device outlined kernel. 5510 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 5511 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 5512 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 5513 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 5514 else 5515 ParentName = 5516 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 5517 5518 // Emit target region as a standalone region. 5519 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 5520 IsOffloadEntry, CodeGen); 5521 OMPLexicalScope Scope(CGF, S, OMPD_task); 5522 auto &&SizeEmitter = 5523 [IsOffloadEntry](CodeGenFunction &CGF, 5524 const OMPLoopDirective &D) -> llvm::Value * { 5525 if (IsOffloadEntry) { 5526 OMPLoopScope(CGF, D); 5527 // Emit calculation of the iterations count. 5528 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 5529 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 5530 /*isSigned=*/false); 5531 return NumIterations; 5532 } 5533 return nullptr; 5534 }; 5535 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 5536 SizeEmitter); 5537 } 5538 5539 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 5540 PrePostActionTy &Action) { 5541 Action.Enter(CGF); 5542 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5543 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5544 CGF.EmitOMPPrivateClause(S, PrivateScope); 5545 (void)PrivateScope.Privatize(); 5546 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5547 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5548 5549 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 5550 } 5551 5552 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 5553 StringRef ParentName, 5554 const OMPTargetDirective &S) { 5555 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5556 emitTargetRegion(CGF, S, Action); 5557 }; 5558 llvm::Function *Fn; 5559 llvm::Constant *Addr; 5560 // Emit target region as a standalone region. 5561 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5562 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5563 assert(Fn && Addr && "Target device function emission failed."); 5564 } 5565 5566 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 5567 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5568 emitTargetRegion(CGF, S, Action); 5569 }; 5570 emitCommonOMPTargetDirective(*this, S, CodeGen); 5571 } 5572 5573 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 5574 const OMPExecutableDirective &S, 5575 OpenMPDirectiveKind InnermostKind, 5576 const RegionCodeGenTy &CodeGen) { 5577 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 5578 llvm::Function *OutlinedFn = 5579 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 5580 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 5581 5582 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 5583 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 5584 if (NT || TL) { 5585 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 5586 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 5587 5588 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 5589 S.getBeginLoc()); 5590 } 5591 5592 OMPTeamsScope Scope(CGF, S); 5593 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5594 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5595 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 5596 CapturedVars); 5597 } 5598 5599 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 5600 // Emit teams region as a standalone region. 5601 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5602 Action.Enter(CGF); 5603 OMPPrivateScope PrivateScope(CGF); 5604 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5605 CGF.EmitOMPPrivateClause(S, PrivateScope); 5606 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5607 (void)PrivateScope.Privatize(); 5608 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 5609 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5610 }; 5611 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5612 emitPostUpdateForReductionClause(*this, S, 5613 [](CodeGenFunction &) { return nullptr; }); 5614 } 5615 5616 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5617 const OMPTargetTeamsDirective &S) { 5618 auto *CS = S.getCapturedStmt(OMPD_teams); 5619 Action.Enter(CGF); 5620 // Emit teams region as a standalone region. 5621 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 5622 Action.Enter(CGF); 5623 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5624 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5625 CGF.EmitOMPPrivateClause(S, PrivateScope); 5626 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5627 (void)PrivateScope.Privatize(); 5628 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5629 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5630 CGF.EmitStmt(CS->getCapturedStmt()); 5631 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5632 }; 5633 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 5634 emitPostUpdateForReductionClause(CGF, S, 5635 [](CodeGenFunction &) { return nullptr; }); 5636 } 5637 5638 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 5639 CodeGenModule &CGM, StringRef ParentName, 5640 const OMPTargetTeamsDirective &S) { 5641 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5642 emitTargetTeamsRegion(CGF, Action, S); 5643 }; 5644 llvm::Function *Fn; 5645 llvm::Constant *Addr; 5646 // Emit target region as a standalone region. 5647 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5648 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5649 assert(Fn && Addr && "Target device function emission failed."); 5650 } 5651 5652 void CodeGenFunction::EmitOMPTargetTeamsDirective( 5653 const OMPTargetTeamsDirective &S) { 5654 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5655 emitTargetTeamsRegion(CGF, Action, S); 5656 }; 5657 emitCommonOMPTargetDirective(*this, S, CodeGen); 5658 } 5659 5660 static void 5661 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5662 const OMPTargetTeamsDistributeDirective &S) { 5663 Action.Enter(CGF); 5664 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5665 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5666 }; 5667 5668 // Emit teams region as a standalone region. 5669 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5670 PrePostActionTy &Action) { 5671 Action.Enter(CGF); 5672 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5673 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5674 (void)PrivateScope.Privatize(); 5675 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5676 CodeGenDistribute); 5677 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5678 }; 5679 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 5680 emitPostUpdateForReductionClause(CGF, S, 5681 [](CodeGenFunction &) { return nullptr; }); 5682 } 5683 5684 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 5685 CodeGenModule &CGM, StringRef ParentName, 5686 const OMPTargetTeamsDistributeDirective &S) { 5687 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5688 emitTargetTeamsDistributeRegion(CGF, Action, S); 5689 }; 5690 llvm::Function *Fn; 5691 llvm::Constant *Addr; 5692 // Emit target region as a standalone region. 5693 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5694 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5695 assert(Fn && Addr && "Target device function emission failed."); 5696 } 5697 5698 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 5699 const OMPTargetTeamsDistributeDirective &S) { 5700 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5701 emitTargetTeamsDistributeRegion(CGF, Action, S); 5702 }; 5703 emitCommonOMPTargetDirective(*this, S, CodeGen); 5704 } 5705 5706 static void emitTargetTeamsDistributeSimdRegion( 5707 CodeGenFunction &CGF, PrePostActionTy &Action, 5708 const OMPTargetTeamsDistributeSimdDirective &S) { 5709 Action.Enter(CGF); 5710 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5711 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5712 }; 5713 5714 // Emit teams region as a standalone region. 5715 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5716 PrePostActionTy &Action) { 5717 Action.Enter(CGF); 5718 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5719 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5720 (void)PrivateScope.Privatize(); 5721 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5722 CodeGenDistribute); 5723 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5724 }; 5725 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 5726 emitPostUpdateForReductionClause(CGF, S, 5727 [](CodeGenFunction &) { return nullptr; }); 5728 } 5729 5730 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 5731 CodeGenModule &CGM, StringRef ParentName, 5732 const OMPTargetTeamsDistributeSimdDirective &S) { 5733 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5734 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5735 }; 5736 llvm::Function *Fn; 5737 llvm::Constant *Addr; 5738 // Emit target region as a standalone region. 5739 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5740 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5741 assert(Fn && Addr && "Target device function emission failed."); 5742 } 5743 5744 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 5745 const OMPTargetTeamsDistributeSimdDirective &S) { 5746 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5747 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5748 }; 5749 emitCommonOMPTargetDirective(*this, S, CodeGen); 5750 } 5751 5752 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 5753 const OMPTeamsDistributeDirective &S) { 5754 5755 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5756 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5757 }; 5758 5759 // Emit teams region as a standalone region. 5760 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5761 PrePostActionTy &Action) { 5762 Action.Enter(CGF); 5763 OMPPrivateScope PrivateScope(CGF); 5764 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5765 (void)PrivateScope.Privatize(); 5766 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5767 CodeGenDistribute); 5768 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5769 }; 5770 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5771 emitPostUpdateForReductionClause(*this, S, 5772 [](CodeGenFunction &) { return nullptr; }); 5773 } 5774 5775 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 5776 const OMPTeamsDistributeSimdDirective &S) { 5777 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5778 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5779 }; 5780 5781 // Emit teams region as a standalone region. 5782 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5783 PrePostActionTy &Action) { 5784 Action.Enter(CGF); 5785 OMPPrivateScope PrivateScope(CGF); 5786 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5787 (void)PrivateScope.Privatize(); 5788 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 5789 CodeGenDistribute); 5790 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5791 }; 5792 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 5793 emitPostUpdateForReductionClause(*this, S, 5794 [](CodeGenFunction &) { return nullptr; }); 5795 } 5796 5797 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 5798 const OMPTeamsDistributeParallelForDirective &S) { 5799 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5800 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5801 S.getDistInc()); 5802 }; 5803 5804 // Emit teams region as a standalone region. 5805 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5806 PrePostActionTy &Action) { 5807 Action.Enter(CGF); 5808 OMPPrivateScope PrivateScope(CGF); 5809 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5810 (void)PrivateScope.Privatize(); 5811 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5812 CodeGenDistribute); 5813 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5814 }; 5815 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 5816 emitPostUpdateForReductionClause(*this, S, 5817 [](CodeGenFunction &) { return nullptr; }); 5818 } 5819 5820 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 5821 const OMPTeamsDistributeParallelForSimdDirective &S) { 5822 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5823 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5824 S.getDistInc()); 5825 }; 5826 5827 // Emit teams region as a standalone region. 5828 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5829 PrePostActionTy &Action) { 5830 Action.Enter(CGF); 5831 OMPPrivateScope PrivateScope(CGF); 5832 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5833 (void)PrivateScope.Privatize(); 5834 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5835 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5836 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5837 }; 5838 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 5839 CodeGen); 5840 emitPostUpdateForReductionClause(*this, S, 5841 [](CodeGenFunction &) { return nullptr; }); 5842 } 5843 5844 static void emitTargetTeamsDistributeParallelForRegion( 5845 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 5846 PrePostActionTy &Action) { 5847 Action.Enter(CGF); 5848 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5849 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5850 S.getDistInc()); 5851 }; 5852 5853 // Emit teams region as a standalone region. 5854 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5855 PrePostActionTy &Action) { 5856 Action.Enter(CGF); 5857 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5858 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5859 (void)PrivateScope.Privatize(); 5860 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5861 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5862 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5863 }; 5864 5865 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 5866 CodeGenTeams); 5867 emitPostUpdateForReductionClause(CGF, S, 5868 [](CodeGenFunction &) { return nullptr; }); 5869 } 5870 5871 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 5872 CodeGenModule &CGM, StringRef ParentName, 5873 const OMPTargetTeamsDistributeParallelForDirective &S) { 5874 // Emit SPMD target teams distribute parallel for region as a standalone 5875 // region. 5876 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5877 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5878 }; 5879 llvm::Function *Fn; 5880 llvm::Constant *Addr; 5881 // Emit target region as a standalone region. 5882 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5883 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5884 assert(Fn && Addr && "Target device function emission failed."); 5885 } 5886 5887 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 5888 const OMPTargetTeamsDistributeParallelForDirective &S) { 5889 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5890 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5891 }; 5892 emitCommonOMPTargetDirective(*this, S, CodeGen); 5893 } 5894 5895 static void emitTargetTeamsDistributeParallelForSimdRegion( 5896 CodeGenFunction &CGF, 5897 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 5898 PrePostActionTy &Action) { 5899 Action.Enter(CGF); 5900 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5901 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5902 S.getDistInc()); 5903 }; 5904 5905 // Emit teams region as a standalone region. 5906 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5907 PrePostActionTy &Action) { 5908 Action.Enter(CGF); 5909 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5910 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5911 (void)PrivateScope.Privatize(); 5912 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5913 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5914 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5915 }; 5916 5917 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 5918 CodeGenTeams); 5919 emitPostUpdateForReductionClause(CGF, S, 5920 [](CodeGenFunction &) { return nullptr; }); 5921 } 5922 5923 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 5924 CodeGenModule &CGM, StringRef ParentName, 5925 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5926 // Emit SPMD target teams distribute parallel for simd region as a standalone 5927 // region. 5928 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5929 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5930 }; 5931 llvm::Function *Fn; 5932 llvm::Constant *Addr; 5933 // Emit target region as a standalone region. 5934 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5935 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5936 assert(Fn && Addr && "Target device function emission failed."); 5937 } 5938 5939 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 5940 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5941 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5942 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5943 }; 5944 emitCommonOMPTargetDirective(*this, S, CodeGen); 5945 } 5946 5947 void CodeGenFunction::EmitOMPCancellationPointDirective( 5948 const OMPCancellationPointDirective &S) { 5949 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 5950 S.getCancelRegion()); 5951 } 5952 5953 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 5954 const Expr *IfCond = nullptr; 5955 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5956 if (C->getNameModifier() == OMPD_unknown || 5957 C->getNameModifier() == OMPD_cancel) { 5958 IfCond = C->getCondition(); 5959 break; 5960 } 5961 } 5962 if (CGM.getLangOpts().OpenMPIRBuilder) { 5963 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5964 // TODO: This check is necessary as we only generate `omp parallel` through 5965 // the OpenMPIRBuilder for now. 5966 if (S.getCancelRegion() == OMPD_parallel) { 5967 llvm::Value *IfCondition = nullptr; 5968 if (IfCond) 5969 IfCondition = EmitScalarExpr(IfCond, 5970 /*IgnoreResultAssign=*/true); 5971 return Builder.restoreIP( 5972 OMPBuilder.CreateCancel(Builder, IfCondition, S.getCancelRegion())); 5973 } 5974 } 5975 5976 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 5977 S.getCancelRegion()); 5978 } 5979 5980 CodeGenFunction::JumpDest 5981 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 5982 if (Kind == OMPD_parallel || Kind == OMPD_task || 5983 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 5984 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 5985 return ReturnBlock; 5986 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 5987 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 5988 Kind == OMPD_distribute_parallel_for || 5989 Kind == OMPD_target_parallel_for || 5990 Kind == OMPD_teams_distribute_parallel_for || 5991 Kind == OMPD_target_teams_distribute_parallel_for); 5992 return OMPCancelStack.getExitBlock(); 5993 } 5994 5995 void CodeGenFunction::EmitOMPUseDevicePtrClause( 5996 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 5997 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 5998 auto OrigVarIt = C.varlist_begin(); 5999 auto InitIt = C.inits().begin(); 6000 for (const Expr *PvtVarIt : C.private_copies()) { 6001 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6002 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6003 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6004 6005 // In order to identify the right initializer we need to match the 6006 // declaration used by the mapping logic. In some cases we may get 6007 // OMPCapturedExprDecl that refers to the original declaration. 6008 const ValueDecl *MatchingVD = OrigVD; 6009 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6010 // OMPCapturedExprDecl are used to privative fields of the current 6011 // structure. 6012 const auto *ME = cast<MemberExpr>(OED->getInit()); 6013 assert(isa<CXXThisExpr>(ME->getBase()) && 6014 "Base should be the current struct!"); 6015 MatchingVD = ME->getMemberDecl(); 6016 } 6017 6018 // If we don't have information about the current list item, move on to 6019 // the next one. 6020 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6021 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6022 continue; 6023 6024 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 6025 InitAddrIt, InitVD, 6026 PvtVD]() { 6027 // Initialize the temporary initialization variable with the address we 6028 // get from the runtime library. We have to cast the source address 6029 // because it is always a void *. References are materialized in the 6030 // privatization scope, so the initialization here disregards the fact 6031 // the original variable is a reference. 6032 QualType AddrQTy = 6033 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 6034 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 6035 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 6036 setAddrOfLocalVar(InitVD, InitAddr); 6037 6038 // Emit private declaration, it will be initialized by the value we 6039 // declaration we just added to the local declarations map. 6040 EmitDecl(*PvtVD); 6041 6042 // The initialization variables reached its purpose in the emission 6043 // of the previous declaration, so we don't need it anymore. 6044 LocalDeclMap.erase(InitVD); 6045 6046 // Return the address of the private variable. 6047 return GetAddrOfLocalVar(PvtVD); 6048 }); 6049 assert(IsRegistered && "firstprivate var already registered as private"); 6050 // Silence the warning about unused variable. 6051 (void)IsRegistered; 6052 6053 ++OrigVarIt; 6054 ++InitIt; 6055 } 6056 } 6057 6058 static const VarDecl *getBaseDecl(const Expr *Ref) { 6059 const Expr *Base = Ref->IgnoreParenImpCasts(); 6060 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6061 Base = OASE->getBase()->IgnoreParenImpCasts(); 6062 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6063 Base = ASE->getBase()->IgnoreParenImpCasts(); 6064 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6065 } 6066 6067 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6068 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6069 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6070 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6071 for (const Expr *Ref : C.varlists()) { 6072 const VarDecl *OrigVD = getBaseDecl(Ref); 6073 if (!Processed.insert(OrigVD).second) 6074 continue; 6075 // In order to identify the right initializer we need to match the 6076 // declaration used by the mapping logic. In some cases we may get 6077 // OMPCapturedExprDecl that refers to the original declaration. 6078 const ValueDecl *MatchingVD = OrigVD; 6079 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6080 // OMPCapturedExprDecl are used to privative fields of the current 6081 // structure. 6082 const auto *ME = cast<MemberExpr>(OED->getInit()); 6083 assert(isa<CXXThisExpr>(ME->getBase()) && 6084 "Base should be the current struct!"); 6085 MatchingVD = ME->getMemberDecl(); 6086 } 6087 6088 // If we don't have information about the current list item, move on to 6089 // the next one. 6090 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6091 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6092 continue; 6093 6094 Address PrivAddr = InitAddrIt->getSecond(); 6095 // For declrefs and variable length array need to load the pointer for 6096 // correct mapping, since the pointer to the data was passed to the runtime. 6097 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6098 MatchingVD->getType()->isArrayType()) 6099 PrivAddr = 6100 EmitLoadOfPointer(PrivAddr, getContext() 6101 .getPointerType(OrigVD->getType()) 6102 ->castAs<PointerType>()); 6103 llvm::Type *RealTy = 6104 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6105 ->getPointerTo(); 6106 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6107 6108 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6109 } 6110 } 6111 6112 // Generate the instructions for '#pragma omp target data' directive. 6113 void CodeGenFunction::EmitOMPTargetDataDirective( 6114 const OMPTargetDataDirective &S) { 6115 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 6116 /*SeparateBeginEndCalls=*/true); 6117 6118 // Create a pre/post action to signal the privatization of the device pointer. 6119 // This action can be replaced by the OpenMP runtime code generation to 6120 // deactivate privatization. 6121 bool PrivatizeDevicePointers = false; 6122 class DevicePointerPrivActionTy : public PrePostActionTy { 6123 bool &PrivatizeDevicePointers; 6124 6125 public: 6126 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6127 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6128 void Enter(CodeGenFunction &CGF) override { 6129 PrivatizeDevicePointers = true; 6130 } 6131 }; 6132 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6133 6134 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6135 CodeGenFunction &CGF, PrePostActionTy &Action) { 6136 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6137 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6138 }; 6139 6140 // Codegen that selects whether to generate the privatization code or not. 6141 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6142 &InnermostCodeGen](CodeGenFunction &CGF, 6143 PrePostActionTy &Action) { 6144 RegionCodeGenTy RCG(InnermostCodeGen); 6145 PrivatizeDevicePointers = false; 6146 6147 // Call the pre-action to change the status of PrivatizeDevicePointers if 6148 // needed. 6149 Action.Enter(CGF); 6150 6151 if (PrivatizeDevicePointers) { 6152 OMPPrivateScope PrivateScope(CGF); 6153 // Emit all instances of the use_device_ptr clause. 6154 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6155 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6156 Info.CaptureDeviceAddrMap); 6157 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6158 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6159 Info.CaptureDeviceAddrMap); 6160 (void)PrivateScope.Privatize(); 6161 RCG(CGF); 6162 } else { 6163 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6164 RCG(CGF); 6165 } 6166 }; 6167 6168 // Forward the provided action to the privatization codegen. 6169 RegionCodeGenTy PrivRCG(PrivCodeGen); 6170 PrivRCG.setAction(Action); 6171 6172 // Notwithstanding the body of the region is emitted as inlined directive, 6173 // we don't use an inline scope as changes in the references inside the 6174 // region are expected to be visible outside, so we do not privative them. 6175 OMPLexicalScope Scope(CGF, S); 6176 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6177 PrivRCG); 6178 }; 6179 6180 RegionCodeGenTy RCG(CodeGen); 6181 6182 // If we don't have target devices, don't bother emitting the data mapping 6183 // code. 6184 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6185 RCG(*this); 6186 return; 6187 } 6188 6189 // Check if we have any if clause associated with the directive. 6190 const Expr *IfCond = nullptr; 6191 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6192 IfCond = C->getCondition(); 6193 6194 // Check if we have any device clause associated with the directive. 6195 const Expr *Device = nullptr; 6196 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6197 Device = C->getDevice(); 6198 6199 // Set the action to signal privatization of device pointers. 6200 RCG.setAction(PrivAction); 6201 6202 // Emit region code. 6203 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6204 Info); 6205 } 6206 6207 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6208 const OMPTargetEnterDataDirective &S) { 6209 // If we don't have target devices, don't bother emitting the data mapping 6210 // code. 6211 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6212 return; 6213 6214 // Check if we have any if clause associated with the directive. 6215 const Expr *IfCond = nullptr; 6216 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6217 IfCond = C->getCondition(); 6218 6219 // Check if we have any device clause associated with the directive. 6220 const Expr *Device = nullptr; 6221 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6222 Device = C->getDevice(); 6223 6224 OMPLexicalScope Scope(*this, S, OMPD_task); 6225 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6226 } 6227 6228 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6229 const OMPTargetExitDataDirective &S) { 6230 // If we don't have target devices, don't bother emitting the data mapping 6231 // code. 6232 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6233 return; 6234 6235 // Check if we have any if clause associated with the directive. 6236 const Expr *IfCond = nullptr; 6237 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6238 IfCond = C->getCondition(); 6239 6240 // Check if we have any device clause associated with the directive. 6241 const Expr *Device = nullptr; 6242 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6243 Device = C->getDevice(); 6244 6245 OMPLexicalScope Scope(*this, S, OMPD_task); 6246 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6247 } 6248 6249 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6250 const OMPTargetParallelDirective &S, 6251 PrePostActionTy &Action) { 6252 // Get the captured statement associated with the 'parallel' region. 6253 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6254 Action.Enter(CGF); 6255 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6256 Action.Enter(CGF); 6257 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6258 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6259 CGF.EmitOMPPrivateClause(S, PrivateScope); 6260 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6261 (void)PrivateScope.Privatize(); 6262 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6263 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6264 // TODO: Add support for clauses. 6265 CGF.EmitStmt(CS->getCapturedStmt()); 6266 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6267 }; 6268 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6269 emitEmptyBoundParameters); 6270 emitPostUpdateForReductionClause(CGF, S, 6271 [](CodeGenFunction &) { return nullptr; }); 6272 } 6273 6274 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6275 CodeGenModule &CGM, StringRef ParentName, 6276 const OMPTargetParallelDirective &S) { 6277 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6278 emitTargetParallelRegion(CGF, S, Action); 6279 }; 6280 llvm::Function *Fn; 6281 llvm::Constant *Addr; 6282 // Emit target region as a standalone region. 6283 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6284 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6285 assert(Fn && Addr && "Target device function emission failed."); 6286 } 6287 6288 void CodeGenFunction::EmitOMPTargetParallelDirective( 6289 const OMPTargetParallelDirective &S) { 6290 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6291 emitTargetParallelRegion(CGF, S, Action); 6292 }; 6293 emitCommonOMPTargetDirective(*this, S, CodeGen); 6294 } 6295 6296 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6297 const OMPTargetParallelForDirective &S, 6298 PrePostActionTy &Action) { 6299 Action.Enter(CGF); 6300 // Emit directive as a combined directive that consists of two implicit 6301 // directives: 'parallel' with 'for' directive. 6302 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6303 Action.Enter(CGF); 6304 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6305 CGF, OMPD_target_parallel_for, S.hasCancel()); 6306 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6307 emitDispatchForLoopBounds); 6308 }; 6309 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6310 emitEmptyBoundParameters); 6311 } 6312 6313 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6314 CodeGenModule &CGM, StringRef ParentName, 6315 const OMPTargetParallelForDirective &S) { 6316 // Emit SPMD target parallel for region as a standalone region. 6317 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6318 emitTargetParallelForRegion(CGF, S, Action); 6319 }; 6320 llvm::Function *Fn; 6321 llvm::Constant *Addr; 6322 // Emit target region as a standalone region. 6323 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6324 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6325 assert(Fn && Addr && "Target device function emission failed."); 6326 } 6327 6328 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6329 const OMPTargetParallelForDirective &S) { 6330 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6331 emitTargetParallelForRegion(CGF, S, Action); 6332 }; 6333 emitCommonOMPTargetDirective(*this, S, CodeGen); 6334 } 6335 6336 static void 6337 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 6338 const OMPTargetParallelForSimdDirective &S, 6339 PrePostActionTy &Action) { 6340 Action.Enter(CGF); 6341 // Emit directive as a combined directive that consists of two implicit 6342 // directives: 'parallel' with 'for' directive. 6343 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6344 Action.Enter(CGF); 6345 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6346 emitDispatchForLoopBounds); 6347 }; 6348 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 6349 emitEmptyBoundParameters); 6350 } 6351 6352 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 6353 CodeGenModule &CGM, StringRef ParentName, 6354 const OMPTargetParallelForSimdDirective &S) { 6355 // Emit SPMD target parallel for region as a standalone region. 6356 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6357 emitTargetParallelForSimdRegion(CGF, S, Action); 6358 }; 6359 llvm::Function *Fn; 6360 llvm::Constant *Addr; 6361 // Emit target region as a standalone region. 6362 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6363 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6364 assert(Fn && Addr && "Target device function emission failed."); 6365 } 6366 6367 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 6368 const OMPTargetParallelForSimdDirective &S) { 6369 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6370 emitTargetParallelForSimdRegion(CGF, S, Action); 6371 }; 6372 emitCommonOMPTargetDirective(*this, S, CodeGen); 6373 } 6374 6375 /// Emit a helper variable and return corresponding lvalue. 6376 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 6377 const ImplicitParamDecl *PVD, 6378 CodeGenFunction::OMPPrivateScope &Privates) { 6379 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 6380 Privates.addPrivate(VDecl, 6381 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 6382 } 6383 6384 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 6385 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 6386 // Emit outlined function for task construct. 6387 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 6388 Address CapturedStruct = Address::invalid(); 6389 { 6390 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6391 CapturedStruct = GenerateCapturedStmtArgument(*CS); 6392 } 6393 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 6394 const Expr *IfCond = nullptr; 6395 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6396 if (C->getNameModifier() == OMPD_unknown || 6397 C->getNameModifier() == OMPD_taskloop) { 6398 IfCond = C->getCondition(); 6399 break; 6400 } 6401 } 6402 6403 OMPTaskDataTy Data; 6404 // Check if taskloop must be emitted without taskgroup. 6405 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 6406 // TODO: Check if we should emit tied or untied task. 6407 Data.Tied = true; 6408 // Set scheduling for taskloop 6409 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 6410 // grainsize clause 6411 Data.Schedule.setInt(/*IntVal=*/false); 6412 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 6413 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 6414 // num_tasks clause 6415 Data.Schedule.setInt(/*IntVal=*/true); 6416 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 6417 } 6418 6419 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 6420 // if (PreCond) { 6421 // for (IV in 0..LastIteration) BODY; 6422 // <Final counter/linear vars updates>; 6423 // } 6424 // 6425 6426 // Emit: if (PreCond) - begin. 6427 // If the condition constant folds and can be elided, avoid emitting the 6428 // whole loop. 6429 bool CondConstant; 6430 llvm::BasicBlock *ContBlock = nullptr; 6431 OMPLoopScope PreInitScope(CGF, S); 6432 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 6433 if (!CondConstant) 6434 return; 6435 } else { 6436 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 6437 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 6438 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 6439 CGF.getProfileCount(&S)); 6440 CGF.EmitBlock(ThenBlock); 6441 CGF.incrementProfileCounter(&S); 6442 } 6443 6444 (void)CGF.EmitOMPLinearClauseInit(S); 6445 6446 OMPPrivateScope LoopScope(CGF); 6447 // Emit helper vars inits. 6448 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 6449 auto *I = CS->getCapturedDecl()->param_begin(); 6450 auto *LBP = std::next(I, LowerBound); 6451 auto *UBP = std::next(I, UpperBound); 6452 auto *STP = std::next(I, Stride); 6453 auto *LIP = std::next(I, LastIter); 6454 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 6455 LoopScope); 6456 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 6457 LoopScope); 6458 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 6459 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 6460 LoopScope); 6461 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 6462 CGF.EmitOMPLinearClause(S, LoopScope); 6463 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 6464 (void)LoopScope.Privatize(); 6465 // Emit the loop iteration variable. 6466 const Expr *IVExpr = S.getIterationVariable(); 6467 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 6468 CGF.EmitVarDecl(*IVDecl); 6469 CGF.EmitIgnoredExpr(S.getInit()); 6470 6471 // Emit the iterations count variable. 6472 // If it is not a variable, Sema decided to calculate iterations count on 6473 // each iteration (e.g., it is foldable into a constant). 6474 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 6475 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 6476 // Emit calculation of the iterations count. 6477 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 6478 } 6479 6480 { 6481 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6482 emitCommonSimdLoop( 6483 CGF, S, 6484 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6485 if (isOpenMPSimdDirective(S.getDirectiveKind())) 6486 CGF.EmitOMPSimdInit(S); 6487 }, 6488 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 6489 CGF.EmitOMPInnerLoop( 6490 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 6491 [&S](CodeGenFunction &CGF) { 6492 emitOMPLoopBodyWithStopPoint(CGF, S, 6493 CodeGenFunction::JumpDest()); 6494 }, 6495 [](CodeGenFunction &) {}); 6496 }); 6497 } 6498 // Emit: if (PreCond) - end. 6499 if (ContBlock) { 6500 CGF.EmitBranch(ContBlock); 6501 CGF.EmitBlock(ContBlock, true); 6502 } 6503 // Emit final copy of the lastprivate variables if IsLastIter != 0. 6504 if (HasLastprivateClause) { 6505 CGF.EmitOMPLastprivateClauseFinal( 6506 S, isOpenMPSimdDirective(S.getDirectiveKind()), 6507 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 6508 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6509 (*LIP)->getType(), S.getBeginLoc()))); 6510 } 6511 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 6512 return CGF.Builder.CreateIsNotNull( 6513 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6514 (*LIP)->getType(), S.getBeginLoc())); 6515 }); 6516 }; 6517 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 6518 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 6519 const OMPTaskDataTy &Data) { 6520 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 6521 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 6522 OMPLoopScope PreInitScope(CGF, S); 6523 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 6524 OutlinedFn, SharedsTy, 6525 CapturedStruct, IfCond, Data); 6526 }; 6527 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 6528 CodeGen); 6529 }; 6530 if (Data.Nogroup) { 6531 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 6532 } else { 6533 CGM.getOpenMPRuntime().emitTaskgroupRegion( 6534 *this, 6535 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 6536 PrePostActionTy &Action) { 6537 Action.Enter(CGF); 6538 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 6539 Data); 6540 }, 6541 S.getBeginLoc()); 6542 } 6543 } 6544 6545 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 6546 auto LPCRegion = 6547 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6548 EmitOMPTaskLoopBasedDirective(S); 6549 } 6550 6551 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 6552 const OMPTaskLoopSimdDirective &S) { 6553 auto LPCRegion = 6554 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6555 OMPLexicalScope Scope(*this, S); 6556 EmitOMPTaskLoopBasedDirective(S); 6557 } 6558 6559 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 6560 const OMPMasterTaskLoopDirective &S) { 6561 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6562 Action.Enter(CGF); 6563 EmitOMPTaskLoopBasedDirective(S); 6564 }; 6565 auto LPCRegion = 6566 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6567 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 6568 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 6569 } 6570 6571 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 6572 const OMPMasterTaskLoopSimdDirective &S) { 6573 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6574 Action.Enter(CGF); 6575 EmitOMPTaskLoopBasedDirective(S); 6576 }; 6577 auto LPCRegion = 6578 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6579 OMPLexicalScope Scope(*this, S); 6580 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 6581 } 6582 6583 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 6584 const OMPParallelMasterTaskLoopDirective &S) { 6585 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6586 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 6587 PrePostActionTy &Action) { 6588 Action.Enter(CGF); 6589 CGF.EmitOMPTaskLoopBasedDirective(S); 6590 }; 6591 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 6592 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 6593 S.getBeginLoc()); 6594 }; 6595 auto LPCRegion = 6596 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6597 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 6598 emitEmptyBoundParameters); 6599 } 6600 6601 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 6602 const OMPParallelMasterTaskLoopSimdDirective &S) { 6603 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6604 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 6605 PrePostActionTy &Action) { 6606 Action.Enter(CGF); 6607 CGF.EmitOMPTaskLoopBasedDirective(S); 6608 }; 6609 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 6610 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 6611 S.getBeginLoc()); 6612 }; 6613 auto LPCRegion = 6614 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6615 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 6616 emitEmptyBoundParameters); 6617 } 6618 6619 // Generate the instructions for '#pragma omp target update' directive. 6620 void CodeGenFunction::EmitOMPTargetUpdateDirective( 6621 const OMPTargetUpdateDirective &S) { 6622 // If we don't have target devices, don't bother emitting the data mapping 6623 // code. 6624 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6625 return; 6626 6627 // Check if we have any if clause associated with the directive. 6628 const Expr *IfCond = nullptr; 6629 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6630 IfCond = C->getCondition(); 6631 6632 // Check if we have any device clause associated with the directive. 6633 const Expr *Device = nullptr; 6634 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6635 Device = C->getDevice(); 6636 6637 OMPLexicalScope Scope(*this, S, OMPD_task); 6638 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6639 } 6640 6641 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 6642 const OMPExecutableDirective &D) { 6643 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 6644 EmitOMPScanDirective(*SD); 6645 return; 6646 } 6647 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 6648 return; 6649 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 6650 OMPPrivateScope GlobalsScope(CGF); 6651 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 6652 // Capture global firstprivates to avoid crash. 6653 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 6654 for (const Expr *Ref : C->varlists()) { 6655 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 6656 if (!DRE) 6657 continue; 6658 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6659 if (!VD || VD->hasLocalStorage()) 6660 continue; 6661 if (!CGF.LocalDeclMap.count(VD)) { 6662 LValue GlobLVal = CGF.EmitLValue(Ref); 6663 GlobalsScope.addPrivate( 6664 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 6665 } 6666 } 6667 } 6668 } 6669 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 6670 (void)GlobalsScope.Privatize(); 6671 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 6672 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 6673 } else { 6674 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 6675 for (const Expr *E : LD->counters()) { 6676 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 6677 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 6678 LValue GlobLVal = CGF.EmitLValue(E); 6679 GlobalsScope.addPrivate( 6680 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 6681 } 6682 if (isa<OMPCapturedExprDecl>(VD)) { 6683 // Emit only those that were not explicitly referenced in clauses. 6684 if (!CGF.LocalDeclMap.count(VD)) 6685 CGF.EmitVarDecl(*VD); 6686 } 6687 } 6688 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 6689 if (!C->getNumForLoops()) 6690 continue; 6691 for (unsigned I = LD->getCollapsedNumber(), 6692 E = C->getLoopNumIterations().size(); 6693 I < E; ++I) { 6694 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 6695 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 6696 // Emit only those that were not explicitly referenced in clauses. 6697 if (!CGF.LocalDeclMap.count(VD)) 6698 CGF.EmitVarDecl(*VD); 6699 } 6700 } 6701 } 6702 } 6703 (void)GlobalsScope.Privatize(); 6704 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 6705 } 6706 }; 6707 if (D.getDirectiveKind() == OMPD_atomic || 6708 D.getDirectiveKind() == OMPD_critical || 6709 D.getDirectiveKind() == OMPD_section || 6710 D.getDirectiveKind() == OMPD_master) { 6711 EmitStmt(D.getAssociatedStmt()); 6712 } else { 6713 auto LPCRegion = 6714 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 6715 OMPSimdLexicalScope Scope(*this, D); 6716 CGM.getOpenMPRuntime().emitInlinedDirective( 6717 *this, 6718 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 6719 : D.getDirectiveKind(), 6720 CodeGen); 6721 } 6722 // Check for outer lastprivate conditional update. 6723 checkForLastprivateConditionalUpdate(*this, D); 6724 } 6725