1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 using namespace clang; 21 using namespace CodeGen; 22 23 void CodeGenFunction::GenerateOpenMPCapturedVars( 24 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 25 const RecordDecl *RD = S.getCapturedRecordDecl(); 26 auto CurField = RD->field_begin(); 27 auto CurCap = S.captures().begin(); 28 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 29 E = S.capture_init_end(); 30 I != E; ++I, ++CurField, ++CurCap) { 31 if (CurField->hasCapturedVLAType()) { 32 auto VAT = CurField->getCapturedVLAType(); 33 CapturedVars.push_back(VLASizeMap[VAT->getSizeExpr()]); 34 } else if (CurCap->capturesThis()) 35 CapturedVars.push_back(CXXThisValue); 36 else 37 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 38 } 39 } 40 41 llvm::Function * 42 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 43 assert( 44 CapturedStmtInfo && 45 "CapturedStmtInfo should be set when generating the captured function"); 46 const CapturedDecl *CD = S.getCapturedDecl(); 47 const RecordDecl *RD = S.getCapturedRecordDecl(); 48 assert(CD->hasBody() && "missing CapturedDecl body"); 49 50 // Build the argument list. 51 ASTContext &Ctx = CGM.getContext(); 52 FunctionArgList Args; 53 Args.append(CD->param_begin(), 54 std::next(CD->param_begin(), CD->getContextParamPosition())); 55 auto I = S.captures().begin(); 56 for (auto *FD : RD->fields()) { 57 QualType ArgType = FD->getType(); 58 IdentifierInfo *II = nullptr; 59 VarDecl *CapVar = nullptr; 60 if (I->capturesVariable()) { 61 CapVar = I->getCapturedVar(); 62 II = CapVar->getIdentifier(); 63 } else if (I->capturesThis()) 64 II = &getContext().Idents.get("this"); 65 else { 66 assert(I->capturesVariableArrayType()); 67 II = &getContext().Idents.get("vla"); 68 } 69 if (ArgType->isVariablyModifiedType()) 70 ArgType = getContext().getVariableArrayDecayedType(ArgType); 71 Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr, 72 FD->getLocation(), II, ArgType)); 73 ++I; 74 } 75 Args.append( 76 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 77 CD->param_end()); 78 79 // Create the function declaration. 80 FunctionType::ExtInfo ExtInfo; 81 const CGFunctionInfo &FuncInfo = 82 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 83 /*IsVariadic=*/false); 84 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 85 86 llvm::Function *F = llvm::Function::Create( 87 FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 88 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 89 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 90 if (CD->isNothrow()) 91 F->addFnAttr(llvm::Attribute::NoUnwind); 92 93 // Generate the function. 94 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 95 CD->getBody()->getLocStart()); 96 unsigned Cnt = CD->getContextParamPosition(); 97 I = S.captures().begin(); 98 for (auto *FD : RD->fields()) { 99 LValue ArgLVal = 100 MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(), 101 AlignmentSource::Decl); 102 if (FD->hasCapturedVLAType()) { 103 auto *ExprArg = 104 EmitLoadOfLValue(ArgLVal, SourceLocation()).getScalarVal(); 105 auto VAT = FD->getCapturedVLAType(); 106 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 107 } else if (I->capturesVariable()) { 108 auto *Var = I->getCapturedVar(); 109 QualType VarTy = Var->getType(); 110 Address ArgAddr = ArgLVal.getAddress(); 111 if (!VarTy->isReferenceType()) { 112 ArgAddr = EmitLoadOfReference( 113 ArgAddr, ArgLVal.getType()->castAs<ReferenceType>()); 114 } 115 setAddrOfLocalVar( 116 Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var))); 117 } else { 118 // If 'this' is captured, load it into CXXThisValue. 119 assert(I->capturesThis()); 120 CXXThisValue = 121 EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal(); 122 } 123 ++Cnt, ++I; 124 } 125 126 PGO.assignRegionCounters(CD, F); 127 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 128 FinishFunction(CD->getBodyRBrace()); 129 130 return F; 131 } 132 133 //===----------------------------------------------------------------------===// 134 // OpenMP Directive Emission 135 //===----------------------------------------------------------------------===// 136 void CodeGenFunction::EmitOMPAggregateAssign( 137 Address DestAddr, Address SrcAddr, QualType OriginalType, 138 const llvm::function_ref<void(Address, Address)> &CopyGen) { 139 // Perform element-by-element initialization. 140 QualType ElementTy; 141 142 // Drill down to the base element type on both arrays. 143 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 144 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 145 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 146 147 auto SrcBegin = SrcAddr.getPointer(); 148 auto DestBegin = DestAddr.getPointer(); 149 // Cast from pointer to array type to pointer to single element. 150 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 151 // The basic structure here is a while-do loop. 152 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 153 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 154 auto IsEmpty = 155 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 156 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 157 158 // Enter the loop body, making that address the current address. 159 auto EntryBB = Builder.GetInsertBlock(); 160 EmitBlock(BodyBB); 161 162 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 163 164 llvm::PHINode *SrcElementPHI = 165 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 166 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 167 Address SrcElementCurrent = 168 Address(SrcElementPHI, 169 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 170 171 llvm::PHINode *DestElementPHI = 172 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 173 DestElementPHI->addIncoming(DestBegin, EntryBB); 174 Address DestElementCurrent = 175 Address(DestElementPHI, 176 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 177 178 // Emit copy. 179 CopyGen(DestElementCurrent, SrcElementCurrent); 180 181 // Shift the address forward by one element. 182 auto DestElementNext = Builder.CreateConstGEP1_32( 183 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 184 auto SrcElementNext = Builder.CreateConstGEP1_32( 185 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 186 // Check whether we've reached the end. 187 auto Done = 188 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 189 Builder.CreateCondBr(Done, DoneBB, BodyBB); 190 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 191 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 192 193 // Done. 194 EmitBlock(DoneBB, /*IsFinished=*/true); 195 } 196 197 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 198 Address SrcAddr, const VarDecl *DestVD, 199 const VarDecl *SrcVD, const Expr *Copy) { 200 if (OriginalType->isArrayType()) { 201 auto *BO = dyn_cast<BinaryOperator>(Copy); 202 if (BO && BO->getOpcode() == BO_Assign) { 203 // Perform simple memcpy for simple copying. 204 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 205 } else { 206 // For arrays with complex element types perform element by element 207 // copying. 208 EmitOMPAggregateAssign( 209 DestAddr, SrcAddr, OriginalType, 210 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 211 // Working with the single array element, so have to remap 212 // destination and source variables to corresponding array 213 // elements. 214 CodeGenFunction::OMPPrivateScope Remap(*this); 215 Remap.addPrivate(DestVD, [DestElement]() -> Address { 216 return DestElement; 217 }); 218 Remap.addPrivate( 219 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 220 (void)Remap.Privatize(); 221 EmitIgnoredExpr(Copy); 222 }); 223 } 224 } else { 225 // Remap pseudo source variable to private copy. 226 CodeGenFunction::OMPPrivateScope Remap(*this); 227 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 228 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 229 (void)Remap.Privatize(); 230 // Emit copying of the whole variable. 231 EmitIgnoredExpr(Copy); 232 } 233 } 234 235 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 236 OMPPrivateScope &PrivateScope) { 237 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 238 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 239 auto IRef = C->varlist_begin(); 240 auto InitsRef = C->inits().begin(); 241 for (auto IInit : C->private_copies()) { 242 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 243 if (EmittedAsFirstprivate.count(OrigVD) == 0) { 244 EmittedAsFirstprivate.insert(OrigVD); 245 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 246 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 247 bool IsRegistered; 248 DeclRefExpr DRE( 249 const_cast<VarDecl *>(OrigVD), 250 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 251 OrigVD) != nullptr, 252 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 253 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 254 QualType Type = OrigVD->getType(); 255 if (Type->isArrayType()) { 256 // Emit VarDecl with copy init for arrays. 257 // Get the address of the original variable captured in current 258 // captured region. 259 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 260 auto Emission = EmitAutoVarAlloca(*VD); 261 auto *Init = VD->getInit(); 262 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 263 // Perform simple memcpy. 264 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 265 Type); 266 } else { 267 EmitOMPAggregateAssign( 268 Emission.getAllocatedAddress(), OriginalAddr, Type, 269 [this, VDInit, Init](Address DestElement, 270 Address SrcElement) { 271 // Clean up any temporaries needed by the initialization. 272 RunCleanupsScope InitScope(*this); 273 // Emit initialization for single element. 274 setAddrOfLocalVar(VDInit, SrcElement); 275 EmitAnyExprToMem(Init, DestElement, 276 Init->getType().getQualifiers(), 277 /*IsInitializer*/ false); 278 LocalDeclMap.erase(VDInit); 279 }); 280 } 281 EmitAutoVarCleanups(Emission); 282 return Emission.getAllocatedAddress(); 283 }); 284 } else { 285 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 286 // Emit private VarDecl with copy init. 287 // Remap temp VDInit variable to the address of the original 288 // variable 289 // (for proper handling of captured global variables). 290 setAddrOfLocalVar(VDInit, OriginalAddr); 291 EmitDecl(*VD); 292 LocalDeclMap.erase(VDInit); 293 return GetAddrOfLocalVar(VD); 294 }); 295 } 296 assert(IsRegistered && 297 "firstprivate var already registered as private"); 298 // Silence the warning about unused variable. 299 (void)IsRegistered; 300 } 301 ++IRef, ++InitsRef; 302 } 303 } 304 return !EmittedAsFirstprivate.empty(); 305 } 306 307 void CodeGenFunction::EmitOMPPrivateClause( 308 const OMPExecutableDirective &D, 309 CodeGenFunction::OMPPrivateScope &PrivateScope) { 310 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 311 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 312 auto IRef = C->varlist_begin(); 313 for (auto IInit : C->private_copies()) { 314 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 315 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 316 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 317 bool IsRegistered = 318 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 319 // Emit private VarDecl with copy init. 320 EmitDecl(*VD); 321 return GetAddrOfLocalVar(VD); 322 }); 323 assert(IsRegistered && "private var already registered as private"); 324 // Silence the warning about unused variable. 325 (void)IsRegistered; 326 } 327 ++IRef; 328 } 329 } 330 } 331 332 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 333 // threadprivate_var1 = master_threadprivate_var1; 334 // operator=(threadprivate_var2, master_threadprivate_var2); 335 // ... 336 // __kmpc_barrier(&loc, global_tid); 337 llvm::DenseSet<const VarDecl *> CopiedVars; 338 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 339 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 340 auto IRef = C->varlist_begin(); 341 auto ISrcRef = C->source_exprs().begin(); 342 auto IDestRef = C->destination_exprs().begin(); 343 for (auto *AssignOp : C->assignment_ops()) { 344 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 345 QualType Type = VD->getType(); 346 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 347 348 // Get the address of the master variable. If we are emitting code with 349 // TLS support, the address is passed from the master as field in the 350 // captured declaration. 351 Address MasterAddr = Address::invalid(); 352 if (getLangOpts().OpenMPUseTLS && 353 getContext().getTargetInfo().isTLSSupported()) { 354 assert(CapturedStmtInfo->lookup(VD) && 355 "Copyin threadprivates should have been captured!"); 356 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 357 VK_LValue, (*IRef)->getExprLoc()); 358 MasterAddr = EmitLValue(&DRE).getAddress(); 359 LocalDeclMap.erase(VD); 360 } else { 361 MasterAddr = 362 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 363 : CGM.GetAddrOfGlobal(VD), 364 getContext().getDeclAlign(VD)); 365 } 366 // Get the address of the threadprivate variable. 367 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 368 if (CopiedVars.size() == 1) { 369 // At first check if current thread is a master thread. If it is, no 370 // need to copy data. 371 CopyBegin = createBasicBlock("copyin.not.master"); 372 CopyEnd = createBasicBlock("copyin.not.master.end"); 373 Builder.CreateCondBr( 374 Builder.CreateICmpNE( 375 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 376 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 377 CopyBegin, CopyEnd); 378 EmitBlock(CopyBegin); 379 } 380 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 381 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 382 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 383 } 384 ++IRef; 385 ++ISrcRef; 386 ++IDestRef; 387 } 388 } 389 if (CopyEnd) { 390 // Exit out of copying procedure for non-master thread. 391 EmitBlock(CopyEnd, /*IsFinished=*/true); 392 return true; 393 } 394 return false; 395 } 396 397 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 398 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 399 bool HasAtLeastOneLastprivate = false; 400 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 401 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 402 HasAtLeastOneLastprivate = true; 403 auto IRef = C->varlist_begin(); 404 auto IDestRef = C->destination_exprs().begin(); 405 for (auto *IInit : C->private_copies()) { 406 // Keep the address of the original variable for future update at the end 407 // of the loop. 408 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 409 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 410 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 411 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 412 DeclRefExpr DRE( 413 const_cast<VarDecl *>(OrigVD), 414 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 415 OrigVD) != nullptr, 416 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 417 return EmitLValue(&DRE).getAddress(); 418 }); 419 // Check if the variable is also a firstprivate: in this case IInit is 420 // not generated. Initialization of this variable will happen in codegen 421 // for 'firstprivate' clause. 422 if (IInit) { 423 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 424 bool IsRegistered = 425 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 426 // Emit private VarDecl with copy init. 427 EmitDecl(*VD); 428 return GetAddrOfLocalVar(VD); 429 }); 430 assert(IsRegistered && 431 "lastprivate var already registered as private"); 432 (void)IsRegistered; 433 } 434 } 435 ++IRef, ++IDestRef; 436 } 437 } 438 return HasAtLeastOneLastprivate; 439 } 440 441 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 442 const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) { 443 // Emit following code: 444 // if (<IsLastIterCond>) { 445 // orig_var1 = private_orig_var1; 446 // ... 447 // orig_varn = private_orig_varn; 448 // } 449 llvm::BasicBlock *ThenBB = nullptr; 450 llvm::BasicBlock *DoneBB = nullptr; 451 if (IsLastIterCond) { 452 ThenBB = createBasicBlock(".omp.lastprivate.then"); 453 DoneBB = createBasicBlock(".omp.lastprivate.done"); 454 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 455 EmitBlock(ThenBB); 456 } 457 llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates; 458 const Expr *LastIterVal = nullptr; 459 const Expr *IVExpr = nullptr; 460 const Expr *IncExpr = nullptr; 461 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 462 if (isOpenMPWorksharingDirective(D.getDirectiveKind())) { 463 LastIterVal = cast<VarDecl>(cast<DeclRefExpr>( 464 LoopDirective->getUpperBoundVariable()) 465 ->getDecl()) 466 ->getAnyInitializer(); 467 IVExpr = LoopDirective->getIterationVariable(); 468 IncExpr = LoopDirective->getInc(); 469 auto IUpdate = LoopDirective->updates().begin(); 470 for (auto *E : LoopDirective->counters()) { 471 auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 472 LoopCountersAndUpdates[D] = *IUpdate; 473 ++IUpdate; 474 } 475 } 476 } 477 { 478 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 479 bool FirstLCV = true; 480 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 481 auto IRef = C->varlist_begin(); 482 auto ISrcRef = C->source_exprs().begin(); 483 auto IDestRef = C->destination_exprs().begin(); 484 for (auto *AssignOp : C->assignment_ops()) { 485 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 486 QualType Type = PrivateVD->getType(); 487 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 488 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 489 // If lastprivate variable is a loop control variable for loop-based 490 // directive, update its value before copyin back to original 491 // variable. 492 if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) { 493 if (FirstLCV && LastIterVal) { 494 EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(), 495 IVExpr->getType().getQualifiers(), 496 /*IsInitializer=*/false); 497 EmitIgnoredExpr(IncExpr); 498 FirstLCV = false; 499 } 500 EmitIgnoredExpr(UpExpr); 501 } 502 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 503 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 504 // Get the address of the original variable. 505 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 506 // Get the address of the private variable. 507 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 508 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 509 PrivateAddr = 510 Address(Builder.CreateLoad(PrivateAddr), 511 getNaturalTypeAlignment(RefTy->getPointeeType())); 512 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 513 } 514 ++IRef; 515 ++ISrcRef; 516 ++IDestRef; 517 } 518 } 519 } 520 if (IsLastIterCond) { 521 EmitBlock(DoneBB, /*IsFinished=*/true); 522 } 523 } 524 525 void CodeGenFunction::EmitOMPReductionClauseInit( 526 const OMPExecutableDirective &D, 527 CodeGenFunction::OMPPrivateScope &PrivateScope) { 528 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 529 auto ILHS = C->lhs_exprs().begin(); 530 auto IRHS = C->rhs_exprs().begin(); 531 for (auto IRef : C->varlists()) { 532 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 533 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 534 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 535 // Store the address of the original variable associated with the LHS 536 // implicit variable. 537 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> Address { 538 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 539 CapturedStmtInfo->lookup(OrigVD) != nullptr, 540 IRef->getType(), VK_LValue, IRef->getExprLoc()); 541 return EmitLValue(&DRE).getAddress(); 542 }); 543 // Emit reduction copy. 544 bool IsRegistered = 545 PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> Address { 546 // Emit private VarDecl with reduction init. 547 EmitDecl(*PrivateVD); 548 return GetAddrOfLocalVar(PrivateVD); 549 }); 550 assert(IsRegistered && "private var already registered as private"); 551 // Silence the warning about unused variable. 552 (void)IsRegistered; 553 ++ILHS, ++IRHS; 554 } 555 } 556 } 557 558 void CodeGenFunction::EmitOMPReductionClauseFinal( 559 const OMPExecutableDirective &D) { 560 llvm::SmallVector<const Expr *, 8> LHSExprs; 561 llvm::SmallVector<const Expr *, 8> RHSExprs; 562 llvm::SmallVector<const Expr *, 8> ReductionOps; 563 bool HasAtLeastOneReduction = false; 564 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 565 HasAtLeastOneReduction = true; 566 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 567 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 568 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 569 } 570 if (HasAtLeastOneReduction) { 571 // Emit nowait reduction if nowait clause is present or directive is a 572 // parallel directive (it always has implicit barrier). 573 CGM.getOpenMPRuntime().emitReduction( 574 *this, D.getLocEnd(), LHSExprs, RHSExprs, ReductionOps, 575 D.getSingleClause<OMPNowaitClause>() || 576 isOpenMPParallelDirective(D.getDirectiveKind()) || 577 D.getDirectiveKind() == OMPD_simd, 578 D.getDirectiveKind() == OMPD_simd); 579 } 580 } 581 582 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 583 const OMPExecutableDirective &S, 584 OpenMPDirectiveKind InnermostKind, 585 const RegionCodeGenTy &CodeGen) { 586 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 587 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 588 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 589 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 590 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 591 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 592 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 593 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 594 /*IgnoreResultAssign*/ true); 595 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 596 CGF, NumThreads, NumThreadsClause->getLocStart()); 597 } 598 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 599 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 600 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 601 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 602 } 603 const Expr *IfCond = nullptr; 604 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 605 if (C->getNameModifier() == OMPD_unknown || 606 C->getNameModifier() == OMPD_parallel) { 607 IfCond = C->getCondition(); 608 break; 609 } 610 } 611 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 612 CapturedVars, IfCond); 613 } 614 615 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 616 LexicalScope Scope(*this, S.getSourceRange()); 617 // Emit parallel region as a standalone region. 618 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 619 OMPPrivateScope PrivateScope(CGF); 620 bool Copyins = CGF.EmitOMPCopyinClause(S); 621 bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope); 622 if (Copyins || Firstprivates) { 623 // Emit implicit barrier to synchronize threads and avoid data races on 624 // initialization of firstprivate variables or propagation master's thread 625 // values of threadprivate variables to local instances of that variables 626 // of all other implicit threads. 627 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 628 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 629 /*ForceSimpleCall=*/true); 630 } 631 CGF.EmitOMPPrivateClause(S, PrivateScope); 632 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 633 (void)PrivateScope.Privatize(); 634 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 635 CGF.EmitOMPReductionClauseFinal(S); 636 // Emit implicit barrier at the end of the 'parallel' directive. 637 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 638 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 639 /*ForceSimpleCall=*/true); 640 }; 641 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 642 } 643 644 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 645 JumpDest LoopExit) { 646 RunCleanupsScope BodyScope(*this); 647 // Update counters values on current iteration. 648 for (auto I : D.updates()) { 649 EmitIgnoredExpr(I); 650 } 651 // Update the linear variables. 652 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 653 for (auto U : C->updates()) { 654 EmitIgnoredExpr(U); 655 } 656 } 657 658 // On a continue in the body, jump to the end. 659 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 660 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 661 // Emit loop body. 662 EmitStmt(D.getBody()); 663 // The end (updates/cleanups). 664 EmitBlock(Continue.getBlock()); 665 BreakContinueStack.pop_back(); 666 // TODO: Update lastprivates if the SeparateIter flag is true. 667 // This will be implemented in a follow-up OMPLastprivateClause patch, but 668 // result should be still correct without it, as we do not make these 669 // variables private yet. 670 } 671 672 void CodeGenFunction::EmitOMPInnerLoop( 673 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 674 const Expr *IncExpr, 675 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 676 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 677 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 678 679 // Start the loop with a block that tests the condition. 680 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 681 EmitBlock(CondBlock); 682 LoopStack.push(CondBlock); 683 684 // If there are any cleanups between here and the loop-exit scope, 685 // create a block to stage a loop exit along. 686 auto ExitBlock = LoopExit.getBlock(); 687 if (RequiresCleanup) 688 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 689 690 auto LoopBody = createBasicBlock("omp.inner.for.body"); 691 692 // Emit condition. 693 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 694 if (ExitBlock != LoopExit.getBlock()) { 695 EmitBlock(ExitBlock); 696 EmitBranchThroughCleanup(LoopExit); 697 } 698 699 EmitBlock(LoopBody); 700 incrementProfileCounter(&S); 701 702 // Create a block for the increment. 703 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 704 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 705 706 BodyGen(*this); 707 708 // Emit "IV = IV + 1" and a back-edge to the condition block. 709 EmitBlock(Continue.getBlock()); 710 EmitIgnoredExpr(IncExpr); 711 PostIncGen(*this); 712 BreakContinueStack.pop_back(); 713 EmitBranch(CondBlock); 714 LoopStack.pop(); 715 // Emit the fall-through block. 716 EmitBlock(LoopExit.getBlock()); 717 } 718 719 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 720 // Emit inits for the linear variables. 721 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 722 for (auto Init : C->inits()) { 723 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 724 auto *OrigVD = cast<VarDecl>( 725 cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl()); 726 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 727 CapturedStmtInfo->lookup(OrigVD) != nullptr, 728 VD->getInit()->getType(), VK_LValue, 729 VD->getInit()->getExprLoc()); 730 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 731 EmitExprAsInit(&DRE, VD, 732 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 733 /*capturedByInit=*/false); 734 EmitAutoVarCleanups(Emission); 735 } 736 // Emit the linear steps for the linear clauses. 737 // If a step is not constant, it is pre-calculated before the loop. 738 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 739 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 740 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 741 // Emit calculation of the linear step. 742 EmitIgnoredExpr(CS); 743 } 744 } 745 } 746 747 static void emitLinearClauseFinal(CodeGenFunction &CGF, 748 const OMPLoopDirective &D) { 749 // Emit the final values of the linear variables. 750 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 751 auto IC = C->varlist_begin(); 752 for (auto F : C->finals()) { 753 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 754 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 755 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 756 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 757 Address OrigAddr = CGF.EmitLValue(&DRE).getAddress(); 758 CodeGenFunction::OMPPrivateScope VarScope(CGF); 759 VarScope.addPrivate(OrigVD, 760 [OrigAddr]() -> Address { return OrigAddr; }); 761 (void)VarScope.Privatize(); 762 CGF.EmitIgnoredExpr(F); 763 ++IC; 764 } 765 } 766 } 767 768 static void emitAlignedClause(CodeGenFunction &CGF, 769 const OMPExecutableDirective &D) { 770 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 771 unsigned ClauseAlignment = 0; 772 if (auto AlignmentExpr = Clause->getAlignment()) { 773 auto AlignmentCI = 774 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 775 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 776 } 777 for (auto E : Clause->varlists()) { 778 unsigned Alignment = ClauseAlignment; 779 if (Alignment == 0) { 780 // OpenMP [2.8.1, Description] 781 // If no optional parameter is specified, implementation-defined default 782 // alignments for SIMD instructions on the target platforms are assumed. 783 Alignment = 784 CGF.getContext() 785 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 786 E->getType()->getPointeeType())) 787 .getQuantity(); 788 } 789 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 790 "alignment is not power of 2"); 791 if (Alignment != 0) { 792 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 793 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 794 } 795 } 796 } 797 } 798 799 static void emitPrivateLoopCounters(CodeGenFunction &CGF, 800 CodeGenFunction::OMPPrivateScope &LoopScope, 801 ArrayRef<Expr *> Counters, 802 ArrayRef<Expr *> PrivateCounters) { 803 auto I = PrivateCounters.begin(); 804 for (auto *E : Counters) { 805 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 806 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 807 Address Addr = Address::invalid(); 808 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 809 // Emit var without initialization. 810 auto VarEmission = CGF.EmitAutoVarAlloca(*PrivateVD); 811 CGF.EmitAutoVarCleanups(VarEmission); 812 Addr = VarEmission.getAllocatedAddress(); 813 return Addr; 814 }); 815 (void)LoopScope.addPrivate(VD, [&]() -> Address { return Addr; }); 816 ++I; 817 } 818 } 819 820 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 821 const Expr *Cond, llvm::BasicBlock *TrueBlock, 822 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 823 { 824 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 825 emitPrivateLoopCounters(CGF, PreCondScope, S.counters(), 826 S.private_counters()); 827 (void)PreCondScope.Privatize(); 828 // Get initial values of real counters. 829 for (auto I : S.inits()) { 830 CGF.EmitIgnoredExpr(I); 831 } 832 } 833 // Check that loop is executed at least one time. 834 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 835 } 836 837 static void 838 emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D, 839 CodeGenFunction::OMPPrivateScope &PrivateScope) { 840 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 841 auto CurPrivate = C->privates().begin(); 842 for (auto *E : C->varlists()) { 843 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 844 auto *PrivateVD = 845 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 846 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 847 // Emit private VarDecl with copy init. 848 CGF.EmitVarDecl(*PrivateVD); 849 return CGF.GetAddrOfLocalVar(PrivateVD); 850 }); 851 assert(IsRegistered && "linear var already registered as private"); 852 // Silence the warning about unused variable. 853 (void)IsRegistered; 854 ++CurPrivate; 855 } 856 } 857 } 858 859 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 860 const OMPExecutableDirective &D) { 861 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 862 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 863 /*ignoreResult=*/true); 864 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 865 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 866 // In presence of finite 'safelen', it may be unsafe to mark all 867 // the memory instructions parallel, because loop-carried 868 // dependences of 'safelen' iterations are possible. 869 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 870 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 871 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 872 /*ignoreResult=*/true); 873 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 874 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 875 // In presence of finite 'safelen', it may be unsafe to mark all 876 // the memory instructions parallel, because loop-carried 877 // dependences of 'safelen' iterations are possible. 878 CGF.LoopStack.setParallel(false); 879 } 880 } 881 882 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 883 // Walk clauses and process safelen/lastprivate. 884 LoopStack.setParallel(); 885 LoopStack.setVectorizeEnable(true); 886 emitSimdlenSafelenClause(*this, D); 887 } 888 889 void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) { 890 auto IC = D.counters().begin(); 891 for (auto F : D.finals()) { 892 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 893 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) { 894 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 895 CapturedStmtInfo->lookup(OrigVD) != nullptr, 896 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 897 Address OrigAddr = EmitLValue(&DRE).getAddress(); 898 OMPPrivateScope VarScope(*this); 899 VarScope.addPrivate(OrigVD, 900 [OrigAddr]() -> Address { return OrigAddr; }); 901 (void)VarScope.Privatize(); 902 EmitIgnoredExpr(F); 903 } 904 ++IC; 905 } 906 emitLinearClauseFinal(*this, D); 907 } 908 909 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 910 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 911 // if (PreCond) { 912 // for (IV in 0..LastIteration) BODY; 913 // <Final counter/linear vars updates>; 914 // } 915 // 916 917 // Emit: if (PreCond) - begin. 918 // If the condition constant folds and can be elided, avoid emitting the 919 // whole loop. 920 bool CondConstant; 921 llvm::BasicBlock *ContBlock = nullptr; 922 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 923 if (!CondConstant) 924 return; 925 } else { 926 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 927 ContBlock = CGF.createBasicBlock("simd.if.end"); 928 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 929 CGF.getProfileCount(&S)); 930 CGF.EmitBlock(ThenBlock); 931 CGF.incrementProfileCounter(&S); 932 } 933 934 // Emit the loop iteration variable. 935 const Expr *IVExpr = S.getIterationVariable(); 936 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 937 CGF.EmitVarDecl(*IVDecl); 938 CGF.EmitIgnoredExpr(S.getInit()); 939 940 // Emit the iterations count variable. 941 // If it is not a variable, Sema decided to calculate iterations count on 942 // each iteration (e.g., it is foldable into a constant). 943 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 944 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 945 // Emit calculation of the iterations count. 946 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 947 } 948 949 CGF.EmitOMPSimdInit(S); 950 951 emitAlignedClause(CGF, S); 952 CGF.EmitOMPLinearClauseInit(S); 953 bool HasLastprivateClause; 954 { 955 OMPPrivateScope LoopScope(CGF); 956 emitPrivateLoopCounters(CGF, LoopScope, S.counters(), 957 S.private_counters()); 958 emitPrivateLinearVars(CGF, S, LoopScope); 959 CGF.EmitOMPPrivateClause(S, LoopScope); 960 CGF.EmitOMPReductionClauseInit(S, LoopScope); 961 HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 962 (void)LoopScope.Privatize(); 963 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 964 S.getInc(), 965 [&S](CodeGenFunction &CGF) { 966 CGF.EmitOMPLoopBody(S, JumpDest()); 967 CGF.EmitStopPoint(&S); 968 }, 969 [](CodeGenFunction &) {}); 970 // Emit final copy of the lastprivate variables at the end of loops. 971 if (HasLastprivateClause) { 972 CGF.EmitOMPLastprivateClauseFinal(S); 973 } 974 CGF.EmitOMPReductionClauseFinal(S); 975 } 976 CGF.EmitOMPSimdFinal(S); 977 // Emit: if (PreCond) - end. 978 if (ContBlock) { 979 CGF.EmitBranch(ContBlock); 980 CGF.EmitBlock(ContBlock, true); 981 } 982 }; 983 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 984 } 985 986 void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind, 987 const OMPLoopDirective &S, 988 OMPPrivateScope &LoopScope, 989 bool Ordered, Address LB, 990 Address UB, Address ST, 991 Address IL, llvm::Value *Chunk) { 992 auto &RT = CGM.getOpenMPRuntime(); 993 994 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 995 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind); 996 997 assert((Ordered || 998 !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) && 999 "static non-chunked schedule does not need outer loop"); 1000 1001 // Emit outer loop. 1002 // 1003 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1004 // When schedule(dynamic,chunk_size) is specified, the iterations are 1005 // distributed to threads in the team in chunks as the threads request them. 1006 // Each thread executes a chunk of iterations, then requests another chunk, 1007 // until no chunks remain to be distributed. Each chunk contains chunk_size 1008 // iterations, except for the last chunk to be distributed, which may have 1009 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1010 // 1011 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1012 // to threads in the team in chunks as the executing threads request them. 1013 // Each thread executes a chunk of iterations, then requests another chunk, 1014 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1015 // each chunk is proportional to the number of unassigned iterations divided 1016 // by the number of threads in the team, decreasing to 1. For a chunk_size 1017 // with value k (greater than 1), the size of each chunk is determined in the 1018 // same way, with the restriction that the chunks do not contain fewer than k 1019 // iterations (except for the last chunk to be assigned, which may have fewer 1020 // than k iterations). 1021 // 1022 // When schedule(auto) is specified, the decision regarding scheduling is 1023 // delegated to the compiler and/or runtime system. The programmer gives the 1024 // implementation the freedom to choose any possible mapping of iterations to 1025 // threads in the team. 1026 // 1027 // When schedule(runtime) is specified, the decision regarding scheduling is 1028 // deferred until run time, and the schedule and chunk size are taken from the 1029 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1030 // implementation defined 1031 // 1032 // while(__kmpc_dispatch_next(&LB, &UB)) { 1033 // idx = LB; 1034 // while (idx <= UB) { BODY; ++idx; 1035 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1036 // } // inner loop 1037 // } 1038 // 1039 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1040 // When schedule(static, chunk_size) is specified, iterations are divided into 1041 // chunks of size chunk_size, and the chunks are assigned to the threads in 1042 // the team in a round-robin fashion in the order of the thread number. 1043 // 1044 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1045 // while (idx <= UB) { BODY; ++idx; } // inner loop 1046 // LB = LB + ST; 1047 // UB = UB + ST; 1048 // } 1049 // 1050 1051 const Expr *IVExpr = S.getIterationVariable(); 1052 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1053 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1054 1055 if (DynamicOrOrdered) { 1056 llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration()); 1057 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, 1058 IVSize, IVSigned, Ordered, UBVal, Chunk); 1059 } else { 1060 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 1061 IVSize, IVSigned, Ordered, IL, LB, UB, ST, Chunk); 1062 } 1063 1064 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1065 1066 // Start the loop with a block that tests the condition. 1067 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1068 EmitBlock(CondBlock); 1069 LoopStack.push(CondBlock); 1070 1071 llvm::Value *BoolCondVal = nullptr; 1072 if (!DynamicOrOrdered) { 1073 // UB = min(UB, GlobalUB) 1074 EmitIgnoredExpr(S.getEnsureUpperBound()); 1075 // IV = LB 1076 EmitIgnoredExpr(S.getInit()); 1077 // IV < UB 1078 BoolCondVal = EvaluateExprAsBool(S.getCond()); 1079 } else { 1080 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, 1081 IL, LB, UB, ST); 1082 } 1083 1084 // If there are any cleanups between here and the loop-exit scope, 1085 // create a block to stage a loop exit along. 1086 auto ExitBlock = LoopExit.getBlock(); 1087 if (LoopScope.requiresCleanups()) 1088 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1089 1090 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1091 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1092 if (ExitBlock != LoopExit.getBlock()) { 1093 EmitBlock(ExitBlock); 1094 EmitBranchThroughCleanup(LoopExit); 1095 } 1096 EmitBlock(LoopBody); 1097 1098 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1099 // LB for loop condition and emitted it above). 1100 if (DynamicOrOrdered) 1101 EmitIgnoredExpr(S.getInit()); 1102 1103 // Create a block for the increment. 1104 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1105 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1106 1107 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1108 // with dynamic/guided scheduling and without ordered clause. 1109 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 1110 LoopStack.setParallel((ScheduleKind == OMPC_SCHEDULE_dynamic || 1111 ScheduleKind == OMPC_SCHEDULE_guided) && 1112 !Ordered); 1113 } else { 1114 EmitOMPSimdInit(S); 1115 } 1116 1117 SourceLocation Loc = S.getLocStart(); 1118 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1119 [&S, LoopExit](CodeGenFunction &CGF) { 1120 CGF.EmitOMPLoopBody(S, LoopExit); 1121 CGF.EmitStopPoint(&S); 1122 }, 1123 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1124 if (Ordered) { 1125 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1126 CGF, Loc, IVSize, IVSigned); 1127 } 1128 }); 1129 1130 EmitBlock(Continue.getBlock()); 1131 BreakContinueStack.pop_back(); 1132 if (!DynamicOrOrdered) { 1133 // Emit "LB = LB + Stride", "UB = UB + Stride". 1134 EmitIgnoredExpr(S.getNextLowerBound()); 1135 EmitIgnoredExpr(S.getNextUpperBound()); 1136 } 1137 1138 EmitBranch(CondBlock); 1139 LoopStack.pop(); 1140 // Emit the fall-through block. 1141 EmitBlock(LoopExit.getBlock()); 1142 1143 // Tell the runtime we are done. 1144 if (!DynamicOrOrdered) 1145 RT.emitForStaticFinish(*this, S.getLocEnd()); 1146 } 1147 1148 /// \brief Emit a helper variable and return corresponding lvalue. 1149 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1150 const DeclRefExpr *Helper) { 1151 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1152 CGF.EmitVarDecl(*VDecl); 1153 return CGF.EmitLValue(Helper); 1154 } 1155 1156 static std::pair<llvm::Value * /*Chunk*/, OpenMPScheduleClauseKind> 1157 emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S, 1158 bool OuterRegion) { 1159 // Detect the loop schedule kind and chunk. 1160 auto ScheduleKind = OMPC_SCHEDULE_unknown; 1161 llvm::Value *Chunk = nullptr; 1162 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 1163 ScheduleKind = C->getScheduleKind(); 1164 if (const auto *Ch = C->getChunkSize()) { 1165 if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) { 1166 if (OuterRegion) { 1167 const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl()); 1168 CGF.EmitVarDecl(*ImpVar); 1169 CGF.EmitStoreThroughLValue( 1170 CGF.EmitAnyExpr(Ch), 1171 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(ImpVar), 1172 ImpVar->getType())); 1173 } else { 1174 Ch = ImpRef; 1175 } 1176 } 1177 if (!C->getHelperChunkSize() || !OuterRegion) { 1178 Chunk = CGF.EmitScalarExpr(Ch); 1179 Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(), 1180 S.getIterationVariable()->getType(), 1181 S.getLocStart()); 1182 } 1183 } 1184 } 1185 return std::make_pair(Chunk, ScheduleKind); 1186 } 1187 1188 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 1189 // Emit the loop iteration variable. 1190 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 1191 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 1192 EmitVarDecl(*IVDecl); 1193 1194 // Emit the iterations count variable. 1195 // If it is not a variable, Sema decided to calculate iterations count on each 1196 // iteration (e.g., it is foldable into a constant). 1197 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1198 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1199 // Emit calculation of the iterations count. 1200 EmitIgnoredExpr(S.getCalcLastIteration()); 1201 } 1202 1203 auto &RT = CGM.getOpenMPRuntime(); 1204 1205 bool HasLastprivateClause; 1206 // Check pre-condition. 1207 { 1208 // Skip the entire loop if we don't meet the precondition. 1209 // If the condition constant folds and can be elided, avoid emitting the 1210 // whole loop. 1211 bool CondConstant; 1212 llvm::BasicBlock *ContBlock = nullptr; 1213 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1214 if (!CondConstant) 1215 return false; 1216 } else { 1217 auto *ThenBlock = createBasicBlock("omp.precond.then"); 1218 ContBlock = createBasicBlock("omp.precond.end"); 1219 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 1220 getProfileCount(&S)); 1221 EmitBlock(ThenBlock); 1222 incrementProfileCounter(&S); 1223 } 1224 1225 emitAlignedClause(*this, S); 1226 EmitOMPLinearClauseInit(S); 1227 // Emit 'then' code. 1228 { 1229 // Emit helper vars inits. 1230 LValue LB = 1231 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1232 LValue UB = 1233 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1234 LValue ST = 1235 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 1236 LValue IL = 1237 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 1238 1239 OMPPrivateScope LoopScope(*this); 1240 if (EmitOMPFirstprivateClause(S, LoopScope)) { 1241 // Emit implicit barrier to synchronize threads and avoid data races on 1242 // initialization of firstprivate variables. 1243 CGM.getOpenMPRuntime().emitBarrierCall( 1244 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1245 /*ForceSimpleCall=*/true); 1246 } 1247 EmitOMPPrivateClause(S, LoopScope); 1248 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 1249 EmitOMPReductionClauseInit(S, LoopScope); 1250 emitPrivateLoopCounters(*this, LoopScope, S.counters(), 1251 S.private_counters()); 1252 emitPrivateLinearVars(*this, S, LoopScope); 1253 (void)LoopScope.Privatize(); 1254 1255 // Detect the loop schedule kind and chunk. 1256 llvm::Value *Chunk; 1257 OpenMPScheduleClauseKind ScheduleKind; 1258 auto ScheduleInfo = 1259 emitScheduleClause(*this, S, /*OuterRegion=*/false); 1260 Chunk = ScheduleInfo.first; 1261 ScheduleKind = ScheduleInfo.second; 1262 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1263 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1264 const bool Ordered = S.getSingleClause<OMPOrderedClause>() != nullptr; 1265 if (RT.isStaticNonchunked(ScheduleKind, 1266 /* Chunked */ Chunk != nullptr) && 1267 !Ordered) { 1268 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 1269 EmitOMPSimdInit(S); 1270 } 1271 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1272 // When no chunk_size is specified, the iteration space is divided into 1273 // chunks that are approximately equal in size, and at most one chunk is 1274 // distributed to each thread. Note that the size of the chunks is 1275 // unspecified in this case. 1276 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 1277 IVSize, IVSigned, Ordered, 1278 IL.getAddress(), LB.getAddress(), 1279 UB.getAddress(), ST.getAddress()); 1280 auto LoopExit = getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 1281 // UB = min(UB, GlobalUB); 1282 EmitIgnoredExpr(S.getEnsureUpperBound()); 1283 // IV = LB; 1284 EmitIgnoredExpr(S.getInit()); 1285 // while (idx <= UB) { BODY; ++idx; } 1286 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1287 S.getInc(), 1288 [&S, LoopExit](CodeGenFunction &CGF) { 1289 CGF.EmitOMPLoopBody(S, LoopExit); 1290 CGF.EmitStopPoint(&S); 1291 }, 1292 [](CodeGenFunction &) {}); 1293 EmitBlock(LoopExit.getBlock()); 1294 // Tell the runtime we are done. 1295 RT.emitForStaticFinish(*this, S.getLocStart()); 1296 } else { 1297 // Emit the outer loop, which requests its work chunk [LB..UB] from 1298 // runtime and runs the inner loop to process it. 1299 EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, Ordered, 1300 LB.getAddress(), UB.getAddress(), ST.getAddress(), 1301 IL.getAddress(), Chunk); 1302 } 1303 EmitOMPReductionClauseFinal(S); 1304 // Emit final copy of the lastprivate variables if IsLastIter != 0. 1305 if (HasLastprivateClause) 1306 EmitOMPLastprivateClauseFinal( 1307 S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 1308 } 1309 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 1310 EmitOMPSimdFinal(S); 1311 } 1312 // We're now done with the loop, so jump to the continuation block. 1313 if (ContBlock) { 1314 EmitBranch(ContBlock); 1315 EmitBlock(ContBlock, true); 1316 } 1317 } 1318 return HasLastprivateClause; 1319 } 1320 1321 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 1322 LexicalScope Scope(*this, S.getSourceRange()); 1323 bool HasLastprivates = false; 1324 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) { 1325 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 1326 }; 1327 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 1328 S.hasCancel()); 1329 1330 // Emit an implicit barrier at the end. 1331 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 1332 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 1333 } 1334 } 1335 1336 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 1337 LexicalScope Scope(*this, S.getSourceRange()); 1338 bool HasLastprivates = false; 1339 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) { 1340 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 1341 }; 1342 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1343 1344 // Emit an implicit barrier at the end. 1345 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 1346 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 1347 } 1348 } 1349 1350 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 1351 const Twine &Name, 1352 llvm::Value *Init = nullptr) { 1353 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 1354 if (Init) 1355 CGF.EmitScalarInit(Init, LVal); 1356 return LVal; 1357 } 1358 1359 OpenMPDirectiveKind 1360 CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 1361 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 1362 auto *CS = dyn_cast<CompoundStmt>(Stmt); 1363 if (CS && CS->size() > 1) { 1364 bool HasLastprivates = false; 1365 auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) { 1366 auto &C = CGF.CGM.getContext(); 1367 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 1368 // Emit helper vars inits. 1369 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 1370 CGF.Builder.getInt32(0)); 1371 auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1); 1372 LValue UB = 1373 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 1374 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 1375 CGF.Builder.getInt32(1)); 1376 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 1377 CGF.Builder.getInt32(0)); 1378 // Loop counter. 1379 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 1380 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 1381 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 1382 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 1383 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 1384 // Generate condition for loop. 1385 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 1386 OK_Ordinary, S.getLocStart(), 1387 /*fpContractable=*/false); 1388 // Increment for loop counter. 1389 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, 1390 OK_Ordinary, S.getLocStart()); 1391 auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) { 1392 // Iterate through all sections and emit a switch construct: 1393 // switch (IV) { 1394 // case 0: 1395 // <SectionStmt[0]>; 1396 // break; 1397 // ... 1398 // case <NumSection> - 1: 1399 // <SectionStmt[<NumSection> - 1]>; 1400 // break; 1401 // } 1402 // .omp.sections.exit: 1403 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 1404 auto *SwitchStmt = CGF.Builder.CreateSwitch( 1405 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 1406 CS->size()); 1407 unsigned CaseNumber = 0; 1408 for (auto *SubStmt : CS->children()) { 1409 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 1410 CGF.EmitBlock(CaseBB); 1411 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 1412 CGF.EmitStmt(SubStmt); 1413 CGF.EmitBranch(ExitBB); 1414 ++CaseNumber; 1415 } 1416 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1417 }; 1418 1419 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1420 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 1421 // Emit implicit barrier to synchronize threads and avoid data races on 1422 // initialization of firstprivate variables. 1423 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1424 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1425 /*ForceSimpleCall=*/true); 1426 } 1427 CGF.EmitOMPPrivateClause(S, LoopScope); 1428 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1429 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1430 (void)LoopScope.Privatize(); 1431 1432 // Emit static non-chunked loop. 1433 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 1434 CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32, 1435 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 1436 LB.getAddress(), UB.getAddress(), ST.getAddress()); 1437 // UB = min(UB, GlobalUB); 1438 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 1439 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 1440 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 1441 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 1442 // IV = LB; 1443 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 1444 // while (idx <= UB) { BODY; ++idx; } 1445 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 1446 [](CodeGenFunction &) {}); 1447 // Tell the runtime we are done. 1448 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart()); 1449 CGF.EmitOMPReductionClauseFinal(S); 1450 1451 // Emit final copy of the lastprivate variables if IsLastIter != 0. 1452 if (HasLastprivates) 1453 CGF.EmitOMPLastprivateClauseFinal( 1454 S, CGF.Builder.CreateIsNotNull( 1455 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 1456 }; 1457 1458 bool HasCancel = false; 1459 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 1460 HasCancel = OSD->hasCancel(); 1461 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 1462 HasCancel = OPSD->hasCancel(); 1463 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 1464 HasCancel); 1465 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 1466 // clause. Otherwise the barrier will be generated by the codegen for the 1467 // directive. 1468 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 1469 // Emit implicit barrier to synchronize threads and avoid data races on 1470 // initialization of firstprivate variables. 1471 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 1472 OMPD_unknown); 1473 } 1474 return OMPD_sections; 1475 } 1476 // If only one section is found - no need to generate loop, emit as a single 1477 // region. 1478 bool HasFirstprivates; 1479 // No need to generate reductions for sections with single section region, we 1480 // can use original shared variables for all operations. 1481 bool HasReductions = S.hasClausesOfKind<OMPReductionClause>(); 1482 // No need to generate lastprivates for sections with single section region, 1483 // we can use original shared variable for all calculations with barrier at 1484 // the end of the sections. 1485 bool HasLastprivates = S.hasClausesOfKind<OMPLastprivateClause>(); 1486 auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) { 1487 CodeGenFunction::OMPPrivateScope SingleScope(CGF); 1488 HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope); 1489 CGF.EmitOMPPrivateClause(S, SingleScope); 1490 (void)SingleScope.Privatize(); 1491 1492 CGF.EmitStmt(Stmt); 1493 }; 1494 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 1495 llvm::None, llvm::None, llvm::None, 1496 llvm::None); 1497 // Emit barrier for firstprivates, lastprivates or reductions only if 1498 // 'sections' directive has 'nowait' clause. Otherwise the barrier will be 1499 // generated by the codegen for the directive. 1500 if ((HasFirstprivates || HasLastprivates || HasReductions) && 1501 S.getSingleClause<OMPNowaitClause>()) { 1502 // Emit implicit barrier to synchronize threads and avoid data races on 1503 // initialization of firstprivate variables. 1504 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_unknown, 1505 /*EmitChecks=*/false, 1506 /*ForceSimpleCall=*/true); 1507 } 1508 return OMPD_single; 1509 } 1510 1511 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 1512 LexicalScope Scope(*this, S.getSourceRange()); 1513 OpenMPDirectiveKind EmittedAs = EmitSections(S); 1514 // Emit an implicit barrier at the end. 1515 if (!S.getSingleClause<OMPNowaitClause>()) { 1516 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs); 1517 } 1518 } 1519 1520 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 1521 LexicalScope Scope(*this, S.getSourceRange()); 1522 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1523 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1524 CGF.EnsureInsertPoint(); 1525 }; 1526 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 1527 S.hasCancel()); 1528 } 1529 1530 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 1531 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 1532 llvm::SmallVector<const Expr *, 8> DestExprs; 1533 llvm::SmallVector<const Expr *, 8> SrcExprs; 1534 llvm::SmallVector<const Expr *, 8> AssignmentOps; 1535 // Check if there are any 'copyprivate' clauses associated with this 1536 // 'single' 1537 // construct. 1538 // Build a list of copyprivate variables along with helper expressions 1539 // (<source>, <destination>, <destination>=<source> expressions) 1540 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 1541 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 1542 DestExprs.append(C->destination_exprs().begin(), 1543 C->destination_exprs().end()); 1544 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 1545 AssignmentOps.append(C->assignment_ops().begin(), 1546 C->assignment_ops().end()); 1547 } 1548 LexicalScope Scope(*this, S.getSourceRange()); 1549 // Emit code for 'single' region along with 'copyprivate' clauses 1550 bool HasFirstprivates; 1551 auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) { 1552 CodeGenFunction::OMPPrivateScope SingleScope(CGF); 1553 HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope); 1554 CGF.EmitOMPPrivateClause(S, SingleScope); 1555 (void)SingleScope.Privatize(); 1556 1557 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1558 CGF.EnsureInsertPoint(); 1559 }; 1560 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 1561 CopyprivateVars, DestExprs, SrcExprs, 1562 AssignmentOps); 1563 // Emit an implicit barrier at the end (to avoid data race on firstprivate 1564 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 1565 if ((!S.getSingleClause<OMPNowaitClause>() || HasFirstprivates) && 1566 CopyprivateVars.empty()) { 1567 CGM.getOpenMPRuntime().emitBarrierCall( 1568 *this, S.getLocStart(), 1569 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 1570 } 1571 } 1572 1573 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 1574 LexicalScope Scope(*this, S.getSourceRange()); 1575 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1576 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1577 CGF.EnsureInsertPoint(); 1578 }; 1579 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 1580 } 1581 1582 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 1583 LexicalScope Scope(*this, S.getSourceRange()); 1584 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1585 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1586 CGF.EnsureInsertPoint(); 1587 }; 1588 CGM.getOpenMPRuntime().emitCriticalRegion( 1589 *this, S.getDirectiveName().getAsString(), CodeGen, S.getLocStart()); 1590 } 1591 1592 void CodeGenFunction::EmitOMPParallelForDirective( 1593 const OMPParallelForDirective &S) { 1594 // Emit directive as a combined directive that consists of two implicit 1595 // directives: 'parallel' with 'for' directive. 1596 LexicalScope Scope(*this, S.getSourceRange()); 1597 (void)emitScheduleClause(*this, S, /*OuterRegion=*/true); 1598 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1599 CGF.EmitOMPWorksharingLoop(S); 1600 // Emit implicit barrier at the end of parallel region, but this barrier 1601 // is at the end of 'for' directive, so emit it as the implicit barrier for 1602 // this 'for' directive. 1603 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1604 CGF, S.getLocStart(), OMPD_parallel, /*EmitChecks=*/false, 1605 /*ForceSimpleCall=*/true); 1606 }; 1607 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 1608 } 1609 1610 void CodeGenFunction::EmitOMPParallelForSimdDirective( 1611 const OMPParallelForSimdDirective &S) { 1612 // Emit directive as a combined directive that consists of two implicit 1613 // directives: 'parallel' with 'for' directive. 1614 LexicalScope Scope(*this, S.getSourceRange()); 1615 (void)emitScheduleClause(*this, S, /*OuterRegion=*/true); 1616 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1617 CGF.EmitOMPWorksharingLoop(S); 1618 // Emit implicit barrier at the end of parallel region, but this barrier 1619 // is at the end of 'for' directive, so emit it as the implicit barrier for 1620 // this 'for' directive. 1621 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1622 CGF, S.getLocStart(), OMPD_parallel, /*EmitChecks=*/false, 1623 /*ForceSimpleCall=*/true); 1624 }; 1625 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 1626 } 1627 1628 void CodeGenFunction::EmitOMPParallelSectionsDirective( 1629 const OMPParallelSectionsDirective &S) { 1630 // Emit directive as a combined directive that consists of two implicit 1631 // directives: 'parallel' with 'sections' directive. 1632 LexicalScope Scope(*this, S.getSourceRange()); 1633 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1634 (void)CGF.EmitSections(S); 1635 // Emit implicit barrier at the end of parallel region. 1636 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1637 CGF, S.getLocStart(), OMPD_parallel, /*EmitChecks=*/false, 1638 /*ForceSimpleCall=*/true); 1639 }; 1640 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 1641 } 1642 1643 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 1644 // Emit outlined function for task construct. 1645 LexicalScope Scope(*this, S.getSourceRange()); 1646 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1647 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 1648 auto *I = CS->getCapturedDecl()->param_begin(); 1649 auto *PartId = std::next(I); 1650 // The first function argument for tasks is a thread id, the second one is a 1651 // part id (0 for tied tasks, >=0 for untied task). 1652 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 1653 // Get list of private variables. 1654 llvm::SmallVector<const Expr *, 8> PrivateVars; 1655 llvm::SmallVector<const Expr *, 8> PrivateCopies; 1656 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 1657 auto IRef = C->varlist_begin(); 1658 for (auto *IInit : C->private_copies()) { 1659 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1660 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 1661 PrivateVars.push_back(*IRef); 1662 PrivateCopies.push_back(IInit); 1663 } 1664 ++IRef; 1665 } 1666 } 1667 EmittedAsPrivate.clear(); 1668 // Get list of firstprivate variables. 1669 llvm::SmallVector<const Expr *, 8> FirstprivateVars; 1670 llvm::SmallVector<const Expr *, 8> FirstprivateCopies; 1671 llvm::SmallVector<const Expr *, 8> FirstprivateInits; 1672 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1673 auto IRef = C->varlist_begin(); 1674 auto IElemInitRef = C->inits().begin(); 1675 for (auto *IInit : C->private_copies()) { 1676 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1677 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 1678 FirstprivateVars.push_back(*IRef); 1679 FirstprivateCopies.push_back(IInit); 1680 FirstprivateInits.push_back(*IElemInitRef); 1681 } 1682 ++IRef, ++IElemInitRef; 1683 } 1684 } 1685 // Build list of dependences. 1686 llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8> 1687 Dependences; 1688 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 1689 for (auto *IRef : C->varlists()) { 1690 Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 1691 } 1692 } 1693 auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars]( 1694 CodeGenFunction &CGF) { 1695 // Set proper addresses for generated private copies. 1696 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1697 OMPPrivateScope Scope(CGF); 1698 if (!PrivateVars.empty() || !FirstprivateVars.empty()) { 1699 auto *CopyFn = CGF.Builder.CreateLoad( 1700 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 1701 auto *PrivatesPtr = CGF.Builder.CreateLoad( 1702 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 1703 // Map privates. 1704 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> 1705 PrivatePtrs; 1706 llvm::SmallVector<llvm::Value *, 16> CallArgs; 1707 CallArgs.push_back(PrivatesPtr); 1708 for (auto *E : PrivateVars) { 1709 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1710 Address PrivatePtr = 1711 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType())); 1712 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 1713 CallArgs.push_back(PrivatePtr.getPointer()); 1714 } 1715 for (auto *E : FirstprivateVars) { 1716 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1717 Address PrivatePtr = 1718 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType())); 1719 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 1720 CallArgs.push_back(PrivatePtr.getPointer()); 1721 } 1722 CGF.EmitRuntimeCall(CopyFn, CallArgs); 1723 for (auto &&Pair : PrivatePtrs) { 1724 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 1725 CGF.getContext().getDeclAlign(Pair.first)); 1726 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 1727 } 1728 } 1729 (void)Scope.Privatize(); 1730 if (*PartId) { 1731 // TODO: emit code for untied tasks. 1732 } 1733 CGF.EmitStmt(CS->getCapturedStmt()); 1734 }; 1735 auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 1736 S, *I, OMPD_task, CodeGen); 1737 // Check if we should emit tied or untied task. 1738 bool Tied = !S.getSingleClause<OMPUntiedClause>(); 1739 // Check if the task is final 1740 llvm::PointerIntPair<llvm::Value *, 1, bool> Final; 1741 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 1742 // If the condition constant folds and can be elided, try to avoid emitting 1743 // the condition and the dead arm of the if/else. 1744 auto *Cond = Clause->getCondition(); 1745 bool CondConstant; 1746 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 1747 Final.setInt(CondConstant); 1748 else 1749 Final.setPointer(EvaluateExprAsBool(Cond)); 1750 } else { 1751 // By default the task is not final. 1752 Final.setInt(/*IntVal=*/false); 1753 } 1754 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 1755 const Expr *IfCond = nullptr; 1756 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1757 if (C->getNameModifier() == OMPD_unknown || 1758 C->getNameModifier() == OMPD_task) { 1759 IfCond = C->getCondition(); 1760 break; 1761 } 1762 } 1763 CGM.getOpenMPRuntime().emitTaskCall( 1764 *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy, 1765 CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars, 1766 FirstprivateCopies, FirstprivateInits, Dependences); 1767 } 1768 1769 void CodeGenFunction::EmitOMPTaskyieldDirective( 1770 const OMPTaskyieldDirective &S) { 1771 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 1772 } 1773 1774 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 1775 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 1776 } 1777 1778 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 1779 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 1780 } 1781 1782 void CodeGenFunction::EmitOMPTaskgroupDirective( 1783 const OMPTaskgroupDirective &S) { 1784 LexicalScope Scope(*this, S.getSourceRange()); 1785 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1786 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1787 CGF.EnsureInsertPoint(); 1788 }; 1789 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 1790 } 1791 1792 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 1793 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 1794 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 1795 return llvm::makeArrayRef(FlushClause->varlist_begin(), 1796 FlushClause->varlist_end()); 1797 } 1798 return llvm::None; 1799 }(), S.getLocStart()); 1800 } 1801 1802 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 1803 const CapturedStmt *S) { 1804 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 1805 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 1806 CGF.CapturedStmtInfo = &CapStmtInfo; 1807 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 1808 Fn->addFnAttr(llvm::Attribute::NoInline); 1809 return Fn; 1810 } 1811 1812 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 1813 LexicalScope Scope(*this, S.getSourceRange()); 1814 auto *C = S.getSingleClause<OMPSIMDClause>(); 1815 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF) { 1816 if (C) { 1817 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1818 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1819 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1820 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 1821 CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars); 1822 } else { 1823 CGF.EmitStmt( 1824 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1825 } 1826 CGF.EnsureInsertPoint(); 1827 }; 1828 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 1829 } 1830 1831 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 1832 QualType SrcType, QualType DestType, 1833 SourceLocation Loc) { 1834 assert(CGF.hasScalarEvaluationKind(DestType) && 1835 "DestType must have scalar evaluation kind."); 1836 assert(!Val.isAggregate() && "Must be a scalar or complex."); 1837 return Val.isScalar() 1838 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 1839 Loc) 1840 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 1841 DestType, Loc); 1842 } 1843 1844 static CodeGenFunction::ComplexPairTy 1845 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 1846 QualType DestType, SourceLocation Loc) { 1847 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 1848 "DestType must have complex evaluation kind."); 1849 CodeGenFunction::ComplexPairTy ComplexVal; 1850 if (Val.isScalar()) { 1851 // Convert the input element to the element type of the complex. 1852 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 1853 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 1854 DestElementType, Loc); 1855 ComplexVal = CodeGenFunction::ComplexPairTy( 1856 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 1857 } else { 1858 assert(Val.isComplex() && "Must be a scalar or complex."); 1859 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 1860 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 1861 ComplexVal.first = CGF.EmitScalarConversion( 1862 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 1863 ComplexVal.second = CGF.EmitScalarConversion( 1864 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 1865 } 1866 return ComplexVal; 1867 } 1868 1869 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 1870 LValue LVal, RValue RVal) { 1871 if (LVal.isGlobalReg()) { 1872 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 1873 } else { 1874 CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent 1875 : llvm::Monotonic, 1876 LVal.isVolatile(), /*IsInit=*/false); 1877 } 1878 } 1879 1880 static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal, 1881 QualType RValTy, SourceLocation Loc) { 1882 switch (CGF.getEvaluationKind(LVal.getType())) { 1883 case TEK_Scalar: 1884 CGF.EmitStoreThroughLValue(RValue::get(convertToScalarValue( 1885 CGF, RVal, RValTy, LVal.getType(), Loc)), 1886 LVal); 1887 break; 1888 case TEK_Complex: 1889 CGF.EmitStoreOfComplex( 1890 convertToComplexValue(CGF, RVal, RValTy, LVal.getType(), Loc), LVal, 1891 /*isInit=*/false); 1892 break; 1893 case TEK_Aggregate: 1894 llvm_unreachable("Must be a scalar or complex."); 1895 } 1896 } 1897 1898 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 1899 const Expr *X, const Expr *V, 1900 SourceLocation Loc) { 1901 // v = x; 1902 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 1903 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 1904 LValue XLValue = CGF.EmitLValue(X); 1905 LValue VLValue = CGF.EmitLValue(V); 1906 RValue Res = XLValue.isGlobalReg() 1907 ? CGF.EmitLoadOfLValue(XLValue, Loc) 1908 : CGF.EmitAtomicLoad(XLValue, Loc, 1909 IsSeqCst ? llvm::SequentiallyConsistent 1910 : llvm::Monotonic, 1911 XLValue.isVolatile()); 1912 // OpenMP, 2.12.6, atomic Construct 1913 // Any atomic construct with a seq_cst clause forces the atomically 1914 // performed operation to include an implicit flush operation without a 1915 // list. 1916 if (IsSeqCst) 1917 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 1918 emitSimpleStore(CGF, VLValue, Res, X->getType().getNonReferenceType(), Loc); 1919 } 1920 1921 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 1922 const Expr *X, const Expr *E, 1923 SourceLocation Loc) { 1924 // x = expr; 1925 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 1926 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 1927 // OpenMP, 2.12.6, atomic Construct 1928 // Any atomic construct with a seq_cst clause forces the atomically 1929 // performed operation to include an implicit flush operation without a 1930 // list. 1931 if (IsSeqCst) 1932 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 1933 } 1934 1935 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 1936 RValue Update, 1937 BinaryOperatorKind BO, 1938 llvm::AtomicOrdering AO, 1939 bool IsXLHSInRHSPart) { 1940 auto &Context = CGF.CGM.getContext(); 1941 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 1942 // expression is simple and atomic is allowed for the given type for the 1943 // target platform. 1944 if (BO == BO_Comma || !Update.isScalar() || 1945 !Update.getScalarVal()->getType()->isIntegerTy() || 1946 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 1947 (Update.getScalarVal()->getType() != 1948 X.getAddress().getElementType())) || 1949 !X.getAddress().getElementType()->isIntegerTy() || 1950 !Context.getTargetInfo().hasBuiltinAtomic( 1951 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 1952 return std::make_pair(false, RValue::get(nullptr)); 1953 1954 llvm::AtomicRMWInst::BinOp RMWOp; 1955 switch (BO) { 1956 case BO_Add: 1957 RMWOp = llvm::AtomicRMWInst::Add; 1958 break; 1959 case BO_Sub: 1960 if (!IsXLHSInRHSPart) 1961 return std::make_pair(false, RValue::get(nullptr)); 1962 RMWOp = llvm::AtomicRMWInst::Sub; 1963 break; 1964 case BO_And: 1965 RMWOp = llvm::AtomicRMWInst::And; 1966 break; 1967 case BO_Or: 1968 RMWOp = llvm::AtomicRMWInst::Or; 1969 break; 1970 case BO_Xor: 1971 RMWOp = llvm::AtomicRMWInst::Xor; 1972 break; 1973 case BO_LT: 1974 RMWOp = X.getType()->hasSignedIntegerRepresentation() 1975 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 1976 : llvm::AtomicRMWInst::Max) 1977 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 1978 : llvm::AtomicRMWInst::UMax); 1979 break; 1980 case BO_GT: 1981 RMWOp = X.getType()->hasSignedIntegerRepresentation() 1982 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 1983 : llvm::AtomicRMWInst::Min) 1984 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 1985 : llvm::AtomicRMWInst::UMin); 1986 break; 1987 case BO_Assign: 1988 RMWOp = llvm::AtomicRMWInst::Xchg; 1989 break; 1990 case BO_Mul: 1991 case BO_Div: 1992 case BO_Rem: 1993 case BO_Shl: 1994 case BO_Shr: 1995 case BO_LAnd: 1996 case BO_LOr: 1997 return std::make_pair(false, RValue::get(nullptr)); 1998 case BO_PtrMemD: 1999 case BO_PtrMemI: 2000 case BO_LE: 2001 case BO_GE: 2002 case BO_EQ: 2003 case BO_NE: 2004 case BO_AddAssign: 2005 case BO_SubAssign: 2006 case BO_AndAssign: 2007 case BO_OrAssign: 2008 case BO_XorAssign: 2009 case BO_MulAssign: 2010 case BO_DivAssign: 2011 case BO_RemAssign: 2012 case BO_ShlAssign: 2013 case BO_ShrAssign: 2014 case BO_Comma: 2015 llvm_unreachable("Unsupported atomic update operation"); 2016 } 2017 auto *UpdateVal = Update.getScalarVal(); 2018 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 2019 UpdateVal = CGF.Builder.CreateIntCast( 2020 IC, X.getAddress().getElementType(), 2021 X.getType()->hasSignedIntegerRepresentation()); 2022 } 2023 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 2024 return std::make_pair(true, RValue::get(Res)); 2025 } 2026 2027 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 2028 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2029 llvm::AtomicOrdering AO, SourceLocation Loc, 2030 const llvm::function_ref<RValue(RValue)> &CommonGen) { 2031 // Update expressions are allowed to have the following forms: 2032 // x binop= expr; -> xrval + expr; 2033 // x++, ++x -> xrval + 1; 2034 // x--, --x -> xrval - 1; 2035 // x = x binop expr; -> xrval binop expr 2036 // x = expr Op x; - > expr binop xrval; 2037 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 2038 if (!Res.first) { 2039 if (X.isGlobalReg()) { 2040 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 2041 // 'xrval'. 2042 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 2043 } else { 2044 // Perform compare-and-swap procedure. 2045 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 2046 } 2047 } 2048 return Res; 2049 } 2050 2051 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 2052 const Expr *X, const Expr *E, 2053 const Expr *UE, bool IsXLHSInRHSPart, 2054 SourceLocation Loc) { 2055 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 2056 "Update expr in 'atomic update' must be a binary operator."); 2057 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 2058 // Update expressions are allowed to have the following forms: 2059 // x binop= expr; -> xrval + expr; 2060 // x++, ++x -> xrval + 1; 2061 // x--, --x -> xrval - 1; 2062 // x = x binop expr; -> xrval binop expr 2063 // x = expr Op x; - > expr binop xrval; 2064 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 2065 LValue XLValue = CGF.EmitLValue(X); 2066 RValue ExprRValue = CGF.EmitAnyExpr(E); 2067 auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic; 2068 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 2069 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 2070 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 2071 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 2072 auto Gen = 2073 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 2074 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 2075 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 2076 return CGF.EmitAnyExpr(UE); 2077 }; 2078 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 2079 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 2080 // OpenMP, 2.12.6, atomic Construct 2081 // Any atomic construct with a seq_cst clause forces the atomically 2082 // performed operation to include an implicit flush operation without a 2083 // list. 2084 if (IsSeqCst) 2085 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2086 } 2087 2088 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 2089 QualType SourceType, QualType ResType, 2090 SourceLocation Loc) { 2091 switch (CGF.getEvaluationKind(ResType)) { 2092 case TEK_Scalar: 2093 return RValue::get( 2094 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 2095 case TEK_Complex: { 2096 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 2097 return RValue::getComplex(Res.first, Res.second); 2098 } 2099 case TEK_Aggregate: 2100 break; 2101 } 2102 llvm_unreachable("Must be a scalar or complex."); 2103 } 2104 2105 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 2106 bool IsPostfixUpdate, const Expr *V, 2107 const Expr *X, const Expr *E, 2108 const Expr *UE, bool IsXLHSInRHSPart, 2109 SourceLocation Loc) { 2110 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 2111 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 2112 RValue NewVVal; 2113 LValue VLValue = CGF.EmitLValue(V); 2114 LValue XLValue = CGF.EmitLValue(X); 2115 RValue ExprRValue = CGF.EmitAnyExpr(E); 2116 auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic; 2117 QualType NewVValType; 2118 if (UE) { 2119 // 'x' is updated with some additional value. 2120 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 2121 "Update expr in 'atomic capture' must be a binary operator."); 2122 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 2123 // Update expressions are allowed to have the following forms: 2124 // x binop= expr; -> xrval + expr; 2125 // x++, ++x -> xrval + 1; 2126 // x--, --x -> xrval - 1; 2127 // x = x binop expr; -> xrval binop expr 2128 // x = expr Op x; - > expr binop xrval; 2129 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 2130 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 2131 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 2132 NewVValType = XRValExpr->getType(); 2133 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 2134 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 2135 IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue { 2136 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 2137 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 2138 RValue Res = CGF.EmitAnyExpr(UE); 2139 NewVVal = IsPostfixUpdate ? XRValue : Res; 2140 return Res; 2141 }; 2142 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 2143 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 2144 if (Res.first) { 2145 // 'atomicrmw' instruction was generated. 2146 if (IsPostfixUpdate) { 2147 // Use old value from 'atomicrmw'. 2148 NewVVal = Res.second; 2149 } else { 2150 // 'atomicrmw' does not provide new value, so evaluate it using old 2151 // value of 'x'. 2152 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 2153 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 2154 NewVVal = CGF.EmitAnyExpr(UE); 2155 } 2156 } 2157 } else { 2158 // 'x' is simply rewritten with some 'expr'. 2159 NewVValType = X->getType().getNonReferenceType(); 2160 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 2161 X->getType().getNonReferenceType(), Loc); 2162 auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue { 2163 NewVVal = XRValue; 2164 return ExprRValue; 2165 }; 2166 // Try to perform atomicrmw xchg, otherwise simple exchange. 2167 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 2168 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 2169 Loc, Gen); 2170 if (Res.first) { 2171 // 'atomicrmw' instruction was generated. 2172 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 2173 } 2174 } 2175 // Emit post-update store to 'v' of old/new 'x' value. 2176 emitSimpleStore(CGF, VLValue, NewVVal, NewVValType, Loc); 2177 // OpenMP, 2.12.6, atomic Construct 2178 // Any atomic construct with a seq_cst clause forces the atomically 2179 // performed operation to include an implicit flush operation without a 2180 // list. 2181 if (IsSeqCst) 2182 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2183 } 2184 2185 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 2186 bool IsSeqCst, bool IsPostfixUpdate, 2187 const Expr *X, const Expr *V, const Expr *E, 2188 const Expr *UE, bool IsXLHSInRHSPart, 2189 SourceLocation Loc) { 2190 switch (Kind) { 2191 case OMPC_read: 2192 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 2193 break; 2194 case OMPC_write: 2195 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 2196 break; 2197 case OMPC_unknown: 2198 case OMPC_update: 2199 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 2200 break; 2201 case OMPC_capture: 2202 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 2203 IsXLHSInRHSPart, Loc); 2204 break; 2205 case OMPC_if: 2206 case OMPC_final: 2207 case OMPC_num_threads: 2208 case OMPC_private: 2209 case OMPC_firstprivate: 2210 case OMPC_lastprivate: 2211 case OMPC_reduction: 2212 case OMPC_safelen: 2213 case OMPC_simdlen: 2214 case OMPC_collapse: 2215 case OMPC_default: 2216 case OMPC_seq_cst: 2217 case OMPC_shared: 2218 case OMPC_linear: 2219 case OMPC_aligned: 2220 case OMPC_copyin: 2221 case OMPC_copyprivate: 2222 case OMPC_flush: 2223 case OMPC_proc_bind: 2224 case OMPC_schedule: 2225 case OMPC_ordered: 2226 case OMPC_nowait: 2227 case OMPC_untied: 2228 case OMPC_threadprivate: 2229 case OMPC_depend: 2230 case OMPC_mergeable: 2231 case OMPC_device: 2232 case OMPC_threads: 2233 case OMPC_simd: 2234 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 2235 } 2236 } 2237 2238 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 2239 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 2240 OpenMPClauseKind Kind = OMPC_unknown; 2241 for (auto *C : S.clauses()) { 2242 // Find first clause (skip seq_cst clause, if it is first). 2243 if (C->getClauseKind() != OMPC_seq_cst) { 2244 Kind = C->getClauseKind(); 2245 break; 2246 } 2247 } 2248 2249 const auto *CS = 2250 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 2251 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 2252 enterFullExpression(EWC); 2253 } 2254 // Processing for statements under 'atomic capture'. 2255 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 2256 for (const auto *C : Compound->body()) { 2257 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 2258 enterFullExpression(EWC); 2259 } 2260 } 2261 } 2262 2263 LexicalScope Scope(*this, S.getSourceRange()); 2264 auto &&CodeGen = [&S, Kind, IsSeqCst](CodeGenFunction &CGF) { 2265 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 2266 S.getV(), S.getExpr(), S.getUpdateExpr(), 2267 S.isXLHSInRHSPart(), S.getLocStart()); 2268 }; 2269 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 2270 } 2271 2272 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) { 2273 llvm_unreachable("CodeGen for 'omp target' is not supported yet."); 2274 } 2275 2276 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) { 2277 llvm_unreachable("CodeGen for 'omp teams' is not supported yet."); 2278 } 2279 2280 void CodeGenFunction::EmitOMPCancellationPointDirective( 2281 const OMPCancellationPointDirective &S) { 2282 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 2283 S.getCancelRegion()); 2284 } 2285 2286 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 2287 const Expr *IfCond = nullptr; 2288 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2289 if (C->getNameModifier() == OMPD_unknown || 2290 C->getNameModifier() == OMPD_cancel) { 2291 IfCond = C->getCondition(); 2292 break; 2293 } 2294 } 2295 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 2296 S.getCancelRegion()); 2297 } 2298 2299 CodeGenFunction::JumpDest 2300 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 2301 if (Kind == OMPD_parallel || Kind == OMPD_task) 2302 return ReturnBlock; 2303 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 2304 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for); 2305 return BreakContinueStack.back().BreakBlock; 2306 } 2307 2308 // Generate the instructions for '#pragma omp target data' directive. 2309 void CodeGenFunction::EmitOMPTargetDataDirective( 2310 const OMPTargetDataDirective &S) { 2311 2312 // emit the code inside the construct for now 2313 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2314 CGM.getOpenMPRuntime().emitInlinedDirective( 2315 *this, OMPD_target_data, 2316 [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); }); 2317 } 2318