1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/DeclOpenMP.h" 21 using namespace clang; 22 using namespace CodeGen; 23 24 namespace { 25 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 26 /// for captured expressions. 27 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 28 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 29 for (const auto *C : S.clauses()) { 30 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 31 if (const auto *PreInit = 32 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 33 for (const auto *I : PreInit->decls()) { 34 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 35 CGF.EmitVarDecl(cast<VarDecl>(*I)); 36 } else { 37 CodeGenFunction::AutoVarEmission Emission = 38 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 39 CGF.EmitAutoVarCleanups(Emission); 40 } 41 } 42 } 43 } 44 } 45 } 46 CodeGenFunction::OMPPrivateScope InlinedShareds; 47 48 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 49 return CGF.LambdaCaptureFields.lookup(VD) || 50 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 51 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 52 } 53 54 public: 55 OMPLexicalScope( 56 CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 58 const bool EmitPreInitStmt = true) 59 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 60 InlinedShareds(CGF) { 61 if (EmitPreInitStmt) 62 emitPreInitStmt(CGF, S); 63 if (!CapturedRegion.hasValue()) 64 return; 65 assert(S.hasAssociatedStmt() && 66 "Expected associated statement for inlined directive."); 67 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 68 for (const auto &C : CS->captures()) { 69 if (C.capturesVariable() || C.capturesVariableByCopy()) { 70 auto *VD = C.getCapturedVar(); 71 assert(VD == VD->getCanonicalDecl() && 72 "Canonical decl must be captured."); 73 DeclRefExpr DRE( 74 CGF.getContext(), const_cast<VarDecl *>(VD), 75 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 76 InlinedShareds.isGlobalVarCaptured(VD)), 77 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 78 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 79 return CGF.EmitLValue(&DRE).getAddress(); 80 }); 81 } 82 } 83 (void)InlinedShareds.Privatize(); 84 } 85 }; 86 87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 88 /// for captured expressions. 89 class OMPParallelScope final : public OMPLexicalScope { 90 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 91 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 92 return !(isOpenMPTargetExecutionDirective(Kind) || 93 isOpenMPLoopBoundSharingDirective(Kind)) && 94 isOpenMPParallelDirective(Kind); 95 } 96 97 public: 98 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 99 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 100 EmitPreInitStmt(S)) {} 101 }; 102 103 /// Lexical scope for OpenMP teams construct, that handles correct codegen 104 /// for captured expressions. 105 class OMPTeamsScope final : public OMPLexicalScope { 106 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 107 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 108 return !isOpenMPTargetExecutionDirective(Kind) && 109 isOpenMPTeamsDirective(Kind); 110 } 111 112 public: 113 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Private scope for OpenMP loop-based directives, that supports capturing 119 /// of used expression from loop statement. 120 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 121 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 122 CodeGenFunction::OMPMapVars PreCondVars; 123 for (const auto *E : S.counters()) { 124 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 125 (void)PreCondVars.setVarAddr( 126 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 127 } 128 (void)PreCondVars.apply(CGF); 129 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 130 for (const auto *I : PreInits->decls()) 131 CGF.EmitVarDecl(cast<VarDecl>(*I)); 132 } 133 PreCondVars.restore(CGF); 134 } 135 136 public: 137 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 138 : CodeGenFunction::RunCleanupsScope(CGF) { 139 emitPreInitStmt(CGF, S); 140 } 141 }; 142 143 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 144 CodeGenFunction::OMPPrivateScope InlinedShareds; 145 146 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 147 return CGF.LambdaCaptureFields.lookup(VD) || 148 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 149 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 150 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 151 } 152 153 public: 154 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 155 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 156 InlinedShareds(CGF) { 157 for (const auto *C : S.clauses()) { 158 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 159 if (const auto *PreInit = 160 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 161 for (const auto *I : PreInit->decls()) { 162 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 163 CGF.EmitVarDecl(cast<VarDecl>(*I)); 164 } else { 165 CodeGenFunction::AutoVarEmission Emission = 166 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 167 CGF.EmitAutoVarCleanups(Emission); 168 } 169 } 170 } 171 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 172 for (const Expr *E : UDP->varlists()) { 173 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 174 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 175 CGF.EmitVarDecl(*OED); 176 } 177 } 178 } 179 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 180 CGF.EmitOMPPrivateClause(S, InlinedShareds); 181 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 182 if (const Expr *E = TG->getReductionRef()) 183 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 184 } 185 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 186 while (CS) { 187 for (auto &C : CS->captures()) { 188 if (C.capturesVariable() || C.capturesVariableByCopy()) { 189 auto *VD = C.getCapturedVar(); 190 assert(VD == VD->getCanonicalDecl() && 191 "Canonical decl must be captured."); 192 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 193 isCapturedVar(CGF, VD) || 194 (CGF.CapturedStmtInfo && 195 InlinedShareds.isGlobalVarCaptured(VD)), 196 VD->getType().getNonReferenceType(), VK_LValue, 197 C.getLocation()); 198 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 199 return CGF.EmitLValue(&DRE).getAddress(); 200 }); 201 } 202 } 203 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 204 } 205 (void)InlinedShareds.Privatize(); 206 } 207 }; 208 209 } // namespace 210 211 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 212 const OMPExecutableDirective &S, 213 const RegionCodeGenTy &CodeGen); 214 215 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 216 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 217 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 218 OrigVD = OrigVD->getCanonicalDecl(); 219 bool IsCaptured = 220 LambdaCaptureFields.lookup(OrigVD) || 221 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 222 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 223 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 224 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 225 return EmitLValue(&DRE); 226 } 227 } 228 return EmitLValue(E); 229 } 230 231 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 232 ASTContext &C = getContext(); 233 llvm::Value *Size = nullptr; 234 auto SizeInChars = C.getTypeSizeInChars(Ty); 235 if (SizeInChars.isZero()) { 236 // getTypeSizeInChars() returns 0 for a VLA. 237 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 238 VlaSizePair VlaSize = getVLASize(VAT); 239 Ty = VlaSize.Type; 240 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 241 : VlaSize.NumElts; 242 } 243 SizeInChars = C.getTypeSizeInChars(Ty); 244 if (SizeInChars.isZero()) 245 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 246 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 247 } 248 return CGM.getSize(SizeInChars); 249 } 250 251 void CodeGenFunction::GenerateOpenMPCapturedVars( 252 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 253 const RecordDecl *RD = S.getCapturedRecordDecl(); 254 auto CurField = RD->field_begin(); 255 auto CurCap = S.captures().begin(); 256 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 257 E = S.capture_init_end(); 258 I != E; ++I, ++CurField, ++CurCap) { 259 if (CurField->hasCapturedVLAType()) { 260 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 261 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 262 CapturedVars.push_back(Val); 263 } else if (CurCap->capturesThis()) { 264 CapturedVars.push_back(CXXThisValue); 265 } else if (CurCap->capturesVariableByCopy()) { 266 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 267 268 // If the field is not a pointer, we need to save the actual value 269 // and load it as a void pointer. 270 if (!CurField->getType()->isAnyPointerType()) { 271 ASTContext &Ctx = getContext(); 272 Address DstAddr = CreateMemTemp( 273 Ctx.getUIntPtrType(), 274 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 275 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 276 277 llvm::Value *SrcAddrVal = EmitScalarConversion( 278 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 279 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 280 LValue SrcLV = 281 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 282 283 // Store the value using the source type pointer. 284 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 285 286 // Load the value using the destination type pointer. 287 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 288 } 289 CapturedVars.push_back(CV); 290 } else { 291 assert(CurCap->capturesVariable() && "Expected capture by reference."); 292 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 293 } 294 } 295 } 296 297 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 298 QualType DstType, StringRef Name, 299 LValue AddrLV, 300 bool isReferenceType = false) { 301 ASTContext &Ctx = CGF.getContext(); 302 303 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 304 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 305 Ctx.getPointerType(DstType), Loc); 306 Address TmpAddr = 307 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 308 .getAddress(); 309 310 // If we are dealing with references we need to return the address of the 311 // reference instead of the reference of the value. 312 if (isReferenceType) { 313 QualType RefType = Ctx.getLValueReferenceType(DstType); 314 llvm::Value *RefVal = TmpAddr.getPointer(); 315 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name, ".ref")); 316 LValue TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 317 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit=*/true); 318 } 319 320 return TmpAddr; 321 } 322 323 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 324 if (T->isLValueReferenceType()) 325 return C.getLValueReferenceType( 326 getCanonicalParamType(C, T.getNonReferenceType()), 327 /*SpelledAsLValue=*/false); 328 if (T->isPointerType()) 329 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 330 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 331 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 332 return getCanonicalParamType(C, VLA->getElementType()); 333 if (!A->isVariablyModifiedType()) 334 return C.getCanonicalType(T); 335 } 336 return C.getCanonicalParamType(T); 337 } 338 339 namespace { 340 /// Contains required data for proper outlined function codegen. 341 struct FunctionOptions { 342 /// Captured statement for which the function is generated. 343 const CapturedStmt *S = nullptr; 344 /// true if cast to/from UIntPtr is required for variables captured by 345 /// value. 346 const bool UIntPtrCastRequired = true; 347 /// true if only casted arguments must be registered as local args or VLA 348 /// sizes. 349 const bool RegisterCastedArgsOnly = false; 350 /// Name of the generated function. 351 const StringRef FunctionName; 352 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 353 bool RegisterCastedArgsOnly, 354 StringRef FunctionName) 355 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 356 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 357 FunctionName(FunctionName) {} 358 }; 359 } 360 361 static llvm::Function *emitOutlinedFunctionPrologue( 362 CodeGenFunction &CGF, FunctionArgList &Args, 363 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 364 &LocalAddrs, 365 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 366 &VLASizes, 367 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 368 const CapturedDecl *CD = FO.S->getCapturedDecl(); 369 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 370 assert(CD->hasBody() && "missing CapturedDecl body"); 371 372 CXXThisValue = nullptr; 373 // Build the argument list. 374 CodeGenModule &CGM = CGF.CGM; 375 ASTContext &Ctx = CGM.getContext(); 376 FunctionArgList TargetArgs; 377 Args.append(CD->param_begin(), 378 std::next(CD->param_begin(), CD->getContextParamPosition())); 379 TargetArgs.append( 380 CD->param_begin(), 381 std::next(CD->param_begin(), CD->getContextParamPosition())); 382 auto I = FO.S->captures().begin(); 383 FunctionDecl *DebugFunctionDecl = nullptr; 384 if (!FO.UIntPtrCastRequired) { 385 FunctionProtoType::ExtProtoInfo EPI; 386 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 387 DebugFunctionDecl = FunctionDecl::Create( 388 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 389 SourceLocation(), DeclarationName(), FunctionTy, 390 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 391 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 392 } 393 for (const FieldDecl *FD : RD->fields()) { 394 QualType ArgType = FD->getType(); 395 IdentifierInfo *II = nullptr; 396 VarDecl *CapVar = nullptr; 397 398 // If this is a capture by copy and the type is not a pointer, the outlined 399 // function argument type should be uintptr and the value properly casted to 400 // uintptr. This is necessary given that the runtime library is only able to 401 // deal with pointers. We can pass in the same way the VLA type sizes to the 402 // outlined function. 403 if (FO.UIntPtrCastRequired && 404 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 405 I->capturesVariableArrayType())) 406 ArgType = Ctx.getUIntPtrType(); 407 408 if (I->capturesVariable() || I->capturesVariableByCopy()) { 409 CapVar = I->getCapturedVar(); 410 II = CapVar->getIdentifier(); 411 } else if (I->capturesThis()) { 412 II = &Ctx.Idents.get("this"); 413 } else { 414 assert(I->capturesVariableArrayType()); 415 II = &Ctx.Idents.get("vla"); 416 } 417 if (ArgType->isVariablyModifiedType()) 418 ArgType = getCanonicalParamType(Ctx, ArgType); 419 VarDecl *Arg; 420 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 421 Arg = ParmVarDecl::Create( 422 Ctx, DebugFunctionDecl, 423 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 424 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 425 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 426 } else { 427 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 428 II, ArgType, ImplicitParamDecl::Other); 429 } 430 Args.emplace_back(Arg); 431 // Do not cast arguments if we emit function with non-original types. 432 TargetArgs.emplace_back( 433 FO.UIntPtrCastRequired 434 ? Arg 435 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 436 ++I; 437 } 438 Args.append( 439 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 440 CD->param_end()); 441 TargetArgs.append( 442 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 443 CD->param_end()); 444 445 // Create the function declaration. 446 const CGFunctionInfo &FuncInfo = 447 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 448 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 449 450 auto *F = 451 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 452 FO.FunctionName, &CGM.getModule()); 453 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 454 if (CD->isNothrow()) 455 F->setDoesNotThrow(); 456 F->setDoesNotRecurse(); 457 458 // Generate the function. 459 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 460 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 461 unsigned Cnt = CD->getContextParamPosition(); 462 I = FO.S->captures().begin(); 463 for (const FieldDecl *FD : RD->fields()) { 464 // Do not map arguments if we emit function with non-original types. 465 Address LocalAddr(Address::invalid()); 466 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 467 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 468 TargetArgs[Cnt]); 469 } else { 470 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 471 } 472 // If we are capturing a pointer by copy we don't need to do anything, just 473 // use the value that we get from the arguments. 474 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 475 const VarDecl *CurVD = I->getCapturedVar(); 476 // If the variable is a reference we need to materialize it here. 477 if (CurVD->getType()->isReferenceType()) { 478 Address RefAddr = CGF.CreateMemTemp( 479 CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref"); 480 CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, 481 /*Volatile=*/false, CurVD->getType()); 482 LocalAddr = RefAddr; 483 } 484 if (!FO.RegisterCastedArgsOnly) 485 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 486 ++Cnt; 487 ++I; 488 continue; 489 } 490 491 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 492 AlignmentSource::Decl); 493 if (FD->hasCapturedVLAType()) { 494 if (FO.UIntPtrCastRequired) { 495 ArgLVal = CGF.MakeAddrLValue( 496 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 497 Args[Cnt]->getName(), ArgLVal), 498 FD->getType(), AlignmentSource::Decl); 499 } 500 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 501 const VariableArrayType *VAT = FD->getCapturedVLAType(); 502 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 503 } else if (I->capturesVariable()) { 504 const VarDecl *Var = I->getCapturedVar(); 505 QualType VarTy = Var->getType(); 506 Address ArgAddr = ArgLVal.getAddress(); 507 if (!VarTy->isReferenceType()) { 508 if (ArgLVal.getType()->isLValueReferenceType()) { 509 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 510 } else if (!VarTy->isVariablyModifiedType() || 511 !VarTy->isPointerType()) { 512 assert(ArgLVal.getType()->isPointerType()); 513 ArgAddr = CGF.EmitLoadOfPointer( 514 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 515 } 516 } 517 if (!FO.RegisterCastedArgsOnly) { 518 LocalAddrs.insert( 519 {Args[Cnt], 520 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 521 } 522 } else if (I->capturesVariableByCopy()) { 523 assert(!FD->getType()->isAnyPointerType() && 524 "Not expecting a captured pointer."); 525 const VarDecl *Var = I->getCapturedVar(); 526 QualType VarTy = Var->getType(); 527 LocalAddrs.insert( 528 {Args[Cnt], 529 {Var, FO.UIntPtrCastRequired 530 ? castValueFromUintptr(CGF, I->getLocation(), 531 FD->getType(), Args[Cnt]->getName(), 532 ArgLVal, VarTy->isReferenceType()) 533 : ArgLVal.getAddress()}}); 534 } else { 535 // If 'this' is captured, load it into CXXThisValue. 536 assert(I->capturesThis()); 537 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 538 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 539 } 540 ++Cnt; 541 ++I; 542 } 543 544 return F; 545 } 546 547 llvm::Function * 548 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 549 assert( 550 CapturedStmtInfo && 551 "CapturedStmtInfo should be set when generating the captured function"); 552 const CapturedDecl *CD = S.getCapturedDecl(); 553 // Build the argument list. 554 bool NeedWrapperFunction = 555 getDebugInfo() && 556 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 557 FunctionArgList Args; 558 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 559 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 560 SmallString<256> Buffer; 561 llvm::raw_svector_ostream Out(Buffer); 562 Out << CapturedStmtInfo->getHelperName(); 563 if (NeedWrapperFunction) 564 Out << "_debug__"; 565 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 566 Out.str()); 567 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 568 VLASizes, CXXThisValue, FO); 569 for (const auto &LocalAddrPair : LocalAddrs) { 570 if (LocalAddrPair.second.first) { 571 setAddrOfLocalVar(LocalAddrPair.second.first, 572 LocalAddrPair.second.second); 573 } 574 } 575 for (const auto &VLASizePair : VLASizes) 576 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 577 PGO.assignRegionCounters(GlobalDecl(CD), F); 578 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 579 FinishFunction(CD->getBodyRBrace()); 580 if (!NeedWrapperFunction) 581 return F; 582 583 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 584 /*RegisterCastedArgsOnly=*/true, 585 CapturedStmtInfo->getHelperName()); 586 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 587 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 588 Args.clear(); 589 LocalAddrs.clear(); 590 VLASizes.clear(); 591 llvm::Function *WrapperF = 592 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 593 WrapperCGF.CXXThisValue, WrapperFO); 594 llvm::SmallVector<llvm::Value *, 4> CallArgs; 595 for (const auto *Arg : Args) { 596 llvm::Value *CallArg; 597 auto I = LocalAddrs.find(Arg); 598 if (I != LocalAddrs.end()) { 599 LValue LV = WrapperCGF.MakeAddrLValue( 600 I->second.second, 601 I->second.first ? I->second.first->getType() : Arg->getType(), 602 AlignmentSource::Decl); 603 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 604 } else { 605 auto EI = VLASizes.find(Arg); 606 if (EI != VLASizes.end()) { 607 CallArg = EI->second.second; 608 } else { 609 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 610 Arg->getType(), 611 AlignmentSource::Decl); 612 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 613 } 614 } 615 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 616 } 617 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 618 F, CallArgs); 619 WrapperCGF.FinishFunction(); 620 return WrapperF; 621 } 622 623 //===----------------------------------------------------------------------===// 624 // OpenMP Directive Emission 625 //===----------------------------------------------------------------------===// 626 void CodeGenFunction::EmitOMPAggregateAssign( 627 Address DestAddr, Address SrcAddr, QualType OriginalType, 628 const llvm::function_ref<void(Address, Address)> CopyGen) { 629 // Perform element-by-element initialization. 630 QualType ElementTy; 631 632 // Drill down to the base element type on both arrays. 633 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 634 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 635 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 636 637 llvm::Value *SrcBegin = SrcAddr.getPointer(); 638 llvm::Value *DestBegin = DestAddr.getPointer(); 639 // Cast from pointer to array type to pointer to single element. 640 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 641 // The basic structure here is a while-do loop. 642 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 643 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 644 llvm::Value *IsEmpty = 645 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 646 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 647 648 // Enter the loop body, making that address the current address. 649 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 650 EmitBlock(BodyBB); 651 652 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 653 654 llvm::PHINode *SrcElementPHI = 655 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 656 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 657 Address SrcElementCurrent = 658 Address(SrcElementPHI, 659 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 660 661 llvm::PHINode *DestElementPHI = 662 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 663 DestElementPHI->addIncoming(DestBegin, EntryBB); 664 Address DestElementCurrent = 665 Address(DestElementPHI, 666 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 667 668 // Emit copy. 669 CopyGen(DestElementCurrent, SrcElementCurrent); 670 671 // Shift the address forward by one element. 672 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 673 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 674 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 675 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 676 // Check whether we've reached the end. 677 llvm::Value *Done = 678 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 679 Builder.CreateCondBr(Done, DoneBB, BodyBB); 680 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 681 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 682 683 // Done. 684 EmitBlock(DoneBB, /*IsFinished=*/true); 685 } 686 687 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 688 Address SrcAddr, const VarDecl *DestVD, 689 const VarDecl *SrcVD, const Expr *Copy) { 690 if (OriginalType->isArrayType()) { 691 const auto *BO = dyn_cast<BinaryOperator>(Copy); 692 if (BO && BO->getOpcode() == BO_Assign) { 693 // Perform simple memcpy for simple copying. 694 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 695 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 696 EmitAggregateAssign(Dest, Src, OriginalType); 697 } else { 698 // For arrays with complex element types perform element by element 699 // copying. 700 EmitOMPAggregateAssign( 701 DestAddr, SrcAddr, OriginalType, 702 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 703 // Working with the single array element, so have to remap 704 // destination and source variables to corresponding array 705 // elements. 706 CodeGenFunction::OMPPrivateScope Remap(*this); 707 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 708 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 709 (void)Remap.Privatize(); 710 EmitIgnoredExpr(Copy); 711 }); 712 } 713 } else { 714 // Remap pseudo source variable to private copy. 715 CodeGenFunction::OMPPrivateScope Remap(*this); 716 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 717 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 718 (void)Remap.Privatize(); 719 // Emit copying of the whole variable. 720 EmitIgnoredExpr(Copy); 721 } 722 } 723 724 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 725 OMPPrivateScope &PrivateScope) { 726 if (!HaveInsertPoint()) 727 return false; 728 bool DeviceConstTarget = 729 getLangOpts().OpenMPIsDevice && 730 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 731 bool FirstprivateIsLastprivate = false; 732 llvm::DenseSet<const VarDecl *> Lastprivates; 733 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 734 for (const auto *D : C->varlists()) 735 Lastprivates.insert( 736 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 737 } 738 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 739 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 740 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 741 // Force emission of the firstprivate copy if the directive does not emit 742 // outlined function, like omp for, omp simd, omp distribute etc. 743 bool MustEmitFirstprivateCopy = 744 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 745 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 746 auto IRef = C->varlist_begin(); 747 auto InitsRef = C->inits().begin(); 748 for (const Expr *IInit : C->private_copies()) { 749 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 750 bool ThisFirstprivateIsLastprivate = 751 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 752 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 753 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 754 !FD->getType()->isReferenceType()) { 755 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 756 ++IRef; 757 ++InitsRef; 758 continue; 759 } 760 // Do not emit copy for firstprivate constant variables in target regions, 761 // captured by reference. 762 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 763 FD && FD->getType()->isReferenceType()) { 764 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 765 OrigVD); 766 ++IRef; 767 ++InitsRef; 768 continue; 769 } 770 FirstprivateIsLastprivate = 771 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 772 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 773 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 774 const auto *VDInit = 775 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 776 bool IsRegistered; 777 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 778 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 779 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 780 LValue OriginalLVal = EmitLValue(&DRE); 781 QualType Type = VD->getType(); 782 if (Type->isArrayType()) { 783 // Emit VarDecl with copy init for arrays. 784 // Get the address of the original variable captured in current 785 // captured region. 786 IsRegistered = PrivateScope.addPrivate( 787 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 788 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 789 const Expr *Init = VD->getInit(); 790 if (!isa<CXXConstructExpr>(Init) || 791 isTrivialInitializer(Init)) { 792 // Perform simple memcpy. 793 LValue Dest = 794 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 795 EmitAggregateAssign(Dest, OriginalLVal, Type); 796 } else { 797 EmitOMPAggregateAssign( 798 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 799 Type, 800 [this, VDInit, Init](Address DestElement, 801 Address SrcElement) { 802 // Clean up any temporaries needed by the 803 // initialization. 804 RunCleanupsScope InitScope(*this); 805 // Emit initialization for single element. 806 setAddrOfLocalVar(VDInit, SrcElement); 807 EmitAnyExprToMem(Init, DestElement, 808 Init->getType().getQualifiers(), 809 /*IsInitializer*/ false); 810 LocalDeclMap.erase(VDInit); 811 }); 812 } 813 EmitAutoVarCleanups(Emission); 814 return Emission.getAllocatedAddress(); 815 }); 816 } else { 817 Address OriginalAddr = OriginalLVal.getAddress(); 818 IsRegistered = PrivateScope.addPrivate( 819 OrigVD, [this, VDInit, OriginalAddr, VD]() { 820 // Emit private VarDecl with copy init. 821 // Remap temp VDInit variable to the address of the original 822 // variable (for proper handling of captured global variables). 823 setAddrOfLocalVar(VDInit, OriginalAddr); 824 EmitDecl(*VD); 825 LocalDeclMap.erase(VDInit); 826 return GetAddrOfLocalVar(VD); 827 }); 828 } 829 assert(IsRegistered && 830 "firstprivate var already registered as private"); 831 // Silence the warning about unused variable. 832 (void)IsRegistered; 833 } 834 ++IRef; 835 ++InitsRef; 836 } 837 } 838 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 839 } 840 841 void CodeGenFunction::EmitOMPPrivateClause( 842 const OMPExecutableDirective &D, 843 CodeGenFunction::OMPPrivateScope &PrivateScope) { 844 if (!HaveInsertPoint()) 845 return; 846 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 847 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 848 auto IRef = C->varlist_begin(); 849 for (const Expr *IInit : C->private_copies()) { 850 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 851 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 852 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 853 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 854 // Emit private VarDecl with copy init. 855 EmitDecl(*VD); 856 return GetAddrOfLocalVar(VD); 857 }); 858 assert(IsRegistered && "private var already registered as private"); 859 // Silence the warning about unused variable. 860 (void)IsRegistered; 861 } 862 ++IRef; 863 } 864 } 865 } 866 867 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 868 if (!HaveInsertPoint()) 869 return false; 870 // threadprivate_var1 = master_threadprivate_var1; 871 // operator=(threadprivate_var2, master_threadprivate_var2); 872 // ... 873 // __kmpc_barrier(&loc, global_tid); 874 llvm::DenseSet<const VarDecl *> CopiedVars; 875 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 876 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 877 auto IRef = C->varlist_begin(); 878 auto ISrcRef = C->source_exprs().begin(); 879 auto IDestRef = C->destination_exprs().begin(); 880 for (const Expr *AssignOp : C->assignment_ops()) { 881 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 882 QualType Type = VD->getType(); 883 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 884 // Get the address of the master variable. If we are emitting code with 885 // TLS support, the address is passed from the master as field in the 886 // captured declaration. 887 Address MasterAddr = Address::invalid(); 888 if (getLangOpts().OpenMPUseTLS && 889 getContext().getTargetInfo().isTLSSupported()) { 890 assert(CapturedStmtInfo->lookup(VD) && 891 "Copyin threadprivates should have been captured!"); 892 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 893 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 894 MasterAddr = EmitLValue(&DRE).getAddress(); 895 LocalDeclMap.erase(VD); 896 } else { 897 MasterAddr = 898 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 899 : CGM.GetAddrOfGlobal(VD), 900 getContext().getDeclAlign(VD)); 901 } 902 // Get the address of the threadprivate variable. 903 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 904 if (CopiedVars.size() == 1) { 905 // At first check if current thread is a master thread. If it is, no 906 // need to copy data. 907 CopyBegin = createBasicBlock("copyin.not.master"); 908 CopyEnd = createBasicBlock("copyin.not.master.end"); 909 Builder.CreateCondBr( 910 Builder.CreateICmpNE( 911 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 912 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 913 CGM.IntPtrTy)), 914 CopyBegin, CopyEnd); 915 EmitBlock(CopyBegin); 916 } 917 const auto *SrcVD = 918 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 919 const auto *DestVD = 920 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 921 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 922 } 923 ++IRef; 924 ++ISrcRef; 925 ++IDestRef; 926 } 927 } 928 if (CopyEnd) { 929 // Exit out of copying procedure for non-master thread. 930 EmitBlock(CopyEnd, /*IsFinished=*/true); 931 return true; 932 } 933 return false; 934 } 935 936 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 937 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 938 if (!HaveInsertPoint()) 939 return false; 940 bool HasAtLeastOneLastprivate = false; 941 llvm::DenseSet<const VarDecl *> SIMDLCVs; 942 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 943 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 944 for (const Expr *C : LoopDirective->counters()) { 945 SIMDLCVs.insert( 946 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 947 } 948 } 949 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 950 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 951 HasAtLeastOneLastprivate = true; 952 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 953 !getLangOpts().OpenMPSimd) 954 break; 955 auto IRef = C->varlist_begin(); 956 auto IDestRef = C->destination_exprs().begin(); 957 for (const Expr *IInit : C->private_copies()) { 958 // Keep the address of the original variable for future update at the end 959 // of the loop. 960 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 961 // Taskloops do not require additional initialization, it is done in 962 // runtime support library. 963 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 964 const auto *DestVD = 965 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 966 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 967 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 968 /*RefersToEnclosingVariableOrCapture=*/ 969 CapturedStmtInfo->lookup(OrigVD) != nullptr, 970 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 971 return EmitLValue(&DRE).getAddress(); 972 }); 973 // Check if the variable is also a firstprivate: in this case IInit is 974 // not generated. Initialization of this variable will happen in codegen 975 // for 'firstprivate' clause. 976 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 977 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 978 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 979 // Emit private VarDecl with copy init. 980 EmitDecl(*VD); 981 return GetAddrOfLocalVar(VD); 982 }); 983 assert(IsRegistered && 984 "lastprivate var already registered as private"); 985 (void)IsRegistered; 986 } 987 } 988 ++IRef; 989 ++IDestRef; 990 } 991 } 992 return HasAtLeastOneLastprivate; 993 } 994 995 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 996 const OMPExecutableDirective &D, bool NoFinals, 997 llvm::Value *IsLastIterCond) { 998 if (!HaveInsertPoint()) 999 return; 1000 // Emit following code: 1001 // if (<IsLastIterCond>) { 1002 // orig_var1 = private_orig_var1; 1003 // ... 1004 // orig_varn = private_orig_varn; 1005 // } 1006 llvm::BasicBlock *ThenBB = nullptr; 1007 llvm::BasicBlock *DoneBB = nullptr; 1008 if (IsLastIterCond) { 1009 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1010 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1011 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1012 EmitBlock(ThenBB); 1013 } 1014 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1015 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1016 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1017 auto IC = LoopDirective->counters().begin(); 1018 for (const Expr *F : LoopDirective->finals()) { 1019 const auto *D = 1020 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1021 if (NoFinals) 1022 AlreadyEmittedVars.insert(D); 1023 else 1024 LoopCountersAndUpdates[D] = F; 1025 ++IC; 1026 } 1027 } 1028 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1029 auto IRef = C->varlist_begin(); 1030 auto ISrcRef = C->source_exprs().begin(); 1031 auto IDestRef = C->destination_exprs().begin(); 1032 for (const Expr *AssignOp : C->assignment_ops()) { 1033 const auto *PrivateVD = 1034 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1035 QualType Type = PrivateVD->getType(); 1036 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1037 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1038 // If lastprivate variable is a loop control variable for loop-based 1039 // directive, update its value before copyin back to original 1040 // variable. 1041 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1042 EmitIgnoredExpr(FinalExpr); 1043 const auto *SrcVD = 1044 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1045 const auto *DestVD = 1046 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1047 // Get the address of the original variable. 1048 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1049 // Get the address of the private variable. 1050 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1051 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1052 PrivateAddr = 1053 Address(Builder.CreateLoad(PrivateAddr), 1054 getNaturalTypeAlignment(RefTy->getPointeeType())); 1055 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1056 } 1057 ++IRef; 1058 ++ISrcRef; 1059 ++IDestRef; 1060 } 1061 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1062 EmitIgnoredExpr(PostUpdate); 1063 } 1064 if (IsLastIterCond) 1065 EmitBlock(DoneBB, /*IsFinished=*/true); 1066 } 1067 1068 void CodeGenFunction::EmitOMPReductionClauseInit( 1069 const OMPExecutableDirective &D, 1070 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1071 if (!HaveInsertPoint()) 1072 return; 1073 SmallVector<const Expr *, 4> Shareds; 1074 SmallVector<const Expr *, 4> Privates; 1075 SmallVector<const Expr *, 4> ReductionOps; 1076 SmallVector<const Expr *, 4> LHSs; 1077 SmallVector<const Expr *, 4> RHSs; 1078 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1079 auto IPriv = C->privates().begin(); 1080 auto IRed = C->reduction_ops().begin(); 1081 auto ILHS = C->lhs_exprs().begin(); 1082 auto IRHS = C->rhs_exprs().begin(); 1083 for (const Expr *Ref : C->varlists()) { 1084 Shareds.emplace_back(Ref); 1085 Privates.emplace_back(*IPriv); 1086 ReductionOps.emplace_back(*IRed); 1087 LHSs.emplace_back(*ILHS); 1088 RHSs.emplace_back(*IRHS); 1089 std::advance(IPriv, 1); 1090 std::advance(IRed, 1); 1091 std::advance(ILHS, 1); 1092 std::advance(IRHS, 1); 1093 } 1094 } 1095 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1096 unsigned Count = 0; 1097 auto ILHS = LHSs.begin(); 1098 auto IRHS = RHSs.begin(); 1099 auto IPriv = Privates.begin(); 1100 for (const Expr *IRef : Shareds) { 1101 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1102 // Emit private VarDecl with reduction init. 1103 RedCG.emitSharedLValue(*this, Count); 1104 RedCG.emitAggregateType(*this, Count); 1105 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1106 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1107 RedCG.getSharedLValue(Count), 1108 [&Emission](CodeGenFunction &CGF) { 1109 CGF.EmitAutoVarInit(Emission); 1110 return true; 1111 }); 1112 EmitAutoVarCleanups(Emission); 1113 Address BaseAddr = RedCG.adjustPrivateAddress( 1114 *this, Count, Emission.getAllocatedAddress()); 1115 bool IsRegistered = PrivateScope.addPrivate( 1116 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1117 assert(IsRegistered && "private var already registered as private"); 1118 // Silence the warning about unused variable. 1119 (void)IsRegistered; 1120 1121 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1122 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1123 QualType Type = PrivateVD->getType(); 1124 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1125 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1126 // Store the address of the original variable associated with the LHS 1127 // implicit variable. 1128 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1129 return RedCG.getSharedLValue(Count).getAddress(); 1130 }); 1131 PrivateScope.addPrivate( 1132 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1133 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1134 isa<ArraySubscriptExpr>(IRef)) { 1135 // Store the address of the original variable associated with the LHS 1136 // implicit variable. 1137 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1138 return RedCG.getSharedLValue(Count).getAddress(); 1139 }); 1140 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1141 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1142 ConvertTypeForMem(RHSVD->getType()), 1143 "rhs.begin"); 1144 }); 1145 } else { 1146 QualType Type = PrivateVD->getType(); 1147 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1148 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1149 // Store the address of the original variable associated with the LHS 1150 // implicit variable. 1151 if (IsArray) { 1152 OriginalAddr = Builder.CreateElementBitCast( 1153 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1154 } 1155 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1156 PrivateScope.addPrivate( 1157 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1158 return IsArray 1159 ? Builder.CreateElementBitCast( 1160 GetAddrOfLocalVar(PrivateVD), 1161 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1162 : GetAddrOfLocalVar(PrivateVD); 1163 }); 1164 } 1165 ++ILHS; 1166 ++IRHS; 1167 ++IPriv; 1168 ++Count; 1169 } 1170 } 1171 1172 void CodeGenFunction::EmitOMPReductionClauseFinal( 1173 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1174 if (!HaveInsertPoint()) 1175 return; 1176 llvm::SmallVector<const Expr *, 8> Privates; 1177 llvm::SmallVector<const Expr *, 8> LHSExprs; 1178 llvm::SmallVector<const Expr *, 8> RHSExprs; 1179 llvm::SmallVector<const Expr *, 8> ReductionOps; 1180 bool HasAtLeastOneReduction = false; 1181 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1182 HasAtLeastOneReduction = true; 1183 Privates.append(C->privates().begin(), C->privates().end()); 1184 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1185 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1186 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1187 } 1188 if (HasAtLeastOneReduction) { 1189 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1190 isOpenMPParallelDirective(D.getDirectiveKind()) || 1191 ReductionKind == OMPD_simd; 1192 bool SimpleReduction = ReductionKind == OMPD_simd; 1193 // Emit nowait reduction if nowait clause is present or directive is a 1194 // parallel directive (it always has implicit barrier). 1195 CGM.getOpenMPRuntime().emitReduction( 1196 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1197 {WithNowait, SimpleReduction, ReductionKind}); 1198 } 1199 } 1200 1201 static void emitPostUpdateForReductionClause( 1202 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1203 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1204 if (!CGF.HaveInsertPoint()) 1205 return; 1206 llvm::BasicBlock *DoneBB = nullptr; 1207 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1208 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1209 if (!DoneBB) { 1210 if (llvm::Value *Cond = CondGen(CGF)) { 1211 // If the first post-update expression is found, emit conditional 1212 // block if it was requested. 1213 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1214 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1215 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1216 CGF.EmitBlock(ThenBB); 1217 } 1218 } 1219 CGF.EmitIgnoredExpr(PostUpdate); 1220 } 1221 } 1222 if (DoneBB) 1223 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1224 } 1225 1226 namespace { 1227 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1228 /// parallel function. This is necessary for combined constructs such as 1229 /// 'distribute parallel for' 1230 typedef llvm::function_ref<void(CodeGenFunction &, 1231 const OMPExecutableDirective &, 1232 llvm::SmallVectorImpl<llvm::Value *> &)> 1233 CodeGenBoundParametersTy; 1234 } // anonymous namespace 1235 1236 static void emitCommonOMPParallelDirective( 1237 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1238 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1239 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1240 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1241 llvm::Function *OutlinedFn = 1242 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1243 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1244 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1245 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1246 llvm::Value *NumThreads = 1247 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1248 /*IgnoreResultAssign=*/true); 1249 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1250 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1251 } 1252 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1253 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1254 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1255 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1256 } 1257 const Expr *IfCond = nullptr; 1258 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1259 if (C->getNameModifier() == OMPD_unknown || 1260 C->getNameModifier() == OMPD_parallel) { 1261 IfCond = C->getCondition(); 1262 break; 1263 } 1264 } 1265 1266 OMPParallelScope Scope(CGF, S); 1267 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1268 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1269 // lower and upper bounds with the pragma 'for' chunking mechanism. 1270 // The following lambda takes care of appending the lower and upper bound 1271 // parameters when necessary 1272 CodeGenBoundParameters(CGF, S, CapturedVars); 1273 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1274 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1275 CapturedVars, IfCond); 1276 } 1277 1278 static void emitEmptyBoundParameters(CodeGenFunction &, 1279 const OMPExecutableDirective &, 1280 llvm::SmallVectorImpl<llvm::Value *> &) {} 1281 1282 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1283 // Emit parallel region as a standalone region. 1284 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1285 Action.Enter(CGF); 1286 OMPPrivateScope PrivateScope(CGF); 1287 bool Copyins = CGF.EmitOMPCopyinClause(S); 1288 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1289 if (Copyins) { 1290 // Emit implicit barrier to synchronize threads and avoid data races on 1291 // propagation master's thread values of threadprivate variables to local 1292 // instances of that variables of all other implicit threads. 1293 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1294 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1295 /*ForceSimpleCall=*/true); 1296 } 1297 CGF.EmitOMPPrivateClause(S, PrivateScope); 1298 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1299 (void)PrivateScope.Privatize(); 1300 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1301 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1302 }; 1303 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1304 emitEmptyBoundParameters); 1305 emitPostUpdateForReductionClause(*this, S, 1306 [](CodeGenFunction &) { return nullptr; }); 1307 } 1308 1309 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1310 JumpDest LoopExit) { 1311 RunCleanupsScope BodyScope(*this); 1312 // Update counters values on current iteration. 1313 for (const Expr *UE : D.updates()) 1314 EmitIgnoredExpr(UE); 1315 // Update the linear variables. 1316 // In distribute directives only loop counters may be marked as linear, no 1317 // need to generate the code for them. 1318 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1319 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1320 for (const Expr *UE : C->updates()) 1321 EmitIgnoredExpr(UE); 1322 } 1323 } 1324 1325 // On a continue in the body, jump to the end. 1326 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1327 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1328 // Emit loop body. 1329 EmitStmt(D.getBody()); 1330 // The end (updates/cleanups). 1331 EmitBlock(Continue.getBlock()); 1332 BreakContinueStack.pop_back(); 1333 } 1334 1335 void CodeGenFunction::EmitOMPInnerLoop( 1336 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1337 const Expr *IncExpr, 1338 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1339 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1340 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1341 1342 // Start the loop with a block that tests the condition. 1343 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1344 EmitBlock(CondBlock); 1345 const SourceRange R = S.getSourceRange(); 1346 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1347 SourceLocToDebugLoc(R.getEnd())); 1348 1349 // If there are any cleanups between here and the loop-exit scope, 1350 // create a block to stage a loop exit along. 1351 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1352 if (RequiresCleanup) 1353 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1354 1355 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1356 1357 // Emit condition. 1358 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1359 if (ExitBlock != LoopExit.getBlock()) { 1360 EmitBlock(ExitBlock); 1361 EmitBranchThroughCleanup(LoopExit); 1362 } 1363 1364 EmitBlock(LoopBody); 1365 incrementProfileCounter(&S); 1366 1367 // Create a block for the increment. 1368 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1369 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1370 1371 BodyGen(*this); 1372 1373 // Emit "IV = IV + 1" and a back-edge to the condition block. 1374 EmitBlock(Continue.getBlock()); 1375 EmitIgnoredExpr(IncExpr); 1376 PostIncGen(*this); 1377 BreakContinueStack.pop_back(); 1378 EmitBranch(CondBlock); 1379 LoopStack.pop(); 1380 // Emit the fall-through block. 1381 EmitBlock(LoopExit.getBlock()); 1382 } 1383 1384 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1385 if (!HaveInsertPoint()) 1386 return false; 1387 // Emit inits for the linear variables. 1388 bool HasLinears = false; 1389 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1390 for (const Expr *Init : C->inits()) { 1391 HasLinears = true; 1392 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1393 if (const auto *Ref = 1394 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1395 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1396 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1397 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1398 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1399 VD->getInit()->getType(), VK_LValue, 1400 VD->getInit()->getExprLoc()); 1401 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1402 VD->getType()), 1403 /*capturedByInit=*/false); 1404 EmitAutoVarCleanups(Emission); 1405 } else { 1406 EmitVarDecl(*VD); 1407 } 1408 } 1409 // Emit the linear steps for the linear clauses. 1410 // If a step is not constant, it is pre-calculated before the loop. 1411 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1412 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1413 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1414 // Emit calculation of the linear step. 1415 EmitIgnoredExpr(CS); 1416 } 1417 } 1418 return HasLinears; 1419 } 1420 1421 void CodeGenFunction::EmitOMPLinearClauseFinal( 1422 const OMPLoopDirective &D, 1423 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1424 if (!HaveInsertPoint()) 1425 return; 1426 llvm::BasicBlock *DoneBB = nullptr; 1427 // Emit the final values of the linear variables. 1428 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1429 auto IC = C->varlist_begin(); 1430 for (const Expr *F : C->finals()) { 1431 if (!DoneBB) { 1432 if (llvm::Value *Cond = CondGen(*this)) { 1433 // If the first post-update expression is found, emit conditional 1434 // block if it was requested. 1435 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1436 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1437 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1438 EmitBlock(ThenBB); 1439 } 1440 } 1441 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1442 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1443 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1444 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1445 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1446 CodeGenFunction::OMPPrivateScope VarScope(*this); 1447 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1448 (void)VarScope.Privatize(); 1449 EmitIgnoredExpr(F); 1450 ++IC; 1451 } 1452 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1453 EmitIgnoredExpr(PostUpdate); 1454 } 1455 if (DoneBB) 1456 EmitBlock(DoneBB, /*IsFinished=*/true); 1457 } 1458 1459 static void emitAlignedClause(CodeGenFunction &CGF, 1460 const OMPExecutableDirective &D) { 1461 if (!CGF.HaveInsertPoint()) 1462 return; 1463 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1464 unsigned ClauseAlignment = 0; 1465 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1466 auto *AlignmentCI = 1467 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1468 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1469 } 1470 for (const Expr *E : Clause->varlists()) { 1471 unsigned Alignment = ClauseAlignment; 1472 if (Alignment == 0) { 1473 // OpenMP [2.8.1, Description] 1474 // If no optional parameter is specified, implementation-defined default 1475 // alignments for SIMD instructions on the target platforms are assumed. 1476 Alignment = 1477 CGF.getContext() 1478 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1479 E->getType()->getPointeeType())) 1480 .getQuantity(); 1481 } 1482 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1483 "alignment is not power of 2"); 1484 if (Alignment != 0) { 1485 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1486 CGF.EmitAlignmentAssumption( 1487 PtrValue, E, /*No second loc needed*/ SourceLocation(), Alignment); 1488 } 1489 } 1490 } 1491 } 1492 1493 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1494 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1495 if (!HaveInsertPoint()) 1496 return; 1497 auto I = S.private_counters().begin(); 1498 for (const Expr *E : S.counters()) { 1499 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1500 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1501 // Emit var without initialization. 1502 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1503 EmitAutoVarCleanups(VarEmission); 1504 LocalDeclMap.erase(PrivateVD); 1505 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1506 return VarEmission.getAllocatedAddress(); 1507 }); 1508 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1509 VD->hasGlobalStorage()) { 1510 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1511 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1512 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1513 E->getType(), VK_LValue, E->getExprLoc()); 1514 return EmitLValue(&DRE).getAddress(); 1515 }); 1516 } else { 1517 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1518 return VarEmission.getAllocatedAddress(); 1519 }); 1520 } 1521 ++I; 1522 } 1523 // Privatize extra loop counters used in loops for ordered(n) clauses. 1524 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1525 if (!C->getNumForLoops()) 1526 continue; 1527 for (unsigned I = S.getCollapsedNumber(), 1528 E = C->getLoopNumIterations().size(); 1529 I < E; ++I) { 1530 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1531 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1532 // Override only those variables that can be captured to avoid re-emission 1533 // of the variables declared within the loops. 1534 if (DRE->refersToEnclosingVariableOrCapture()) { 1535 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1536 return CreateMemTemp(DRE->getType(), VD->getName()); 1537 }); 1538 } 1539 } 1540 } 1541 } 1542 1543 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1544 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1545 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1546 if (!CGF.HaveInsertPoint()) 1547 return; 1548 { 1549 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1550 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1551 (void)PreCondScope.Privatize(); 1552 // Get initial values of real counters. 1553 for (const Expr *I : S.inits()) { 1554 CGF.EmitIgnoredExpr(I); 1555 } 1556 } 1557 // Check that loop is executed at least one time. 1558 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1559 } 1560 1561 void CodeGenFunction::EmitOMPLinearClause( 1562 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1563 if (!HaveInsertPoint()) 1564 return; 1565 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1566 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1567 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1568 for (const Expr *C : LoopDirective->counters()) { 1569 SIMDLCVs.insert( 1570 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1571 } 1572 } 1573 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1574 auto CurPrivate = C->privates().begin(); 1575 for (const Expr *E : C->varlists()) { 1576 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1577 const auto *PrivateVD = 1578 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1579 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1580 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1581 // Emit private VarDecl with copy init. 1582 EmitVarDecl(*PrivateVD); 1583 return GetAddrOfLocalVar(PrivateVD); 1584 }); 1585 assert(IsRegistered && "linear var already registered as private"); 1586 // Silence the warning about unused variable. 1587 (void)IsRegistered; 1588 } else { 1589 EmitVarDecl(*PrivateVD); 1590 } 1591 ++CurPrivate; 1592 } 1593 } 1594 } 1595 1596 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1597 const OMPExecutableDirective &D, 1598 bool IsMonotonic) { 1599 if (!CGF.HaveInsertPoint()) 1600 return; 1601 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1602 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1603 /*ignoreResult=*/true); 1604 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1605 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1606 // In presence of finite 'safelen', it may be unsafe to mark all 1607 // the memory instructions parallel, because loop-carried 1608 // dependences of 'safelen' iterations are possible. 1609 if (!IsMonotonic) 1610 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1611 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1612 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1613 /*ignoreResult=*/true); 1614 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1615 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1616 // In presence of finite 'safelen', it may be unsafe to mark all 1617 // the memory instructions parallel, because loop-carried 1618 // dependences of 'safelen' iterations are possible. 1619 CGF.LoopStack.setParallel(/*Enable=*/false); 1620 } 1621 } 1622 1623 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1624 bool IsMonotonic) { 1625 // Walk clauses and process safelen/lastprivate. 1626 LoopStack.setParallel(!IsMonotonic); 1627 LoopStack.setVectorizeEnable(); 1628 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1629 } 1630 1631 void CodeGenFunction::EmitOMPSimdFinal( 1632 const OMPLoopDirective &D, 1633 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1634 if (!HaveInsertPoint()) 1635 return; 1636 llvm::BasicBlock *DoneBB = nullptr; 1637 auto IC = D.counters().begin(); 1638 auto IPC = D.private_counters().begin(); 1639 for (const Expr *F : D.finals()) { 1640 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1641 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1642 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1643 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1644 OrigVD->hasGlobalStorage() || CED) { 1645 if (!DoneBB) { 1646 if (llvm::Value *Cond = CondGen(*this)) { 1647 // If the first post-update expression is found, emit conditional 1648 // block if it was requested. 1649 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1650 DoneBB = createBasicBlock(".omp.final.done"); 1651 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1652 EmitBlock(ThenBB); 1653 } 1654 } 1655 Address OrigAddr = Address::invalid(); 1656 if (CED) { 1657 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1658 } else { 1659 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1660 /*RefersToEnclosingVariableOrCapture=*/false, 1661 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1662 OrigAddr = EmitLValue(&DRE).getAddress(); 1663 } 1664 OMPPrivateScope VarScope(*this); 1665 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1666 (void)VarScope.Privatize(); 1667 EmitIgnoredExpr(F); 1668 } 1669 ++IC; 1670 ++IPC; 1671 } 1672 if (DoneBB) 1673 EmitBlock(DoneBB, /*IsFinished=*/true); 1674 } 1675 1676 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1677 const OMPLoopDirective &S, 1678 CodeGenFunction::JumpDest LoopExit) { 1679 CGF.EmitOMPLoopBody(S, LoopExit); 1680 CGF.EmitStopPoint(&S); 1681 } 1682 1683 /// Emit a helper variable and return corresponding lvalue. 1684 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1685 const DeclRefExpr *Helper) { 1686 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1687 CGF.EmitVarDecl(*VDecl); 1688 return CGF.EmitLValue(Helper); 1689 } 1690 1691 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1692 PrePostActionTy &Action) { 1693 Action.Enter(CGF); 1694 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1695 "Expected simd directive"); 1696 OMPLoopScope PreInitScope(CGF, S); 1697 // if (PreCond) { 1698 // for (IV in 0..LastIteration) BODY; 1699 // <Final counter/linear vars updates>; 1700 // } 1701 // 1702 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1703 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1704 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1705 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1706 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1707 } 1708 1709 // Emit: if (PreCond) - begin. 1710 // If the condition constant folds and can be elided, avoid emitting the 1711 // whole loop. 1712 bool CondConstant; 1713 llvm::BasicBlock *ContBlock = nullptr; 1714 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1715 if (!CondConstant) 1716 return; 1717 } else { 1718 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1719 ContBlock = CGF.createBasicBlock("simd.if.end"); 1720 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1721 CGF.getProfileCount(&S)); 1722 CGF.EmitBlock(ThenBlock); 1723 CGF.incrementProfileCounter(&S); 1724 } 1725 1726 // Emit the loop iteration variable. 1727 const Expr *IVExpr = S.getIterationVariable(); 1728 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1729 CGF.EmitVarDecl(*IVDecl); 1730 CGF.EmitIgnoredExpr(S.getInit()); 1731 1732 // Emit the iterations count variable. 1733 // If it is not a variable, Sema decided to calculate iterations count on 1734 // each iteration (e.g., it is foldable into a constant). 1735 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1736 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1737 // Emit calculation of the iterations count. 1738 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1739 } 1740 1741 CGF.EmitOMPSimdInit(S); 1742 1743 emitAlignedClause(CGF, S); 1744 (void)CGF.EmitOMPLinearClauseInit(S); 1745 { 1746 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1747 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1748 CGF.EmitOMPLinearClause(S, LoopScope); 1749 CGF.EmitOMPPrivateClause(S, LoopScope); 1750 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1751 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1752 (void)LoopScope.Privatize(); 1753 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1754 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1755 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1756 S.getInc(), 1757 [&S](CodeGenFunction &CGF) { 1758 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1759 CGF.EmitStopPoint(&S); 1760 }, 1761 [](CodeGenFunction &) {}); 1762 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1763 // Emit final copy of the lastprivate variables at the end of loops. 1764 if (HasLastprivateClause) 1765 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1766 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1767 emitPostUpdateForReductionClause(CGF, S, 1768 [](CodeGenFunction &) { return nullptr; }); 1769 } 1770 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1771 // Emit: if (PreCond) - end. 1772 if (ContBlock) { 1773 CGF.EmitBranch(ContBlock); 1774 CGF.EmitBlock(ContBlock, true); 1775 } 1776 } 1777 1778 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1779 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1780 emitOMPSimdRegion(CGF, S, Action); 1781 }; 1782 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1783 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1784 } 1785 1786 void CodeGenFunction::EmitOMPOuterLoop( 1787 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1788 CodeGenFunction::OMPPrivateScope &LoopScope, 1789 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1790 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1791 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1792 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1793 1794 const Expr *IVExpr = S.getIterationVariable(); 1795 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1796 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1797 1798 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1799 1800 // Start the loop with a block that tests the condition. 1801 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1802 EmitBlock(CondBlock); 1803 const SourceRange R = S.getSourceRange(); 1804 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1805 SourceLocToDebugLoc(R.getEnd())); 1806 1807 llvm::Value *BoolCondVal = nullptr; 1808 if (!DynamicOrOrdered) { 1809 // UB = min(UB, GlobalUB) or 1810 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1811 // 'distribute parallel for') 1812 EmitIgnoredExpr(LoopArgs.EUB); 1813 // IV = LB 1814 EmitIgnoredExpr(LoopArgs.Init); 1815 // IV < UB 1816 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1817 } else { 1818 BoolCondVal = 1819 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1820 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1821 } 1822 1823 // If there are any cleanups between here and the loop-exit scope, 1824 // create a block to stage a loop exit along. 1825 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1826 if (LoopScope.requiresCleanups()) 1827 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1828 1829 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1830 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1831 if (ExitBlock != LoopExit.getBlock()) { 1832 EmitBlock(ExitBlock); 1833 EmitBranchThroughCleanup(LoopExit); 1834 } 1835 EmitBlock(LoopBody); 1836 1837 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1838 // LB for loop condition and emitted it above). 1839 if (DynamicOrOrdered) 1840 EmitIgnoredExpr(LoopArgs.Init); 1841 1842 // Create a block for the increment. 1843 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1844 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1845 1846 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1847 // with dynamic/guided scheduling and without ordered clause. 1848 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1849 LoopStack.setParallel(!IsMonotonic); 1850 else 1851 EmitOMPSimdInit(S, IsMonotonic); 1852 1853 SourceLocation Loc = S.getBeginLoc(); 1854 1855 // when 'distribute' is not combined with a 'for': 1856 // while (idx <= UB) { BODY; ++idx; } 1857 // when 'distribute' is combined with a 'for' 1858 // (e.g. 'distribute parallel for') 1859 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1860 EmitOMPInnerLoop( 1861 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1862 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1863 CodeGenLoop(CGF, S, LoopExit); 1864 }, 1865 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1866 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1867 }); 1868 1869 EmitBlock(Continue.getBlock()); 1870 BreakContinueStack.pop_back(); 1871 if (!DynamicOrOrdered) { 1872 // Emit "LB = LB + Stride", "UB = UB + Stride". 1873 EmitIgnoredExpr(LoopArgs.NextLB); 1874 EmitIgnoredExpr(LoopArgs.NextUB); 1875 } 1876 1877 EmitBranch(CondBlock); 1878 LoopStack.pop(); 1879 // Emit the fall-through block. 1880 EmitBlock(LoopExit.getBlock()); 1881 1882 // Tell the runtime we are done. 1883 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1884 if (!DynamicOrOrdered) 1885 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 1886 S.getDirectiveKind()); 1887 }; 1888 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1889 } 1890 1891 void CodeGenFunction::EmitOMPForOuterLoop( 1892 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1893 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1894 const OMPLoopArguments &LoopArgs, 1895 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1896 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1897 1898 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1899 const bool DynamicOrOrdered = 1900 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1901 1902 assert((Ordered || 1903 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1904 LoopArgs.Chunk != nullptr)) && 1905 "static non-chunked schedule does not need outer loop"); 1906 1907 // Emit outer loop. 1908 // 1909 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1910 // When schedule(dynamic,chunk_size) is specified, the iterations are 1911 // distributed to threads in the team in chunks as the threads request them. 1912 // Each thread executes a chunk of iterations, then requests another chunk, 1913 // until no chunks remain to be distributed. Each chunk contains chunk_size 1914 // iterations, except for the last chunk to be distributed, which may have 1915 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1916 // 1917 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1918 // to threads in the team in chunks as the executing threads request them. 1919 // Each thread executes a chunk of iterations, then requests another chunk, 1920 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1921 // each chunk is proportional to the number of unassigned iterations divided 1922 // by the number of threads in the team, decreasing to 1. For a chunk_size 1923 // with value k (greater than 1), the size of each chunk is determined in the 1924 // same way, with the restriction that the chunks do not contain fewer than k 1925 // iterations (except for the last chunk to be assigned, which may have fewer 1926 // than k iterations). 1927 // 1928 // When schedule(auto) is specified, the decision regarding scheduling is 1929 // delegated to the compiler and/or runtime system. The programmer gives the 1930 // implementation the freedom to choose any possible mapping of iterations to 1931 // threads in the team. 1932 // 1933 // When schedule(runtime) is specified, the decision regarding scheduling is 1934 // deferred until run time, and the schedule and chunk size are taken from the 1935 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1936 // implementation defined 1937 // 1938 // while(__kmpc_dispatch_next(&LB, &UB)) { 1939 // idx = LB; 1940 // while (idx <= UB) { BODY; ++idx; 1941 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1942 // } // inner loop 1943 // } 1944 // 1945 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1946 // When schedule(static, chunk_size) is specified, iterations are divided into 1947 // chunks of size chunk_size, and the chunks are assigned to the threads in 1948 // the team in a round-robin fashion in the order of the thread number. 1949 // 1950 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1951 // while (idx <= UB) { BODY; ++idx; } // inner loop 1952 // LB = LB + ST; 1953 // UB = UB + ST; 1954 // } 1955 // 1956 1957 const Expr *IVExpr = S.getIterationVariable(); 1958 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1959 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1960 1961 if (DynamicOrOrdered) { 1962 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 1963 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1964 llvm::Value *LBVal = DispatchBounds.first; 1965 llvm::Value *UBVal = DispatchBounds.second; 1966 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1967 LoopArgs.Chunk}; 1968 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 1969 IVSigned, Ordered, DipatchRTInputValues); 1970 } else { 1971 CGOpenMPRuntime::StaticRTInput StaticInit( 1972 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1973 LoopArgs.ST, LoopArgs.Chunk); 1974 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 1975 ScheduleKind, StaticInit); 1976 } 1977 1978 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1979 const unsigned IVSize, 1980 const bool IVSigned) { 1981 if (Ordered) { 1982 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1983 IVSigned); 1984 } 1985 }; 1986 1987 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1988 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1989 OuterLoopArgs.IncExpr = S.getInc(); 1990 OuterLoopArgs.Init = S.getInit(); 1991 OuterLoopArgs.Cond = S.getCond(); 1992 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1993 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1994 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1995 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1996 } 1997 1998 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1999 const unsigned IVSize, const bool IVSigned) {} 2000 2001 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2002 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2003 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2004 const CodeGenLoopTy &CodeGenLoopContent) { 2005 2006 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2007 2008 // Emit outer loop. 2009 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2010 // dynamic 2011 // 2012 2013 const Expr *IVExpr = S.getIterationVariable(); 2014 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2015 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2016 2017 CGOpenMPRuntime::StaticRTInput StaticInit( 2018 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2019 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2020 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2021 2022 // for combined 'distribute' and 'for' the increment expression of distribute 2023 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2024 Expr *IncExpr; 2025 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2026 IncExpr = S.getDistInc(); 2027 else 2028 IncExpr = S.getInc(); 2029 2030 // this routine is shared by 'omp distribute parallel for' and 2031 // 'omp distribute': select the right EUB expression depending on the 2032 // directive 2033 OMPLoopArguments OuterLoopArgs; 2034 OuterLoopArgs.LB = LoopArgs.LB; 2035 OuterLoopArgs.UB = LoopArgs.UB; 2036 OuterLoopArgs.ST = LoopArgs.ST; 2037 OuterLoopArgs.IL = LoopArgs.IL; 2038 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2039 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2040 ? S.getCombinedEnsureUpperBound() 2041 : S.getEnsureUpperBound(); 2042 OuterLoopArgs.IncExpr = IncExpr; 2043 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2044 ? S.getCombinedInit() 2045 : S.getInit(); 2046 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2047 ? S.getCombinedCond() 2048 : S.getCond(); 2049 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2050 ? S.getCombinedNextLowerBound() 2051 : S.getNextLowerBound(); 2052 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2053 ? S.getCombinedNextUpperBound() 2054 : S.getNextUpperBound(); 2055 2056 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2057 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2058 emitEmptyOrdered); 2059 } 2060 2061 static std::pair<LValue, LValue> 2062 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2063 const OMPExecutableDirective &S) { 2064 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2065 LValue LB = 2066 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2067 LValue UB = 2068 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2069 2070 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2071 // parallel for') we need to use the 'distribute' 2072 // chunk lower and upper bounds rather than the whole loop iteration 2073 // space. These are parameters to the outlined function for 'parallel' 2074 // and we copy the bounds of the previous schedule into the 2075 // the current ones. 2076 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2077 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2078 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2079 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2080 PrevLBVal = CGF.EmitScalarConversion( 2081 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2082 LS.getIterationVariable()->getType(), 2083 LS.getPrevLowerBoundVariable()->getExprLoc()); 2084 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2085 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2086 PrevUBVal = CGF.EmitScalarConversion( 2087 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2088 LS.getIterationVariable()->getType(), 2089 LS.getPrevUpperBoundVariable()->getExprLoc()); 2090 2091 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2092 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2093 2094 return {LB, UB}; 2095 } 2096 2097 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2098 /// we need to use the LB and UB expressions generated by the worksharing 2099 /// code generation support, whereas in non combined situations we would 2100 /// just emit 0 and the LastIteration expression 2101 /// This function is necessary due to the difference of the LB and UB 2102 /// types for the RT emission routines for 'for_static_init' and 2103 /// 'for_dispatch_init' 2104 static std::pair<llvm::Value *, llvm::Value *> 2105 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2106 const OMPExecutableDirective &S, 2107 Address LB, Address UB) { 2108 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2109 const Expr *IVExpr = LS.getIterationVariable(); 2110 // when implementing a dynamic schedule for a 'for' combined with a 2111 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2112 // is not normalized as each team only executes its own assigned 2113 // distribute chunk 2114 QualType IteratorTy = IVExpr->getType(); 2115 llvm::Value *LBVal = 2116 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2117 llvm::Value *UBVal = 2118 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2119 return {LBVal, UBVal}; 2120 } 2121 2122 static void emitDistributeParallelForDistributeInnerBoundParams( 2123 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2124 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2125 const auto &Dir = cast<OMPLoopDirective>(S); 2126 LValue LB = 2127 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2128 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2129 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2130 CapturedVars.push_back(LBCast); 2131 LValue UB = 2132 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2133 2134 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2135 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2136 CapturedVars.push_back(UBCast); 2137 } 2138 2139 static void 2140 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2141 const OMPLoopDirective &S, 2142 CodeGenFunction::JumpDest LoopExit) { 2143 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2144 PrePostActionTy &Action) { 2145 Action.Enter(CGF); 2146 bool HasCancel = false; 2147 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2148 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2149 HasCancel = D->hasCancel(); 2150 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2151 HasCancel = D->hasCancel(); 2152 else if (const auto *D = 2153 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2154 HasCancel = D->hasCancel(); 2155 } 2156 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2157 HasCancel); 2158 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2159 emitDistributeParallelForInnerBounds, 2160 emitDistributeParallelForDispatchBounds); 2161 }; 2162 2163 emitCommonOMPParallelDirective( 2164 CGF, S, 2165 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2166 CGInlinedWorksharingLoop, 2167 emitDistributeParallelForDistributeInnerBoundParams); 2168 } 2169 2170 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2171 const OMPDistributeParallelForDirective &S) { 2172 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2173 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2174 S.getDistInc()); 2175 }; 2176 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2177 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2178 } 2179 2180 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2181 const OMPDistributeParallelForSimdDirective &S) { 2182 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2183 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2184 S.getDistInc()); 2185 }; 2186 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2187 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2188 } 2189 2190 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2191 const OMPDistributeSimdDirective &S) { 2192 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2193 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2194 }; 2195 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2196 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2197 } 2198 2199 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2200 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2201 // Emit SPMD target parallel for region as a standalone region. 2202 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2203 emitOMPSimdRegion(CGF, S, Action); 2204 }; 2205 llvm::Function *Fn; 2206 llvm::Constant *Addr; 2207 // Emit target region as a standalone region. 2208 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2209 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2210 assert(Fn && Addr && "Target device function emission failed."); 2211 } 2212 2213 void CodeGenFunction::EmitOMPTargetSimdDirective( 2214 const OMPTargetSimdDirective &S) { 2215 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2216 emitOMPSimdRegion(CGF, S, Action); 2217 }; 2218 emitCommonOMPTargetDirective(*this, S, CodeGen); 2219 } 2220 2221 namespace { 2222 struct ScheduleKindModifiersTy { 2223 OpenMPScheduleClauseKind Kind; 2224 OpenMPScheduleClauseModifier M1; 2225 OpenMPScheduleClauseModifier M2; 2226 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2227 OpenMPScheduleClauseModifier M1, 2228 OpenMPScheduleClauseModifier M2) 2229 : Kind(Kind), M1(M1), M2(M2) {} 2230 }; 2231 } // namespace 2232 2233 bool CodeGenFunction::EmitOMPWorksharingLoop( 2234 const OMPLoopDirective &S, Expr *EUB, 2235 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2236 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2237 // Emit the loop iteration variable. 2238 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2239 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2240 EmitVarDecl(*IVDecl); 2241 2242 // Emit the iterations count variable. 2243 // If it is not a variable, Sema decided to calculate iterations count on each 2244 // iteration (e.g., it is foldable into a constant). 2245 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2246 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2247 // Emit calculation of the iterations count. 2248 EmitIgnoredExpr(S.getCalcLastIteration()); 2249 } 2250 2251 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2252 2253 bool HasLastprivateClause; 2254 // Check pre-condition. 2255 { 2256 OMPLoopScope PreInitScope(*this, S); 2257 // Skip the entire loop if we don't meet the precondition. 2258 // If the condition constant folds and can be elided, avoid emitting the 2259 // whole loop. 2260 bool CondConstant; 2261 llvm::BasicBlock *ContBlock = nullptr; 2262 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2263 if (!CondConstant) 2264 return false; 2265 } else { 2266 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2267 ContBlock = createBasicBlock("omp.precond.end"); 2268 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2269 getProfileCount(&S)); 2270 EmitBlock(ThenBlock); 2271 incrementProfileCounter(&S); 2272 } 2273 2274 RunCleanupsScope DoacrossCleanupScope(*this); 2275 bool Ordered = false; 2276 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2277 if (OrderedClause->getNumForLoops()) 2278 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2279 else 2280 Ordered = true; 2281 } 2282 2283 llvm::DenseSet<const Expr *> EmittedFinals; 2284 emitAlignedClause(*this, S); 2285 bool HasLinears = EmitOMPLinearClauseInit(S); 2286 // Emit helper vars inits. 2287 2288 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2289 LValue LB = Bounds.first; 2290 LValue UB = Bounds.second; 2291 LValue ST = 2292 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2293 LValue IL = 2294 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2295 2296 // Emit 'then' code. 2297 { 2298 OMPPrivateScope LoopScope(*this); 2299 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2300 // Emit implicit barrier to synchronize threads and avoid data races on 2301 // initialization of firstprivate variables and post-update of 2302 // lastprivate variables. 2303 CGM.getOpenMPRuntime().emitBarrierCall( 2304 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2305 /*ForceSimpleCall=*/true); 2306 } 2307 EmitOMPPrivateClause(S, LoopScope); 2308 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2309 EmitOMPReductionClauseInit(S, LoopScope); 2310 EmitOMPPrivateLoopCounters(S, LoopScope); 2311 EmitOMPLinearClause(S, LoopScope); 2312 (void)LoopScope.Privatize(); 2313 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2314 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2315 2316 // Detect the loop schedule kind and chunk. 2317 const Expr *ChunkExpr = nullptr; 2318 OpenMPScheduleTy ScheduleKind; 2319 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2320 ScheduleKind.Schedule = C->getScheduleKind(); 2321 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2322 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2323 ChunkExpr = C->getChunkSize(); 2324 } else { 2325 // Default behaviour for schedule clause. 2326 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2327 *this, S, ScheduleKind.Schedule, ChunkExpr); 2328 } 2329 bool HasChunkSizeOne = false; 2330 llvm::Value *Chunk = nullptr; 2331 if (ChunkExpr) { 2332 Chunk = EmitScalarExpr(ChunkExpr); 2333 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2334 S.getIterationVariable()->getType(), 2335 S.getBeginLoc()); 2336 Expr::EvalResult Result; 2337 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2338 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2339 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2340 } 2341 } 2342 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2343 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2344 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2345 // If the static schedule kind is specified or if the ordered clause is 2346 // specified, and if no monotonic modifier is specified, the effect will 2347 // be as if the monotonic modifier was specified. 2348 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2349 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2350 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2351 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2352 /* Chunked */ Chunk != nullptr) || 2353 StaticChunkedOne) && 2354 !Ordered) { 2355 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2356 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2357 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2358 // When no chunk_size is specified, the iteration space is divided into 2359 // chunks that are approximately equal in size, and at most one chunk is 2360 // distributed to each thread. Note that the size of the chunks is 2361 // unspecified in this case. 2362 CGOpenMPRuntime::StaticRTInput StaticInit( 2363 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2364 UB.getAddress(), ST.getAddress(), 2365 StaticChunkedOne ? Chunk : nullptr); 2366 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2367 ScheduleKind, StaticInit); 2368 JumpDest LoopExit = 2369 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2370 // UB = min(UB, GlobalUB); 2371 if (!StaticChunkedOne) 2372 EmitIgnoredExpr(S.getEnsureUpperBound()); 2373 // IV = LB; 2374 EmitIgnoredExpr(S.getInit()); 2375 // For unchunked static schedule generate: 2376 // 2377 // while (idx <= UB) { 2378 // BODY; 2379 // ++idx; 2380 // } 2381 // 2382 // For static schedule with chunk one: 2383 // 2384 // while (IV <= PrevUB) { 2385 // BODY; 2386 // IV += ST; 2387 // } 2388 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), 2389 StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), 2390 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2391 [&S, LoopExit](CodeGenFunction &CGF) { 2392 CGF.EmitOMPLoopBody(S, LoopExit); 2393 CGF.EmitStopPoint(&S); 2394 }, 2395 [](CodeGenFunction &) {}); 2396 EmitBlock(LoopExit.getBlock()); 2397 // Tell the runtime we are done. 2398 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2399 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2400 S.getDirectiveKind()); 2401 }; 2402 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2403 } else { 2404 const bool IsMonotonic = 2405 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2406 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2407 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2408 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2409 // Emit the outer loop, which requests its work chunk [LB..UB] from 2410 // runtime and runs the inner loop to process it. 2411 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2412 ST.getAddress(), IL.getAddress(), 2413 Chunk, EUB); 2414 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2415 LoopArguments, CGDispatchBounds); 2416 } 2417 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2418 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2419 return CGF.Builder.CreateIsNotNull( 2420 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2421 }); 2422 } 2423 EmitOMPReductionClauseFinal( 2424 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2425 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2426 : /*Parallel only*/ OMPD_parallel); 2427 // Emit post-update of the reduction variables if IsLastIter != 0. 2428 emitPostUpdateForReductionClause( 2429 *this, S, [IL, &S](CodeGenFunction &CGF) { 2430 return CGF.Builder.CreateIsNotNull( 2431 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2432 }); 2433 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2434 if (HasLastprivateClause) 2435 EmitOMPLastprivateClauseFinal( 2436 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2437 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2438 } 2439 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2440 return CGF.Builder.CreateIsNotNull( 2441 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2442 }); 2443 DoacrossCleanupScope.ForceCleanup(); 2444 // We're now done with the loop, so jump to the continuation block. 2445 if (ContBlock) { 2446 EmitBranch(ContBlock); 2447 EmitBlock(ContBlock, /*IsFinished=*/true); 2448 } 2449 } 2450 return HasLastprivateClause; 2451 } 2452 2453 /// The following two functions generate expressions for the loop lower 2454 /// and upper bounds in case of static and dynamic (dispatch) schedule 2455 /// of the associated 'for' or 'distribute' loop. 2456 static std::pair<LValue, LValue> 2457 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2458 const auto &LS = cast<OMPLoopDirective>(S); 2459 LValue LB = 2460 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2461 LValue UB = 2462 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2463 return {LB, UB}; 2464 } 2465 2466 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2467 /// consider the lower and upper bound expressions generated by the 2468 /// worksharing loop support, but we use 0 and the iteration space size as 2469 /// constants 2470 static std::pair<llvm::Value *, llvm::Value *> 2471 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2472 Address LB, Address UB) { 2473 const auto &LS = cast<OMPLoopDirective>(S); 2474 const Expr *IVExpr = LS.getIterationVariable(); 2475 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2476 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2477 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2478 return {LBVal, UBVal}; 2479 } 2480 2481 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2482 bool HasLastprivates = false; 2483 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2484 PrePostActionTy &) { 2485 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2486 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2487 emitForLoopBounds, 2488 emitDispatchForLoopBounds); 2489 }; 2490 { 2491 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2492 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2493 S.hasCancel()); 2494 } 2495 2496 // Emit an implicit barrier at the end. 2497 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2498 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2499 } 2500 2501 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2502 bool HasLastprivates = false; 2503 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2504 PrePostActionTy &) { 2505 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2506 emitForLoopBounds, 2507 emitDispatchForLoopBounds); 2508 }; 2509 { 2510 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2511 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2512 } 2513 2514 // Emit an implicit barrier at the end. 2515 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2516 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2517 } 2518 2519 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2520 const Twine &Name, 2521 llvm::Value *Init = nullptr) { 2522 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2523 if (Init) 2524 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2525 return LVal; 2526 } 2527 2528 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2529 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2530 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2531 bool HasLastprivates = false; 2532 auto &&CodeGen = [&S, CapturedStmt, CS, 2533 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2534 ASTContext &C = CGF.getContext(); 2535 QualType KmpInt32Ty = 2536 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2537 // Emit helper vars inits. 2538 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2539 CGF.Builder.getInt32(0)); 2540 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2541 ? CGF.Builder.getInt32(CS->size() - 1) 2542 : CGF.Builder.getInt32(0); 2543 LValue UB = 2544 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2545 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2546 CGF.Builder.getInt32(1)); 2547 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2548 CGF.Builder.getInt32(0)); 2549 // Loop counter. 2550 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2551 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2552 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2553 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2554 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2555 // Generate condition for loop. 2556 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2557 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2558 // Increment for loop counter. 2559 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2560 S.getBeginLoc(), true); 2561 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2562 // Iterate through all sections and emit a switch construct: 2563 // switch (IV) { 2564 // case 0: 2565 // <SectionStmt[0]>; 2566 // break; 2567 // ... 2568 // case <NumSection> - 1: 2569 // <SectionStmt[<NumSection> - 1]>; 2570 // break; 2571 // } 2572 // .omp.sections.exit: 2573 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2574 llvm::SwitchInst *SwitchStmt = 2575 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2576 ExitBB, CS == nullptr ? 1 : CS->size()); 2577 if (CS) { 2578 unsigned CaseNumber = 0; 2579 for (const Stmt *SubStmt : CS->children()) { 2580 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2581 CGF.EmitBlock(CaseBB); 2582 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2583 CGF.EmitStmt(SubStmt); 2584 CGF.EmitBranch(ExitBB); 2585 ++CaseNumber; 2586 } 2587 } else { 2588 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2589 CGF.EmitBlock(CaseBB); 2590 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2591 CGF.EmitStmt(CapturedStmt); 2592 CGF.EmitBranch(ExitBB); 2593 } 2594 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2595 }; 2596 2597 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2598 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2599 // Emit implicit barrier to synchronize threads and avoid data races on 2600 // initialization of firstprivate variables and post-update of lastprivate 2601 // variables. 2602 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2603 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2604 /*ForceSimpleCall=*/true); 2605 } 2606 CGF.EmitOMPPrivateClause(S, LoopScope); 2607 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2608 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2609 (void)LoopScope.Privatize(); 2610 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2611 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2612 2613 // Emit static non-chunked loop. 2614 OpenMPScheduleTy ScheduleKind; 2615 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2616 CGOpenMPRuntime::StaticRTInput StaticInit( 2617 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2618 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2619 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2620 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2621 // UB = min(UB, GlobalUB); 2622 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2623 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2624 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2625 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2626 // IV = LB; 2627 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2628 // while (idx <= UB) { BODY; ++idx; } 2629 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2630 [](CodeGenFunction &) {}); 2631 // Tell the runtime we are done. 2632 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2633 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2634 S.getDirectiveKind()); 2635 }; 2636 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2637 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2638 // Emit post-update of the reduction variables if IsLastIter != 0. 2639 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2640 return CGF.Builder.CreateIsNotNull( 2641 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2642 }); 2643 2644 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2645 if (HasLastprivates) 2646 CGF.EmitOMPLastprivateClauseFinal( 2647 S, /*NoFinals=*/false, 2648 CGF.Builder.CreateIsNotNull( 2649 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2650 }; 2651 2652 bool HasCancel = false; 2653 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2654 HasCancel = OSD->hasCancel(); 2655 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2656 HasCancel = OPSD->hasCancel(); 2657 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2658 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2659 HasCancel); 2660 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2661 // clause. Otherwise the barrier will be generated by the codegen for the 2662 // directive. 2663 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2664 // Emit implicit barrier to synchronize threads and avoid data races on 2665 // initialization of firstprivate variables. 2666 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2667 OMPD_unknown); 2668 } 2669 } 2670 2671 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2672 { 2673 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2674 EmitSections(S); 2675 } 2676 // Emit an implicit barrier at the end. 2677 if (!S.getSingleClause<OMPNowaitClause>()) { 2678 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2679 OMPD_sections); 2680 } 2681 } 2682 2683 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2684 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2685 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2686 }; 2687 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2688 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2689 S.hasCancel()); 2690 } 2691 2692 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2693 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2694 llvm::SmallVector<const Expr *, 8> DestExprs; 2695 llvm::SmallVector<const Expr *, 8> SrcExprs; 2696 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2697 // Check if there are any 'copyprivate' clauses associated with this 2698 // 'single' construct. 2699 // Build a list of copyprivate variables along with helper expressions 2700 // (<source>, <destination>, <destination>=<source> expressions) 2701 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2702 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2703 DestExprs.append(C->destination_exprs().begin(), 2704 C->destination_exprs().end()); 2705 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2706 AssignmentOps.append(C->assignment_ops().begin(), 2707 C->assignment_ops().end()); 2708 } 2709 // Emit code for 'single' region along with 'copyprivate' clauses 2710 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2711 Action.Enter(CGF); 2712 OMPPrivateScope SingleScope(CGF); 2713 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2714 CGF.EmitOMPPrivateClause(S, SingleScope); 2715 (void)SingleScope.Privatize(); 2716 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2717 }; 2718 { 2719 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2720 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2721 CopyprivateVars, DestExprs, 2722 SrcExprs, AssignmentOps); 2723 } 2724 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2725 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2726 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2727 CGM.getOpenMPRuntime().emitBarrierCall( 2728 *this, S.getBeginLoc(), 2729 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2730 } 2731 } 2732 2733 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2734 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2735 Action.Enter(CGF); 2736 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2737 }; 2738 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2739 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2740 } 2741 2742 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2743 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2744 Action.Enter(CGF); 2745 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2746 }; 2747 const Expr *Hint = nullptr; 2748 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2749 Hint = HintClause->getHint(); 2750 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2751 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2752 S.getDirectiveName().getAsString(), 2753 CodeGen, S.getBeginLoc(), Hint); 2754 } 2755 2756 void CodeGenFunction::EmitOMPParallelForDirective( 2757 const OMPParallelForDirective &S) { 2758 // Emit directive as a combined directive that consists of two implicit 2759 // directives: 'parallel' with 'for' directive. 2760 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2761 Action.Enter(CGF); 2762 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2763 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2764 emitDispatchForLoopBounds); 2765 }; 2766 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2767 emitEmptyBoundParameters); 2768 } 2769 2770 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2771 const OMPParallelForSimdDirective &S) { 2772 // Emit directive as a combined directive that consists of two implicit 2773 // directives: 'parallel' with 'for' directive. 2774 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2775 Action.Enter(CGF); 2776 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2777 emitDispatchForLoopBounds); 2778 }; 2779 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2780 emitEmptyBoundParameters); 2781 } 2782 2783 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2784 const OMPParallelSectionsDirective &S) { 2785 // Emit directive as a combined directive that consists of two implicit 2786 // directives: 'parallel' with 'sections' directive. 2787 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2788 Action.Enter(CGF); 2789 CGF.EmitSections(S); 2790 }; 2791 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2792 emitEmptyBoundParameters); 2793 } 2794 2795 void CodeGenFunction::EmitOMPTaskBasedDirective( 2796 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2797 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2798 OMPTaskDataTy &Data) { 2799 // Emit outlined function for task construct. 2800 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2801 auto I = CS->getCapturedDecl()->param_begin(); 2802 auto PartId = std::next(I); 2803 auto TaskT = std::next(I, 4); 2804 // Check if the task is final 2805 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2806 // If the condition constant folds and can be elided, try to avoid emitting 2807 // the condition and the dead arm of the if/else. 2808 const Expr *Cond = Clause->getCondition(); 2809 bool CondConstant; 2810 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2811 Data.Final.setInt(CondConstant); 2812 else 2813 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2814 } else { 2815 // By default the task is not final. 2816 Data.Final.setInt(/*IntVal=*/false); 2817 } 2818 // Check if the task has 'priority' clause. 2819 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2820 const Expr *Prio = Clause->getPriority(); 2821 Data.Priority.setInt(/*IntVal=*/true); 2822 Data.Priority.setPointer(EmitScalarConversion( 2823 EmitScalarExpr(Prio), Prio->getType(), 2824 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2825 Prio->getExprLoc())); 2826 } 2827 // The first function argument for tasks is a thread id, the second one is a 2828 // part id (0 for tied tasks, >=0 for untied task). 2829 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2830 // Get list of private variables. 2831 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2832 auto IRef = C->varlist_begin(); 2833 for (const Expr *IInit : C->private_copies()) { 2834 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2835 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2836 Data.PrivateVars.push_back(*IRef); 2837 Data.PrivateCopies.push_back(IInit); 2838 } 2839 ++IRef; 2840 } 2841 } 2842 EmittedAsPrivate.clear(); 2843 // Get list of firstprivate variables. 2844 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2845 auto IRef = C->varlist_begin(); 2846 auto IElemInitRef = C->inits().begin(); 2847 for (const Expr *IInit : C->private_copies()) { 2848 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2849 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2850 Data.FirstprivateVars.push_back(*IRef); 2851 Data.FirstprivateCopies.push_back(IInit); 2852 Data.FirstprivateInits.push_back(*IElemInitRef); 2853 } 2854 ++IRef; 2855 ++IElemInitRef; 2856 } 2857 } 2858 // Get list of lastprivate variables (for taskloops). 2859 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2860 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2861 auto IRef = C->varlist_begin(); 2862 auto ID = C->destination_exprs().begin(); 2863 for (const Expr *IInit : C->private_copies()) { 2864 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2865 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2866 Data.LastprivateVars.push_back(*IRef); 2867 Data.LastprivateCopies.push_back(IInit); 2868 } 2869 LastprivateDstsOrigs.insert( 2870 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2871 cast<DeclRefExpr>(*IRef)}); 2872 ++IRef; 2873 ++ID; 2874 } 2875 } 2876 SmallVector<const Expr *, 4> LHSs; 2877 SmallVector<const Expr *, 4> RHSs; 2878 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2879 auto IPriv = C->privates().begin(); 2880 auto IRed = C->reduction_ops().begin(); 2881 auto ILHS = C->lhs_exprs().begin(); 2882 auto IRHS = C->rhs_exprs().begin(); 2883 for (const Expr *Ref : C->varlists()) { 2884 Data.ReductionVars.emplace_back(Ref); 2885 Data.ReductionCopies.emplace_back(*IPriv); 2886 Data.ReductionOps.emplace_back(*IRed); 2887 LHSs.emplace_back(*ILHS); 2888 RHSs.emplace_back(*IRHS); 2889 std::advance(IPriv, 1); 2890 std::advance(IRed, 1); 2891 std::advance(ILHS, 1); 2892 std::advance(IRHS, 1); 2893 } 2894 } 2895 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2896 *this, S.getBeginLoc(), LHSs, RHSs, Data); 2897 // Build list of dependences. 2898 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2899 for (const Expr *IRef : C->varlists()) 2900 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 2901 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2902 CapturedRegion](CodeGenFunction &CGF, 2903 PrePostActionTy &Action) { 2904 // Set proper addresses for generated private copies. 2905 OMPPrivateScope Scope(CGF); 2906 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2907 !Data.LastprivateVars.empty()) { 2908 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 2909 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 2910 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2911 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 2912 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 2913 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 2914 CS->getCapturedDecl()->getParam(PrivatesParam))); 2915 // Map privates. 2916 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2917 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2918 CallArgs.push_back(PrivatesPtr); 2919 for (const Expr *E : Data.PrivateVars) { 2920 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2921 Address PrivatePtr = CGF.CreateMemTemp( 2922 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2923 PrivatePtrs.emplace_back(VD, PrivatePtr); 2924 CallArgs.push_back(PrivatePtr.getPointer()); 2925 } 2926 for (const Expr *E : Data.FirstprivateVars) { 2927 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2928 Address PrivatePtr = 2929 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2930 ".firstpriv.ptr.addr"); 2931 PrivatePtrs.emplace_back(VD, PrivatePtr); 2932 CallArgs.push_back(PrivatePtr.getPointer()); 2933 } 2934 for (const Expr *E : Data.LastprivateVars) { 2935 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2936 Address PrivatePtr = 2937 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2938 ".lastpriv.ptr.addr"); 2939 PrivatePtrs.emplace_back(VD, PrivatePtr); 2940 CallArgs.push_back(PrivatePtr.getPointer()); 2941 } 2942 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2943 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 2944 for (const auto &Pair : LastprivateDstsOrigs) { 2945 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2946 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 2947 /*RefersToEnclosingVariableOrCapture=*/ 2948 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 2949 Pair.second->getType(), VK_LValue, 2950 Pair.second->getExprLoc()); 2951 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2952 return CGF.EmitLValue(&DRE).getAddress(); 2953 }); 2954 } 2955 for (const auto &Pair : PrivatePtrs) { 2956 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2957 CGF.getContext().getDeclAlign(Pair.first)); 2958 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2959 } 2960 } 2961 if (Data.Reductions) { 2962 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2963 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2964 Data.ReductionOps); 2965 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2966 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2967 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2968 RedCG.emitSharedLValue(CGF, Cnt); 2969 RedCG.emitAggregateType(CGF, Cnt); 2970 // FIXME: This must removed once the runtime library is fixed. 2971 // Emit required threadprivate variables for 2972 // initializer/combiner/finalizer. 2973 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 2974 RedCG, Cnt); 2975 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2976 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2977 Replacement = 2978 Address(CGF.EmitScalarConversion( 2979 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2980 CGF.getContext().getPointerType( 2981 Data.ReductionCopies[Cnt]->getType()), 2982 Data.ReductionCopies[Cnt]->getExprLoc()), 2983 Replacement.getAlignment()); 2984 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2985 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2986 [Replacement]() { return Replacement; }); 2987 } 2988 } 2989 // Privatize all private variables except for in_reduction items. 2990 (void)Scope.Privatize(); 2991 SmallVector<const Expr *, 4> InRedVars; 2992 SmallVector<const Expr *, 4> InRedPrivs; 2993 SmallVector<const Expr *, 4> InRedOps; 2994 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2995 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2996 auto IPriv = C->privates().begin(); 2997 auto IRed = C->reduction_ops().begin(); 2998 auto ITD = C->taskgroup_descriptors().begin(); 2999 for (const Expr *Ref : C->varlists()) { 3000 InRedVars.emplace_back(Ref); 3001 InRedPrivs.emplace_back(*IPriv); 3002 InRedOps.emplace_back(*IRed); 3003 TaskgroupDescriptors.emplace_back(*ITD); 3004 std::advance(IPriv, 1); 3005 std::advance(IRed, 1); 3006 std::advance(ITD, 1); 3007 } 3008 } 3009 // Privatize in_reduction items here, because taskgroup descriptors must be 3010 // privatized earlier. 3011 OMPPrivateScope InRedScope(CGF); 3012 if (!InRedVars.empty()) { 3013 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3014 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3015 RedCG.emitSharedLValue(CGF, Cnt); 3016 RedCG.emitAggregateType(CGF, Cnt); 3017 // The taskgroup descriptor variable is always implicit firstprivate and 3018 // privatized already during processing of the firstprivates. 3019 // FIXME: This must removed once the runtime library is fixed. 3020 // Emit required threadprivate variables for 3021 // initializer/combiner/finalizer. 3022 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3023 RedCG, Cnt); 3024 llvm::Value *ReductionsPtr = 3025 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3026 TaskgroupDescriptors[Cnt]->getExprLoc()); 3027 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3028 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3029 Replacement = Address( 3030 CGF.EmitScalarConversion( 3031 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3032 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3033 InRedPrivs[Cnt]->getExprLoc()), 3034 Replacement.getAlignment()); 3035 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3036 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3037 [Replacement]() { return Replacement; }); 3038 } 3039 } 3040 (void)InRedScope.Privatize(); 3041 3042 Action.Enter(CGF); 3043 BodyGen(CGF); 3044 }; 3045 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3046 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3047 Data.NumberOfParts); 3048 OMPLexicalScope Scope(*this, S); 3049 TaskGen(*this, OutlinedFn, Data); 3050 } 3051 3052 static ImplicitParamDecl * 3053 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3054 QualType Ty, CapturedDecl *CD, 3055 SourceLocation Loc) { 3056 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3057 ImplicitParamDecl::Other); 3058 auto *OrigRef = DeclRefExpr::Create( 3059 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3060 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3061 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3062 ImplicitParamDecl::Other); 3063 auto *PrivateRef = DeclRefExpr::Create( 3064 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3065 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3066 QualType ElemType = C.getBaseElementType(Ty); 3067 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3068 ImplicitParamDecl::Other); 3069 auto *InitRef = DeclRefExpr::Create( 3070 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3071 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3072 PrivateVD->setInitStyle(VarDecl::CInit); 3073 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3074 InitRef, /*BasePath=*/nullptr, 3075 VK_RValue)); 3076 Data.FirstprivateVars.emplace_back(OrigRef); 3077 Data.FirstprivateCopies.emplace_back(PrivateRef); 3078 Data.FirstprivateInits.emplace_back(InitRef); 3079 return OrigVD; 3080 } 3081 3082 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3083 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3084 OMPTargetDataInfo &InputInfo) { 3085 // Emit outlined function for task construct. 3086 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3087 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3088 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3089 auto I = CS->getCapturedDecl()->param_begin(); 3090 auto PartId = std::next(I); 3091 auto TaskT = std::next(I, 4); 3092 OMPTaskDataTy Data; 3093 // The task is not final. 3094 Data.Final.setInt(/*IntVal=*/false); 3095 // Get list of firstprivate variables. 3096 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3097 auto IRef = C->varlist_begin(); 3098 auto IElemInitRef = C->inits().begin(); 3099 for (auto *IInit : C->private_copies()) { 3100 Data.FirstprivateVars.push_back(*IRef); 3101 Data.FirstprivateCopies.push_back(IInit); 3102 Data.FirstprivateInits.push_back(*IElemInitRef); 3103 ++IRef; 3104 ++IElemInitRef; 3105 } 3106 } 3107 OMPPrivateScope TargetScope(*this); 3108 VarDecl *BPVD = nullptr; 3109 VarDecl *PVD = nullptr; 3110 VarDecl *SVD = nullptr; 3111 if (InputInfo.NumberOfTargetItems > 0) { 3112 auto *CD = CapturedDecl::Create( 3113 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3114 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3115 QualType BaseAndPointersType = getContext().getConstantArrayType( 3116 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3117 /*IndexTypeQuals=*/0); 3118 BPVD = createImplicitFirstprivateForType( 3119 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3120 PVD = createImplicitFirstprivateForType( 3121 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3122 QualType SizesType = getContext().getConstantArrayType( 3123 getContext().getSizeType(), ArrSize, ArrayType::Normal, 3124 /*IndexTypeQuals=*/0); 3125 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3126 S.getBeginLoc()); 3127 TargetScope.addPrivate( 3128 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3129 TargetScope.addPrivate(PVD, 3130 [&InputInfo]() { return InputInfo.PointersArray; }); 3131 TargetScope.addPrivate(SVD, 3132 [&InputInfo]() { return InputInfo.SizesArray; }); 3133 } 3134 (void)TargetScope.Privatize(); 3135 // Build list of dependences. 3136 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3137 for (const Expr *IRef : C->varlists()) 3138 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3139 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3140 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3141 // Set proper addresses for generated private copies. 3142 OMPPrivateScope Scope(CGF); 3143 if (!Data.FirstprivateVars.empty()) { 3144 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3145 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3146 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3147 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3148 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3149 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3150 CS->getCapturedDecl()->getParam(PrivatesParam))); 3151 // Map privates. 3152 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3153 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3154 CallArgs.push_back(PrivatesPtr); 3155 for (const Expr *E : Data.FirstprivateVars) { 3156 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3157 Address PrivatePtr = 3158 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3159 ".firstpriv.ptr.addr"); 3160 PrivatePtrs.emplace_back(VD, PrivatePtr); 3161 CallArgs.push_back(PrivatePtr.getPointer()); 3162 } 3163 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3164 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3165 for (const auto &Pair : PrivatePtrs) { 3166 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3167 CGF.getContext().getDeclAlign(Pair.first)); 3168 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3169 } 3170 } 3171 // Privatize all private variables except for in_reduction items. 3172 (void)Scope.Privatize(); 3173 if (InputInfo.NumberOfTargetItems > 0) { 3174 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3175 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3176 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3177 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3178 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3179 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3180 } 3181 3182 Action.Enter(CGF); 3183 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3184 BodyGen(CGF); 3185 }; 3186 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3187 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3188 Data.NumberOfParts); 3189 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3190 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3191 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3192 SourceLocation()); 3193 3194 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3195 SharedsTy, CapturedStruct, &IfCond, Data); 3196 } 3197 3198 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3199 // Emit outlined function for task construct. 3200 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3201 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3202 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3203 const Expr *IfCond = nullptr; 3204 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3205 if (C->getNameModifier() == OMPD_unknown || 3206 C->getNameModifier() == OMPD_task) { 3207 IfCond = C->getCondition(); 3208 break; 3209 } 3210 } 3211 3212 OMPTaskDataTy Data; 3213 // Check if we should emit tied or untied task. 3214 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3215 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3216 CGF.EmitStmt(CS->getCapturedStmt()); 3217 }; 3218 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3219 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3220 const OMPTaskDataTy &Data) { 3221 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3222 SharedsTy, CapturedStruct, IfCond, 3223 Data); 3224 }; 3225 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3226 } 3227 3228 void CodeGenFunction::EmitOMPTaskyieldDirective( 3229 const OMPTaskyieldDirective &S) { 3230 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3231 } 3232 3233 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3234 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3235 } 3236 3237 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3238 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3239 } 3240 3241 void CodeGenFunction::EmitOMPTaskgroupDirective( 3242 const OMPTaskgroupDirective &S) { 3243 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3244 Action.Enter(CGF); 3245 if (const Expr *E = S.getReductionRef()) { 3246 SmallVector<const Expr *, 4> LHSs; 3247 SmallVector<const Expr *, 4> RHSs; 3248 OMPTaskDataTy Data; 3249 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3250 auto IPriv = C->privates().begin(); 3251 auto IRed = C->reduction_ops().begin(); 3252 auto ILHS = C->lhs_exprs().begin(); 3253 auto IRHS = C->rhs_exprs().begin(); 3254 for (const Expr *Ref : C->varlists()) { 3255 Data.ReductionVars.emplace_back(Ref); 3256 Data.ReductionCopies.emplace_back(*IPriv); 3257 Data.ReductionOps.emplace_back(*IRed); 3258 LHSs.emplace_back(*ILHS); 3259 RHSs.emplace_back(*IRHS); 3260 std::advance(IPriv, 1); 3261 std::advance(IRed, 1); 3262 std::advance(ILHS, 1); 3263 std::advance(IRHS, 1); 3264 } 3265 } 3266 llvm::Value *ReductionDesc = 3267 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3268 LHSs, RHSs, Data); 3269 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3270 CGF.EmitVarDecl(*VD); 3271 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3272 /*Volatile=*/false, E->getType()); 3273 } 3274 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3275 }; 3276 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3277 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3278 } 3279 3280 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3281 CGM.getOpenMPRuntime().emitFlush( 3282 *this, 3283 [&S]() -> ArrayRef<const Expr *> { 3284 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3285 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3286 FlushClause->varlist_end()); 3287 return llvm::None; 3288 }(), 3289 S.getBeginLoc()); 3290 } 3291 3292 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3293 const CodeGenLoopTy &CodeGenLoop, 3294 Expr *IncExpr) { 3295 // Emit the loop iteration variable. 3296 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3297 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3298 EmitVarDecl(*IVDecl); 3299 3300 // Emit the iterations count variable. 3301 // If it is not a variable, Sema decided to calculate iterations count on each 3302 // iteration (e.g., it is foldable into a constant). 3303 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3304 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3305 // Emit calculation of the iterations count. 3306 EmitIgnoredExpr(S.getCalcLastIteration()); 3307 } 3308 3309 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3310 3311 bool HasLastprivateClause = false; 3312 // Check pre-condition. 3313 { 3314 OMPLoopScope PreInitScope(*this, S); 3315 // Skip the entire loop if we don't meet the precondition. 3316 // If the condition constant folds and can be elided, avoid emitting the 3317 // whole loop. 3318 bool CondConstant; 3319 llvm::BasicBlock *ContBlock = nullptr; 3320 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3321 if (!CondConstant) 3322 return; 3323 } else { 3324 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3325 ContBlock = createBasicBlock("omp.precond.end"); 3326 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3327 getProfileCount(&S)); 3328 EmitBlock(ThenBlock); 3329 incrementProfileCounter(&S); 3330 } 3331 3332 emitAlignedClause(*this, S); 3333 // Emit 'then' code. 3334 { 3335 // Emit helper vars inits. 3336 3337 LValue LB = EmitOMPHelperVar( 3338 *this, cast<DeclRefExpr>( 3339 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3340 ? S.getCombinedLowerBoundVariable() 3341 : S.getLowerBoundVariable()))); 3342 LValue UB = EmitOMPHelperVar( 3343 *this, cast<DeclRefExpr>( 3344 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3345 ? S.getCombinedUpperBoundVariable() 3346 : S.getUpperBoundVariable()))); 3347 LValue ST = 3348 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3349 LValue IL = 3350 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3351 3352 OMPPrivateScope LoopScope(*this); 3353 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3354 // Emit implicit barrier to synchronize threads and avoid data races 3355 // on initialization of firstprivate variables and post-update of 3356 // lastprivate variables. 3357 CGM.getOpenMPRuntime().emitBarrierCall( 3358 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3359 /*ForceSimpleCall=*/true); 3360 } 3361 EmitOMPPrivateClause(S, LoopScope); 3362 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3363 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3364 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3365 EmitOMPReductionClauseInit(S, LoopScope); 3366 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3367 EmitOMPPrivateLoopCounters(S, LoopScope); 3368 (void)LoopScope.Privatize(); 3369 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3370 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3371 3372 // Detect the distribute schedule kind and chunk. 3373 llvm::Value *Chunk = nullptr; 3374 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3375 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3376 ScheduleKind = C->getDistScheduleKind(); 3377 if (const Expr *Ch = C->getChunkSize()) { 3378 Chunk = EmitScalarExpr(Ch); 3379 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3380 S.getIterationVariable()->getType(), 3381 S.getBeginLoc()); 3382 } 3383 } else { 3384 // Default behaviour for dist_schedule clause. 3385 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3386 *this, S, ScheduleKind, Chunk); 3387 } 3388 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3389 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3390 3391 // OpenMP [2.10.8, distribute Construct, Description] 3392 // If dist_schedule is specified, kind must be static. If specified, 3393 // iterations are divided into chunks of size chunk_size, chunks are 3394 // assigned to the teams of the league in a round-robin fashion in the 3395 // order of the team number. When no chunk_size is specified, the 3396 // iteration space is divided into chunks that are approximately equal 3397 // in size, and at most one chunk is distributed to each team of the 3398 // league. The size of the chunks is unspecified in this case. 3399 bool StaticChunked = RT.isStaticChunked( 3400 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3401 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3402 if (RT.isStaticNonchunked(ScheduleKind, 3403 /* Chunked */ Chunk != nullptr) || 3404 StaticChunked) { 3405 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3406 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3407 CGOpenMPRuntime::StaticRTInput StaticInit( 3408 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3409 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3410 StaticChunked ? Chunk : nullptr); 3411 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3412 StaticInit); 3413 JumpDest LoopExit = 3414 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3415 // UB = min(UB, GlobalUB); 3416 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3417 ? S.getCombinedEnsureUpperBound() 3418 : S.getEnsureUpperBound()); 3419 // IV = LB; 3420 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3421 ? S.getCombinedInit() 3422 : S.getInit()); 3423 3424 const Expr *Cond = 3425 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3426 ? S.getCombinedCond() 3427 : S.getCond(); 3428 3429 if (StaticChunked) 3430 Cond = S.getCombinedDistCond(); 3431 3432 // For static unchunked schedules generate: 3433 // 3434 // 1. For distribute alone, codegen 3435 // while (idx <= UB) { 3436 // BODY; 3437 // ++idx; 3438 // } 3439 // 3440 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3441 // while (idx <= UB) { 3442 // <CodeGen rest of pragma>(LB, UB); 3443 // idx += ST; 3444 // } 3445 // 3446 // For static chunk one schedule generate: 3447 // 3448 // while (IV <= GlobalUB) { 3449 // <CodeGen rest of pragma>(LB, UB); 3450 // LB += ST; 3451 // UB += ST; 3452 // UB = min(UB, GlobalUB); 3453 // IV = LB; 3454 // } 3455 // 3456 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3457 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3458 CodeGenLoop(CGF, S, LoopExit); 3459 }, 3460 [&S, StaticChunked](CodeGenFunction &CGF) { 3461 if (StaticChunked) { 3462 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3463 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3464 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3465 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3466 } 3467 }); 3468 EmitBlock(LoopExit.getBlock()); 3469 // Tell the runtime we are done. 3470 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3471 } else { 3472 // Emit the outer loop, which requests its work chunk [LB..UB] from 3473 // runtime and runs the inner loop to process it. 3474 const OMPLoopArguments LoopArguments = { 3475 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3476 Chunk}; 3477 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3478 CodeGenLoop); 3479 } 3480 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3481 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3482 return CGF.Builder.CreateIsNotNull( 3483 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3484 }); 3485 } 3486 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3487 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3488 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3489 EmitOMPReductionClauseFinal(S, OMPD_simd); 3490 // Emit post-update of the reduction variables if IsLastIter != 0. 3491 emitPostUpdateForReductionClause( 3492 *this, S, [IL, &S](CodeGenFunction &CGF) { 3493 return CGF.Builder.CreateIsNotNull( 3494 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3495 }); 3496 } 3497 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3498 if (HasLastprivateClause) { 3499 EmitOMPLastprivateClauseFinal( 3500 S, /*NoFinals=*/false, 3501 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3502 } 3503 } 3504 3505 // We're now done with the loop, so jump to the continuation block. 3506 if (ContBlock) { 3507 EmitBranch(ContBlock); 3508 EmitBlock(ContBlock, true); 3509 } 3510 } 3511 } 3512 3513 void CodeGenFunction::EmitOMPDistributeDirective( 3514 const OMPDistributeDirective &S) { 3515 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3516 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3517 }; 3518 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3519 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3520 } 3521 3522 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3523 const CapturedStmt *S) { 3524 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3525 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3526 CGF.CapturedStmtInfo = &CapStmtInfo; 3527 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3528 Fn->setDoesNotRecurse(); 3529 return Fn; 3530 } 3531 3532 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3533 if (S.hasClausesOfKind<OMPDependClause>()) { 3534 assert(!S.getAssociatedStmt() && 3535 "No associated statement must be in ordered depend construct."); 3536 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3537 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3538 return; 3539 } 3540 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3541 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3542 PrePostActionTy &Action) { 3543 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3544 if (C) { 3545 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3546 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3547 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3548 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3549 OutlinedFn, CapturedVars); 3550 } else { 3551 Action.Enter(CGF); 3552 CGF.EmitStmt(CS->getCapturedStmt()); 3553 } 3554 }; 3555 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3556 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3557 } 3558 3559 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3560 QualType SrcType, QualType DestType, 3561 SourceLocation Loc) { 3562 assert(CGF.hasScalarEvaluationKind(DestType) && 3563 "DestType must have scalar evaluation kind."); 3564 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3565 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3566 DestType, Loc) 3567 : CGF.EmitComplexToScalarConversion( 3568 Val.getComplexVal(), SrcType, DestType, Loc); 3569 } 3570 3571 static CodeGenFunction::ComplexPairTy 3572 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3573 QualType DestType, SourceLocation Loc) { 3574 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3575 "DestType must have complex evaluation kind."); 3576 CodeGenFunction::ComplexPairTy ComplexVal; 3577 if (Val.isScalar()) { 3578 // Convert the input element to the element type of the complex. 3579 QualType DestElementType = 3580 DestType->castAs<ComplexType>()->getElementType(); 3581 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3582 Val.getScalarVal(), SrcType, DestElementType, Loc); 3583 ComplexVal = CodeGenFunction::ComplexPairTy( 3584 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3585 } else { 3586 assert(Val.isComplex() && "Must be a scalar or complex."); 3587 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3588 QualType DestElementType = 3589 DestType->castAs<ComplexType>()->getElementType(); 3590 ComplexVal.first = CGF.EmitScalarConversion( 3591 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3592 ComplexVal.second = CGF.EmitScalarConversion( 3593 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3594 } 3595 return ComplexVal; 3596 } 3597 3598 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3599 LValue LVal, RValue RVal) { 3600 if (LVal.isGlobalReg()) { 3601 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3602 } else { 3603 CGF.EmitAtomicStore(RVal, LVal, 3604 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3605 : llvm::AtomicOrdering::Monotonic, 3606 LVal.isVolatile(), /*IsInit=*/false); 3607 } 3608 } 3609 3610 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3611 QualType RValTy, SourceLocation Loc) { 3612 switch (getEvaluationKind(LVal.getType())) { 3613 case TEK_Scalar: 3614 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3615 *this, RVal, RValTy, LVal.getType(), Loc)), 3616 LVal); 3617 break; 3618 case TEK_Complex: 3619 EmitStoreOfComplex( 3620 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3621 /*isInit=*/false); 3622 break; 3623 case TEK_Aggregate: 3624 llvm_unreachable("Must be a scalar or complex."); 3625 } 3626 } 3627 3628 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3629 const Expr *X, const Expr *V, 3630 SourceLocation Loc) { 3631 // v = x; 3632 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3633 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3634 LValue XLValue = CGF.EmitLValue(X); 3635 LValue VLValue = CGF.EmitLValue(V); 3636 RValue Res = XLValue.isGlobalReg() 3637 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3638 : CGF.EmitAtomicLoad( 3639 XLValue, Loc, 3640 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3641 : llvm::AtomicOrdering::Monotonic, 3642 XLValue.isVolatile()); 3643 // OpenMP, 2.12.6, atomic Construct 3644 // Any atomic construct with a seq_cst clause forces the atomically 3645 // performed operation to include an implicit flush operation without a 3646 // list. 3647 if (IsSeqCst) 3648 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3649 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3650 } 3651 3652 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3653 const Expr *X, const Expr *E, 3654 SourceLocation Loc) { 3655 // x = expr; 3656 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3657 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3658 // OpenMP, 2.12.6, atomic Construct 3659 // Any atomic construct with a seq_cst clause forces the atomically 3660 // performed operation to include an implicit flush operation without a 3661 // list. 3662 if (IsSeqCst) 3663 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3664 } 3665 3666 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3667 RValue Update, 3668 BinaryOperatorKind BO, 3669 llvm::AtomicOrdering AO, 3670 bool IsXLHSInRHSPart) { 3671 ASTContext &Context = CGF.getContext(); 3672 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3673 // expression is simple and atomic is allowed for the given type for the 3674 // target platform. 3675 if (BO == BO_Comma || !Update.isScalar() || 3676 !Update.getScalarVal()->getType()->isIntegerTy() || 3677 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3678 (Update.getScalarVal()->getType() != 3679 X.getAddress().getElementType())) || 3680 !X.getAddress().getElementType()->isIntegerTy() || 3681 !Context.getTargetInfo().hasBuiltinAtomic( 3682 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3683 return std::make_pair(false, RValue::get(nullptr)); 3684 3685 llvm::AtomicRMWInst::BinOp RMWOp; 3686 switch (BO) { 3687 case BO_Add: 3688 RMWOp = llvm::AtomicRMWInst::Add; 3689 break; 3690 case BO_Sub: 3691 if (!IsXLHSInRHSPart) 3692 return std::make_pair(false, RValue::get(nullptr)); 3693 RMWOp = llvm::AtomicRMWInst::Sub; 3694 break; 3695 case BO_And: 3696 RMWOp = llvm::AtomicRMWInst::And; 3697 break; 3698 case BO_Or: 3699 RMWOp = llvm::AtomicRMWInst::Or; 3700 break; 3701 case BO_Xor: 3702 RMWOp = llvm::AtomicRMWInst::Xor; 3703 break; 3704 case BO_LT: 3705 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3706 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3707 : llvm::AtomicRMWInst::Max) 3708 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3709 : llvm::AtomicRMWInst::UMax); 3710 break; 3711 case BO_GT: 3712 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3713 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3714 : llvm::AtomicRMWInst::Min) 3715 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3716 : llvm::AtomicRMWInst::UMin); 3717 break; 3718 case BO_Assign: 3719 RMWOp = llvm::AtomicRMWInst::Xchg; 3720 break; 3721 case BO_Mul: 3722 case BO_Div: 3723 case BO_Rem: 3724 case BO_Shl: 3725 case BO_Shr: 3726 case BO_LAnd: 3727 case BO_LOr: 3728 return std::make_pair(false, RValue::get(nullptr)); 3729 case BO_PtrMemD: 3730 case BO_PtrMemI: 3731 case BO_LE: 3732 case BO_GE: 3733 case BO_EQ: 3734 case BO_NE: 3735 case BO_Cmp: 3736 case BO_AddAssign: 3737 case BO_SubAssign: 3738 case BO_AndAssign: 3739 case BO_OrAssign: 3740 case BO_XorAssign: 3741 case BO_MulAssign: 3742 case BO_DivAssign: 3743 case BO_RemAssign: 3744 case BO_ShlAssign: 3745 case BO_ShrAssign: 3746 case BO_Comma: 3747 llvm_unreachable("Unsupported atomic update operation"); 3748 } 3749 llvm::Value *UpdateVal = Update.getScalarVal(); 3750 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3751 UpdateVal = CGF.Builder.CreateIntCast( 3752 IC, X.getAddress().getElementType(), 3753 X.getType()->hasSignedIntegerRepresentation()); 3754 } 3755 llvm::Value *Res = 3756 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3757 return std::make_pair(true, RValue::get(Res)); 3758 } 3759 3760 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3761 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3762 llvm::AtomicOrdering AO, SourceLocation Loc, 3763 const llvm::function_ref<RValue(RValue)> CommonGen) { 3764 // Update expressions are allowed to have the following forms: 3765 // x binop= expr; -> xrval + expr; 3766 // x++, ++x -> xrval + 1; 3767 // x--, --x -> xrval - 1; 3768 // x = x binop expr; -> xrval binop expr 3769 // x = expr Op x; - > expr binop xrval; 3770 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3771 if (!Res.first) { 3772 if (X.isGlobalReg()) { 3773 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3774 // 'xrval'. 3775 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3776 } else { 3777 // Perform compare-and-swap procedure. 3778 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3779 } 3780 } 3781 return Res; 3782 } 3783 3784 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3785 const Expr *X, const Expr *E, 3786 const Expr *UE, bool IsXLHSInRHSPart, 3787 SourceLocation Loc) { 3788 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3789 "Update expr in 'atomic update' must be a binary operator."); 3790 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3791 // Update expressions are allowed to have the following forms: 3792 // x binop= expr; -> xrval + expr; 3793 // x++, ++x -> xrval + 1; 3794 // x--, --x -> xrval - 1; 3795 // x = x binop expr; -> xrval binop expr 3796 // x = expr Op x; - > expr binop xrval; 3797 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3798 LValue XLValue = CGF.EmitLValue(X); 3799 RValue ExprRValue = CGF.EmitAnyExpr(E); 3800 llvm::AtomicOrdering AO = IsSeqCst 3801 ? llvm::AtomicOrdering::SequentiallyConsistent 3802 : llvm::AtomicOrdering::Monotonic; 3803 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3804 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3805 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3806 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3807 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3808 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3809 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3810 return CGF.EmitAnyExpr(UE); 3811 }; 3812 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3813 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3814 // OpenMP, 2.12.6, atomic Construct 3815 // Any atomic construct with a seq_cst clause forces the atomically 3816 // performed operation to include an implicit flush operation without a 3817 // list. 3818 if (IsSeqCst) 3819 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3820 } 3821 3822 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3823 QualType SourceType, QualType ResType, 3824 SourceLocation Loc) { 3825 switch (CGF.getEvaluationKind(ResType)) { 3826 case TEK_Scalar: 3827 return RValue::get( 3828 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3829 case TEK_Complex: { 3830 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3831 return RValue::getComplex(Res.first, Res.second); 3832 } 3833 case TEK_Aggregate: 3834 break; 3835 } 3836 llvm_unreachable("Must be a scalar or complex."); 3837 } 3838 3839 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3840 bool IsPostfixUpdate, const Expr *V, 3841 const Expr *X, const Expr *E, 3842 const Expr *UE, bool IsXLHSInRHSPart, 3843 SourceLocation Loc) { 3844 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3845 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3846 RValue NewVVal; 3847 LValue VLValue = CGF.EmitLValue(V); 3848 LValue XLValue = CGF.EmitLValue(X); 3849 RValue ExprRValue = CGF.EmitAnyExpr(E); 3850 llvm::AtomicOrdering AO = IsSeqCst 3851 ? llvm::AtomicOrdering::SequentiallyConsistent 3852 : llvm::AtomicOrdering::Monotonic; 3853 QualType NewVValType; 3854 if (UE) { 3855 // 'x' is updated with some additional value. 3856 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3857 "Update expr in 'atomic capture' must be a binary operator."); 3858 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3859 // Update expressions are allowed to have the following forms: 3860 // x binop= expr; -> xrval + expr; 3861 // x++, ++x -> xrval + 1; 3862 // x--, --x -> xrval - 1; 3863 // x = x binop expr; -> xrval binop expr 3864 // x = expr Op x; - > expr binop xrval; 3865 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3866 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3867 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3868 NewVValType = XRValExpr->getType(); 3869 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3870 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3871 IsPostfixUpdate](RValue XRValue) { 3872 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3873 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3874 RValue Res = CGF.EmitAnyExpr(UE); 3875 NewVVal = IsPostfixUpdate ? XRValue : Res; 3876 return Res; 3877 }; 3878 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3879 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3880 if (Res.first) { 3881 // 'atomicrmw' instruction was generated. 3882 if (IsPostfixUpdate) { 3883 // Use old value from 'atomicrmw'. 3884 NewVVal = Res.second; 3885 } else { 3886 // 'atomicrmw' does not provide new value, so evaluate it using old 3887 // value of 'x'. 3888 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3889 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3890 NewVVal = CGF.EmitAnyExpr(UE); 3891 } 3892 } 3893 } else { 3894 // 'x' is simply rewritten with some 'expr'. 3895 NewVValType = X->getType().getNonReferenceType(); 3896 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3897 X->getType().getNonReferenceType(), Loc); 3898 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 3899 NewVVal = XRValue; 3900 return ExprRValue; 3901 }; 3902 // Try to perform atomicrmw xchg, otherwise simple exchange. 3903 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3904 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3905 Loc, Gen); 3906 if (Res.first) { 3907 // 'atomicrmw' instruction was generated. 3908 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3909 } 3910 } 3911 // Emit post-update store to 'v' of old/new 'x' value. 3912 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3913 // OpenMP, 2.12.6, atomic Construct 3914 // Any atomic construct with a seq_cst clause forces the atomically 3915 // performed operation to include an implicit flush operation without a 3916 // list. 3917 if (IsSeqCst) 3918 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3919 } 3920 3921 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3922 bool IsSeqCst, bool IsPostfixUpdate, 3923 const Expr *X, const Expr *V, const Expr *E, 3924 const Expr *UE, bool IsXLHSInRHSPart, 3925 SourceLocation Loc) { 3926 switch (Kind) { 3927 case OMPC_read: 3928 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3929 break; 3930 case OMPC_write: 3931 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3932 break; 3933 case OMPC_unknown: 3934 case OMPC_update: 3935 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3936 break; 3937 case OMPC_capture: 3938 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3939 IsXLHSInRHSPart, Loc); 3940 break; 3941 case OMPC_if: 3942 case OMPC_final: 3943 case OMPC_num_threads: 3944 case OMPC_private: 3945 case OMPC_firstprivate: 3946 case OMPC_lastprivate: 3947 case OMPC_reduction: 3948 case OMPC_task_reduction: 3949 case OMPC_in_reduction: 3950 case OMPC_safelen: 3951 case OMPC_simdlen: 3952 case OMPC_allocator: 3953 case OMPC_allocate: 3954 case OMPC_collapse: 3955 case OMPC_default: 3956 case OMPC_seq_cst: 3957 case OMPC_shared: 3958 case OMPC_linear: 3959 case OMPC_aligned: 3960 case OMPC_copyin: 3961 case OMPC_copyprivate: 3962 case OMPC_flush: 3963 case OMPC_proc_bind: 3964 case OMPC_schedule: 3965 case OMPC_ordered: 3966 case OMPC_nowait: 3967 case OMPC_untied: 3968 case OMPC_threadprivate: 3969 case OMPC_depend: 3970 case OMPC_mergeable: 3971 case OMPC_device: 3972 case OMPC_threads: 3973 case OMPC_simd: 3974 case OMPC_map: 3975 case OMPC_num_teams: 3976 case OMPC_thread_limit: 3977 case OMPC_priority: 3978 case OMPC_grainsize: 3979 case OMPC_nogroup: 3980 case OMPC_num_tasks: 3981 case OMPC_hint: 3982 case OMPC_dist_schedule: 3983 case OMPC_defaultmap: 3984 case OMPC_uniform: 3985 case OMPC_to: 3986 case OMPC_from: 3987 case OMPC_use_device_ptr: 3988 case OMPC_is_device_ptr: 3989 case OMPC_unified_address: 3990 case OMPC_unified_shared_memory: 3991 case OMPC_reverse_offload: 3992 case OMPC_dynamic_allocators: 3993 case OMPC_atomic_default_mem_order: 3994 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3995 } 3996 } 3997 3998 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3999 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4000 OpenMPClauseKind Kind = OMPC_unknown; 4001 for (const OMPClause *C : S.clauses()) { 4002 // Find first clause (skip seq_cst clause, if it is first). 4003 if (C->getClauseKind() != OMPC_seq_cst) { 4004 Kind = C->getClauseKind(); 4005 break; 4006 } 4007 } 4008 4009 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4010 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4011 enterFullExpression(FE); 4012 // Processing for statements under 'atomic capture'. 4013 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4014 for (const Stmt *C : Compound->body()) { 4015 if (const auto *FE = dyn_cast<FullExpr>(C)) 4016 enterFullExpression(FE); 4017 } 4018 } 4019 4020 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4021 PrePostActionTy &) { 4022 CGF.EmitStopPoint(CS); 4023 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4024 S.getV(), S.getExpr(), S.getUpdateExpr(), 4025 S.isXLHSInRHSPart(), S.getBeginLoc()); 4026 }; 4027 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4028 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4029 } 4030 4031 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4032 const OMPExecutableDirective &S, 4033 const RegionCodeGenTy &CodeGen) { 4034 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4035 CodeGenModule &CGM = CGF.CGM; 4036 4037 // On device emit this construct as inlined code. 4038 if (CGM.getLangOpts().OpenMPIsDevice) { 4039 OMPLexicalScope Scope(CGF, S, OMPD_target); 4040 CGM.getOpenMPRuntime().emitInlinedDirective( 4041 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4042 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4043 }); 4044 return; 4045 } 4046 4047 llvm::Function *Fn = nullptr; 4048 llvm::Constant *FnID = nullptr; 4049 4050 const Expr *IfCond = nullptr; 4051 // Check for the at most one if clause associated with the target region. 4052 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4053 if (C->getNameModifier() == OMPD_unknown || 4054 C->getNameModifier() == OMPD_target) { 4055 IfCond = C->getCondition(); 4056 break; 4057 } 4058 } 4059 4060 // Check if we have any device clause associated with the directive. 4061 const Expr *Device = nullptr; 4062 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4063 Device = C->getDevice(); 4064 4065 // Check if we have an if clause whose conditional always evaluates to false 4066 // or if we do not have any targets specified. If so the target region is not 4067 // an offload entry point. 4068 bool IsOffloadEntry = true; 4069 if (IfCond) { 4070 bool Val; 4071 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4072 IsOffloadEntry = false; 4073 } 4074 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4075 IsOffloadEntry = false; 4076 4077 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4078 StringRef ParentName; 4079 // In case we have Ctors/Dtors we use the complete type variant to produce 4080 // the mangling of the device outlined kernel. 4081 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4082 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4083 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4084 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4085 else 4086 ParentName = 4087 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4088 4089 // Emit target region as a standalone region. 4090 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4091 IsOffloadEntry, CodeGen); 4092 OMPLexicalScope Scope(CGF, S, OMPD_task); 4093 auto &&SizeEmitter = [](CodeGenFunction &CGF, const OMPLoopDirective &D) { 4094 OMPLoopScope(CGF, D); 4095 // Emit calculation of the iterations count. 4096 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4097 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4098 /*IsSigned=*/false); 4099 return NumIterations; 4100 }; 4101 if (IsOffloadEntry) 4102 CGM.getOpenMPRuntime().emitTargetNumIterationsCall(CGF, S, Device, 4103 SizeEmitter); 4104 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 4105 } 4106 4107 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4108 PrePostActionTy &Action) { 4109 Action.Enter(CGF); 4110 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4111 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4112 CGF.EmitOMPPrivateClause(S, PrivateScope); 4113 (void)PrivateScope.Privatize(); 4114 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4115 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4116 4117 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4118 } 4119 4120 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4121 StringRef ParentName, 4122 const OMPTargetDirective &S) { 4123 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4124 emitTargetRegion(CGF, S, Action); 4125 }; 4126 llvm::Function *Fn; 4127 llvm::Constant *Addr; 4128 // Emit target region as a standalone region. 4129 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4130 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4131 assert(Fn && Addr && "Target device function emission failed."); 4132 } 4133 4134 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4135 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4136 emitTargetRegion(CGF, S, Action); 4137 }; 4138 emitCommonOMPTargetDirective(*this, S, CodeGen); 4139 } 4140 4141 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4142 const OMPExecutableDirective &S, 4143 OpenMPDirectiveKind InnermostKind, 4144 const RegionCodeGenTy &CodeGen) { 4145 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4146 llvm::Function *OutlinedFn = 4147 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4148 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4149 4150 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4151 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4152 if (NT || TL) { 4153 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4154 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4155 4156 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4157 S.getBeginLoc()); 4158 } 4159 4160 OMPTeamsScope Scope(CGF, S); 4161 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4162 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4163 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4164 CapturedVars); 4165 } 4166 4167 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4168 // Emit teams region as a standalone region. 4169 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4170 Action.Enter(CGF); 4171 OMPPrivateScope PrivateScope(CGF); 4172 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4173 CGF.EmitOMPPrivateClause(S, PrivateScope); 4174 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4175 (void)PrivateScope.Privatize(); 4176 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4177 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4178 }; 4179 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4180 emitPostUpdateForReductionClause(*this, S, 4181 [](CodeGenFunction &) { return nullptr; }); 4182 } 4183 4184 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4185 const OMPTargetTeamsDirective &S) { 4186 auto *CS = S.getCapturedStmt(OMPD_teams); 4187 Action.Enter(CGF); 4188 // Emit teams region as a standalone region. 4189 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4190 Action.Enter(CGF); 4191 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4192 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4193 CGF.EmitOMPPrivateClause(S, PrivateScope); 4194 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4195 (void)PrivateScope.Privatize(); 4196 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4197 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4198 CGF.EmitStmt(CS->getCapturedStmt()); 4199 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4200 }; 4201 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4202 emitPostUpdateForReductionClause(CGF, S, 4203 [](CodeGenFunction &) { return nullptr; }); 4204 } 4205 4206 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4207 CodeGenModule &CGM, StringRef ParentName, 4208 const OMPTargetTeamsDirective &S) { 4209 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4210 emitTargetTeamsRegion(CGF, Action, S); 4211 }; 4212 llvm::Function *Fn; 4213 llvm::Constant *Addr; 4214 // Emit target region as a standalone region. 4215 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4216 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4217 assert(Fn && Addr && "Target device function emission failed."); 4218 } 4219 4220 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4221 const OMPTargetTeamsDirective &S) { 4222 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4223 emitTargetTeamsRegion(CGF, Action, S); 4224 }; 4225 emitCommonOMPTargetDirective(*this, S, CodeGen); 4226 } 4227 4228 static void 4229 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4230 const OMPTargetTeamsDistributeDirective &S) { 4231 Action.Enter(CGF); 4232 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4233 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4234 }; 4235 4236 // Emit teams region as a standalone region. 4237 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4238 PrePostActionTy &Action) { 4239 Action.Enter(CGF); 4240 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4241 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4242 (void)PrivateScope.Privatize(); 4243 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4244 CodeGenDistribute); 4245 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4246 }; 4247 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4248 emitPostUpdateForReductionClause(CGF, S, 4249 [](CodeGenFunction &) { return nullptr; }); 4250 } 4251 4252 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4253 CodeGenModule &CGM, StringRef ParentName, 4254 const OMPTargetTeamsDistributeDirective &S) { 4255 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4256 emitTargetTeamsDistributeRegion(CGF, Action, S); 4257 }; 4258 llvm::Function *Fn; 4259 llvm::Constant *Addr; 4260 // Emit target region as a standalone region. 4261 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4262 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4263 assert(Fn && Addr && "Target device function emission failed."); 4264 } 4265 4266 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4267 const OMPTargetTeamsDistributeDirective &S) { 4268 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4269 emitTargetTeamsDistributeRegion(CGF, Action, S); 4270 }; 4271 emitCommonOMPTargetDirective(*this, S, CodeGen); 4272 } 4273 4274 static void emitTargetTeamsDistributeSimdRegion( 4275 CodeGenFunction &CGF, PrePostActionTy &Action, 4276 const OMPTargetTeamsDistributeSimdDirective &S) { 4277 Action.Enter(CGF); 4278 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4279 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4280 }; 4281 4282 // Emit teams region as a standalone region. 4283 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4284 PrePostActionTy &Action) { 4285 Action.Enter(CGF); 4286 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4287 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4288 (void)PrivateScope.Privatize(); 4289 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4290 CodeGenDistribute); 4291 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4292 }; 4293 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4294 emitPostUpdateForReductionClause(CGF, S, 4295 [](CodeGenFunction &) { return nullptr; }); 4296 } 4297 4298 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4299 CodeGenModule &CGM, StringRef ParentName, 4300 const OMPTargetTeamsDistributeSimdDirective &S) { 4301 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4302 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4303 }; 4304 llvm::Function *Fn; 4305 llvm::Constant *Addr; 4306 // Emit target region as a standalone region. 4307 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4308 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4309 assert(Fn && Addr && "Target device function emission failed."); 4310 } 4311 4312 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4313 const OMPTargetTeamsDistributeSimdDirective &S) { 4314 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4315 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4316 }; 4317 emitCommonOMPTargetDirective(*this, S, CodeGen); 4318 } 4319 4320 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4321 const OMPTeamsDistributeDirective &S) { 4322 4323 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4324 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4325 }; 4326 4327 // Emit teams region as a standalone region. 4328 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4329 PrePostActionTy &Action) { 4330 Action.Enter(CGF); 4331 OMPPrivateScope PrivateScope(CGF); 4332 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4333 (void)PrivateScope.Privatize(); 4334 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4335 CodeGenDistribute); 4336 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4337 }; 4338 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4339 emitPostUpdateForReductionClause(*this, S, 4340 [](CodeGenFunction &) { return nullptr; }); 4341 } 4342 4343 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4344 const OMPTeamsDistributeSimdDirective &S) { 4345 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4346 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4347 }; 4348 4349 // Emit teams region as a standalone region. 4350 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4351 PrePostActionTy &Action) { 4352 Action.Enter(CGF); 4353 OMPPrivateScope PrivateScope(CGF); 4354 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4355 (void)PrivateScope.Privatize(); 4356 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4357 CodeGenDistribute); 4358 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4359 }; 4360 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4361 emitPostUpdateForReductionClause(*this, S, 4362 [](CodeGenFunction &) { return nullptr; }); 4363 } 4364 4365 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4366 const OMPTeamsDistributeParallelForDirective &S) { 4367 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4368 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4369 S.getDistInc()); 4370 }; 4371 4372 // Emit teams region as a standalone region. 4373 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4374 PrePostActionTy &Action) { 4375 Action.Enter(CGF); 4376 OMPPrivateScope PrivateScope(CGF); 4377 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4378 (void)PrivateScope.Privatize(); 4379 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4380 CodeGenDistribute); 4381 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4382 }; 4383 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4384 emitPostUpdateForReductionClause(*this, S, 4385 [](CodeGenFunction &) { return nullptr; }); 4386 } 4387 4388 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4389 const OMPTeamsDistributeParallelForSimdDirective &S) { 4390 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4391 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4392 S.getDistInc()); 4393 }; 4394 4395 // Emit teams region as a standalone region. 4396 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4397 PrePostActionTy &Action) { 4398 Action.Enter(CGF); 4399 OMPPrivateScope PrivateScope(CGF); 4400 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4401 (void)PrivateScope.Privatize(); 4402 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4403 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4404 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4405 }; 4406 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4407 emitPostUpdateForReductionClause(*this, S, 4408 [](CodeGenFunction &) { return nullptr; }); 4409 } 4410 4411 static void emitTargetTeamsDistributeParallelForRegion( 4412 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4413 PrePostActionTy &Action) { 4414 Action.Enter(CGF); 4415 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4416 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4417 S.getDistInc()); 4418 }; 4419 4420 // Emit teams region as a standalone region. 4421 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4422 PrePostActionTy &Action) { 4423 Action.Enter(CGF); 4424 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4425 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4426 (void)PrivateScope.Privatize(); 4427 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4428 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4429 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4430 }; 4431 4432 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4433 CodeGenTeams); 4434 emitPostUpdateForReductionClause(CGF, S, 4435 [](CodeGenFunction &) { return nullptr; }); 4436 } 4437 4438 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4439 CodeGenModule &CGM, StringRef ParentName, 4440 const OMPTargetTeamsDistributeParallelForDirective &S) { 4441 // Emit SPMD target teams distribute parallel for region as a standalone 4442 // region. 4443 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4444 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4445 }; 4446 llvm::Function *Fn; 4447 llvm::Constant *Addr; 4448 // Emit target region as a standalone region. 4449 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4450 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4451 assert(Fn && Addr && "Target device function emission failed."); 4452 } 4453 4454 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4455 const OMPTargetTeamsDistributeParallelForDirective &S) { 4456 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4457 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4458 }; 4459 emitCommonOMPTargetDirective(*this, S, CodeGen); 4460 } 4461 4462 static void emitTargetTeamsDistributeParallelForSimdRegion( 4463 CodeGenFunction &CGF, 4464 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4465 PrePostActionTy &Action) { 4466 Action.Enter(CGF); 4467 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4468 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4469 S.getDistInc()); 4470 }; 4471 4472 // Emit teams region as a standalone region. 4473 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4474 PrePostActionTy &Action) { 4475 Action.Enter(CGF); 4476 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4477 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4478 (void)PrivateScope.Privatize(); 4479 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4480 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4481 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4482 }; 4483 4484 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4485 CodeGenTeams); 4486 emitPostUpdateForReductionClause(CGF, S, 4487 [](CodeGenFunction &) { return nullptr; }); 4488 } 4489 4490 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4491 CodeGenModule &CGM, StringRef ParentName, 4492 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4493 // Emit SPMD target teams distribute parallel for simd region as a standalone 4494 // region. 4495 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4496 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4497 }; 4498 llvm::Function *Fn; 4499 llvm::Constant *Addr; 4500 // Emit target region as a standalone region. 4501 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4502 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4503 assert(Fn && Addr && "Target device function emission failed."); 4504 } 4505 4506 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4507 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4508 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4509 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4510 }; 4511 emitCommonOMPTargetDirective(*this, S, CodeGen); 4512 } 4513 4514 void CodeGenFunction::EmitOMPCancellationPointDirective( 4515 const OMPCancellationPointDirective &S) { 4516 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4517 S.getCancelRegion()); 4518 } 4519 4520 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4521 const Expr *IfCond = nullptr; 4522 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4523 if (C->getNameModifier() == OMPD_unknown || 4524 C->getNameModifier() == OMPD_cancel) { 4525 IfCond = C->getCondition(); 4526 break; 4527 } 4528 } 4529 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4530 S.getCancelRegion()); 4531 } 4532 4533 CodeGenFunction::JumpDest 4534 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4535 if (Kind == OMPD_parallel || Kind == OMPD_task || 4536 Kind == OMPD_target_parallel) 4537 return ReturnBlock; 4538 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4539 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4540 Kind == OMPD_distribute_parallel_for || 4541 Kind == OMPD_target_parallel_for || 4542 Kind == OMPD_teams_distribute_parallel_for || 4543 Kind == OMPD_target_teams_distribute_parallel_for); 4544 return OMPCancelStack.getExitBlock(); 4545 } 4546 4547 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4548 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4549 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4550 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4551 auto OrigVarIt = C.varlist_begin(); 4552 auto InitIt = C.inits().begin(); 4553 for (const Expr *PvtVarIt : C.private_copies()) { 4554 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4555 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4556 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4557 4558 // In order to identify the right initializer we need to match the 4559 // declaration used by the mapping logic. In some cases we may get 4560 // OMPCapturedExprDecl that refers to the original declaration. 4561 const ValueDecl *MatchingVD = OrigVD; 4562 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4563 // OMPCapturedExprDecl are used to privative fields of the current 4564 // structure. 4565 const auto *ME = cast<MemberExpr>(OED->getInit()); 4566 assert(isa<CXXThisExpr>(ME->getBase()) && 4567 "Base should be the current struct!"); 4568 MatchingVD = ME->getMemberDecl(); 4569 } 4570 4571 // If we don't have information about the current list item, move on to 4572 // the next one. 4573 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4574 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4575 continue; 4576 4577 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4578 InitAddrIt, InitVD, 4579 PvtVD]() { 4580 // Initialize the temporary initialization variable with the address we 4581 // get from the runtime library. We have to cast the source address 4582 // because it is always a void *. References are materialized in the 4583 // privatization scope, so the initialization here disregards the fact 4584 // the original variable is a reference. 4585 QualType AddrQTy = 4586 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4587 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4588 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4589 setAddrOfLocalVar(InitVD, InitAddr); 4590 4591 // Emit private declaration, it will be initialized by the value we 4592 // declaration we just added to the local declarations map. 4593 EmitDecl(*PvtVD); 4594 4595 // The initialization variables reached its purpose in the emission 4596 // of the previous declaration, so we don't need it anymore. 4597 LocalDeclMap.erase(InitVD); 4598 4599 // Return the address of the private variable. 4600 return GetAddrOfLocalVar(PvtVD); 4601 }); 4602 assert(IsRegistered && "firstprivate var already registered as private"); 4603 // Silence the warning about unused variable. 4604 (void)IsRegistered; 4605 4606 ++OrigVarIt; 4607 ++InitIt; 4608 } 4609 } 4610 4611 // Generate the instructions for '#pragma omp target data' directive. 4612 void CodeGenFunction::EmitOMPTargetDataDirective( 4613 const OMPTargetDataDirective &S) { 4614 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4615 4616 // Create a pre/post action to signal the privatization of the device pointer. 4617 // This action can be replaced by the OpenMP runtime code generation to 4618 // deactivate privatization. 4619 bool PrivatizeDevicePointers = false; 4620 class DevicePointerPrivActionTy : public PrePostActionTy { 4621 bool &PrivatizeDevicePointers; 4622 4623 public: 4624 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4625 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4626 void Enter(CodeGenFunction &CGF) override { 4627 PrivatizeDevicePointers = true; 4628 } 4629 }; 4630 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4631 4632 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4633 CodeGenFunction &CGF, PrePostActionTy &Action) { 4634 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4635 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4636 }; 4637 4638 // Codegen that selects whether to generate the privatization code or not. 4639 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4640 &InnermostCodeGen](CodeGenFunction &CGF, 4641 PrePostActionTy &Action) { 4642 RegionCodeGenTy RCG(InnermostCodeGen); 4643 PrivatizeDevicePointers = false; 4644 4645 // Call the pre-action to change the status of PrivatizeDevicePointers if 4646 // needed. 4647 Action.Enter(CGF); 4648 4649 if (PrivatizeDevicePointers) { 4650 OMPPrivateScope PrivateScope(CGF); 4651 // Emit all instances of the use_device_ptr clause. 4652 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4653 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4654 Info.CaptureDeviceAddrMap); 4655 (void)PrivateScope.Privatize(); 4656 RCG(CGF); 4657 } else { 4658 RCG(CGF); 4659 } 4660 }; 4661 4662 // Forward the provided action to the privatization codegen. 4663 RegionCodeGenTy PrivRCG(PrivCodeGen); 4664 PrivRCG.setAction(Action); 4665 4666 // Notwithstanding the body of the region is emitted as inlined directive, 4667 // we don't use an inline scope as changes in the references inside the 4668 // region are expected to be visible outside, so we do not privative them. 4669 OMPLexicalScope Scope(CGF, S); 4670 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4671 PrivRCG); 4672 }; 4673 4674 RegionCodeGenTy RCG(CodeGen); 4675 4676 // If we don't have target devices, don't bother emitting the data mapping 4677 // code. 4678 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4679 RCG(*this); 4680 return; 4681 } 4682 4683 // Check if we have any if clause associated with the directive. 4684 const Expr *IfCond = nullptr; 4685 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4686 IfCond = C->getCondition(); 4687 4688 // Check if we have any device clause associated with the directive. 4689 const Expr *Device = nullptr; 4690 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4691 Device = C->getDevice(); 4692 4693 // Set the action to signal privatization of device pointers. 4694 RCG.setAction(PrivAction); 4695 4696 // Emit region code. 4697 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4698 Info); 4699 } 4700 4701 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4702 const OMPTargetEnterDataDirective &S) { 4703 // If we don't have target devices, don't bother emitting the data mapping 4704 // code. 4705 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4706 return; 4707 4708 // Check if we have any if clause associated with the directive. 4709 const Expr *IfCond = nullptr; 4710 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4711 IfCond = C->getCondition(); 4712 4713 // Check if we have any device clause associated with the directive. 4714 const Expr *Device = nullptr; 4715 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4716 Device = C->getDevice(); 4717 4718 OMPLexicalScope Scope(*this, S, OMPD_task); 4719 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4720 } 4721 4722 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4723 const OMPTargetExitDataDirective &S) { 4724 // If we don't have target devices, don't bother emitting the data mapping 4725 // code. 4726 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4727 return; 4728 4729 // Check if we have any if clause associated with the directive. 4730 const Expr *IfCond = nullptr; 4731 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4732 IfCond = C->getCondition(); 4733 4734 // Check if we have any device clause associated with the directive. 4735 const Expr *Device = nullptr; 4736 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4737 Device = C->getDevice(); 4738 4739 OMPLexicalScope Scope(*this, S, OMPD_task); 4740 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4741 } 4742 4743 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4744 const OMPTargetParallelDirective &S, 4745 PrePostActionTy &Action) { 4746 // Get the captured statement associated with the 'parallel' region. 4747 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4748 Action.Enter(CGF); 4749 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4750 Action.Enter(CGF); 4751 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4752 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4753 CGF.EmitOMPPrivateClause(S, PrivateScope); 4754 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4755 (void)PrivateScope.Privatize(); 4756 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4757 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4758 // TODO: Add support for clauses. 4759 CGF.EmitStmt(CS->getCapturedStmt()); 4760 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4761 }; 4762 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4763 emitEmptyBoundParameters); 4764 emitPostUpdateForReductionClause(CGF, S, 4765 [](CodeGenFunction &) { return nullptr; }); 4766 } 4767 4768 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4769 CodeGenModule &CGM, StringRef ParentName, 4770 const OMPTargetParallelDirective &S) { 4771 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4772 emitTargetParallelRegion(CGF, S, Action); 4773 }; 4774 llvm::Function *Fn; 4775 llvm::Constant *Addr; 4776 // Emit target region as a standalone region. 4777 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4778 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4779 assert(Fn && Addr && "Target device function emission failed."); 4780 } 4781 4782 void CodeGenFunction::EmitOMPTargetParallelDirective( 4783 const OMPTargetParallelDirective &S) { 4784 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4785 emitTargetParallelRegion(CGF, S, Action); 4786 }; 4787 emitCommonOMPTargetDirective(*this, S, CodeGen); 4788 } 4789 4790 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4791 const OMPTargetParallelForDirective &S, 4792 PrePostActionTy &Action) { 4793 Action.Enter(CGF); 4794 // Emit directive as a combined directive that consists of two implicit 4795 // directives: 'parallel' with 'for' directive. 4796 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4797 Action.Enter(CGF); 4798 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4799 CGF, OMPD_target_parallel_for, S.hasCancel()); 4800 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4801 emitDispatchForLoopBounds); 4802 }; 4803 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4804 emitEmptyBoundParameters); 4805 } 4806 4807 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4808 CodeGenModule &CGM, StringRef ParentName, 4809 const OMPTargetParallelForDirective &S) { 4810 // Emit SPMD target parallel for region as a standalone region. 4811 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4812 emitTargetParallelForRegion(CGF, S, Action); 4813 }; 4814 llvm::Function *Fn; 4815 llvm::Constant *Addr; 4816 // Emit target region as a standalone region. 4817 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4818 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4819 assert(Fn && Addr && "Target device function emission failed."); 4820 } 4821 4822 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4823 const OMPTargetParallelForDirective &S) { 4824 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4825 emitTargetParallelForRegion(CGF, S, Action); 4826 }; 4827 emitCommonOMPTargetDirective(*this, S, CodeGen); 4828 } 4829 4830 static void 4831 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4832 const OMPTargetParallelForSimdDirective &S, 4833 PrePostActionTy &Action) { 4834 Action.Enter(CGF); 4835 // Emit directive as a combined directive that consists of two implicit 4836 // directives: 'parallel' with 'for' directive. 4837 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4838 Action.Enter(CGF); 4839 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4840 emitDispatchForLoopBounds); 4841 }; 4842 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4843 emitEmptyBoundParameters); 4844 } 4845 4846 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4847 CodeGenModule &CGM, StringRef ParentName, 4848 const OMPTargetParallelForSimdDirective &S) { 4849 // Emit SPMD target parallel for region as a standalone region. 4850 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4851 emitTargetParallelForSimdRegion(CGF, S, Action); 4852 }; 4853 llvm::Function *Fn; 4854 llvm::Constant *Addr; 4855 // Emit target region as a standalone region. 4856 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4857 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4858 assert(Fn && Addr && "Target device function emission failed."); 4859 } 4860 4861 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4862 const OMPTargetParallelForSimdDirective &S) { 4863 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4864 emitTargetParallelForSimdRegion(CGF, S, Action); 4865 }; 4866 emitCommonOMPTargetDirective(*this, S, CodeGen); 4867 } 4868 4869 /// Emit a helper variable and return corresponding lvalue. 4870 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4871 const ImplicitParamDecl *PVD, 4872 CodeGenFunction::OMPPrivateScope &Privates) { 4873 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4874 Privates.addPrivate(VDecl, 4875 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 4876 } 4877 4878 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4879 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4880 // Emit outlined function for task construct. 4881 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4882 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4883 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4884 const Expr *IfCond = nullptr; 4885 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4886 if (C->getNameModifier() == OMPD_unknown || 4887 C->getNameModifier() == OMPD_taskloop) { 4888 IfCond = C->getCondition(); 4889 break; 4890 } 4891 } 4892 4893 OMPTaskDataTy Data; 4894 // Check if taskloop must be emitted without taskgroup. 4895 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4896 // TODO: Check if we should emit tied or untied task. 4897 Data.Tied = true; 4898 // Set scheduling for taskloop 4899 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4900 // grainsize clause 4901 Data.Schedule.setInt(/*IntVal=*/false); 4902 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4903 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4904 // num_tasks clause 4905 Data.Schedule.setInt(/*IntVal=*/true); 4906 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4907 } 4908 4909 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4910 // if (PreCond) { 4911 // for (IV in 0..LastIteration) BODY; 4912 // <Final counter/linear vars updates>; 4913 // } 4914 // 4915 4916 // Emit: if (PreCond) - begin. 4917 // If the condition constant folds and can be elided, avoid emitting the 4918 // whole loop. 4919 bool CondConstant; 4920 llvm::BasicBlock *ContBlock = nullptr; 4921 OMPLoopScope PreInitScope(CGF, S); 4922 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4923 if (!CondConstant) 4924 return; 4925 } else { 4926 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4927 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4928 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4929 CGF.getProfileCount(&S)); 4930 CGF.EmitBlock(ThenBlock); 4931 CGF.incrementProfileCounter(&S); 4932 } 4933 4934 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4935 CGF.EmitOMPSimdInit(S); 4936 4937 OMPPrivateScope LoopScope(CGF); 4938 // Emit helper vars inits. 4939 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4940 auto *I = CS->getCapturedDecl()->param_begin(); 4941 auto *LBP = std::next(I, LowerBound); 4942 auto *UBP = std::next(I, UpperBound); 4943 auto *STP = std::next(I, Stride); 4944 auto *LIP = std::next(I, LastIter); 4945 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4946 LoopScope); 4947 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4948 LoopScope); 4949 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4950 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4951 LoopScope); 4952 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4953 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4954 (void)LoopScope.Privatize(); 4955 // Emit the loop iteration variable. 4956 const Expr *IVExpr = S.getIterationVariable(); 4957 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4958 CGF.EmitVarDecl(*IVDecl); 4959 CGF.EmitIgnoredExpr(S.getInit()); 4960 4961 // Emit the iterations count variable. 4962 // If it is not a variable, Sema decided to calculate iterations count on 4963 // each iteration (e.g., it is foldable into a constant). 4964 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4965 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4966 // Emit calculation of the iterations count. 4967 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4968 } 4969 4970 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4971 S.getInc(), 4972 [&S](CodeGenFunction &CGF) { 4973 CGF.EmitOMPLoopBody(S, JumpDest()); 4974 CGF.EmitStopPoint(&S); 4975 }, 4976 [](CodeGenFunction &) {}); 4977 // Emit: if (PreCond) - end. 4978 if (ContBlock) { 4979 CGF.EmitBranch(ContBlock); 4980 CGF.EmitBlock(ContBlock, true); 4981 } 4982 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4983 if (HasLastprivateClause) { 4984 CGF.EmitOMPLastprivateClauseFinal( 4985 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4986 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4987 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4988 (*LIP)->getType(), S.getBeginLoc()))); 4989 } 4990 }; 4991 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4992 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4993 const OMPTaskDataTy &Data) { 4994 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 4995 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 4996 OMPLoopScope PreInitScope(CGF, S); 4997 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 4998 OutlinedFn, SharedsTy, 4999 CapturedStruct, IfCond, Data); 5000 }; 5001 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5002 CodeGen); 5003 }; 5004 if (Data.Nogroup) { 5005 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5006 } else { 5007 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5008 *this, 5009 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5010 PrePostActionTy &Action) { 5011 Action.Enter(CGF); 5012 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5013 Data); 5014 }, 5015 S.getBeginLoc()); 5016 } 5017 } 5018 5019 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5020 EmitOMPTaskLoopBasedDirective(S); 5021 } 5022 5023 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5024 const OMPTaskLoopSimdDirective &S) { 5025 EmitOMPTaskLoopBasedDirective(S); 5026 } 5027 5028 // Generate the instructions for '#pragma omp target update' directive. 5029 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5030 const OMPTargetUpdateDirective &S) { 5031 // If we don't have target devices, don't bother emitting the data mapping 5032 // code. 5033 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5034 return; 5035 5036 // Check if we have any if clause associated with the directive. 5037 const Expr *IfCond = nullptr; 5038 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5039 IfCond = C->getCondition(); 5040 5041 // Check if we have any device clause associated with the directive. 5042 const Expr *Device = nullptr; 5043 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5044 Device = C->getDevice(); 5045 5046 OMPLexicalScope Scope(*this, S, OMPD_task); 5047 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5048 } 5049 5050 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5051 const OMPExecutableDirective &D) { 5052 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5053 return; 5054 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5055 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5056 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5057 } else { 5058 OMPPrivateScope LoopGlobals(CGF); 5059 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5060 for (const Expr *E : LD->counters()) { 5061 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5062 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5063 LValue GlobLVal = CGF.EmitLValue(E); 5064 LoopGlobals.addPrivate( 5065 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5066 } 5067 if (isa<OMPCapturedExprDecl>(VD)) { 5068 // Emit only those that were not explicitly referenced in clauses. 5069 if (!CGF.LocalDeclMap.count(VD)) 5070 CGF.EmitVarDecl(*VD); 5071 } 5072 } 5073 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5074 if (!C->getNumForLoops()) 5075 continue; 5076 for (unsigned I = LD->getCollapsedNumber(), 5077 E = C->getLoopNumIterations().size(); 5078 I < E; ++I) { 5079 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5080 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5081 // Emit only those that were not explicitly referenced in clauses. 5082 if (!CGF.LocalDeclMap.count(VD)) 5083 CGF.EmitVarDecl(*VD); 5084 } 5085 } 5086 } 5087 } 5088 LoopGlobals.Privatize(); 5089 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5090 } 5091 }; 5092 OMPSimdLexicalScope Scope(*this, D); 5093 CGM.getOpenMPRuntime().emitInlinedDirective( 5094 *this, 5095 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5096 : D.getDirectiveKind(), 5097 CodeGen); 5098 } 5099