1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/DeclOpenMP.h" 21 using namespace clang; 22 using namespace CodeGen; 23 24 namespace { 25 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 26 /// for captured expressions. 27 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 28 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 29 for (const auto *C : S.clauses()) { 30 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 31 if (const auto *PreInit = 32 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 33 for (const auto *I : PreInit->decls()) { 34 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 35 CGF.EmitVarDecl(cast<VarDecl>(*I)); 36 } else { 37 CodeGenFunction::AutoVarEmission Emission = 38 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 39 CGF.EmitAutoVarCleanups(Emission); 40 } 41 } 42 } 43 } 44 } 45 } 46 CodeGenFunction::OMPPrivateScope InlinedShareds; 47 48 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 49 return CGF.LambdaCaptureFields.lookup(VD) || 50 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 51 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 52 } 53 54 public: 55 OMPLexicalScope( 56 CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 58 const bool EmitPreInitStmt = true) 59 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 60 InlinedShareds(CGF) { 61 if (EmitPreInitStmt) 62 emitPreInitStmt(CGF, S); 63 if (!CapturedRegion.hasValue()) 64 return; 65 assert(S.hasAssociatedStmt() && 66 "Expected associated statement for inlined directive."); 67 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 68 for (const auto &C : CS->captures()) { 69 if (C.capturesVariable() || C.capturesVariableByCopy()) { 70 auto *VD = C.getCapturedVar(); 71 assert(VD == VD->getCanonicalDecl() && 72 "Canonical decl must be captured."); 73 DeclRefExpr DRE( 74 CGF.getContext(), const_cast<VarDecl *>(VD), 75 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 76 InlinedShareds.isGlobalVarCaptured(VD)), 77 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 78 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 79 return CGF.EmitLValue(&DRE).getAddress(); 80 }); 81 } 82 } 83 (void)InlinedShareds.Privatize(); 84 } 85 }; 86 87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 88 /// for captured expressions. 89 class OMPParallelScope final : public OMPLexicalScope { 90 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 91 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 92 return !(isOpenMPTargetExecutionDirective(Kind) || 93 isOpenMPLoopBoundSharingDirective(Kind)) && 94 isOpenMPParallelDirective(Kind); 95 } 96 97 public: 98 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 99 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 100 EmitPreInitStmt(S)) {} 101 }; 102 103 /// Lexical scope for OpenMP teams construct, that handles correct codegen 104 /// for captured expressions. 105 class OMPTeamsScope final : public OMPLexicalScope { 106 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 107 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 108 return !isOpenMPTargetExecutionDirective(Kind) && 109 isOpenMPTeamsDirective(Kind); 110 } 111 112 public: 113 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Private scope for OpenMP loop-based directives, that supports capturing 119 /// of used expression from loop statement. 120 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 121 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 122 CodeGenFunction::OMPMapVars PreCondVars; 123 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 124 for (const auto *E : S.counters()) { 125 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 126 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 127 (void)PreCondVars.setVarAddr( 128 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 129 } 130 // Mark private vars as undefs. 131 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 132 for (const Expr *IRef : C->varlists()) { 133 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 134 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 135 (void)PreCondVars.setVarAddr( 136 CGF, OrigVD, 137 Address(llvm::UndefValue::get( 138 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 139 OrigVD->getType().getNonReferenceType()))), 140 CGF.getContext().getDeclAlign(OrigVD))); 141 } 142 } 143 } 144 (void)PreCondVars.apply(CGF); 145 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 146 for (const auto *I : PreInits->decls()) 147 CGF.EmitVarDecl(cast<VarDecl>(*I)); 148 } 149 PreCondVars.restore(CGF); 150 } 151 152 public: 153 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 154 : CodeGenFunction::RunCleanupsScope(CGF) { 155 emitPreInitStmt(CGF, S); 156 } 157 }; 158 159 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 160 CodeGenFunction::OMPPrivateScope InlinedShareds; 161 162 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 163 return CGF.LambdaCaptureFields.lookup(VD) || 164 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 165 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 166 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 167 } 168 169 public: 170 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 171 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 172 InlinedShareds(CGF) { 173 for (const auto *C : S.clauses()) { 174 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 175 if (const auto *PreInit = 176 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 177 for (const auto *I : PreInit->decls()) { 178 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 179 CGF.EmitVarDecl(cast<VarDecl>(*I)); 180 } else { 181 CodeGenFunction::AutoVarEmission Emission = 182 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 183 CGF.EmitAutoVarCleanups(Emission); 184 } 185 } 186 } 187 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 188 for (const Expr *E : UDP->varlists()) { 189 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 190 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 191 CGF.EmitVarDecl(*OED); 192 } 193 } 194 } 195 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 196 CGF.EmitOMPPrivateClause(S, InlinedShareds); 197 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 198 if (const Expr *E = TG->getReductionRef()) 199 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 200 } 201 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 202 while (CS) { 203 for (auto &C : CS->captures()) { 204 if (C.capturesVariable() || C.capturesVariableByCopy()) { 205 auto *VD = C.getCapturedVar(); 206 assert(VD == VD->getCanonicalDecl() && 207 "Canonical decl must be captured."); 208 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 209 isCapturedVar(CGF, VD) || 210 (CGF.CapturedStmtInfo && 211 InlinedShareds.isGlobalVarCaptured(VD)), 212 VD->getType().getNonReferenceType(), VK_LValue, 213 C.getLocation()); 214 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 215 return CGF.EmitLValue(&DRE).getAddress(); 216 }); 217 } 218 } 219 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 220 } 221 (void)InlinedShareds.Privatize(); 222 } 223 }; 224 225 } // namespace 226 227 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 228 const OMPExecutableDirective &S, 229 const RegionCodeGenTy &CodeGen); 230 231 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 232 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 233 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 234 OrigVD = OrigVD->getCanonicalDecl(); 235 bool IsCaptured = 236 LambdaCaptureFields.lookup(OrigVD) || 237 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 238 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 239 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 240 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 241 return EmitLValue(&DRE); 242 } 243 } 244 return EmitLValue(E); 245 } 246 247 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 248 ASTContext &C = getContext(); 249 llvm::Value *Size = nullptr; 250 auto SizeInChars = C.getTypeSizeInChars(Ty); 251 if (SizeInChars.isZero()) { 252 // getTypeSizeInChars() returns 0 for a VLA. 253 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 254 VlaSizePair VlaSize = getVLASize(VAT); 255 Ty = VlaSize.Type; 256 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 257 : VlaSize.NumElts; 258 } 259 SizeInChars = C.getTypeSizeInChars(Ty); 260 if (SizeInChars.isZero()) 261 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 262 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 263 } 264 return CGM.getSize(SizeInChars); 265 } 266 267 void CodeGenFunction::GenerateOpenMPCapturedVars( 268 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 269 const RecordDecl *RD = S.getCapturedRecordDecl(); 270 auto CurField = RD->field_begin(); 271 auto CurCap = S.captures().begin(); 272 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 273 E = S.capture_init_end(); 274 I != E; ++I, ++CurField, ++CurCap) { 275 if (CurField->hasCapturedVLAType()) { 276 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 277 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 278 CapturedVars.push_back(Val); 279 } else if (CurCap->capturesThis()) { 280 CapturedVars.push_back(CXXThisValue); 281 } else if (CurCap->capturesVariableByCopy()) { 282 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 283 284 // If the field is not a pointer, we need to save the actual value 285 // and load it as a void pointer. 286 if (!CurField->getType()->isAnyPointerType()) { 287 ASTContext &Ctx = getContext(); 288 Address DstAddr = CreateMemTemp( 289 Ctx.getUIntPtrType(), 290 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 291 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 292 293 llvm::Value *SrcAddrVal = EmitScalarConversion( 294 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 295 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 296 LValue SrcLV = 297 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 298 299 // Store the value using the source type pointer. 300 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 301 302 // Load the value using the destination type pointer. 303 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 304 } 305 CapturedVars.push_back(CV); 306 } else { 307 assert(CurCap->capturesVariable() && "Expected capture by reference."); 308 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 309 } 310 } 311 } 312 313 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 314 QualType DstType, StringRef Name, 315 LValue AddrLV) { 316 ASTContext &Ctx = CGF.getContext(); 317 318 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 319 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 320 Ctx.getPointerType(DstType), Loc); 321 Address TmpAddr = 322 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 323 .getAddress(); 324 return TmpAddr; 325 } 326 327 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 328 if (T->isLValueReferenceType()) 329 return C.getLValueReferenceType( 330 getCanonicalParamType(C, T.getNonReferenceType()), 331 /*SpelledAsLValue=*/false); 332 if (T->isPointerType()) 333 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 334 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 335 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 336 return getCanonicalParamType(C, VLA->getElementType()); 337 if (!A->isVariablyModifiedType()) 338 return C.getCanonicalType(T); 339 } 340 return C.getCanonicalParamType(T); 341 } 342 343 namespace { 344 /// Contains required data for proper outlined function codegen. 345 struct FunctionOptions { 346 /// Captured statement for which the function is generated. 347 const CapturedStmt *S = nullptr; 348 /// true if cast to/from UIntPtr is required for variables captured by 349 /// value. 350 const bool UIntPtrCastRequired = true; 351 /// true if only casted arguments must be registered as local args or VLA 352 /// sizes. 353 const bool RegisterCastedArgsOnly = false; 354 /// Name of the generated function. 355 const StringRef FunctionName; 356 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 357 bool RegisterCastedArgsOnly, 358 StringRef FunctionName) 359 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 360 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 361 FunctionName(FunctionName) {} 362 }; 363 } 364 365 static llvm::Function *emitOutlinedFunctionPrologue( 366 CodeGenFunction &CGF, FunctionArgList &Args, 367 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 368 &LocalAddrs, 369 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 370 &VLASizes, 371 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 372 const CapturedDecl *CD = FO.S->getCapturedDecl(); 373 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 374 assert(CD->hasBody() && "missing CapturedDecl body"); 375 376 CXXThisValue = nullptr; 377 // Build the argument list. 378 CodeGenModule &CGM = CGF.CGM; 379 ASTContext &Ctx = CGM.getContext(); 380 FunctionArgList TargetArgs; 381 Args.append(CD->param_begin(), 382 std::next(CD->param_begin(), CD->getContextParamPosition())); 383 TargetArgs.append( 384 CD->param_begin(), 385 std::next(CD->param_begin(), CD->getContextParamPosition())); 386 auto I = FO.S->captures().begin(); 387 FunctionDecl *DebugFunctionDecl = nullptr; 388 if (!FO.UIntPtrCastRequired) { 389 FunctionProtoType::ExtProtoInfo EPI; 390 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 391 DebugFunctionDecl = FunctionDecl::Create( 392 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 393 SourceLocation(), DeclarationName(), FunctionTy, 394 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 395 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 396 } 397 for (const FieldDecl *FD : RD->fields()) { 398 QualType ArgType = FD->getType(); 399 IdentifierInfo *II = nullptr; 400 VarDecl *CapVar = nullptr; 401 402 // If this is a capture by copy and the type is not a pointer, the outlined 403 // function argument type should be uintptr and the value properly casted to 404 // uintptr. This is necessary given that the runtime library is only able to 405 // deal with pointers. We can pass in the same way the VLA type sizes to the 406 // outlined function. 407 if (FO.UIntPtrCastRequired && 408 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 409 I->capturesVariableArrayType())) 410 ArgType = Ctx.getUIntPtrType(); 411 412 if (I->capturesVariable() || I->capturesVariableByCopy()) { 413 CapVar = I->getCapturedVar(); 414 II = CapVar->getIdentifier(); 415 } else if (I->capturesThis()) { 416 II = &Ctx.Idents.get("this"); 417 } else { 418 assert(I->capturesVariableArrayType()); 419 II = &Ctx.Idents.get("vla"); 420 } 421 if (ArgType->isVariablyModifiedType()) 422 ArgType = getCanonicalParamType(Ctx, ArgType); 423 VarDecl *Arg; 424 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 425 Arg = ParmVarDecl::Create( 426 Ctx, DebugFunctionDecl, 427 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 428 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 429 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 430 } else { 431 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 432 II, ArgType, ImplicitParamDecl::Other); 433 } 434 Args.emplace_back(Arg); 435 // Do not cast arguments if we emit function with non-original types. 436 TargetArgs.emplace_back( 437 FO.UIntPtrCastRequired 438 ? Arg 439 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 440 ++I; 441 } 442 Args.append( 443 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 444 CD->param_end()); 445 TargetArgs.append( 446 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 447 CD->param_end()); 448 449 // Create the function declaration. 450 const CGFunctionInfo &FuncInfo = 451 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 452 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 453 454 auto *F = 455 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 456 FO.FunctionName, &CGM.getModule()); 457 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 458 if (CD->isNothrow()) 459 F->setDoesNotThrow(); 460 F->setDoesNotRecurse(); 461 462 // Generate the function. 463 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 464 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 465 unsigned Cnt = CD->getContextParamPosition(); 466 I = FO.S->captures().begin(); 467 for (const FieldDecl *FD : RD->fields()) { 468 // Do not map arguments if we emit function with non-original types. 469 Address LocalAddr(Address::invalid()); 470 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 471 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 472 TargetArgs[Cnt]); 473 } else { 474 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 475 } 476 // If we are capturing a pointer by copy we don't need to do anything, just 477 // use the value that we get from the arguments. 478 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 479 const VarDecl *CurVD = I->getCapturedVar(); 480 if (!FO.RegisterCastedArgsOnly) 481 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 482 ++Cnt; 483 ++I; 484 continue; 485 } 486 487 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 488 AlignmentSource::Decl); 489 if (FD->hasCapturedVLAType()) { 490 if (FO.UIntPtrCastRequired) { 491 ArgLVal = CGF.MakeAddrLValue( 492 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 493 Args[Cnt]->getName(), ArgLVal), 494 FD->getType(), AlignmentSource::Decl); 495 } 496 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 497 const VariableArrayType *VAT = FD->getCapturedVLAType(); 498 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 499 } else if (I->capturesVariable()) { 500 const VarDecl *Var = I->getCapturedVar(); 501 QualType VarTy = Var->getType(); 502 Address ArgAddr = ArgLVal.getAddress(); 503 if (ArgLVal.getType()->isLValueReferenceType()) { 504 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 505 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 506 assert(ArgLVal.getType()->isPointerType()); 507 ArgAddr = CGF.EmitLoadOfPointer( 508 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 509 } 510 if (!FO.RegisterCastedArgsOnly) { 511 LocalAddrs.insert( 512 {Args[Cnt], 513 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 514 } 515 } else if (I->capturesVariableByCopy()) { 516 assert(!FD->getType()->isAnyPointerType() && 517 "Not expecting a captured pointer."); 518 const VarDecl *Var = I->getCapturedVar(); 519 LocalAddrs.insert({Args[Cnt], 520 {Var, FO.UIntPtrCastRequired 521 ? castValueFromUintptr( 522 CGF, I->getLocation(), FD->getType(), 523 Args[Cnt]->getName(), ArgLVal) 524 : ArgLVal.getAddress()}}); 525 } else { 526 // If 'this' is captured, load it into CXXThisValue. 527 assert(I->capturesThis()); 528 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 529 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 530 } 531 ++Cnt; 532 ++I; 533 } 534 535 return F; 536 } 537 538 llvm::Function * 539 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 540 assert( 541 CapturedStmtInfo && 542 "CapturedStmtInfo should be set when generating the captured function"); 543 const CapturedDecl *CD = S.getCapturedDecl(); 544 // Build the argument list. 545 bool NeedWrapperFunction = 546 getDebugInfo() && 547 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 548 FunctionArgList Args; 549 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 550 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 551 SmallString<256> Buffer; 552 llvm::raw_svector_ostream Out(Buffer); 553 Out << CapturedStmtInfo->getHelperName(); 554 if (NeedWrapperFunction) 555 Out << "_debug__"; 556 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 557 Out.str()); 558 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 559 VLASizes, CXXThisValue, FO); 560 CodeGenFunction::OMPPrivateScope LocalScope(*this); 561 for (const auto &LocalAddrPair : LocalAddrs) { 562 if (LocalAddrPair.second.first) { 563 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 564 return LocalAddrPair.second.second; 565 }); 566 } 567 } 568 (void)LocalScope.Privatize(); 569 for (const auto &VLASizePair : VLASizes) 570 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 571 PGO.assignRegionCounters(GlobalDecl(CD), F); 572 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 573 (void)LocalScope.ForceCleanup(); 574 FinishFunction(CD->getBodyRBrace()); 575 if (!NeedWrapperFunction) 576 return F; 577 578 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 579 /*RegisterCastedArgsOnly=*/true, 580 CapturedStmtInfo->getHelperName()); 581 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 582 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 583 Args.clear(); 584 LocalAddrs.clear(); 585 VLASizes.clear(); 586 llvm::Function *WrapperF = 587 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 588 WrapperCGF.CXXThisValue, WrapperFO); 589 llvm::SmallVector<llvm::Value *, 4> CallArgs; 590 for (const auto *Arg : Args) { 591 llvm::Value *CallArg; 592 auto I = LocalAddrs.find(Arg); 593 if (I != LocalAddrs.end()) { 594 LValue LV = WrapperCGF.MakeAddrLValue( 595 I->second.second, 596 I->second.first ? I->second.first->getType() : Arg->getType(), 597 AlignmentSource::Decl); 598 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 599 } else { 600 auto EI = VLASizes.find(Arg); 601 if (EI != VLASizes.end()) { 602 CallArg = EI->second.second; 603 } else { 604 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 605 Arg->getType(), 606 AlignmentSource::Decl); 607 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 608 } 609 } 610 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 611 } 612 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 613 F, CallArgs); 614 WrapperCGF.FinishFunction(); 615 return WrapperF; 616 } 617 618 //===----------------------------------------------------------------------===// 619 // OpenMP Directive Emission 620 //===----------------------------------------------------------------------===// 621 void CodeGenFunction::EmitOMPAggregateAssign( 622 Address DestAddr, Address SrcAddr, QualType OriginalType, 623 const llvm::function_ref<void(Address, Address)> CopyGen) { 624 // Perform element-by-element initialization. 625 QualType ElementTy; 626 627 // Drill down to the base element type on both arrays. 628 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 629 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 630 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 631 632 llvm::Value *SrcBegin = SrcAddr.getPointer(); 633 llvm::Value *DestBegin = DestAddr.getPointer(); 634 // Cast from pointer to array type to pointer to single element. 635 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 636 // The basic structure here is a while-do loop. 637 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 638 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 639 llvm::Value *IsEmpty = 640 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 641 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 642 643 // Enter the loop body, making that address the current address. 644 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 645 EmitBlock(BodyBB); 646 647 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 648 649 llvm::PHINode *SrcElementPHI = 650 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 651 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 652 Address SrcElementCurrent = 653 Address(SrcElementPHI, 654 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 655 656 llvm::PHINode *DestElementPHI = 657 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 658 DestElementPHI->addIncoming(DestBegin, EntryBB); 659 Address DestElementCurrent = 660 Address(DestElementPHI, 661 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 662 663 // Emit copy. 664 CopyGen(DestElementCurrent, SrcElementCurrent); 665 666 // Shift the address forward by one element. 667 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 668 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 669 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 670 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 671 // Check whether we've reached the end. 672 llvm::Value *Done = 673 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 674 Builder.CreateCondBr(Done, DoneBB, BodyBB); 675 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 676 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 677 678 // Done. 679 EmitBlock(DoneBB, /*IsFinished=*/true); 680 } 681 682 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 683 Address SrcAddr, const VarDecl *DestVD, 684 const VarDecl *SrcVD, const Expr *Copy) { 685 if (OriginalType->isArrayType()) { 686 const auto *BO = dyn_cast<BinaryOperator>(Copy); 687 if (BO && BO->getOpcode() == BO_Assign) { 688 // Perform simple memcpy for simple copying. 689 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 690 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 691 EmitAggregateAssign(Dest, Src, OriginalType); 692 } else { 693 // For arrays with complex element types perform element by element 694 // copying. 695 EmitOMPAggregateAssign( 696 DestAddr, SrcAddr, OriginalType, 697 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 698 // Working with the single array element, so have to remap 699 // destination and source variables to corresponding array 700 // elements. 701 CodeGenFunction::OMPPrivateScope Remap(*this); 702 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 703 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 704 (void)Remap.Privatize(); 705 EmitIgnoredExpr(Copy); 706 }); 707 } 708 } else { 709 // Remap pseudo source variable to private copy. 710 CodeGenFunction::OMPPrivateScope Remap(*this); 711 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 712 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 713 (void)Remap.Privatize(); 714 // Emit copying of the whole variable. 715 EmitIgnoredExpr(Copy); 716 } 717 } 718 719 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 720 OMPPrivateScope &PrivateScope) { 721 if (!HaveInsertPoint()) 722 return false; 723 bool DeviceConstTarget = 724 getLangOpts().OpenMPIsDevice && 725 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 726 bool FirstprivateIsLastprivate = false; 727 llvm::DenseSet<const VarDecl *> Lastprivates; 728 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 729 for (const auto *D : C->varlists()) 730 Lastprivates.insert( 731 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 732 } 733 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 734 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 735 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 736 // Force emission of the firstprivate copy if the directive does not emit 737 // outlined function, like omp for, omp simd, omp distribute etc. 738 bool MustEmitFirstprivateCopy = 739 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 740 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 741 auto IRef = C->varlist_begin(); 742 auto InitsRef = C->inits().begin(); 743 for (const Expr *IInit : C->private_copies()) { 744 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 745 bool ThisFirstprivateIsLastprivate = 746 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 747 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 748 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 749 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 750 !FD->getType()->isReferenceType() && 751 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 752 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 753 ++IRef; 754 ++InitsRef; 755 continue; 756 } 757 // Do not emit copy for firstprivate constant variables in target regions, 758 // captured by reference. 759 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 760 FD && FD->getType()->isReferenceType() && 761 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 762 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 763 OrigVD); 764 ++IRef; 765 ++InitsRef; 766 continue; 767 } 768 FirstprivateIsLastprivate = 769 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 770 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 771 const auto *VDInit = 772 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 773 bool IsRegistered; 774 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 775 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 776 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 777 LValue OriginalLVal; 778 if (!FD) { 779 // Check if the firstprivate variable is just a constant value. 780 ConstantEmission CE = tryEmitAsConstant(&DRE); 781 if (CE && !CE.isReference()) { 782 // Constant value, no need to create a copy. 783 ++IRef; 784 ++InitsRef; 785 continue; 786 } 787 if (CE && CE.isReference()) { 788 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 789 } else { 790 assert(!CE && "Expected non-constant firstprivate."); 791 OriginalLVal = EmitLValue(&DRE); 792 } 793 } else { 794 OriginalLVal = EmitLValue(&DRE); 795 } 796 QualType Type = VD->getType(); 797 if (Type->isArrayType()) { 798 // Emit VarDecl with copy init for arrays. 799 // Get the address of the original variable captured in current 800 // captured region. 801 IsRegistered = PrivateScope.addPrivate( 802 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 803 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 804 const Expr *Init = VD->getInit(); 805 if (!isa<CXXConstructExpr>(Init) || 806 isTrivialInitializer(Init)) { 807 // Perform simple memcpy. 808 LValue Dest = 809 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 810 EmitAggregateAssign(Dest, OriginalLVal, Type); 811 } else { 812 EmitOMPAggregateAssign( 813 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 814 Type, 815 [this, VDInit, Init](Address DestElement, 816 Address SrcElement) { 817 // Clean up any temporaries needed by the 818 // initialization. 819 RunCleanupsScope InitScope(*this); 820 // Emit initialization for single element. 821 setAddrOfLocalVar(VDInit, SrcElement); 822 EmitAnyExprToMem(Init, DestElement, 823 Init->getType().getQualifiers(), 824 /*IsInitializer*/ false); 825 LocalDeclMap.erase(VDInit); 826 }); 827 } 828 EmitAutoVarCleanups(Emission); 829 return Emission.getAllocatedAddress(); 830 }); 831 } else { 832 Address OriginalAddr = OriginalLVal.getAddress(); 833 IsRegistered = PrivateScope.addPrivate( 834 OrigVD, [this, VDInit, OriginalAddr, VD]() { 835 // Emit private VarDecl with copy init. 836 // Remap temp VDInit variable to the address of the original 837 // variable (for proper handling of captured global variables). 838 setAddrOfLocalVar(VDInit, OriginalAddr); 839 EmitDecl(*VD); 840 LocalDeclMap.erase(VDInit); 841 return GetAddrOfLocalVar(VD); 842 }); 843 } 844 assert(IsRegistered && 845 "firstprivate var already registered as private"); 846 // Silence the warning about unused variable. 847 (void)IsRegistered; 848 } 849 ++IRef; 850 ++InitsRef; 851 } 852 } 853 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 854 } 855 856 void CodeGenFunction::EmitOMPPrivateClause( 857 const OMPExecutableDirective &D, 858 CodeGenFunction::OMPPrivateScope &PrivateScope) { 859 if (!HaveInsertPoint()) 860 return; 861 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 862 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 863 auto IRef = C->varlist_begin(); 864 for (const Expr *IInit : C->private_copies()) { 865 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 866 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 867 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 868 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 869 // Emit private VarDecl with copy init. 870 EmitDecl(*VD); 871 return GetAddrOfLocalVar(VD); 872 }); 873 assert(IsRegistered && "private var already registered as private"); 874 // Silence the warning about unused variable. 875 (void)IsRegistered; 876 } 877 ++IRef; 878 } 879 } 880 } 881 882 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 883 if (!HaveInsertPoint()) 884 return false; 885 // threadprivate_var1 = master_threadprivate_var1; 886 // operator=(threadprivate_var2, master_threadprivate_var2); 887 // ... 888 // __kmpc_barrier(&loc, global_tid); 889 llvm::DenseSet<const VarDecl *> CopiedVars; 890 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 891 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 892 auto IRef = C->varlist_begin(); 893 auto ISrcRef = C->source_exprs().begin(); 894 auto IDestRef = C->destination_exprs().begin(); 895 for (const Expr *AssignOp : C->assignment_ops()) { 896 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 897 QualType Type = VD->getType(); 898 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 899 // Get the address of the master variable. If we are emitting code with 900 // TLS support, the address is passed from the master as field in the 901 // captured declaration. 902 Address MasterAddr = Address::invalid(); 903 if (getLangOpts().OpenMPUseTLS && 904 getContext().getTargetInfo().isTLSSupported()) { 905 assert(CapturedStmtInfo->lookup(VD) && 906 "Copyin threadprivates should have been captured!"); 907 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 908 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 909 MasterAddr = EmitLValue(&DRE).getAddress(); 910 LocalDeclMap.erase(VD); 911 } else { 912 MasterAddr = 913 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 914 : CGM.GetAddrOfGlobal(VD), 915 getContext().getDeclAlign(VD)); 916 } 917 // Get the address of the threadprivate variable. 918 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 919 if (CopiedVars.size() == 1) { 920 // At first check if current thread is a master thread. If it is, no 921 // need to copy data. 922 CopyBegin = createBasicBlock("copyin.not.master"); 923 CopyEnd = createBasicBlock("copyin.not.master.end"); 924 Builder.CreateCondBr( 925 Builder.CreateICmpNE( 926 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 927 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 928 CGM.IntPtrTy)), 929 CopyBegin, CopyEnd); 930 EmitBlock(CopyBegin); 931 } 932 const auto *SrcVD = 933 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 934 const auto *DestVD = 935 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 936 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 937 } 938 ++IRef; 939 ++ISrcRef; 940 ++IDestRef; 941 } 942 } 943 if (CopyEnd) { 944 // Exit out of copying procedure for non-master thread. 945 EmitBlock(CopyEnd, /*IsFinished=*/true); 946 return true; 947 } 948 return false; 949 } 950 951 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 952 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 953 if (!HaveInsertPoint()) 954 return false; 955 bool HasAtLeastOneLastprivate = false; 956 llvm::DenseSet<const VarDecl *> SIMDLCVs; 957 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 958 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 959 for (const Expr *C : LoopDirective->counters()) { 960 SIMDLCVs.insert( 961 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 962 } 963 } 964 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 965 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 966 HasAtLeastOneLastprivate = true; 967 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 968 !getLangOpts().OpenMPSimd) 969 break; 970 auto IRef = C->varlist_begin(); 971 auto IDestRef = C->destination_exprs().begin(); 972 for (const Expr *IInit : C->private_copies()) { 973 // Keep the address of the original variable for future update at the end 974 // of the loop. 975 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 976 // Taskloops do not require additional initialization, it is done in 977 // runtime support library. 978 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 979 const auto *DestVD = 980 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 981 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 982 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 983 /*RefersToEnclosingVariableOrCapture=*/ 984 CapturedStmtInfo->lookup(OrigVD) != nullptr, 985 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 986 return EmitLValue(&DRE).getAddress(); 987 }); 988 // Check if the variable is also a firstprivate: in this case IInit is 989 // not generated. Initialization of this variable will happen in codegen 990 // for 'firstprivate' clause. 991 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 992 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 993 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 994 // Emit private VarDecl with copy init. 995 EmitDecl(*VD); 996 return GetAddrOfLocalVar(VD); 997 }); 998 assert(IsRegistered && 999 "lastprivate var already registered as private"); 1000 (void)IsRegistered; 1001 } 1002 } 1003 ++IRef; 1004 ++IDestRef; 1005 } 1006 } 1007 return HasAtLeastOneLastprivate; 1008 } 1009 1010 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1011 const OMPExecutableDirective &D, bool NoFinals, 1012 llvm::Value *IsLastIterCond) { 1013 if (!HaveInsertPoint()) 1014 return; 1015 // Emit following code: 1016 // if (<IsLastIterCond>) { 1017 // orig_var1 = private_orig_var1; 1018 // ... 1019 // orig_varn = private_orig_varn; 1020 // } 1021 llvm::BasicBlock *ThenBB = nullptr; 1022 llvm::BasicBlock *DoneBB = nullptr; 1023 if (IsLastIterCond) { 1024 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1025 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1026 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1027 EmitBlock(ThenBB); 1028 } 1029 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1030 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1031 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1032 auto IC = LoopDirective->counters().begin(); 1033 for (const Expr *F : LoopDirective->finals()) { 1034 const auto *D = 1035 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1036 if (NoFinals) 1037 AlreadyEmittedVars.insert(D); 1038 else 1039 LoopCountersAndUpdates[D] = F; 1040 ++IC; 1041 } 1042 } 1043 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1044 auto IRef = C->varlist_begin(); 1045 auto ISrcRef = C->source_exprs().begin(); 1046 auto IDestRef = C->destination_exprs().begin(); 1047 for (const Expr *AssignOp : C->assignment_ops()) { 1048 const auto *PrivateVD = 1049 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1050 QualType Type = PrivateVD->getType(); 1051 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1052 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1053 // If lastprivate variable is a loop control variable for loop-based 1054 // directive, update its value before copyin back to original 1055 // variable. 1056 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1057 EmitIgnoredExpr(FinalExpr); 1058 const auto *SrcVD = 1059 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1060 const auto *DestVD = 1061 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1062 // Get the address of the original variable. 1063 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1064 // Get the address of the private variable. 1065 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1066 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1067 PrivateAddr = 1068 Address(Builder.CreateLoad(PrivateAddr), 1069 getNaturalTypeAlignment(RefTy->getPointeeType())); 1070 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1071 } 1072 ++IRef; 1073 ++ISrcRef; 1074 ++IDestRef; 1075 } 1076 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1077 EmitIgnoredExpr(PostUpdate); 1078 } 1079 if (IsLastIterCond) 1080 EmitBlock(DoneBB, /*IsFinished=*/true); 1081 } 1082 1083 void CodeGenFunction::EmitOMPReductionClauseInit( 1084 const OMPExecutableDirective &D, 1085 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1086 if (!HaveInsertPoint()) 1087 return; 1088 SmallVector<const Expr *, 4> Shareds; 1089 SmallVector<const Expr *, 4> Privates; 1090 SmallVector<const Expr *, 4> ReductionOps; 1091 SmallVector<const Expr *, 4> LHSs; 1092 SmallVector<const Expr *, 4> RHSs; 1093 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1094 auto IPriv = C->privates().begin(); 1095 auto IRed = C->reduction_ops().begin(); 1096 auto ILHS = C->lhs_exprs().begin(); 1097 auto IRHS = C->rhs_exprs().begin(); 1098 for (const Expr *Ref : C->varlists()) { 1099 Shareds.emplace_back(Ref); 1100 Privates.emplace_back(*IPriv); 1101 ReductionOps.emplace_back(*IRed); 1102 LHSs.emplace_back(*ILHS); 1103 RHSs.emplace_back(*IRHS); 1104 std::advance(IPriv, 1); 1105 std::advance(IRed, 1); 1106 std::advance(ILHS, 1); 1107 std::advance(IRHS, 1); 1108 } 1109 } 1110 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1111 unsigned Count = 0; 1112 auto ILHS = LHSs.begin(); 1113 auto IRHS = RHSs.begin(); 1114 auto IPriv = Privates.begin(); 1115 for (const Expr *IRef : Shareds) { 1116 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1117 // Emit private VarDecl with reduction init. 1118 RedCG.emitSharedLValue(*this, Count); 1119 RedCG.emitAggregateType(*this, Count); 1120 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1121 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1122 RedCG.getSharedLValue(Count), 1123 [&Emission](CodeGenFunction &CGF) { 1124 CGF.EmitAutoVarInit(Emission); 1125 return true; 1126 }); 1127 EmitAutoVarCleanups(Emission); 1128 Address BaseAddr = RedCG.adjustPrivateAddress( 1129 *this, Count, Emission.getAllocatedAddress()); 1130 bool IsRegistered = PrivateScope.addPrivate( 1131 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1132 assert(IsRegistered && "private var already registered as private"); 1133 // Silence the warning about unused variable. 1134 (void)IsRegistered; 1135 1136 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1137 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1138 QualType Type = PrivateVD->getType(); 1139 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1140 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1141 // Store the address of the original variable associated with the LHS 1142 // implicit variable. 1143 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1144 return RedCG.getSharedLValue(Count).getAddress(); 1145 }); 1146 PrivateScope.addPrivate( 1147 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1148 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1149 isa<ArraySubscriptExpr>(IRef)) { 1150 // Store the address of the original variable associated with the LHS 1151 // implicit variable. 1152 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1153 return RedCG.getSharedLValue(Count).getAddress(); 1154 }); 1155 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1156 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1157 ConvertTypeForMem(RHSVD->getType()), 1158 "rhs.begin"); 1159 }); 1160 } else { 1161 QualType Type = PrivateVD->getType(); 1162 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1163 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1164 // Store the address of the original variable associated with the LHS 1165 // implicit variable. 1166 if (IsArray) { 1167 OriginalAddr = Builder.CreateElementBitCast( 1168 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1169 } 1170 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1171 PrivateScope.addPrivate( 1172 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1173 return IsArray 1174 ? Builder.CreateElementBitCast( 1175 GetAddrOfLocalVar(PrivateVD), 1176 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1177 : GetAddrOfLocalVar(PrivateVD); 1178 }); 1179 } 1180 ++ILHS; 1181 ++IRHS; 1182 ++IPriv; 1183 ++Count; 1184 } 1185 } 1186 1187 void CodeGenFunction::EmitOMPReductionClauseFinal( 1188 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1189 if (!HaveInsertPoint()) 1190 return; 1191 llvm::SmallVector<const Expr *, 8> Privates; 1192 llvm::SmallVector<const Expr *, 8> LHSExprs; 1193 llvm::SmallVector<const Expr *, 8> RHSExprs; 1194 llvm::SmallVector<const Expr *, 8> ReductionOps; 1195 bool HasAtLeastOneReduction = false; 1196 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1197 HasAtLeastOneReduction = true; 1198 Privates.append(C->privates().begin(), C->privates().end()); 1199 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1200 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1201 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1202 } 1203 if (HasAtLeastOneReduction) { 1204 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1205 isOpenMPParallelDirective(D.getDirectiveKind()) || 1206 ReductionKind == OMPD_simd; 1207 bool SimpleReduction = ReductionKind == OMPD_simd; 1208 // Emit nowait reduction if nowait clause is present or directive is a 1209 // parallel directive (it always has implicit barrier). 1210 CGM.getOpenMPRuntime().emitReduction( 1211 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1212 {WithNowait, SimpleReduction, ReductionKind}); 1213 } 1214 } 1215 1216 static void emitPostUpdateForReductionClause( 1217 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1218 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1219 if (!CGF.HaveInsertPoint()) 1220 return; 1221 llvm::BasicBlock *DoneBB = nullptr; 1222 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1223 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1224 if (!DoneBB) { 1225 if (llvm::Value *Cond = CondGen(CGF)) { 1226 // If the first post-update expression is found, emit conditional 1227 // block if it was requested. 1228 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1229 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1230 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1231 CGF.EmitBlock(ThenBB); 1232 } 1233 } 1234 CGF.EmitIgnoredExpr(PostUpdate); 1235 } 1236 } 1237 if (DoneBB) 1238 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1239 } 1240 1241 namespace { 1242 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1243 /// parallel function. This is necessary for combined constructs such as 1244 /// 'distribute parallel for' 1245 typedef llvm::function_ref<void(CodeGenFunction &, 1246 const OMPExecutableDirective &, 1247 llvm::SmallVectorImpl<llvm::Value *> &)> 1248 CodeGenBoundParametersTy; 1249 } // anonymous namespace 1250 1251 static void emitCommonOMPParallelDirective( 1252 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1253 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1254 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1255 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1256 llvm::Function *OutlinedFn = 1257 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1258 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1259 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1260 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1261 llvm::Value *NumThreads = 1262 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1263 /*IgnoreResultAssign=*/true); 1264 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1265 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1266 } 1267 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1268 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1269 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1270 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1271 } 1272 const Expr *IfCond = nullptr; 1273 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1274 if (C->getNameModifier() == OMPD_unknown || 1275 C->getNameModifier() == OMPD_parallel) { 1276 IfCond = C->getCondition(); 1277 break; 1278 } 1279 } 1280 1281 OMPParallelScope Scope(CGF, S); 1282 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1283 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1284 // lower and upper bounds with the pragma 'for' chunking mechanism. 1285 // The following lambda takes care of appending the lower and upper bound 1286 // parameters when necessary 1287 CodeGenBoundParameters(CGF, S, CapturedVars); 1288 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1289 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1290 CapturedVars, IfCond); 1291 } 1292 1293 static void emitEmptyBoundParameters(CodeGenFunction &, 1294 const OMPExecutableDirective &, 1295 llvm::SmallVectorImpl<llvm::Value *> &) {} 1296 1297 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1298 // Emit parallel region as a standalone region. 1299 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1300 Action.Enter(CGF); 1301 OMPPrivateScope PrivateScope(CGF); 1302 bool Copyins = CGF.EmitOMPCopyinClause(S); 1303 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1304 if (Copyins) { 1305 // Emit implicit barrier to synchronize threads and avoid data races on 1306 // propagation master's thread values of threadprivate variables to local 1307 // instances of that variables of all other implicit threads. 1308 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1309 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1310 /*ForceSimpleCall=*/true); 1311 } 1312 CGF.EmitOMPPrivateClause(S, PrivateScope); 1313 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1314 (void)PrivateScope.Privatize(); 1315 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1316 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1317 }; 1318 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1319 emitEmptyBoundParameters); 1320 emitPostUpdateForReductionClause(*this, S, 1321 [](CodeGenFunction &) { return nullptr; }); 1322 } 1323 1324 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1325 JumpDest LoopExit) { 1326 RunCleanupsScope BodyScope(*this); 1327 // Update counters values on current iteration. 1328 for (const Expr *UE : D.updates()) 1329 EmitIgnoredExpr(UE); 1330 // Update the linear variables. 1331 // In distribute directives only loop counters may be marked as linear, no 1332 // need to generate the code for them. 1333 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1334 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1335 for (const Expr *UE : C->updates()) 1336 EmitIgnoredExpr(UE); 1337 } 1338 } 1339 1340 // On a continue in the body, jump to the end. 1341 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1342 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1343 for (const Expr *E : D.finals_conditions()) { 1344 if (!E) 1345 continue; 1346 // Check that loop counter in non-rectangular nest fits into the iteration 1347 // space. 1348 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1349 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1350 getProfileCount(D.getBody())); 1351 EmitBlock(NextBB); 1352 } 1353 // Emit loop body. 1354 EmitStmt(D.getBody()); 1355 // The end (updates/cleanups). 1356 EmitBlock(Continue.getBlock()); 1357 BreakContinueStack.pop_back(); 1358 } 1359 1360 void CodeGenFunction::EmitOMPInnerLoop( 1361 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1362 const Expr *IncExpr, 1363 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1364 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1365 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1366 1367 // Start the loop with a block that tests the condition. 1368 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1369 EmitBlock(CondBlock); 1370 const SourceRange R = S.getSourceRange(); 1371 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1372 SourceLocToDebugLoc(R.getEnd())); 1373 1374 // If there are any cleanups between here and the loop-exit scope, 1375 // create a block to stage a loop exit along. 1376 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1377 if (RequiresCleanup) 1378 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1379 1380 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1381 1382 // Emit condition. 1383 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1384 if (ExitBlock != LoopExit.getBlock()) { 1385 EmitBlock(ExitBlock); 1386 EmitBranchThroughCleanup(LoopExit); 1387 } 1388 1389 EmitBlock(LoopBody); 1390 incrementProfileCounter(&S); 1391 1392 // Create a block for the increment. 1393 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1394 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1395 1396 BodyGen(*this); 1397 1398 // Emit "IV = IV + 1" and a back-edge to the condition block. 1399 EmitBlock(Continue.getBlock()); 1400 EmitIgnoredExpr(IncExpr); 1401 PostIncGen(*this); 1402 BreakContinueStack.pop_back(); 1403 EmitBranch(CondBlock); 1404 LoopStack.pop(); 1405 // Emit the fall-through block. 1406 EmitBlock(LoopExit.getBlock()); 1407 } 1408 1409 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1410 if (!HaveInsertPoint()) 1411 return false; 1412 // Emit inits for the linear variables. 1413 bool HasLinears = false; 1414 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1415 for (const Expr *Init : C->inits()) { 1416 HasLinears = true; 1417 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1418 if (const auto *Ref = 1419 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1420 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1421 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1422 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1423 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1424 VD->getInit()->getType(), VK_LValue, 1425 VD->getInit()->getExprLoc()); 1426 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1427 VD->getType()), 1428 /*capturedByInit=*/false); 1429 EmitAutoVarCleanups(Emission); 1430 } else { 1431 EmitVarDecl(*VD); 1432 } 1433 } 1434 // Emit the linear steps for the linear clauses. 1435 // If a step is not constant, it is pre-calculated before the loop. 1436 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1437 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1438 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1439 // Emit calculation of the linear step. 1440 EmitIgnoredExpr(CS); 1441 } 1442 } 1443 return HasLinears; 1444 } 1445 1446 void CodeGenFunction::EmitOMPLinearClauseFinal( 1447 const OMPLoopDirective &D, 1448 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1449 if (!HaveInsertPoint()) 1450 return; 1451 llvm::BasicBlock *DoneBB = nullptr; 1452 // Emit the final values of the linear variables. 1453 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1454 auto IC = C->varlist_begin(); 1455 for (const Expr *F : C->finals()) { 1456 if (!DoneBB) { 1457 if (llvm::Value *Cond = CondGen(*this)) { 1458 // If the first post-update expression is found, emit conditional 1459 // block if it was requested. 1460 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1461 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1462 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1463 EmitBlock(ThenBB); 1464 } 1465 } 1466 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1467 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1468 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1469 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1470 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1471 CodeGenFunction::OMPPrivateScope VarScope(*this); 1472 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1473 (void)VarScope.Privatize(); 1474 EmitIgnoredExpr(F); 1475 ++IC; 1476 } 1477 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1478 EmitIgnoredExpr(PostUpdate); 1479 } 1480 if (DoneBB) 1481 EmitBlock(DoneBB, /*IsFinished=*/true); 1482 } 1483 1484 static void emitAlignedClause(CodeGenFunction &CGF, 1485 const OMPExecutableDirective &D) { 1486 if (!CGF.HaveInsertPoint()) 1487 return; 1488 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1489 unsigned ClauseAlignment = 0; 1490 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1491 auto *AlignmentCI = 1492 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1493 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1494 } 1495 for (const Expr *E : Clause->varlists()) { 1496 unsigned Alignment = ClauseAlignment; 1497 if (Alignment == 0) { 1498 // OpenMP [2.8.1, Description] 1499 // If no optional parameter is specified, implementation-defined default 1500 // alignments for SIMD instructions on the target platforms are assumed. 1501 Alignment = 1502 CGF.getContext() 1503 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1504 E->getType()->getPointeeType())) 1505 .getQuantity(); 1506 } 1507 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1508 "alignment is not power of 2"); 1509 if (Alignment != 0) { 1510 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1511 CGF.EmitAlignmentAssumption( 1512 PtrValue, E, /*No second loc needed*/ SourceLocation(), Alignment); 1513 } 1514 } 1515 } 1516 } 1517 1518 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1519 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1520 if (!HaveInsertPoint()) 1521 return; 1522 auto I = S.private_counters().begin(); 1523 for (const Expr *E : S.counters()) { 1524 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1525 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1526 // Emit var without initialization. 1527 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1528 EmitAutoVarCleanups(VarEmission); 1529 LocalDeclMap.erase(PrivateVD); 1530 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1531 return VarEmission.getAllocatedAddress(); 1532 }); 1533 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1534 VD->hasGlobalStorage()) { 1535 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1536 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1537 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1538 E->getType(), VK_LValue, E->getExprLoc()); 1539 return EmitLValue(&DRE).getAddress(); 1540 }); 1541 } else { 1542 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1543 return VarEmission.getAllocatedAddress(); 1544 }); 1545 } 1546 ++I; 1547 } 1548 // Privatize extra loop counters used in loops for ordered(n) clauses. 1549 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1550 if (!C->getNumForLoops()) 1551 continue; 1552 for (unsigned I = S.getCollapsedNumber(), 1553 E = C->getLoopNumIterations().size(); 1554 I < E; ++I) { 1555 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1556 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1557 // Override only those variables that can be captured to avoid re-emission 1558 // of the variables declared within the loops. 1559 if (DRE->refersToEnclosingVariableOrCapture()) { 1560 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1561 return CreateMemTemp(DRE->getType(), VD->getName()); 1562 }); 1563 } 1564 } 1565 } 1566 } 1567 1568 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1569 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1570 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1571 if (!CGF.HaveInsertPoint()) 1572 return; 1573 { 1574 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1575 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1576 (void)PreCondScope.Privatize(); 1577 // Get initial values of real counters. 1578 for (const Expr *I : S.inits()) { 1579 CGF.EmitIgnoredExpr(I); 1580 } 1581 } 1582 // Create temp loop control variables with their init values to support 1583 // non-rectangular loops. 1584 CodeGenFunction::OMPMapVars PreCondVars; 1585 for (const Expr * E: S.dependent_counters()) { 1586 if (!E) 1587 continue; 1588 assert(!E->getType().getNonReferenceType()->isRecordType() && 1589 "dependent counter must not be an iterator."); 1590 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1591 Address CounterAddr = 1592 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 1593 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 1594 } 1595 (void)PreCondVars.apply(CGF); 1596 for (const Expr *E : S.dependent_inits()) { 1597 if (!E) 1598 continue; 1599 CGF.EmitIgnoredExpr(E); 1600 } 1601 // Check that loop is executed at least one time. 1602 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1603 PreCondVars.restore(CGF); 1604 } 1605 1606 void CodeGenFunction::EmitOMPLinearClause( 1607 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1608 if (!HaveInsertPoint()) 1609 return; 1610 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1611 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1612 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1613 for (const Expr *C : LoopDirective->counters()) { 1614 SIMDLCVs.insert( 1615 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1616 } 1617 } 1618 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1619 auto CurPrivate = C->privates().begin(); 1620 for (const Expr *E : C->varlists()) { 1621 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1622 const auto *PrivateVD = 1623 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1624 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1625 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1626 // Emit private VarDecl with copy init. 1627 EmitVarDecl(*PrivateVD); 1628 return GetAddrOfLocalVar(PrivateVD); 1629 }); 1630 assert(IsRegistered && "linear var already registered as private"); 1631 // Silence the warning about unused variable. 1632 (void)IsRegistered; 1633 } else { 1634 EmitVarDecl(*PrivateVD); 1635 } 1636 ++CurPrivate; 1637 } 1638 } 1639 } 1640 1641 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1642 const OMPExecutableDirective &D, 1643 bool IsMonotonic) { 1644 if (!CGF.HaveInsertPoint()) 1645 return; 1646 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1647 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1648 /*ignoreResult=*/true); 1649 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1650 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1651 // In presence of finite 'safelen', it may be unsafe to mark all 1652 // the memory instructions parallel, because loop-carried 1653 // dependences of 'safelen' iterations are possible. 1654 if (!IsMonotonic) 1655 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1656 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1657 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1658 /*ignoreResult=*/true); 1659 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1660 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1661 // In presence of finite 'safelen', it may be unsafe to mark all 1662 // the memory instructions parallel, because loop-carried 1663 // dependences of 'safelen' iterations are possible. 1664 CGF.LoopStack.setParallel(/*Enable=*/false); 1665 } 1666 } 1667 1668 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1669 bool IsMonotonic) { 1670 // Walk clauses and process safelen/lastprivate. 1671 LoopStack.setParallel(!IsMonotonic); 1672 LoopStack.setVectorizeEnable(); 1673 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1674 } 1675 1676 void CodeGenFunction::EmitOMPSimdFinal( 1677 const OMPLoopDirective &D, 1678 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1679 if (!HaveInsertPoint()) 1680 return; 1681 llvm::BasicBlock *DoneBB = nullptr; 1682 auto IC = D.counters().begin(); 1683 auto IPC = D.private_counters().begin(); 1684 for (const Expr *F : D.finals()) { 1685 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1686 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1687 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1688 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1689 OrigVD->hasGlobalStorage() || CED) { 1690 if (!DoneBB) { 1691 if (llvm::Value *Cond = CondGen(*this)) { 1692 // If the first post-update expression is found, emit conditional 1693 // block if it was requested. 1694 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1695 DoneBB = createBasicBlock(".omp.final.done"); 1696 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1697 EmitBlock(ThenBB); 1698 } 1699 } 1700 Address OrigAddr = Address::invalid(); 1701 if (CED) { 1702 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1703 } else { 1704 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1705 /*RefersToEnclosingVariableOrCapture=*/false, 1706 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1707 OrigAddr = EmitLValue(&DRE).getAddress(); 1708 } 1709 OMPPrivateScope VarScope(*this); 1710 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1711 (void)VarScope.Privatize(); 1712 EmitIgnoredExpr(F); 1713 } 1714 ++IC; 1715 ++IPC; 1716 } 1717 if (DoneBB) 1718 EmitBlock(DoneBB, /*IsFinished=*/true); 1719 } 1720 1721 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1722 const OMPLoopDirective &S, 1723 CodeGenFunction::JumpDest LoopExit) { 1724 CGF.EmitOMPLoopBody(S, LoopExit); 1725 CGF.EmitStopPoint(&S); 1726 } 1727 1728 /// Emit a helper variable and return corresponding lvalue. 1729 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1730 const DeclRefExpr *Helper) { 1731 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1732 CGF.EmitVarDecl(*VDecl); 1733 return CGF.EmitLValue(Helper); 1734 } 1735 1736 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1737 PrePostActionTy &Action) { 1738 Action.Enter(CGF); 1739 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1740 "Expected simd directive"); 1741 OMPLoopScope PreInitScope(CGF, S); 1742 // if (PreCond) { 1743 // for (IV in 0..LastIteration) BODY; 1744 // <Final counter/linear vars updates>; 1745 // } 1746 // 1747 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1748 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1749 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1750 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1751 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1752 } 1753 1754 // Emit: if (PreCond) - begin. 1755 // If the condition constant folds and can be elided, avoid emitting the 1756 // whole loop. 1757 bool CondConstant; 1758 llvm::BasicBlock *ContBlock = nullptr; 1759 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1760 if (!CondConstant) 1761 return; 1762 } else { 1763 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1764 ContBlock = CGF.createBasicBlock("simd.if.end"); 1765 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1766 CGF.getProfileCount(&S)); 1767 CGF.EmitBlock(ThenBlock); 1768 CGF.incrementProfileCounter(&S); 1769 } 1770 1771 // Emit the loop iteration variable. 1772 const Expr *IVExpr = S.getIterationVariable(); 1773 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1774 CGF.EmitVarDecl(*IVDecl); 1775 CGF.EmitIgnoredExpr(S.getInit()); 1776 1777 // Emit the iterations count variable. 1778 // If it is not a variable, Sema decided to calculate iterations count on 1779 // each iteration (e.g., it is foldable into a constant). 1780 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1781 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1782 // Emit calculation of the iterations count. 1783 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1784 } 1785 1786 CGF.EmitOMPSimdInit(S); 1787 1788 emitAlignedClause(CGF, S); 1789 (void)CGF.EmitOMPLinearClauseInit(S); 1790 { 1791 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1792 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1793 CGF.EmitOMPLinearClause(S, LoopScope); 1794 CGF.EmitOMPPrivateClause(S, LoopScope); 1795 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1796 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1797 (void)LoopScope.Privatize(); 1798 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1799 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1800 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1801 S.getInc(), 1802 [&S](CodeGenFunction &CGF) { 1803 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1804 CGF.EmitStopPoint(&S); 1805 }, 1806 [](CodeGenFunction &) {}); 1807 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1808 // Emit final copy of the lastprivate variables at the end of loops. 1809 if (HasLastprivateClause) 1810 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1811 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1812 emitPostUpdateForReductionClause(CGF, S, 1813 [](CodeGenFunction &) { return nullptr; }); 1814 } 1815 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1816 // Emit: if (PreCond) - end. 1817 if (ContBlock) { 1818 CGF.EmitBranch(ContBlock); 1819 CGF.EmitBlock(ContBlock, true); 1820 } 1821 } 1822 1823 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1824 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1825 emitOMPSimdRegion(CGF, S, Action); 1826 }; 1827 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1828 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1829 } 1830 1831 void CodeGenFunction::EmitOMPOuterLoop( 1832 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1833 CodeGenFunction::OMPPrivateScope &LoopScope, 1834 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1835 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1836 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1837 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1838 1839 const Expr *IVExpr = S.getIterationVariable(); 1840 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1841 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1842 1843 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1844 1845 // Start the loop with a block that tests the condition. 1846 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1847 EmitBlock(CondBlock); 1848 const SourceRange R = S.getSourceRange(); 1849 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1850 SourceLocToDebugLoc(R.getEnd())); 1851 1852 llvm::Value *BoolCondVal = nullptr; 1853 if (!DynamicOrOrdered) { 1854 // UB = min(UB, GlobalUB) or 1855 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1856 // 'distribute parallel for') 1857 EmitIgnoredExpr(LoopArgs.EUB); 1858 // IV = LB 1859 EmitIgnoredExpr(LoopArgs.Init); 1860 // IV < UB 1861 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1862 } else { 1863 BoolCondVal = 1864 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1865 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1866 } 1867 1868 // If there are any cleanups between here and the loop-exit scope, 1869 // create a block to stage a loop exit along. 1870 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1871 if (LoopScope.requiresCleanups()) 1872 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1873 1874 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1875 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1876 if (ExitBlock != LoopExit.getBlock()) { 1877 EmitBlock(ExitBlock); 1878 EmitBranchThroughCleanup(LoopExit); 1879 } 1880 EmitBlock(LoopBody); 1881 1882 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1883 // LB for loop condition and emitted it above). 1884 if (DynamicOrOrdered) 1885 EmitIgnoredExpr(LoopArgs.Init); 1886 1887 // Create a block for the increment. 1888 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1889 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1890 1891 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1892 // with dynamic/guided scheduling and without ordered clause. 1893 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1894 LoopStack.setParallel(!IsMonotonic); 1895 else 1896 EmitOMPSimdInit(S, IsMonotonic); 1897 1898 SourceLocation Loc = S.getBeginLoc(); 1899 1900 // when 'distribute' is not combined with a 'for': 1901 // while (idx <= UB) { BODY; ++idx; } 1902 // when 'distribute' is combined with a 'for' 1903 // (e.g. 'distribute parallel for') 1904 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1905 EmitOMPInnerLoop( 1906 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1907 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1908 CodeGenLoop(CGF, S, LoopExit); 1909 }, 1910 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1911 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1912 }); 1913 1914 EmitBlock(Continue.getBlock()); 1915 BreakContinueStack.pop_back(); 1916 if (!DynamicOrOrdered) { 1917 // Emit "LB = LB + Stride", "UB = UB + Stride". 1918 EmitIgnoredExpr(LoopArgs.NextLB); 1919 EmitIgnoredExpr(LoopArgs.NextUB); 1920 } 1921 1922 EmitBranch(CondBlock); 1923 LoopStack.pop(); 1924 // Emit the fall-through block. 1925 EmitBlock(LoopExit.getBlock()); 1926 1927 // Tell the runtime we are done. 1928 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1929 if (!DynamicOrOrdered) 1930 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 1931 S.getDirectiveKind()); 1932 }; 1933 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1934 } 1935 1936 void CodeGenFunction::EmitOMPForOuterLoop( 1937 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1938 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1939 const OMPLoopArguments &LoopArgs, 1940 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1941 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1942 1943 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1944 const bool DynamicOrOrdered = 1945 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1946 1947 assert((Ordered || 1948 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1949 LoopArgs.Chunk != nullptr)) && 1950 "static non-chunked schedule does not need outer loop"); 1951 1952 // Emit outer loop. 1953 // 1954 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1955 // When schedule(dynamic,chunk_size) is specified, the iterations are 1956 // distributed to threads in the team in chunks as the threads request them. 1957 // Each thread executes a chunk of iterations, then requests another chunk, 1958 // until no chunks remain to be distributed. Each chunk contains chunk_size 1959 // iterations, except for the last chunk to be distributed, which may have 1960 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1961 // 1962 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1963 // to threads in the team in chunks as the executing threads request them. 1964 // Each thread executes a chunk of iterations, then requests another chunk, 1965 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1966 // each chunk is proportional to the number of unassigned iterations divided 1967 // by the number of threads in the team, decreasing to 1. For a chunk_size 1968 // with value k (greater than 1), the size of each chunk is determined in the 1969 // same way, with the restriction that the chunks do not contain fewer than k 1970 // iterations (except for the last chunk to be assigned, which may have fewer 1971 // than k iterations). 1972 // 1973 // When schedule(auto) is specified, the decision regarding scheduling is 1974 // delegated to the compiler and/or runtime system. The programmer gives the 1975 // implementation the freedom to choose any possible mapping of iterations to 1976 // threads in the team. 1977 // 1978 // When schedule(runtime) is specified, the decision regarding scheduling is 1979 // deferred until run time, and the schedule and chunk size are taken from the 1980 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1981 // implementation defined 1982 // 1983 // while(__kmpc_dispatch_next(&LB, &UB)) { 1984 // idx = LB; 1985 // while (idx <= UB) { BODY; ++idx; 1986 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1987 // } // inner loop 1988 // } 1989 // 1990 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1991 // When schedule(static, chunk_size) is specified, iterations are divided into 1992 // chunks of size chunk_size, and the chunks are assigned to the threads in 1993 // the team in a round-robin fashion in the order of the thread number. 1994 // 1995 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1996 // while (idx <= UB) { BODY; ++idx; } // inner loop 1997 // LB = LB + ST; 1998 // UB = UB + ST; 1999 // } 2000 // 2001 2002 const Expr *IVExpr = S.getIterationVariable(); 2003 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2004 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2005 2006 if (DynamicOrOrdered) { 2007 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2008 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2009 llvm::Value *LBVal = DispatchBounds.first; 2010 llvm::Value *UBVal = DispatchBounds.second; 2011 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2012 LoopArgs.Chunk}; 2013 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2014 IVSigned, Ordered, DipatchRTInputValues); 2015 } else { 2016 CGOpenMPRuntime::StaticRTInput StaticInit( 2017 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2018 LoopArgs.ST, LoopArgs.Chunk); 2019 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2020 ScheduleKind, StaticInit); 2021 } 2022 2023 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2024 const unsigned IVSize, 2025 const bool IVSigned) { 2026 if (Ordered) { 2027 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2028 IVSigned); 2029 } 2030 }; 2031 2032 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2033 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2034 OuterLoopArgs.IncExpr = S.getInc(); 2035 OuterLoopArgs.Init = S.getInit(); 2036 OuterLoopArgs.Cond = S.getCond(); 2037 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2038 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2039 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2040 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2041 } 2042 2043 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2044 const unsigned IVSize, const bool IVSigned) {} 2045 2046 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2047 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2048 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2049 const CodeGenLoopTy &CodeGenLoopContent) { 2050 2051 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2052 2053 // Emit outer loop. 2054 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2055 // dynamic 2056 // 2057 2058 const Expr *IVExpr = S.getIterationVariable(); 2059 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2060 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2061 2062 CGOpenMPRuntime::StaticRTInput StaticInit( 2063 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2064 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2065 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2066 2067 // for combined 'distribute' and 'for' the increment expression of distribute 2068 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2069 Expr *IncExpr; 2070 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2071 IncExpr = S.getDistInc(); 2072 else 2073 IncExpr = S.getInc(); 2074 2075 // this routine is shared by 'omp distribute parallel for' and 2076 // 'omp distribute': select the right EUB expression depending on the 2077 // directive 2078 OMPLoopArguments OuterLoopArgs; 2079 OuterLoopArgs.LB = LoopArgs.LB; 2080 OuterLoopArgs.UB = LoopArgs.UB; 2081 OuterLoopArgs.ST = LoopArgs.ST; 2082 OuterLoopArgs.IL = LoopArgs.IL; 2083 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2084 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2085 ? S.getCombinedEnsureUpperBound() 2086 : S.getEnsureUpperBound(); 2087 OuterLoopArgs.IncExpr = IncExpr; 2088 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2089 ? S.getCombinedInit() 2090 : S.getInit(); 2091 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2092 ? S.getCombinedCond() 2093 : S.getCond(); 2094 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2095 ? S.getCombinedNextLowerBound() 2096 : S.getNextLowerBound(); 2097 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2098 ? S.getCombinedNextUpperBound() 2099 : S.getNextUpperBound(); 2100 2101 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2102 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2103 emitEmptyOrdered); 2104 } 2105 2106 static std::pair<LValue, LValue> 2107 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2108 const OMPExecutableDirective &S) { 2109 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2110 LValue LB = 2111 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2112 LValue UB = 2113 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2114 2115 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2116 // parallel for') we need to use the 'distribute' 2117 // chunk lower and upper bounds rather than the whole loop iteration 2118 // space. These are parameters to the outlined function for 'parallel' 2119 // and we copy the bounds of the previous schedule into the 2120 // the current ones. 2121 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2122 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2123 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2124 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2125 PrevLBVal = CGF.EmitScalarConversion( 2126 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2127 LS.getIterationVariable()->getType(), 2128 LS.getPrevLowerBoundVariable()->getExprLoc()); 2129 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2130 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2131 PrevUBVal = CGF.EmitScalarConversion( 2132 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2133 LS.getIterationVariable()->getType(), 2134 LS.getPrevUpperBoundVariable()->getExprLoc()); 2135 2136 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2137 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2138 2139 return {LB, UB}; 2140 } 2141 2142 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2143 /// we need to use the LB and UB expressions generated by the worksharing 2144 /// code generation support, whereas in non combined situations we would 2145 /// just emit 0 and the LastIteration expression 2146 /// This function is necessary due to the difference of the LB and UB 2147 /// types for the RT emission routines for 'for_static_init' and 2148 /// 'for_dispatch_init' 2149 static std::pair<llvm::Value *, llvm::Value *> 2150 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2151 const OMPExecutableDirective &S, 2152 Address LB, Address UB) { 2153 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2154 const Expr *IVExpr = LS.getIterationVariable(); 2155 // when implementing a dynamic schedule for a 'for' combined with a 2156 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2157 // is not normalized as each team only executes its own assigned 2158 // distribute chunk 2159 QualType IteratorTy = IVExpr->getType(); 2160 llvm::Value *LBVal = 2161 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2162 llvm::Value *UBVal = 2163 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2164 return {LBVal, UBVal}; 2165 } 2166 2167 static void emitDistributeParallelForDistributeInnerBoundParams( 2168 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2169 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2170 const auto &Dir = cast<OMPLoopDirective>(S); 2171 LValue LB = 2172 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2173 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2174 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2175 CapturedVars.push_back(LBCast); 2176 LValue UB = 2177 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2178 2179 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2180 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2181 CapturedVars.push_back(UBCast); 2182 } 2183 2184 static void 2185 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2186 const OMPLoopDirective &S, 2187 CodeGenFunction::JumpDest LoopExit) { 2188 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2189 PrePostActionTy &Action) { 2190 Action.Enter(CGF); 2191 bool HasCancel = false; 2192 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2193 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2194 HasCancel = D->hasCancel(); 2195 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2196 HasCancel = D->hasCancel(); 2197 else if (const auto *D = 2198 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2199 HasCancel = D->hasCancel(); 2200 } 2201 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2202 HasCancel); 2203 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2204 emitDistributeParallelForInnerBounds, 2205 emitDistributeParallelForDispatchBounds); 2206 }; 2207 2208 emitCommonOMPParallelDirective( 2209 CGF, S, 2210 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2211 CGInlinedWorksharingLoop, 2212 emitDistributeParallelForDistributeInnerBoundParams); 2213 } 2214 2215 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2216 const OMPDistributeParallelForDirective &S) { 2217 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2218 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2219 S.getDistInc()); 2220 }; 2221 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2222 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2223 } 2224 2225 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2226 const OMPDistributeParallelForSimdDirective &S) { 2227 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2228 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2229 S.getDistInc()); 2230 }; 2231 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2232 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2233 } 2234 2235 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2236 const OMPDistributeSimdDirective &S) { 2237 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2238 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2239 }; 2240 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2241 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2242 } 2243 2244 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2245 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2246 // Emit SPMD target parallel for region as a standalone region. 2247 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2248 emitOMPSimdRegion(CGF, S, Action); 2249 }; 2250 llvm::Function *Fn; 2251 llvm::Constant *Addr; 2252 // Emit target region as a standalone region. 2253 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2254 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2255 assert(Fn && Addr && "Target device function emission failed."); 2256 } 2257 2258 void CodeGenFunction::EmitOMPTargetSimdDirective( 2259 const OMPTargetSimdDirective &S) { 2260 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2261 emitOMPSimdRegion(CGF, S, Action); 2262 }; 2263 emitCommonOMPTargetDirective(*this, S, CodeGen); 2264 } 2265 2266 namespace { 2267 struct ScheduleKindModifiersTy { 2268 OpenMPScheduleClauseKind Kind; 2269 OpenMPScheduleClauseModifier M1; 2270 OpenMPScheduleClauseModifier M2; 2271 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2272 OpenMPScheduleClauseModifier M1, 2273 OpenMPScheduleClauseModifier M2) 2274 : Kind(Kind), M1(M1), M2(M2) {} 2275 }; 2276 } // namespace 2277 2278 bool CodeGenFunction::EmitOMPWorksharingLoop( 2279 const OMPLoopDirective &S, Expr *EUB, 2280 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2281 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2282 // Emit the loop iteration variable. 2283 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2284 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2285 EmitVarDecl(*IVDecl); 2286 2287 // Emit the iterations count variable. 2288 // If it is not a variable, Sema decided to calculate iterations count on each 2289 // iteration (e.g., it is foldable into a constant). 2290 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2291 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2292 // Emit calculation of the iterations count. 2293 EmitIgnoredExpr(S.getCalcLastIteration()); 2294 } 2295 2296 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2297 2298 bool HasLastprivateClause; 2299 // Check pre-condition. 2300 { 2301 OMPLoopScope PreInitScope(*this, S); 2302 // Skip the entire loop if we don't meet the precondition. 2303 // If the condition constant folds and can be elided, avoid emitting the 2304 // whole loop. 2305 bool CondConstant; 2306 llvm::BasicBlock *ContBlock = nullptr; 2307 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2308 if (!CondConstant) 2309 return false; 2310 } else { 2311 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2312 ContBlock = createBasicBlock("omp.precond.end"); 2313 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2314 getProfileCount(&S)); 2315 EmitBlock(ThenBlock); 2316 incrementProfileCounter(&S); 2317 } 2318 2319 RunCleanupsScope DoacrossCleanupScope(*this); 2320 bool Ordered = false; 2321 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2322 if (OrderedClause->getNumForLoops()) 2323 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2324 else 2325 Ordered = true; 2326 } 2327 2328 llvm::DenseSet<const Expr *> EmittedFinals; 2329 emitAlignedClause(*this, S); 2330 bool HasLinears = EmitOMPLinearClauseInit(S); 2331 // Emit helper vars inits. 2332 2333 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2334 LValue LB = Bounds.first; 2335 LValue UB = Bounds.second; 2336 LValue ST = 2337 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2338 LValue IL = 2339 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2340 2341 // Emit 'then' code. 2342 { 2343 OMPPrivateScope LoopScope(*this); 2344 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2345 // Emit implicit barrier to synchronize threads and avoid data races on 2346 // initialization of firstprivate variables and post-update of 2347 // lastprivate variables. 2348 CGM.getOpenMPRuntime().emitBarrierCall( 2349 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2350 /*ForceSimpleCall=*/true); 2351 } 2352 EmitOMPPrivateClause(S, LoopScope); 2353 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2354 EmitOMPReductionClauseInit(S, LoopScope); 2355 EmitOMPPrivateLoopCounters(S, LoopScope); 2356 EmitOMPLinearClause(S, LoopScope); 2357 (void)LoopScope.Privatize(); 2358 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2359 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2360 2361 // Detect the loop schedule kind and chunk. 2362 const Expr *ChunkExpr = nullptr; 2363 OpenMPScheduleTy ScheduleKind; 2364 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2365 ScheduleKind.Schedule = C->getScheduleKind(); 2366 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2367 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2368 ChunkExpr = C->getChunkSize(); 2369 } else { 2370 // Default behaviour for schedule clause. 2371 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2372 *this, S, ScheduleKind.Schedule, ChunkExpr); 2373 } 2374 bool HasChunkSizeOne = false; 2375 llvm::Value *Chunk = nullptr; 2376 if (ChunkExpr) { 2377 Chunk = EmitScalarExpr(ChunkExpr); 2378 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2379 S.getIterationVariable()->getType(), 2380 S.getBeginLoc()); 2381 Expr::EvalResult Result; 2382 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2383 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2384 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2385 } 2386 } 2387 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2388 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2389 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2390 // If the static schedule kind is specified or if the ordered clause is 2391 // specified, and if no monotonic modifier is specified, the effect will 2392 // be as if the monotonic modifier was specified. 2393 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2394 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2395 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2396 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2397 /* Chunked */ Chunk != nullptr) || 2398 StaticChunkedOne) && 2399 !Ordered) { 2400 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2401 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2402 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2403 // When no chunk_size is specified, the iteration space is divided into 2404 // chunks that are approximately equal in size, and at most one chunk is 2405 // distributed to each thread. Note that the size of the chunks is 2406 // unspecified in this case. 2407 CGOpenMPRuntime::StaticRTInput StaticInit( 2408 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2409 UB.getAddress(), ST.getAddress(), 2410 StaticChunkedOne ? Chunk : nullptr); 2411 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2412 ScheduleKind, StaticInit); 2413 JumpDest LoopExit = 2414 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2415 // UB = min(UB, GlobalUB); 2416 if (!StaticChunkedOne) 2417 EmitIgnoredExpr(S.getEnsureUpperBound()); 2418 // IV = LB; 2419 EmitIgnoredExpr(S.getInit()); 2420 // For unchunked static schedule generate: 2421 // 2422 // while (idx <= UB) { 2423 // BODY; 2424 // ++idx; 2425 // } 2426 // 2427 // For static schedule with chunk one: 2428 // 2429 // while (IV <= PrevUB) { 2430 // BODY; 2431 // IV += ST; 2432 // } 2433 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), 2434 StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), 2435 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2436 [&S, LoopExit](CodeGenFunction &CGF) { 2437 CGF.EmitOMPLoopBody(S, LoopExit); 2438 CGF.EmitStopPoint(&S); 2439 }, 2440 [](CodeGenFunction &) {}); 2441 EmitBlock(LoopExit.getBlock()); 2442 // Tell the runtime we are done. 2443 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2444 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2445 S.getDirectiveKind()); 2446 }; 2447 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2448 } else { 2449 const bool IsMonotonic = 2450 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2451 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2452 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2453 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2454 // Emit the outer loop, which requests its work chunk [LB..UB] from 2455 // runtime and runs the inner loop to process it. 2456 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2457 ST.getAddress(), IL.getAddress(), 2458 Chunk, EUB); 2459 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2460 LoopArguments, CGDispatchBounds); 2461 } 2462 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2463 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2464 return CGF.Builder.CreateIsNotNull( 2465 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2466 }); 2467 } 2468 EmitOMPReductionClauseFinal( 2469 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2470 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2471 : /*Parallel only*/ OMPD_parallel); 2472 // Emit post-update of the reduction variables if IsLastIter != 0. 2473 emitPostUpdateForReductionClause( 2474 *this, S, [IL, &S](CodeGenFunction &CGF) { 2475 return CGF.Builder.CreateIsNotNull( 2476 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2477 }); 2478 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2479 if (HasLastprivateClause) 2480 EmitOMPLastprivateClauseFinal( 2481 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2482 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2483 } 2484 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2485 return CGF.Builder.CreateIsNotNull( 2486 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2487 }); 2488 DoacrossCleanupScope.ForceCleanup(); 2489 // We're now done with the loop, so jump to the continuation block. 2490 if (ContBlock) { 2491 EmitBranch(ContBlock); 2492 EmitBlock(ContBlock, /*IsFinished=*/true); 2493 } 2494 } 2495 return HasLastprivateClause; 2496 } 2497 2498 /// The following two functions generate expressions for the loop lower 2499 /// and upper bounds in case of static and dynamic (dispatch) schedule 2500 /// of the associated 'for' or 'distribute' loop. 2501 static std::pair<LValue, LValue> 2502 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2503 const auto &LS = cast<OMPLoopDirective>(S); 2504 LValue LB = 2505 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2506 LValue UB = 2507 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2508 return {LB, UB}; 2509 } 2510 2511 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2512 /// consider the lower and upper bound expressions generated by the 2513 /// worksharing loop support, but we use 0 and the iteration space size as 2514 /// constants 2515 static std::pair<llvm::Value *, llvm::Value *> 2516 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2517 Address LB, Address UB) { 2518 const auto &LS = cast<OMPLoopDirective>(S); 2519 const Expr *IVExpr = LS.getIterationVariable(); 2520 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2521 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2522 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2523 return {LBVal, UBVal}; 2524 } 2525 2526 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2527 bool HasLastprivates = false; 2528 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2529 PrePostActionTy &) { 2530 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2531 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2532 emitForLoopBounds, 2533 emitDispatchForLoopBounds); 2534 }; 2535 { 2536 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2537 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2538 S.hasCancel()); 2539 } 2540 2541 // Emit an implicit barrier at the end. 2542 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2543 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2544 } 2545 2546 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2547 bool HasLastprivates = false; 2548 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2549 PrePostActionTy &) { 2550 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2551 emitForLoopBounds, 2552 emitDispatchForLoopBounds); 2553 }; 2554 { 2555 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2556 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2557 } 2558 2559 // Emit an implicit barrier at the end. 2560 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2561 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2562 } 2563 2564 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2565 const Twine &Name, 2566 llvm::Value *Init = nullptr) { 2567 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2568 if (Init) 2569 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2570 return LVal; 2571 } 2572 2573 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2574 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2575 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2576 bool HasLastprivates = false; 2577 auto &&CodeGen = [&S, CapturedStmt, CS, 2578 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2579 ASTContext &C = CGF.getContext(); 2580 QualType KmpInt32Ty = 2581 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2582 // Emit helper vars inits. 2583 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2584 CGF.Builder.getInt32(0)); 2585 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2586 ? CGF.Builder.getInt32(CS->size() - 1) 2587 : CGF.Builder.getInt32(0); 2588 LValue UB = 2589 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2590 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2591 CGF.Builder.getInt32(1)); 2592 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2593 CGF.Builder.getInt32(0)); 2594 // Loop counter. 2595 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2596 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2597 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2598 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2599 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2600 // Generate condition for loop. 2601 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2602 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2603 // Increment for loop counter. 2604 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2605 S.getBeginLoc(), true); 2606 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2607 // Iterate through all sections and emit a switch construct: 2608 // switch (IV) { 2609 // case 0: 2610 // <SectionStmt[0]>; 2611 // break; 2612 // ... 2613 // case <NumSection> - 1: 2614 // <SectionStmt[<NumSection> - 1]>; 2615 // break; 2616 // } 2617 // .omp.sections.exit: 2618 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2619 llvm::SwitchInst *SwitchStmt = 2620 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2621 ExitBB, CS == nullptr ? 1 : CS->size()); 2622 if (CS) { 2623 unsigned CaseNumber = 0; 2624 for (const Stmt *SubStmt : CS->children()) { 2625 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2626 CGF.EmitBlock(CaseBB); 2627 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2628 CGF.EmitStmt(SubStmt); 2629 CGF.EmitBranch(ExitBB); 2630 ++CaseNumber; 2631 } 2632 } else { 2633 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2634 CGF.EmitBlock(CaseBB); 2635 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2636 CGF.EmitStmt(CapturedStmt); 2637 CGF.EmitBranch(ExitBB); 2638 } 2639 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2640 }; 2641 2642 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2643 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2644 // Emit implicit barrier to synchronize threads and avoid data races on 2645 // initialization of firstprivate variables and post-update of lastprivate 2646 // variables. 2647 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2648 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2649 /*ForceSimpleCall=*/true); 2650 } 2651 CGF.EmitOMPPrivateClause(S, LoopScope); 2652 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2653 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2654 (void)LoopScope.Privatize(); 2655 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2656 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2657 2658 // Emit static non-chunked loop. 2659 OpenMPScheduleTy ScheduleKind; 2660 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2661 CGOpenMPRuntime::StaticRTInput StaticInit( 2662 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2663 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2664 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2665 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2666 // UB = min(UB, GlobalUB); 2667 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2668 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2669 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2670 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2671 // IV = LB; 2672 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2673 // while (idx <= UB) { BODY; ++idx; } 2674 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2675 [](CodeGenFunction &) {}); 2676 // Tell the runtime we are done. 2677 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2678 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2679 S.getDirectiveKind()); 2680 }; 2681 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2682 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2683 // Emit post-update of the reduction variables if IsLastIter != 0. 2684 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2685 return CGF.Builder.CreateIsNotNull( 2686 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2687 }); 2688 2689 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2690 if (HasLastprivates) 2691 CGF.EmitOMPLastprivateClauseFinal( 2692 S, /*NoFinals=*/false, 2693 CGF.Builder.CreateIsNotNull( 2694 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2695 }; 2696 2697 bool HasCancel = false; 2698 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2699 HasCancel = OSD->hasCancel(); 2700 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2701 HasCancel = OPSD->hasCancel(); 2702 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2703 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2704 HasCancel); 2705 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2706 // clause. Otherwise the barrier will be generated by the codegen for the 2707 // directive. 2708 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2709 // Emit implicit barrier to synchronize threads and avoid data races on 2710 // initialization of firstprivate variables. 2711 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2712 OMPD_unknown); 2713 } 2714 } 2715 2716 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2717 { 2718 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2719 EmitSections(S); 2720 } 2721 // Emit an implicit barrier at the end. 2722 if (!S.getSingleClause<OMPNowaitClause>()) { 2723 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2724 OMPD_sections); 2725 } 2726 } 2727 2728 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2729 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2730 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2731 }; 2732 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2733 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2734 S.hasCancel()); 2735 } 2736 2737 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2738 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2739 llvm::SmallVector<const Expr *, 8> DestExprs; 2740 llvm::SmallVector<const Expr *, 8> SrcExprs; 2741 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2742 // Check if there are any 'copyprivate' clauses associated with this 2743 // 'single' construct. 2744 // Build a list of copyprivate variables along with helper expressions 2745 // (<source>, <destination>, <destination>=<source> expressions) 2746 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2747 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2748 DestExprs.append(C->destination_exprs().begin(), 2749 C->destination_exprs().end()); 2750 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2751 AssignmentOps.append(C->assignment_ops().begin(), 2752 C->assignment_ops().end()); 2753 } 2754 // Emit code for 'single' region along with 'copyprivate' clauses 2755 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2756 Action.Enter(CGF); 2757 OMPPrivateScope SingleScope(CGF); 2758 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2759 CGF.EmitOMPPrivateClause(S, SingleScope); 2760 (void)SingleScope.Privatize(); 2761 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2762 }; 2763 { 2764 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2765 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2766 CopyprivateVars, DestExprs, 2767 SrcExprs, AssignmentOps); 2768 } 2769 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2770 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2771 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2772 CGM.getOpenMPRuntime().emitBarrierCall( 2773 *this, S.getBeginLoc(), 2774 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2775 } 2776 } 2777 2778 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2779 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2780 Action.Enter(CGF); 2781 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2782 }; 2783 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2784 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2785 } 2786 2787 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2788 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2789 Action.Enter(CGF); 2790 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2791 }; 2792 const Expr *Hint = nullptr; 2793 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2794 Hint = HintClause->getHint(); 2795 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2796 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2797 S.getDirectiveName().getAsString(), 2798 CodeGen, S.getBeginLoc(), Hint); 2799 } 2800 2801 void CodeGenFunction::EmitOMPParallelForDirective( 2802 const OMPParallelForDirective &S) { 2803 // Emit directive as a combined directive that consists of two implicit 2804 // directives: 'parallel' with 'for' directive. 2805 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2806 Action.Enter(CGF); 2807 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2808 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2809 emitDispatchForLoopBounds); 2810 }; 2811 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2812 emitEmptyBoundParameters); 2813 } 2814 2815 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2816 const OMPParallelForSimdDirective &S) { 2817 // Emit directive as a combined directive that consists of two implicit 2818 // directives: 'parallel' with 'for' directive. 2819 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2820 Action.Enter(CGF); 2821 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2822 emitDispatchForLoopBounds); 2823 }; 2824 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2825 emitEmptyBoundParameters); 2826 } 2827 2828 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2829 const OMPParallelSectionsDirective &S) { 2830 // Emit directive as a combined directive that consists of two implicit 2831 // directives: 'parallel' with 'sections' directive. 2832 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2833 Action.Enter(CGF); 2834 CGF.EmitSections(S); 2835 }; 2836 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2837 emitEmptyBoundParameters); 2838 } 2839 2840 void CodeGenFunction::EmitOMPTaskBasedDirective( 2841 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2842 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2843 OMPTaskDataTy &Data) { 2844 // Emit outlined function for task construct. 2845 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2846 auto I = CS->getCapturedDecl()->param_begin(); 2847 auto PartId = std::next(I); 2848 auto TaskT = std::next(I, 4); 2849 // Check if the task is final 2850 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2851 // If the condition constant folds and can be elided, try to avoid emitting 2852 // the condition and the dead arm of the if/else. 2853 const Expr *Cond = Clause->getCondition(); 2854 bool CondConstant; 2855 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2856 Data.Final.setInt(CondConstant); 2857 else 2858 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2859 } else { 2860 // By default the task is not final. 2861 Data.Final.setInt(/*IntVal=*/false); 2862 } 2863 // Check if the task has 'priority' clause. 2864 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2865 const Expr *Prio = Clause->getPriority(); 2866 Data.Priority.setInt(/*IntVal=*/true); 2867 Data.Priority.setPointer(EmitScalarConversion( 2868 EmitScalarExpr(Prio), Prio->getType(), 2869 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2870 Prio->getExprLoc())); 2871 } 2872 // The first function argument for tasks is a thread id, the second one is a 2873 // part id (0 for tied tasks, >=0 for untied task). 2874 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2875 // Get list of private variables. 2876 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2877 auto IRef = C->varlist_begin(); 2878 for (const Expr *IInit : C->private_copies()) { 2879 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2880 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2881 Data.PrivateVars.push_back(*IRef); 2882 Data.PrivateCopies.push_back(IInit); 2883 } 2884 ++IRef; 2885 } 2886 } 2887 EmittedAsPrivate.clear(); 2888 // Get list of firstprivate variables. 2889 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2890 auto IRef = C->varlist_begin(); 2891 auto IElemInitRef = C->inits().begin(); 2892 for (const Expr *IInit : C->private_copies()) { 2893 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2894 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2895 Data.FirstprivateVars.push_back(*IRef); 2896 Data.FirstprivateCopies.push_back(IInit); 2897 Data.FirstprivateInits.push_back(*IElemInitRef); 2898 } 2899 ++IRef; 2900 ++IElemInitRef; 2901 } 2902 } 2903 // Get list of lastprivate variables (for taskloops). 2904 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2905 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2906 auto IRef = C->varlist_begin(); 2907 auto ID = C->destination_exprs().begin(); 2908 for (const Expr *IInit : C->private_copies()) { 2909 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2910 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2911 Data.LastprivateVars.push_back(*IRef); 2912 Data.LastprivateCopies.push_back(IInit); 2913 } 2914 LastprivateDstsOrigs.insert( 2915 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2916 cast<DeclRefExpr>(*IRef)}); 2917 ++IRef; 2918 ++ID; 2919 } 2920 } 2921 SmallVector<const Expr *, 4> LHSs; 2922 SmallVector<const Expr *, 4> RHSs; 2923 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2924 auto IPriv = C->privates().begin(); 2925 auto IRed = C->reduction_ops().begin(); 2926 auto ILHS = C->lhs_exprs().begin(); 2927 auto IRHS = C->rhs_exprs().begin(); 2928 for (const Expr *Ref : C->varlists()) { 2929 Data.ReductionVars.emplace_back(Ref); 2930 Data.ReductionCopies.emplace_back(*IPriv); 2931 Data.ReductionOps.emplace_back(*IRed); 2932 LHSs.emplace_back(*ILHS); 2933 RHSs.emplace_back(*IRHS); 2934 std::advance(IPriv, 1); 2935 std::advance(IRed, 1); 2936 std::advance(ILHS, 1); 2937 std::advance(IRHS, 1); 2938 } 2939 } 2940 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2941 *this, S.getBeginLoc(), LHSs, RHSs, Data); 2942 // Build list of dependences. 2943 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2944 for (const Expr *IRef : C->varlists()) 2945 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 2946 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2947 CapturedRegion](CodeGenFunction &CGF, 2948 PrePostActionTy &Action) { 2949 // Set proper addresses for generated private copies. 2950 OMPPrivateScope Scope(CGF); 2951 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2952 !Data.LastprivateVars.empty()) { 2953 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 2954 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 2955 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2956 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 2957 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 2958 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 2959 CS->getCapturedDecl()->getParam(PrivatesParam))); 2960 // Map privates. 2961 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2962 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2963 CallArgs.push_back(PrivatesPtr); 2964 for (const Expr *E : Data.PrivateVars) { 2965 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2966 Address PrivatePtr = CGF.CreateMemTemp( 2967 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2968 PrivatePtrs.emplace_back(VD, PrivatePtr); 2969 CallArgs.push_back(PrivatePtr.getPointer()); 2970 } 2971 for (const Expr *E : Data.FirstprivateVars) { 2972 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2973 Address PrivatePtr = 2974 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2975 ".firstpriv.ptr.addr"); 2976 PrivatePtrs.emplace_back(VD, PrivatePtr); 2977 CallArgs.push_back(PrivatePtr.getPointer()); 2978 } 2979 for (const Expr *E : Data.LastprivateVars) { 2980 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2981 Address PrivatePtr = 2982 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2983 ".lastpriv.ptr.addr"); 2984 PrivatePtrs.emplace_back(VD, PrivatePtr); 2985 CallArgs.push_back(PrivatePtr.getPointer()); 2986 } 2987 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2988 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 2989 for (const auto &Pair : LastprivateDstsOrigs) { 2990 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2991 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 2992 /*RefersToEnclosingVariableOrCapture=*/ 2993 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 2994 Pair.second->getType(), VK_LValue, 2995 Pair.second->getExprLoc()); 2996 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2997 return CGF.EmitLValue(&DRE).getAddress(); 2998 }); 2999 } 3000 for (const auto &Pair : PrivatePtrs) { 3001 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3002 CGF.getContext().getDeclAlign(Pair.first)); 3003 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3004 } 3005 } 3006 if (Data.Reductions) { 3007 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3008 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 3009 Data.ReductionOps); 3010 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3011 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3012 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3013 RedCG.emitSharedLValue(CGF, Cnt); 3014 RedCG.emitAggregateType(CGF, Cnt); 3015 // FIXME: This must removed once the runtime library is fixed. 3016 // Emit required threadprivate variables for 3017 // initializer/combiner/finalizer. 3018 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3019 RedCG, Cnt); 3020 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3021 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3022 Replacement = 3023 Address(CGF.EmitScalarConversion( 3024 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3025 CGF.getContext().getPointerType( 3026 Data.ReductionCopies[Cnt]->getType()), 3027 Data.ReductionCopies[Cnt]->getExprLoc()), 3028 Replacement.getAlignment()); 3029 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3030 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3031 [Replacement]() { return Replacement; }); 3032 } 3033 } 3034 // Privatize all private variables except for in_reduction items. 3035 (void)Scope.Privatize(); 3036 SmallVector<const Expr *, 4> InRedVars; 3037 SmallVector<const Expr *, 4> InRedPrivs; 3038 SmallVector<const Expr *, 4> InRedOps; 3039 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3040 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3041 auto IPriv = C->privates().begin(); 3042 auto IRed = C->reduction_ops().begin(); 3043 auto ITD = C->taskgroup_descriptors().begin(); 3044 for (const Expr *Ref : C->varlists()) { 3045 InRedVars.emplace_back(Ref); 3046 InRedPrivs.emplace_back(*IPriv); 3047 InRedOps.emplace_back(*IRed); 3048 TaskgroupDescriptors.emplace_back(*ITD); 3049 std::advance(IPriv, 1); 3050 std::advance(IRed, 1); 3051 std::advance(ITD, 1); 3052 } 3053 } 3054 // Privatize in_reduction items here, because taskgroup descriptors must be 3055 // privatized earlier. 3056 OMPPrivateScope InRedScope(CGF); 3057 if (!InRedVars.empty()) { 3058 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3059 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3060 RedCG.emitSharedLValue(CGF, Cnt); 3061 RedCG.emitAggregateType(CGF, Cnt); 3062 // The taskgroup descriptor variable is always implicit firstprivate and 3063 // privatized already during processing of the firstprivates. 3064 // FIXME: This must removed once the runtime library is fixed. 3065 // Emit required threadprivate variables for 3066 // initializer/combiner/finalizer. 3067 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3068 RedCG, Cnt); 3069 llvm::Value *ReductionsPtr = 3070 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3071 TaskgroupDescriptors[Cnt]->getExprLoc()); 3072 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3073 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3074 Replacement = Address( 3075 CGF.EmitScalarConversion( 3076 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3077 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3078 InRedPrivs[Cnt]->getExprLoc()), 3079 Replacement.getAlignment()); 3080 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3081 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3082 [Replacement]() { return Replacement; }); 3083 } 3084 } 3085 (void)InRedScope.Privatize(); 3086 3087 Action.Enter(CGF); 3088 BodyGen(CGF); 3089 }; 3090 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3091 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3092 Data.NumberOfParts); 3093 OMPLexicalScope Scope(*this, S); 3094 TaskGen(*this, OutlinedFn, Data); 3095 } 3096 3097 static ImplicitParamDecl * 3098 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3099 QualType Ty, CapturedDecl *CD, 3100 SourceLocation Loc) { 3101 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3102 ImplicitParamDecl::Other); 3103 auto *OrigRef = DeclRefExpr::Create( 3104 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3105 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3106 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3107 ImplicitParamDecl::Other); 3108 auto *PrivateRef = DeclRefExpr::Create( 3109 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3110 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3111 QualType ElemType = C.getBaseElementType(Ty); 3112 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3113 ImplicitParamDecl::Other); 3114 auto *InitRef = DeclRefExpr::Create( 3115 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3116 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3117 PrivateVD->setInitStyle(VarDecl::CInit); 3118 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3119 InitRef, /*BasePath=*/nullptr, 3120 VK_RValue)); 3121 Data.FirstprivateVars.emplace_back(OrigRef); 3122 Data.FirstprivateCopies.emplace_back(PrivateRef); 3123 Data.FirstprivateInits.emplace_back(InitRef); 3124 return OrigVD; 3125 } 3126 3127 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3128 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3129 OMPTargetDataInfo &InputInfo) { 3130 // Emit outlined function for task construct. 3131 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3132 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3133 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3134 auto I = CS->getCapturedDecl()->param_begin(); 3135 auto PartId = std::next(I); 3136 auto TaskT = std::next(I, 4); 3137 OMPTaskDataTy Data; 3138 // The task is not final. 3139 Data.Final.setInt(/*IntVal=*/false); 3140 // Get list of firstprivate variables. 3141 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3142 auto IRef = C->varlist_begin(); 3143 auto IElemInitRef = C->inits().begin(); 3144 for (auto *IInit : C->private_copies()) { 3145 Data.FirstprivateVars.push_back(*IRef); 3146 Data.FirstprivateCopies.push_back(IInit); 3147 Data.FirstprivateInits.push_back(*IElemInitRef); 3148 ++IRef; 3149 ++IElemInitRef; 3150 } 3151 } 3152 OMPPrivateScope TargetScope(*this); 3153 VarDecl *BPVD = nullptr; 3154 VarDecl *PVD = nullptr; 3155 VarDecl *SVD = nullptr; 3156 if (InputInfo.NumberOfTargetItems > 0) { 3157 auto *CD = CapturedDecl::Create( 3158 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3159 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3160 QualType BaseAndPointersType = getContext().getConstantArrayType( 3161 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3162 /*IndexTypeQuals=*/0); 3163 BPVD = createImplicitFirstprivateForType( 3164 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3165 PVD = createImplicitFirstprivateForType( 3166 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3167 QualType SizesType = getContext().getConstantArrayType( 3168 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3169 ArrSize, ArrayType::Normal, 3170 /*IndexTypeQuals=*/0); 3171 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3172 S.getBeginLoc()); 3173 TargetScope.addPrivate( 3174 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3175 TargetScope.addPrivate(PVD, 3176 [&InputInfo]() { return InputInfo.PointersArray; }); 3177 TargetScope.addPrivate(SVD, 3178 [&InputInfo]() { return InputInfo.SizesArray; }); 3179 } 3180 (void)TargetScope.Privatize(); 3181 // Build list of dependences. 3182 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3183 for (const Expr *IRef : C->varlists()) 3184 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3185 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3186 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3187 // Set proper addresses for generated private copies. 3188 OMPPrivateScope Scope(CGF); 3189 if (!Data.FirstprivateVars.empty()) { 3190 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3191 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3192 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3193 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3194 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3195 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3196 CS->getCapturedDecl()->getParam(PrivatesParam))); 3197 // Map privates. 3198 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3199 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3200 CallArgs.push_back(PrivatesPtr); 3201 for (const Expr *E : Data.FirstprivateVars) { 3202 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3203 Address PrivatePtr = 3204 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3205 ".firstpriv.ptr.addr"); 3206 PrivatePtrs.emplace_back(VD, PrivatePtr); 3207 CallArgs.push_back(PrivatePtr.getPointer()); 3208 } 3209 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3210 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3211 for (const auto &Pair : PrivatePtrs) { 3212 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3213 CGF.getContext().getDeclAlign(Pair.first)); 3214 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3215 } 3216 } 3217 // Privatize all private variables except for in_reduction items. 3218 (void)Scope.Privatize(); 3219 if (InputInfo.NumberOfTargetItems > 0) { 3220 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3221 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3222 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3223 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3224 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3225 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3226 } 3227 3228 Action.Enter(CGF); 3229 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3230 BodyGen(CGF); 3231 }; 3232 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3233 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3234 Data.NumberOfParts); 3235 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3236 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3237 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3238 SourceLocation()); 3239 3240 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3241 SharedsTy, CapturedStruct, &IfCond, Data); 3242 } 3243 3244 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3245 // Emit outlined function for task construct. 3246 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3247 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3248 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3249 const Expr *IfCond = nullptr; 3250 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3251 if (C->getNameModifier() == OMPD_unknown || 3252 C->getNameModifier() == OMPD_task) { 3253 IfCond = C->getCondition(); 3254 break; 3255 } 3256 } 3257 3258 OMPTaskDataTy Data; 3259 // Check if we should emit tied or untied task. 3260 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3261 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3262 CGF.EmitStmt(CS->getCapturedStmt()); 3263 }; 3264 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3265 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3266 const OMPTaskDataTy &Data) { 3267 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3268 SharedsTy, CapturedStruct, IfCond, 3269 Data); 3270 }; 3271 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3272 } 3273 3274 void CodeGenFunction::EmitOMPTaskyieldDirective( 3275 const OMPTaskyieldDirective &S) { 3276 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3277 } 3278 3279 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3280 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3281 } 3282 3283 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3284 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3285 } 3286 3287 void CodeGenFunction::EmitOMPTaskgroupDirective( 3288 const OMPTaskgroupDirective &S) { 3289 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3290 Action.Enter(CGF); 3291 if (const Expr *E = S.getReductionRef()) { 3292 SmallVector<const Expr *, 4> LHSs; 3293 SmallVector<const Expr *, 4> RHSs; 3294 OMPTaskDataTy Data; 3295 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3296 auto IPriv = C->privates().begin(); 3297 auto IRed = C->reduction_ops().begin(); 3298 auto ILHS = C->lhs_exprs().begin(); 3299 auto IRHS = C->rhs_exprs().begin(); 3300 for (const Expr *Ref : C->varlists()) { 3301 Data.ReductionVars.emplace_back(Ref); 3302 Data.ReductionCopies.emplace_back(*IPriv); 3303 Data.ReductionOps.emplace_back(*IRed); 3304 LHSs.emplace_back(*ILHS); 3305 RHSs.emplace_back(*IRHS); 3306 std::advance(IPriv, 1); 3307 std::advance(IRed, 1); 3308 std::advance(ILHS, 1); 3309 std::advance(IRHS, 1); 3310 } 3311 } 3312 llvm::Value *ReductionDesc = 3313 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3314 LHSs, RHSs, Data); 3315 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3316 CGF.EmitVarDecl(*VD); 3317 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3318 /*Volatile=*/false, E->getType()); 3319 } 3320 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3321 }; 3322 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3323 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3324 } 3325 3326 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3327 CGM.getOpenMPRuntime().emitFlush( 3328 *this, 3329 [&S]() -> ArrayRef<const Expr *> { 3330 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3331 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3332 FlushClause->varlist_end()); 3333 return llvm::None; 3334 }(), 3335 S.getBeginLoc()); 3336 } 3337 3338 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3339 const CodeGenLoopTy &CodeGenLoop, 3340 Expr *IncExpr) { 3341 // Emit the loop iteration variable. 3342 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3343 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3344 EmitVarDecl(*IVDecl); 3345 3346 // Emit the iterations count variable. 3347 // If it is not a variable, Sema decided to calculate iterations count on each 3348 // iteration (e.g., it is foldable into a constant). 3349 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3350 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3351 // Emit calculation of the iterations count. 3352 EmitIgnoredExpr(S.getCalcLastIteration()); 3353 } 3354 3355 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3356 3357 bool HasLastprivateClause = false; 3358 // Check pre-condition. 3359 { 3360 OMPLoopScope PreInitScope(*this, S); 3361 // Skip the entire loop if we don't meet the precondition. 3362 // If the condition constant folds and can be elided, avoid emitting the 3363 // whole loop. 3364 bool CondConstant; 3365 llvm::BasicBlock *ContBlock = nullptr; 3366 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3367 if (!CondConstant) 3368 return; 3369 } else { 3370 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3371 ContBlock = createBasicBlock("omp.precond.end"); 3372 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3373 getProfileCount(&S)); 3374 EmitBlock(ThenBlock); 3375 incrementProfileCounter(&S); 3376 } 3377 3378 emitAlignedClause(*this, S); 3379 // Emit 'then' code. 3380 { 3381 // Emit helper vars inits. 3382 3383 LValue LB = EmitOMPHelperVar( 3384 *this, cast<DeclRefExpr>( 3385 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3386 ? S.getCombinedLowerBoundVariable() 3387 : S.getLowerBoundVariable()))); 3388 LValue UB = EmitOMPHelperVar( 3389 *this, cast<DeclRefExpr>( 3390 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3391 ? S.getCombinedUpperBoundVariable() 3392 : S.getUpperBoundVariable()))); 3393 LValue ST = 3394 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3395 LValue IL = 3396 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3397 3398 OMPPrivateScope LoopScope(*this); 3399 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3400 // Emit implicit barrier to synchronize threads and avoid data races 3401 // on initialization of firstprivate variables and post-update of 3402 // lastprivate variables. 3403 CGM.getOpenMPRuntime().emitBarrierCall( 3404 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3405 /*ForceSimpleCall=*/true); 3406 } 3407 EmitOMPPrivateClause(S, LoopScope); 3408 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3409 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3410 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3411 EmitOMPReductionClauseInit(S, LoopScope); 3412 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3413 EmitOMPPrivateLoopCounters(S, LoopScope); 3414 (void)LoopScope.Privatize(); 3415 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3416 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3417 3418 // Detect the distribute schedule kind and chunk. 3419 llvm::Value *Chunk = nullptr; 3420 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3421 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3422 ScheduleKind = C->getDistScheduleKind(); 3423 if (const Expr *Ch = C->getChunkSize()) { 3424 Chunk = EmitScalarExpr(Ch); 3425 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3426 S.getIterationVariable()->getType(), 3427 S.getBeginLoc()); 3428 } 3429 } else { 3430 // Default behaviour for dist_schedule clause. 3431 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3432 *this, S, ScheduleKind, Chunk); 3433 } 3434 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3435 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3436 3437 // OpenMP [2.10.8, distribute Construct, Description] 3438 // If dist_schedule is specified, kind must be static. If specified, 3439 // iterations are divided into chunks of size chunk_size, chunks are 3440 // assigned to the teams of the league in a round-robin fashion in the 3441 // order of the team number. When no chunk_size is specified, the 3442 // iteration space is divided into chunks that are approximately equal 3443 // in size, and at most one chunk is distributed to each team of the 3444 // league. The size of the chunks is unspecified in this case. 3445 bool StaticChunked = RT.isStaticChunked( 3446 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3447 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3448 if (RT.isStaticNonchunked(ScheduleKind, 3449 /* Chunked */ Chunk != nullptr) || 3450 StaticChunked) { 3451 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3452 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3453 CGOpenMPRuntime::StaticRTInput StaticInit( 3454 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3455 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3456 StaticChunked ? Chunk : nullptr); 3457 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3458 StaticInit); 3459 JumpDest LoopExit = 3460 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3461 // UB = min(UB, GlobalUB); 3462 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3463 ? S.getCombinedEnsureUpperBound() 3464 : S.getEnsureUpperBound()); 3465 // IV = LB; 3466 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3467 ? S.getCombinedInit() 3468 : S.getInit()); 3469 3470 const Expr *Cond = 3471 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3472 ? S.getCombinedCond() 3473 : S.getCond(); 3474 3475 if (StaticChunked) 3476 Cond = S.getCombinedDistCond(); 3477 3478 // For static unchunked schedules generate: 3479 // 3480 // 1. For distribute alone, codegen 3481 // while (idx <= UB) { 3482 // BODY; 3483 // ++idx; 3484 // } 3485 // 3486 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3487 // while (idx <= UB) { 3488 // <CodeGen rest of pragma>(LB, UB); 3489 // idx += ST; 3490 // } 3491 // 3492 // For static chunk one schedule generate: 3493 // 3494 // while (IV <= GlobalUB) { 3495 // <CodeGen rest of pragma>(LB, UB); 3496 // LB += ST; 3497 // UB += ST; 3498 // UB = min(UB, GlobalUB); 3499 // IV = LB; 3500 // } 3501 // 3502 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3503 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3504 CodeGenLoop(CGF, S, LoopExit); 3505 }, 3506 [&S, StaticChunked](CodeGenFunction &CGF) { 3507 if (StaticChunked) { 3508 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3509 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3510 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3511 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3512 } 3513 }); 3514 EmitBlock(LoopExit.getBlock()); 3515 // Tell the runtime we are done. 3516 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3517 } else { 3518 // Emit the outer loop, which requests its work chunk [LB..UB] from 3519 // runtime and runs the inner loop to process it. 3520 const OMPLoopArguments LoopArguments = { 3521 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3522 Chunk}; 3523 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3524 CodeGenLoop); 3525 } 3526 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3527 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3528 return CGF.Builder.CreateIsNotNull( 3529 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3530 }); 3531 } 3532 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3533 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3534 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3535 EmitOMPReductionClauseFinal(S, OMPD_simd); 3536 // Emit post-update of the reduction variables if IsLastIter != 0. 3537 emitPostUpdateForReductionClause( 3538 *this, S, [IL, &S](CodeGenFunction &CGF) { 3539 return CGF.Builder.CreateIsNotNull( 3540 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3541 }); 3542 } 3543 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3544 if (HasLastprivateClause) { 3545 EmitOMPLastprivateClauseFinal( 3546 S, /*NoFinals=*/false, 3547 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3548 } 3549 } 3550 3551 // We're now done with the loop, so jump to the continuation block. 3552 if (ContBlock) { 3553 EmitBranch(ContBlock); 3554 EmitBlock(ContBlock, true); 3555 } 3556 } 3557 } 3558 3559 void CodeGenFunction::EmitOMPDistributeDirective( 3560 const OMPDistributeDirective &S) { 3561 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3562 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3563 }; 3564 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3565 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3566 } 3567 3568 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3569 const CapturedStmt *S) { 3570 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3571 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3572 CGF.CapturedStmtInfo = &CapStmtInfo; 3573 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3574 Fn->setDoesNotRecurse(); 3575 return Fn; 3576 } 3577 3578 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3579 if (S.hasClausesOfKind<OMPDependClause>()) { 3580 assert(!S.getAssociatedStmt() && 3581 "No associated statement must be in ordered depend construct."); 3582 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3583 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3584 return; 3585 } 3586 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3587 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3588 PrePostActionTy &Action) { 3589 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3590 if (C) { 3591 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3592 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3593 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3594 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3595 OutlinedFn, CapturedVars); 3596 } else { 3597 Action.Enter(CGF); 3598 CGF.EmitStmt(CS->getCapturedStmt()); 3599 } 3600 }; 3601 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3602 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3603 } 3604 3605 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3606 QualType SrcType, QualType DestType, 3607 SourceLocation Loc) { 3608 assert(CGF.hasScalarEvaluationKind(DestType) && 3609 "DestType must have scalar evaluation kind."); 3610 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3611 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3612 DestType, Loc) 3613 : CGF.EmitComplexToScalarConversion( 3614 Val.getComplexVal(), SrcType, DestType, Loc); 3615 } 3616 3617 static CodeGenFunction::ComplexPairTy 3618 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3619 QualType DestType, SourceLocation Loc) { 3620 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3621 "DestType must have complex evaluation kind."); 3622 CodeGenFunction::ComplexPairTy ComplexVal; 3623 if (Val.isScalar()) { 3624 // Convert the input element to the element type of the complex. 3625 QualType DestElementType = 3626 DestType->castAs<ComplexType>()->getElementType(); 3627 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3628 Val.getScalarVal(), SrcType, DestElementType, Loc); 3629 ComplexVal = CodeGenFunction::ComplexPairTy( 3630 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3631 } else { 3632 assert(Val.isComplex() && "Must be a scalar or complex."); 3633 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3634 QualType DestElementType = 3635 DestType->castAs<ComplexType>()->getElementType(); 3636 ComplexVal.first = CGF.EmitScalarConversion( 3637 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3638 ComplexVal.second = CGF.EmitScalarConversion( 3639 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3640 } 3641 return ComplexVal; 3642 } 3643 3644 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3645 LValue LVal, RValue RVal) { 3646 if (LVal.isGlobalReg()) { 3647 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3648 } else { 3649 CGF.EmitAtomicStore(RVal, LVal, 3650 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3651 : llvm::AtomicOrdering::Monotonic, 3652 LVal.isVolatile(), /*isInit=*/false); 3653 } 3654 } 3655 3656 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3657 QualType RValTy, SourceLocation Loc) { 3658 switch (getEvaluationKind(LVal.getType())) { 3659 case TEK_Scalar: 3660 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3661 *this, RVal, RValTy, LVal.getType(), Loc)), 3662 LVal); 3663 break; 3664 case TEK_Complex: 3665 EmitStoreOfComplex( 3666 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3667 /*isInit=*/false); 3668 break; 3669 case TEK_Aggregate: 3670 llvm_unreachable("Must be a scalar or complex."); 3671 } 3672 } 3673 3674 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3675 const Expr *X, const Expr *V, 3676 SourceLocation Loc) { 3677 // v = x; 3678 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3679 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3680 LValue XLValue = CGF.EmitLValue(X); 3681 LValue VLValue = CGF.EmitLValue(V); 3682 RValue Res = XLValue.isGlobalReg() 3683 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3684 : CGF.EmitAtomicLoad( 3685 XLValue, Loc, 3686 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3687 : llvm::AtomicOrdering::Monotonic, 3688 XLValue.isVolatile()); 3689 // OpenMP, 2.12.6, atomic Construct 3690 // Any atomic construct with a seq_cst clause forces the atomically 3691 // performed operation to include an implicit flush operation without a 3692 // list. 3693 if (IsSeqCst) 3694 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3695 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3696 } 3697 3698 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3699 const Expr *X, const Expr *E, 3700 SourceLocation Loc) { 3701 // x = expr; 3702 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3703 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3704 // OpenMP, 2.12.6, atomic Construct 3705 // Any atomic construct with a seq_cst clause forces the atomically 3706 // performed operation to include an implicit flush operation without a 3707 // list. 3708 if (IsSeqCst) 3709 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3710 } 3711 3712 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3713 RValue Update, 3714 BinaryOperatorKind BO, 3715 llvm::AtomicOrdering AO, 3716 bool IsXLHSInRHSPart) { 3717 ASTContext &Context = CGF.getContext(); 3718 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3719 // expression is simple and atomic is allowed for the given type for the 3720 // target platform. 3721 if (BO == BO_Comma || !Update.isScalar() || 3722 !Update.getScalarVal()->getType()->isIntegerTy() || 3723 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3724 (Update.getScalarVal()->getType() != 3725 X.getAddress().getElementType())) || 3726 !X.getAddress().getElementType()->isIntegerTy() || 3727 !Context.getTargetInfo().hasBuiltinAtomic( 3728 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3729 return std::make_pair(false, RValue::get(nullptr)); 3730 3731 llvm::AtomicRMWInst::BinOp RMWOp; 3732 switch (BO) { 3733 case BO_Add: 3734 RMWOp = llvm::AtomicRMWInst::Add; 3735 break; 3736 case BO_Sub: 3737 if (!IsXLHSInRHSPart) 3738 return std::make_pair(false, RValue::get(nullptr)); 3739 RMWOp = llvm::AtomicRMWInst::Sub; 3740 break; 3741 case BO_And: 3742 RMWOp = llvm::AtomicRMWInst::And; 3743 break; 3744 case BO_Or: 3745 RMWOp = llvm::AtomicRMWInst::Or; 3746 break; 3747 case BO_Xor: 3748 RMWOp = llvm::AtomicRMWInst::Xor; 3749 break; 3750 case BO_LT: 3751 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3752 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3753 : llvm::AtomicRMWInst::Max) 3754 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3755 : llvm::AtomicRMWInst::UMax); 3756 break; 3757 case BO_GT: 3758 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3759 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3760 : llvm::AtomicRMWInst::Min) 3761 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3762 : llvm::AtomicRMWInst::UMin); 3763 break; 3764 case BO_Assign: 3765 RMWOp = llvm::AtomicRMWInst::Xchg; 3766 break; 3767 case BO_Mul: 3768 case BO_Div: 3769 case BO_Rem: 3770 case BO_Shl: 3771 case BO_Shr: 3772 case BO_LAnd: 3773 case BO_LOr: 3774 return std::make_pair(false, RValue::get(nullptr)); 3775 case BO_PtrMemD: 3776 case BO_PtrMemI: 3777 case BO_LE: 3778 case BO_GE: 3779 case BO_EQ: 3780 case BO_NE: 3781 case BO_Cmp: 3782 case BO_AddAssign: 3783 case BO_SubAssign: 3784 case BO_AndAssign: 3785 case BO_OrAssign: 3786 case BO_XorAssign: 3787 case BO_MulAssign: 3788 case BO_DivAssign: 3789 case BO_RemAssign: 3790 case BO_ShlAssign: 3791 case BO_ShrAssign: 3792 case BO_Comma: 3793 llvm_unreachable("Unsupported atomic update operation"); 3794 } 3795 llvm::Value *UpdateVal = Update.getScalarVal(); 3796 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3797 UpdateVal = CGF.Builder.CreateIntCast( 3798 IC, X.getAddress().getElementType(), 3799 X.getType()->hasSignedIntegerRepresentation()); 3800 } 3801 llvm::Value *Res = 3802 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3803 return std::make_pair(true, RValue::get(Res)); 3804 } 3805 3806 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3807 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3808 llvm::AtomicOrdering AO, SourceLocation Loc, 3809 const llvm::function_ref<RValue(RValue)> CommonGen) { 3810 // Update expressions are allowed to have the following forms: 3811 // x binop= expr; -> xrval + expr; 3812 // x++, ++x -> xrval + 1; 3813 // x--, --x -> xrval - 1; 3814 // x = x binop expr; -> xrval binop expr 3815 // x = expr Op x; - > expr binop xrval; 3816 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3817 if (!Res.first) { 3818 if (X.isGlobalReg()) { 3819 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3820 // 'xrval'. 3821 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3822 } else { 3823 // Perform compare-and-swap procedure. 3824 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3825 } 3826 } 3827 return Res; 3828 } 3829 3830 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3831 const Expr *X, const Expr *E, 3832 const Expr *UE, bool IsXLHSInRHSPart, 3833 SourceLocation Loc) { 3834 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3835 "Update expr in 'atomic update' must be a binary operator."); 3836 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3837 // Update expressions are allowed to have the following forms: 3838 // x binop= expr; -> xrval + expr; 3839 // x++, ++x -> xrval + 1; 3840 // x--, --x -> xrval - 1; 3841 // x = x binop expr; -> xrval binop expr 3842 // x = expr Op x; - > expr binop xrval; 3843 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3844 LValue XLValue = CGF.EmitLValue(X); 3845 RValue ExprRValue = CGF.EmitAnyExpr(E); 3846 llvm::AtomicOrdering AO = IsSeqCst 3847 ? llvm::AtomicOrdering::SequentiallyConsistent 3848 : llvm::AtomicOrdering::Monotonic; 3849 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3850 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3851 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3852 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3853 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3854 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3855 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3856 return CGF.EmitAnyExpr(UE); 3857 }; 3858 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3859 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3860 // OpenMP, 2.12.6, atomic Construct 3861 // Any atomic construct with a seq_cst clause forces the atomically 3862 // performed operation to include an implicit flush operation without a 3863 // list. 3864 if (IsSeqCst) 3865 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3866 } 3867 3868 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3869 QualType SourceType, QualType ResType, 3870 SourceLocation Loc) { 3871 switch (CGF.getEvaluationKind(ResType)) { 3872 case TEK_Scalar: 3873 return RValue::get( 3874 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3875 case TEK_Complex: { 3876 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3877 return RValue::getComplex(Res.first, Res.second); 3878 } 3879 case TEK_Aggregate: 3880 break; 3881 } 3882 llvm_unreachable("Must be a scalar or complex."); 3883 } 3884 3885 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3886 bool IsPostfixUpdate, const Expr *V, 3887 const Expr *X, const Expr *E, 3888 const Expr *UE, bool IsXLHSInRHSPart, 3889 SourceLocation Loc) { 3890 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3891 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3892 RValue NewVVal; 3893 LValue VLValue = CGF.EmitLValue(V); 3894 LValue XLValue = CGF.EmitLValue(X); 3895 RValue ExprRValue = CGF.EmitAnyExpr(E); 3896 llvm::AtomicOrdering AO = IsSeqCst 3897 ? llvm::AtomicOrdering::SequentiallyConsistent 3898 : llvm::AtomicOrdering::Monotonic; 3899 QualType NewVValType; 3900 if (UE) { 3901 // 'x' is updated with some additional value. 3902 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3903 "Update expr in 'atomic capture' must be a binary operator."); 3904 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3905 // Update expressions are allowed to have the following forms: 3906 // x binop= expr; -> xrval + expr; 3907 // x++, ++x -> xrval + 1; 3908 // x--, --x -> xrval - 1; 3909 // x = x binop expr; -> xrval binop expr 3910 // x = expr Op x; - > expr binop xrval; 3911 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3912 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3913 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3914 NewVValType = XRValExpr->getType(); 3915 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3916 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3917 IsPostfixUpdate](RValue XRValue) { 3918 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3919 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3920 RValue Res = CGF.EmitAnyExpr(UE); 3921 NewVVal = IsPostfixUpdate ? XRValue : Res; 3922 return Res; 3923 }; 3924 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3925 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3926 if (Res.first) { 3927 // 'atomicrmw' instruction was generated. 3928 if (IsPostfixUpdate) { 3929 // Use old value from 'atomicrmw'. 3930 NewVVal = Res.second; 3931 } else { 3932 // 'atomicrmw' does not provide new value, so evaluate it using old 3933 // value of 'x'. 3934 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3935 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3936 NewVVal = CGF.EmitAnyExpr(UE); 3937 } 3938 } 3939 } else { 3940 // 'x' is simply rewritten with some 'expr'. 3941 NewVValType = X->getType().getNonReferenceType(); 3942 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3943 X->getType().getNonReferenceType(), Loc); 3944 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 3945 NewVVal = XRValue; 3946 return ExprRValue; 3947 }; 3948 // Try to perform atomicrmw xchg, otherwise simple exchange. 3949 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3950 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3951 Loc, Gen); 3952 if (Res.first) { 3953 // 'atomicrmw' instruction was generated. 3954 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3955 } 3956 } 3957 // Emit post-update store to 'v' of old/new 'x' value. 3958 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3959 // OpenMP, 2.12.6, atomic Construct 3960 // Any atomic construct with a seq_cst clause forces the atomically 3961 // performed operation to include an implicit flush operation without a 3962 // list. 3963 if (IsSeqCst) 3964 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3965 } 3966 3967 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3968 bool IsSeqCst, bool IsPostfixUpdate, 3969 const Expr *X, const Expr *V, const Expr *E, 3970 const Expr *UE, bool IsXLHSInRHSPart, 3971 SourceLocation Loc) { 3972 switch (Kind) { 3973 case OMPC_read: 3974 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3975 break; 3976 case OMPC_write: 3977 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3978 break; 3979 case OMPC_unknown: 3980 case OMPC_update: 3981 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3982 break; 3983 case OMPC_capture: 3984 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3985 IsXLHSInRHSPart, Loc); 3986 break; 3987 case OMPC_if: 3988 case OMPC_final: 3989 case OMPC_num_threads: 3990 case OMPC_private: 3991 case OMPC_firstprivate: 3992 case OMPC_lastprivate: 3993 case OMPC_reduction: 3994 case OMPC_task_reduction: 3995 case OMPC_in_reduction: 3996 case OMPC_safelen: 3997 case OMPC_simdlen: 3998 case OMPC_allocator: 3999 case OMPC_allocate: 4000 case OMPC_collapse: 4001 case OMPC_default: 4002 case OMPC_seq_cst: 4003 case OMPC_shared: 4004 case OMPC_linear: 4005 case OMPC_aligned: 4006 case OMPC_copyin: 4007 case OMPC_copyprivate: 4008 case OMPC_flush: 4009 case OMPC_proc_bind: 4010 case OMPC_schedule: 4011 case OMPC_ordered: 4012 case OMPC_nowait: 4013 case OMPC_untied: 4014 case OMPC_threadprivate: 4015 case OMPC_depend: 4016 case OMPC_mergeable: 4017 case OMPC_device: 4018 case OMPC_threads: 4019 case OMPC_simd: 4020 case OMPC_map: 4021 case OMPC_num_teams: 4022 case OMPC_thread_limit: 4023 case OMPC_priority: 4024 case OMPC_grainsize: 4025 case OMPC_nogroup: 4026 case OMPC_num_tasks: 4027 case OMPC_hint: 4028 case OMPC_dist_schedule: 4029 case OMPC_defaultmap: 4030 case OMPC_uniform: 4031 case OMPC_to: 4032 case OMPC_from: 4033 case OMPC_use_device_ptr: 4034 case OMPC_is_device_ptr: 4035 case OMPC_unified_address: 4036 case OMPC_unified_shared_memory: 4037 case OMPC_reverse_offload: 4038 case OMPC_dynamic_allocators: 4039 case OMPC_atomic_default_mem_order: 4040 case OMPC_device_type: 4041 case OMPC_match: 4042 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 4043 } 4044 } 4045 4046 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4047 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4048 OpenMPClauseKind Kind = OMPC_unknown; 4049 for (const OMPClause *C : S.clauses()) { 4050 // Find first clause (skip seq_cst clause, if it is first). 4051 if (C->getClauseKind() != OMPC_seq_cst) { 4052 Kind = C->getClauseKind(); 4053 break; 4054 } 4055 } 4056 4057 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4058 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4059 enterFullExpression(FE); 4060 // Processing for statements under 'atomic capture'. 4061 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4062 for (const Stmt *C : Compound->body()) { 4063 if (const auto *FE = dyn_cast<FullExpr>(C)) 4064 enterFullExpression(FE); 4065 } 4066 } 4067 4068 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4069 PrePostActionTy &) { 4070 CGF.EmitStopPoint(CS); 4071 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4072 S.getV(), S.getExpr(), S.getUpdateExpr(), 4073 S.isXLHSInRHSPart(), S.getBeginLoc()); 4074 }; 4075 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4076 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4077 } 4078 4079 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4080 const OMPExecutableDirective &S, 4081 const RegionCodeGenTy &CodeGen) { 4082 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4083 CodeGenModule &CGM = CGF.CGM; 4084 4085 // On device emit this construct as inlined code. 4086 if (CGM.getLangOpts().OpenMPIsDevice) { 4087 OMPLexicalScope Scope(CGF, S, OMPD_target); 4088 CGM.getOpenMPRuntime().emitInlinedDirective( 4089 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4090 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4091 }); 4092 return; 4093 } 4094 4095 llvm::Function *Fn = nullptr; 4096 llvm::Constant *FnID = nullptr; 4097 4098 const Expr *IfCond = nullptr; 4099 // Check for the at most one if clause associated with the target region. 4100 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4101 if (C->getNameModifier() == OMPD_unknown || 4102 C->getNameModifier() == OMPD_target) { 4103 IfCond = C->getCondition(); 4104 break; 4105 } 4106 } 4107 4108 // Check if we have any device clause associated with the directive. 4109 const Expr *Device = nullptr; 4110 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4111 Device = C->getDevice(); 4112 4113 // Check if we have an if clause whose conditional always evaluates to false 4114 // or if we do not have any targets specified. If so the target region is not 4115 // an offload entry point. 4116 bool IsOffloadEntry = true; 4117 if (IfCond) { 4118 bool Val; 4119 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4120 IsOffloadEntry = false; 4121 } 4122 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4123 IsOffloadEntry = false; 4124 4125 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4126 StringRef ParentName; 4127 // In case we have Ctors/Dtors we use the complete type variant to produce 4128 // the mangling of the device outlined kernel. 4129 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4130 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4131 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4132 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4133 else 4134 ParentName = 4135 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4136 4137 // Emit target region as a standalone region. 4138 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4139 IsOffloadEntry, CodeGen); 4140 OMPLexicalScope Scope(CGF, S, OMPD_task); 4141 auto &&SizeEmitter = 4142 [IsOffloadEntry](CodeGenFunction &CGF, 4143 const OMPLoopDirective &D) -> llvm::Value * { 4144 if (IsOffloadEntry) { 4145 OMPLoopScope(CGF, D); 4146 // Emit calculation of the iterations count. 4147 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4148 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4149 /*isSigned=*/false); 4150 return NumIterations; 4151 } 4152 return nullptr; 4153 }; 4154 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 4155 SizeEmitter); 4156 } 4157 4158 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4159 PrePostActionTy &Action) { 4160 Action.Enter(CGF); 4161 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4162 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4163 CGF.EmitOMPPrivateClause(S, PrivateScope); 4164 (void)PrivateScope.Privatize(); 4165 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4166 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4167 4168 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4169 } 4170 4171 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4172 StringRef ParentName, 4173 const OMPTargetDirective &S) { 4174 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4175 emitTargetRegion(CGF, S, Action); 4176 }; 4177 llvm::Function *Fn; 4178 llvm::Constant *Addr; 4179 // Emit target region as a standalone region. 4180 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4181 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4182 assert(Fn && Addr && "Target device function emission failed."); 4183 } 4184 4185 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4186 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4187 emitTargetRegion(CGF, S, Action); 4188 }; 4189 emitCommonOMPTargetDirective(*this, S, CodeGen); 4190 } 4191 4192 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4193 const OMPExecutableDirective &S, 4194 OpenMPDirectiveKind InnermostKind, 4195 const RegionCodeGenTy &CodeGen) { 4196 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4197 llvm::Function *OutlinedFn = 4198 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4199 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4200 4201 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4202 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4203 if (NT || TL) { 4204 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4205 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4206 4207 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4208 S.getBeginLoc()); 4209 } 4210 4211 OMPTeamsScope Scope(CGF, S); 4212 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4213 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4214 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4215 CapturedVars); 4216 } 4217 4218 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4219 // Emit teams region as a standalone region. 4220 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4221 Action.Enter(CGF); 4222 OMPPrivateScope PrivateScope(CGF); 4223 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4224 CGF.EmitOMPPrivateClause(S, PrivateScope); 4225 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4226 (void)PrivateScope.Privatize(); 4227 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4228 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4229 }; 4230 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4231 emitPostUpdateForReductionClause(*this, S, 4232 [](CodeGenFunction &) { return nullptr; }); 4233 } 4234 4235 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4236 const OMPTargetTeamsDirective &S) { 4237 auto *CS = S.getCapturedStmt(OMPD_teams); 4238 Action.Enter(CGF); 4239 // Emit teams region as a standalone region. 4240 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4241 Action.Enter(CGF); 4242 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4243 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4244 CGF.EmitOMPPrivateClause(S, PrivateScope); 4245 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4246 (void)PrivateScope.Privatize(); 4247 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4248 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4249 CGF.EmitStmt(CS->getCapturedStmt()); 4250 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4251 }; 4252 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4253 emitPostUpdateForReductionClause(CGF, S, 4254 [](CodeGenFunction &) { return nullptr; }); 4255 } 4256 4257 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4258 CodeGenModule &CGM, StringRef ParentName, 4259 const OMPTargetTeamsDirective &S) { 4260 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4261 emitTargetTeamsRegion(CGF, Action, S); 4262 }; 4263 llvm::Function *Fn; 4264 llvm::Constant *Addr; 4265 // Emit target region as a standalone region. 4266 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4267 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4268 assert(Fn && Addr && "Target device function emission failed."); 4269 } 4270 4271 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4272 const OMPTargetTeamsDirective &S) { 4273 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4274 emitTargetTeamsRegion(CGF, Action, S); 4275 }; 4276 emitCommonOMPTargetDirective(*this, S, CodeGen); 4277 } 4278 4279 static void 4280 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4281 const OMPTargetTeamsDistributeDirective &S) { 4282 Action.Enter(CGF); 4283 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4284 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4285 }; 4286 4287 // Emit teams region as a standalone region. 4288 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4289 PrePostActionTy &Action) { 4290 Action.Enter(CGF); 4291 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4292 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4293 (void)PrivateScope.Privatize(); 4294 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4295 CodeGenDistribute); 4296 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4297 }; 4298 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4299 emitPostUpdateForReductionClause(CGF, S, 4300 [](CodeGenFunction &) { return nullptr; }); 4301 } 4302 4303 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4304 CodeGenModule &CGM, StringRef ParentName, 4305 const OMPTargetTeamsDistributeDirective &S) { 4306 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4307 emitTargetTeamsDistributeRegion(CGF, Action, S); 4308 }; 4309 llvm::Function *Fn; 4310 llvm::Constant *Addr; 4311 // Emit target region as a standalone region. 4312 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4313 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4314 assert(Fn && Addr && "Target device function emission failed."); 4315 } 4316 4317 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4318 const OMPTargetTeamsDistributeDirective &S) { 4319 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4320 emitTargetTeamsDistributeRegion(CGF, Action, S); 4321 }; 4322 emitCommonOMPTargetDirective(*this, S, CodeGen); 4323 } 4324 4325 static void emitTargetTeamsDistributeSimdRegion( 4326 CodeGenFunction &CGF, PrePostActionTy &Action, 4327 const OMPTargetTeamsDistributeSimdDirective &S) { 4328 Action.Enter(CGF); 4329 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4330 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4331 }; 4332 4333 // Emit teams region as a standalone region. 4334 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4335 PrePostActionTy &Action) { 4336 Action.Enter(CGF); 4337 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4338 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4339 (void)PrivateScope.Privatize(); 4340 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4341 CodeGenDistribute); 4342 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4343 }; 4344 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4345 emitPostUpdateForReductionClause(CGF, S, 4346 [](CodeGenFunction &) { return nullptr; }); 4347 } 4348 4349 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4350 CodeGenModule &CGM, StringRef ParentName, 4351 const OMPTargetTeamsDistributeSimdDirective &S) { 4352 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4353 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4354 }; 4355 llvm::Function *Fn; 4356 llvm::Constant *Addr; 4357 // Emit target region as a standalone region. 4358 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4359 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4360 assert(Fn && Addr && "Target device function emission failed."); 4361 } 4362 4363 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4364 const OMPTargetTeamsDistributeSimdDirective &S) { 4365 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4366 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4367 }; 4368 emitCommonOMPTargetDirective(*this, S, CodeGen); 4369 } 4370 4371 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4372 const OMPTeamsDistributeDirective &S) { 4373 4374 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4375 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4376 }; 4377 4378 // Emit teams region as a standalone region. 4379 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4380 PrePostActionTy &Action) { 4381 Action.Enter(CGF); 4382 OMPPrivateScope PrivateScope(CGF); 4383 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4384 (void)PrivateScope.Privatize(); 4385 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4386 CodeGenDistribute); 4387 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4388 }; 4389 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4390 emitPostUpdateForReductionClause(*this, S, 4391 [](CodeGenFunction &) { return nullptr; }); 4392 } 4393 4394 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4395 const OMPTeamsDistributeSimdDirective &S) { 4396 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4397 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4398 }; 4399 4400 // Emit teams region as a standalone region. 4401 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4402 PrePostActionTy &Action) { 4403 Action.Enter(CGF); 4404 OMPPrivateScope PrivateScope(CGF); 4405 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4406 (void)PrivateScope.Privatize(); 4407 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4408 CodeGenDistribute); 4409 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4410 }; 4411 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4412 emitPostUpdateForReductionClause(*this, S, 4413 [](CodeGenFunction &) { return nullptr; }); 4414 } 4415 4416 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4417 const OMPTeamsDistributeParallelForDirective &S) { 4418 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4419 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4420 S.getDistInc()); 4421 }; 4422 4423 // Emit teams region as a standalone region. 4424 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4425 PrePostActionTy &Action) { 4426 Action.Enter(CGF); 4427 OMPPrivateScope PrivateScope(CGF); 4428 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4429 (void)PrivateScope.Privatize(); 4430 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4431 CodeGenDistribute); 4432 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4433 }; 4434 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4435 emitPostUpdateForReductionClause(*this, S, 4436 [](CodeGenFunction &) { return nullptr; }); 4437 } 4438 4439 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4440 const OMPTeamsDistributeParallelForSimdDirective &S) { 4441 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4442 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4443 S.getDistInc()); 4444 }; 4445 4446 // Emit teams region as a standalone region. 4447 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4448 PrePostActionTy &Action) { 4449 Action.Enter(CGF); 4450 OMPPrivateScope PrivateScope(CGF); 4451 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4452 (void)PrivateScope.Privatize(); 4453 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4454 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4455 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4456 }; 4457 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4458 emitPostUpdateForReductionClause(*this, S, 4459 [](CodeGenFunction &) { return nullptr; }); 4460 } 4461 4462 static void emitTargetTeamsDistributeParallelForRegion( 4463 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4464 PrePostActionTy &Action) { 4465 Action.Enter(CGF); 4466 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4467 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4468 S.getDistInc()); 4469 }; 4470 4471 // Emit teams region as a standalone region. 4472 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4473 PrePostActionTy &Action) { 4474 Action.Enter(CGF); 4475 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4476 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4477 (void)PrivateScope.Privatize(); 4478 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4479 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4480 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4481 }; 4482 4483 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4484 CodeGenTeams); 4485 emitPostUpdateForReductionClause(CGF, S, 4486 [](CodeGenFunction &) { return nullptr; }); 4487 } 4488 4489 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4490 CodeGenModule &CGM, StringRef ParentName, 4491 const OMPTargetTeamsDistributeParallelForDirective &S) { 4492 // Emit SPMD target teams distribute parallel for region as a standalone 4493 // region. 4494 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4495 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4496 }; 4497 llvm::Function *Fn; 4498 llvm::Constant *Addr; 4499 // Emit target region as a standalone region. 4500 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4501 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4502 assert(Fn && Addr && "Target device function emission failed."); 4503 } 4504 4505 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4506 const OMPTargetTeamsDistributeParallelForDirective &S) { 4507 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4508 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4509 }; 4510 emitCommonOMPTargetDirective(*this, S, CodeGen); 4511 } 4512 4513 static void emitTargetTeamsDistributeParallelForSimdRegion( 4514 CodeGenFunction &CGF, 4515 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4516 PrePostActionTy &Action) { 4517 Action.Enter(CGF); 4518 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4519 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4520 S.getDistInc()); 4521 }; 4522 4523 // Emit teams region as a standalone region. 4524 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4525 PrePostActionTy &Action) { 4526 Action.Enter(CGF); 4527 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4528 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4529 (void)PrivateScope.Privatize(); 4530 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4531 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4532 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4533 }; 4534 4535 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4536 CodeGenTeams); 4537 emitPostUpdateForReductionClause(CGF, S, 4538 [](CodeGenFunction &) { return nullptr; }); 4539 } 4540 4541 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4542 CodeGenModule &CGM, StringRef ParentName, 4543 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4544 // Emit SPMD target teams distribute parallel for simd region as a standalone 4545 // region. 4546 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4547 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4548 }; 4549 llvm::Function *Fn; 4550 llvm::Constant *Addr; 4551 // Emit target region as a standalone region. 4552 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4553 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4554 assert(Fn && Addr && "Target device function emission failed."); 4555 } 4556 4557 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4558 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4559 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4560 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4561 }; 4562 emitCommonOMPTargetDirective(*this, S, CodeGen); 4563 } 4564 4565 void CodeGenFunction::EmitOMPCancellationPointDirective( 4566 const OMPCancellationPointDirective &S) { 4567 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4568 S.getCancelRegion()); 4569 } 4570 4571 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4572 const Expr *IfCond = nullptr; 4573 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4574 if (C->getNameModifier() == OMPD_unknown || 4575 C->getNameModifier() == OMPD_cancel) { 4576 IfCond = C->getCondition(); 4577 break; 4578 } 4579 } 4580 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4581 S.getCancelRegion()); 4582 } 4583 4584 CodeGenFunction::JumpDest 4585 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4586 if (Kind == OMPD_parallel || Kind == OMPD_task || 4587 Kind == OMPD_target_parallel) 4588 return ReturnBlock; 4589 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4590 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4591 Kind == OMPD_distribute_parallel_for || 4592 Kind == OMPD_target_parallel_for || 4593 Kind == OMPD_teams_distribute_parallel_for || 4594 Kind == OMPD_target_teams_distribute_parallel_for); 4595 return OMPCancelStack.getExitBlock(); 4596 } 4597 4598 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4599 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4600 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4601 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4602 auto OrigVarIt = C.varlist_begin(); 4603 auto InitIt = C.inits().begin(); 4604 for (const Expr *PvtVarIt : C.private_copies()) { 4605 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4606 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4607 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4608 4609 // In order to identify the right initializer we need to match the 4610 // declaration used by the mapping logic. In some cases we may get 4611 // OMPCapturedExprDecl that refers to the original declaration. 4612 const ValueDecl *MatchingVD = OrigVD; 4613 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4614 // OMPCapturedExprDecl are used to privative fields of the current 4615 // structure. 4616 const auto *ME = cast<MemberExpr>(OED->getInit()); 4617 assert(isa<CXXThisExpr>(ME->getBase()) && 4618 "Base should be the current struct!"); 4619 MatchingVD = ME->getMemberDecl(); 4620 } 4621 4622 // If we don't have information about the current list item, move on to 4623 // the next one. 4624 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4625 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4626 continue; 4627 4628 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4629 InitAddrIt, InitVD, 4630 PvtVD]() { 4631 // Initialize the temporary initialization variable with the address we 4632 // get from the runtime library. We have to cast the source address 4633 // because it is always a void *. References are materialized in the 4634 // privatization scope, so the initialization here disregards the fact 4635 // the original variable is a reference. 4636 QualType AddrQTy = 4637 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4638 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4639 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4640 setAddrOfLocalVar(InitVD, InitAddr); 4641 4642 // Emit private declaration, it will be initialized by the value we 4643 // declaration we just added to the local declarations map. 4644 EmitDecl(*PvtVD); 4645 4646 // The initialization variables reached its purpose in the emission 4647 // of the previous declaration, so we don't need it anymore. 4648 LocalDeclMap.erase(InitVD); 4649 4650 // Return the address of the private variable. 4651 return GetAddrOfLocalVar(PvtVD); 4652 }); 4653 assert(IsRegistered && "firstprivate var already registered as private"); 4654 // Silence the warning about unused variable. 4655 (void)IsRegistered; 4656 4657 ++OrigVarIt; 4658 ++InitIt; 4659 } 4660 } 4661 4662 // Generate the instructions for '#pragma omp target data' directive. 4663 void CodeGenFunction::EmitOMPTargetDataDirective( 4664 const OMPTargetDataDirective &S) { 4665 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4666 4667 // Create a pre/post action to signal the privatization of the device pointer. 4668 // This action can be replaced by the OpenMP runtime code generation to 4669 // deactivate privatization. 4670 bool PrivatizeDevicePointers = false; 4671 class DevicePointerPrivActionTy : public PrePostActionTy { 4672 bool &PrivatizeDevicePointers; 4673 4674 public: 4675 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4676 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4677 void Enter(CodeGenFunction &CGF) override { 4678 PrivatizeDevicePointers = true; 4679 } 4680 }; 4681 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4682 4683 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4684 CodeGenFunction &CGF, PrePostActionTy &Action) { 4685 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4686 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4687 }; 4688 4689 // Codegen that selects whether to generate the privatization code or not. 4690 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4691 &InnermostCodeGen](CodeGenFunction &CGF, 4692 PrePostActionTy &Action) { 4693 RegionCodeGenTy RCG(InnermostCodeGen); 4694 PrivatizeDevicePointers = false; 4695 4696 // Call the pre-action to change the status of PrivatizeDevicePointers if 4697 // needed. 4698 Action.Enter(CGF); 4699 4700 if (PrivatizeDevicePointers) { 4701 OMPPrivateScope PrivateScope(CGF); 4702 // Emit all instances of the use_device_ptr clause. 4703 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4704 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4705 Info.CaptureDeviceAddrMap); 4706 (void)PrivateScope.Privatize(); 4707 RCG(CGF); 4708 } else { 4709 RCG(CGF); 4710 } 4711 }; 4712 4713 // Forward the provided action to the privatization codegen. 4714 RegionCodeGenTy PrivRCG(PrivCodeGen); 4715 PrivRCG.setAction(Action); 4716 4717 // Notwithstanding the body of the region is emitted as inlined directive, 4718 // we don't use an inline scope as changes in the references inside the 4719 // region are expected to be visible outside, so we do not privative them. 4720 OMPLexicalScope Scope(CGF, S); 4721 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4722 PrivRCG); 4723 }; 4724 4725 RegionCodeGenTy RCG(CodeGen); 4726 4727 // If we don't have target devices, don't bother emitting the data mapping 4728 // code. 4729 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4730 RCG(*this); 4731 return; 4732 } 4733 4734 // Check if we have any if clause associated with the directive. 4735 const Expr *IfCond = nullptr; 4736 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4737 IfCond = C->getCondition(); 4738 4739 // Check if we have any device clause associated with the directive. 4740 const Expr *Device = nullptr; 4741 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4742 Device = C->getDevice(); 4743 4744 // Set the action to signal privatization of device pointers. 4745 RCG.setAction(PrivAction); 4746 4747 // Emit region code. 4748 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4749 Info); 4750 } 4751 4752 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4753 const OMPTargetEnterDataDirective &S) { 4754 // If we don't have target devices, don't bother emitting the data mapping 4755 // code. 4756 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4757 return; 4758 4759 // Check if we have any if clause associated with the directive. 4760 const Expr *IfCond = nullptr; 4761 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4762 IfCond = C->getCondition(); 4763 4764 // Check if we have any device clause associated with the directive. 4765 const Expr *Device = nullptr; 4766 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4767 Device = C->getDevice(); 4768 4769 OMPLexicalScope Scope(*this, S, OMPD_task); 4770 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4771 } 4772 4773 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4774 const OMPTargetExitDataDirective &S) { 4775 // If we don't have target devices, don't bother emitting the data mapping 4776 // code. 4777 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4778 return; 4779 4780 // Check if we have any if clause associated with the directive. 4781 const Expr *IfCond = nullptr; 4782 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4783 IfCond = C->getCondition(); 4784 4785 // Check if we have any device clause associated with the directive. 4786 const Expr *Device = nullptr; 4787 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4788 Device = C->getDevice(); 4789 4790 OMPLexicalScope Scope(*this, S, OMPD_task); 4791 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4792 } 4793 4794 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4795 const OMPTargetParallelDirective &S, 4796 PrePostActionTy &Action) { 4797 // Get the captured statement associated with the 'parallel' region. 4798 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4799 Action.Enter(CGF); 4800 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4801 Action.Enter(CGF); 4802 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4803 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4804 CGF.EmitOMPPrivateClause(S, PrivateScope); 4805 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4806 (void)PrivateScope.Privatize(); 4807 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4808 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4809 // TODO: Add support for clauses. 4810 CGF.EmitStmt(CS->getCapturedStmt()); 4811 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4812 }; 4813 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4814 emitEmptyBoundParameters); 4815 emitPostUpdateForReductionClause(CGF, S, 4816 [](CodeGenFunction &) { return nullptr; }); 4817 } 4818 4819 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4820 CodeGenModule &CGM, StringRef ParentName, 4821 const OMPTargetParallelDirective &S) { 4822 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4823 emitTargetParallelRegion(CGF, S, Action); 4824 }; 4825 llvm::Function *Fn; 4826 llvm::Constant *Addr; 4827 // Emit target region as a standalone region. 4828 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4829 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4830 assert(Fn && Addr && "Target device function emission failed."); 4831 } 4832 4833 void CodeGenFunction::EmitOMPTargetParallelDirective( 4834 const OMPTargetParallelDirective &S) { 4835 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4836 emitTargetParallelRegion(CGF, S, Action); 4837 }; 4838 emitCommonOMPTargetDirective(*this, S, CodeGen); 4839 } 4840 4841 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4842 const OMPTargetParallelForDirective &S, 4843 PrePostActionTy &Action) { 4844 Action.Enter(CGF); 4845 // Emit directive as a combined directive that consists of two implicit 4846 // directives: 'parallel' with 'for' directive. 4847 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4848 Action.Enter(CGF); 4849 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4850 CGF, OMPD_target_parallel_for, S.hasCancel()); 4851 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4852 emitDispatchForLoopBounds); 4853 }; 4854 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4855 emitEmptyBoundParameters); 4856 } 4857 4858 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4859 CodeGenModule &CGM, StringRef ParentName, 4860 const OMPTargetParallelForDirective &S) { 4861 // Emit SPMD target parallel for region as a standalone region. 4862 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4863 emitTargetParallelForRegion(CGF, S, Action); 4864 }; 4865 llvm::Function *Fn; 4866 llvm::Constant *Addr; 4867 // Emit target region as a standalone region. 4868 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4869 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4870 assert(Fn && Addr && "Target device function emission failed."); 4871 } 4872 4873 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4874 const OMPTargetParallelForDirective &S) { 4875 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4876 emitTargetParallelForRegion(CGF, S, Action); 4877 }; 4878 emitCommonOMPTargetDirective(*this, S, CodeGen); 4879 } 4880 4881 static void 4882 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4883 const OMPTargetParallelForSimdDirective &S, 4884 PrePostActionTy &Action) { 4885 Action.Enter(CGF); 4886 // Emit directive as a combined directive that consists of two implicit 4887 // directives: 'parallel' with 'for' directive. 4888 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4889 Action.Enter(CGF); 4890 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4891 emitDispatchForLoopBounds); 4892 }; 4893 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4894 emitEmptyBoundParameters); 4895 } 4896 4897 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4898 CodeGenModule &CGM, StringRef ParentName, 4899 const OMPTargetParallelForSimdDirective &S) { 4900 // Emit SPMD target parallel for region as a standalone region. 4901 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4902 emitTargetParallelForSimdRegion(CGF, S, Action); 4903 }; 4904 llvm::Function *Fn; 4905 llvm::Constant *Addr; 4906 // Emit target region as a standalone region. 4907 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4908 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4909 assert(Fn && Addr && "Target device function emission failed."); 4910 } 4911 4912 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4913 const OMPTargetParallelForSimdDirective &S) { 4914 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4915 emitTargetParallelForSimdRegion(CGF, S, Action); 4916 }; 4917 emitCommonOMPTargetDirective(*this, S, CodeGen); 4918 } 4919 4920 /// Emit a helper variable and return corresponding lvalue. 4921 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4922 const ImplicitParamDecl *PVD, 4923 CodeGenFunction::OMPPrivateScope &Privates) { 4924 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4925 Privates.addPrivate(VDecl, 4926 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 4927 } 4928 4929 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4930 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4931 // Emit outlined function for task construct. 4932 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4933 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4934 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4935 const Expr *IfCond = nullptr; 4936 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4937 if (C->getNameModifier() == OMPD_unknown || 4938 C->getNameModifier() == OMPD_taskloop) { 4939 IfCond = C->getCondition(); 4940 break; 4941 } 4942 } 4943 4944 OMPTaskDataTy Data; 4945 // Check if taskloop must be emitted without taskgroup. 4946 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4947 // TODO: Check if we should emit tied or untied task. 4948 Data.Tied = true; 4949 // Set scheduling for taskloop 4950 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4951 // grainsize clause 4952 Data.Schedule.setInt(/*IntVal=*/false); 4953 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4954 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4955 // num_tasks clause 4956 Data.Schedule.setInt(/*IntVal=*/true); 4957 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4958 } 4959 4960 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4961 // if (PreCond) { 4962 // for (IV in 0..LastIteration) BODY; 4963 // <Final counter/linear vars updates>; 4964 // } 4965 // 4966 4967 // Emit: if (PreCond) - begin. 4968 // If the condition constant folds and can be elided, avoid emitting the 4969 // whole loop. 4970 bool CondConstant; 4971 llvm::BasicBlock *ContBlock = nullptr; 4972 OMPLoopScope PreInitScope(CGF, S); 4973 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4974 if (!CondConstant) 4975 return; 4976 } else { 4977 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4978 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4979 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4980 CGF.getProfileCount(&S)); 4981 CGF.EmitBlock(ThenBlock); 4982 CGF.incrementProfileCounter(&S); 4983 } 4984 4985 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4986 CGF.EmitOMPSimdInit(S); 4987 4988 OMPPrivateScope LoopScope(CGF); 4989 // Emit helper vars inits. 4990 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4991 auto *I = CS->getCapturedDecl()->param_begin(); 4992 auto *LBP = std::next(I, LowerBound); 4993 auto *UBP = std::next(I, UpperBound); 4994 auto *STP = std::next(I, Stride); 4995 auto *LIP = std::next(I, LastIter); 4996 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4997 LoopScope); 4998 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4999 LoopScope); 5000 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 5001 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 5002 LoopScope); 5003 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 5004 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 5005 (void)LoopScope.Privatize(); 5006 // Emit the loop iteration variable. 5007 const Expr *IVExpr = S.getIterationVariable(); 5008 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 5009 CGF.EmitVarDecl(*IVDecl); 5010 CGF.EmitIgnoredExpr(S.getInit()); 5011 5012 // Emit the iterations count variable. 5013 // If it is not a variable, Sema decided to calculate iterations count on 5014 // each iteration (e.g., it is foldable into a constant). 5015 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5016 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5017 // Emit calculation of the iterations count. 5018 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 5019 } 5020 5021 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 5022 S.getInc(), 5023 [&S](CodeGenFunction &CGF) { 5024 CGF.EmitOMPLoopBody(S, JumpDest()); 5025 CGF.EmitStopPoint(&S); 5026 }, 5027 [](CodeGenFunction &) {}); 5028 // Emit: if (PreCond) - end. 5029 if (ContBlock) { 5030 CGF.EmitBranch(ContBlock); 5031 CGF.EmitBlock(ContBlock, true); 5032 } 5033 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5034 if (HasLastprivateClause) { 5035 CGF.EmitOMPLastprivateClauseFinal( 5036 S, isOpenMPSimdDirective(S.getDirectiveKind()), 5037 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 5038 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5039 (*LIP)->getType(), S.getBeginLoc()))); 5040 } 5041 }; 5042 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5043 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5044 const OMPTaskDataTy &Data) { 5045 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 5046 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 5047 OMPLoopScope PreInitScope(CGF, S); 5048 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5049 OutlinedFn, SharedsTy, 5050 CapturedStruct, IfCond, Data); 5051 }; 5052 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5053 CodeGen); 5054 }; 5055 if (Data.Nogroup) { 5056 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5057 } else { 5058 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5059 *this, 5060 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5061 PrePostActionTy &Action) { 5062 Action.Enter(CGF); 5063 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5064 Data); 5065 }, 5066 S.getBeginLoc()); 5067 } 5068 } 5069 5070 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5071 EmitOMPTaskLoopBasedDirective(S); 5072 } 5073 5074 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5075 const OMPTaskLoopSimdDirective &S) { 5076 EmitOMPTaskLoopBasedDirective(S); 5077 } 5078 5079 // Generate the instructions for '#pragma omp target update' directive. 5080 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5081 const OMPTargetUpdateDirective &S) { 5082 // If we don't have target devices, don't bother emitting the data mapping 5083 // code. 5084 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5085 return; 5086 5087 // Check if we have any if clause associated with the directive. 5088 const Expr *IfCond = nullptr; 5089 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5090 IfCond = C->getCondition(); 5091 5092 // Check if we have any device clause associated with the directive. 5093 const Expr *Device = nullptr; 5094 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5095 Device = C->getDevice(); 5096 5097 OMPLexicalScope Scope(*this, S, OMPD_task); 5098 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5099 } 5100 5101 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5102 const OMPExecutableDirective &D) { 5103 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5104 return; 5105 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5106 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5107 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5108 } else { 5109 OMPPrivateScope LoopGlobals(CGF); 5110 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5111 for (const Expr *E : LD->counters()) { 5112 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5113 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5114 LValue GlobLVal = CGF.EmitLValue(E); 5115 LoopGlobals.addPrivate( 5116 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5117 } 5118 if (isa<OMPCapturedExprDecl>(VD)) { 5119 // Emit only those that were not explicitly referenced in clauses. 5120 if (!CGF.LocalDeclMap.count(VD)) 5121 CGF.EmitVarDecl(*VD); 5122 } 5123 } 5124 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5125 if (!C->getNumForLoops()) 5126 continue; 5127 for (unsigned I = LD->getCollapsedNumber(), 5128 E = C->getLoopNumIterations().size(); 5129 I < E; ++I) { 5130 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5131 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5132 // Emit only those that were not explicitly referenced in clauses. 5133 if (!CGF.LocalDeclMap.count(VD)) 5134 CGF.EmitVarDecl(*VD); 5135 } 5136 } 5137 } 5138 } 5139 LoopGlobals.Privatize(); 5140 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5141 } 5142 }; 5143 OMPSimdLexicalScope Scope(*this, D); 5144 CGM.getOpenMPRuntime().emitInlinedDirective( 5145 *this, 5146 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5147 : D.getDirectiveKind(), 5148 CodeGen); 5149 } 5150