1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Stmt.h"
19 #include "clang/AST/StmtOpenMP.h"
20 using namespace clang;
21 using namespace CodeGen;
22 
23 //===----------------------------------------------------------------------===//
24 //                              OpenMP Directive Emission
25 //===----------------------------------------------------------------------===//
26 void CodeGenFunction::EmitOMPAggregateAssign(
27     llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
28     const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen) {
29   // Perform element-by-element initialization.
30   QualType ElementTy;
31   auto SrcBegin = SrcAddr;
32   auto DestBegin = DestAddr;
33   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
34   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestBegin);
35   // Cast from pointer to array type to pointer to single element.
36   SrcBegin = Builder.CreatePointerBitCastOrAddrSpaceCast(SrcBegin,
37                                                          DestBegin->getType());
38   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
39   // The basic structure here is a while-do loop.
40   auto BodyBB = createBasicBlock("omp.arraycpy.body");
41   auto DoneBB = createBasicBlock("omp.arraycpy.done");
42   auto IsEmpty =
43       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
44   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
45 
46   // Enter the loop body, making that address the current address.
47   auto EntryBB = Builder.GetInsertBlock();
48   EmitBlock(BodyBB);
49   auto SrcElementCurrent =
50       Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
51   SrcElementCurrent->addIncoming(SrcBegin, EntryBB);
52   auto DestElementCurrent = Builder.CreatePHI(DestBegin->getType(), 2,
53                                               "omp.arraycpy.destElementPast");
54   DestElementCurrent->addIncoming(DestBegin, EntryBB);
55 
56   // Emit copy.
57   CopyGen(DestElementCurrent, SrcElementCurrent);
58 
59   // Shift the address forward by one element.
60   auto DestElementNext = Builder.CreateConstGEP1_32(
61       DestElementCurrent, /*Idx0=*/1, "omp.arraycpy.dest.element");
62   auto SrcElementNext = Builder.CreateConstGEP1_32(
63       SrcElementCurrent, /*Idx0=*/1, "omp.arraycpy.src.element");
64   // Check whether we've reached the end.
65   auto Done =
66       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
67   Builder.CreateCondBr(Done, DoneBB, BodyBB);
68   DestElementCurrent->addIncoming(DestElementNext, Builder.GetInsertBlock());
69   SrcElementCurrent->addIncoming(SrcElementNext, Builder.GetInsertBlock());
70 
71   // Done.
72   EmitBlock(DoneBB, /*IsFinished=*/true);
73 }
74 
75 void CodeGenFunction::EmitOMPCopy(CodeGenFunction &CGF,
76                                   QualType OriginalType, llvm::Value *DestAddr,
77                                   llvm::Value *SrcAddr, const VarDecl *DestVD,
78                                   const VarDecl *SrcVD, const Expr *Copy) {
79   if (OriginalType->isArrayType()) {
80     auto *BO = dyn_cast<BinaryOperator>(Copy);
81     if (BO && BO->getOpcode() == BO_Assign) {
82       // Perform simple memcpy for simple copying.
83       CGF.EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
84     } else {
85       // For arrays with complex element types perform element by element
86       // copying.
87       CGF.EmitOMPAggregateAssign(
88           DestAddr, SrcAddr, OriginalType,
89           [&CGF, Copy, SrcVD, DestVD](llvm::Value *DestElement,
90                                           llvm::Value *SrcElement) {
91             // Working with the single array element, so have to remap
92             // destination and source variables to corresponding array
93             // elements.
94             CodeGenFunction::OMPPrivateScope Remap(CGF);
95             Remap.addPrivate(DestVD, [DestElement]() -> llvm::Value *{
96               return DestElement;
97             });
98             Remap.addPrivate(
99                 SrcVD, [SrcElement]() -> llvm::Value *{ return SrcElement; });
100             (void)Remap.Privatize();
101             CGF.EmitIgnoredExpr(Copy);
102           });
103     }
104   } else {
105     // Remap pseudo source variable to private copy.
106     CodeGenFunction::OMPPrivateScope Remap(CGF);
107     Remap.addPrivate(SrcVD, [SrcAddr]() -> llvm::Value *{ return SrcAddr; });
108     Remap.addPrivate(DestVD, [DestAddr]() -> llvm::Value *{ return DestAddr; });
109     (void)Remap.Privatize();
110     // Emit copying of the whole variable.
111     CGF.EmitIgnoredExpr(Copy);
112   }
113 }
114 
115 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
116                                                 OMPPrivateScope &PrivateScope) {
117   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
118   for (auto &&I = D.getClausesOfKind(OMPC_firstprivate); I; ++I) {
119     auto *C = cast<OMPFirstprivateClause>(*I);
120     auto IRef = C->varlist_begin();
121     auto InitsRef = C->inits().begin();
122     for (auto IInit : C->private_copies()) {
123       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
124       if (EmittedAsFirstprivate.count(OrigVD) == 0) {
125         EmittedAsFirstprivate.insert(OrigVD);
126         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
127         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
128         bool IsRegistered;
129         DeclRefExpr DRE(
130             const_cast<VarDecl *>(OrigVD),
131             /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
132                 OrigVD) != nullptr,
133             (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
134         auto *OriginalAddr = EmitLValue(&DRE).getAddress();
135         QualType Type = OrigVD->getType();
136         if (Type->isArrayType()) {
137           // Emit VarDecl with copy init for arrays.
138           // Get the address of the original variable captured in current
139           // captured region.
140           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
141             auto Emission = EmitAutoVarAlloca(*VD);
142             auto *Init = VD->getInit();
143             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
144               // Perform simple memcpy.
145               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
146                                   Type);
147             } else {
148               EmitOMPAggregateAssign(
149                   Emission.getAllocatedAddress(), OriginalAddr, Type,
150                   [this, VDInit, Init](llvm::Value *DestElement,
151                                        llvm::Value *SrcElement) {
152                     // Clean up any temporaries needed by the initialization.
153                     RunCleanupsScope InitScope(*this);
154                     // Emit initialization for single element.
155                     LocalDeclMap[VDInit] = SrcElement;
156                     EmitAnyExprToMem(Init, DestElement,
157                                      Init->getType().getQualifiers(),
158                                      /*IsInitializer*/ false);
159                     LocalDeclMap.erase(VDInit);
160                   });
161             }
162             EmitAutoVarCleanups(Emission);
163             return Emission.getAllocatedAddress();
164           });
165         } else {
166           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
167             // Emit private VarDecl with copy init.
168             // Remap temp VDInit variable to the address of the original
169             // variable
170             // (for proper handling of captured global variables).
171             LocalDeclMap[VDInit] = OriginalAddr;
172             EmitDecl(*VD);
173             LocalDeclMap.erase(VDInit);
174             return GetAddrOfLocalVar(VD);
175           });
176         }
177         assert(IsRegistered &&
178                "firstprivate var already registered as private");
179         // Silence the warning about unused variable.
180         (void)IsRegistered;
181       }
182       ++IRef, ++InitsRef;
183     }
184   }
185   return !EmittedAsFirstprivate.empty();
186 }
187 
188 void CodeGenFunction::EmitOMPPrivateClause(
189     const OMPExecutableDirective &D,
190     CodeGenFunction::OMPPrivateScope &PrivateScope) {
191   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
192   for (auto &&I = D.getClausesOfKind(OMPC_private); I; ++I) {
193     auto *C = cast<OMPPrivateClause>(*I);
194     auto IRef = C->varlist_begin();
195     for (auto IInit : C->private_copies()) {
196       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
197       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
198         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
199         bool IsRegistered =
200             PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
201               // Emit private VarDecl with copy init.
202               EmitDecl(*VD);
203               return GetAddrOfLocalVar(VD);
204             });
205         assert(IsRegistered && "private var already registered as private");
206         // Silence the warning about unused variable.
207         (void)IsRegistered;
208       }
209       ++IRef;
210     }
211   }
212 }
213 
214 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
215   // threadprivate_var1 = master_threadprivate_var1;
216   // operator=(threadprivate_var2, master_threadprivate_var2);
217   // ...
218   // __kmpc_barrier(&loc, global_tid);
219   llvm::DenseSet<const VarDecl *> CopiedVars;
220   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
221   for (auto &&I = D.getClausesOfKind(OMPC_copyin); I; ++I) {
222     auto *C = cast<OMPCopyinClause>(*I);
223     auto IRef = C->varlist_begin();
224     auto ISrcRef = C->source_exprs().begin();
225     auto IDestRef = C->destination_exprs().begin();
226     for (auto *AssignOp : C->assignment_ops()) {
227       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
228       QualType Type = VD->getType();
229       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
230 
231         // Get the address of the master variable. If we are emitting code with
232         // TLS support, the address is passed from the master as field in the
233         // captured declaration.
234         llvm::Value *MasterAddr;
235         if (getLangOpts().OpenMPUseTLS &&
236             getContext().getTargetInfo().isTLSSupported()) {
237           assert(CapturedStmtInfo->lookup(VD) &&
238                  "Copyin threadprivates should have been captured!");
239           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
240                           VK_LValue, (*IRef)->getExprLoc());
241           MasterAddr = EmitLValue(&DRE).getAddress();
242         } else {
243           MasterAddr = VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
244                                            : CGM.GetAddrOfGlobal(VD);
245         }
246         // Get the address of the threadprivate variable.
247         auto *PrivateAddr = EmitLValue(*IRef).getAddress();
248         if (CopiedVars.size() == 1) {
249           // At first check if current thread is a master thread. If it is, no
250           // need to copy data.
251           CopyBegin = createBasicBlock("copyin.not.master");
252           CopyEnd = createBasicBlock("copyin.not.master.end");
253           Builder.CreateCondBr(
254               Builder.CreateICmpNE(
255                   Builder.CreatePtrToInt(MasterAddr, CGM.IntPtrTy),
256                   Builder.CreatePtrToInt(PrivateAddr, CGM.IntPtrTy)),
257               CopyBegin, CopyEnd);
258           EmitBlock(CopyBegin);
259         }
260         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
261         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
262         EmitOMPCopy(*this, Type, PrivateAddr, MasterAddr, DestVD, SrcVD,
263                     AssignOp);
264       }
265       ++IRef;
266       ++ISrcRef;
267       ++IDestRef;
268     }
269   }
270   if (CopyEnd) {
271     // Exit out of copying procedure for non-master thread.
272     EmitBlock(CopyEnd, /*IsFinished=*/true);
273     return true;
274   }
275   return false;
276 }
277 
278 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
279     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
280   bool HasAtLeastOneLastprivate = false;
281   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
282   for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
283     HasAtLeastOneLastprivate = true;
284     auto *C = cast<OMPLastprivateClause>(*I);
285     auto IRef = C->varlist_begin();
286     auto IDestRef = C->destination_exprs().begin();
287     for (auto *IInit : C->private_copies()) {
288       // Keep the address of the original variable for future update at the end
289       // of the loop.
290       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
291       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
292         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
293         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> llvm::Value *{
294           DeclRefExpr DRE(
295               const_cast<VarDecl *>(OrigVD),
296               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
297                   OrigVD) != nullptr,
298               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
299           return EmitLValue(&DRE).getAddress();
300         });
301         // Check if the variable is also a firstprivate: in this case IInit is
302         // not generated. Initialization of this variable will happen in codegen
303         // for 'firstprivate' clause.
304         if (IInit) {
305           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
306           bool IsRegistered =
307               PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
308                 // Emit private VarDecl with copy init.
309                 EmitDecl(*VD);
310                 return GetAddrOfLocalVar(VD);
311               });
312           assert(IsRegistered &&
313                  "lastprivate var already registered as private");
314           (void)IsRegistered;
315         }
316       }
317       ++IRef, ++IDestRef;
318     }
319   }
320   return HasAtLeastOneLastprivate;
321 }
322 
323 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
324     const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) {
325   // Emit following code:
326   // if (<IsLastIterCond>) {
327   //   orig_var1 = private_orig_var1;
328   //   ...
329   //   orig_varn = private_orig_varn;
330   // }
331   llvm::BasicBlock *ThenBB = nullptr;
332   llvm::BasicBlock *DoneBB = nullptr;
333   if (IsLastIterCond) {
334     ThenBB = createBasicBlock(".omp.lastprivate.then");
335     DoneBB = createBasicBlock(".omp.lastprivate.done");
336     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
337     EmitBlock(ThenBB);
338   }
339   llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates;
340   const Expr *LastIterVal = nullptr;
341   const Expr *IVExpr = nullptr;
342   const Expr *IncExpr = nullptr;
343   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
344     if (isOpenMPWorksharingDirective(D.getDirectiveKind())) {
345       LastIterVal = cast<VarDecl>(cast<DeclRefExpr>(
346                                       LoopDirective->getUpperBoundVariable())
347                                       ->getDecl())
348                         ->getAnyInitializer();
349       IVExpr = LoopDirective->getIterationVariable();
350       IncExpr = LoopDirective->getInc();
351       auto IUpdate = LoopDirective->updates().begin();
352       for (auto *E : LoopDirective->counters()) {
353         auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
354         LoopCountersAndUpdates[D] = *IUpdate;
355         ++IUpdate;
356       }
357     }
358   }
359   {
360     llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
361     bool FirstLCV = true;
362     for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
363       auto *C = cast<OMPLastprivateClause>(*I);
364       auto IRef = C->varlist_begin();
365       auto ISrcRef = C->source_exprs().begin();
366       auto IDestRef = C->destination_exprs().begin();
367       for (auto *AssignOp : C->assignment_ops()) {
368         auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
369         QualType Type = PrivateVD->getType();
370         auto *CanonicalVD = PrivateVD->getCanonicalDecl();
371         if (AlreadyEmittedVars.insert(CanonicalVD).second) {
372           // If lastprivate variable is a loop control variable for loop-based
373           // directive, update its value before copyin back to original
374           // variable.
375           if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) {
376             if (FirstLCV && LastIterVal) {
377               EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(),
378                                IVExpr->getType().getQualifiers(),
379                                /*IsInitializer=*/false);
380               EmitIgnoredExpr(IncExpr);
381               FirstLCV = false;
382             }
383             EmitIgnoredExpr(UpExpr);
384           }
385           auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
386           auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
387           // Get the address of the original variable.
388           auto *OriginalAddr = GetAddrOfLocalVar(DestVD);
389           // Get the address of the private variable.
390           auto *PrivateAddr = GetAddrOfLocalVar(PrivateVD);
391           EmitOMPCopy(*this, Type, OriginalAddr, PrivateAddr, DestVD, SrcVD,
392                       AssignOp);
393         }
394         ++IRef;
395         ++ISrcRef;
396         ++IDestRef;
397       }
398     }
399   }
400   if (IsLastIterCond) {
401     EmitBlock(DoneBB, /*IsFinished=*/true);
402   }
403 }
404 
405 void CodeGenFunction::EmitOMPReductionClauseInit(
406     const OMPExecutableDirective &D,
407     CodeGenFunction::OMPPrivateScope &PrivateScope) {
408   for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
409     auto *C = cast<OMPReductionClause>(*I);
410     auto ILHS = C->lhs_exprs().begin();
411     auto IRHS = C->rhs_exprs().begin();
412     for (auto IRef : C->varlists()) {
413       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
414       auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
415       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
416       // Store the address of the original variable associated with the LHS
417       // implicit variable.
418       PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> llvm::Value *{
419         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
420                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
421                         IRef->getType(), VK_LValue, IRef->getExprLoc());
422         return EmitLValue(&DRE).getAddress();
423       });
424       // Emit reduction copy.
425       bool IsRegistered =
426           PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> llvm::Value *{
427             // Emit private VarDecl with reduction init.
428             EmitDecl(*PrivateVD);
429             return GetAddrOfLocalVar(PrivateVD);
430           });
431       assert(IsRegistered && "private var already registered as private");
432       // Silence the warning about unused variable.
433       (void)IsRegistered;
434       ++ILHS, ++IRHS;
435     }
436   }
437 }
438 
439 void CodeGenFunction::EmitOMPReductionClauseFinal(
440     const OMPExecutableDirective &D) {
441   llvm::SmallVector<const Expr *, 8> LHSExprs;
442   llvm::SmallVector<const Expr *, 8> RHSExprs;
443   llvm::SmallVector<const Expr *, 8> ReductionOps;
444   bool HasAtLeastOneReduction = false;
445   for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
446     HasAtLeastOneReduction = true;
447     auto *C = cast<OMPReductionClause>(*I);
448     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
449     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
450     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
451   }
452   if (HasAtLeastOneReduction) {
453     // Emit nowait reduction if nowait clause is present or directive is a
454     // parallel directive (it always has implicit barrier).
455     CGM.getOpenMPRuntime().emitReduction(
456         *this, D.getLocEnd(), LHSExprs, RHSExprs, ReductionOps,
457         D.getSingleClause(OMPC_nowait) ||
458             isOpenMPParallelDirective(D.getDirectiveKind()) ||
459             D.getDirectiveKind() == OMPD_simd,
460         D.getDirectiveKind() == OMPD_simd);
461   }
462 }
463 
464 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
465                                            const OMPExecutableDirective &S,
466                                            OpenMPDirectiveKind InnermostKind,
467                                            const RegionCodeGenTy &CodeGen) {
468   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
469   auto CapturedStruct = CGF.GenerateCapturedStmtArgument(*CS);
470   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
471       S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
472   if (auto C = S.getSingleClause(OMPC_num_threads)) {
473     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
474     auto NumThreadsClause = cast<OMPNumThreadsClause>(C);
475     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
476                                          /*IgnoreResultAssign*/ true);
477     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
478         CGF, NumThreads, NumThreadsClause->getLocStart());
479   }
480   if (auto *C = S.getSingleClause(OMPC_proc_bind)) {
481     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
482     auto *ProcBindClause = cast<OMPProcBindClause>(C);
483     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
484         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
485   }
486   const Expr *IfCond = nullptr;
487   if (auto C = S.getSingleClause(OMPC_if)) {
488     IfCond = cast<OMPIfClause>(C)->getCondition();
489   }
490   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
491                                               CapturedStruct, IfCond);
492 }
493 
494 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
495   LexicalScope Scope(*this, S.getSourceRange());
496   // Emit parallel region as a standalone region.
497   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
498     OMPPrivateScope PrivateScope(CGF);
499     bool Copyins = CGF.EmitOMPCopyinClause(S);
500     bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope);
501     if (Copyins || Firstprivates) {
502       // Emit implicit barrier to synchronize threads and avoid data races on
503       // initialization of firstprivate variables or propagation master's thread
504       // values of threadprivate variables to local instances of that variables
505       // of all other implicit threads.
506       CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
507                                                  OMPD_unknown);
508     }
509     CGF.EmitOMPPrivateClause(S, PrivateScope);
510     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
511     (void)PrivateScope.Privatize();
512     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
513     CGF.EmitOMPReductionClauseFinal(S);
514     // Emit implicit barrier at the end of the 'parallel' directive.
515     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
516                                                OMPD_unknown);
517   };
518   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
519 }
520 
521 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
522                                       JumpDest LoopExit) {
523   RunCleanupsScope BodyScope(*this);
524   // Update counters values on current iteration.
525   for (auto I : D.updates()) {
526     EmitIgnoredExpr(I);
527   }
528   // Update the linear variables.
529   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
530     auto *C = cast<OMPLinearClause>(*I);
531     for (auto U : C->updates()) {
532       EmitIgnoredExpr(U);
533     }
534   }
535 
536   // On a continue in the body, jump to the end.
537   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
538   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
539   // Emit loop body.
540   EmitStmt(D.getBody());
541   // The end (updates/cleanups).
542   EmitBlock(Continue.getBlock());
543   BreakContinueStack.pop_back();
544     // TODO: Update lastprivates if the SeparateIter flag is true.
545     // This will be implemented in a follow-up OMPLastprivateClause patch, but
546     // result should be still correct without it, as we do not make these
547     // variables private yet.
548 }
549 
550 void CodeGenFunction::EmitOMPInnerLoop(
551     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
552     const Expr *IncExpr,
553     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
554     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
555   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
556 
557   // Start the loop with a block that tests the condition.
558   auto CondBlock = createBasicBlock("omp.inner.for.cond");
559   EmitBlock(CondBlock);
560   LoopStack.push(CondBlock);
561 
562   // If there are any cleanups between here and the loop-exit scope,
563   // create a block to stage a loop exit along.
564   auto ExitBlock = LoopExit.getBlock();
565   if (RequiresCleanup)
566     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
567 
568   auto LoopBody = createBasicBlock("omp.inner.for.body");
569 
570   // Emit condition.
571   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
572   if (ExitBlock != LoopExit.getBlock()) {
573     EmitBlock(ExitBlock);
574     EmitBranchThroughCleanup(LoopExit);
575   }
576 
577   EmitBlock(LoopBody);
578   incrementProfileCounter(&S);
579 
580   // Create a block for the increment.
581   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
582   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
583 
584   BodyGen(*this);
585 
586   // Emit "IV = IV + 1" and a back-edge to the condition block.
587   EmitBlock(Continue.getBlock());
588   EmitIgnoredExpr(IncExpr);
589   PostIncGen(*this);
590   BreakContinueStack.pop_back();
591   EmitBranch(CondBlock);
592   LoopStack.pop();
593   // Emit the fall-through block.
594   EmitBlock(LoopExit.getBlock());
595 }
596 
597 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
598   // Emit inits for the linear variables.
599   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
600     auto *C = cast<OMPLinearClause>(*I);
601     for (auto Init : C->inits()) {
602       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
603       auto *OrigVD = cast<VarDecl>(
604           cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl());
605       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
606                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
607                       VD->getInit()->getType(), VK_LValue,
608                       VD->getInit()->getExprLoc());
609       AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
610       EmitExprAsInit(&DRE, VD,
611                      MakeAddrLValue(Emission.getAllocatedAddress(),
612                                     VD->getType(), Emission.Alignment),
613                      /*capturedByInit=*/false);
614       EmitAutoVarCleanups(Emission);
615     }
616     // Emit the linear steps for the linear clauses.
617     // If a step is not constant, it is pre-calculated before the loop.
618     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
619       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
620         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
621         // Emit calculation of the linear step.
622         EmitIgnoredExpr(CS);
623       }
624   }
625 }
626 
627 static void emitLinearClauseFinal(CodeGenFunction &CGF,
628                                   const OMPLoopDirective &D) {
629   // Emit the final values of the linear variables.
630   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
631     auto *C = cast<OMPLinearClause>(*I);
632     auto IC = C->varlist_begin();
633     for (auto F : C->finals()) {
634       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
635       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
636                       CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
637                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
638       auto *OrigAddr = CGF.EmitLValue(&DRE).getAddress();
639       CodeGenFunction::OMPPrivateScope VarScope(CGF);
640       VarScope.addPrivate(OrigVD,
641                           [OrigAddr]() -> llvm::Value *{ return OrigAddr; });
642       (void)VarScope.Privatize();
643       CGF.EmitIgnoredExpr(F);
644       ++IC;
645     }
646   }
647 }
648 
649 static void emitAlignedClause(CodeGenFunction &CGF,
650                               const OMPExecutableDirective &D) {
651   for (auto &&I = D.getClausesOfKind(OMPC_aligned); I; ++I) {
652     auto *Clause = cast<OMPAlignedClause>(*I);
653     unsigned ClauseAlignment = 0;
654     if (auto AlignmentExpr = Clause->getAlignment()) {
655       auto AlignmentCI =
656           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
657       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
658     }
659     for (auto E : Clause->varlists()) {
660       unsigned Alignment = ClauseAlignment;
661       if (Alignment == 0) {
662         // OpenMP [2.8.1, Description]
663         // If no optional parameter is specified, implementation-defined default
664         // alignments for SIMD instructions on the target platforms are assumed.
665         Alignment =
666             CGF.getContext()
667                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
668                     E->getType()->getPointeeType()))
669                 .getQuantity();
670       }
671       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
672              "alignment is not power of 2");
673       if (Alignment != 0) {
674         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
675         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
676       }
677     }
678   }
679 }
680 
681 static void emitPrivateLoopCounters(CodeGenFunction &CGF,
682                                     CodeGenFunction::OMPPrivateScope &LoopScope,
683                                     ArrayRef<Expr *> Counters) {
684   for (auto *E : Counters) {
685     auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
686     (void)LoopScope.addPrivate(VD, [&]() -> llvm::Value *{
687       // Emit var without initialization.
688       auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
689       CGF.EmitAutoVarCleanups(VarEmission);
690       return VarEmission.getAllocatedAddress();
691     });
692   }
693 }
694 
695 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
696                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
697                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
698   {
699     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
700     emitPrivateLoopCounters(CGF, PreCondScope, S.counters());
701     const VarDecl *IVDecl =
702         cast<VarDecl>(cast<DeclRefExpr>(S.getIterationVariable())->getDecl());
703     bool IsRegistered = PreCondScope.addPrivate(IVDecl, [&]() -> llvm::Value *{
704       // Emit var without initialization.
705       auto VarEmission = CGF.EmitAutoVarAlloca(*IVDecl);
706       CGF.EmitAutoVarCleanups(VarEmission);
707       return VarEmission.getAllocatedAddress();
708     });
709     assert(IsRegistered && "counter already registered as private");
710     // Silence the warning about unused variable.
711     (void)IsRegistered;
712     (void)PreCondScope.Privatize();
713     // Initialize internal counter to 0 to calculate initial values of real
714     // counters.
715     LValue IV = CGF.EmitLValue(S.getIterationVariable());
716     CGF.EmitStoreOfScalar(
717         llvm::ConstantInt::getNullValue(
718             IV.getAddress()->getType()->getPointerElementType()),
719         CGF.EmitLValue(S.getIterationVariable()), /*isInit=*/true);
720     // Get initial values of real counters.
721     for (auto I : S.updates()) {
722       CGF.EmitIgnoredExpr(I);
723     }
724   }
725   // Check that loop is executed at least one time.
726   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
727 }
728 
729 static void
730 emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
731                       CodeGenFunction::OMPPrivateScope &PrivateScope) {
732   for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
733     auto *C = cast<OMPLinearClause>(*I);
734     for (auto *E : C->varlists()) {
735       auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
736       bool IsRegistered = PrivateScope.addPrivate(VD, [&]()->llvm::Value * {
737         // Emit var without initialization.
738         auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
739         CGF.EmitAutoVarCleanups(VarEmission);
740         return VarEmission.getAllocatedAddress();
741       });
742       assert(IsRegistered && "linear var already registered as private");
743       // Silence the warning about unused variable.
744       (void)IsRegistered;
745     }
746   }
747 }
748 
749 static void emitSafelenClause(CodeGenFunction &CGF,
750                               const OMPExecutableDirective &D) {
751   if (auto *C =
752           cast_or_null<OMPSafelenClause>(D.getSingleClause(OMPC_safelen))) {
753     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
754                                  /*ignoreResult=*/true);
755     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
756     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
757     // In presence of finite 'safelen', it may be unsafe to mark all
758     // the memory instructions parallel, because loop-carried
759     // dependences of 'safelen' iterations are possible.
760     CGF.LoopStack.setParallel(false);
761   }
762 }
763 
764 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) {
765   // Walk clauses and process safelen/lastprivate.
766   LoopStack.setParallel();
767   LoopStack.setVectorizeEnable(true);
768   emitSafelenClause(*this, D);
769 }
770 
771 void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) {
772   auto IC = D.counters().begin();
773   for (auto F : D.finals()) {
774     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
775     if (LocalDeclMap.lookup(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) {
776       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
777                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
778                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
779       auto *OrigAddr = EmitLValue(&DRE).getAddress();
780       OMPPrivateScope VarScope(*this);
781       VarScope.addPrivate(OrigVD,
782                           [OrigAddr]() -> llvm::Value *{ return OrigAddr; });
783       (void)VarScope.Privatize();
784       EmitIgnoredExpr(F);
785     }
786     ++IC;
787   }
788   emitLinearClauseFinal(*this, D);
789 }
790 
791 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
792   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
793     // if (PreCond) {
794     //   for (IV in 0..LastIteration) BODY;
795     //   <Final counter/linear vars updates>;
796     // }
797     //
798 
799     // Emit: if (PreCond) - begin.
800     // If the condition constant folds and can be elided, avoid emitting the
801     // whole loop.
802     bool CondConstant;
803     llvm::BasicBlock *ContBlock = nullptr;
804     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
805       if (!CondConstant)
806         return;
807     } else {
808       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
809       ContBlock = CGF.createBasicBlock("simd.if.end");
810       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
811                   CGF.getProfileCount(&S));
812       CGF.EmitBlock(ThenBlock);
813       CGF.incrementProfileCounter(&S);
814     }
815 
816     // Emit the loop iteration variable.
817     const Expr *IVExpr = S.getIterationVariable();
818     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
819     CGF.EmitVarDecl(*IVDecl);
820     CGF.EmitIgnoredExpr(S.getInit());
821 
822     // Emit the iterations count variable.
823     // If it is not a variable, Sema decided to calculate iterations count on
824     // each iteration (e.g., it is foldable into a constant).
825     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
826       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
827       // Emit calculation of the iterations count.
828       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
829     }
830 
831     CGF.EmitOMPSimdInit(S);
832 
833     emitAlignedClause(CGF, S);
834     CGF.EmitOMPLinearClauseInit(S);
835     bool HasLastprivateClause;
836     {
837       OMPPrivateScope LoopScope(CGF);
838       emitPrivateLoopCounters(CGF, LoopScope, S.counters());
839       emitPrivateLinearVars(CGF, S, LoopScope);
840       CGF.EmitOMPPrivateClause(S, LoopScope);
841       CGF.EmitOMPReductionClauseInit(S, LoopScope);
842       HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
843       (void)LoopScope.Privatize();
844       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
845                            S.getInc(),
846                            [&S](CodeGenFunction &CGF) {
847                              CGF.EmitOMPLoopBody(S, JumpDest());
848                              CGF.EmitStopPoint(&S);
849                            },
850                            [](CodeGenFunction &) {});
851       // Emit final copy of the lastprivate variables at the end of loops.
852       if (HasLastprivateClause) {
853         CGF.EmitOMPLastprivateClauseFinal(S);
854       }
855       CGF.EmitOMPReductionClauseFinal(S);
856     }
857     CGF.EmitOMPSimdFinal(S);
858     // Emit: if (PreCond) - end.
859     if (ContBlock) {
860       CGF.EmitBranch(ContBlock);
861       CGF.EmitBlock(ContBlock, true);
862     }
863   };
864   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
865 }
866 
867 void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
868                                           const OMPLoopDirective &S,
869                                           OMPPrivateScope &LoopScope,
870                                           bool Ordered, llvm::Value *LB,
871                                           llvm::Value *UB, llvm::Value *ST,
872                                           llvm::Value *IL, llvm::Value *Chunk) {
873   auto &RT = CGM.getOpenMPRuntime();
874 
875   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
876   const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind);
877 
878   assert((Ordered ||
879           !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) &&
880          "static non-chunked schedule does not need outer loop");
881 
882   // Emit outer loop.
883   //
884   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
885   // When schedule(dynamic,chunk_size) is specified, the iterations are
886   // distributed to threads in the team in chunks as the threads request them.
887   // Each thread executes a chunk of iterations, then requests another chunk,
888   // until no chunks remain to be distributed. Each chunk contains chunk_size
889   // iterations, except for the last chunk to be distributed, which may have
890   // fewer iterations. When no chunk_size is specified, it defaults to 1.
891   //
892   // When schedule(guided,chunk_size) is specified, the iterations are assigned
893   // to threads in the team in chunks as the executing threads request them.
894   // Each thread executes a chunk of iterations, then requests another chunk,
895   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
896   // each chunk is proportional to the number of unassigned iterations divided
897   // by the number of threads in the team, decreasing to 1. For a chunk_size
898   // with value k (greater than 1), the size of each chunk is determined in the
899   // same way, with the restriction that the chunks do not contain fewer than k
900   // iterations (except for the last chunk to be assigned, which may have fewer
901   // than k iterations).
902   //
903   // When schedule(auto) is specified, the decision regarding scheduling is
904   // delegated to the compiler and/or runtime system. The programmer gives the
905   // implementation the freedom to choose any possible mapping of iterations to
906   // threads in the team.
907   //
908   // When schedule(runtime) is specified, the decision regarding scheduling is
909   // deferred until run time, and the schedule and chunk size are taken from the
910   // run-sched-var ICV. If the ICV is set to auto, the schedule is
911   // implementation defined
912   //
913   // while(__kmpc_dispatch_next(&LB, &UB)) {
914   //   idx = LB;
915   //   while (idx <= UB) { BODY; ++idx;
916   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
917   //   } // inner loop
918   // }
919   //
920   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
921   // When schedule(static, chunk_size) is specified, iterations are divided into
922   // chunks of size chunk_size, and the chunks are assigned to the threads in
923   // the team in a round-robin fashion in the order of the thread number.
924   //
925   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
926   //   while (idx <= UB) { BODY; ++idx; } // inner loop
927   //   LB = LB + ST;
928   //   UB = UB + ST;
929   // }
930   //
931 
932   const Expr *IVExpr = S.getIterationVariable();
933   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
934   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
935 
936   RT.emitForInit(
937       *this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, Ordered, IL, LB,
938       (DynamicOrOrdered ? EmitAnyExpr(S.getLastIteration()).getScalarVal()
939                         : UB),
940       ST, Chunk);
941 
942   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
943 
944   // Start the loop with a block that tests the condition.
945   auto CondBlock = createBasicBlock("omp.dispatch.cond");
946   EmitBlock(CondBlock);
947   LoopStack.push(CondBlock);
948 
949   llvm::Value *BoolCondVal = nullptr;
950   if (!DynamicOrOrdered) {
951     // UB = min(UB, GlobalUB)
952     EmitIgnoredExpr(S.getEnsureUpperBound());
953     // IV = LB
954     EmitIgnoredExpr(S.getInit());
955     // IV < UB
956     BoolCondVal = EvaluateExprAsBool(S.getCond());
957   } else {
958     BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
959                                     IL, LB, UB, ST);
960   }
961 
962   // If there are any cleanups between here and the loop-exit scope,
963   // create a block to stage a loop exit along.
964   auto ExitBlock = LoopExit.getBlock();
965   if (LoopScope.requiresCleanups())
966     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
967 
968   auto LoopBody = createBasicBlock("omp.dispatch.body");
969   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
970   if (ExitBlock != LoopExit.getBlock()) {
971     EmitBlock(ExitBlock);
972     EmitBranchThroughCleanup(LoopExit);
973   }
974   EmitBlock(LoopBody);
975 
976   // Emit "IV = LB" (in case of static schedule, we have already calculated new
977   // LB for loop condition and emitted it above).
978   if (DynamicOrOrdered)
979     EmitIgnoredExpr(S.getInit());
980 
981   // Create a block for the increment.
982   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
983   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
984 
985   // Generate !llvm.loop.parallel metadata for loads and stores for loops
986   // with dynamic/guided scheduling and without ordered clause.
987   if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
988     LoopStack.setParallel((ScheduleKind == OMPC_SCHEDULE_dynamic ||
989                            ScheduleKind == OMPC_SCHEDULE_guided) &&
990                           !Ordered);
991   } else {
992     EmitOMPSimdInit(S);
993   }
994 
995   SourceLocation Loc = S.getLocStart();
996   EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
997                    [&S, LoopExit](CodeGenFunction &CGF) {
998                      CGF.EmitOMPLoopBody(S, LoopExit);
999                      CGF.EmitStopPoint(&S);
1000                    },
1001                    [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
1002                      if (Ordered) {
1003                        CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
1004                            CGF, Loc, IVSize, IVSigned);
1005                      }
1006                    });
1007 
1008   EmitBlock(Continue.getBlock());
1009   BreakContinueStack.pop_back();
1010   if (!DynamicOrOrdered) {
1011     // Emit "LB = LB + Stride", "UB = UB + Stride".
1012     EmitIgnoredExpr(S.getNextLowerBound());
1013     EmitIgnoredExpr(S.getNextUpperBound());
1014   }
1015 
1016   EmitBranch(CondBlock);
1017   LoopStack.pop();
1018   // Emit the fall-through block.
1019   EmitBlock(LoopExit.getBlock());
1020 
1021   // Tell the runtime we are done.
1022   if (!DynamicOrOrdered)
1023     RT.emitForStaticFinish(*this, S.getLocEnd());
1024 }
1025 
1026 /// \brief Emit a helper variable and return corresponding lvalue.
1027 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1028                                const DeclRefExpr *Helper) {
1029   auto VDecl = cast<VarDecl>(Helper->getDecl());
1030   CGF.EmitVarDecl(*VDecl);
1031   return CGF.EmitLValue(Helper);
1032 }
1033 
1034 static std::pair<llvm::Value * /*Chunk*/, OpenMPScheduleClauseKind>
1035 emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S,
1036                    bool OuterRegion) {
1037   // Detect the loop schedule kind and chunk.
1038   auto ScheduleKind = OMPC_SCHEDULE_unknown;
1039   llvm::Value *Chunk = nullptr;
1040   if (auto *C =
1041           cast_or_null<OMPScheduleClause>(S.getSingleClause(OMPC_schedule))) {
1042     ScheduleKind = C->getScheduleKind();
1043     if (const auto *Ch = C->getChunkSize()) {
1044       if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) {
1045         if (OuterRegion) {
1046           const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl());
1047           CGF.EmitVarDecl(*ImpVar);
1048           CGF.EmitStoreThroughLValue(
1049               CGF.EmitAnyExpr(Ch),
1050               CGF.MakeNaturalAlignAddrLValue(CGF.GetAddrOfLocalVar(ImpVar),
1051                                              ImpVar->getType()));
1052         } else {
1053           Ch = ImpRef;
1054         }
1055       }
1056       if (!C->getHelperChunkSize() || !OuterRegion) {
1057         Chunk = CGF.EmitScalarExpr(Ch);
1058         Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(),
1059                                          S.getIterationVariable()->getType());
1060       }
1061     }
1062   }
1063   return std::make_pair(Chunk, ScheduleKind);
1064 }
1065 
1066 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
1067   // Emit the loop iteration variable.
1068   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
1069   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
1070   EmitVarDecl(*IVDecl);
1071 
1072   // Emit the iterations count variable.
1073   // If it is not a variable, Sema decided to calculate iterations count on each
1074   // iteration (e.g., it is foldable into a constant).
1075   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1076     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1077     // Emit calculation of the iterations count.
1078     EmitIgnoredExpr(S.getCalcLastIteration());
1079   }
1080 
1081   auto &RT = CGM.getOpenMPRuntime();
1082 
1083   bool HasLastprivateClause;
1084   // Check pre-condition.
1085   {
1086     // Skip the entire loop if we don't meet the precondition.
1087     // If the condition constant folds and can be elided, avoid emitting the
1088     // whole loop.
1089     bool CondConstant;
1090     llvm::BasicBlock *ContBlock = nullptr;
1091     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1092       if (!CondConstant)
1093         return false;
1094     } else {
1095       auto *ThenBlock = createBasicBlock("omp.precond.then");
1096       ContBlock = createBasicBlock("omp.precond.end");
1097       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
1098                   getProfileCount(&S));
1099       EmitBlock(ThenBlock);
1100       incrementProfileCounter(&S);
1101     }
1102 
1103     emitAlignedClause(*this, S);
1104     EmitOMPLinearClauseInit(S);
1105     // Emit 'then' code.
1106     {
1107       // Emit helper vars inits.
1108       LValue LB =
1109           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1110       LValue UB =
1111           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
1112       LValue ST =
1113           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
1114       LValue IL =
1115           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
1116 
1117       OMPPrivateScope LoopScope(*this);
1118       if (EmitOMPFirstprivateClause(S, LoopScope)) {
1119         // Emit implicit barrier to synchronize threads and avoid data races on
1120         // initialization of firstprivate variables.
1121         CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
1122                                                OMPD_unknown);
1123       }
1124       EmitOMPPrivateClause(S, LoopScope);
1125       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
1126       EmitOMPReductionClauseInit(S, LoopScope);
1127       emitPrivateLoopCounters(*this, LoopScope, S.counters());
1128       emitPrivateLinearVars(*this, S, LoopScope);
1129       (void)LoopScope.Privatize();
1130 
1131       // Detect the loop schedule kind and chunk.
1132       llvm::Value *Chunk;
1133       OpenMPScheduleClauseKind ScheduleKind;
1134       auto ScheduleInfo =
1135           emitScheduleClause(*this, S, /*OuterRegion=*/false);
1136       Chunk = ScheduleInfo.first;
1137       ScheduleKind = ScheduleInfo.second;
1138       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1139       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1140       const bool Ordered = S.getSingleClause(OMPC_ordered) != nullptr;
1141       if (RT.isStaticNonchunked(ScheduleKind,
1142                                 /* Chunked */ Chunk != nullptr) &&
1143           !Ordered) {
1144         if (isOpenMPSimdDirective(S.getDirectiveKind())) {
1145           EmitOMPSimdInit(S);
1146         }
1147         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1148         // When no chunk_size is specified, the iteration space is divided into
1149         // chunks that are approximately equal in size, and at most one chunk is
1150         // distributed to each thread. Note that the size of the chunks is
1151         // unspecified in this case.
1152         RT.emitForInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
1153                        Ordered, IL.getAddress(), LB.getAddress(),
1154                        UB.getAddress(), ST.getAddress());
1155         auto LoopExit = getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
1156         // UB = min(UB, GlobalUB);
1157         EmitIgnoredExpr(S.getEnsureUpperBound());
1158         // IV = LB;
1159         EmitIgnoredExpr(S.getInit());
1160         // while (idx <= UB) { BODY; ++idx; }
1161         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1162                          S.getInc(),
1163                          [&S, LoopExit](CodeGenFunction &CGF) {
1164                            CGF.EmitOMPLoopBody(S, LoopExit);
1165                            CGF.EmitStopPoint(&S);
1166                          },
1167                          [](CodeGenFunction &) {});
1168         EmitBlock(LoopExit.getBlock());
1169         // Tell the runtime we are done.
1170         RT.emitForStaticFinish(*this, S.getLocStart());
1171       } else {
1172         // Emit the outer loop, which requests its work chunk [LB..UB] from
1173         // runtime and runs the inner loop to process it.
1174         EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, Ordered,
1175                             LB.getAddress(), UB.getAddress(), ST.getAddress(),
1176                             IL.getAddress(), Chunk);
1177       }
1178       EmitOMPReductionClauseFinal(S);
1179       // Emit final copy of the lastprivate variables if IsLastIter != 0.
1180       if (HasLastprivateClause)
1181         EmitOMPLastprivateClauseFinal(
1182             S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
1183     }
1184     if (isOpenMPSimdDirective(S.getDirectiveKind())) {
1185       EmitOMPSimdFinal(S);
1186     }
1187     // We're now done with the loop, so jump to the continuation block.
1188     if (ContBlock) {
1189       EmitBranch(ContBlock);
1190       EmitBlock(ContBlock, true);
1191     }
1192   }
1193   return HasLastprivateClause;
1194 }
1195 
1196 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
1197   LexicalScope Scope(*this, S.getSourceRange());
1198   bool HasLastprivates = false;
1199   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
1200     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
1201   };
1202   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen);
1203 
1204   // Emit an implicit barrier at the end.
1205   if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) {
1206     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
1207   }
1208 }
1209 
1210 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
1211   LexicalScope Scope(*this, S.getSourceRange());
1212   bool HasLastprivates = false;
1213   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
1214     HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
1215   };
1216   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1217 
1218   // Emit an implicit barrier at the end.
1219   if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) {
1220     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
1221   }
1222 }
1223 
1224 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
1225                                 const Twine &Name,
1226                                 llvm::Value *Init = nullptr) {
1227   auto LVal = CGF.MakeNaturalAlignAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
1228   if (Init)
1229     CGF.EmitScalarInit(Init, LVal);
1230   return LVal;
1231 }
1232 
1233 OpenMPDirectiveKind
1234 CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
1235   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
1236   auto *CS = dyn_cast<CompoundStmt>(Stmt);
1237   if (CS && CS->size() > 1) {
1238     bool HasLastprivates = false;
1239     auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) {
1240       auto &C = CGF.CGM.getContext();
1241       auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
1242       // Emit helper vars inits.
1243       LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
1244                                     CGF.Builder.getInt32(0));
1245       auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1);
1246       LValue UB =
1247           createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
1248       LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
1249                                     CGF.Builder.getInt32(1));
1250       LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
1251                                     CGF.Builder.getInt32(0));
1252       // Loop counter.
1253       LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
1254       OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
1255       CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
1256       OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
1257       CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
1258       // Generate condition for loop.
1259       BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
1260                           OK_Ordinary, S.getLocStart(),
1261                           /*fpContractable=*/false);
1262       // Increment for loop counter.
1263       UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue,
1264                         OK_Ordinary, S.getLocStart());
1265       auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) {
1266         // Iterate through all sections and emit a switch construct:
1267         // switch (IV) {
1268         //   case 0:
1269         //     <SectionStmt[0]>;
1270         //     break;
1271         // ...
1272         //   case <NumSection> - 1:
1273         //     <SectionStmt[<NumSection> - 1]>;
1274         //     break;
1275         // }
1276         // .omp.sections.exit:
1277         auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
1278         auto *SwitchStmt = CGF.Builder.CreateSwitch(
1279             CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
1280             CS->size());
1281         unsigned CaseNumber = 0;
1282         for (auto *SubStmt : CS->children()) {
1283           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
1284           CGF.EmitBlock(CaseBB);
1285           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
1286           CGF.EmitStmt(SubStmt);
1287           CGF.EmitBranch(ExitBB);
1288           ++CaseNumber;
1289         }
1290         CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1291       };
1292 
1293       CodeGenFunction::OMPPrivateScope LoopScope(CGF);
1294       if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
1295         // Emit implicit barrier to synchronize threads and avoid data races on
1296         // initialization of firstprivate variables.
1297         CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1298                                                    OMPD_unknown);
1299       }
1300       CGF.EmitOMPPrivateClause(S, LoopScope);
1301       HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1302       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1303       (void)LoopScope.Privatize();
1304 
1305       // Emit static non-chunked loop.
1306       CGF.CGM.getOpenMPRuntime().emitForInit(
1307           CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
1308           /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
1309           LB.getAddress(), UB.getAddress(), ST.getAddress());
1310       // UB = min(UB, GlobalUB);
1311       auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
1312       auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
1313           CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
1314       CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
1315       // IV = LB;
1316       CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
1317       // while (idx <= UB) { BODY; ++idx; }
1318       CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
1319                            [](CodeGenFunction &) {});
1320       // Tell the runtime we are done.
1321       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
1322       CGF.EmitOMPReductionClauseFinal(S);
1323 
1324       // Emit final copy of the lastprivate variables if IsLastIter != 0.
1325       if (HasLastprivates)
1326         CGF.EmitOMPLastprivateClauseFinal(
1327             S, CGF.Builder.CreateIsNotNull(
1328                    CGF.EmitLoadOfScalar(IL, S.getLocStart())));
1329     };
1330 
1331     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen);
1332     // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
1333     // clause. Otherwise the barrier will be generated by the codegen for the
1334     // directive.
1335     if (HasLastprivates && S.getSingleClause(OMPC_nowait)) {
1336       // Emit implicit barrier to synchronize threads and avoid data races on
1337       // initialization of firstprivate variables.
1338       CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
1339                                              OMPD_unknown);
1340     }
1341     return OMPD_sections;
1342   }
1343   // If only one section is found - no need to generate loop, emit as a single
1344   // region.
1345   bool HasFirstprivates;
1346   // No need to generate reductions for sections with single section region, we
1347   // can use original shared variables for all operations.
1348   bool HasReductions = !S.getClausesOfKind(OMPC_reduction).empty();
1349   // No need to generate lastprivates for sections with single section region,
1350   // we can use original shared variable for all calculations with barrier at
1351   // the end of the sections.
1352   bool HasLastprivates = !S.getClausesOfKind(OMPC_lastprivate).empty();
1353   auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) {
1354     CodeGenFunction::OMPPrivateScope SingleScope(CGF);
1355     HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
1356     CGF.EmitOMPPrivateClause(S, SingleScope);
1357     (void)SingleScope.Privatize();
1358 
1359     CGF.EmitStmt(Stmt);
1360   };
1361   CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
1362                                           llvm::None, llvm::None, llvm::None,
1363                                           llvm::None);
1364   // Emit barrier for firstprivates, lastprivates or reductions only if
1365   // 'sections' directive has 'nowait' clause. Otherwise the barrier will be
1366   // generated by the codegen for the directive.
1367   if ((HasFirstprivates || HasLastprivates || HasReductions) &&
1368       S.getSingleClause(OMPC_nowait)) {
1369     // Emit implicit barrier to synchronize threads and avoid data races on
1370     // initialization of firstprivate variables.
1371     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_unknown);
1372   }
1373   return OMPD_single;
1374 }
1375 
1376 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
1377   LexicalScope Scope(*this, S.getSourceRange());
1378   OpenMPDirectiveKind EmittedAs = EmitSections(S);
1379   // Emit an implicit barrier at the end.
1380   if (!S.getSingleClause(OMPC_nowait)) {
1381     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs);
1382   }
1383 }
1384 
1385 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
1386   LexicalScope Scope(*this, S.getSourceRange());
1387   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1388     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1389     CGF.EnsureInsertPoint();
1390   };
1391   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen);
1392 }
1393 
1394 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
1395   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
1396   llvm::SmallVector<const Expr *, 8> DestExprs;
1397   llvm::SmallVector<const Expr *, 8> SrcExprs;
1398   llvm::SmallVector<const Expr *, 8> AssignmentOps;
1399   // Check if there are any 'copyprivate' clauses associated with this
1400   // 'single'
1401   // construct.
1402   // Build a list of copyprivate variables along with helper expressions
1403   // (<source>, <destination>, <destination>=<source> expressions)
1404   for (auto &&I = S.getClausesOfKind(OMPC_copyprivate); I; ++I) {
1405     auto *C = cast<OMPCopyprivateClause>(*I);
1406     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
1407     DestExprs.append(C->destination_exprs().begin(),
1408                      C->destination_exprs().end());
1409     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
1410     AssignmentOps.append(C->assignment_ops().begin(),
1411                          C->assignment_ops().end());
1412   }
1413   LexicalScope Scope(*this, S.getSourceRange());
1414   // Emit code for 'single' region along with 'copyprivate' clauses
1415   bool HasFirstprivates;
1416   auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) {
1417     CodeGenFunction::OMPPrivateScope SingleScope(CGF);
1418     HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
1419     CGF.EmitOMPPrivateClause(S, SingleScope);
1420     (void)SingleScope.Privatize();
1421 
1422     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1423     CGF.EnsureInsertPoint();
1424   };
1425   CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
1426                                           CopyprivateVars, DestExprs, SrcExprs,
1427                                           AssignmentOps);
1428   // Emit an implicit barrier at the end (to avoid data race on firstprivate
1429   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
1430   if ((!S.getSingleClause(OMPC_nowait) || HasFirstprivates) &&
1431       CopyprivateVars.empty()) {
1432     CGM.getOpenMPRuntime().emitBarrierCall(
1433         *this, S.getLocStart(),
1434         S.getSingleClause(OMPC_nowait) ? OMPD_unknown : OMPD_single);
1435   }
1436 }
1437 
1438 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
1439   LexicalScope Scope(*this, S.getSourceRange());
1440   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1441     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1442     CGF.EnsureInsertPoint();
1443   };
1444   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
1445 }
1446 
1447 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
1448   LexicalScope Scope(*this, S.getSourceRange());
1449   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1450     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1451     CGF.EnsureInsertPoint();
1452   };
1453   CGM.getOpenMPRuntime().emitCriticalRegion(
1454       *this, S.getDirectiveName().getAsString(), CodeGen, S.getLocStart());
1455 }
1456 
1457 void CodeGenFunction::EmitOMPParallelForDirective(
1458     const OMPParallelForDirective &S) {
1459   // Emit directive as a combined directive that consists of two implicit
1460   // directives: 'parallel' with 'for' directive.
1461   LexicalScope Scope(*this, S.getSourceRange());
1462   (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
1463   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1464     CGF.EmitOMPWorksharingLoop(S);
1465     // Emit implicit barrier at the end of parallel region, but this barrier
1466     // is at the end of 'for' directive, so emit it as the implicit barrier for
1467     // this 'for' directive.
1468     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1469                                                OMPD_parallel);
1470   };
1471   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
1472 }
1473 
1474 void CodeGenFunction::EmitOMPParallelForSimdDirective(
1475     const OMPParallelForSimdDirective &S) {
1476   // Emit directive as a combined directive that consists of two implicit
1477   // directives: 'parallel' with 'for' directive.
1478   LexicalScope Scope(*this, S.getSourceRange());
1479   (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
1480   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1481     CGF.EmitOMPWorksharingLoop(S);
1482     // Emit implicit barrier at the end of parallel region, but this barrier
1483     // is at the end of 'for' directive, so emit it as the implicit barrier for
1484     // this 'for' directive.
1485     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1486                                                OMPD_parallel);
1487   };
1488   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
1489 }
1490 
1491 void CodeGenFunction::EmitOMPParallelSectionsDirective(
1492     const OMPParallelSectionsDirective &S) {
1493   // Emit directive as a combined directive that consists of two implicit
1494   // directives: 'parallel' with 'sections' directive.
1495   LexicalScope Scope(*this, S.getSourceRange());
1496   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1497     (void)CGF.EmitSections(S);
1498     // Emit implicit barrier at the end of parallel region.
1499     CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
1500                                                OMPD_parallel);
1501   };
1502   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
1503 }
1504 
1505 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
1506   // Emit outlined function for task construct.
1507   LexicalScope Scope(*this, S.getSourceRange());
1508   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
1509   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
1510   auto *I = CS->getCapturedDecl()->param_begin();
1511   auto *PartId = std::next(I);
1512   // The first function argument for tasks is a thread id, the second one is a
1513   // part id (0 for tied tasks, >=0 for untied task).
1514   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
1515   // Get list of private variables.
1516   llvm::SmallVector<const Expr *, 8> PrivateVars;
1517   llvm::SmallVector<const Expr *, 8> PrivateCopies;
1518   for (auto &&I = S.getClausesOfKind(OMPC_private); I; ++I) {
1519     auto *C = cast<OMPPrivateClause>(*I);
1520     auto IRef = C->varlist_begin();
1521     for (auto *IInit : C->private_copies()) {
1522       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1523       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
1524         PrivateVars.push_back(*IRef);
1525         PrivateCopies.push_back(IInit);
1526       }
1527       ++IRef;
1528     }
1529   }
1530   EmittedAsPrivate.clear();
1531   // Get list of firstprivate variables.
1532   llvm::SmallVector<const Expr *, 8> FirstprivateVars;
1533   llvm::SmallVector<const Expr *, 8> FirstprivateCopies;
1534   llvm::SmallVector<const Expr *, 8> FirstprivateInits;
1535   for (auto &&I = S.getClausesOfKind(OMPC_firstprivate); I; ++I) {
1536     auto *C = cast<OMPFirstprivateClause>(*I);
1537     auto IRef = C->varlist_begin();
1538     auto IElemInitRef = C->inits().begin();
1539     for (auto *IInit : C->private_copies()) {
1540       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1541       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
1542         FirstprivateVars.push_back(*IRef);
1543         FirstprivateCopies.push_back(IInit);
1544         FirstprivateInits.push_back(*IElemInitRef);
1545       }
1546       ++IRef, ++IElemInitRef;
1547     }
1548   }
1549   // Build list of dependences.
1550   llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8>
1551       Dependences;
1552   for (auto &&I = S.getClausesOfKind(OMPC_depend); I; ++I) {
1553     auto *C = cast<OMPDependClause>(*I);
1554     for (auto *IRef : C->varlists()) {
1555       Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
1556     }
1557   }
1558   auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars](
1559       CodeGenFunction &CGF) {
1560     // Set proper addresses for generated private copies.
1561     auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
1562     OMPPrivateScope Scope(CGF);
1563     if (!PrivateVars.empty() || !FirstprivateVars.empty()) {
1564       auto *CopyFn = CGF.Builder.CreateAlignedLoad(
1565           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)),
1566           CGF.PointerAlignInBytes);
1567       auto *PrivatesPtr = CGF.Builder.CreateAlignedLoad(
1568           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)),
1569           CGF.PointerAlignInBytes);
1570       // Map privates.
1571       llvm::SmallVector<std::pair<const VarDecl *, llvm::Value *>, 16>
1572           PrivatePtrs;
1573       llvm::SmallVector<llvm::Value *, 16> CallArgs;
1574       CallArgs.push_back(PrivatesPtr);
1575       for (auto *E : PrivateVars) {
1576         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1577         auto *PrivatePtr =
1578             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
1579         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
1580         CallArgs.push_back(PrivatePtr);
1581       }
1582       for (auto *E : FirstprivateVars) {
1583         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1584         auto *PrivatePtr =
1585             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
1586         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
1587         CallArgs.push_back(PrivatePtr);
1588       }
1589       CGF.EmitRuntimeCall(CopyFn, CallArgs);
1590       for (auto &&Pair : PrivatePtrs) {
1591         auto *Replacement =
1592             CGF.Builder.CreateAlignedLoad(Pair.second, CGF.PointerAlignInBytes);
1593         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
1594       }
1595     }
1596     (void)Scope.Privatize();
1597     if (*PartId) {
1598       // TODO: emit code for untied tasks.
1599     }
1600     CGF.EmitStmt(CS->getCapturedStmt());
1601   };
1602   auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
1603       S, *I, OMPD_task, CodeGen);
1604   // Check if we should emit tied or untied task.
1605   bool Tied = !S.getSingleClause(OMPC_untied);
1606   // Check if the task is final
1607   llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
1608   if (auto *Clause = S.getSingleClause(OMPC_final)) {
1609     // If the condition constant folds and can be elided, try to avoid emitting
1610     // the condition and the dead arm of the if/else.
1611     auto *Cond = cast<OMPFinalClause>(Clause)->getCondition();
1612     bool CondConstant;
1613     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
1614       Final.setInt(CondConstant);
1615     else
1616       Final.setPointer(EvaluateExprAsBool(Cond));
1617   } else {
1618     // By default the task is not final.
1619     Final.setInt(/*IntVal=*/false);
1620   }
1621   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
1622   const Expr *IfCond = nullptr;
1623   if (auto C = S.getSingleClause(OMPC_if)) {
1624     IfCond = cast<OMPIfClause>(C)->getCondition();
1625   }
1626   CGM.getOpenMPRuntime().emitTaskCall(
1627       *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy,
1628       CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars,
1629       FirstprivateCopies, FirstprivateInits, Dependences);
1630 }
1631 
1632 void CodeGenFunction::EmitOMPTaskyieldDirective(
1633     const OMPTaskyieldDirective &S) {
1634   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
1635 }
1636 
1637 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
1638   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
1639 }
1640 
1641 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
1642   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
1643 }
1644 
1645 void CodeGenFunction::EmitOMPTaskgroupDirective(
1646     const OMPTaskgroupDirective &S) {
1647   LexicalScope Scope(*this, S.getSourceRange());
1648   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1649     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1650     CGF.EnsureInsertPoint();
1651   };
1652   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
1653 }
1654 
1655 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
1656   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
1657     if (auto C = S.getSingleClause(/*K*/ OMPC_flush)) {
1658       auto FlushClause = cast<OMPFlushClause>(C);
1659       return llvm::makeArrayRef(FlushClause->varlist_begin(),
1660                                 FlushClause->varlist_end());
1661     }
1662     return llvm::None;
1663   }(), S.getLocStart());
1664 }
1665 
1666 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
1667   LexicalScope Scope(*this, S.getSourceRange());
1668   auto &&CodeGen = [&S](CodeGenFunction &CGF) {
1669     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1670     CGF.EnsureInsertPoint();
1671   };
1672   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart());
1673 }
1674 
1675 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
1676                                          QualType SrcType, QualType DestType) {
1677   assert(CGF.hasScalarEvaluationKind(DestType) &&
1678          "DestType must have scalar evaluation kind.");
1679   assert(!Val.isAggregate() && "Must be a scalar or complex.");
1680   return Val.isScalar()
1681              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType)
1682              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
1683                                                  DestType);
1684 }
1685 
1686 static CodeGenFunction::ComplexPairTy
1687 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
1688                       QualType DestType) {
1689   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
1690          "DestType must have complex evaluation kind.");
1691   CodeGenFunction::ComplexPairTy ComplexVal;
1692   if (Val.isScalar()) {
1693     // Convert the input element to the element type of the complex.
1694     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
1695     auto ScalarVal =
1696         CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestElementType);
1697     ComplexVal = CodeGenFunction::ComplexPairTy(
1698         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
1699   } else {
1700     assert(Val.isComplex() && "Must be a scalar or complex.");
1701     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
1702     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
1703     ComplexVal.first = CGF.EmitScalarConversion(
1704         Val.getComplexVal().first, SrcElementType, DestElementType);
1705     ComplexVal.second = CGF.EmitScalarConversion(
1706         Val.getComplexVal().second, SrcElementType, DestElementType);
1707   }
1708   return ComplexVal;
1709 }
1710 
1711 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
1712                                   LValue LVal, RValue RVal) {
1713   if (LVal.isGlobalReg()) {
1714     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
1715   } else {
1716     CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent
1717                                              : llvm::Monotonic,
1718                         LVal.isVolatile(), /*IsInit=*/false);
1719   }
1720 }
1721 
1722 static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal,
1723                             QualType RValTy) {
1724   switch (CGF.getEvaluationKind(LVal.getType())) {
1725   case TEK_Scalar:
1726     CGF.EmitStoreThroughLValue(
1727         RValue::get(convertToScalarValue(CGF, RVal, RValTy, LVal.getType())),
1728         LVal);
1729     break;
1730   case TEK_Complex:
1731     CGF.EmitStoreOfComplex(
1732         convertToComplexValue(CGF, RVal, RValTy, LVal.getType()), LVal,
1733         /*isInit=*/false);
1734     break;
1735   case TEK_Aggregate:
1736     llvm_unreachable("Must be a scalar or complex.");
1737   }
1738 }
1739 
1740 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
1741                                   const Expr *X, const Expr *V,
1742                                   SourceLocation Loc) {
1743   // v = x;
1744   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
1745   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
1746   LValue XLValue = CGF.EmitLValue(X);
1747   LValue VLValue = CGF.EmitLValue(V);
1748   RValue Res = XLValue.isGlobalReg()
1749                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
1750                    : CGF.EmitAtomicLoad(XLValue, Loc,
1751                                         IsSeqCst ? llvm::SequentiallyConsistent
1752                                                  : llvm::Monotonic,
1753                                         XLValue.isVolatile());
1754   // OpenMP, 2.12.6, atomic Construct
1755   // Any atomic construct with a seq_cst clause forces the atomically
1756   // performed operation to include an implicit flush operation without a
1757   // list.
1758   if (IsSeqCst)
1759     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
1760   emitSimpleStore(CGF,VLValue, Res, X->getType().getNonReferenceType());
1761 }
1762 
1763 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
1764                                    const Expr *X, const Expr *E,
1765                                    SourceLocation Loc) {
1766   // x = expr;
1767   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
1768   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
1769   // OpenMP, 2.12.6, atomic Construct
1770   // Any atomic construct with a seq_cst clause forces the atomically
1771   // performed operation to include an implicit flush operation without a
1772   // list.
1773   if (IsSeqCst)
1774     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
1775 }
1776 
1777 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
1778                                                 RValue Update,
1779                                                 BinaryOperatorKind BO,
1780                                                 llvm::AtomicOrdering AO,
1781                                                 bool IsXLHSInRHSPart) {
1782   auto &Context = CGF.CGM.getContext();
1783   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
1784   // expression is simple and atomic is allowed for the given type for the
1785   // target platform.
1786   if (BO == BO_Comma || !Update.isScalar() ||
1787       !Update.getScalarVal()->getType()->isIntegerTy() ||
1788       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
1789                         (Update.getScalarVal()->getType() !=
1790                          X.getAddress()->getType()->getPointerElementType())) ||
1791       !X.getAddress()->getType()->getPointerElementType()->isIntegerTy() ||
1792       !Context.getTargetInfo().hasBuiltinAtomic(
1793           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
1794     return std::make_pair(false, RValue::get(nullptr));
1795 
1796   llvm::AtomicRMWInst::BinOp RMWOp;
1797   switch (BO) {
1798   case BO_Add:
1799     RMWOp = llvm::AtomicRMWInst::Add;
1800     break;
1801   case BO_Sub:
1802     if (!IsXLHSInRHSPart)
1803       return std::make_pair(false, RValue::get(nullptr));
1804     RMWOp = llvm::AtomicRMWInst::Sub;
1805     break;
1806   case BO_And:
1807     RMWOp = llvm::AtomicRMWInst::And;
1808     break;
1809   case BO_Or:
1810     RMWOp = llvm::AtomicRMWInst::Or;
1811     break;
1812   case BO_Xor:
1813     RMWOp = llvm::AtomicRMWInst::Xor;
1814     break;
1815   case BO_LT:
1816     RMWOp = X.getType()->hasSignedIntegerRepresentation()
1817                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
1818                                    : llvm::AtomicRMWInst::Max)
1819                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
1820                                    : llvm::AtomicRMWInst::UMax);
1821     break;
1822   case BO_GT:
1823     RMWOp = X.getType()->hasSignedIntegerRepresentation()
1824                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
1825                                    : llvm::AtomicRMWInst::Min)
1826                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
1827                                    : llvm::AtomicRMWInst::UMin);
1828     break;
1829   case BO_Assign:
1830     RMWOp = llvm::AtomicRMWInst::Xchg;
1831     break;
1832   case BO_Mul:
1833   case BO_Div:
1834   case BO_Rem:
1835   case BO_Shl:
1836   case BO_Shr:
1837   case BO_LAnd:
1838   case BO_LOr:
1839     return std::make_pair(false, RValue::get(nullptr));
1840   case BO_PtrMemD:
1841   case BO_PtrMemI:
1842   case BO_LE:
1843   case BO_GE:
1844   case BO_EQ:
1845   case BO_NE:
1846   case BO_AddAssign:
1847   case BO_SubAssign:
1848   case BO_AndAssign:
1849   case BO_OrAssign:
1850   case BO_XorAssign:
1851   case BO_MulAssign:
1852   case BO_DivAssign:
1853   case BO_RemAssign:
1854   case BO_ShlAssign:
1855   case BO_ShrAssign:
1856   case BO_Comma:
1857     llvm_unreachable("Unsupported atomic update operation");
1858   }
1859   auto *UpdateVal = Update.getScalarVal();
1860   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
1861     UpdateVal = CGF.Builder.CreateIntCast(
1862         IC, X.getAddress()->getType()->getPointerElementType(),
1863         X.getType()->hasSignedIntegerRepresentation());
1864   }
1865   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getAddress(), UpdateVal, AO);
1866   return std::make_pair(true, RValue::get(Res));
1867 }
1868 
1869 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
1870     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
1871     llvm::AtomicOrdering AO, SourceLocation Loc,
1872     const llvm::function_ref<RValue(RValue)> &CommonGen) {
1873   // Update expressions are allowed to have the following forms:
1874   // x binop= expr; -> xrval + expr;
1875   // x++, ++x -> xrval + 1;
1876   // x--, --x -> xrval - 1;
1877   // x = x binop expr; -> xrval binop expr
1878   // x = expr Op x; - > expr binop xrval;
1879   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
1880   if (!Res.first) {
1881     if (X.isGlobalReg()) {
1882       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
1883       // 'xrval'.
1884       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
1885     } else {
1886       // Perform compare-and-swap procedure.
1887       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
1888     }
1889   }
1890   return Res;
1891 }
1892 
1893 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
1894                                     const Expr *X, const Expr *E,
1895                                     const Expr *UE, bool IsXLHSInRHSPart,
1896                                     SourceLocation Loc) {
1897   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
1898          "Update expr in 'atomic update' must be a binary operator.");
1899   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
1900   // Update expressions are allowed to have the following forms:
1901   // x binop= expr; -> xrval + expr;
1902   // x++, ++x -> xrval + 1;
1903   // x--, --x -> xrval - 1;
1904   // x = x binop expr; -> xrval binop expr
1905   // x = expr Op x; - > expr binop xrval;
1906   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
1907   LValue XLValue = CGF.EmitLValue(X);
1908   RValue ExprRValue = CGF.EmitAnyExpr(E);
1909   auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
1910   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
1911   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
1912   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
1913   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
1914   auto Gen =
1915       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
1916         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
1917         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
1918         return CGF.EmitAnyExpr(UE);
1919       };
1920   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
1921       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
1922   // OpenMP, 2.12.6, atomic Construct
1923   // Any atomic construct with a seq_cst clause forces the atomically
1924   // performed operation to include an implicit flush operation without a
1925   // list.
1926   if (IsSeqCst)
1927     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
1928 }
1929 
1930 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
1931                             QualType SourceType, QualType ResType) {
1932   switch (CGF.getEvaluationKind(ResType)) {
1933   case TEK_Scalar:
1934     return RValue::get(convertToScalarValue(CGF, Value, SourceType, ResType));
1935   case TEK_Complex: {
1936     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType);
1937     return RValue::getComplex(Res.first, Res.second);
1938   }
1939   case TEK_Aggregate:
1940     break;
1941   }
1942   llvm_unreachable("Must be a scalar or complex.");
1943 }
1944 
1945 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
1946                                      bool IsPostfixUpdate, const Expr *V,
1947                                      const Expr *X, const Expr *E,
1948                                      const Expr *UE, bool IsXLHSInRHSPart,
1949                                      SourceLocation Loc) {
1950   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
1951   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
1952   RValue NewVVal;
1953   LValue VLValue = CGF.EmitLValue(V);
1954   LValue XLValue = CGF.EmitLValue(X);
1955   RValue ExprRValue = CGF.EmitAnyExpr(E);
1956   auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
1957   QualType NewVValType;
1958   if (UE) {
1959     // 'x' is updated with some additional value.
1960     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
1961            "Update expr in 'atomic capture' must be a binary operator.");
1962     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
1963     // Update expressions are allowed to have the following forms:
1964     // x binop= expr; -> xrval + expr;
1965     // x++, ++x -> xrval + 1;
1966     // x--, --x -> xrval - 1;
1967     // x = x binop expr; -> xrval binop expr
1968     // x = expr Op x; - > expr binop xrval;
1969     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
1970     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
1971     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
1972     NewVValType = XRValExpr->getType();
1973     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
1974     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
1975                   IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
1976       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
1977       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
1978       RValue Res = CGF.EmitAnyExpr(UE);
1979       NewVVal = IsPostfixUpdate ? XRValue : Res;
1980       return Res;
1981     };
1982     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
1983         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
1984     if (Res.first) {
1985       // 'atomicrmw' instruction was generated.
1986       if (IsPostfixUpdate) {
1987         // Use old value from 'atomicrmw'.
1988         NewVVal = Res.second;
1989       } else {
1990         // 'atomicrmw' does not provide new value, so evaluate it using old
1991         // value of 'x'.
1992         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
1993         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
1994         NewVVal = CGF.EmitAnyExpr(UE);
1995       }
1996     }
1997   } else {
1998     // 'x' is simply rewritten with some 'expr'.
1999     NewVValType = X->getType().getNonReferenceType();
2000     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
2001                                X->getType().getNonReferenceType());
2002     auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
2003       NewVVal = XRValue;
2004       return ExprRValue;
2005     };
2006     // Try to perform atomicrmw xchg, otherwise simple exchange.
2007     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
2008         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
2009         Loc, Gen);
2010     if (Res.first) {
2011       // 'atomicrmw' instruction was generated.
2012       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
2013     }
2014   }
2015   // Emit post-update store to 'v' of old/new 'x' value.
2016   emitSimpleStore(CGF, VLValue, NewVVal, NewVValType);
2017   // OpenMP, 2.12.6, atomic Construct
2018   // Any atomic construct with a seq_cst clause forces the atomically
2019   // performed operation to include an implicit flush operation without a
2020   // list.
2021   if (IsSeqCst)
2022     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
2023 }
2024 
2025 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
2026                               bool IsSeqCst, bool IsPostfixUpdate,
2027                               const Expr *X, const Expr *V, const Expr *E,
2028                               const Expr *UE, bool IsXLHSInRHSPart,
2029                               SourceLocation Loc) {
2030   switch (Kind) {
2031   case OMPC_read:
2032     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
2033     break;
2034   case OMPC_write:
2035     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
2036     break;
2037   case OMPC_unknown:
2038   case OMPC_update:
2039     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
2040     break;
2041   case OMPC_capture:
2042     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
2043                              IsXLHSInRHSPart, Loc);
2044     break;
2045   case OMPC_if:
2046   case OMPC_final:
2047   case OMPC_num_threads:
2048   case OMPC_private:
2049   case OMPC_firstprivate:
2050   case OMPC_lastprivate:
2051   case OMPC_reduction:
2052   case OMPC_safelen:
2053   case OMPC_collapse:
2054   case OMPC_default:
2055   case OMPC_seq_cst:
2056   case OMPC_shared:
2057   case OMPC_linear:
2058   case OMPC_aligned:
2059   case OMPC_copyin:
2060   case OMPC_copyprivate:
2061   case OMPC_flush:
2062   case OMPC_proc_bind:
2063   case OMPC_schedule:
2064   case OMPC_ordered:
2065   case OMPC_nowait:
2066   case OMPC_untied:
2067   case OMPC_threadprivate:
2068   case OMPC_depend:
2069   case OMPC_mergeable:
2070     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
2071   }
2072 }
2073 
2074 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
2075   bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst);
2076   OpenMPClauseKind Kind = OMPC_unknown;
2077   for (auto *C : S.clauses()) {
2078     // Find first clause (skip seq_cst clause, if it is first).
2079     if (C->getClauseKind() != OMPC_seq_cst) {
2080       Kind = C->getClauseKind();
2081       break;
2082     }
2083   }
2084 
2085   const auto *CS =
2086       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
2087   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
2088     enterFullExpression(EWC);
2089   }
2090   // Processing for statements under 'atomic capture'.
2091   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
2092     for (const auto *C : Compound->body()) {
2093       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
2094         enterFullExpression(EWC);
2095       }
2096     }
2097   }
2098 
2099   LexicalScope Scope(*this, S.getSourceRange());
2100   auto &&CodeGen = [&S, Kind, IsSeqCst](CodeGenFunction &CGF) {
2101     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
2102                       S.getV(), S.getExpr(), S.getUpdateExpr(),
2103                       S.isXLHSInRHSPart(), S.getLocStart());
2104   };
2105   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
2106 }
2107 
2108 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) {
2109   llvm_unreachable("CodeGen for 'omp target' is not supported yet.");
2110 }
2111 
2112 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
2113   llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
2114 }
2115 
2116 void CodeGenFunction::EmitOMPCancellationPointDirective(
2117     const OMPCancellationPointDirective &S) {
2118   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
2119                                                    S.getCancelRegion());
2120 }
2121 
2122 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
2123   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(),
2124                                         S.getCancelRegion());
2125 }
2126 
2127 CodeGenFunction::JumpDest
2128 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
2129   if (Kind == OMPD_parallel || Kind == OMPD_task)
2130     return ReturnBlock;
2131   else if (Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections)
2132     return BreakContinueStack.empty() ? JumpDest()
2133                                       : BreakContinueStack.back().BreakBlock;
2134   return JumpDest();
2135 }
2136 
2137 // Generate the instructions for '#pragma omp target data' directive.
2138 void CodeGenFunction::EmitOMPTargetDataDirective(
2139     const OMPTargetDataDirective &S) {
2140 
2141   // emit the code inside the construct for now
2142   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2143   EmitStmt(CS->getCapturedStmt());
2144 }
2145