1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 using namespace clang; 21 using namespace CodeGen; 22 23 //===----------------------------------------------------------------------===// 24 // OpenMP Directive Emission 25 //===----------------------------------------------------------------------===// 26 void CodeGenFunction::EmitOMPAggregateAssign( 27 llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType, 28 const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen) { 29 // Perform element-by-element initialization. 30 QualType ElementTy; 31 auto SrcBegin = SrcAddr; 32 auto DestBegin = DestAddr; 33 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 34 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestBegin); 35 // Cast from pointer to array type to pointer to single element. 36 SrcBegin = Builder.CreatePointerBitCastOrAddrSpaceCast(SrcBegin, 37 DestBegin->getType()); 38 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 39 // The basic structure here is a while-do loop. 40 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 41 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 42 auto IsEmpty = 43 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 44 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 45 46 // Enter the loop body, making that address the current address. 47 auto EntryBB = Builder.GetInsertBlock(); 48 EmitBlock(BodyBB); 49 auto SrcElementCurrent = 50 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 51 SrcElementCurrent->addIncoming(SrcBegin, EntryBB); 52 auto DestElementCurrent = Builder.CreatePHI(DestBegin->getType(), 2, 53 "omp.arraycpy.destElementPast"); 54 DestElementCurrent->addIncoming(DestBegin, EntryBB); 55 56 // Emit copy. 57 CopyGen(DestElementCurrent, SrcElementCurrent); 58 59 // Shift the address forward by one element. 60 auto DestElementNext = Builder.CreateConstGEP1_32( 61 DestElementCurrent, /*Idx0=*/1, "omp.arraycpy.dest.element"); 62 auto SrcElementNext = Builder.CreateConstGEP1_32( 63 SrcElementCurrent, /*Idx0=*/1, "omp.arraycpy.src.element"); 64 // Check whether we've reached the end. 65 auto Done = 66 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 67 Builder.CreateCondBr(Done, DoneBB, BodyBB); 68 DestElementCurrent->addIncoming(DestElementNext, Builder.GetInsertBlock()); 69 SrcElementCurrent->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 70 71 // Done. 72 EmitBlock(DoneBB, /*IsFinished=*/true); 73 } 74 75 void CodeGenFunction::EmitOMPCopy(CodeGenFunction &CGF, 76 QualType OriginalType, llvm::Value *DestAddr, 77 llvm::Value *SrcAddr, const VarDecl *DestVD, 78 const VarDecl *SrcVD, const Expr *Copy) { 79 if (OriginalType->isArrayType()) { 80 auto *BO = dyn_cast<BinaryOperator>(Copy); 81 if (BO && BO->getOpcode() == BO_Assign) { 82 // Perform simple memcpy for simple copying. 83 CGF.EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 84 } else { 85 // For arrays with complex element types perform element by element 86 // copying. 87 CGF.EmitOMPAggregateAssign( 88 DestAddr, SrcAddr, OriginalType, 89 [&CGF, Copy, SrcVD, DestVD](llvm::Value *DestElement, 90 llvm::Value *SrcElement) { 91 // Working with the single array element, so have to remap 92 // destination and source variables to corresponding array 93 // elements. 94 CodeGenFunction::OMPPrivateScope Remap(CGF); 95 Remap.addPrivate(DestVD, [DestElement]() -> llvm::Value *{ 96 return DestElement; 97 }); 98 Remap.addPrivate( 99 SrcVD, [SrcElement]() -> llvm::Value *{ return SrcElement; }); 100 (void)Remap.Privatize(); 101 CGF.EmitIgnoredExpr(Copy); 102 }); 103 } 104 } else { 105 // Remap pseudo source variable to private copy. 106 CodeGenFunction::OMPPrivateScope Remap(CGF); 107 Remap.addPrivate(SrcVD, [SrcAddr]() -> llvm::Value *{ return SrcAddr; }); 108 Remap.addPrivate(DestVD, [DestAddr]() -> llvm::Value *{ return DestAddr; }); 109 (void)Remap.Privatize(); 110 // Emit copying of the whole variable. 111 CGF.EmitIgnoredExpr(Copy); 112 } 113 } 114 115 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 116 OMPPrivateScope &PrivateScope) { 117 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 118 for (auto &&I = D.getClausesOfKind(OMPC_firstprivate); I; ++I) { 119 auto *C = cast<OMPFirstprivateClause>(*I); 120 auto IRef = C->varlist_begin(); 121 auto InitsRef = C->inits().begin(); 122 for (auto IInit : C->private_copies()) { 123 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 124 if (EmittedAsFirstprivate.count(OrigVD) == 0) { 125 EmittedAsFirstprivate.insert(OrigVD); 126 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 127 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 128 bool IsRegistered; 129 DeclRefExpr DRE( 130 const_cast<VarDecl *>(OrigVD), 131 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 132 OrigVD) != nullptr, 133 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 134 auto *OriginalAddr = EmitLValue(&DRE).getAddress(); 135 QualType Type = OrigVD->getType(); 136 if (Type->isArrayType()) { 137 // Emit VarDecl with copy init for arrays. 138 // Get the address of the original variable captured in current 139 // captured region. 140 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{ 141 auto Emission = EmitAutoVarAlloca(*VD); 142 auto *Init = VD->getInit(); 143 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 144 // Perform simple memcpy. 145 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 146 Type); 147 } else { 148 EmitOMPAggregateAssign( 149 Emission.getAllocatedAddress(), OriginalAddr, Type, 150 [this, VDInit, Init](llvm::Value *DestElement, 151 llvm::Value *SrcElement) { 152 // Clean up any temporaries needed by the initialization. 153 RunCleanupsScope InitScope(*this); 154 // Emit initialization for single element. 155 LocalDeclMap[VDInit] = SrcElement; 156 EmitAnyExprToMem(Init, DestElement, 157 Init->getType().getQualifiers(), 158 /*IsInitializer*/ false); 159 LocalDeclMap.erase(VDInit); 160 }); 161 } 162 EmitAutoVarCleanups(Emission); 163 return Emission.getAllocatedAddress(); 164 }); 165 } else { 166 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{ 167 // Emit private VarDecl with copy init. 168 // Remap temp VDInit variable to the address of the original 169 // variable 170 // (for proper handling of captured global variables). 171 LocalDeclMap[VDInit] = OriginalAddr; 172 EmitDecl(*VD); 173 LocalDeclMap.erase(VDInit); 174 return GetAddrOfLocalVar(VD); 175 }); 176 } 177 assert(IsRegistered && 178 "firstprivate var already registered as private"); 179 // Silence the warning about unused variable. 180 (void)IsRegistered; 181 } 182 ++IRef, ++InitsRef; 183 } 184 } 185 return !EmittedAsFirstprivate.empty(); 186 } 187 188 void CodeGenFunction::EmitOMPPrivateClause( 189 const OMPExecutableDirective &D, 190 CodeGenFunction::OMPPrivateScope &PrivateScope) { 191 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 192 for (auto &&I = D.getClausesOfKind(OMPC_private); I; ++I) { 193 auto *C = cast<OMPPrivateClause>(*I); 194 auto IRef = C->varlist_begin(); 195 for (auto IInit : C->private_copies()) { 196 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 197 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 198 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 199 bool IsRegistered = 200 PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{ 201 // Emit private VarDecl with copy init. 202 EmitDecl(*VD); 203 return GetAddrOfLocalVar(VD); 204 }); 205 assert(IsRegistered && "private var already registered as private"); 206 // Silence the warning about unused variable. 207 (void)IsRegistered; 208 } 209 ++IRef; 210 } 211 } 212 } 213 214 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 215 // threadprivate_var1 = master_threadprivate_var1; 216 // operator=(threadprivate_var2, master_threadprivate_var2); 217 // ... 218 // __kmpc_barrier(&loc, global_tid); 219 llvm::DenseSet<const VarDecl *> CopiedVars; 220 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 221 for (auto &&I = D.getClausesOfKind(OMPC_copyin); I; ++I) { 222 auto *C = cast<OMPCopyinClause>(*I); 223 auto IRef = C->varlist_begin(); 224 auto ISrcRef = C->source_exprs().begin(); 225 auto IDestRef = C->destination_exprs().begin(); 226 for (auto *AssignOp : C->assignment_ops()) { 227 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 228 QualType Type = VD->getType(); 229 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 230 231 // Get the address of the master variable. If we are emitting code with 232 // TLS support, the address is passed from the master as field in the 233 // captured declaration. 234 llvm::Value *MasterAddr; 235 if (getLangOpts().OpenMPUseTLS && 236 getContext().getTargetInfo().isTLSSupported()) { 237 assert(CapturedStmtInfo->lookup(VD) && 238 "Copyin threadprivates should have been captured!"); 239 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 240 VK_LValue, (*IRef)->getExprLoc()); 241 MasterAddr = EmitLValue(&DRE).getAddress(); 242 } else { 243 MasterAddr = VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 244 : CGM.GetAddrOfGlobal(VD); 245 } 246 // Get the address of the threadprivate variable. 247 auto *PrivateAddr = EmitLValue(*IRef).getAddress(); 248 if (CopiedVars.size() == 1) { 249 // At first check if current thread is a master thread. If it is, no 250 // need to copy data. 251 CopyBegin = createBasicBlock("copyin.not.master"); 252 CopyEnd = createBasicBlock("copyin.not.master.end"); 253 Builder.CreateCondBr( 254 Builder.CreateICmpNE( 255 Builder.CreatePtrToInt(MasterAddr, CGM.IntPtrTy), 256 Builder.CreatePtrToInt(PrivateAddr, CGM.IntPtrTy)), 257 CopyBegin, CopyEnd); 258 EmitBlock(CopyBegin); 259 } 260 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 261 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 262 EmitOMPCopy(*this, Type, PrivateAddr, MasterAddr, DestVD, SrcVD, 263 AssignOp); 264 } 265 ++IRef; 266 ++ISrcRef; 267 ++IDestRef; 268 } 269 } 270 if (CopyEnd) { 271 // Exit out of copying procedure for non-master thread. 272 EmitBlock(CopyEnd, /*IsFinished=*/true); 273 return true; 274 } 275 return false; 276 } 277 278 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 279 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 280 bool HasAtLeastOneLastprivate = false; 281 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 282 for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) { 283 HasAtLeastOneLastprivate = true; 284 auto *C = cast<OMPLastprivateClause>(*I); 285 auto IRef = C->varlist_begin(); 286 auto IDestRef = C->destination_exprs().begin(); 287 for (auto *IInit : C->private_copies()) { 288 // Keep the address of the original variable for future update at the end 289 // of the loop. 290 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 291 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 292 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 293 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> llvm::Value *{ 294 DeclRefExpr DRE( 295 const_cast<VarDecl *>(OrigVD), 296 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 297 OrigVD) != nullptr, 298 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 299 return EmitLValue(&DRE).getAddress(); 300 }); 301 // Check if the variable is also a firstprivate: in this case IInit is 302 // not generated. Initialization of this variable will happen in codegen 303 // for 'firstprivate' clause. 304 if (IInit) { 305 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 306 bool IsRegistered = 307 PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{ 308 // Emit private VarDecl with copy init. 309 EmitDecl(*VD); 310 return GetAddrOfLocalVar(VD); 311 }); 312 assert(IsRegistered && 313 "lastprivate var already registered as private"); 314 (void)IsRegistered; 315 } 316 } 317 ++IRef, ++IDestRef; 318 } 319 } 320 return HasAtLeastOneLastprivate; 321 } 322 323 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 324 const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) { 325 // Emit following code: 326 // if (<IsLastIterCond>) { 327 // orig_var1 = private_orig_var1; 328 // ... 329 // orig_varn = private_orig_varn; 330 // } 331 llvm::BasicBlock *ThenBB = nullptr; 332 llvm::BasicBlock *DoneBB = nullptr; 333 if (IsLastIterCond) { 334 ThenBB = createBasicBlock(".omp.lastprivate.then"); 335 DoneBB = createBasicBlock(".omp.lastprivate.done"); 336 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 337 EmitBlock(ThenBB); 338 } 339 llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates; 340 const Expr *LastIterVal = nullptr; 341 const Expr *IVExpr = nullptr; 342 const Expr *IncExpr = nullptr; 343 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 344 if (isOpenMPWorksharingDirective(D.getDirectiveKind())) { 345 LastIterVal = cast<VarDecl>(cast<DeclRefExpr>( 346 LoopDirective->getUpperBoundVariable()) 347 ->getDecl()) 348 ->getAnyInitializer(); 349 IVExpr = LoopDirective->getIterationVariable(); 350 IncExpr = LoopDirective->getInc(); 351 auto IUpdate = LoopDirective->updates().begin(); 352 for (auto *E : LoopDirective->counters()) { 353 auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 354 LoopCountersAndUpdates[D] = *IUpdate; 355 ++IUpdate; 356 } 357 } 358 } 359 { 360 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 361 bool FirstLCV = true; 362 for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) { 363 auto *C = cast<OMPLastprivateClause>(*I); 364 auto IRef = C->varlist_begin(); 365 auto ISrcRef = C->source_exprs().begin(); 366 auto IDestRef = C->destination_exprs().begin(); 367 for (auto *AssignOp : C->assignment_ops()) { 368 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 369 QualType Type = PrivateVD->getType(); 370 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 371 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 372 // If lastprivate variable is a loop control variable for loop-based 373 // directive, update its value before copyin back to original 374 // variable. 375 if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) { 376 if (FirstLCV && LastIterVal) { 377 EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(), 378 IVExpr->getType().getQualifiers(), 379 /*IsInitializer=*/false); 380 EmitIgnoredExpr(IncExpr); 381 FirstLCV = false; 382 } 383 EmitIgnoredExpr(UpExpr); 384 } 385 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 386 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 387 // Get the address of the original variable. 388 auto *OriginalAddr = GetAddrOfLocalVar(DestVD); 389 // Get the address of the private variable. 390 auto *PrivateAddr = GetAddrOfLocalVar(PrivateVD); 391 EmitOMPCopy(*this, Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, 392 AssignOp); 393 } 394 ++IRef; 395 ++ISrcRef; 396 ++IDestRef; 397 } 398 } 399 } 400 if (IsLastIterCond) { 401 EmitBlock(DoneBB, /*IsFinished=*/true); 402 } 403 } 404 405 void CodeGenFunction::EmitOMPReductionClauseInit( 406 const OMPExecutableDirective &D, 407 CodeGenFunction::OMPPrivateScope &PrivateScope) { 408 for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) { 409 auto *C = cast<OMPReductionClause>(*I); 410 auto ILHS = C->lhs_exprs().begin(); 411 auto IRHS = C->rhs_exprs().begin(); 412 for (auto IRef : C->varlists()) { 413 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 414 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 415 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 416 // Store the address of the original variable associated with the LHS 417 // implicit variable. 418 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> llvm::Value *{ 419 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 420 CapturedStmtInfo->lookup(OrigVD) != nullptr, 421 IRef->getType(), VK_LValue, IRef->getExprLoc()); 422 return EmitLValue(&DRE).getAddress(); 423 }); 424 // Emit reduction copy. 425 bool IsRegistered = 426 PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> llvm::Value *{ 427 // Emit private VarDecl with reduction init. 428 EmitDecl(*PrivateVD); 429 return GetAddrOfLocalVar(PrivateVD); 430 }); 431 assert(IsRegistered && "private var already registered as private"); 432 // Silence the warning about unused variable. 433 (void)IsRegistered; 434 ++ILHS, ++IRHS; 435 } 436 } 437 } 438 439 void CodeGenFunction::EmitOMPReductionClauseFinal( 440 const OMPExecutableDirective &D) { 441 llvm::SmallVector<const Expr *, 8> LHSExprs; 442 llvm::SmallVector<const Expr *, 8> RHSExprs; 443 llvm::SmallVector<const Expr *, 8> ReductionOps; 444 bool HasAtLeastOneReduction = false; 445 for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) { 446 HasAtLeastOneReduction = true; 447 auto *C = cast<OMPReductionClause>(*I); 448 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 449 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 450 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 451 } 452 if (HasAtLeastOneReduction) { 453 // Emit nowait reduction if nowait clause is present or directive is a 454 // parallel directive (it always has implicit barrier). 455 CGM.getOpenMPRuntime().emitReduction( 456 *this, D.getLocEnd(), LHSExprs, RHSExprs, ReductionOps, 457 D.getSingleClause(OMPC_nowait) || 458 isOpenMPParallelDirective(D.getDirectiveKind()) || 459 D.getDirectiveKind() == OMPD_simd, 460 D.getDirectiveKind() == OMPD_simd); 461 } 462 } 463 464 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 465 const OMPExecutableDirective &S, 466 OpenMPDirectiveKind InnermostKind, 467 const RegionCodeGenTy &CodeGen) { 468 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 469 auto CapturedStruct = CGF.GenerateCapturedStmtArgument(*CS); 470 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 471 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 472 if (auto C = S.getSingleClause(OMPC_num_threads)) { 473 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 474 auto NumThreadsClause = cast<OMPNumThreadsClause>(C); 475 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 476 /*IgnoreResultAssign*/ true); 477 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 478 CGF, NumThreads, NumThreadsClause->getLocStart()); 479 } 480 if (auto *C = S.getSingleClause(OMPC_proc_bind)) { 481 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 482 auto *ProcBindClause = cast<OMPProcBindClause>(C); 483 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 484 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 485 } 486 const Expr *IfCond = nullptr; 487 if (auto C = S.getSingleClause(OMPC_if)) { 488 IfCond = cast<OMPIfClause>(C)->getCondition(); 489 } 490 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 491 CapturedStruct, IfCond); 492 } 493 494 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 495 LexicalScope Scope(*this, S.getSourceRange()); 496 // Emit parallel region as a standalone region. 497 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 498 OMPPrivateScope PrivateScope(CGF); 499 bool Copyins = CGF.EmitOMPCopyinClause(S); 500 bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope); 501 if (Copyins || Firstprivates) { 502 // Emit implicit barrier to synchronize threads and avoid data races on 503 // initialization of firstprivate variables or propagation master's thread 504 // values of threadprivate variables to local instances of that variables 505 // of all other implicit threads. 506 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 507 OMPD_unknown); 508 } 509 CGF.EmitOMPPrivateClause(S, PrivateScope); 510 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 511 (void)PrivateScope.Privatize(); 512 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 513 CGF.EmitOMPReductionClauseFinal(S); 514 // Emit implicit barrier at the end of the 'parallel' directive. 515 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 516 OMPD_unknown); 517 }; 518 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 519 } 520 521 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 522 JumpDest LoopExit) { 523 RunCleanupsScope BodyScope(*this); 524 // Update counters values on current iteration. 525 for (auto I : D.updates()) { 526 EmitIgnoredExpr(I); 527 } 528 // Update the linear variables. 529 for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) { 530 auto *C = cast<OMPLinearClause>(*I); 531 for (auto U : C->updates()) { 532 EmitIgnoredExpr(U); 533 } 534 } 535 536 // On a continue in the body, jump to the end. 537 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 538 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 539 // Emit loop body. 540 EmitStmt(D.getBody()); 541 // The end (updates/cleanups). 542 EmitBlock(Continue.getBlock()); 543 BreakContinueStack.pop_back(); 544 // TODO: Update lastprivates if the SeparateIter flag is true. 545 // This will be implemented in a follow-up OMPLastprivateClause patch, but 546 // result should be still correct without it, as we do not make these 547 // variables private yet. 548 } 549 550 void CodeGenFunction::EmitOMPInnerLoop( 551 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 552 const Expr *IncExpr, 553 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 554 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 555 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 556 557 // Start the loop with a block that tests the condition. 558 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 559 EmitBlock(CondBlock); 560 LoopStack.push(CondBlock); 561 562 // If there are any cleanups between here and the loop-exit scope, 563 // create a block to stage a loop exit along. 564 auto ExitBlock = LoopExit.getBlock(); 565 if (RequiresCleanup) 566 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 567 568 auto LoopBody = createBasicBlock("omp.inner.for.body"); 569 570 // Emit condition. 571 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 572 if (ExitBlock != LoopExit.getBlock()) { 573 EmitBlock(ExitBlock); 574 EmitBranchThroughCleanup(LoopExit); 575 } 576 577 EmitBlock(LoopBody); 578 incrementProfileCounter(&S); 579 580 // Create a block for the increment. 581 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 582 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 583 584 BodyGen(*this); 585 586 // Emit "IV = IV + 1" and a back-edge to the condition block. 587 EmitBlock(Continue.getBlock()); 588 EmitIgnoredExpr(IncExpr); 589 PostIncGen(*this); 590 BreakContinueStack.pop_back(); 591 EmitBranch(CondBlock); 592 LoopStack.pop(); 593 // Emit the fall-through block. 594 EmitBlock(LoopExit.getBlock()); 595 } 596 597 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 598 // Emit inits for the linear variables. 599 for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) { 600 auto *C = cast<OMPLinearClause>(*I); 601 for (auto Init : C->inits()) { 602 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 603 auto *OrigVD = cast<VarDecl>( 604 cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl()); 605 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 606 CapturedStmtInfo->lookup(OrigVD) != nullptr, 607 VD->getInit()->getType(), VK_LValue, 608 VD->getInit()->getExprLoc()); 609 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 610 EmitExprAsInit(&DRE, VD, 611 MakeAddrLValue(Emission.getAllocatedAddress(), 612 VD->getType(), Emission.Alignment), 613 /*capturedByInit=*/false); 614 EmitAutoVarCleanups(Emission); 615 } 616 // Emit the linear steps for the linear clauses. 617 // If a step is not constant, it is pre-calculated before the loop. 618 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 619 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 620 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 621 // Emit calculation of the linear step. 622 EmitIgnoredExpr(CS); 623 } 624 } 625 } 626 627 static void emitLinearClauseFinal(CodeGenFunction &CGF, 628 const OMPLoopDirective &D) { 629 // Emit the final values of the linear variables. 630 for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) { 631 auto *C = cast<OMPLinearClause>(*I); 632 auto IC = C->varlist_begin(); 633 for (auto F : C->finals()) { 634 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 635 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 636 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 637 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 638 auto *OrigAddr = CGF.EmitLValue(&DRE).getAddress(); 639 CodeGenFunction::OMPPrivateScope VarScope(CGF); 640 VarScope.addPrivate(OrigVD, 641 [OrigAddr]() -> llvm::Value *{ return OrigAddr; }); 642 (void)VarScope.Privatize(); 643 CGF.EmitIgnoredExpr(F); 644 ++IC; 645 } 646 } 647 } 648 649 static void emitAlignedClause(CodeGenFunction &CGF, 650 const OMPExecutableDirective &D) { 651 for (auto &&I = D.getClausesOfKind(OMPC_aligned); I; ++I) { 652 auto *Clause = cast<OMPAlignedClause>(*I); 653 unsigned ClauseAlignment = 0; 654 if (auto AlignmentExpr = Clause->getAlignment()) { 655 auto AlignmentCI = 656 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 657 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 658 } 659 for (auto E : Clause->varlists()) { 660 unsigned Alignment = ClauseAlignment; 661 if (Alignment == 0) { 662 // OpenMP [2.8.1, Description] 663 // If no optional parameter is specified, implementation-defined default 664 // alignments for SIMD instructions on the target platforms are assumed. 665 Alignment = 666 CGF.getContext() 667 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 668 E->getType()->getPointeeType())) 669 .getQuantity(); 670 } 671 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 672 "alignment is not power of 2"); 673 if (Alignment != 0) { 674 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 675 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 676 } 677 } 678 } 679 } 680 681 static void emitPrivateLoopCounters(CodeGenFunction &CGF, 682 CodeGenFunction::OMPPrivateScope &LoopScope, 683 ArrayRef<Expr *> Counters) { 684 for (auto *E : Counters) { 685 auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 686 (void)LoopScope.addPrivate(VD, [&]() -> llvm::Value *{ 687 // Emit var without initialization. 688 auto VarEmission = CGF.EmitAutoVarAlloca(*VD); 689 CGF.EmitAutoVarCleanups(VarEmission); 690 return VarEmission.getAllocatedAddress(); 691 }); 692 } 693 } 694 695 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 696 const Expr *Cond, llvm::BasicBlock *TrueBlock, 697 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 698 { 699 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 700 emitPrivateLoopCounters(CGF, PreCondScope, S.counters()); 701 const VarDecl *IVDecl = 702 cast<VarDecl>(cast<DeclRefExpr>(S.getIterationVariable())->getDecl()); 703 bool IsRegistered = PreCondScope.addPrivate(IVDecl, [&]() -> llvm::Value *{ 704 // Emit var without initialization. 705 auto VarEmission = CGF.EmitAutoVarAlloca(*IVDecl); 706 CGF.EmitAutoVarCleanups(VarEmission); 707 return VarEmission.getAllocatedAddress(); 708 }); 709 assert(IsRegistered && "counter already registered as private"); 710 // Silence the warning about unused variable. 711 (void)IsRegistered; 712 (void)PreCondScope.Privatize(); 713 // Initialize internal counter to 0 to calculate initial values of real 714 // counters. 715 LValue IV = CGF.EmitLValue(S.getIterationVariable()); 716 CGF.EmitStoreOfScalar( 717 llvm::ConstantInt::getNullValue( 718 IV.getAddress()->getType()->getPointerElementType()), 719 CGF.EmitLValue(S.getIterationVariable()), /*isInit=*/true); 720 // Get initial values of real counters. 721 for (auto I : S.updates()) { 722 CGF.EmitIgnoredExpr(I); 723 } 724 } 725 // Check that loop is executed at least one time. 726 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 727 } 728 729 static void 730 emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D, 731 CodeGenFunction::OMPPrivateScope &PrivateScope) { 732 for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) { 733 auto *C = cast<OMPLinearClause>(*I); 734 for (auto *E : C->varlists()) { 735 auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 736 bool IsRegistered = PrivateScope.addPrivate(VD, [&]()->llvm::Value * { 737 // Emit var without initialization. 738 auto VarEmission = CGF.EmitAutoVarAlloca(*VD); 739 CGF.EmitAutoVarCleanups(VarEmission); 740 return VarEmission.getAllocatedAddress(); 741 }); 742 assert(IsRegistered && "linear var already registered as private"); 743 // Silence the warning about unused variable. 744 (void)IsRegistered; 745 } 746 } 747 } 748 749 static void emitSafelenClause(CodeGenFunction &CGF, 750 const OMPExecutableDirective &D) { 751 if (auto *C = 752 cast_or_null<OMPSafelenClause>(D.getSingleClause(OMPC_safelen))) { 753 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 754 /*ignoreResult=*/true); 755 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 756 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 757 // In presence of finite 'safelen', it may be unsafe to mark all 758 // the memory instructions parallel, because loop-carried 759 // dependences of 'safelen' iterations are possible. 760 CGF.LoopStack.setParallel(false); 761 } 762 } 763 764 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 765 // Walk clauses and process safelen/lastprivate. 766 LoopStack.setParallel(); 767 LoopStack.setVectorizeEnable(true); 768 emitSafelenClause(*this, D); 769 } 770 771 void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) { 772 auto IC = D.counters().begin(); 773 for (auto F : D.finals()) { 774 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 775 if (LocalDeclMap.lookup(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) { 776 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 777 CapturedStmtInfo->lookup(OrigVD) != nullptr, 778 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 779 auto *OrigAddr = EmitLValue(&DRE).getAddress(); 780 OMPPrivateScope VarScope(*this); 781 VarScope.addPrivate(OrigVD, 782 [OrigAddr]() -> llvm::Value *{ return OrigAddr; }); 783 (void)VarScope.Privatize(); 784 EmitIgnoredExpr(F); 785 } 786 ++IC; 787 } 788 emitLinearClauseFinal(*this, D); 789 } 790 791 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 792 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 793 // if (PreCond) { 794 // for (IV in 0..LastIteration) BODY; 795 // <Final counter/linear vars updates>; 796 // } 797 // 798 799 // Emit: if (PreCond) - begin. 800 // If the condition constant folds and can be elided, avoid emitting the 801 // whole loop. 802 bool CondConstant; 803 llvm::BasicBlock *ContBlock = nullptr; 804 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 805 if (!CondConstant) 806 return; 807 } else { 808 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 809 ContBlock = CGF.createBasicBlock("simd.if.end"); 810 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 811 CGF.getProfileCount(&S)); 812 CGF.EmitBlock(ThenBlock); 813 CGF.incrementProfileCounter(&S); 814 } 815 816 // Emit the loop iteration variable. 817 const Expr *IVExpr = S.getIterationVariable(); 818 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 819 CGF.EmitVarDecl(*IVDecl); 820 CGF.EmitIgnoredExpr(S.getInit()); 821 822 // Emit the iterations count variable. 823 // If it is not a variable, Sema decided to calculate iterations count on 824 // each iteration (e.g., it is foldable into a constant). 825 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 826 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 827 // Emit calculation of the iterations count. 828 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 829 } 830 831 CGF.EmitOMPSimdInit(S); 832 833 emitAlignedClause(CGF, S); 834 CGF.EmitOMPLinearClauseInit(S); 835 bool HasLastprivateClause; 836 { 837 OMPPrivateScope LoopScope(CGF); 838 emitPrivateLoopCounters(CGF, LoopScope, S.counters()); 839 emitPrivateLinearVars(CGF, S, LoopScope); 840 CGF.EmitOMPPrivateClause(S, LoopScope); 841 CGF.EmitOMPReductionClauseInit(S, LoopScope); 842 HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 843 (void)LoopScope.Privatize(); 844 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 845 S.getInc(), 846 [&S](CodeGenFunction &CGF) { 847 CGF.EmitOMPLoopBody(S, JumpDest()); 848 CGF.EmitStopPoint(&S); 849 }, 850 [](CodeGenFunction &) {}); 851 // Emit final copy of the lastprivate variables at the end of loops. 852 if (HasLastprivateClause) { 853 CGF.EmitOMPLastprivateClauseFinal(S); 854 } 855 CGF.EmitOMPReductionClauseFinal(S); 856 } 857 CGF.EmitOMPSimdFinal(S); 858 // Emit: if (PreCond) - end. 859 if (ContBlock) { 860 CGF.EmitBranch(ContBlock); 861 CGF.EmitBlock(ContBlock, true); 862 } 863 }; 864 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 865 } 866 867 void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind, 868 const OMPLoopDirective &S, 869 OMPPrivateScope &LoopScope, 870 bool Ordered, llvm::Value *LB, 871 llvm::Value *UB, llvm::Value *ST, 872 llvm::Value *IL, llvm::Value *Chunk) { 873 auto &RT = CGM.getOpenMPRuntime(); 874 875 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 876 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind); 877 878 assert((Ordered || 879 !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) && 880 "static non-chunked schedule does not need outer loop"); 881 882 // Emit outer loop. 883 // 884 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 885 // When schedule(dynamic,chunk_size) is specified, the iterations are 886 // distributed to threads in the team in chunks as the threads request them. 887 // Each thread executes a chunk of iterations, then requests another chunk, 888 // until no chunks remain to be distributed. Each chunk contains chunk_size 889 // iterations, except for the last chunk to be distributed, which may have 890 // fewer iterations. When no chunk_size is specified, it defaults to 1. 891 // 892 // When schedule(guided,chunk_size) is specified, the iterations are assigned 893 // to threads in the team in chunks as the executing threads request them. 894 // Each thread executes a chunk of iterations, then requests another chunk, 895 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 896 // each chunk is proportional to the number of unassigned iterations divided 897 // by the number of threads in the team, decreasing to 1. For a chunk_size 898 // with value k (greater than 1), the size of each chunk is determined in the 899 // same way, with the restriction that the chunks do not contain fewer than k 900 // iterations (except for the last chunk to be assigned, which may have fewer 901 // than k iterations). 902 // 903 // When schedule(auto) is specified, the decision regarding scheduling is 904 // delegated to the compiler and/or runtime system. The programmer gives the 905 // implementation the freedom to choose any possible mapping of iterations to 906 // threads in the team. 907 // 908 // When schedule(runtime) is specified, the decision regarding scheduling is 909 // deferred until run time, and the schedule and chunk size are taken from the 910 // run-sched-var ICV. If the ICV is set to auto, the schedule is 911 // implementation defined 912 // 913 // while(__kmpc_dispatch_next(&LB, &UB)) { 914 // idx = LB; 915 // while (idx <= UB) { BODY; ++idx; 916 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 917 // } // inner loop 918 // } 919 // 920 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 921 // When schedule(static, chunk_size) is specified, iterations are divided into 922 // chunks of size chunk_size, and the chunks are assigned to the threads in 923 // the team in a round-robin fashion in the order of the thread number. 924 // 925 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 926 // while (idx <= UB) { BODY; ++idx; } // inner loop 927 // LB = LB + ST; 928 // UB = UB + ST; 929 // } 930 // 931 932 const Expr *IVExpr = S.getIterationVariable(); 933 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 934 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 935 936 RT.emitForInit( 937 *this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, Ordered, IL, LB, 938 (DynamicOrOrdered ? EmitAnyExpr(S.getLastIteration()).getScalarVal() 939 : UB), 940 ST, Chunk); 941 942 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 943 944 // Start the loop with a block that tests the condition. 945 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 946 EmitBlock(CondBlock); 947 LoopStack.push(CondBlock); 948 949 llvm::Value *BoolCondVal = nullptr; 950 if (!DynamicOrOrdered) { 951 // UB = min(UB, GlobalUB) 952 EmitIgnoredExpr(S.getEnsureUpperBound()); 953 // IV = LB 954 EmitIgnoredExpr(S.getInit()); 955 // IV < UB 956 BoolCondVal = EvaluateExprAsBool(S.getCond()); 957 } else { 958 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, 959 IL, LB, UB, ST); 960 } 961 962 // If there are any cleanups between here and the loop-exit scope, 963 // create a block to stage a loop exit along. 964 auto ExitBlock = LoopExit.getBlock(); 965 if (LoopScope.requiresCleanups()) 966 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 967 968 auto LoopBody = createBasicBlock("omp.dispatch.body"); 969 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 970 if (ExitBlock != LoopExit.getBlock()) { 971 EmitBlock(ExitBlock); 972 EmitBranchThroughCleanup(LoopExit); 973 } 974 EmitBlock(LoopBody); 975 976 // Emit "IV = LB" (in case of static schedule, we have already calculated new 977 // LB for loop condition and emitted it above). 978 if (DynamicOrOrdered) 979 EmitIgnoredExpr(S.getInit()); 980 981 // Create a block for the increment. 982 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 983 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 984 985 // Generate !llvm.loop.parallel metadata for loads and stores for loops 986 // with dynamic/guided scheduling and without ordered clause. 987 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 988 LoopStack.setParallel((ScheduleKind == OMPC_SCHEDULE_dynamic || 989 ScheduleKind == OMPC_SCHEDULE_guided) && 990 !Ordered); 991 } else { 992 EmitOMPSimdInit(S); 993 } 994 995 SourceLocation Loc = S.getLocStart(); 996 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 997 [&S, LoopExit](CodeGenFunction &CGF) { 998 CGF.EmitOMPLoopBody(S, LoopExit); 999 CGF.EmitStopPoint(&S); 1000 }, 1001 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1002 if (Ordered) { 1003 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1004 CGF, Loc, IVSize, IVSigned); 1005 } 1006 }); 1007 1008 EmitBlock(Continue.getBlock()); 1009 BreakContinueStack.pop_back(); 1010 if (!DynamicOrOrdered) { 1011 // Emit "LB = LB + Stride", "UB = UB + Stride". 1012 EmitIgnoredExpr(S.getNextLowerBound()); 1013 EmitIgnoredExpr(S.getNextUpperBound()); 1014 } 1015 1016 EmitBranch(CondBlock); 1017 LoopStack.pop(); 1018 // Emit the fall-through block. 1019 EmitBlock(LoopExit.getBlock()); 1020 1021 // Tell the runtime we are done. 1022 if (!DynamicOrOrdered) 1023 RT.emitForStaticFinish(*this, S.getLocEnd()); 1024 } 1025 1026 /// \brief Emit a helper variable and return corresponding lvalue. 1027 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1028 const DeclRefExpr *Helper) { 1029 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1030 CGF.EmitVarDecl(*VDecl); 1031 return CGF.EmitLValue(Helper); 1032 } 1033 1034 static std::pair<llvm::Value * /*Chunk*/, OpenMPScheduleClauseKind> 1035 emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S, 1036 bool OuterRegion) { 1037 // Detect the loop schedule kind and chunk. 1038 auto ScheduleKind = OMPC_SCHEDULE_unknown; 1039 llvm::Value *Chunk = nullptr; 1040 if (auto *C = 1041 cast_or_null<OMPScheduleClause>(S.getSingleClause(OMPC_schedule))) { 1042 ScheduleKind = C->getScheduleKind(); 1043 if (const auto *Ch = C->getChunkSize()) { 1044 if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) { 1045 if (OuterRegion) { 1046 const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl()); 1047 CGF.EmitVarDecl(*ImpVar); 1048 CGF.EmitStoreThroughLValue( 1049 CGF.EmitAnyExpr(Ch), 1050 CGF.MakeNaturalAlignAddrLValue(CGF.GetAddrOfLocalVar(ImpVar), 1051 ImpVar->getType())); 1052 } else { 1053 Ch = ImpRef; 1054 } 1055 } 1056 if (!C->getHelperChunkSize() || !OuterRegion) { 1057 Chunk = CGF.EmitScalarExpr(Ch); 1058 Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(), 1059 S.getIterationVariable()->getType()); 1060 } 1061 } 1062 } 1063 return std::make_pair(Chunk, ScheduleKind); 1064 } 1065 1066 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 1067 // Emit the loop iteration variable. 1068 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 1069 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 1070 EmitVarDecl(*IVDecl); 1071 1072 // Emit the iterations count variable. 1073 // If it is not a variable, Sema decided to calculate iterations count on each 1074 // iteration (e.g., it is foldable into a constant). 1075 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1076 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1077 // Emit calculation of the iterations count. 1078 EmitIgnoredExpr(S.getCalcLastIteration()); 1079 } 1080 1081 auto &RT = CGM.getOpenMPRuntime(); 1082 1083 bool HasLastprivateClause; 1084 // Check pre-condition. 1085 { 1086 // Skip the entire loop if we don't meet the precondition. 1087 // If the condition constant folds and can be elided, avoid emitting the 1088 // whole loop. 1089 bool CondConstant; 1090 llvm::BasicBlock *ContBlock = nullptr; 1091 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1092 if (!CondConstant) 1093 return false; 1094 } else { 1095 auto *ThenBlock = createBasicBlock("omp.precond.then"); 1096 ContBlock = createBasicBlock("omp.precond.end"); 1097 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 1098 getProfileCount(&S)); 1099 EmitBlock(ThenBlock); 1100 incrementProfileCounter(&S); 1101 } 1102 1103 emitAlignedClause(*this, S); 1104 EmitOMPLinearClauseInit(S); 1105 // Emit 'then' code. 1106 { 1107 // Emit helper vars inits. 1108 LValue LB = 1109 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1110 LValue UB = 1111 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1112 LValue ST = 1113 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 1114 LValue IL = 1115 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 1116 1117 OMPPrivateScope LoopScope(*this); 1118 if (EmitOMPFirstprivateClause(S, LoopScope)) { 1119 // Emit implicit barrier to synchronize threads and avoid data races on 1120 // initialization of firstprivate variables. 1121 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 1122 OMPD_unknown); 1123 } 1124 EmitOMPPrivateClause(S, LoopScope); 1125 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 1126 EmitOMPReductionClauseInit(S, LoopScope); 1127 emitPrivateLoopCounters(*this, LoopScope, S.counters()); 1128 emitPrivateLinearVars(*this, S, LoopScope); 1129 (void)LoopScope.Privatize(); 1130 1131 // Detect the loop schedule kind and chunk. 1132 llvm::Value *Chunk; 1133 OpenMPScheduleClauseKind ScheduleKind; 1134 auto ScheduleInfo = 1135 emitScheduleClause(*this, S, /*OuterRegion=*/false); 1136 Chunk = ScheduleInfo.first; 1137 ScheduleKind = ScheduleInfo.second; 1138 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1139 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1140 const bool Ordered = S.getSingleClause(OMPC_ordered) != nullptr; 1141 if (RT.isStaticNonchunked(ScheduleKind, 1142 /* Chunked */ Chunk != nullptr) && 1143 !Ordered) { 1144 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 1145 EmitOMPSimdInit(S); 1146 } 1147 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1148 // When no chunk_size is specified, the iteration space is divided into 1149 // chunks that are approximately equal in size, and at most one chunk is 1150 // distributed to each thread. Note that the size of the chunks is 1151 // unspecified in this case. 1152 RT.emitForInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, 1153 Ordered, IL.getAddress(), LB.getAddress(), 1154 UB.getAddress(), ST.getAddress()); 1155 auto LoopExit = getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 1156 // UB = min(UB, GlobalUB); 1157 EmitIgnoredExpr(S.getEnsureUpperBound()); 1158 // IV = LB; 1159 EmitIgnoredExpr(S.getInit()); 1160 // while (idx <= UB) { BODY; ++idx; } 1161 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1162 S.getInc(), 1163 [&S, LoopExit](CodeGenFunction &CGF) { 1164 CGF.EmitOMPLoopBody(S, LoopExit); 1165 CGF.EmitStopPoint(&S); 1166 }, 1167 [](CodeGenFunction &) {}); 1168 EmitBlock(LoopExit.getBlock()); 1169 // Tell the runtime we are done. 1170 RT.emitForStaticFinish(*this, S.getLocStart()); 1171 } else { 1172 // Emit the outer loop, which requests its work chunk [LB..UB] from 1173 // runtime and runs the inner loop to process it. 1174 EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, Ordered, 1175 LB.getAddress(), UB.getAddress(), ST.getAddress(), 1176 IL.getAddress(), Chunk); 1177 } 1178 EmitOMPReductionClauseFinal(S); 1179 // Emit final copy of the lastprivate variables if IsLastIter != 0. 1180 if (HasLastprivateClause) 1181 EmitOMPLastprivateClauseFinal( 1182 S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 1183 } 1184 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 1185 EmitOMPSimdFinal(S); 1186 } 1187 // We're now done with the loop, so jump to the continuation block. 1188 if (ContBlock) { 1189 EmitBranch(ContBlock); 1190 EmitBlock(ContBlock, true); 1191 } 1192 } 1193 return HasLastprivateClause; 1194 } 1195 1196 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 1197 LexicalScope Scope(*this, S.getSourceRange()); 1198 bool HasLastprivates = false; 1199 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) { 1200 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 1201 }; 1202 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen); 1203 1204 // Emit an implicit barrier at the end. 1205 if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) { 1206 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 1207 } 1208 } 1209 1210 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 1211 LexicalScope Scope(*this, S.getSourceRange()); 1212 bool HasLastprivates = false; 1213 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) { 1214 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 1215 }; 1216 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1217 1218 // Emit an implicit barrier at the end. 1219 if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) { 1220 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 1221 } 1222 } 1223 1224 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 1225 const Twine &Name, 1226 llvm::Value *Init = nullptr) { 1227 auto LVal = CGF.MakeNaturalAlignAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 1228 if (Init) 1229 CGF.EmitScalarInit(Init, LVal); 1230 return LVal; 1231 } 1232 1233 OpenMPDirectiveKind 1234 CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 1235 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 1236 auto *CS = dyn_cast<CompoundStmt>(Stmt); 1237 if (CS && CS->size() > 1) { 1238 bool HasLastprivates = false; 1239 auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) { 1240 auto &C = CGF.CGM.getContext(); 1241 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 1242 // Emit helper vars inits. 1243 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 1244 CGF.Builder.getInt32(0)); 1245 auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1); 1246 LValue UB = 1247 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 1248 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 1249 CGF.Builder.getInt32(1)); 1250 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 1251 CGF.Builder.getInt32(0)); 1252 // Loop counter. 1253 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 1254 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 1255 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 1256 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 1257 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 1258 // Generate condition for loop. 1259 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 1260 OK_Ordinary, S.getLocStart(), 1261 /*fpContractable=*/false); 1262 // Increment for loop counter. 1263 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, 1264 OK_Ordinary, S.getLocStart()); 1265 auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) { 1266 // Iterate through all sections and emit a switch construct: 1267 // switch (IV) { 1268 // case 0: 1269 // <SectionStmt[0]>; 1270 // break; 1271 // ... 1272 // case <NumSection> - 1: 1273 // <SectionStmt[<NumSection> - 1]>; 1274 // break; 1275 // } 1276 // .omp.sections.exit: 1277 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 1278 auto *SwitchStmt = CGF.Builder.CreateSwitch( 1279 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 1280 CS->size()); 1281 unsigned CaseNumber = 0; 1282 for (auto *SubStmt : CS->children()) { 1283 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 1284 CGF.EmitBlock(CaseBB); 1285 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 1286 CGF.EmitStmt(SubStmt); 1287 CGF.EmitBranch(ExitBB); 1288 ++CaseNumber; 1289 } 1290 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1291 }; 1292 1293 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1294 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 1295 // Emit implicit barrier to synchronize threads and avoid data races on 1296 // initialization of firstprivate variables. 1297 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 1298 OMPD_unknown); 1299 } 1300 CGF.EmitOMPPrivateClause(S, LoopScope); 1301 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1302 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1303 (void)LoopScope.Privatize(); 1304 1305 // Emit static non-chunked loop. 1306 CGF.CGM.getOpenMPRuntime().emitForInit( 1307 CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32, 1308 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 1309 LB.getAddress(), UB.getAddress(), ST.getAddress()); 1310 // UB = min(UB, GlobalUB); 1311 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 1312 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 1313 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 1314 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 1315 // IV = LB; 1316 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 1317 // while (idx <= UB) { BODY; ++idx; } 1318 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 1319 [](CodeGenFunction &) {}); 1320 // Tell the runtime we are done. 1321 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart()); 1322 CGF.EmitOMPReductionClauseFinal(S); 1323 1324 // Emit final copy of the lastprivate variables if IsLastIter != 0. 1325 if (HasLastprivates) 1326 CGF.EmitOMPLastprivateClauseFinal( 1327 S, CGF.Builder.CreateIsNotNull( 1328 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 1329 }; 1330 1331 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen); 1332 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 1333 // clause. Otherwise the barrier will be generated by the codegen for the 1334 // directive. 1335 if (HasLastprivates && S.getSingleClause(OMPC_nowait)) { 1336 // Emit implicit barrier to synchronize threads and avoid data races on 1337 // initialization of firstprivate variables. 1338 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 1339 OMPD_unknown); 1340 } 1341 return OMPD_sections; 1342 } 1343 // If only one section is found - no need to generate loop, emit as a single 1344 // region. 1345 bool HasFirstprivates; 1346 // No need to generate reductions for sections with single section region, we 1347 // can use original shared variables for all operations. 1348 bool HasReductions = !S.getClausesOfKind(OMPC_reduction).empty(); 1349 // No need to generate lastprivates for sections with single section region, 1350 // we can use original shared variable for all calculations with barrier at 1351 // the end of the sections. 1352 bool HasLastprivates = !S.getClausesOfKind(OMPC_lastprivate).empty(); 1353 auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) { 1354 CodeGenFunction::OMPPrivateScope SingleScope(CGF); 1355 HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope); 1356 CGF.EmitOMPPrivateClause(S, SingleScope); 1357 (void)SingleScope.Privatize(); 1358 1359 CGF.EmitStmt(Stmt); 1360 }; 1361 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 1362 llvm::None, llvm::None, llvm::None, 1363 llvm::None); 1364 // Emit barrier for firstprivates, lastprivates or reductions only if 1365 // 'sections' directive has 'nowait' clause. Otherwise the barrier will be 1366 // generated by the codegen for the directive. 1367 if ((HasFirstprivates || HasLastprivates || HasReductions) && 1368 S.getSingleClause(OMPC_nowait)) { 1369 // Emit implicit barrier to synchronize threads and avoid data races on 1370 // initialization of firstprivate variables. 1371 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_unknown); 1372 } 1373 return OMPD_single; 1374 } 1375 1376 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 1377 LexicalScope Scope(*this, S.getSourceRange()); 1378 OpenMPDirectiveKind EmittedAs = EmitSections(S); 1379 // Emit an implicit barrier at the end. 1380 if (!S.getSingleClause(OMPC_nowait)) { 1381 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs); 1382 } 1383 } 1384 1385 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 1386 LexicalScope Scope(*this, S.getSourceRange()); 1387 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1388 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1389 CGF.EnsureInsertPoint(); 1390 }; 1391 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen); 1392 } 1393 1394 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 1395 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 1396 llvm::SmallVector<const Expr *, 8> DestExprs; 1397 llvm::SmallVector<const Expr *, 8> SrcExprs; 1398 llvm::SmallVector<const Expr *, 8> AssignmentOps; 1399 // Check if there are any 'copyprivate' clauses associated with this 1400 // 'single' 1401 // construct. 1402 // Build a list of copyprivate variables along with helper expressions 1403 // (<source>, <destination>, <destination>=<source> expressions) 1404 for (auto &&I = S.getClausesOfKind(OMPC_copyprivate); I; ++I) { 1405 auto *C = cast<OMPCopyprivateClause>(*I); 1406 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 1407 DestExprs.append(C->destination_exprs().begin(), 1408 C->destination_exprs().end()); 1409 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 1410 AssignmentOps.append(C->assignment_ops().begin(), 1411 C->assignment_ops().end()); 1412 } 1413 LexicalScope Scope(*this, S.getSourceRange()); 1414 // Emit code for 'single' region along with 'copyprivate' clauses 1415 bool HasFirstprivates; 1416 auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) { 1417 CodeGenFunction::OMPPrivateScope SingleScope(CGF); 1418 HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope); 1419 CGF.EmitOMPPrivateClause(S, SingleScope); 1420 (void)SingleScope.Privatize(); 1421 1422 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1423 CGF.EnsureInsertPoint(); 1424 }; 1425 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 1426 CopyprivateVars, DestExprs, SrcExprs, 1427 AssignmentOps); 1428 // Emit an implicit barrier at the end (to avoid data race on firstprivate 1429 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 1430 if ((!S.getSingleClause(OMPC_nowait) || HasFirstprivates) && 1431 CopyprivateVars.empty()) { 1432 CGM.getOpenMPRuntime().emitBarrierCall( 1433 *this, S.getLocStart(), 1434 S.getSingleClause(OMPC_nowait) ? OMPD_unknown : OMPD_single); 1435 } 1436 } 1437 1438 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 1439 LexicalScope Scope(*this, S.getSourceRange()); 1440 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1441 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1442 CGF.EnsureInsertPoint(); 1443 }; 1444 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 1445 } 1446 1447 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 1448 LexicalScope Scope(*this, S.getSourceRange()); 1449 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1450 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1451 CGF.EnsureInsertPoint(); 1452 }; 1453 CGM.getOpenMPRuntime().emitCriticalRegion( 1454 *this, S.getDirectiveName().getAsString(), CodeGen, S.getLocStart()); 1455 } 1456 1457 void CodeGenFunction::EmitOMPParallelForDirective( 1458 const OMPParallelForDirective &S) { 1459 // Emit directive as a combined directive that consists of two implicit 1460 // directives: 'parallel' with 'for' directive. 1461 LexicalScope Scope(*this, S.getSourceRange()); 1462 (void)emitScheduleClause(*this, S, /*OuterRegion=*/true); 1463 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1464 CGF.EmitOMPWorksharingLoop(S); 1465 // Emit implicit barrier at the end of parallel region, but this barrier 1466 // is at the end of 'for' directive, so emit it as the implicit barrier for 1467 // this 'for' directive. 1468 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 1469 OMPD_parallel); 1470 }; 1471 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 1472 } 1473 1474 void CodeGenFunction::EmitOMPParallelForSimdDirective( 1475 const OMPParallelForSimdDirective &S) { 1476 // Emit directive as a combined directive that consists of two implicit 1477 // directives: 'parallel' with 'for' directive. 1478 LexicalScope Scope(*this, S.getSourceRange()); 1479 (void)emitScheduleClause(*this, S, /*OuterRegion=*/true); 1480 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1481 CGF.EmitOMPWorksharingLoop(S); 1482 // Emit implicit barrier at the end of parallel region, but this barrier 1483 // is at the end of 'for' directive, so emit it as the implicit barrier for 1484 // this 'for' directive. 1485 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 1486 OMPD_parallel); 1487 }; 1488 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 1489 } 1490 1491 void CodeGenFunction::EmitOMPParallelSectionsDirective( 1492 const OMPParallelSectionsDirective &S) { 1493 // Emit directive as a combined directive that consists of two implicit 1494 // directives: 'parallel' with 'sections' directive. 1495 LexicalScope Scope(*this, S.getSourceRange()); 1496 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1497 (void)CGF.EmitSections(S); 1498 // Emit implicit barrier at the end of parallel region. 1499 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(), 1500 OMPD_parallel); 1501 }; 1502 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 1503 } 1504 1505 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 1506 // Emit outlined function for task construct. 1507 LexicalScope Scope(*this, S.getSourceRange()); 1508 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1509 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 1510 auto *I = CS->getCapturedDecl()->param_begin(); 1511 auto *PartId = std::next(I); 1512 // The first function argument for tasks is a thread id, the second one is a 1513 // part id (0 for tied tasks, >=0 for untied task). 1514 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 1515 // Get list of private variables. 1516 llvm::SmallVector<const Expr *, 8> PrivateVars; 1517 llvm::SmallVector<const Expr *, 8> PrivateCopies; 1518 for (auto &&I = S.getClausesOfKind(OMPC_private); I; ++I) { 1519 auto *C = cast<OMPPrivateClause>(*I); 1520 auto IRef = C->varlist_begin(); 1521 for (auto *IInit : C->private_copies()) { 1522 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1523 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 1524 PrivateVars.push_back(*IRef); 1525 PrivateCopies.push_back(IInit); 1526 } 1527 ++IRef; 1528 } 1529 } 1530 EmittedAsPrivate.clear(); 1531 // Get list of firstprivate variables. 1532 llvm::SmallVector<const Expr *, 8> FirstprivateVars; 1533 llvm::SmallVector<const Expr *, 8> FirstprivateCopies; 1534 llvm::SmallVector<const Expr *, 8> FirstprivateInits; 1535 for (auto &&I = S.getClausesOfKind(OMPC_firstprivate); I; ++I) { 1536 auto *C = cast<OMPFirstprivateClause>(*I); 1537 auto IRef = C->varlist_begin(); 1538 auto IElemInitRef = C->inits().begin(); 1539 for (auto *IInit : C->private_copies()) { 1540 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1541 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 1542 FirstprivateVars.push_back(*IRef); 1543 FirstprivateCopies.push_back(IInit); 1544 FirstprivateInits.push_back(*IElemInitRef); 1545 } 1546 ++IRef, ++IElemInitRef; 1547 } 1548 } 1549 // Build list of dependences. 1550 llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8> 1551 Dependences; 1552 for (auto &&I = S.getClausesOfKind(OMPC_depend); I; ++I) { 1553 auto *C = cast<OMPDependClause>(*I); 1554 for (auto *IRef : C->varlists()) { 1555 Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 1556 } 1557 } 1558 auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars]( 1559 CodeGenFunction &CGF) { 1560 // Set proper addresses for generated private copies. 1561 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1562 OMPPrivateScope Scope(CGF); 1563 if (!PrivateVars.empty() || !FirstprivateVars.empty()) { 1564 auto *CopyFn = CGF.Builder.CreateAlignedLoad( 1565 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)), 1566 CGF.PointerAlignInBytes); 1567 auto *PrivatesPtr = CGF.Builder.CreateAlignedLoad( 1568 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)), 1569 CGF.PointerAlignInBytes); 1570 // Map privates. 1571 llvm::SmallVector<std::pair<const VarDecl *, llvm::Value *>, 16> 1572 PrivatePtrs; 1573 llvm::SmallVector<llvm::Value *, 16> CallArgs; 1574 CallArgs.push_back(PrivatesPtr); 1575 for (auto *E : PrivateVars) { 1576 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1577 auto *PrivatePtr = 1578 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType())); 1579 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 1580 CallArgs.push_back(PrivatePtr); 1581 } 1582 for (auto *E : FirstprivateVars) { 1583 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1584 auto *PrivatePtr = 1585 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType())); 1586 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 1587 CallArgs.push_back(PrivatePtr); 1588 } 1589 CGF.EmitRuntimeCall(CopyFn, CallArgs); 1590 for (auto &&Pair : PrivatePtrs) { 1591 auto *Replacement = 1592 CGF.Builder.CreateAlignedLoad(Pair.second, CGF.PointerAlignInBytes); 1593 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 1594 } 1595 } 1596 (void)Scope.Privatize(); 1597 if (*PartId) { 1598 // TODO: emit code for untied tasks. 1599 } 1600 CGF.EmitStmt(CS->getCapturedStmt()); 1601 }; 1602 auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 1603 S, *I, OMPD_task, CodeGen); 1604 // Check if we should emit tied or untied task. 1605 bool Tied = !S.getSingleClause(OMPC_untied); 1606 // Check if the task is final 1607 llvm::PointerIntPair<llvm::Value *, 1, bool> Final; 1608 if (auto *Clause = S.getSingleClause(OMPC_final)) { 1609 // If the condition constant folds and can be elided, try to avoid emitting 1610 // the condition and the dead arm of the if/else. 1611 auto *Cond = cast<OMPFinalClause>(Clause)->getCondition(); 1612 bool CondConstant; 1613 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 1614 Final.setInt(CondConstant); 1615 else 1616 Final.setPointer(EvaluateExprAsBool(Cond)); 1617 } else { 1618 // By default the task is not final. 1619 Final.setInt(/*IntVal=*/false); 1620 } 1621 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 1622 const Expr *IfCond = nullptr; 1623 if (auto C = S.getSingleClause(OMPC_if)) { 1624 IfCond = cast<OMPIfClause>(C)->getCondition(); 1625 } 1626 CGM.getOpenMPRuntime().emitTaskCall( 1627 *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy, 1628 CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars, 1629 FirstprivateCopies, FirstprivateInits, Dependences); 1630 } 1631 1632 void CodeGenFunction::EmitOMPTaskyieldDirective( 1633 const OMPTaskyieldDirective &S) { 1634 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 1635 } 1636 1637 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 1638 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 1639 } 1640 1641 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 1642 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 1643 } 1644 1645 void CodeGenFunction::EmitOMPTaskgroupDirective( 1646 const OMPTaskgroupDirective &S) { 1647 LexicalScope Scope(*this, S.getSourceRange()); 1648 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1649 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1650 CGF.EnsureInsertPoint(); 1651 }; 1652 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 1653 } 1654 1655 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 1656 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 1657 if (auto C = S.getSingleClause(/*K*/ OMPC_flush)) { 1658 auto FlushClause = cast<OMPFlushClause>(C); 1659 return llvm::makeArrayRef(FlushClause->varlist_begin(), 1660 FlushClause->varlist_end()); 1661 } 1662 return llvm::None; 1663 }(), S.getLocStart()); 1664 } 1665 1666 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 1667 LexicalScope Scope(*this, S.getSourceRange()); 1668 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1669 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1670 CGF.EnsureInsertPoint(); 1671 }; 1672 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart()); 1673 } 1674 1675 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 1676 QualType SrcType, QualType DestType) { 1677 assert(CGF.hasScalarEvaluationKind(DestType) && 1678 "DestType must have scalar evaluation kind."); 1679 assert(!Val.isAggregate() && "Must be a scalar or complex."); 1680 return Val.isScalar() 1681 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType) 1682 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 1683 DestType); 1684 } 1685 1686 static CodeGenFunction::ComplexPairTy 1687 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 1688 QualType DestType) { 1689 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 1690 "DestType must have complex evaluation kind."); 1691 CodeGenFunction::ComplexPairTy ComplexVal; 1692 if (Val.isScalar()) { 1693 // Convert the input element to the element type of the complex. 1694 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 1695 auto ScalarVal = 1696 CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestElementType); 1697 ComplexVal = CodeGenFunction::ComplexPairTy( 1698 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 1699 } else { 1700 assert(Val.isComplex() && "Must be a scalar or complex."); 1701 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 1702 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 1703 ComplexVal.first = CGF.EmitScalarConversion( 1704 Val.getComplexVal().first, SrcElementType, DestElementType); 1705 ComplexVal.second = CGF.EmitScalarConversion( 1706 Val.getComplexVal().second, SrcElementType, DestElementType); 1707 } 1708 return ComplexVal; 1709 } 1710 1711 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 1712 LValue LVal, RValue RVal) { 1713 if (LVal.isGlobalReg()) { 1714 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 1715 } else { 1716 CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent 1717 : llvm::Monotonic, 1718 LVal.isVolatile(), /*IsInit=*/false); 1719 } 1720 } 1721 1722 static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal, 1723 QualType RValTy) { 1724 switch (CGF.getEvaluationKind(LVal.getType())) { 1725 case TEK_Scalar: 1726 CGF.EmitStoreThroughLValue( 1727 RValue::get(convertToScalarValue(CGF, RVal, RValTy, LVal.getType())), 1728 LVal); 1729 break; 1730 case TEK_Complex: 1731 CGF.EmitStoreOfComplex( 1732 convertToComplexValue(CGF, RVal, RValTy, LVal.getType()), LVal, 1733 /*isInit=*/false); 1734 break; 1735 case TEK_Aggregate: 1736 llvm_unreachable("Must be a scalar or complex."); 1737 } 1738 } 1739 1740 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 1741 const Expr *X, const Expr *V, 1742 SourceLocation Loc) { 1743 // v = x; 1744 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 1745 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 1746 LValue XLValue = CGF.EmitLValue(X); 1747 LValue VLValue = CGF.EmitLValue(V); 1748 RValue Res = XLValue.isGlobalReg() 1749 ? CGF.EmitLoadOfLValue(XLValue, Loc) 1750 : CGF.EmitAtomicLoad(XLValue, Loc, 1751 IsSeqCst ? llvm::SequentiallyConsistent 1752 : llvm::Monotonic, 1753 XLValue.isVolatile()); 1754 // OpenMP, 2.12.6, atomic Construct 1755 // Any atomic construct with a seq_cst clause forces the atomically 1756 // performed operation to include an implicit flush operation without a 1757 // list. 1758 if (IsSeqCst) 1759 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 1760 emitSimpleStore(CGF,VLValue, Res, X->getType().getNonReferenceType()); 1761 } 1762 1763 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 1764 const Expr *X, const Expr *E, 1765 SourceLocation Loc) { 1766 // x = expr; 1767 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 1768 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 1769 // OpenMP, 2.12.6, atomic Construct 1770 // Any atomic construct with a seq_cst clause forces the atomically 1771 // performed operation to include an implicit flush operation without a 1772 // list. 1773 if (IsSeqCst) 1774 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 1775 } 1776 1777 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 1778 RValue Update, 1779 BinaryOperatorKind BO, 1780 llvm::AtomicOrdering AO, 1781 bool IsXLHSInRHSPart) { 1782 auto &Context = CGF.CGM.getContext(); 1783 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 1784 // expression is simple and atomic is allowed for the given type for the 1785 // target platform. 1786 if (BO == BO_Comma || !Update.isScalar() || 1787 !Update.getScalarVal()->getType()->isIntegerTy() || 1788 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 1789 (Update.getScalarVal()->getType() != 1790 X.getAddress()->getType()->getPointerElementType())) || 1791 !X.getAddress()->getType()->getPointerElementType()->isIntegerTy() || 1792 !Context.getTargetInfo().hasBuiltinAtomic( 1793 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 1794 return std::make_pair(false, RValue::get(nullptr)); 1795 1796 llvm::AtomicRMWInst::BinOp RMWOp; 1797 switch (BO) { 1798 case BO_Add: 1799 RMWOp = llvm::AtomicRMWInst::Add; 1800 break; 1801 case BO_Sub: 1802 if (!IsXLHSInRHSPart) 1803 return std::make_pair(false, RValue::get(nullptr)); 1804 RMWOp = llvm::AtomicRMWInst::Sub; 1805 break; 1806 case BO_And: 1807 RMWOp = llvm::AtomicRMWInst::And; 1808 break; 1809 case BO_Or: 1810 RMWOp = llvm::AtomicRMWInst::Or; 1811 break; 1812 case BO_Xor: 1813 RMWOp = llvm::AtomicRMWInst::Xor; 1814 break; 1815 case BO_LT: 1816 RMWOp = X.getType()->hasSignedIntegerRepresentation() 1817 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 1818 : llvm::AtomicRMWInst::Max) 1819 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 1820 : llvm::AtomicRMWInst::UMax); 1821 break; 1822 case BO_GT: 1823 RMWOp = X.getType()->hasSignedIntegerRepresentation() 1824 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 1825 : llvm::AtomicRMWInst::Min) 1826 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 1827 : llvm::AtomicRMWInst::UMin); 1828 break; 1829 case BO_Assign: 1830 RMWOp = llvm::AtomicRMWInst::Xchg; 1831 break; 1832 case BO_Mul: 1833 case BO_Div: 1834 case BO_Rem: 1835 case BO_Shl: 1836 case BO_Shr: 1837 case BO_LAnd: 1838 case BO_LOr: 1839 return std::make_pair(false, RValue::get(nullptr)); 1840 case BO_PtrMemD: 1841 case BO_PtrMemI: 1842 case BO_LE: 1843 case BO_GE: 1844 case BO_EQ: 1845 case BO_NE: 1846 case BO_AddAssign: 1847 case BO_SubAssign: 1848 case BO_AndAssign: 1849 case BO_OrAssign: 1850 case BO_XorAssign: 1851 case BO_MulAssign: 1852 case BO_DivAssign: 1853 case BO_RemAssign: 1854 case BO_ShlAssign: 1855 case BO_ShrAssign: 1856 case BO_Comma: 1857 llvm_unreachable("Unsupported atomic update operation"); 1858 } 1859 auto *UpdateVal = Update.getScalarVal(); 1860 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 1861 UpdateVal = CGF.Builder.CreateIntCast( 1862 IC, X.getAddress()->getType()->getPointerElementType(), 1863 X.getType()->hasSignedIntegerRepresentation()); 1864 } 1865 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getAddress(), UpdateVal, AO); 1866 return std::make_pair(true, RValue::get(Res)); 1867 } 1868 1869 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 1870 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 1871 llvm::AtomicOrdering AO, SourceLocation Loc, 1872 const llvm::function_ref<RValue(RValue)> &CommonGen) { 1873 // Update expressions are allowed to have the following forms: 1874 // x binop= expr; -> xrval + expr; 1875 // x++, ++x -> xrval + 1; 1876 // x--, --x -> xrval - 1; 1877 // x = x binop expr; -> xrval binop expr 1878 // x = expr Op x; - > expr binop xrval; 1879 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 1880 if (!Res.first) { 1881 if (X.isGlobalReg()) { 1882 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 1883 // 'xrval'. 1884 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 1885 } else { 1886 // Perform compare-and-swap procedure. 1887 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 1888 } 1889 } 1890 return Res; 1891 } 1892 1893 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 1894 const Expr *X, const Expr *E, 1895 const Expr *UE, bool IsXLHSInRHSPart, 1896 SourceLocation Loc) { 1897 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 1898 "Update expr in 'atomic update' must be a binary operator."); 1899 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 1900 // Update expressions are allowed to have the following forms: 1901 // x binop= expr; -> xrval + expr; 1902 // x++, ++x -> xrval + 1; 1903 // x--, --x -> xrval - 1; 1904 // x = x binop expr; -> xrval binop expr 1905 // x = expr Op x; - > expr binop xrval; 1906 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 1907 LValue XLValue = CGF.EmitLValue(X); 1908 RValue ExprRValue = CGF.EmitAnyExpr(E); 1909 auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic; 1910 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 1911 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 1912 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 1913 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 1914 auto Gen = 1915 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 1916 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 1917 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 1918 return CGF.EmitAnyExpr(UE); 1919 }; 1920 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 1921 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 1922 // OpenMP, 2.12.6, atomic Construct 1923 // Any atomic construct with a seq_cst clause forces the atomically 1924 // performed operation to include an implicit flush operation without a 1925 // list. 1926 if (IsSeqCst) 1927 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 1928 } 1929 1930 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 1931 QualType SourceType, QualType ResType) { 1932 switch (CGF.getEvaluationKind(ResType)) { 1933 case TEK_Scalar: 1934 return RValue::get(convertToScalarValue(CGF, Value, SourceType, ResType)); 1935 case TEK_Complex: { 1936 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType); 1937 return RValue::getComplex(Res.first, Res.second); 1938 } 1939 case TEK_Aggregate: 1940 break; 1941 } 1942 llvm_unreachable("Must be a scalar or complex."); 1943 } 1944 1945 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 1946 bool IsPostfixUpdate, const Expr *V, 1947 const Expr *X, const Expr *E, 1948 const Expr *UE, bool IsXLHSInRHSPart, 1949 SourceLocation Loc) { 1950 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 1951 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 1952 RValue NewVVal; 1953 LValue VLValue = CGF.EmitLValue(V); 1954 LValue XLValue = CGF.EmitLValue(X); 1955 RValue ExprRValue = CGF.EmitAnyExpr(E); 1956 auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic; 1957 QualType NewVValType; 1958 if (UE) { 1959 // 'x' is updated with some additional value. 1960 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 1961 "Update expr in 'atomic capture' must be a binary operator."); 1962 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 1963 // Update expressions are allowed to have the following forms: 1964 // x binop= expr; -> xrval + expr; 1965 // x++, ++x -> xrval + 1; 1966 // x--, --x -> xrval - 1; 1967 // x = x binop expr; -> xrval binop expr 1968 // x = expr Op x; - > expr binop xrval; 1969 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 1970 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 1971 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 1972 NewVValType = XRValExpr->getType(); 1973 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 1974 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 1975 IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue { 1976 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 1977 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 1978 RValue Res = CGF.EmitAnyExpr(UE); 1979 NewVVal = IsPostfixUpdate ? XRValue : Res; 1980 return Res; 1981 }; 1982 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 1983 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 1984 if (Res.first) { 1985 // 'atomicrmw' instruction was generated. 1986 if (IsPostfixUpdate) { 1987 // Use old value from 'atomicrmw'. 1988 NewVVal = Res.second; 1989 } else { 1990 // 'atomicrmw' does not provide new value, so evaluate it using old 1991 // value of 'x'. 1992 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 1993 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 1994 NewVVal = CGF.EmitAnyExpr(UE); 1995 } 1996 } 1997 } else { 1998 // 'x' is simply rewritten with some 'expr'. 1999 NewVValType = X->getType().getNonReferenceType(); 2000 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 2001 X->getType().getNonReferenceType()); 2002 auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue { 2003 NewVVal = XRValue; 2004 return ExprRValue; 2005 }; 2006 // Try to perform atomicrmw xchg, otherwise simple exchange. 2007 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 2008 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 2009 Loc, Gen); 2010 if (Res.first) { 2011 // 'atomicrmw' instruction was generated. 2012 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 2013 } 2014 } 2015 // Emit post-update store to 'v' of old/new 'x' value. 2016 emitSimpleStore(CGF, VLValue, NewVVal, NewVValType); 2017 // OpenMP, 2.12.6, atomic Construct 2018 // Any atomic construct with a seq_cst clause forces the atomically 2019 // performed operation to include an implicit flush operation without a 2020 // list. 2021 if (IsSeqCst) 2022 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2023 } 2024 2025 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 2026 bool IsSeqCst, bool IsPostfixUpdate, 2027 const Expr *X, const Expr *V, const Expr *E, 2028 const Expr *UE, bool IsXLHSInRHSPart, 2029 SourceLocation Loc) { 2030 switch (Kind) { 2031 case OMPC_read: 2032 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 2033 break; 2034 case OMPC_write: 2035 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 2036 break; 2037 case OMPC_unknown: 2038 case OMPC_update: 2039 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 2040 break; 2041 case OMPC_capture: 2042 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 2043 IsXLHSInRHSPart, Loc); 2044 break; 2045 case OMPC_if: 2046 case OMPC_final: 2047 case OMPC_num_threads: 2048 case OMPC_private: 2049 case OMPC_firstprivate: 2050 case OMPC_lastprivate: 2051 case OMPC_reduction: 2052 case OMPC_safelen: 2053 case OMPC_collapse: 2054 case OMPC_default: 2055 case OMPC_seq_cst: 2056 case OMPC_shared: 2057 case OMPC_linear: 2058 case OMPC_aligned: 2059 case OMPC_copyin: 2060 case OMPC_copyprivate: 2061 case OMPC_flush: 2062 case OMPC_proc_bind: 2063 case OMPC_schedule: 2064 case OMPC_ordered: 2065 case OMPC_nowait: 2066 case OMPC_untied: 2067 case OMPC_threadprivate: 2068 case OMPC_depend: 2069 case OMPC_mergeable: 2070 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 2071 } 2072 } 2073 2074 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 2075 bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst); 2076 OpenMPClauseKind Kind = OMPC_unknown; 2077 for (auto *C : S.clauses()) { 2078 // Find first clause (skip seq_cst clause, if it is first). 2079 if (C->getClauseKind() != OMPC_seq_cst) { 2080 Kind = C->getClauseKind(); 2081 break; 2082 } 2083 } 2084 2085 const auto *CS = 2086 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 2087 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 2088 enterFullExpression(EWC); 2089 } 2090 // Processing for statements under 'atomic capture'. 2091 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 2092 for (const auto *C : Compound->body()) { 2093 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 2094 enterFullExpression(EWC); 2095 } 2096 } 2097 } 2098 2099 LexicalScope Scope(*this, S.getSourceRange()); 2100 auto &&CodeGen = [&S, Kind, IsSeqCst](CodeGenFunction &CGF) { 2101 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 2102 S.getV(), S.getExpr(), S.getUpdateExpr(), 2103 S.isXLHSInRHSPart(), S.getLocStart()); 2104 }; 2105 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 2106 } 2107 2108 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) { 2109 llvm_unreachable("CodeGen for 'omp target' is not supported yet."); 2110 } 2111 2112 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) { 2113 llvm_unreachable("CodeGen for 'omp teams' is not supported yet."); 2114 } 2115 2116 void CodeGenFunction::EmitOMPCancellationPointDirective( 2117 const OMPCancellationPointDirective &S) { 2118 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 2119 S.getCancelRegion()); 2120 } 2121 2122 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 2123 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), 2124 S.getCancelRegion()); 2125 } 2126 2127 CodeGenFunction::JumpDest 2128 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 2129 if (Kind == OMPD_parallel || Kind == OMPD_task) 2130 return ReturnBlock; 2131 else if (Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections) 2132 return BreakContinueStack.empty() ? JumpDest() 2133 : BreakContinueStack.back().BreakBlock; 2134 return JumpDest(); 2135 } 2136 2137 // Generate the instructions for '#pragma omp target data' directive. 2138 void CodeGenFunction::EmitOMPTargetDataDirective( 2139 const OMPTargetDataDirective &S) { 2140 2141 // emit the code inside the construct for now 2142 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2143 EmitStmt(CS->getCapturedStmt()); 2144 } 2145