1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/BinaryFormat/Dwarf.h" 28 #include "llvm/Frontend/OpenMP/OMPConstants.h" 29 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DebugInfoMetadata.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/Support/AtomicOrdering.h" 35 using namespace clang; 36 using namespace CodeGen; 37 using namespace llvm::omp; 38 39 static const VarDecl *getBaseDecl(const Expr *Ref); 40 41 namespace { 42 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 43 /// for captured expressions. 44 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 45 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 46 for (const auto *C : S.clauses()) { 47 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 48 if (const auto *PreInit = 49 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 50 for (const auto *I : PreInit->decls()) { 51 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 52 CGF.EmitVarDecl(cast<VarDecl>(*I)); 53 } else { 54 CodeGenFunction::AutoVarEmission Emission = 55 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 56 CGF.EmitAutoVarCleanups(Emission); 57 } 58 } 59 } 60 } 61 } 62 } 63 CodeGenFunction::OMPPrivateScope InlinedShareds; 64 65 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 66 return CGF.LambdaCaptureFields.lookup(VD) || 67 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 68 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 69 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 70 } 71 72 public: 73 OMPLexicalScope( 74 CodeGenFunction &CGF, const OMPExecutableDirective &S, 75 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 76 const bool EmitPreInitStmt = true) 77 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 78 InlinedShareds(CGF) { 79 if (EmitPreInitStmt) 80 emitPreInitStmt(CGF, S); 81 if (!CapturedRegion.hasValue()) 82 return; 83 assert(S.hasAssociatedStmt() && 84 "Expected associated statement for inlined directive."); 85 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 86 for (const auto &C : CS->captures()) { 87 if (C.capturesVariable() || C.capturesVariableByCopy()) { 88 auto *VD = C.getCapturedVar(); 89 assert(VD == VD->getCanonicalDecl() && 90 "Canonical decl must be captured."); 91 DeclRefExpr DRE( 92 CGF.getContext(), const_cast<VarDecl *>(VD), 93 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 94 InlinedShareds.isGlobalVarCaptured(VD)), 95 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 96 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 97 return CGF.EmitLValue(&DRE).getAddress(CGF); 98 }); 99 } 100 } 101 (void)InlinedShareds.Privatize(); 102 } 103 }; 104 105 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 106 /// for captured expressions. 107 class OMPParallelScope final : public OMPLexicalScope { 108 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 109 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 110 return !(isOpenMPTargetExecutionDirective(Kind) || 111 isOpenMPLoopBoundSharingDirective(Kind)) && 112 isOpenMPParallelDirective(Kind); 113 } 114 115 public: 116 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 117 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 118 EmitPreInitStmt(S)) {} 119 }; 120 121 /// Lexical scope for OpenMP teams construct, that handles correct codegen 122 /// for captured expressions. 123 class OMPTeamsScope final : public OMPLexicalScope { 124 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 125 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 126 return !isOpenMPTargetExecutionDirective(Kind) && 127 isOpenMPTeamsDirective(Kind); 128 } 129 130 public: 131 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 132 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 133 EmitPreInitStmt(S)) {} 134 }; 135 136 /// Private scope for OpenMP loop-based directives, that supports capturing 137 /// of used expression from loop statement. 138 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 139 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 140 const DeclStmt *PreInits; 141 CodeGenFunction::OMPMapVars PreCondVars; 142 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 143 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 144 for (const auto *E : LD->counters()) { 145 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 146 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 147 (void)PreCondVars.setVarAddr( 148 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 149 } 150 // Mark private vars as undefs. 151 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 152 for (const Expr *IRef : C->varlists()) { 153 const auto *OrigVD = 154 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 155 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 156 (void)PreCondVars.setVarAddr( 157 CGF, OrigVD, 158 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 159 CGF.getContext().getPointerType( 160 OrigVD->getType().getNonReferenceType()))), 161 CGF.getContext().getDeclAlign(OrigVD))); 162 } 163 } 164 } 165 (void)PreCondVars.apply(CGF); 166 // Emit init, __range and __end variables for C++ range loops. 167 (void)OMPLoopBasedDirective::doForAllLoops( 168 LD->getInnermostCapturedStmt()->getCapturedStmt(), 169 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 170 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 171 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 172 if (const Stmt *Init = CXXFor->getInit()) 173 CGF.EmitStmt(Init); 174 CGF.EmitStmt(CXXFor->getRangeStmt()); 175 CGF.EmitStmt(CXXFor->getEndStmt()); 176 } 177 return false; 178 }); 179 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 180 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 181 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 182 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 183 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 184 } else { 185 llvm_unreachable("Unknown loop-based directive kind."); 186 } 187 if (PreInits) { 188 for (const auto *I : PreInits->decls()) 189 CGF.EmitVarDecl(cast<VarDecl>(*I)); 190 } 191 PreCondVars.restore(CGF); 192 } 193 194 public: 195 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 196 : CodeGenFunction::RunCleanupsScope(CGF) { 197 emitPreInitStmt(CGF, S); 198 } 199 }; 200 201 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 202 CodeGenFunction::OMPPrivateScope InlinedShareds; 203 204 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 205 return CGF.LambdaCaptureFields.lookup(VD) || 206 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 207 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 208 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 209 } 210 211 public: 212 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 213 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 214 InlinedShareds(CGF) { 215 for (const auto *C : S.clauses()) { 216 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 217 if (const auto *PreInit = 218 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 219 for (const auto *I : PreInit->decls()) { 220 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 221 CGF.EmitVarDecl(cast<VarDecl>(*I)); 222 } else { 223 CodeGenFunction::AutoVarEmission Emission = 224 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 225 CGF.EmitAutoVarCleanups(Emission); 226 } 227 } 228 } 229 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 230 for (const Expr *E : UDP->varlists()) { 231 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 232 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 233 CGF.EmitVarDecl(*OED); 234 } 235 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 236 for (const Expr *E : UDP->varlists()) { 237 const Decl *D = getBaseDecl(E); 238 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 239 CGF.EmitVarDecl(*OED); 240 } 241 } 242 } 243 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 244 CGF.EmitOMPPrivateClause(S, InlinedShareds); 245 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 246 if (const Expr *E = TG->getReductionRef()) 247 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 248 } 249 // Temp copy arrays for inscan reductions should not be emitted as they are 250 // not used in simd only mode. 251 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 252 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 253 if (C->getModifier() != OMPC_REDUCTION_inscan) 254 continue; 255 for (const Expr *E : C->copy_array_temps()) 256 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 257 } 258 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 259 while (CS) { 260 for (auto &C : CS->captures()) { 261 if (C.capturesVariable() || C.capturesVariableByCopy()) { 262 auto *VD = C.getCapturedVar(); 263 if (CopyArrayTemps.contains(VD)) 264 continue; 265 assert(VD == VD->getCanonicalDecl() && 266 "Canonical decl must be captured."); 267 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 268 isCapturedVar(CGF, VD) || 269 (CGF.CapturedStmtInfo && 270 InlinedShareds.isGlobalVarCaptured(VD)), 271 VD->getType().getNonReferenceType(), VK_LValue, 272 C.getLocation()); 273 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 274 return CGF.EmitLValue(&DRE).getAddress(CGF); 275 }); 276 } 277 } 278 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 279 } 280 (void)InlinedShareds.Privatize(); 281 } 282 }; 283 284 } // namespace 285 286 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 287 const OMPExecutableDirective &S, 288 const RegionCodeGenTy &CodeGen); 289 290 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 291 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 292 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 293 OrigVD = OrigVD->getCanonicalDecl(); 294 bool IsCaptured = 295 LambdaCaptureFields.lookup(OrigVD) || 296 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 297 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 298 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 299 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 300 return EmitLValue(&DRE); 301 } 302 } 303 return EmitLValue(E); 304 } 305 306 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 307 ASTContext &C = getContext(); 308 llvm::Value *Size = nullptr; 309 auto SizeInChars = C.getTypeSizeInChars(Ty); 310 if (SizeInChars.isZero()) { 311 // getTypeSizeInChars() returns 0 for a VLA. 312 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 313 VlaSizePair VlaSize = getVLASize(VAT); 314 Ty = VlaSize.Type; 315 Size = 316 Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) : VlaSize.NumElts; 317 } 318 SizeInChars = C.getTypeSizeInChars(Ty); 319 if (SizeInChars.isZero()) 320 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 321 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 322 } 323 return CGM.getSize(SizeInChars); 324 } 325 326 void CodeGenFunction::GenerateOpenMPCapturedVars( 327 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 328 const RecordDecl *RD = S.getCapturedRecordDecl(); 329 auto CurField = RD->field_begin(); 330 auto CurCap = S.captures().begin(); 331 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 332 E = S.capture_init_end(); 333 I != E; ++I, ++CurField, ++CurCap) { 334 if (CurField->hasCapturedVLAType()) { 335 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 336 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 337 CapturedVars.push_back(Val); 338 } else if (CurCap->capturesThis()) { 339 CapturedVars.push_back(CXXThisValue); 340 } else if (CurCap->capturesVariableByCopy()) { 341 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 342 343 // If the field is not a pointer, we need to save the actual value 344 // and load it as a void pointer. 345 if (!CurField->getType()->isAnyPointerType()) { 346 ASTContext &Ctx = getContext(); 347 Address DstAddr = CreateMemTemp( 348 Ctx.getUIntPtrType(), 349 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 350 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 351 352 llvm::Value *SrcAddrVal = EmitScalarConversion( 353 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 354 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 355 LValue SrcLV = 356 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 357 358 // Store the value using the source type pointer. 359 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 360 361 // Load the value using the destination type pointer. 362 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 363 } 364 CapturedVars.push_back(CV); 365 } else { 366 assert(CurCap->capturesVariable() && "Expected capture by reference."); 367 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 368 } 369 } 370 } 371 372 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 373 QualType DstType, StringRef Name, 374 LValue AddrLV) { 375 ASTContext &Ctx = CGF.getContext(); 376 377 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 378 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 379 Ctx.getPointerType(DstType), Loc); 380 Address TmpAddr = 381 CGF.MakeNaturalAlignAddrLValue(CastedPtr, DstType).getAddress(CGF); 382 return TmpAddr; 383 } 384 385 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 386 if (T->isLValueReferenceType()) 387 return C.getLValueReferenceType( 388 getCanonicalParamType(C, T.getNonReferenceType()), 389 /*SpelledAsLValue=*/false); 390 if (T->isPointerType()) 391 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 392 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 393 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 394 return getCanonicalParamType(C, VLA->getElementType()); 395 if (!A->isVariablyModifiedType()) 396 return C.getCanonicalType(T); 397 } 398 return C.getCanonicalParamType(T); 399 } 400 401 namespace { 402 /// Contains required data for proper outlined function codegen. 403 struct FunctionOptions { 404 /// Captured statement for which the function is generated. 405 const CapturedStmt *S = nullptr; 406 /// true if cast to/from UIntPtr is required for variables captured by 407 /// value. 408 const bool UIntPtrCastRequired = true; 409 /// true if only casted arguments must be registered as local args or VLA 410 /// sizes. 411 const bool RegisterCastedArgsOnly = false; 412 /// Name of the generated function. 413 const StringRef FunctionName; 414 /// Location of the non-debug version of the outlined function. 415 SourceLocation Loc; 416 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 417 bool RegisterCastedArgsOnly, StringRef FunctionName, 418 SourceLocation Loc) 419 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 420 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 421 FunctionName(FunctionName), Loc(Loc) {} 422 }; 423 } // namespace 424 425 static llvm::Function *emitOutlinedFunctionPrologue( 426 CodeGenFunction &CGF, FunctionArgList &Args, 427 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 428 &LocalAddrs, 429 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 430 &VLASizes, 431 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 432 const CapturedDecl *CD = FO.S->getCapturedDecl(); 433 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 434 assert(CD->hasBody() && "missing CapturedDecl body"); 435 436 CXXThisValue = nullptr; 437 // Build the argument list. 438 CodeGenModule &CGM = CGF.CGM; 439 ASTContext &Ctx = CGM.getContext(); 440 FunctionArgList TargetArgs; 441 Args.append(CD->param_begin(), 442 std::next(CD->param_begin(), CD->getContextParamPosition())); 443 TargetArgs.append( 444 CD->param_begin(), 445 std::next(CD->param_begin(), CD->getContextParamPosition())); 446 auto I = FO.S->captures().begin(); 447 FunctionDecl *DebugFunctionDecl = nullptr; 448 if (!FO.UIntPtrCastRequired) { 449 FunctionProtoType::ExtProtoInfo EPI; 450 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 451 DebugFunctionDecl = FunctionDecl::Create( 452 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 453 SourceLocation(), DeclarationName(), FunctionTy, 454 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 455 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 456 /*hasWrittenPrototype=*/false); 457 } 458 for (const FieldDecl *FD : RD->fields()) { 459 QualType ArgType = FD->getType(); 460 IdentifierInfo *II = nullptr; 461 VarDecl *CapVar = nullptr; 462 463 // If this is a capture by copy and the type is not a pointer, the outlined 464 // function argument type should be uintptr and the value properly casted to 465 // uintptr. This is necessary given that the runtime library is only able to 466 // deal with pointers. We can pass in the same way the VLA type sizes to the 467 // outlined function. 468 if (FO.UIntPtrCastRequired && 469 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 470 I->capturesVariableArrayType())) 471 ArgType = Ctx.getUIntPtrType(); 472 473 if (I->capturesVariable() || I->capturesVariableByCopy()) { 474 CapVar = I->getCapturedVar(); 475 II = CapVar->getIdentifier(); 476 } else if (I->capturesThis()) { 477 II = &Ctx.Idents.get("this"); 478 } else { 479 assert(I->capturesVariableArrayType()); 480 II = &Ctx.Idents.get("vla"); 481 } 482 if (ArgType->isVariablyModifiedType()) 483 ArgType = getCanonicalParamType(Ctx, ArgType); 484 VarDecl *Arg; 485 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 486 Arg = ParmVarDecl::Create( 487 Ctx, DebugFunctionDecl, 488 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 489 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 490 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 491 } else { 492 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 493 II, ArgType, ImplicitParamDecl::Other); 494 } 495 Args.emplace_back(Arg); 496 // Do not cast arguments if we emit function with non-original types. 497 TargetArgs.emplace_back( 498 FO.UIntPtrCastRequired 499 ? Arg 500 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 501 ++I; 502 } 503 Args.append(std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 504 CD->param_end()); 505 TargetArgs.append( 506 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 507 CD->param_end()); 508 509 // Create the function declaration. 510 const CGFunctionInfo &FuncInfo = 511 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 512 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 513 514 auto *F = 515 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 516 FO.FunctionName, &CGM.getModule()); 517 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 518 if (CD->isNothrow()) 519 F->setDoesNotThrow(); 520 F->setDoesNotRecurse(); 521 522 // Always inline the outlined function if optimizations are enabled. 523 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 524 F->removeFnAttr(llvm::Attribute::NoInline); 525 F->addFnAttr(llvm::Attribute::AlwaysInline); 526 } 527 528 // Generate the function. 529 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 530 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 531 FO.UIntPtrCastRequired ? FO.Loc 532 : CD->getBody()->getBeginLoc()); 533 unsigned Cnt = CD->getContextParamPosition(); 534 I = FO.S->captures().begin(); 535 for (const FieldDecl *FD : RD->fields()) { 536 // Do not map arguments if we emit function with non-original types. 537 Address LocalAddr(Address::invalid()); 538 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 539 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 540 TargetArgs[Cnt]); 541 } else { 542 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 543 } 544 // If we are capturing a pointer by copy we don't need to do anything, just 545 // use the value that we get from the arguments. 546 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 547 const VarDecl *CurVD = I->getCapturedVar(); 548 if (!FO.RegisterCastedArgsOnly) 549 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 550 ++Cnt; 551 ++I; 552 continue; 553 } 554 555 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 556 AlignmentSource::Decl); 557 if (FD->hasCapturedVLAType()) { 558 if (FO.UIntPtrCastRequired) { 559 ArgLVal = CGF.MakeAddrLValue( 560 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 561 Args[Cnt]->getName(), ArgLVal), 562 FD->getType(), AlignmentSource::Decl); 563 } 564 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 565 const VariableArrayType *VAT = FD->getCapturedVLAType(); 566 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 567 } else if (I->capturesVariable()) { 568 const VarDecl *Var = I->getCapturedVar(); 569 QualType VarTy = Var->getType(); 570 Address ArgAddr = ArgLVal.getAddress(CGF); 571 if (ArgLVal.getType()->isLValueReferenceType()) { 572 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 573 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 574 assert(ArgLVal.getType()->isPointerType()); 575 ArgAddr = CGF.EmitLoadOfPointer( 576 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 577 } 578 if (!FO.RegisterCastedArgsOnly) { 579 LocalAddrs.insert( 580 {Args[Cnt], 581 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 582 } 583 } else if (I->capturesVariableByCopy()) { 584 assert(!FD->getType()->isAnyPointerType() && 585 "Not expecting a captured pointer."); 586 const VarDecl *Var = I->getCapturedVar(); 587 LocalAddrs.insert({Args[Cnt], 588 {Var, FO.UIntPtrCastRequired 589 ? castValueFromUintptr( 590 CGF, I->getLocation(), FD->getType(), 591 Args[Cnt]->getName(), ArgLVal) 592 : ArgLVal.getAddress(CGF)}}); 593 } else { 594 // If 'this' is captured, load it into CXXThisValue. 595 assert(I->capturesThis()); 596 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 597 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 598 } 599 ++Cnt; 600 ++I; 601 } 602 603 return F; 604 } 605 606 llvm::Function * 607 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 608 SourceLocation Loc) { 609 assert( 610 CapturedStmtInfo && 611 "CapturedStmtInfo should be set when generating the captured function"); 612 const CapturedDecl *CD = S.getCapturedDecl(); 613 // Build the argument list. 614 bool NeedWrapperFunction = 615 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 616 FunctionArgList Args; 617 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 618 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 619 SmallString<256> Buffer; 620 llvm::raw_svector_ostream Out(Buffer); 621 Out << CapturedStmtInfo->getHelperName(); 622 if (NeedWrapperFunction) 623 Out << "_debug__"; 624 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 625 Out.str(), Loc); 626 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 627 VLASizes, CXXThisValue, FO); 628 CodeGenFunction::OMPPrivateScope LocalScope(*this); 629 for (const auto &LocalAddrPair : LocalAddrs) { 630 if (LocalAddrPair.second.first) { 631 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 632 return LocalAddrPair.second.second; 633 }); 634 } 635 } 636 (void)LocalScope.Privatize(); 637 for (const auto &VLASizePair : VLASizes) 638 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 639 PGO.assignRegionCounters(GlobalDecl(CD), F); 640 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 641 (void)LocalScope.ForceCleanup(); 642 FinishFunction(CD->getBodyRBrace()); 643 if (!NeedWrapperFunction) 644 return F; 645 646 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 647 /*RegisterCastedArgsOnly=*/true, 648 CapturedStmtInfo->getHelperName(), Loc); 649 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 650 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 651 Args.clear(); 652 LocalAddrs.clear(); 653 VLASizes.clear(); 654 llvm::Function *WrapperF = 655 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 656 WrapperCGF.CXXThisValue, WrapperFO); 657 llvm::SmallVector<llvm::Value *, 4> CallArgs; 658 auto *PI = F->arg_begin(); 659 for (const auto *Arg : Args) { 660 llvm::Value *CallArg; 661 auto I = LocalAddrs.find(Arg); 662 if (I != LocalAddrs.end()) { 663 LValue LV = WrapperCGF.MakeAddrLValue( 664 I->second.second, 665 I->second.first ? I->second.first->getType() : Arg->getType(), 666 AlignmentSource::Decl); 667 if (LV.getType()->isAnyComplexType()) 668 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 669 LV.getAddress(WrapperCGF), 670 PI->getType()->getPointerTo( 671 LV.getAddress(WrapperCGF).getAddressSpace()))); 672 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 673 } else { 674 auto EI = VLASizes.find(Arg); 675 if (EI != VLASizes.end()) { 676 CallArg = EI->second.second; 677 } else { 678 LValue LV = 679 WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 680 Arg->getType(), AlignmentSource::Decl); 681 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 682 } 683 } 684 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 685 ++PI; 686 } 687 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 688 WrapperCGF.FinishFunction(); 689 return WrapperF; 690 } 691 692 //===----------------------------------------------------------------------===// 693 // OpenMP Directive Emission 694 //===----------------------------------------------------------------------===// 695 void CodeGenFunction::EmitOMPAggregateAssign( 696 Address DestAddr, Address SrcAddr, QualType OriginalType, 697 const llvm::function_ref<void(Address, Address)> CopyGen) { 698 // Perform element-by-element initialization. 699 QualType ElementTy; 700 701 // Drill down to the base element type on both arrays. 702 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 703 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 704 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 705 706 llvm::Value *SrcBegin = SrcAddr.getPointer(); 707 llvm::Value *DestBegin = DestAddr.getPointer(); 708 // Cast from pointer to array type to pointer to single element. 709 llvm::Value *DestEnd = 710 Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); 711 // The basic structure here is a while-do loop. 712 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 713 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 714 llvm::Value *IsEmpty = 715 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 716 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 717 718 // Enter the loop body, making that address the current address. 719 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 720 EmitBlock(BodyBB); 721 722 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 723 724 llvm::PHINode *SrcElementPHI = 725 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 726 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 727 Address SrcElementCurrent = 728 Address(SrcElementPHI, 729 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 730 731 llvm::PHINode *DestElementPHI = Builder.CreatePHI( 732 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 733 DestElementPHI->addIncoming(DestBegin, EntryBB); 734 Address DestElementCurrent = 735 Address(DestElementPHI, 736 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 737 738 // Emit copy. 739 CopyGen(DestElementCurrent, SrcElementCurrent); 740 741 // Shift the address forward by one element. 742 llvm::Value *DestElementNext = 743 Builder.CreateConstGEP1_32(DestAddr.getElementType(), DestElementPHI, 744 /*Idx0=*/1, "omp.arraycpy.dest.element"); 745 llvm::Value *SrcElementNext = 746 Builder.CreateConstGEP1_32(SrcAddr.getElementType(), SrcElementPHI, 747 /*Idx0=*/1, "omp.arraycpy.src.element"); 748 // Check whether we've reached the end. 749 llvm::Value *Done = 750 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 751 Builder.CreateCondBr(Done, DoneBB, BodyBB); 752 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 753 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 754 755 // Done. 756 EmitBlock(DoneBB, /*IsFinished=*/true); 757 } 758 759 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 760 Address SrcAddr, const VarDecl *DestVD, 761 const VarDecl *SrcVD, const Expr *Copy) { 762 if (OriginalType->isArrayType()) { 763 const auto *BO = dyn_cast<BinaryOperator>(Copy); 764 if (BO && BO->getOpcode() == BO_Assign) { 765 // Perform simple memcpy for simple copying. 766 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 767 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 768 EmitAggregateAssign(Dest, Src, OriginalType); 769 } else { 770 // For arrays with complex element types perform element by element 771 // copying. 772 EmitOMPAggregateAssign( 773 DestAddr, SrcAddr, OriginalType, 774 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 775 // Working with the single array element, so have to remap 776 // destination and source variables to corresponding array 777 // elements. 778 CodeGenFunction::OMPPrivateScope Remap(*this); 779 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 780 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 781 (void)Remap.Privatize(); 782 EmitIgnoredExpr(Copy); 783 }); 784 } 785 } else { 786 // Remap pseudo source variable to private copy. 787 CodeGenFunction::OMPPrivateScope Remap(*this); 788 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 789 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 790 (void)Remap.Privatize(); 791 // Emit copying of the whole variable. 792 EmitIgnoredExpr(Copy); 793 } 794 } 795 796 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 797 OMPPrivateScope &PrivateScope) { 798 if (!HaveInsertPoint()) 799 return false; 800 bool DeviceConstTarget = 801 getLangOpts().OpenMPIsDevice && 802 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 803 bool FirstprivateIsLastprivate = false; 804 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 805 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 806 for (const auto *D : C->varlists()) 807 Lastprivates.try_emplace( 808 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 809 C->getKind()); 810 } 811 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 812 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 813 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 814 // Force emission of the firstprivate copy if the directive does not emit 815 // outlined function, like omp for, omp simd, omp distribute etc. 816 bool MustEmitFirstprivateCopy = 817 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 818 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 819 const auto *IRef = C->varlist_begin(); 820 const auto *InitsRef = C->inits().begin(); 821 for (const Expr *IInit : C->private_copies()) { 822 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 823 bool ThisFirstprivateIsLastprivate = 824 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 825 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 826 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 827 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 828 !FD->getType()->isReferenceType() && 829 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 830 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 831 ++IRef; 832 ++InitsRef; 833 continue; 834 } 835 // Do not emit copy for firstprivate constant variables in target regions, 836 // captured by reference. 837 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 838 FD && FD->getType()->isReferenceType() && 839 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 840 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 841 ++IRef; 842 ++InitsRef; 843 continue; 844 } 845 FirstprivateIsLastprivate = 846 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 847 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 848 const auto *VDInit = 849 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 850 bool IsRegistered; 851 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 852 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 853 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 854 LValue OriginalLVal; 855 if (!FD) { 856 // Check if the firstprivate variable is just a constant value. 857 ConstantEmission CE = tryEmitAsConstant(&DRE); 858 if (CE && !CE.isReference()) { 859 // Constant value, no need to create a copy. 860 ++IRef; 861 ++InitsRef; 862 continue; 863 } 864 if (CE && CE.isReference()) { 865 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 866 } else { 867 assert(!CE && "Expected non-constant firstprivate."); 868 OriginalLVal = EmitLValue(&DRE); 869 } 870 } else { 871 OriginalLVal = EmitLValue(&DRE); 872 } 873 QualType Type = VD->getType(); 874 if (Type->isArrayType()) { 875 // Emit VarDecl with copy init for arrays. 876 // Get the address of the original variable captured in current 877 // captured region. 878 IsRegistered = PrivateScope.addPrivate( 879 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 880 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 881 const Expr *Init = VD->getInit(); 882 if (!isa<CXXConstructExpr>(Init) || 883 isTrivialInitializer(Init)) { 884 // Perform simple memcpy. 885 LValue Dest = 886 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 887 EmitAggregateAssign(Dest, OriginalLVal, Type); 888 } else { 889 EmitOMPAggregateAssign( 890 Emission.getAllocatedAddress(), 891 OriginalLVal.getAddress(*this), Type, 892 [this, VDInit, Init](Address DestElement, 893 Address SrcElement) { 894 // Clean up any temporaries needed by the 895 // initialization. 896 RunCleanupsScope InitScope(*this); 897 // Emit initialization for single element. 898 setAddrOfLocalVar(VDInit, SrcElement); 899 EmitAnyExprToMem(Init, DestElement, 900 Init->getType().getQualifiers(), 901 /*IsInitializer*/ false); 902 LocalDeclMap.erase(VDInit); 903 }); 904 } 905 EmitAutoVarCleanups(Emission); 906 return Emission.getAllocatedAddress(); 907 }); 908 } else { 909 Address OriginalAddr = OriginalLVal.getAddress(*this); 910 IsRegistered = 911 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 912 ThisFirstprivateIsLastprivate, 913 OrigVD, &Lastprivates, IRef]() { 914 // Emit private VarDecl with copy init. 915 // Remap temp VDInit variable to the address of the original 916 // variable (for proper handling of captured global variables). 917 setAddrOfLocalVar(VDInit, OriginalAddr); 918 EmitDecl(*VD); 919 LocalDeclMap.erase(VDInit); 920 if (ThisFirstprivateIsLastprivate && 921 Lastprivates[OrigVD->getCanonicalDecl()] == 922 OMPC_LASTPRIVATE_conditional) { 923 // Create/init special variable for lastprivate conditionals. 924 Address VDAddr = 925 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 926 *this, OrigVD); 927 llvm::Value *V = EmitLoadOfScalar( 928 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 929 AlignmentSource::Decl), 930 (*IRef)->getExprLoc()); 931 EmitStoreOfScalar(V, 932 MakeAddrLValue(VDAddr, (*IRef)->getType(), 933 AlignmentSource::Decl)); 934 LocalDeclMap.erase(VD); 935 setAddrOfLocalVar(VD, VDAddr); 936 return VDAddr; 937 } 938 return GetAddrOfLocalVar(VD); 939 }); 940 } 941 assert(IsRegistered && 942 "firstprivate var already registered as private"); 943 // Silence the warning about unused variable. 944 (void)IsRegistered; 945 } 946 ++IRef; 947 ++InitsRef; 948 } 949 } 950 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 951 } 952 953 void CodeGenFunction::EmitOMPPrivateClause( 954 const OMPExecutableDirective &D, 955 CodeGenFunction::OMPPrivateScope &PrivateScope) { 956 if (!HaveInsertPoint()) 957 return; 958 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 959 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 960 auto IRef = C->varlist_begin(); 961 for (const Expr *IInit : C->private_copies()) { 962 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 963 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 964 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 965 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 966 // Emit private VarDecl with copy init. 967 EmitDecl(*VD); 968 return GetAddrOfLocalVar(VD); 969 }); 970 assert(IsRegistered && "private var already registered as private"); 971 // Silence the warning about unused variable. 972 (void)IsRegistered; 973 } 974 ++IRef; 975 } 976 } 977 } 978 979 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 980 if (!HaveInsertPoint()) 981 return false; 982 // threadprivate_var1 = master_threadprivate_var1; 983 // operator=(threadprivate_var2, master_threadprivate_var2); 984 // ... 985 // __kmpc_barrier(&loc, global_tid); 986 llvm::DenseSet<const VarDecl *> CopiedVars; 987 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 988 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 989 auto IRef = C->varlist_begin(); 990 auto ISrcRef = C->source_exprs().begin(); 991 auto IDestRef = C->destination_exprs().begin(); 992 for (const Expr *AssignOp : C->assignment_ops()) { 993 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 994 QualType Type = VD->getType(); 995 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 996 // Get the address of the master variable. If we are emitting code with 997 // TLS support, the address is passed from the master as field in the 998 // captured declaration. 999 Address MasterAddr = Address::invalid(); 1000 if (getLangOpts().OpenMPUseTLS && 1001 getContext().getTargetInfo().isTLSSupported()) { 1002 assert(CapturedStmtInfo->lookup(VD) && 1003 "Copyin threadprivates should have been captured!"); 1004 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 1005 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1006 MasterAddr = EmitLValue(&DRE).getAddress(*this); 1007 LocalDeclMap.erase(VD); 1008 } else { 1009 MasterAddr = 1010 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1011 : CGM.GetAddrOfGlobal(VD), 1012 getContext().getDeclAlign(VD)); 1013 } 1014 // Get the address of the threadprivate variable. 1015 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1016 if (CopiedVars.size() == 1) { 1017 // At first check if current thread is a master thread. If it is, no 1018 // need to copy data. 1019 CopyBegin = createBasicBlock("copyin.not.master"); 1020 CopyEnd = createBasicBlock("copyin.not.master.end"); 1021 // TODO: Avoid ptrtoint conversion. 1022 auto *MasterAddrInt = 1023 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1024 auto *PrivateAddrInt = 1025 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1026 Builder.CreateCondBr( 1027 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1028 CopyEnd); 1029 EmitBlock(CopyBegin); 1030 } 1031 const auto *SrcVD = 1032 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1033 const auto *DestVD = 1034 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1035 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1036 } 1037 ++IRef; 1038 ++ISrcRef; 1039 ++IDestRef; 1040 } 1041 } 1042 if (CopyEnd) { 1043 // Exit out of copying procedure for non-master thread. 1044 EmitBlock(CopyEnd, /*IsFinished=*/true); 1045 return true; 1046 } 1047 return false; 1048 } 1049 1050 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1051 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1052 if (!HaveInsertPoint()) 1053 return false; 1054 bool HasAtLeastOneLastprivate = false; 1055 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1056 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1057 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1058 for (const Expr *C : LoopDirective->counters()) { 1059 SIMDLCVs.insert( 1060 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1061 } 1062 } 1063 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1064 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1065 HasAtLeastOneLastprivate = true; 1066 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1067 !getLangOpts().OpenMPSimd) 1068 break; 1069 const auto *IRef = C->varlist_begin(); 1070 const auto *IDestRef = C->destination_exprs().begin(); 1071 for (const Expr *IInit : C->private_copies()) { 1072 // Keep the address of the original variable for future update at the end 1073 // of the loop. 1074 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1075 // Taskloops do not require additional initialization, it is done in 1076 // runtime support library. 1077 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1078 const auto *DestVD = 1079 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1080 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1081 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1082 /*RefersToEnclosingVariableOrCapture=*/ 1083 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1084 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1085 return EmitLValue(&DRE).getAddress(*this); 1086 }); 1087 // Check if the variable is also a firstprivate: in this case IInit is 1088 // not generated. Initialization of this variable will happen in codegen 1089 // for 'firstprivate' clause. 1090 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1091 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1092 bool IsRegistered = 1093 PrivateScope.addPrivate(OrigVD, [this, VD, C, OrigVD]() { 1094 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1095 Address VDAddr = 1096 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 1097 *this, OrigVD); 1098 setAddrOfLocalVar(VD, VDAddr); 1099 return VDAddr; 1100 } 1101 // Emit private VarDecl with copy init. 1102 EmitDecl(*VD); 1103 return GetAddrOfLocalVar(VD); 1104 }); 1105 assert(IsRegistered && 1106 "lastprivate var already registered as private"); 1107 (void)IsRegistered; 1108 } 1109 } 1110 ++IRef; 1111 ++IDestRef; 1112 } 1113 } 1114 return HasAtLeastOneLastprivate; 1115 } 1116 1117 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1118 const OMPExecutableDirective &D, bool NoFinals, 1119 llvm::Value *IsLastIterCond) { 1120 if (!HaveInsertPoint()) 1121 return; 1122 // Emit following code: 1123 // if (<IsLastIterCond>) { 1124 // orig_var1 = private_orig_var1; 1125 // ... 1126 // orig_varn = private_orig_varn; 1127 // } 1128 llvm::BasicBlock *ThenBB = nullptr; 1129 llvm::BasicBlock *DoneBB = nullptr; 1130 if (IsLastIterCond) { 1131 // Emit implicit barrier if at least one lastprivate conditional is found 1132 // and this is not a simd mode. 1133 if (!getLangOpts().OpenMPSimd && 1134 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1135 [](const OMPLastprivateClause *C) { 1136 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1137 })) { 1138 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1139 OMPD_unknown, 1140 /*EmitChecks=*/false, 1141 /*ForceSimpleCall=*/true); 1142 } 1143 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1144 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1145 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1146 EmitBlock(ThenBB); 1147 } 1148 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1149 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1150 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1151 auto IC = LoopDirective->counters().begin(); 1152 for (const Expr *F : LoopDirective->finals()) { 1153 const auto *D = 1154 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1155 if (NoFinals) 1156 AlreadyEmittedVars.insert(D); 1157 else 1158 LoopCountersAndUpdates[D] = F; 1159 ++IC; 1160 } 1161 } 1162 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1163 auto IRef = C->varlist_begin(); 1164 auto ISrcRef = C->source_exprs().begin(); 1165 auto IDestRef = C->destination_exprs().begin(); 1166 for (const Expr *AssignOp : C->assignment_ops()) { 1167 const auto *PrivateVD = 1168 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1169 QualType Type = PrivateVD->getType(); 1170 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1171 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1172 // If lastprivate variable is a loop control variable for loop-based 1173 // directive, update its value before copyin back to original 1174 // variable. 1175 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1176 EmitIgnoredExpr(FinalExpr); 1177 const auto *SrcVD = 1178 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1179 const auto *DestVD = 1180 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1181 // Get the address of the private variable. 1182 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1183 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1184 PrivateAddr = 1185 Address(Builder.CreateLoad(PrivateAddr), 1186 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1187 // Store the last value to the private copy in the last iteration. 1188 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1189 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1190 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1191 (*IRef)->getExprLoc()); 1192 // Get the address of the original variable. 1193 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1194 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1195 } 1196 ++IRef; 1197 ++ISrcRef; 1198 ++IDestRef; 1199 } 1200 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1201 EmitIgnoredExpr(PostUpdate); 1202 } 1203 if (IsLastIterCond) 1204 EmitBlock(DoneBB, /*IsFinished=*/true); 1205 } 1206 1207 void CodeGenFunction::EmitOMPReductionClauseInit( 1208 const OMPExecutableDirective &D, 1209 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1210 if (!HaveInsertPoint()) 1211 return; 1212 SmallVector<const Expr *, 4> Shareds; 1213 SmallVector<const Expr *, 4> Privates; 1214 SmallVector<const Expr *, 4> ReductionOps; 1215 SmallVector<const Expr *, 4> LHSs; 1216 SmallVector<const Expr *, 4> RHSs; 1217 OMPTaskDataTy Data; 1218 SmallVector<const Expr *, 4> TaskLHSs; 1219 SmallVector<const Expr *, 4> TaskRHSs; 1220 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1221 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1222 continue; 1223 Shareds.append(C->varlist_begin(), C->varlist_end()); 1224 Privates.append(C->privates().begin(), C->privates().end()); 1225 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1226 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1227 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1228 if (C->getModifier() == OMPC_REDUCTION_task) { 1229 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1230 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1231 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1232 Data.ReductionOps.append(C->reduction_ops().begin(), 1233 C->reduction_ops().end()); 1234 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1235 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1236 } 1237 } 1238 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1239 unsigned Count = 0; 1240 auto *ILHS = LHSs.begin(); 1241 auto *IRHS = RHSs.begin(); 1242 auto *IPriv = Privates.begin(); 1243 for (const Expr *IRef : Shareds) { 1244 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1245 // Emit private VarDecl with reduction init. 1246 RedCG.emitSharedOrigLValue(*this, Count); 1247 RedCG.emitAggregateType(*this, Count); 1248 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1249 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1250 RedCG.getSharedLValue(Count).getAddress(*this), 1251 [&Emission](CodeGenFunction &CGF) { 1252 CGF.EmitAutoVarInit(Emission); 1253 return true; 1254 }); 1255 EmitAutoVarCleanups(Emission); 1256 Address BaseAddr = RedCG.adjustPrivateAddress( 1257 *this, Count, Emission.getAllocatedAddress()); 1258 bool IsRegistered = PrivateScope.addPrivate( 1259 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1260 assert(IsRegistered && "private var already registered as private"); 1261 // Silence the warning about unused variable. 1262 (void)IsRegistered; 1263 1264 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1265 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1266 QualType Type = PrivateVD->getType(); 1267 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1268 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1269 // Store the address of the original variable associated with the LHS 1270 // implicit variable. 1271 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1272 return RedCG.getSharedLValue(Count).getAddress(*this); 1273 }); 1274 PrivateScope.addPrivate( 1275 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1276 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1277 isa<ArraySubscriptExpr>(IRef)) { 1278 // Store the address of the original variable associated with the LHS 1279 // implicit variable. 1280 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1281 return RedCG.getSharedLValue(Count).getAddress(*this); 1282 }); 1283 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1284 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1285 ConvertTypeForMem(RHSVD->getType()), 1286 "rhs.begin"); 1287 }); 1288 } else { 1289 QualType Type = PrivateVD->getType(); 1290 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1291 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1292 // Store the address of the original variable associated with the LHS 1293 // implicit variable. 1294 if (IsArray) { 1295 OriginalAddr = Builder.CreateElementBitCast( 1296 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1297 } 1298 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1299 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1300 return IsArray ? Builder.CreateElementBitCast( 1301 GetAddrOfLocalVar(PrivateVD), 1302 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1303 : GetAddrOfLocalVar(PrivateVD); 1304 }); 1305 } 1306 ++ILHS; 1307 ++IRHS; 1308 ++IPriv; 1309 ++Count; 1310 } 1311 if (!Data.ReductionVars.empty()) { 1312 Data.IsReductionWithTaskMod = true; 1313 Data.IsWorksharingReduction = 1314 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1315 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1316 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1317 const Expr *TaskRedRef = nullptr; 1318 switch (D.getDirectiveKind()) { 1319 case OMPD_parallel: 1320 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1321 break; 1322 case OMPD_for: 1323 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1324 break; 1325 case OMPD_sections: 1326 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1327 break; 1328 case OMPD_parallel_for: 1329 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1330 break; 1331 case OMPD_parallel_master: 1332 TaskRedRef = 1333 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1334 break; 1335 case OMPD_parallel_sections: 1336 TaskRedRef = 1337 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1338 break; 1339 case OMPD_target_parallel: 1340 TaskRedRef = 1341 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1342 break; 1343 case OMPD_target_parallel_for: 1344 TaskRedRef = 1345 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1346 break; 1347 case OMPD_distribute_parallel_for: 1348 TaskRedRef = 1349 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1350 break; 1351 case OMPD_teams_distribute_parallel_for: 1352 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1353 .getTaskReductionRefExpr(); 1354 break; 1355 case OMPD_target_teams_distribute_parallel_for: 1356 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1357 .getTaskReductionRefExpr(); 1358 break; 1359 case OMPD_simd: 1360 case OMPD_for_simd: 1361 case OMPD_section: 1362 case OMPD_single: 1363 case OMPD_master: 1364 case OMPD_critical: 1365 case OMPD_parallel_for_simd: 1366 case OMPD_task: 1367 case OMPD_taskyield: 1368 case OMPD_barrier: 1369 case OMPD_taskwait: 1370 case OMPD_taskgroup: 1371 case OMPD_flush: 1372 case OMPD_depobj: 1373 case OMPD_scan: 1374 case OMPD_ordered: 1375 case OMPD_atomic: 1376 case OMPD_teams: 1377 case OMPD_target: 1378 case OMPD_cancellation_point: 1379 case OMPD_cancel: 1380 case OMPD_target_data: 1381 case OMPD_target_enter_data: 1382 case OMPD_target_exit_data: 1383 case OMPD_taskloop: 1384 case OMPD_taskloop_simd: 1385 case OMPD_master_taskloop: 1386 case OMPD_master_taskloop_simd: 1387 case OMPD_parallel_master_taskloop: 1388 case OMPD_parallel_master_taskloop_simd: 1389 case OMPD_distribute: 1390 case OMPD_target_update: 1391 case OMPD_distribute_parallel_for_simd: 1392 case OMPD_distribute_simd: 1393 case OMPD_target_parallel_for_simd: 1394 case OMPD_target_simd: 1395 case OMPD_teams_distribute: 1396 case OMPD_teams_distribute_simd: 1397 case OMPD_teams_distribute_parallel_for_simd: 1398 case OMPD_target_teams: 1399 case OMPD_target_teams_distribute: 1400 case OMPD_target_teams_distribute_parallel_for_simd: 1401 case OMPD_target_teams_distribute_simd: 1402 case OMPD_declare_target: 1403 case OMPD_end_declare_target: 1404 case OMPD_threadprivate: 1405 case OMPD_allocate: 1406 case OMPD_declare_reduction: 1407 case OMPD_declare_mapper: 1408 case OMPD_declare_simd: 1409 case OMPD_requires: 1410 case OMPD_declare_variant: 1411 case OMPD_begin_declare_variant: 1412 case OMPD_end_declare_variant: 1413 case OMPD_unknown: 1414 default: 1415 llvm_unreachable("Enexpected directive with task reductions."); 1416 } 1417 1418 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1419 EmitVarDecl(*VD); 1420 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1421 /*Volatile=*/false, TaskRedRef->getType()); 1422 } 1423 } 1424 1425 void CodeGenFunction::EmitOMPReductionClauseFinal( 1426 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1427 if (!HaveInsertPoint()) 1428 return; 1429 llvm::SmallVector<const Expr *, 8> Privates; 1430 llvm::SmallVector<const Expr *, 8> LHSExprs; 1431 llvm::SmallVector<const Expr *, 8> RHSExprs; 1432 llvm::SmallVector<const Expr *, 8> ReductionOps; 1433 bool HasAtLeastOneReduction = false; 1434 bool IsReductionWithTaskMod = false; 1435 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1436 // Do not emit for inscan reductions. 1437 if (C->getModifier() == OMPC_REDUCTION_inscan) 1438 continue; 1439 HasAtLeastOneReduction = true; 1440 Privates.append(C->privates().begin(), C->privates().end()); 1441 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1442 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1443 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1444 IsReductionWithTaskMod = 1445 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1446 } 1447 if (HasAtLeastOneReduction) { 1448 if (IsReductionWithTaskMod) { 1449 CGM.getOpenMPRuntime().emitTaskReductionFini( 1450 *this, D.getBeginLoc(), 1451 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1452 } 1453 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1454 isOpenMPParallelDirective(D.getDirectiveKind()) || 1455 ReductionKind == OMPD_simd; 1456 bool SimpleReduction = ReductionKind == OMPD_simd; 1457 // Emit nowait reduction if nowait clause is present or directive is a 1458 // parallel directive (it always has implicit barrier). 1459 CGM.getOpenMPRuntime().emitReduction( 1460 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1461 {WithNowait, SimpleReduction, ReductionKind}); 1462 } 1463 } 1464 1465 static void emitPostUpdateForReductionClause( 1466 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1467 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1468 if (!CGF.HaveInsertPoint()) 1469 return; 1470 llvm::BasicBlock *DoneBB = nullptr; 1471 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1472 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1473 if (!DoneBB) { 1474 if (llvm::Value *Cond = CondGen(CGF)) { 1475 // If the first post-update expression is found, emit conditional 1476 // block if it was requested. 1477 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1478 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1479 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1480 CGF.EmitBlock(ThenBB); 1481 } 1482 } 1483 CGF.EmitIgnoredExpr(PostUpdate); 1484 } 1485 } 1486 if (DoneBB) 1487 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1488 } 1489 1490 namespace { 1491 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1492 /// parallel function. This is necessary for combined constructs such as 1493 /// 'distribute parallel for' 1494 typedef llvm::function_ref<void(CodeGenFunction &, 1495 const OMPExecutableDirective &, 1496 llvm::SmallVectorImpl<llvm::Value *> &)> 1497 CodeGenBoundParametersTy; 1498 } // anonymous namespace 1499 1500 static void 1501 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1502 const OMPExecutableDirective &S) { 1503 if (CGF.getLangOpts().OpenMP < 50) 1504 return; 1505 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1506 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1507 for (const Expr *Ref : C->varlists()) { 1508 if (!Ref->getType()->isScalarType()) 1509 continue; 1510 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1511 if (!DRE) 1512 continue; 1513 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1514 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1515 } 1516 } 1517 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1518 for (const Expr *Ref : C->varlists()) { 1519 if (!Ref->getType()->isScalarType()) 1520 continue; 1521 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1522 if (!DRE) 1523 continue; 1524 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1525 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1526 } 1527 } 1528 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1529 for (const Expr *Ref : C->varlists()) { 1530 if (!Ref->getType()->isScalarType()) 1531 continue; 1532 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1533 if (!DRE) 1534 continue; 1535 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1536 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1537 } 1538 } 1539 // Privates should ne analyzed since they are not captured at all. 1540 // Task reductions may be skipped - tasks are ignored. 1541 // Firstprivates do not return value but may be passed by reference - no need 1542 // to check for updated lastprivate conditional. 1543 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1544 for (const Expr *Ref : C->varlists()) { 1545 if (!Ref->getType()->isScalarType()) 1546 continue; 1547 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1548 if (!DRE) 1549 continue; 1550 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1551 } 1552 } 1553 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1554 CGF, S, PrivateDecls); 1555 } 1556 1557 static void emitCommonOMPParallelDirective( 1558 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1559 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1560 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1561 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1562 llvm::Value *NumThreads = nullptr; 1563 llvm::Function *OutlinedFn = 1564 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1565 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1566 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1567 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1568 NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1569 /*IgnoreResultAssign=*/true); 1570 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1571 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1572 } 1573 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1574 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1575 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1576 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1577 } 1578 const Expr *IfCond = nullptr; 1579 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1580 if (C->getNameModifier() == OMPD_unknown || 1581 C->getNameModifier() == OMPD_parallel) { 1582 IfCond = C->getCondition(); 1583 break; 1584 } 1585 } 1586 1587 OMPParallelScope Scope(CGF, S); 1588 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1589 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1590 // lower and upper bounds with the pragma 'for' chunking mechanism. 1591 // The following lambda takes care of appending the lower and upper bound 1592 // parameters when necessary 1593 CodeGenBoundParameters(CGF, S, CapturedVars); 1594 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1595 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1596 CapturedVars, IfCond, NumThreads); 1597 } 1598 1599 static bool isAllocatableDecl(const VarDecl *VD) { 1600 const VarDecl *CVD = VD->getCanonicalDecl(); 1601 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1602 return false; 1603 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1604 // Use the default allocation. 1605 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1606 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1607 !AA->getAllocator()); 1608 } 1609 1610 static void emitEmptyBoundParameters(CodeGenFunction &, 1611 const OMPExecutableDirective &, 1612 llvm::SmallVectorImpl<llvm::Value *> &) {} 1613 1614 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1615 CodeGenFunction &CGF, const VarDecl *VD) { 1616 CodeGenModule &CGM = CGF.CGM; 1617 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1618 1619 if (!VD) 1620 return Address::invalid(); 1621 const VarDecl *CVD = VD->getCanonicalDecl(); 1622 if (!isAllocatableDecl(CVD)) 1623 return Address::invalid(); 1624 llvm::Value *Size; 1625 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1626 if (CVD->getType()->isVariablyModifiedType()) { 1627 Size = CGF.getTypeSize(CVD->getType()); 1628 // Align the size: ((size + align - 1) / align) * align 1629 Size = CGF.Builder.CreateNUWAdd( 1630 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1631 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1632 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1633 } else { 1634 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1635 Size = CGM.getSize(Sz.alignTo(Align)); 1636 } 1637 1638 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1639 assert(AA->getAllocator() && 1640 "Expected allocator expression for non-default allocator."); 1641 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1642 // According to the standard, the original allocator type is a enum (integer). 1643 // Convert to pointer type, if required. 1644 if (Allocator->getType()->isIntegerTy()) 1645 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1646 else if (Allocator->getType()->isPointerTy()) 1647 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1648 CGM.VoidPtrTy); 1649 1650 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1651 CGF.Builder, Size, Allocator, 1652 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1653 llvm::CallInst *FreeCI = 1654 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1655 1656 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1657 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1658 Addr, 1659 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1660 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1661 return Address(Addr, Align); 1662 } 1663 1664 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1665 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1666 SourceLocation Loc) { 1667 CodeGenModule &CGM = CGF.CGM; 1668 if (CGM.getLangOpts().OpenMPUseTLS && 1669 CGM.getContext().getTargetInfo().isTLSSupported()) 1670 return VDAddr; 1671 1672 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1673 1674 llvm::Type *VarTy = VDAddr.getElementType(); 1675 llvm::Value *Data = 1676 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1677 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1678 std::string Suffix = getNameWithSeparators({"cache", ""}); 1679 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1680 1681 llvm::CallInst *ThreadPrivateCacheCall = 1682 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1683 1684 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1685 } 1686 1687 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1688 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1689 SmallString<128> Buffer; 1690 llvm::raw_svector_ostream OS(Buffer); 1691 StringRef Sep = FirstSeparator; 1692 for (StringRef Part : Parts) { 1693 OS << Sep << Part; 1694 Sep = Separator; 1695 } 1696 return OS.str().str(); 1697 } 1698 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1699 if (CGM.getLangOpts().OpenMPIRBuilder) { 1700 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1701 // Check if we have any if clause associated with the directive. 1702 llvm::Value *IfCond = nullptr; 1703 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1704 IfCond = EmitScalarExpr(C->getCondition(), 1705 /*IgnoreResultAssign=*/true); 1706 1707 llvm::Value *NumThreads = nullptr; 1708 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1709 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1710 /*IgnoreResultAssign=*/true); 1711 1712 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1713 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1714 ProcBind = ProcBindClause->getProcBindKind(); 1715 1716 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1717 1718 // The cleanup callback that finalizes all variabels at the given location, 1719 // thus calls destructors etc. 1720 auto FiniCB = [this](InsertPointTy IP) { 1721 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1722 }; 1723 1724 // Privatization callback that performs appropriate action for 1725 // shared/private/firstprivate/lastprivate/copyin/... variables. 1726 // 1727 // TODO: This defaults to shared right now. 1728 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1729 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1730 // The next line is appropriate only for variables (Val) with the 1731 // data-sharing attribute "shared". 1732 ReplVal = &Val; 1733 1734 return CodeGenIP; 1735 }; 1736 1737 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1738 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1739 1740 auto BodyGenCB = [ParallelRegionBodyStmt, 1741 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1742 llvm::BasicBlock &ContinuationBB) { 1743 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1744 ContinuationBB); 1745 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1746 CodeGenIP, ContinuationBB); 1747 }; 1748 1749 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1750 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1751 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1752 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1753 Builder.restoreIP( 1754 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1755 IfCond, NumThreads, ProcBind, S.hasCancel())); 1756 return; 1757 } 1758 1759 // Emit parallel region as a standalone region. 1760 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1761 Action.Enter(CGF); 1762 OMPPrivateScope PrivateScope(CGF); 1763 bool Copyins = CGF.EmitOMPCopyinClause(S); 1764 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1765 if (Copyins) { 1766 // Emit implicit barrier to synchronize threads and avoid data races on 1767 // propagation master's thread values of threadprivate variables to local 1768 // instances of that variables of all other implicit threads. 1769 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1770 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1771 /*ForceSimpleCall=*/true); 1772 } 1773 CGF.EmitOMPPrivateClause(S, PrivateScope); 1774 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1775 (void)PrivateScope.Privatize(); 1776 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1777 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1778 }; 1779 { 1780 auto LPCRegion = 1781 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1782 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1783 emitEmptyBoundParameters); 1784 emitPostUpdateForReductionClause(*this, S, 1785 [](CodeGenFunction &) { return nullptr; }); 1786 } 1787 // Check for outer lastprivate conditional update. 1788 checkForLastprivateConditionalUpdate(*this, S); 1789 } 1790 1791 void CodeGenFunction::EmitOMPMetaDirective(const OMPMetaDirective &S) { 1792 EmitStmt(S.getIfStmt()); 1793 } 1794 1795 namespace { 1796 /// RAII to handle scopes for loop transformation directives. 1797 class OMPTransformDirectiveScopeRAII { 1798 OMPLoopScope *Scope = nullptr; 1799 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1800 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1801 1802 public: 1803 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1804 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1805 Scope = new OMPLoopScope(CGF, *Dir); 1806 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1807 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1808 } 1809 } 1810 ~OMPTransformDirectiveScopeRAII() { 1811 if (!Scope) 1812 return; 1813 delete CapInfoRAII; 1814 delete CGSI; 1815 delete Scope; 1816 } 1817 }; 1818 } // namespace 1819 1820 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1821 int MaxLevel, int Level = 0) { 1822 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1823 const Stmt *SimplifiedS = S->IgnoreContainers(); 1824 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1825 PrettyStackTraceLoc CrashInfo( 1826 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1827 "LLVM IR generation of compound statement ('{}')"); 1828 1829 // Keep track of the current cleanup stack depth, including debug scopes. 1830 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1831 for (const Stmt *CurStmt : CS->body()) 1832 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1833 return; 1834 } 1835 if (SimplifiedS == NextLoop) { 1836 if (auto *Dir = dyn_cast<OMPLoopTransformationDirective>(SimplifiedS)) 1837 SimplifiedS = Dir->getTransformedStmt(); 1838 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1839 SimplifiedS = CanonLoop->getLoopStmt(); 1840 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1841 S = For->getBody(); 1842 } else { 1843 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1844 "Expected canonical for loop or range-based for loop."); 1845 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1846 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1847 S = CXXFor->getBody(); 1848 } 1849 if (Level + 1 < MaxLevel) { 1850 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1851 S, /*TryImperfectlyNestedLoops=*/true); 1852 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1853 return; 1854 } 1855 } 1856 CGF.EmitStmt(S); 1857 } 1858 1859 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1860 JumpDest LoopExit) { 1861 RunCleanupsScope BodyScope(*this); 1862 // Update counters values on current iteration. 1863 for (const Expr *UE : D.updates()) 1864 EmitIgnoredExpr(UE); 1865 // Update the linear variables. 1866 // In distribute directives only loop counters may be marked as linear, no 1867 // need to generate the code for them. 1868 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1869 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1870 for (const Expr *UE : C->updates()) 1871 EmitIgnoredExpr(UE); 1872 } 1873 } 1874 1875 // On a continue in the body, jump to the end. 1876 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1877 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1878 for (const Expr *E : D.finals_conditions()) { 1879 if (!E) 1880 continue; 1881 // Check that loop counter in non-rectangular nest fits into the iteration 1882 // space. 1883 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1884 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1885 getProfileCount(D.getBody())); 1886 EmitBlock(NextBB); 1887 } 1888 1889 OMPPrivateScope InscanScope(*this); 1890 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1891 bool IsInscanRegion = InscanScope.Privatize(); 1892 if (IsInscanRegion) { 1893 // Need to remember the block before and after scan directive 1894 // to dispatch them correctly depending on the clause used in 1895 // this directive, inclusive or exclusive. For inclusive scan the natural 1896 // order of the blocks is used, for exclusive clause the blocks must be 1897 // executed in reverse order. 1898 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1899 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1900 // No need to allocate inscan exit block, in simd mode it is selected in the 1901 // codegen for the scan directive. 1902 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1903 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1904 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1905 EmitBranch(OMPScanDispatch); 1906 EmitBlock(OMPBeforeScanBlock); 1907 } 1908 1909 // Emit loop variables for C++ range loops. 1910 const Stmt *Body = 1911 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1912 // Emit loop body. 1913 emitBody(*this, Body, 1914 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1915 Body, /*TryImperfectlyNestedLoops=*/true), 1916 D.getLoopsNumber()); 1917 1918 // Jump to the dispatcher at the end of the loop body. 1919 if (IsInscanRegion) 1920 EmitBranch(OMPScanExitBlock); 1921 1922 // The end (updates/cleanups). 1923 EmitBlock(Continue.getBlock()); 1924 BreakContinueStack.pop_back(); 1925 } 1926 1927 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1928 1929 /// Emit a captured statement and return the function as well as its captured 1930 /// closure context. 1931 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1932 const CapturedStmt *S) { 1933 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1934 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1935 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1936 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1937 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1938 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1939 1940 return {F, CapStruct.getPointer(ParentCGF)}; 1941 } 1942 1943 /// Emit a call to a previously captured closure. 1944 static llvm::CallInst * 1945 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1946 llvm::ArrayRef<llvm::Value *> Args) { 1947 // Append the closure context to the argument. 1948 SmallVector<llvm::Value *> EffectiveArgs; 1949 EffectiveArgs.reserve(Args.size() + 1); 1950 llvm::append_range(EffectiveArgs, Args); 1951 EffectiveArgs.push_back(Cap.second); 1952 1953 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1954 } 1955 1956 llvm::CanonicalLoopInfo * 1957 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1958 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1959 1960 // The caller is processing the loop-associated directive processing the \p 1961 // Depth loops nested in \p S. Put the previous pending loop-associated 1962 // directive to the stack. If the current loop-associated directive is a loop 1963 // transformation directive, it will push its generated loops onto the stack 1964 // such that together with the loops left here they form the combined loop 1965 // nest for the parent loop-associated directive. 1966 int ParentExpectedOMPLoopDepth = ExpectedOMPLoopDepth; 1967 ExpectedOMPLoopDepth = Depth; 1968 1969 EmitStmt(S); 1970 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1971 1972 // The last added loop is the outermost one. 1973 llvm::CanonicalLoopInfo *Result = OMPLoopNestStack.back(); 1974 1975 // Pop the \p Depth loops requested by the call from that stack and restore 1976 // the previous context. 1977 OMPLoopNestStack.pop_back_n(Depth); 1978 ExpectedOMPLoopDepth = ParentExpectedOMPLoopDepth; 1979 1980 return Result; 1981 } 1982 1983 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 1984 const Stmt *SyntacticalLoop = S->getLoopStmt(); 1985 if (!getLangOpts().OpenMPIRBuilder) { 1986 // Ignore if OpenMPIRBuilder is not enabled. 1987 EmitStmt(SyntacticalLoop); 1988 return; 1989 } 1990 1991 LexicalScope ForScope(*this, S->getSourceRange()); 1992 1993 // Emit init statements. The Distance/LoopVar funcs may reference variable 1994 // declarations they contain. 1995 const Stmt *BodyStmt; 1996 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 1997 if (const Stmt *InitStmt = For->getInit()) 1998 EmitStmt(InitStmt); 1999 BodyStmt = For->getBody(); 2000 } else if (const auto *RangeFor = 2001 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 2002 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 2003 EmitStmt(RangeStmt); 2004 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 2005 EmitStmt(BeginStmt); 2006 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 2007 EmitStmt(EndStmt); 2008 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 2009 EmitStmt(LoopVarStmt); 2010 BodyStmt = RangeFor->getBody(); 2011 } else 2012 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 2013 2014 // Emit closure for later use. By-value captures will be captured here. 2015 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 2016 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 2017 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 2018 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2019 2020 // Call the distance function to get the number of iterations of the loop to 2021 // come. 2022 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2023 ->getParam(0) 2024 ->getType() 2025 .getNonReferenceType(); 2026 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2027 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2028 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2029 2030 // Emit the loop structure. 2031 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2032 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2033 llvm::Value *IndVar) { 2034 Builder.restoreIP(CodeGenIP); 2035 2036 // Emit the loop body: Convert the logical iteration number to the loop 2037 // variable and emit the body. 2038 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2039 LValue LCVal = EmitLValue(LoopVarRef); 2040 Address LoopVarAddress = LCVal.getAddress(*this); 2041 emitCapturedStmtCall(*this, LoopVarClosure, 2042 {LoopVarAddress.getPointer(), IndVar}); 2043 2044 RunCleanupsScope BodyScope(*this); 2045 EmitStmt(BodyStmt); 2046 }; 2047 llvm::CanonicalLoopInfo *CL = 2048 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2049 2050 // Finish up the loop. 2051 Builder.restoreIP(CL->getAfterIP()); 2052 ForScope.ForceCleanup(); 2053 2054 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2055 OMPLoopNestStack.push_back(CL); 2056 } 2057 2058 void CodeGenFunction::EmitOMPInnerLoop( 2059 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2060 const Expr *IncExpr, 2061 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2062 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2063 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2064 2065 // Start the loop with a block that tests the condition. 2066 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2067 EmitBlock(CondBlock); 2068 const SourceRange R = S.getSourceRange(); 2069 2070 // If attributes are attached, push to the basic block with them. 2071 const auto &OMPED = cast<OMPExecutableDirective>(S); 2072 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2073 const Stmt *SS = ICS->getCapturedStmt(); 2074 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2075 OMPLoopNestStack.clear(); 2076 if (AS) 2077 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2078 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2079 SourceLocToDebugLoc(R.getEnd())); 2080 else 2081 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2082 SourceLocToDebugLoc(R.getEnd())); 2083 2084 // If there are any cleanups between here and the loop-exit scope, 2085 // create a block to stage a loop exit along. 2086 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2087 if (RequiresCleanup) 2088 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2089 2090 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2091 2092 // Emit condition. 2093 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2094 if (ExitBlock != LoopExit.getBlock()) { 2095 EmitBlock(ExitBlock); 2096 EmitBranchThroughCleanup(LoopExit); 2097 } 2098 2099 EmitBlock(LoopBody); 2100 incrementProfileCounter(&S); 2101 2102 // Create a block for the increment. 2103 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2104 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2105 2106 BodyGen(*this); 2107 2108 // Emit "IV = IV + 1" and a back-edge to the condition block. 2109 EmitBlock(Continue.getBlock()); 2110 EmitIgnoredExpr(IncExpr); 2111 PostIncGen(*this); 2112 BreakContinueStack.pop_back(); 2113 EmitBranch(CondBlock); 2114 LoopStack.pop(); 2115 // Emit the fall-through block. 2116 EmitBlock(LoopExit.getBlock()); 2117 } 2118 2119 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2120 if (!HaveInsertPoint()) 2121 return false; 2122 // Emit inits for the linear variables. 2123 bool HasLinears = false; 2124 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2125 for (const Expr *Init : C->inits()) { 2126 HasLinears = true; 2127 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2128 if (const auto *Ref = 2129 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2130 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2131 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2132 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2133 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2134 VD->getInit()->getType(), VK_LValue, 2135 VD->getInit()->getExprLoc()); 2136 EmitExprAsInit( 2137 &DRE, VD, 2138 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 2139 /*capturedByInit=*/false); 2140 EmitAutoVarCleanups(Emission); 2141 } else { 2142 EmitVarDecl(*VD); 2143 } 2144 } 2145 // Emit the linear steps for the linear clauses. 2146 // If a step is not constant, it is pre-calculated before the loop. 2147 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2148 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2149 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2150 // Emit calculation of the linear step. 2151 EmitIgnoredExpr(CS); 2152 } 2153 } 2154 return HasLinears; 2155 } 2156 2157 void CodeGenFunction::EmitOMPLinearClauseFinal( 2158 const OMPLoopDirective &D, 2159 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2160 if (!HaveInsertPoint()) 2161 return; 2162 llvm::BasicBlock *DoneBB = nullptr; 2163 // Emit the final values of the linear variables. 2164 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2165 auto IC = C->varlist_begin(); 2166 for (const Expr *F : C->finals()) { 2167 if (!DoneBB) { 2168 if (llvm::Value *Cond = CondGen(*this)) { 2169 // If the first post-update expression is found, emit conditional 2170 // block if it was requested. 2171 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2172 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2173 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2174 EmitBlock(ThenBB); 2175 } 2176 } 2177 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2178 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2179 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2180 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2181 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2182 CodeGenFunction::OMPPrivateScope VarScope(*this); 2183 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2184 (void)VarScope.Privatize(); 2185 EmitIgnoredExpr(F); 2186 ++IC; 2187 } 2188 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2189 EmitIgnoredExpr(PostUpdate); 2190 } 2191 if (DoneBB) 2192 EmitBlock(DoneBB, /*IsFinished=*/true); 2193 } 2194 2195 static void emitAlignedClause(CodeGenFunction &CGF, 2196 const OMPExecutableDirective &D) { 2197 if (!CGF.HaveInsertPoint()) 2198 return; 2199 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2200 llvm::APInt ClauseAlignment(64, 0); 2201 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2202 auto *AlignmentCI = 2203 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2204 ClauseAlignment = AlignmentCI->getValue(); 2205 } 2206 for (const Expr *E : Clause->varlists()) { 2207 llvm::APInt Alignment(ClauseAlignment); 2208 if (Alignment == 0) { 2209 // OpenMP [2.8.1, Description] 2210 // If no optional parameter is specified, implementation-defined default 2211 // alignments for SIMD instructions on the target platforms are assumed. 2212 Alignment = 2213 CGF.getContext() 2214 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2215 E->getType()->getPointeeType())) 2216 .getQuantity(); 2217 } 2218 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2219 "alignment is not power of 2"); 2220 if (Alignment != 0) { 2221 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2222 CGF.emitAlignmentAssumption( 2223 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2224 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2225 } 2226 } 2227 } 2228 } 2229 2230 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2231 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2232 if (!HaveInsertPoint()) 2233 return; 2234 auto I = S.private_counters().begin(); 2235 for (const Expr *E : S.counters()) { 2236 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2237 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2238 // Emit var without initialization. 2239 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2240 EmitAutoVarCleanups(VarEmission); 2241 LocalDeclMap.erase(PrivateVD); 2242 (void)LoopScope.addPrivate( 2243 VD, [&VarEmission]() { return VarEmission.getAllocatedAddress(); }); 2244 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2245 VD->hasGlobalStorage()) { 2246 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2247 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2248 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2249 E->getType(), VK_LValue, E->getExprLoc()); 2250 return EmitLValue(&DRE).getAddress(*this); 2251 }); 2252 } else { 2253 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2254 return VarEmission.getAllocatedAddress(); 2255 }); 2256 } 2257 ++I; 2258 } 2259 // Privatize extra loop counters used in loops for ordered(n) clauses. 2260 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2261 if (!C->getNumForLoops()) 2262 continue; 2263 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2264 I < E; ++I) { 2265 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2266 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2267 // Override only those variables that can be captured to avoid re-emission 2268 // of the variables declared within the loops. 2269 if (DRE->refersToEnclosingVariableOrCapture()) { 2270 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2271 return CreateMemTemp(DRE->getType(), VD->getName()); 2272 }); 2273 } 2274 } 2275 } 2276 } 2277 2278 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2279 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2280 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2281 if (!CGF.HaveInsertPoint()) 2282 return; 2283 { 2284 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2285 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2286 (void)PreCondScope.Privatize(); 2287 // Get initial values of real counters. 2288 for (const Expr *I : S.inits()) { 2289 CGF.EmitIgnoredExpr(I); 2290 } 2291 } 2292 // Create temp loop control variables with their init values to support 2293 // non-rectangular loops. 2294 CodeGenFunction::OMPMapVars PreCondVars; 2295 for (const Expr *E : S.dependent_counters()) { 2296 if (!E) 2297 continue; 2298 assert(!E->getType().getNonReferenceType()->isRecordType() && 2299 "dependent counter must not be an iterator."); 2300 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2301 Address CounterAddr = 2302 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2303 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2304 } 2305 (void)PreCondVars.apply(CGF); 2306 for (const Expr *E : S.dependent_inits()) { 2307 if (!E) 2308 continue; 2309 CGF.EmitIgnoredExpr(E); 2310 } 2311 // Check that loop is executed at least one time. 2312 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2313 PreCondVars.restore(CGF); 2314 } 2315 2316 void CodeGenFunction::EmitOMPLinearClause( 2317 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2318 if (!HaveInsertPoint()) 2319 return; 2320 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2321 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2322 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2323 for (const Expr *C : LoopDirective->counters()) { 2324 SIMDLCVs.insert( 2325 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2326 } 2327 } 2328 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2329 auto CurPrivate = C->privates().begin(); 2330 for (const Expr *E : C->varlists()) { 2331 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2332 const auto *PrivateVD = 2333 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2334 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2335 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2336 // Emit private VarDecl with copy init. 2337 EmitVarDecl(*PrivateVD); 2338 return GetAddrOfLocalVar(PrivateVD); 2339 }); 2340 assert(IsRegistered && "linear var already registered as private"); 2341 // Silence the warning about unused variable. 2342 (void)IsRegistered; 2343 } else { 2344 EmitVarDecl(*PrivateVD); 2345 } 2346 ++CurPrivate; 2347 } 2348 } 2349 } 2350 2351 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2352 const OMPExecutableDirective &D) { 2353 if (!CGF.HaveInsertPoint()) 2354 return; 2355 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2356 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2357 /*ignoreResult=*/true); 2358 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2359 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2360 // In presence of finite 'safelen', it may be unsafe to mark all 2361 // the memory instructions parallel, because loop-carried 2362 // dependences of 'safelen' iterations are possible. 2363 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2364 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2365 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2366 /*ignoreResult=*/true); 2367 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2368 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2369 // In presence of finite 'safelen', it may be unsafe to mark all 2370 // the memory instructions parallel, because loop-carried 2371 // dependences of 'safelen' iterations are possible. 2372 CGF.LoopStack.setParallel(/*Enable=*/false); 2373 } 2374 } 2375 2376 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2377 // Walk clauses and process safelen/lastprivate. 2378 LoopStack.setParallel(/*Enable=*/true); 2379 LoopStack.setVectorizeEnable(); 2380 emitSimdlenSafelenClause(*this, D); 2381 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2382 if (C->getKind() == OMPC_ORDER_concurrent) 2383 LoopStack.setParallel(/*Enable=*/true); 2384 if ((D.getDirectiveKind() == OMPD_simd || 2385 (getLangOpts().OpenMPSimd && 2386 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2387 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2388 [](const OMPReductionClause *C) { 2389 return C->getModifier() == OMPC_REDUCTION_inscan; 2390 })) 2391 // Disable parallel access in case of prefix sum. 2392 LoopStack.setParallel(/*Enable=*/false); 2393 } 2394 2395 void CodeGenFunction::EmitOMPSimdFinal( 2396 const OMPLoopDirective &D, 2397 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2398 if (!HaveInsertPoint()) 2399 return; 2400 llvm::BasicBlock *DoneBB = nullptr; 2401 auto IC = D.counters().begin(); 2402 auto IPC = D.private_counters().begin(); 2403 for (const Expr *F : D.finals()) { 2404 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2405 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2406 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2407 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2408 OrigVD->hasGlobalStorage() || CED) { 2409 if (!DoneBB) { 2410 if (llvm::Value *Cond = CondGen(*this)) { 2411 // If the first post-update expression is found, emit conditional 2412 // block if it was requested. 2413 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2414 DoneBB = createBasicBlock(".omp.final.done"); 2415 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2416 EmitBlock(ThenBB); 2417 } 2418 } 2419 Address OrigAddr = Address::invalid(); 2420 if (CED) { 2421 OrigAddr = 2422 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2423 } else { 2424 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2425 /*RefersToEnclosingVariableOrCapture=*/false, 2426 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2427 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2428 } 2429 OMPPrivateScope VarScope(*this); 2430 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2431 (void)VarScope.Privatize(); 2432 EmitIgnoredExpr(F); 2433 } 2434 ++IC; 2435 ++IPC; 2436 } 2437 if (DoneBB) 2438 EmitBlock(DoneBB, /*IsFinished=*/true); 2439 } 2440 2441 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2442 const OMPLoopDirective &S, 2443 CodeGenFunction::JumpDest LoopExit) { 2444 CGF.EmitOMPLoopBody(S, LoopExit); 2445 CGF.EmitStopPoint(&S); 2446 } 2447 2448 /// Emit a helper variable and return corresponding lvalue. 2449 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2450 const DeclRefExpr *Helper) { 2451 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2452 CGF.EmitVarDecl(*VDecl); 2453 return CGF.EmitLValue(Helper); 2454 } 2455 2456 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2457 const RegionCodeGenTy &SimdInitGen, 2458 const RegionCodeGenTy &BodyCodeGen) { 2459 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2460 PrePostActionTy &) { 2461 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2462 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2463 SimdInitGen(CGF); 2464 2465 BodyCodeGen(CGF); 2466 }; 2467 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2468 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2469 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2470 2471 BodyCodeGen(CGF); 2472 }; 2473 const Expr *IfCond = nullptr; 2474 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2475 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2476 if (CGF.getLangOpts().OpenMP >= 50 && 2477 (C->getNameModifier() == OMPD_unknown || 2478 C->getNameModifier() == OMPD_simd)) { 2479 IfCond = C->getCondition(); 2480 break; 2481 } 2482 } 2483 } 2484 if (IfCond) { 2485 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2486 } else { 2487 RegionCodeGenTy ThenRCG(ThenGen); 2488 ThenRCG(CGF); 2489 } 2490 } 2491 2492 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2493 PrePostActionTy &Action) { 2494 Action.Enter(CGF); 2495 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2496 "Expected simd directive"); 2497 OMPLoopScope PreInitScope(CGF, S); 2498 // if (PreCond) { 2499 // for (IV in 0..LastIteration) BODY; 2500 // <Final counter/linear vars updates>; 2501 // } 2502 // 2503 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2504 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2505 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2506 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2507 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2508 } 2509 2510 // Emit: if (PreCond) - begin. 2511 // If the condition constant folds and can be elided, avoid emitting the 2512 // whole loop. 2513 bool CondConstant; 2514 llvm::BasicBlock *ContBlock = nullptr; 2515 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2516 if (!CondConstant) 2517 return; 2518 } else { 2519 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2520 ContBlock = CGF.createBasicBlock("simd.if.end"); 2521 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2522 CGF.getProfileCount(&S)); 2523 CGF.EmitBlock(ThenBlock); 2524 CGF.incrementProfileCounter(&S); 2525 } 2526 2527 // Emit the loop iteration variable. 2528 const Expr *IVExpr = S.getIterationVariable(); 2529 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2530 CGF.EmitVarDecl(*IVDecl); 2531 CGF.EmitIgnoredExpr(S.getInit()); 2532 2533 // Emit the iterations count variable. 2534 // If it is not a variable, Sema decided to calculate iterations count on 2535 // each iteration (e.g., it is foldable into a constant). 2536 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2537 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2538 // Emit calculation of the iterations count. 2539 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2540 } 2541 2542 emitAlignedClause(CGF, S); 2543 (void)CGF.EmitOMPLinearClauseInit(S); 2544 { 2545 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2546 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2547 CGF.EmitOMPLinearClause(S, LoopScope); 2548 CGF.EmitOMPPrivateClause(S, LoopScope); 2549 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2550 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2551 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2552 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2553 (void)LoopScope.Privatize(); 2554 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2555 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2556 2557 emitCommonSimdLoop( 2558 CGF, S, 2559 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2560 CGF.EmitOMPSimdInit(S); 2561 }, 2562 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2563 CGF.EmitOMPInnerLoop( 2564 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2565 [&S](CodeGenFunction &CGF) { 2566 emitOMPLoopBodyWithStopPoint(CGF, S, 2567 CodeGenFunction::JumpDest()); 2568 }, 2569 [](CodeGenFunction &) {}); 2570 }); 2571 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2572 // Emit final copy of the lastprivate variables at the end of loops. 2573 if (HasLastprivateClause) 2574 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2575 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2576 emitPostUpdateForReductionClause(CGF, S, 2577 [](CodeGenFunction &) { return nullptr; }); 2578 } 2579 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2580 // Emit: if (PreCond) - end. 2581 if (ContBlock) { 2582 CGF.EmitBranch(ContBlock); 2583 CGF.EmitBlock(ContBlock, true); 2584 } 2585 } 2586 2587 static bool isSupportedByOpenMPIRBuilder(const OMPExecutableDirective &S) { 2588 // Check for unsupported clauses 2589 if (!S.clauses().empty()) { 2590 // Currently no clause is supported 2591 return false; 2592 } 2593 2594 // Check if we have a statement with the ordered directive. 2595 // Visit the statement hierarchy to find a compound statement 2596 // with a ordered directive in it. 2597 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(S.getRawStmt())) { 2598 if (const Stmt *SyntacticalLoop = CanonLoop->getLoopStmt()) { 2599 for (const Stmt *SubStmt : SyntacticalLoop->children()) { 2600 if (!SubStmt) 2601 continue; 2602 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(SubStmt)) { 2603 for (const Stmt *CSSubStmt : CS->children()) { 2604 if (!CSSubStmt) 2605 continue; 2606 if (isa<OMPOrderedDirective>(CSSubStmt)) { 2607 return false; 2608 } 2609 } 2610 } 2611 } 2612 } 2613 } 2614 return true; 2615 } 2616 2617 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2618 bool UseOMPIRBuilder = 2619 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 2620 if (UseOMPIRBuilder) { 2621 auto &&CodeGenIRBuilder = [this, &S, UseOMPIRBuilder](CodeGenFunction &CGF, 2622 PrePostActionTy &) { 2623 // Use the OpenMPIRBuilder if enabled. 2624 if (UseOMPIRBuilder) { 2625 // Emit the associated statement and get its loop representation. 2626 llvm::DebugLoc DL = SourceLocToDebugLoc(S.getBeginLoc()); 2627 const Stmt *Inner = S.getRawStmt(); 2628 llvm::CanonicalLoopInfo *CLI = 2629 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2630 2631 llvm::OpenMPIRBuilder &OMPBuilder = 2632 CGM.getOpenMPRuntime().getOMPBuilder(); 2633 // Add SIMD specific metadata 2634 OMPBuilder.applySimd(DL, CLI); 2635 return; 2636 } 2637 }; 2638 { 2639 auto LPCRegion = 2640 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2641 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2642 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, 2643 CodeGenIRBuilder); 2644 } 2645 return; 2646 } 2647 2648 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2649 OMPFirstScanLoop = true; 2650 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2651 emitOMPSimdRegion(CGF, S, Action); 2652 }; 2653 { 2654 auto LPCRegion = 2655 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2656 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2657 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2658 } 2659 // Check for outer lastprivate conditional update. 2660 checkForLastprivateConditionalUpdate(*this, S); 2661 } 2662 2663 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2664 // Emit the de-sugared statement. 2665 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2666 EmitStmt(S.getTransformedStmt()); 2667 } 2668 2669 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2670 bool UseOMPIRBuilder = CGM.getLangOpts().OpenMPIRBuilder; 2671 2672 if (UseOMPIRBuilder) { 2673 auto DL = SourceLocToDebugLoc(S.getBeginLoc()); 2674 const Stmt *Inner = S.getRawStmt(); 2675 2676 // Consume nested loop. Clear the entire remaining loop stack because a 2677 // fully unrolled loop is non-transformable. For partial unrolling the 2678 // generated outer loop is pushed back to the stack. 2679 llvm::CanonicalLoopInfo *CLI = EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2680 OMPLoopNestStack.clear(); 2681 2682 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2683 2684 bool NeedsUnrolledCLI = ExpectedOMPLoopDepth >= 1; 2685 llvm::CanonicalLoopInfo *UnrolledCLI = nullptr; 2686 2687 if (S.hasClausesOfKind<OMPFullClause>()) { 2688 assert(ExpectedOMPLoopDepth == 0); 2689 OMPBuilder.unrollLoopFull(DL, CLI); 2690 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2691 uint64_t Factor = 0; 2692 if (Expr *FactorExpr = PartialClause->getFactor()) { 2693 Factor = FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2694 assert(Factor >= 1 && "Only positive factors are valid"); 2695 } 2696 OMPBuilder.unrollLoopPartial(DL, CLI, Factor, 2697 NeedsUnrolledCLI ? &UnrolledCLI : nullptr); 2698 } else { 2699 OMPBuilder.unrollLoopHeuristic(DL, CLI); 2700 } 2701 2702 assert((!NeedsUnrolledCLI || UnrolledCLI) && 2703 "NeedsUnrolledCLI implies UnrolledCLI to be set"); 2704 if (UnrolledCLI) 2705 OMPLoopNestStack.push_back(UnrolledCLI); 2706 2707 return; 2708 } 2709 2710 // This function is only called if the unrolled loop is not consumed by any 2711 // other loop-associated construct. Such a loop-associated construct will have 2712 // used the transformed AST. 2713 2714 // Set the unroll metadata for the next emitted loop. 2715 LoopStack.setUnrollState(LoopAttributes::Enable); 2716 2717 if (S.hasClausesOfKind<OMPFullClause>()) { 2718 LoopStack.setUnrollState(LoopAttributes::Full); 2719 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2720 if (Expr *FactorExpr = PartialClause->getFactor()) { 2721 uint64_t Factor = 2722 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2723 assert(Factor >= 1 && "Only positive factors are valid"); 2724 LoopStack.setUnrollCount(Factor); 2725 } 2726 } 2727 2728 EmitStmt(S.getAssociatedStmt()); 2729 } 2730 2731 void CodeGenFunction::EmitOMPOuterLoop( 2732 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2733 CodeGenFunction::OMPPrivateScope &LoopScope, 2734 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2735 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2736 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2737 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2738 2739 const Expr *IVExpr = S.getIterationVariable(); 2740 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2741 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2742 2743 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2744 2745 // Start the loop with a block that tests the condition. 2746 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2747 EmitBlock(CondBlock); 2748 const SourceRange R = S.getSourceRange(); 2749 OMPLoopNestStack.clear(); 2750 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2751 SourceLocToDebugLoc(R.getEnd())); 2752 2753 llvm::Value *BoolCondVal = nullptr; 2754 if (!DynamicOrOrdered) { 2755 // UB = min(UB, GlobalUB) or 2756 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2757 // 'distribute parallel for') 2758 EmitIgnoredExpr(LoopArgs.EUB); 2759 // IV = LB 2760 EmitIgnoredExpr(LoopArgs.Init); 2761 // IV < UB 2762 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2763 } else { 2764 BoolCondVal = 2765 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2766 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2767 } 2768 2769 // If there are any cleanups between here and the loop-exit scope, 2770 // create a block to stage a loop exit along. 2771 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2772 if (LoopScope.requiresCleanups()) 2773 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2774 2775 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2776 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2777 if (ExitBlock != LoopExit.getBlock()) { 2778 EmitBlock(ExitBlock); 2779 EmitBranchThroughCleanup(LoopExit); 2780 } 2781 EmitBlock(LoopBody); 2782 2783 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2784 // LB for loop condition and emitted it above). 2785 if (DynamicOrOrdered) 2786 EmitIgnoredExpr(LoopArgs.Init); 2787 2788 // Create a block for the increment. 2789 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2790 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2791 2792 emitCommonSimdLoop( 2793 *this, S, 2794 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2795 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2796 // with dynamic/guided scheduling and without ordered clause. 2797 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2798 CGF.LoopStack.setParallel(!IsMonotonic); 2799 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2800 if (C->getKind() == OMPC_ORDER_concurrent) 2801 CGF.LoopStack.setParallel(/*Enable=*/true); 2802 } else { 2803 CGF.EmitOMPSimdInit(S); 2804 } 2805 }, 2806 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2807 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2808 SourceLocation Loc = S.getBeginLoc(); 2809 // when 'distribute' is not combined with a 'for': 2810 // while (idx <= UB) { BODY; ++idx; } 2811 // when 'distribute' is combined with a 'for' 2812 // (e.g. 'distribute parallel for') 2813 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2814 CGF.EmitOMPInnerLoop( 2815 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2816 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2817 CodeGenLoop(CGF, S, LoopExit); 2818 }, 2819 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2820 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2821 }); 2822 }); 2823 2824 EmitBlock(Continue.getBlock()); 2825 BreakContinueStack.pop_back(); 2826 if (!DynamicOrOrdered) { 2827 // Emit "LB = LB + Stride", "UB = UB + Stride". 2828 EmitIgnoredExpr(LoopArgs.NextLB); 2829 EmitIgnoredExpr(LoopArgs.NextUB); 2830 } 2831 2832 EmitBranch(CondBlock); 2833 OMPLoopNestStack.clear(); 2834 LoopStack.pop(); 2835 // Emit the fall-through block. 2836 EmitBlock(LoopExit.getBlock()); 2837 2838 // Tell the runtime we are done. 2839 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2840 if (!DynamicOrOrdered) 2841 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2842 S.getDirectiveKind()); 2843 }; 2844 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2845 } 2846 2847 void CodeGenFunction::EmitOMPForOuterLoop( 2848 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2849 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2850 const OMPLoopArguments &LoopArgs, 2851 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2852 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2853 2854 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2855 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind.Schedule); 2856 2857 assert((Ordered || !RT.isStaticNonchunked(ScheduleKind.Schedule, 2858 LoopArgs.Chunk != nullptr)) && 2859 "static non-chunked schedule does not need outer loop"); 2860 2861 // Emit outer loop. 2862 // 2863 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2864 // When schedule(dynamic,chunk_size) is specified, the iterations are 2865 // distributed to threads in the team in chunks as the threads request them. 2866 // Each thread executes a chunk of iterations, then requests another chunk, 2867 // until no chunks remain to be distributed. Each chunk contains chunk_size 2868 // iterations, except for the last chunk to be distributed, which may have 2869 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2870 // 2871 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2872 // to threads in the team in chunks as the executing threads request them. 2873 // Each thread executes a chunk of iterations, then requests another chunk, 2874 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2875 // each chunk is proportional to the number of unassigned iterations divided 2876 // by the number of threads in the team, decreasing to 1. For a chunk_size 2877 // with value k (greater than 1), the size of each chunk is determined in the 2878 // same way, with the restriction that the chunks do not contain fewer than k 2879 // iterations (except for the last chunk to be assigned, which may have fewer 2880 // than k iterations). 2881 // 2882 // When schedule(auto) is specified, the decision regarding scheduling is 2883 // delegated to the compiler and/or runtime system. The programmer gives the 2884 // implementation the freedom to choose any possible mapping of iterations to 2885 // threads in the team. 2886 // 2887 // When schedule(runtime) is specified, the decision regarding scheduling is 2888 // deferred until run time, and the schedule and chunk size are taken from the 2889 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2890 // implementation defined 2891 // 2892 // while(__kmpc_dispatch_next(&LB, &UB)) { 2893 // idx = LB; 2894 // while (idx <= UB) { BODY; ++idx; 2895 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2896 // } // inner loop 2897 // } 2898 // 2899 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2900 // When schedule(static, chunk_size) is specified, iterations are divided into 2901 // chunks of size chunk_size, and the chunks are assigned to the threads in 2902 // the team in a round-robin fashion in the order of the thread number. 2903 // 2904 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2905 // while (idx <= UB) { BODY; ++idx; } // inner loop 2906 // LB = LB + ST; 2907 // UB = UB + ST; 2908 // } 2909 // 2910 2911 const Expr *IVExpr = S.getIterationVariable(); 2912 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2913 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2914 2915 if (DynamicOrOrdered) { 2916 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2917 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2918 llvm::Value *LBVal = DispatchBounds.first; 2919 llvm::Value *UBVal = DispatchBounds.second; 2920 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2921 LoopArgs.Chunk}; 2922 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2923 IVSigned, Ordered, DipatchRTInputValues); 2924 } else { 2925 CGOpenMPRuntime::StaticRTInput StaticInit( 2926 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2927 LoopArgs.ST, LoopArgs.Chunk); 2928 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2929 ScheduleKind, StaticInit); 2930 } 2931 2932 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2933 const unsigned IVSize, 2934 const bool IVSigned) { 2935 if (Ordered) { 2936 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2937 IVSigned); 2938 } 2939 }; 2940 2941 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2942 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2943 OuterLoopArgs.IncExpr = S.getInc(); 2944 OuterLoopArgs.Init = S.getInit(); 2945 OuterLoopArgs.Cond = S.getCond(); 2946 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2947 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2948 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2949 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2950 } 2951 2952 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2953 const unsigned IVSize, const bool IVSigned) {} 2954 2955 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2956 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2957 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2958 const CodeGenLoopTy &CodeGenLoopContent) { 2959 2960 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2961 2962 // Emit outer loop. 2963 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2964 // dynamic 2965 // 2966 2967 const Expr *IVExpr = S.getIterationVariable(); 2968 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2969 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2970 2971 CGOpenMPRuntime::StaticRTInput StaticInit( 2972 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2973 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2974 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2975 2976 // for combined 'distribute' and 'for' the increment expression of distribute 2977 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2978 Expr *IncExpr; 2979 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2980 IncExpr = S.getDistInc(); 2981 else 2982 IncExpr = S.getInc(); 2983 2984 // this routine is shared by 'omp distribute parallel for' and 2985 // 'omp distribute': select the right EUB expression depending on the 2986 // directive 2987 OMPLoopArguments OuterLoopArgs; 2988 OuterLoopArgs.LB = LoopArgs.LB; 2989 OuterLoopArgs.UB = LoopArgs.UB; 2990 OuterLoopArgs.ST = LoopArgs.ST; 2991 OuterLoopArgs.IL = LoopArgs.IL; 2992 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2993 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2994 ? S.getCombinedEnsureUpperBound() 2995 : S.getEnsureUpperBound(); 2996 OuterLoopArgs.IncExpr = IncExpr; 2997 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2998 ? S.getCombinedInit() 2999 : S.getInit(); 3000 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3001 ? S.getCombinedCond() 3002 : S.getCond(); 3003 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3004 ? S.getCombinedNextLowerBound() 3005 : S.getNextLowerBound(); 3006 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3007 ? S.getCombinedNextUpperBound() 3008 : S.getNextUpperBound(); 3009 3010 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 3011 LoopScope, OuterLoopArgs, CodeGenLoopContent, 3012 emitEmptyOrdered); 3013 } 3014 3015 static std::pair<LValue, LValue> 3016 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 3017 const OMPExecutableDirective &S) { 3018 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3019 LValue LB = 3020 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3021 LValue UB = 3022 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3023 3024 // When composing 'distribute' with 'for' (e.g. as in 'distribute 3025 // parallel for') we need to use the 'distribute' 3026 // chunk lower and upper bounds rather than the whole loop iteration 3027 // space. These are parameters to the outlined function for 'parallel' 3028 // and we copy the bounds of the previous schedule into the 3029 // the current ones. 3030 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 3031 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 3032 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 3033 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 3034 PrevLBVal = CGF.EmitScalarConversion( 3035 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 3036 LS.getIterationVariable()->getType(), 3037 LS.getPrevLowerBoundVariable()->getExprLoc()); 3038 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 3039 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 3040 PrevUBVal = CGF.EmitScalarConversion( 3041 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 3042 LS.getIterationVariable()->getType(), 3043 LS.getPrevUpperBoundVariable()->getExprLoc()); 3044 3045 CGF.EmitStoreOfScalar(PrevLBVal, LB); 3046 CGF.EmitStoreOfScalar(PrevUBVal, UB); 3047 3048 return {LB, UB}; 3049 } 3050 3051 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 3052 /// we need to use the LB and UB expressions generated by the worksharing 3053 /// code generation support, whereas in non combined situations we would 3054 /// just emit 0 and the LastIteration expression 3055 /// This function is necessary due to the difference of the LB and UB 3056 /// types for the RT emission routines for 'for_static_init' and 3057 /// 'for_dispatch_init' 3058 static std::pair<llvm::Value *, llvm::Value *> 3059 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 3060 const OMPExecutableDirective &S, 3061 Address LB, Address UB) { 3062 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3063 const Expr *IVExpr = LS.getIterationVariable(); 3064 // when implementing a dynamic schedule for a 'for' combined with a 3065 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 3066 // is not normalized as each team only executes its own assigned 3067 // distribute chunk 3068 QualType IteratorTy = IVExpr->getType(); 3069 llvm::Value *LBVal = 3070 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3071 llvm::Value *UBVal = 3072 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3073 return {LBVal, UBVal}; 3074 } 3075 3076 static void emitDistributeParallelForDistributeInnerBoundParams( 3077 CodeGenFunction &CGF, const OMPExecutableDirective &S, 3078 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 3079 const auto &Dir = cast<OMPLoopDirective>(S); 3080 LValue LB = 3081 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 3082 llvm::Value *LBCast = 3083 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 3084 CGF.SizeTy, /*isSigned=*/false); 3085 CapturedVars.push_back(LBCast); 3086 LValue UB = 3087 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 3088 3089 llvm::Value *UBCast = 3090 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 3091 CGF.SizeTy, /*isSigned=*/false); 3092 CapturedVars.push_back(UBCast); 3093 } 3094 3095 static void 3096 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 3097 const OMPLoopDirective &S, 3098 CodeGenFunction::JumpDest LoopExit) { 3099 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 3100 PrePostActionTy &Action) { 3101 Action.Enter(CGF); 3102 bool HasCancel = false; 3103 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 3104 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 3105 HasCancel = D->hasCancel(); 3106 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 3107 HasCancel = D->hasCancel(); 3108 else if (const auto *D = 3109 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 3110 HasCancel = D->hasCancel(); 3111 } 3112 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3113 HasCancel); 3114 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 3115 emitDistributeParallelForInnerBounds, 3116 emitDistributeParallelForDispatchBounds); 3117 }; 3118 3119 emitCommonOMPParallelDirective( 3120 CGF, S, 3121 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3122 CGInlinedWorksharingLoop, 3123 emitDistributeParallelForDistributeInnerBoundParams); 3124 } 3125 3126 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3127 const OMPDistributeParallelForDirective &S) { 3128 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3129 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3130 S.getDistInc()); 3131 }; 3132 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3133 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3134 } 3135 3136 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3137 const OMPDistributeParallelForSimdDirective &S) { 3138 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3139 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3140 S.getDistInc()); 3141 }; 3142 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3143 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3144 } 3145 3146 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3147 const OMPDistributeSimdDirective &S) { 3148 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3149 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3150 }; 3151 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3152 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3153 } 3154 3155 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3156 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3157 // Emit SPMD target parallel for region as a standalone region. 3158 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3159 emitOMPSimdRegion(CGF, S, Action); 3160 }; 3161 llvm::Function *Fn; 3162 llvm::Constant *Addr; 3163 // Emit target region as a standalone region. 3164 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3165 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3166 assert(Fn && Addr && "Target device function emission failed."); 3167 } 3168 3169 void CodeGenFunction::EmitOMPTargetSimdDirective( 3170 const OMPTargetSimdDirective &S) { 3171 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3172 emitOMPSimdRegion(CGF, S, Action); 3173 }; 3174 emitCommonOMPTargetDirective(*this, S, CodeGen); 3175 } 3176 3177 namespace { 3178 struct ScheduleKindModifiersTy { 3179 OpenMPScheduleClauseKind Kind; 3180 OpenMPScheduleClauseModifier M1; 3181 OpenMPScheduleClauseModifier M2; 3182 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3183 OpenMPScheduleClauseModifier M1, 3184 OpenMPScheduleClauseModifier M2) 3185 : Kind(Kind), M1(M1), M2(M2) {} 3186 }; 3187 } // namespace 3188 3189 bool CodeGenFunction::EmitOMPWorksharingLoop( 3190 const OMPLoopDirective &S, Expr *EUB, 3191 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3192 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3193 // Emit the loop iteration variable. 3194 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3195 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3196 EmitVarDecl(*IVDecl); 3197 3198 // Emit the iterations count variable. 3199 // If it is not a variable, Sema decided to calculate iterations count on each 3200 // iteration (e.g., it is foldable into a constant). 3201 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3202 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3203 // Emit calculation of the iterations count. 3204 EmitIgnoredExpr(S.getCalcLastIteration()); 3205 } 3206 3207 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3208 3209 bool HasLastprivateClause; 3210 // Check pre-condition. 3211 { 3212 OMPLoopScope PreInitScope(*this, S); 3213 // Skip the entire loop if we don't meet the precondition. 3214 // If the condition constant folds and can be elided, avoid emitting the 3215 // whole loop. 3216 bool CondConstant; 3217 llvm::BasicBlock *ContBlock = nullptr; 3218 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3219 if (!CondConstant) 3220 return false; 3221 } else { 3222 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3223 ContBlock = createBasicBlock("omp.precond.end"); 3224 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3225 getProfileCount(&S)); 3226 EmitBlock(ThenBlock); 3227 incrementProfileCounter(&S); 3228 } 3229 3230 RunCleanupsScope DoacrossCleanupScope(*this); 3231 bool Ordered = false; 3232 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3233 if (OrderedClause->getNumForLoops()) 3234 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3235 else 3236 Ordered = true; 3237 } 3238 3239 llvm::DenseSet<const Expr *> EmittedFinals; 3240 emitAlignedClause(*this, S); 3241 bool HasLinears = EmitOMPLinearClauseInit(S); 3242 // Emit helper vars inits. 3243 3244 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3245 LValue LB = Bounds.first; 3246 LValue UB = Bounds.second; 3247 LValue ST = 3248 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3249 LValue IL = 3250 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3251 3252 // Emit 'then' code. 3253 { 3254 OMPPrivateScope LoopScope(*this); 3255 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3256 // Emit implicit barrier to synchronize threads and avoid data races on 3257 // initialization of firstprivate variables and post-update of 3258 // lastprivate variables. 3259 CGM.getOpenMPRuntime().emitBarrierCall( 3260 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3261 /*ForceSimpleCall=*/true); 3262 } 3263 EmitOMPPrivateClause(S, LoopScope); 3264 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3265 *this, S, EmitLValue(S.getIterationVariable())); 3266 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3267 EmitOMPReductionClauseInit(S, LoopScope); 3268 EmitOMPPrivateLoopCounters(S, LoopScope); 3269 EmitOMPLinearClause(S, LoopScope); 3270 (void)LoopScope.Privatize(); 3271 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3272 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3273 3274 // Detect the loop schedule kind and chunk. 3275 const Expr *ChunkExpr = nullptr; 3276 OpenMPScheduleTy ScheduleKind; 3277 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3278 ScheduleKind.Schedule = C->getScheduleKind(); 3279 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3280 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3281 ChunkExpr = C->getChunkSize(); 3282 } else { 3283 // Default behaviour for schedule clause. 3284 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3285 *this, S, ScheduleKind.Schedule, ChunkExpr); 3286 } 3287 bool HasChunkSizeOne = false; 3288 llvm::Value *Chunk = nullptr; 3289 if (ChunkExpr) { 3290 Chunk = EmitScalarExpr(ChunkExpr); 3291 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3292 S.getIterationVariable()->getType(), 3293 S.getBeginLoc()); 3294 Expr::EvalResult Result; 3295 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3296 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3297 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3298 } 3299 } 3300 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3301 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3302 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3303 // If the static schedule kind is specified or if the ordered clause is 3304 // specified, and if no monotonic modifier is specified, the effect will 3305 // be as if the monotonic modifier was specified. 3306 bool StaticChunkedOne = 3307 RT.isStaticChunked(ScheduleKind.Schedule, 3308 /* Chunked */ Chunk != nullptr) && 3309 HasChunkSizeOne && 3310 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3311 bool IsMonotonic = 3312 Ordered || 3313 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3314 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3315 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3316 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3317 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3318 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3319 /* Chunked */ Chunk != nullptr) || 3320 StaticChunkedOne) && 3321 !Ordered) { 3322 JumpDest LoopExit = 3323 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3324 emitCommonSimdLoop( 3325 *this, S, 3326 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3327 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3328 CGF.EmitOMPSimdInit(S); 3329 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3330 if (C->getKind() == OMPC_ORDER_concurrent) 3331 CGF.LoopStack.setParallel(/*Enable=*/true); 3332 } 3333 }, 3334 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3335 &S, ScheduleKind, LoopExit, 3336 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3337 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3338 // When no chunk_size is specified, the iteration space is divided 3339 // into chunks that are approximately equal in size, and at most 3340 // one chunk is distributed to each thread. Note that the size of 3341 // the chunks is unspecified in this case. 3342 CGOpenMPRuntime::StaticRTInput StaticInit( 3343 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3344 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3345 StaticChunkedOne ? Chunk : nullptr); 3346 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3347 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3348 StaticInit); 3349 // UB = min(UB, GlobalUB); 3350 if (!StaticChunkedOne) 3351 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3352 // IV = LB; 3353 CGF.EmitIgnoredExpr(S.getInit()); 3354 // For unchunked static schedule generate: 3355 // 3356 // while (idx <= UB) { 3357 // BODY; 3358 // ++idx; 3359 // } 3360 // 3361 // For static schedule with chunk one: 3362 // 3363 // while (IV <= PrevUB) { 3364 // BODY; 3365 // IV += ST; 3366 // } 3367 CGF.EmitOMPInnerLoop( 3368 S, LoopScope.requiresCleanups(), 3369 StaticChunkedOne ? S.getCombinedParForInDistCond() 3370 : S.getCond(), 3371 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3372 [&S, LoopExit](CodeGenFunction &CGF) { 3373 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3374 }, 3375 [](CodeGenFunction &) {}); 3376 }); 3377 EmitBlock(LoopExit.getBlock()); 3378 // Tell the runtime we are done. 3379 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3380 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3381 S.getDirectiveKind()); 3382 }; 3383 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3384 } else { 3385 // Emit the outer loop, which requests its work chunk [LB..UB] from 3386 // runtime and runs the inner loop to process it. 3387 const OMPLoopArguments LoopArguments( 3388 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3389 IL.getAddress(*this), Chunk, EUB); 3390 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3391 LoopArguments, CGDispatchBounds); 3392 } 3393 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3394 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3395 return CGF.Builder.CreateIsNotNull( 3396 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3397 }); 3398 } 3399 EmitOMPReductionClauseFinal( 3400 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3401 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3402 : /*Parallel only*/ OMPD_parallel); 3403 // Emit post-update of the reduction variables if IsLastIter != 0. 3404 emitPostUpdateForReductionClause( 3405 *this, S, [IL, &S](CodeGenFunction &CGF) { 3406 return CGF.Builder.CreateIsNotNull( 3407 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3408 }); 3409 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3410 if (HasLastprivateClause) 3411 EmitOMPLastprivateClauseFinal( 3412 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3413 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3414 } 3415 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3416 return CGF.Builder.CreateIsNotNull( 3417 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3418 }); 3419 DoacrossCleanupScope.ForceCleanup(); 3420 // We're now done with the loop, so jump to the continuation block. 3421 if (ContBlock) { 3422 EmitBranch(ContBlock); 3423 EmitBlock(ContBlock, /*IsFinished=*/true); 3424 } 3425 } 3426 return HasLastprivateClause; 3427 } 3428 3429 /// The following two functions generate expressions for the loop lower 3430 /// and upper bounds in case of static and dynamic (dispatch) schedule 3431 /// of the associated 'for' or 'distribute' loop. 3432 static std::pair<LValue, LValue> 3433 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3434 const auto &LS = cast<OMPLoopDirective>(S); 3435 LValue LB = 3436 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3437 LValue UB = 3438 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3439 return {LB, UB}; 3440 } 3441 3442 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3443 /// consider the lower and upper bound expressions generated by the 3444 /// worksharing loop support, but we use 0 and the iteration space size as 3445 /// constants 3446 static std::pair<llvm::Value *, llvm::Value *> 3447 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3448 Address LB, Address UB) { 3449 const auto &LS = cast<OMPLoopDirective>(S); 3450 const Expr *IVExpr = LS.getIterationVariable(); 3451 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3452 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3453 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3454 return {LBVal, UBVal}; 3455 } 3456 3457 /// Emits internal temp array declarations for the directive with inscan 3458 /// reductions. 3459 /// The code is the following: 3460 /// \code 3461 /// size num_iters = <num_iters>; 3462 /// <type> buffer[num_iters]; 3463 /// \endcode 3464 static void emitScanBasedDirectiveDecls( 3465 CodeGenFunction &CGF, const OMPLoopDirective &S, 3466 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3467 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3468 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3469 SmallVector<const Expr *, 4> Shareds; 3470 SmallVector<const Expr *, 4> Privates; 3471 SmallVector<const Expr *, 4> ReductionOps; 3472 SmallVector<const Expr *, 4> CopyArrayTemps; 3473 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3474 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3475 "Only inscan reductions are expected."); 3476 Shareds.append(C->varlist_begin(), C->varlist_end()); 3477 Privates.append(C->privates().begin(), C->privates().end()); 3478 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3479 CopyArrayTemps.append(C->copy_array_temps().begin(), 3480 C->copy_array_temps().end()); 3481 } 3482 { 3483 // Emit buffers for each reduction variables. 3484 // ReductionCodeGen is required to emit correctly the code for array 3485 // reductions. 3486 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3487 unsigned Count = 0; 3488 auto *ITA = CopyArrayTemps.begin(); 3489 for (const Expr *IRef : Privates) { 3490 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3491 // Emit variably modified arrays, used for arrays/array sections 3492 // reductions. 3493 if (PrivateVD->getType()->isVariablyModifiedType()) { 3494 RedCG.emitSharedOrigLValue(CGF, Count); 3495 RedCG.emitAggregateType(CGF, Count); 3496 } 3497 CodeGenFunction::OpaqueValueMapping DimMapping( 3498 CGF, 3499 cast<OpaqueValueExpr>( 3500 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3501 ->getSizeExpr()), 3502 RValue::get(OMPScanNumIterations)); 3503 // Emit temp buffer. 3504 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3505 ++ITA; 3506 ++Count; 3507 } 3508 } 3509 } 3510 3511 /// Emits the code for the directive with inscan reductions. 3512 /// The code is the following: 3513 /// \code 3514 /// #pragma omp ... 3515 /// for (i: 0..<num_iters>) { 3516 /// <input phase>; 3517 /// buffer[i] = red; 3518 /// } 3519 /// #pragma omp master // in parallel region 3520 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3521 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3522 /// buffer[i] op= buffer[i-pow(2,k)]; 3523 /// #pragma omp barrier // in parallel region 3524 /// #pragma omp ... 3525 /// for (0..<num_iters>) { 3526 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3527 /// <scan phase>; 3528 /// } 3529 /// \endcode 3530 static void emitScanBasedDirective( 3531 CodeGenFunction &CGF, const OMPLoopDirective &S, 3532 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3533 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3534 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3535 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3536 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3537 SmallVector<const Expr *, 4> Privates; 3538 SmallVector<const Expr *, 4> ReductionOps; 3539 SmallVector<const Expr *, 4> LHSs; 3540 SmallVector<const Expr *, 4> RHSs; 3541 SmallVector<const Expr *, 4> CopyArrayElems; 3542 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3543 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3544 "Only inscan reductions are expected."); 3545 Privates.append(C->privates().begin(), C->privates().end()); 3546 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3547 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3548 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3549 CopyArrayElems.append(C->copy_array_elems().begin(), 3550 C->copy_array_elems().end()); 3551 } 3552 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3553 { 3554 // Emit loop with input phase: 3555 // #pragma omp ... 3556 // for (i: 0..<num_iters>) { 3557 // <input phase>; 3558 // buffer[i] = red; 3559 // } 3560 CGF.OMPFirstScanLoop = true; 3561 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3562 FirstGen(CGF); 3563 } 3564 // #pragma omp barrier // in parallel region 3565 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3566 &ReductionOps, 3567 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3568 Action.Enter(CGF); 3569 // Emit prefix reduction: 3570 // #pragma omp master // in parallel region 3571 // for (int k = 0; k <= ceil(log2(n)); ++k) 3572 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3573 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3574 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3575 llvm::Function *F = 3576 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3577 llvm::Value *Arg = 3578 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3579 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3580 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3581 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3582 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3583 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3584 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3585 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3586 CGF.EmitBlock(LoopBB); 3587 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3588 // size pow2k = 1; 3589 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3590 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3591 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3592 // for (size i = n - 1; i >= 2 ^ k; --i) 3593 // tmp[i] op= tmp[i-pow2k]; 3594 llvm::BasicBlock *InnerLoopBB = 3595 CGF.createBasicBlock("omp.inner.log.scan.body"); 3596 llvm::BasicBlock *InnerExitBB = 3597 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3598 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3599 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3600 CGF.EmitBlock(InnerLoopBB); 3601 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3602 IVal->addIncoming(NMin1, LoopBB); 3603 { 3604 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3605 auto *ILHS = LHSs.begin(); 3606 auto *IRHS = RHSs.begin(); 3607 for (const Expr *CopyArrayElem : CopyArrayElems) { 3608 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3609 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3610 Address LHSAddr = Address::invalid(); 3611 { 3612 CodeGenFunction::OpaqueValueMapping IdxMapping( 3613 CGF, 3614 cast<OpaqueValueExpr>( 3615 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3616 RValue::get(IVal)); 3617 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3618 } 3619 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3620 Address RHSAddr = Address::invalid(); 3621 { 3622 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3623 CodeGenFunction::OpaqueValueMapping IdxMapping( 3624 CGF, 3625 cast<OpaqueValueExpr>( 3626 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3627 RValue::get(OffsetIVal)); 3628 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3629 } 3630 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3631 ++ILHS; 3632 ++IRHS; 3633 } 3634 PrivScope.Privatize(); 3635 CGF.CGM.getOpenMPRuntime().emitReduction( 3636 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3637 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3638 } 3639 llvm::Value *NextIVal = 3640 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3641 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3642 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3643 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3644 CGF.EmitBlock(InnerExitBB); 3645 llvm::Value *Next = 3646 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3647 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3648 // pow2k <<= 1; 3649 llvm::Value *NextPow2K = 3650 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3651 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3652 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3653 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3654 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3655 CGF.EmitBlock(ExitBB); 3656 }; 3657 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3658 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3659 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3660 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3661 /*ForceSimpleCall=*/true); 3662 } else { 3663 RegionCodeGenTy RCG(CodeGen); 3664 RCG(CGF); 3665 } 3666 3667 CGF.OMPFirstScanLoop = false; 3668 SecondGen(CGF); 3669 } 3670 3671 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3672 const OMPLoopDirective &S, 3673 bool HasCancel) { 3674 bool HasLastprivates; 3675 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3676 [](const OMPReductionClause *C) { 3677 return C->getModifier() == OMPC_REDUCTION_inscan; 3678 })) { 3679 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3680 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3681 OMPLoopScope LoopScope(CGF, S); 3682 return CGF.EmitScalarExpr(S.getNumIterations()); 3683 }; 3684 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3685 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3686 CGF, S.getDirectiveKind(), HasCancel); 3687 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3688 emitForLoopBounds, 3689 emitDispatchForLoopBounds); 3690 // Emit an implicit barrier at the end. 3691 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3692 OMPD_for); 3693 }; 3694 const auto &&SecondGen = [&S, HasCancel, 3695 &HasLastprivates](CodeGenFunction &CGF) { 3696 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3697 CGF, S.getDirectiveKind(), HasCancel); 3698 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3699 emitForLoopBounds, 3700 emitDispatchForLoopBounds); 3701 }; 3702 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3703 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3704 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3705 } else { 3706 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3707 HasCancel); 3708 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3709 emitForLoopBounds, 3710 emitDispatchForLoopBounds); 3711 } 3712 return HasLastprivates; 3713 } 3714 3715 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3716 if (S.hasCancel()) 3717 return false; 3718 for (OMPClause *C : S.clauses()) 3719 if (!isa<OMPNowaitClause>(C)) 3720 return false; 3721 3722 return true; 3723 } 3724 3725 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3726 bool HasLastprivates = false; 3727 bool UseOMPIRBuilder = 3728 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3729 auto &&CodeGen = [this, &S, &HasLastprivates, 3730 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3731 // Use the OpenMPIRBuilder if enabled. 3732 if (UseOMPIRBuilder) { 3733 // Emit the associated statement and get its loop representation. 3734 const Stmt *Inner = S.getRawStmt(); 3735 llvm::CanonicalLoopInfo *CLI = 3736 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3737 3738 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3739 llvm::OpenMPIRBuilder &OMPBuilder = 3740 CGM.getOpenMPRuntime().getOMPBuilder(); 3741 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3742 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3743 OMPBuilder.applyWorkshareLoop(Builder.getCurrentDebugLocation(), CLI, 3744 AllocaIP, NeedsBarrier); 3745 return; 3746 } 3747 3748 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3749 }; 3750 { 3751 auto LPCRegion = 3752 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3753 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3754 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3755 S.hasCancel()); 3756 } 3757 3758 if (!UseOMPIRBuilder) { 3759 // Emit an implicit barrier at the end. 3760 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3761 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3762 } 3763 // Check for outer lastprivate conditional update. 3764 checkForLastprivateConditionalUpdate(*this, S); 3765 } 3766 3767 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3768 bool HasLastprivates = false; 3769 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3770 PrePostActionTy &) { 3771 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3772 }; 3773 { 3774 auto LPCRegion = 3775 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3776 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3777 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3778 } 3779 3780 // Emit an implicit barrier at the end. 3781 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3782 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3783 // Check for outer lastprivate conditional update. 3784 checkForLastprivateConditionalUpdate(*this, S); 3785 } 3786 3787 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3788 const Twine &Name, 3789 llvm::Value *Init = nullptr) { 3790 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3791 if (Init) 3792 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3793 return LVal; 3794 } 3795 3796 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3797 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3798 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3799 bool HasLastprivates = false; 3800 auto &&CodeGen = [&S, CapturedStmt, CS, 3801 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3802 const ASTContext &C = CGF.getContext(); 3803 QualType KmpInt32Ty = 3804 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3805 // Emit helper vars inits. 3806 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3807 CGF.Builder.getInt32(0)); 3808 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3809 ? CGF.Builder.getInt32(CS->size() - 1) 3810 : CGF.Builder.getInt32(0); 3811 LValue UB = 3812 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3813 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3814 CGF.Builder.getInt32(1)); 3815 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3816 CGF.Builder.getInt32(0)); 3817 // Loop counter. 3818 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3819 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3820 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3821 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3822 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3823 // Generate condition for loop. 3824 BinaryOperator *Cond = BinaryOperator::Create( 3825 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 3826 S.getBeginLoc(), FPOptionsOverride()); 3827 // Increment for loop counter. 3828 UnaryOperator *Inc = UnaryOperator::Create( 3829 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 3830 S.getBeginLoc(), true, FPOptionsOverride()); 3831 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3832 // Iterate through all sections and emit a switch construct: 3833 // switch (IV) { 3834 // case 0: 3835 // <SectionStmt[0]>; 3836 // break; 3837 // ... 3838 // case <NumSection> - 1: 3839 // <SectionStmt[<NumSection> - 1]>; 3840 // break; 3841 // } 3842 // .omp.sections.exit: 3843 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3844 llvm::SwitchInst *SwitchStmt = 3845 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3846 ExitBB, CS == nullptr ? 1 : CS->size()); 3847 if (CS) { 3848 unsigned CaseNumber = 0; 3849 for (const Stmt *SubStmt : CS->children()) { 3850 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3851 CGF.EmitBlock(CaseBB); 3852 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3853 CGF.EmitStmt(SubStmt); 3854 CGF.EmitBranch(ExitBB); 3855 ++CaseNumber; 3856 } 3857 } else { 3858 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3859 CGF.EmitBlock(CaseBB); 3860 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3861 CGF.EmitStmt(CapturedStmt); 3862 CGF.EmitBranch(ExitBB); 3863 } 3864 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3865 }; 3866 3867 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3868 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3869 // Emit implicit barrier to synchronize threads and avoid data races on 3870 // initialization of firstprivate variables and post-update of lastprivate 3871 // variables. 3872 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3873 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3874 /*ForceSimpleCall=*/true); 3875 } 3876 CGF.EmitOMPPrivateClause(S, LoopScope); 3877 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3878 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3879 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3880 (void)LoopScope.Privatize(); 3881 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3882 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3883 3884 // Emit static non-chunked loop. 3885 OpenMPScheduleTy ScheduleKind; 3886 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3887 CGOpenMPRuntime::StaticRTInput StaticInit( 3888 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3889 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3890 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3891 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3892 // UB = min(UB, GlobalUB); 3893 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3894 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3895 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3896 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3897 // IV = LB; 3898 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3899 // while (idx <= UB) { BODY; ++idx; } 3900 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3901 [](CodeGenFunction &) {}); 3902 // Tell the runtime we are done. 3903 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3904 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3905 S.getDirectiveKind()); 3906 }; 3907 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3908 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3909 // Emit post-update of the reduction variables if IsLastIter != 0. 3910 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3911 return CGF.Builder.CreateIsNotNull( 3912 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3913 }); 3914 3915 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3916 if (HasLastprivates) 3917 CGF.EmitOMPLastprivateClauseFinal( 3918 S, /*NoFinals=*/false, 3919 CGF.Builder.CreateIsNotNull( 3920 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3921 }; 3922 3923 bool HasCancel = false; 3924 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3925 HasCancel = OSD->hasCancel(); 3926 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3927 HasCancel = OPSD->hasCancel(); 3928 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3929 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3930 HasCancel); 3931 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3932 // clause. Otherwise the barrier will be generated by the codegen for the 3933 // directive. 3934 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3935 // Emit implicit barrier to synchronize threads and avoid data races on 3936 // initialization of firstprivate variables. 3937 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3938 OMPD_unknown); 3939 } 3940 } 3941 3942 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3943 if (CGM.getLangOpts().OpenMPIRBuilder) { 3944 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3945 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3946 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 3947 3948 auto FiniCB = [this](InsertPointTy IP) { 3949 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3950 }; 3951 3952 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 3953 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3954 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3955 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 3956 if (CS) { 3957 for (const Stmt *SubStmt : CS->children()) { 3958 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 3959 InsertPointTy CodeGenIP, 3960 llvm::BasicBlock &FiniBB) { 3961 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 3962 FiniBB); 3963 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP, 3964 FiniBB); 3965 }; 3966 SectionCBVector.push_back(SectionCB); 3967 } 3968 } else { 3969 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 3970 InsertPointTy CodeGenIP, 3971 llvm::BasicBlock &FiniBB) { 3972 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3973 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP, 3974 FiniBB); 3975 }; 3976 SectionCBVector.push_back(SectionCB); 3977 } 3978 3979 // Privatization callback that performs appropriate action for 3980 // shared/private/firstprivate/lastprivate/copyin/... variables. 3981 // 3982 // TODO: This defaults to shared right now. 3983 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 3984 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 3985 // The next line is appropriate only for variables (Val) with the 3986 // data-sharing attribute "shared". 3987 ReplVal = &Val; 3988 3989 return CodeGenIP; 3990 }; 3991 3992 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 3993 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3994 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3995 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3996 Builder.restoreIP(OMPBuilder.createSections( 3997 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 3998 S.getSingleClause<OMPNowaitClause>())); 3999 return; 4000 } 4001 { 4002 auto LPCRegion = 4003 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4004 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4005 EmitSections(S); 4006 } 4007 // Emit an implicit barrier at the end. 4008 if (!S.getSingleClause<OMPNowaitClause>()) { 4009 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 4010 OMPD_sections); 4011 } 4012 // Check for outer lastprivate conditional update. 4013 checkForLastprivateConditionalUpdate(*this, S); 4014 } 4015 4016 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 4017 if (CGM.getLangOpts().OpenMPIRBuilder) { 4018 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4019 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4020 4021 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 4022 auto FiniCB = [this](InsertPointTy IP) { 4023 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4024 }; 4025 4026 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 4027 InsertPointTy CodeGenIP, 4028 llvm::BasicBlock &FiniBB) { 4029 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4030 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt, 4031 CodeGenIP, FiniBB); 4032 }; 4033 4034 LexicalScope Scope(*this, S.getSourceRange()); 4035 EmitStopPoint(&S); 4036 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 4037 4038 return; 4039 } 4040 LexicalScope Scope(*this, S.getSourceRange()); 4041 EmitStopPoint(&S); 4042 EmitStmt(S.getAssociatedStmt()); 4043 } 4044 4045 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 4046 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 4047 llvm::SmallVector<const Expr *, 8> DestExprs; 4048 llvm::SmallVector<const Expr *, 8> SrcExprs; 4049 llvm::SmallVector<const Expr *, 8> AssignmentOps; 4050 // Check if there are any 'copyprivate' clauses associated with this 4051 // 'single' construct. 4052 // Build a list of copyprivate variables along with helper expressions 4053 // (<source>, <destination>, <destination>=<source> expressions) 4054 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 4055 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 4056 DestExprs.append(C->destination_exprs().begin(), 4057 C->destination_exprs().end()); 4058 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 4059 AssignmentOps.append(C->assignment_ops().begin(), 4060 C->assignment_ops().end()); 4061 } 4062 // Emit code for 'single' region along with 'copyprivate' clauses 4063 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4064 Action.Enter(CGF); 4065 OMPPrivateScope SingleScope(CGF); 4066 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 4067 CGF.EmitOMPPrivateClause(S, SingleScope); 4068 (void)SingleScope.Privatize(); 4069 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4070 }; 4071 { 4072 auto LPCRegion = 4073 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4074 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4075 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 4076 CopyprivateVars, DestExprs, 4077 SrcExprs, AssignmentOps); 4078 } 4079 // Emit an implicit barrier at the end (to avoid data race on firstprivate 4080 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 4081 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 4082 CGM.getOpenMPRuntime().emitBarrierCall( 4083 *this, S.getBeginLoc(), 4084 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 4085 } 4086 // Check for outer lastprivate conditional update. 4087 checkForLastprivateConditionalUpdate(*this, S); 4088 } 4089 4090 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4091 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4092 Action.Enter(CGF); 4093 CGF.EmitStmt(S.getRawStmt()); 4094 }; 4095 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 4096 } 4097 4098 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 4099 if (CGM.getLangOpts().OpenMPIRBuilder) { 4100 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4101 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4102 4103 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 4104 4105 auto FiniCB = [this](InsertPointTy IP) { 4106 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4107 }; 4108 4109 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 4110 InsertPointTy CodeGenIP, 4111 llvm::BasicBlock &FiniBB) { 4112 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4113 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 4114 CodeGenIP, FiniBB); 4115 }; 4116 4117 LexicalScope Scope(*this, S.getSourceRange()); 4118 EmitStopPoint(&S); 4119 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4120 4121 return; 4122 } 4123 LexicalScope Scope(*this, S.getSourceRange()); 4124 EmitStopPoint(&S); 4125 emitMaster(*this, S); 4126 } 4127 4128 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4129 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4130 Action.Enter(CGF); 4131 CGF.EmitStmt(S.getRawStmt()); 4132 }; 4133 Expr *Filter = nullptr; 4134 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4135 Filter = FilterClause->getThreadID(); 4136 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4137 Filter); 4138 } 4139 4140 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4141 if (CGM.getLangOpts().OpenMPIRBuilder) { 4142 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4143 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4144 4145 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4146 const Expr *Filter = nullptr; 4147 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4148 Filter = FilterClause->getThreadID(); 4149 llvm::Value *FilterVal = Filter 4150 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4151 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4152 4153 auto FiniCB = [this](InsertPointTy IP) { 4154 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4155 }; 4156 4157 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4158 InsertPointTy CodeGenIP, 4159 llvm::BasicBlock &FiniBB) { 4160 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4161 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt, 4162 CodeGenIP, FiniBB); 4163 }; 4164 4165 LexicalScope Scope(*this, S.getSourceRange()); 4166 EmitStopPoint(&S); 4167 Builder.restoreIP( 4168 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4169 4170 return; 4171 } 4172 LexicalScope Scope(*this, S.getSourceRange()); 4173 EmitStopPoint(&S); 4174 emitMasked(*this, S); 4175 } 4176 4177 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4178 if (CGM.getLangOpts().OpenMPIRBuilder) { 4179 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4180 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4181 4182 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4183 const Expr *Hint = nullptr; 4184 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4185 Hint = HintClause->getHint(); 4186 4187 // TODO: This is slightly different from what's currently being done in 4188 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4189 // about typing is final. 4190 llvm::Value *HintInst = nullptr; 4191 if (Hint) 4192 HintInst = 4193 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4194 4195 auto FiniCB = [this](InsertPointTy IP) { 4196 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4197 }; 4198 4199 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4200 InsertPointTy CodeGenIP, 4201 llvm::BasicBlock &FiniBB) { 4202 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4203 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 4204 CodeGenIP, FiniBB); 4205 }; 4206 4207 LexicalScope Scope(*this, S.getSourceRange()); 4208 EmitStopPoint(&S); 4209 Builder.restoreIP(OMPBuilder.createCritical( 4210 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4211 HintInst)); 4212 4213 return; 4214 } 4215 4216 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4217 Action.Enter(CGF); 4218 CGF.EmitStmt(S.getAssociatedStmt()); 4219 }; 4220 const Expr *Hint = nullptr; 4221 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4222 Hint = HintClause->getHint(); 4223 LexicalScope Scope(*this, S.getSourceRange()); 4224 EmitStopPoint(&S); 4225 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4226 S.getDirectiveName().getAsString(), 4227 CodeGen, S.getBeginLoc(), Hint); 4228 } 4229 4230 void CodeGenFunction::EmitOMPParallelForDirective( 4231 const OMPParallelForDirective &S) { 4232 // Emit directive as a combined directive that consists of two implicit 4233 // directives: 'parallel' with 'for' directive. 4234 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4235 Action.Enter(CGF); 4236 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4237 }; 4238 { 4239 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4240 [](const OMPReductionClause *C) { 4241 return C->getModifier() == OMPC_REDUCTION_inscan; 4242 })) { 4243 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4244 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4245 CGCapturedStmtInfo CGSI(CR_OpenMP); 4246 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4247 OMPLoopScope LoopScope(CGF, S); 4248 return CGF.EmitScalarExpr(S.getNumIterations()); 4249 }; 4250 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4251 } 4252 auto LPCRegion = 4253 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4254 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4255 emitEmptyBoundParameters); 4256 } 4257 // Check for outer lastprivate conditional update. 4258 checkForLastprivateConditionalUpdate(*this, S); 4259 } 4260 4261 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4262 const OMPParallelForSimdDirective &S) { 4263 // Emit directive as a combined directive that consists of two implicit 4264 // directives: 'parallel' with 'for' directive. 4265 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4266 Action.Enter(CGF); 4267 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4268 }; 4269 { 4270 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4271 [](const OMPReductionClause *C) { 4272 return C->getModifier() == OMPC_REDUCTION_inscan; 4273 })) { 4274 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4275 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4276 CGCapturedStmtInfo CGSI(CR_OpenMP); 4277 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4278 OMPLoopScope LoopScope(CGF, S); 4279 return CGF.EmitScalarExpr(S.getNumIterations()); 4280 }; 4281 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4282 } 4283 auto LPCRegion = 4284 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4285 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4286 emitEmptyBoundParameters); 4287 } 4288 // Check for outer lastprivate conditional update. 4289 checkForLastprivateConditionalUpdate(*this, S); 4290 } 4291 4292 void CodeGenFunction::EmitOMPParallelMasterDirective( 4293 const OMPParallelMasterDirective &S) { 4294 // Emit directive as a combined directive that consists of two implicit 4295 // directives: 'parallel' with 'master' directive. 4296 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4297 Action.Enter(CGF); 4298 OMPPrivateScope PrivateScope(CGF); 4299 bool Copyins = CGF.EmitOMPCopyinClause(S); 4300 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4301 if (Copyins) { 4302 // Emit implicit barrier to synchronize threads and avoid data races on 4303 // propagation master's thread values of threadprivate variables to local 4304 // instances of that variables of all other implicit threads. 4305 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4306 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4307 /*ForceSimpleCall=*/true); 4308 } 4309 CGF.EmitOMPPrivateClause(S, PrivateScope); 4310 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4311 (void)PrivateScope.Privatize(); 4312 emitMaster(CGF, S); 4313 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4314 }; 4315 { 4316 auto LPCRegion = 4317 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4318 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4319 emitEmptyBoundParameters); 4320 emitPostUpdateForReductionClause(*this, S, 4321 [](CodeGenFunction &) { return nullptr; }); 4322 } 4323 // Check for outer lastprivate conditional update. 4324 checkForLastprivateConditionalUpdate(*this, S); 4325 } 4326 4327 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4328 const OMPParallelSectionsDirective &S) { 4329 // Emit directive as a combined directive that consists of two implicit 4330 // directives: 'parallel' with 'sections' directive. 4331 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4332 Action.Enter(CGF); 4333 CGF.EmitSections(S); 4334 }; 4335 { 4336 auto LPCRegion = 4337 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4338 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4339 emitEmptyBoundParameters); 4340 } 4341 // Check for outer lastprivate conditional update. 4342 checkForLastprivateConditionalUpdate(*this, S); 4343 } 4344 4345 namespace { 4346 /// Get the list of variables declared in the context of the untied tasks. 4347 class CheckVarsEscapingUntiedTaskDeclContext final 4348 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4349 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4350 4351 public: 4352 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4353 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4354 void VisitDeclStmt(const DeclStmt *S) { 4355 if (!S) 4356 return; 4357 // Need to privatize only local vars, static locals can be processed as is. 4358 for (const Decl *D : S->decls()) { 4359 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4360 if (VD->hasLocalStorage()) 4361 PrivateDecls.push_back(VD); 4362 } 4363 } 4364 void VisitOMPExecutableDirective(const OMPExecutableDirective *) {} 4365 void VisitCapturedStmt(const CapturedStmt *) {} 4366 void VisitLambdaExpr(const LambdaExpr *) {} 4367 void VisitBlockExpr(const BlockExpr *) {} 4368 void VisitStmt(const Stmt *S) { 4369 if (!S) 4370 return; 4371 for (const Stmt *Child : S->children()) 4372 if (Child) 4373 Visit(Child); 4374 } 4375 4376 /// Swaps list of vars with the provided one. 4377 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4378 }; 4379 } // anonymous namespace 4380 4381 void CodeGenFunction::EmitOMPTaskBasedDirective( 4382 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4383 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4384 OMPTaskDataTy &Data) { 4385 // Emit outlined function for task construct. 4386 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4387 auto I = CS->getCapturedDecl()->param_begin(); 4388 auto PartId = std::next(I); 4389 auto TaskT = std::next(I, 4); 4390 // Check if the task is final 4391 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4392 // If the condition constant folds and can be elided, try to avoid emitting 4393 // the condition and the dead arm of the if/else. 4394 const Expr *Cond = Clause->getCondition(); 4395 bool CondConstant; 4396 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4397 Data.Final.setInt(CondConstant); 4398 else 4399 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4400 } else { 4401 // By default the task is not final. 4402 Data.Final.setInt(/*IntVal=*/false); 4403 } 4404 // Check if the task has 'priority' clause. 4405 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4406 const Expr *Prio = Clause->getPriority(); 4407 Data.Priority.setInt(/*IntVal=*/true); 4408 Data.Priority.setPointer(EmitScalarConversion( 4409 EmitScalarExpr(Prio), Prio->getType(), 4410 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4411 Prio->getExprLoc())); 4412 } 4413 // The first function argument for tasks is a thread id, the second one is a 4414 // part id (0 for tied tasks, >=0 for untied task). 4415 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4416 // Get list of private variables. 4417 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4418 auto IRef = C->varlist_begin(); 4419 for (const Expr *IInit : C->private_copies()) { 4420 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4421 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4422 Data.PrivateVars.push_back(*IRef); 4423 Data.PrivateCopies.push_back(IInit); 4424 } 4425 ++IRef; 4426 } 4427 } 4428 EmittedAsPrivate.clear(); 4429 // Get list of firstprivate variables. 4430 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4431 auto IRef = C->varlist_begin(); 4432 auto IElemInitRef = C->inits().begin(); 4433 for (const Expr *IInit : C->private_copies()) { 4434 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4435 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4436 Data.FirstprivateVars.push_back(*IRef); 4437 Data.FirstprivateCopies.push_back(IInit); 4438 Data.FirstprivateInits.push_back(*IElemInitRef); 4439 } 4440 ++IRef; 4441 ++IElemInitRef; 4442 } 4443 } 4444 // Get list of lastprivate variables (for taskloops). 4445 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4446 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4447 auto IRef = C->varlist_begin(); 4448 auto ID = C->destination_exprs().begin(); 4449 for (const Expr *IInit : C->private_copies()) { 4450 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4451 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4452 Data.LastprivateVars.push_back(*IRef); 4453 Data.LastprivateCopies.push_back(IInit); 4454 } 4455 LastprivateDstsOrigs.insert( 4456 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4457 cast<DeclRefExpr>(*IRef))); 4458 ++IRef; 4459 ++ID; 4460 } 4461 } 4462 SmallVector<const Expr *, 4> LHSs; 4463 SmallVector<const Expr *, 4> RHSs; 4464 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4465 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4466 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4467 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4468 Data.ReductionOps.append(C->reduction_ops().begin(), 4469 C->reduction_ops().end()); 4470 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4471 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4472 } 4473 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4474 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4475 // Build list of dependences. 4476 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4477 OMPTaskDataTy::DependData &DD = 4478 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4479 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4480 } 4481 // Get list of local vars for untied tasks. 4482 if (!Data.Tied) { 4483 CheckVarsEscapingUntiedTaskDeclContext Checker; 4484 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4485 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4486 Checker.getPrivateDecls().end()); 4487 } 4488 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4489 CapturedRegion](CodeGenFunction &CGF, 4490 PrePostActionTy &Action) { 4491 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4492 std::pair<Address, Address>> 4493 UntiedLocalVars; 4494 // Set proper addresses for generated private copies. 4495 OMPPrivateScope Scope(CGF); 4496 // Generate debug info for variables present in shared clause. 4497 if (auto *DI = CGF.getDebugInfo()) { 4498 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields = 4499 CGF.CapturedStmtInfo->getCaptureFields(); 4500 llvm::Value *ContextValue = CGF.CapturedStmtInfo->getContextValue(); 4501 if (CaptureFields.size() && ContextValue) { 4502 unsigned CharWidth = CGF.getContext().getCharWidth(); 4503 // The shared variables are packed together as members of structure. 4504 // So the address of each shared variable can be computed by adding 4505 // offset of it (within record) to the base address of record. For each 4506 // shared variable, debug intrinsic llvm.dbg.declare is generated with 4507 // appropriate expressions (DIExpression). 4508 // Ex: 4509 // %12 = load %struct.anon*, %struct.anon** %__context.addr.i 4510 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4511 // metadata !svar1, 4512 // metadata !DIExpression(DW_OP_deref)) 4513 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4514 // metadata !svar2, 4515 // metadata !DIExpression(DW_OP_plus_uconst, 8, DW_OP_deref)) 4516 for (auto It = CaptureFields.begin(); It != CaptureFields.end(); ++It) { 4517 const VarDecl *SharedVar = It->first; 4518 RecordDecl *CaptureRecord = It->second->getParent(); 4519 const ASTRecordLayout &Layout = 4520 CGF.getContext().getASTRecordLayout(CaptureRecord); 4521 unsigned Offset = 4522 Layout.getFieldOffset(It->second->getFieldIndex()) / CharWidth; 4523 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4524 (void)DI->EmitDeclareOfAutoVariable(SharedVar, ContextValue, 4525 CGF.Builder, false); 4526 llvm::Instruction &Last = CGF.Builder.GetInsertBlock()->back(); 4527 // Get the call dbg.declare instruction we just created and update 4528 // its DIExpression to add offset to base address. 4529 if (auto DDI = dyn_cast<llvm::DbgVariableIntrinsic>(&Last)) { 4530 SmallVector<uint64_t, 8> Ops; 4531 // Add offset to the base address if non zero. 4532 if (Offset) { 4533 Ops.push_back(llvm::dwarf::DW_OP_plus_uconst); 4534 Ops.push_back(Offset); 4535 } 4536 Ops.push_back(llvm::dwarf::DW_OP_deref); 4537 auto &Ctx = DDI->getContext(); 4538 llvm::DIExpression *DIExpr = llvm::DIExpression::get(Ctx, Ops); 4539 Last.setOperand(2, llvm::MetadataAsValue::get(Ctx, DIExpr)); 4540 } 4541 } 4542 } 4543 } 4544 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4545 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4546 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4547 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4548 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4549 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4550 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4551 CS->getCapturedDecl()->getParam(PrivatesParam))); 4552 // Map privates. 4553 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4554 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4555 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4556 CallArgs.push_back(PrivatesPtr); 4557 ParamTypes.push_back(PrivatesPtr->getType()); 4558 for (const Expr *E : Data.PrivateVars) { 4559 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4560 Address PrivatePtr = CGF.CreateMemTemp( 4561 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4562 PrivatePtrs.emplace_back(VD, PrivatePtr); 4563 CallArgs.push_back(PrivatePtr.getPointer()); 4564 ParamTypes.push_back(PrivatePtr.getType()); 4565 } 4566 for (const Expr *E : Data.FirstprivateVars) { 4567 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4568 Address PrivatePtr = 4569 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4570 ".firstpriv.ptr.addr"); 4571 PrivatePtrs.emplace_back(VD, PrivatePtr); 4572 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4573 CallArgs.push_back(PrivatePtr.getPointer()); 4574 ParamTypes.push_back(PrivatePtr.getType()); 4575 } 4576 for (const Expr *E : Data.LastprivateVars) { 4577 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4578 Address PrivatePtr = 4579 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4580 ".lastpriv.ptr.addr"); 4581 PrivatePtrs.emplace_back(VD, PrivatePtr); 4582 CallArgs.push_back(PrivatePtr.getPointer()); 4583 ParamTypes.push_back(PrivatePtr.getType()); 4584 } 4585 for (const VarDecl *VD : Data.PrivateLocals) { 4586 QualType Ty = VD->getType().getNonReferenceType(); 4587 if (VD->getType()->isLValueReferenceType()) 4588 Ty = CGF.getContext().getPointerType(Ty); 4589 if (isAllocatableDecl(VD)) 4590 Ty = CGF.getContext().getPointerType(Ty); 4591 Address PrivatePtr = CGF.CreateMemTemp( 4592 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4593 auto Result = UntiedLocalVars.insert( 4594 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4595 // If key exists update in place. 4596 if (Result.second == false) 4597 *Result.first = std::make_pair( 4598 VD, std::make_pair(PrivatePtr, Address::invalid())); 4599 CallArgs.push_back(PrivatePtr.getPointer()); 4600 ParamTypes.push_back(PrivatePtr.getType()); 4601 } 4602 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4603 ParamTypes, /*isVarArg=*/false); 4604 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4605 CopyFn, CopyFnTy->getPointerTo()); 4606 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4607 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4608 for (const auto &Pair : LastprivateDstsOrigs) { 4609 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4610 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4611 /*RefersToEnclosingVariableOrCapture=*/ 4612 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4613 Pair.second->getType(), VK_LValue, 4614 Pair.second->getExprLoc()); 4615 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4616 return CGF.EmitLValue(&DRE).getAddress(CGF); 4617 }); 4618 } 4619 for (const auto &Pair : PrivatePtrs) { 4620 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4621 CGF.getContext().getDeclAlign(Pair.first)); 4622 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4623 if (auto *DI = CGF.getDebugInfo()) 4624 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4625 (void)DI->EmitDeclareOfAutoVariable( 4626 Pair.first, Pair.second.getPointer(), CGF.Builder, 4627 /*UsePointerValue*/ true); 4628 } 4629 // Adjust mapping for internal locals by mapping actual memory instead of 4630 // a pointer to this memory. 4631 for (auto &Pair : UntiedLocalVars) { 4632 if (isAllocatableDecl(Pair.first)) { 4633 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4634 Address Replacement(Ptr, CGF.getPointerAlign()); 4635 Pair.second.first = Replacement; 4636 Ptr = CGF.Builder.CreateLoad(Replacement); 4637 Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4638 Pair.second.second = Replacement; 4639 } else { 4640 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4641 Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4642 Pair.second.first = Replacement; 4643 } 4644 } 4645 } 4646 if (Data.Reductions) { 4647 OMPPrivateScope FirstprivateScope(CGF); 4648 for (const auto &Pair : FirstprivatePtrs) { 4649 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4650 CGF.getContext().getDeclAlign(Pair.first)); 4651 FirstprivateScope.addPrivate(Pair.first, 4652 [Replacement]() { return Replacement; }); 4653 } 4654 (void)FirstprivateScope.Privatize(); 4655 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4656 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4657 Data.ReductionCopies, Data.ReductionOps); 4658 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4659 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4660 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4661 RedCG.emitSharedOrigLValue(CGF, Cnt); 4662 RedCG.emitAggregateType(CGF, Cnt); 4663 // FIXME: This must removed once the runtime library is fixed. 4664 // Emit required threadprivate variables for 4665 // initializer/combiner/finalizer. 4666 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4667 RedCG, Cnt); 4668 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4669 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4670 Replacement = 4671 Address(CGF.EmitScalarConversion( 4672 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4673 CGF.getContext().getPointerType( 4674 Data.ReductionCopies[Cnt]->getType()), 4675 Data.ReductionCopies[Cnt]->getExprLoc()), 4676 Replacement.getAlignment()); 4677 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4678 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4679 [Replacement]() { return Replacement; }); 4680 } 4681 } 4682 // Privatize all private variables except for in_reduction items. 4683 (void)Scope.Privatize(); 4684 SmallVector<const Expr *, 4> InRedVars; 4685 SmallVector<const Expr *, 4> InRedPrivs; 4686 SmallVector<const Expr *, 4> InRedOps; 4687 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4688 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4689 auto IPriv = C->privates().begin(); 4690 auto IRed = C->reduction_ops().begin(); 4691 auto ITD = C->taskgroup_descriptors().begin(); 4692 for (const Expr *Ref : C->varlists()) { 4693 InRedVars.emplace_back(Ref); 4694 InRedPrivs.emplace_back(*IPriv); 4695 InRedOps.emplace_back(*IRed); 4696 TaskgroupDescriptors.emplace_back(*ITD); 4697 std::advance(IPriv, 1); 4698 std::advance(IRed, 1); 4699 std::advance(ITD, 1); 4700 } 4701 } 4702 // Privatize in_reduction items here, because taskgroup descriptors must be 4703 // privatized earlier. 4704 OMPPrivateScope InRedScope(CGF); 4705 if (!InRedVars.empty()) { 4706 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4707 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4708 RedCG.emitSharedOrigLValue(CGF, Cnt); 4709 RedCG.emitAggregateType(CGF, Cnt); 4710 // The taskgroup descriptor variable is always implicit firstprivate and 4711 // privatized already during processing of the firstprivates. 4712 // FIXME: This must removed once the runtime library is fixed. 4713 // Emit required threadprivate variables for 4714 // initializer/combiner/finalizer. 4715 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4716 RedCG, Cnt); 4717 llvm::Value *ReductionsPtr; 4718 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4719 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4720 TRExpr->getExprLoc()); 4721 } else { 4722 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4723 } 4724 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4725 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4726 Replacement = Address( 4727 CGF.EmitScalarConversion( 4728 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4729 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4730 InRedPrivs[Cnt]->getExprLoc()), 4731 Replacement.getAlignment()); 4732 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4733 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4734 [Replacement]() { return Replacement; }); 4735 } 4736 } 4737 (void)InRedScope.Privatize(); 4738 4739 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4740 UntiedLocalVars); 4741 Action.Enter(CGF); 4742 BodyGen(CGF); 4743 }; 4744 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4745 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4746 Data.NumberOfParts); 4747 OMPLexicalScope Scope(*this, S, llvm::None, 4748 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4749 !isOpenMPSimdDirective(S.getDirectiveKind())); 4750 TaskGen(*this, OutlinedFn, Data); 4751 } 4752 4753 static ImplicitParamDecl * 4754 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4755 QualType Ty, CapturedDecl *CD, 4756 SourceLocation Loc) { 4757 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4758 ImplicitParamDecl::Other); 4759 auto *OrigRef = DeclRefExpr::Create( 4760 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4761 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4762 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4763 ImplicitParamDecl::Other); 4764 auto *PrivateRef = DeclRefExpr::Create( 4765 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4766 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4767 QualType ElemType = C.getBaseElementType(Ty); 4768 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4769 ImplicitParamDecl::Other); 4770 auto *InitRef = DeclRefExpr::Create( 4771 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4772 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4773 PrivateVD->setInitStyle(VarDecl::CInit); 4774 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4775 InitRef, /*BasePath=*/nullptr, 4776 VK_PRValue, FPOptionsOverride())); 4777 Data.FirstprivateVars.emplace_back(OrigRef); 4778 Data.FirstprivateCopies.emplace_back(PrivateRef); 4779 Data.FirstprivateInits.emplace_back(InitRef); 4780 return OrigVD; 4781 } 4782 4783 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4784 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4785 OMPTargetDataInfo &InputInfo) { 4786 // Emit outlined function for task construct. 4787 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4788 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4789 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4790 auto I = CS->getCapturedDecl()->param_begin(); 4791 auto PartId = std::next(I); 4792 auto TaskT = std::next(I, 4); 4793 OMPTaskDataTy Data; 4794 // The task is not final. 4795 Data.Final.setInt(/*IntVal=*/false); 4796 // Get list of firstprivate variables. 4797 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4798 auto IRef = C->varlist_begin(); 4799 auto IElemInitRef = C->inits().begin(); 4800 for (auto *IInit : C->private_copies()) { 4801 Data.FirstprivateVars.push_back(*IRef); 4802 Data.FirstprivateCopies.push_back(IInit); 4803 Data.FirstprivateInits.push_back(*IElemInitRef); 4804 ++IRef; 4805 ++IElemInitRef; 4806 } 4807 } 4808 OMPPrivateScope TargetScope(*this); 4809 VarDecl *BPVD = nullptr; 4810 VarDecl *PVD = nullptr; 4811 VarDecl *SVD = nullptr; 4812 VarDecl *MVD = nullptr; 4813 if (InputInfo.NumberOfTargetItems > 0) { 4814 auto *CD = CapturedDecl::Create( 4815 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4816 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4817 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4818 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4819 /*IndexTypeQuals=*/0); 4820 BPVD = createImplicitFirstprivateForType( 4821 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4822 PVD = createImplicitFirstprivateForType( 4823 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4824 QualType SizesType = getContext().getConstantArrayType( 4825 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4826 ArrSize, nullptr, ArrayType::Normal, 4827 /*IndexTypeQuals=*/0); 4828 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4829 S.getBeginLoc()); 4830 TargetScope.addPrivate( 4831 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4832 TargetScope.addPrivate(PVD, 4833 [&InputInfo]() { return InputInfo.PointersArray; }); 4834 TargetScope.addPrivate(SVD, 4835 [&InputInfo]() { return InputInfo.SizesArray; }); 4836 // If there is no user-defined mapper, the mapper array will be nullptr. In 4837 // this case, we don't need to privatize it. 4838 if (!isa_and_nonnull<llvm::ConstantPointerNull>( 4839 InputInfo.MappersArray.getPointer())) { 4840 MVD = createImplicitFirstprivateForType( 4841 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4842 TargetScope.addPrivate(MVD, 4843 [&InputInfo]() { return InputInfo.MappersArray; }); 4844 } 4845 } 4846 (void)TargetScope.Privatize(); 4847 // Build list of dependences. 4848 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4849 OMPTaskDataTy::DependData &DD = 4850 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4851 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4852 } 4853 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4854 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4855 // Set proper addresses for generated private copies. 4856 OMPPrivateScope Scope(CGF); 4857 if (!Data.FirstprivateVars.empty()) { 4858 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4859 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4860 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4861 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4862 CS->getCapturedDecl()->getParam(PrivatesParam))); 4863 // Map privates. 4864 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4865 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4866 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4867 CallArgs.push_back(PrivatesPtr); 4868 ParamTypes.push_back(PrivatesPtr->getType()); 4869 for (const Expr *E : Data.FirstprivateVars) { 4870 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4871 Address PrivatePtr = 4872 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4873 ".firstpriv.ptr.addr"); 4874 PrivatePtrs.emplace_back(VD, PrivatePtr); 4875 CallArgs.push_back(PrivatePtr.getPointer()); 4876 ParamTypes.push_back(PrivatePtr.getType()); 4877 } 4878 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4879 ParamTypes, /*isVarArg=*/false); 4880 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4881 CopyFn, CopyFnTy->getPointerTo()); 4882 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4883 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4884 for (const auto &Pair : PrivatePtrs) { 4885 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4886 CGF.getContext().getDeclAlign(Pair.first)); 4887 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4888 } 4889 } 4890 // Privatize all private variables except for in_reduction items. 4891 (void)Scope.Privatize(); 4892 if (InputInfo.NumberOfTargetItems > 0) { 4893 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4894 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4895 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4896 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4897 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4898 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4899 // If MVD is nullptr, the mapper array is not privatized 4900 if (MVD) 4901 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4902 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4903 } 4904 4905 Action.Enter(CGF); 4906 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4907 BodyGen(CGF); 4908 }; 4909 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4910 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4911 Data.NumberOfParts); 4912 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4913 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4914 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4915 SourceLocation()); 4916 4917 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4918 SharedsTy, CapturedStruct, &IfCond, Data); 4919 } 4920 4921 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4922 // Emit outlined function for task construct. 4923 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4924 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4925 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4926 const Expr *IfCond = nullptr; 4927 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4928 if (C->getNameModifier() == OMPD_unknown || 4929 C->getNameModifier() == OMPD_task) { 4930 IfCond = C->getCondition(); 4931 break; 4932 } 4933 } 4934 4935 OMPTaskDataTy Data; 4936 // Check if we should emit tied or untied task. 4937 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4938 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4939 CGF.EmitStmt(CS->getCapturedStmt()); 4940 }; 4941 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4942 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4943 const OMPTaskDataTy &Data) { 4944 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4945 SharedsTy, CapturedStruct, IfCond, 4946 Data); 4947 }; 4948 auto LPCRegion = 4949 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4950 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4951 } 4952 4953 void CodeGenFunction::EmitOMPTaskyieldDirective( 4954 const OMPTaskyieldDirective &S) { 4955 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4956 } 4957 4958 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4959 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4960 } 4961 4962 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4963 OMPTaskDataTy Data; 4964 // Build list of dependences 4965 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4966 OMPTaskDataTy::DependData &DD = 4967 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4968 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4969 } 4970 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc(), Data); 4971 } 4972 4973 void CodeGenFunction::EmitOMPTaskgroupDirective( 4974 const OMPTaskgroupDirective &S) { 4975 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4976 Action.Enter(CGF); 4977 if (const Expr *E = S.getReductionRef()) { 4978 SmallVector<const Expr *, 4> LHSs; 4979 SmallVector<const Expr *, 4> RHSs; 4980 OMPTaskDataTy Data; 4981 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4982 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4983 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4984 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4985 Data.ReductionOps.append(C->reduction_ops().begin(), 4986 C->reduction_ops().end()); 4987 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4988 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4989 } 4990 llvm::Value *ReductionDesc = 4991 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4992 LHSs, RHSs, Data); 4993 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4994 CGF.EmitVarDecl(*VD); 4995 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4996 /*Volatile=*/false, E->getType()); 4997 } 4998 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4999 }; 5000 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5001 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 5002 } 5003 5004 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 5005 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 5006 ? llvm::AtomicOrdering::NotAtomic 5007 : llvm::AtomicOrdering::AcquireRelease; 5008 CGM.getOpenMPRuntime().emitFlush( 5009 *this, 5010 [&S]() -> ArrayRef<const Expr *> { 5011 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 5012 return llvm::makeArrayRef(FlushClause->varlist_begin(), 5013 FlushClause->varlist_end()); 5014 return llvm::None; 5015 }(), 5016 S.getBeginLoc(), AO); 5017 } 5018 5019 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 5020 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 5021 LValue DOLVal = EmitLValue(DO->getDepobj()); 5022 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 5023 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 5024 DC->getModifier()); 5025 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 5026 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 5027 *this, Dependencies, DC->getBeginLoc()); 5028 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 5029 return; 5030 } 5031 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 5032 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 5033 return; 5034 } 5035 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 5036 CGM.getOpenMPRuntime().emitUpdateClause( 5037 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 5038 return; 5039 } 5040 } 5041 5042 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 5043 if (!OMPParentLoopDirectiveForScan) 5044 return; 5045 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 5046 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 5047 SmallVector<const Expr *, 4> Shareds; 5048 SmallVector<const Expr *, 4> Privates; 5049 SmallVector<const Expr *, 4> LHSs; 5050 SmallVector<const Expr *, 4> RHSs; 5051 SmallVector<const Expr *, 4> ReductionOps; 5052 SmallVector<const Expr *, 4> CopyOps; 5053 SmallVector<const Expr *, 4> CopyArrayTemps; 5054 SmallVector<const Expr *, 4> CopyArrayElems; 5055 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 5056 if (C->getModifier() != OMPC_REDUCTION_inscan) 5057 continue; 5058 Shareds.append(C->varlist_begin(), C->varlist_end()); 5059 Privates.append(C->privates().begin(), C->privates().end()); 5060 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5061 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5062 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 5063 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 5064 CopyArrayTemps.append(C->copy_array_temps().begin(), 5065 C->copy_array_temps().end()); 5066 CopyArrayElems.append(C->copy_array_elems().begin(), 5067 C->copy_array_elems().end()); 5068 } 5069 if (ParentDir.getDirectiveKind() == OMPD_simd || 5070 (getLangOpts().OpenMPSimd && 5071 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 5072 // For simd directive and simd-based directives in simd only mode, use the 5073 // following codegen: 5074 // int x = 0; 5075 // #pragma omp simd reduction(inscan, +: x) 5076 // for (..) { 5077 // <first part> 5078 // #pragma omp scan inclusive(x) 5079 // <second part> 5080 // } 5081 // is transformed to: 5082 // int x = 0; 5083 // for (..) { 5084 // int x_priv = 0; 5085 // <first part> 5086 // x = x_priv + x; 5087 // x_priv = x; 5088 // <second part> 5089 // } 5090 // and 5091 // int x = 0; 5092 // #pragma omp simd reduction(inscan, +: x) 5093 // for (..) { 5094 // <first part> 5095 // #pragma omp scan exclusive(x) 5096 // <second part> 5097 // } 5098 // to 5099 // int x = 0; 5100 // for (..) { 5101 // int x_priv = 0; 5102 // <second part> 5103 // int temp = x; 5104 // x = x_priv + x; 5105 // x_priv = temp; 5106 // <first part> 5107 // } 5108 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 5109 EmitBranch(IsInclusive 5110 ? OMPScanReduce 5111 : BreakContinueStack.back().ContinueBlock.getBlock()); 5112 EmitBlock(OMPScanDispatch); 5113 { 5114 // New scope for correct construction/destruction of temp variables for 5115 // exclusive scan. 5116 LexicalScope Scope(*this, S.getSourceRange()); 5117 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 5118 EmitBlock(OMPScanReduce); 5119 if (!IsInclusive) { 5120 // Create temp var and copy LHS value to this temp value. 5121 // TMP = LHS; 5122 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5123 const Expr *PrivateExpr = Privates[I]; 5124 const Expr *TempExpr = CopyArrayTemps[I]; 5125 EmitAutoVarDecl( 5126 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 5127 LValue DestLVal = EmitLValue(TempExpr); 5128 LValue SrcLVal = EmitLValue(LHSs[I]); 5129 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5130 SrcLVal.getAddress(*this), 5131 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5132 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5133 CopyOps[I]); 5134 } 5135 } 5136 CGM.getOpenMPRuntime().emitReduction( 5137 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 5138 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 5139 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5140 const Expr *PrivateExpr = Privates[I]; 5141 LValue DestLVal; 5142 LValue SrcLVal; 5143 if (IsInclusive) { 5144 DestLVal = EmitLValue(RHSs[I]); 5145 SrcLVal = EmitLValue(LHSs[I]); 5146 } else { 5147 const Expr *TempExpr = CopyArrayTemps[I]; 5148 DestLVal = EmitLValue(RHSs[I]); 5149 SrcLVal = EmitLValue(TempExpr); 5150 } 5151 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5152 SrcLVal.getAddress(*this), 5153 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5154 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5155 CopyOps[I]); 5156 } 5157 } 5158 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 5159 OMPScanExitBlock = IsInclusive 5160 ? BreakContinueStack.back().ContinueBlock.getBlock() 5161 : OMPScanReduce; 5162 EmitBlock(OMPAfterScanBlock); 5163 return; 5164 } 5165 if (!IsInclusive) { 5166 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5167 EmitBlock(OMPScanExitBlock); 5168 } 5169 if (OMPFirstScanLoop) { 5170 // Emit buffer[i] = red; at the end of the input phase. 5171 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5172 .getIterationVariable() 5173 ->IgnoreParenImpCasts(); 5174 LValue IdxLVal = EmitLValue(IVExpr); 5175 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5176 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5177 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5178 const Expr *PrivateExpr = Privates[I]; 5179 const Expr *OrigExpr = Shareds[I]; 5180 const Expr *CopyArrayElem = CopyArrayElems[I]; 5181 OpaqueValueMapping IdxMapping( 5182 *this, 5183 cast<OpaqueValueExpr>( 5184 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5185 RValue::get(IdxVal)); 5186 LValue DestLVal = EmitLValue(CopyArrayElem); 5187 LValue SrcLVal = EmitLValue(OrigExpr); 5188 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5189 SrcLVal.getAddress(*this), 5190 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5191 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5192 CopyOps[I]); 5193 } 5194 } 5195 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5196 if (IsInclusive) { 5197 EmitBlock(OMPScanExitBlock); 5198 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5199 } 5200 EmitBlock(OMPScanDispatch); 5201 if (!OMPFirstScanLoop) { 5202 // Emit red = buffer[i]; at the entrance to the scan phase. 5203 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5204 .getIterationVariable() 5205 ->IgnoreParenImpCasts(); 5206 LValue IdxLVal = EmitLValue(IVExpr); 5207 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5208 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5209 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5210 if (!IsInclusive) { 5211 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5212 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5213 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5214 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5215 EmitBlock(ContBB); 5216 // Use idx - 1 iteration for exclusive scan. 5217 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5218 } 5219 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5220 const Expr *PrivateExpr = Privates[I]; 5221 const Expr *OrigExpr = Shareds[I]; 5222 const Expr *CopyArrayElem = CopyArrayElems[I]; 5223 OpaqueValueMapping IdxMapping( 5224 *this, 5225 cast<OpaqueValueExpr>( 5226 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5227 RValue::get(IdxVal)); 5228 LValue SrcLVal = EmitLValue(CopyArrayElem); 5229 LValue DestLVal = EmitLValue(OrigExpr); 5230 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5231 SrcLVal.getAddress(*this), 5232 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5233 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5234 CopyOps[I]); 5235 } 5236 if (!IsInclusive) { 5237 EmitBlock(ExclusiveExitBB); 5238 } 5239 } 5240 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5241 : OMPAfterScanBlock); 5242 EmitBlock(OMPAfterScanBlock); 5243 } 5244 5245 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5246 const CodeGenLoopTy &CodeGenLoop, 5247 Expr *IncExpr) { 5248 // Emit the loop iteration variable. 5249 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5250 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5251 EmitVarDecl(*IVDecl); 5252 5253 // Emit the iterations count variable. 5254 // If it is not a variable, Sema decided to calculate iterations count on each 5255 // iteration (e.g., it is foldable into a constant). 5256 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5257 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5258 // Emit calculation of the iterations count. 5259 EmitIgnoredExpr(S.getCalcLastIteration()); 5260 } 5261 5262 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5263 5264 bool HasLastprivateClause = false; 5265 // Check pre-condition. 5266 { 5267 OMPLoopScope PreInitScope(*this, S); 5268 // Skip the entire loop if we don't meet the precondition. 5269 // If the condition constant folds and can be elided, avoid emitting the 5270 // whole loop. 5271 bool CondConstant; 5272 llvm::BasicBlock *ContBlock = nullptr; 5273 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5274 if (!CondConstant) 5275 return; 5276 } else { 5277 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5278 ContBlock = createBasicBlock("omp.precond.end"); 5279 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5280 getProfileCount(&S)); 5281 EmitBlock(ThenBlock); 5282 incrementProfileCounter(&S); 5283 } 5284 5285 emitAlignedClause(*this, S); 5286 // Emit 'then' code. 5287 { 5288 // Emit helper vars inits. 5289 5290 LValue LB = EmitOMPHelperVar( 5291 *this, cast<DeclRefExpr>( 5292 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5293 ? S.getCombinedLowerBoundVariable() 5294 : S.getLowerBoundVariable()))); 5295 LValue UB = EmitOMPHelperVar( 5296 *this, cast<DeclRefExpr>( 5297 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5298 ? S.getCombinedUpperBoundVariable() 5299 : S.getUpperBoundVariable()))); 5300 LValue ST = 5301 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5302 LValue IL = 5303 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5304 5305 OMPPrivateScope LoopScope(*this); 5306 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5307 // Emit implicit barrier to synchronize threads and avoid data races 5308 // on initialization of firstprivate variables and post-update of 5309 // lastprivate variables. 5310 CGM.getOpenMPRuntime().emitBarrierCall( 5311 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5312 /*ForceSimpleCall=*/true); 5313 } 5314 EmitOMPPrivateClause(S, LoopScope); 5315 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5316 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5317 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5318 EmitOMPReductionClauseInit(S, LoopScope); 5319 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5320 EmitOMPPrivateLoopCounters(S, LoopScope); 5321 (void)LoopScope.Privatize(); 5322 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5323 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5324 5325 // Detect the distribute schedule kind and chunk. 5326 llvm::Value *Chunk = nullptr; 5327 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5328 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5329 ScheduleKind = C->getDistScheduleKind(); 5330 if (const Expr *Ch = C->getChunkSize()) { 5331 Chunk = EmitScalarExpr(Ch); 5332 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5333 S.getIterationVariable()->getType(), 5334 S.getBeginLoc()); 5335 } 5336 } else { 5337 // Default behaviour for dist_schedule clause. 5338 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5339 *this, S, ScheduleKind, Chunk); 5340 } 5341 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5342 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5343 5344 // OpenMP [2.10.8, distribute Construct, Description] 5345 // If dist_schedule is specified, kind must be static. If specified, 5346 // iterations are divided into chunks of size chunk_size, chunks are 5347 // assigned to the teams of the league in a round-robin fashion in the 5348 // order of the team number. When no chunk_size is specified, the 5349 // iteration space is divided into chunks that are approximately equal 5350 // in size, and at most one chunk is distributed to each team of the 5351 // league. The size of the chunks is unspecified in this case. 5352 bool StaticChunked = 5353 RT.isStaticChunked(ScheduleKind, /* Chunked */ Chunk != nullptr) && 5354 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5355 if (RT.isStaticNonchunked(ScheduleKind, 5356 /* Chunked */ Chunk != nullptr) || 5357 StaticChunked) { 5358 CGOpenMPRuntime::StaticRTInput StaticInit( 5359 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5360 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5361 StaticChunked ? Chunk : nullptr); 5362 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5363 StaticInit); 5364 JumpDest LoopExit = 5365 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5366 // UB = min(UB, GlobalUB); 5367 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5368 ? S.getCombinedEnsureUpperBound() 5369 : S.getEnsureUpperBound()); 5370 // IV = LB; 5371 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5372 ? S.getCombinedInit() 5373 : S.getInit()); 5374 5375 const Expr *Cond = 5376 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5377 ? S.getCombinedCond() 5378 : S.getCond(); 5379 5380 if (StaticChunked) 5381 Cond = S.getCombinedDistCond(); 5382 5383 // For static unchunked schedules generate: 5384 // 5385 // 1. For distribute alone, codegen 5386 // while (idx <= UB) { 5387 // BODY; 5388 // ++idx; 5389 // } 5390 // 5391 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5392 // while (idx <= UB) { 5393 // <CodeGen rest of pragma>(LB, UB); 5394 // idx += ST; 5395 // } 5396 // 5397 // For static chunk one schedule generate: 5398 // 5399 // while (IV <= GlobalUB) { 5400 // <CodeGen rest of pragma>(LB, UB); 5401 // LB += ST; 5402 // UB += ST; 5403 // UB = min(UB, GlobalUB); 5404 // IV = LB; 5405 // } 5406 // 5407 emitCommonSimdLoop( 5408 *this, S, 5409 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5410 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5411 CGF.EmitOMPSimdInit(S); 5412 }, 5413 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5414 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5415 CGF.EmitOMPInnerLoop( 5416 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5417 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5418 CodeGenLoop(CGF, S, LoopExit); 5419 }, 5420 [&S, StaticChunked](CodeGenFunction &CGF) { 5421 if (StaticChunked) { 5422 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5423 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5424 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5425 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5426 } 5427 }); 5428 }); 5429 EmitBlock(LoopExit.getBlock()); 5430 // Tell the runtime we are done. 5431 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5432 } else { 5433 // Emit the outer loop, which requests its work chunk [LB..UB] from 5434 // runtime and runs the inner loop to process it. 5435 const OMPLoopArguments LoopArguments = { 5436 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5437 IL.getAddress(*this), Chunk}; 5438 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5439 CodeGenLoop); 5440 } 5441 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5442 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5443 return CGF.Builder.CreateIsNotNull( 5444 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5445 }); 5446 } 5447 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5448 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5449 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5450 EmitOMPReductionClauseFinal(S, OMPD_simd); 5451 // Emit post-update of the reduction variables if IsLastIter != 0. 5452 emitPostUpdateForReductionClause( 5453 *this, S, [IL, &S](CodeGenFunction &CGF) { 5454 return CGF.Builder.CreateIsNotNull( 5455 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5456 }); 5457 } 5458 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5459 if (HasLastprivateClause) { 5460 EmitOMPLastprivateClauseFinal( 5461 S, /*NoFinals=*/false, 5462 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5463 } 5464 } 5465 5466 // We're now done with the loop, so jump to the continuation block. 5467 if (ContBlock) { 5468 EmitBranch(ContBlock); 5469 EmitBlock(ContBlock, true); 5470 } 5471 } 5472 } 5473 5474 void CodeGenFunction::EmitOMPDistributeDirective( 5475 const OMPDistributeDirective &S) { 5476 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5477 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5478 }; 5479 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5480 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5481 } 5482 5483 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5484 const CapturedStmt *S, 5485 SourceLocation Loc) { 5486 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5487 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5488 CGF.CapturedStmtInfo = &CapStmtInfo; 5489 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5490 Fn->setDoesNotRecurse(); 5491 return Fn; 5492 } 5493 5494 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5495 if (CGM.getLangOpts().OpenMPIRBuilder) { 5496 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5497 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5498 5499 if (S.hasClausesOfKind<OMPDependClause>()) { 5500 // The ordered directive with depend clause. 5501 assert(!S.hasAssociatedStmt() && 5502 "No associated statement must be in ordered depend construct."); 5503 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5504 AllocaInsertPt->getIterator()); 5505 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) { 5506 unsigned NumLoops = DC->getNumLoops(); 5507 QualType Int64Ty = CGM.getContext().getIntTypeForBitwidth( 5508 /*DestWidth=*/64, /*Signed=*/1); 5509 llvm::SmallVector<llvm::Value *> StoreValues; 5510 for (unsigned I = 0; I < NumLoops; I++) { 5511 const Expr *CounterVal = DC->getLoopData(I); 5512 assert(CounterVal); 5513 llvm::Value *StoreValue = EmitScalarConversion( 5514 EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, 5515 CounterVal->getExprLoc()); 5516 StoreValues.emplace_back(StoreValue); 5517 } 5518 bool IsDependSource = false; 5519 if (DC->getDependencyKind() == OMPC_DEPEND_source) 5520 IsDependSource = true; 5521 Builder.restoreIP(OMPBuilder.createOrderedDepend( 5522 Builder, AllocaIP, NumLoops, StoreValues, ".cnt.addr", 5523 IsDependSource)); 5524 } 5525 } else { 5526 // The ordered directive with threads or simd clause, or without clause. 5527 // Without clause, it behaves as if the threads clause is specified. 5528 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5529 5530 auto FiniCB = [this](InsertPointTy IP) { 5531 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 5532 }; 5533 5534 auto BodyGenCB = [&S, C, this](InsertPointTy AllocaIP, 5535 InsertPointTy CodeGenIP, 5536 llvm::BasicBlock &FiniBB) { 5537 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5538 if (C) { 5539 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5540 GenerateOpenMPCapturedVars(*CS, CapturedVars); 5541 llvm::Function *OutlinedFn = 5542 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5543 assert(S.getBeginLoc().isValid() && 5544 "Outlined function call location must be valid."); 5545 ApplyDebugLocation::CreateDefaultArtificial(*this, S.getBeginLoc()); 5546 OMPBuilderCBHelpers::EmitCaptureStmt(*this, CodeGenIP, FiniBB, 5547 OutlinedFn, CapturedVars); 5548 } else { 5549 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 5550 FiniBB); 5551 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CS->getCapturedStmt(), 5552 CodeGenIP, FiniBB); 5553 } 5554 }; 5555 5556 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5557 Builder.restoreIP( 5558 OMPBuilder.createOrderedThreadsSimd(Builder, BodyGenCB, FiniCB, !C)); 5559 } 5560 return; 5561 } 5562 5563 if (S.hasClausesOfKind<OMPDependClause>()) { 5564 assert(!S.hasAssociatedStmt() && 5565 "No associated statement must be in ordered depend construct."); 5566 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5567 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5568 return; 5569 } 5570 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5571 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5572 PrePostActionTy &Action) { 5573 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5574 if (C) { 5575 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5576 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5577 llvm::Function *OutlinedFn = 5578 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5579 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5580 OutlinedFn, CapturedVars); 5581 } else { 5582 Action.Enter(CGF); 5583 CGF.EmitStmt(CS->getCapturedStmt()); 5584 } 5585 }; 5586 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5587 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5588 } 5589 5590 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5591 QualType SrcType, QualType DestType, 5592 SourceLocation Loc) { 5593 assert(CGF.hasScalarEvaluationKind(DestType) && 5594 "DestType must have scalar evaluation kind."); 5595 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5596 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5597 DestType, Loc) 5598 : CGF.EmitComplexToScalarConversion( 5599 Val.getComplexVal(), SrcType, DestType, Loc); 5600 } 5601 5602 static CodeGenFunction::ComplexPairTy 5603 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5604 QualType DestType, SourceLocation Loc) { 5605 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5606 "DestType must have complex evaluation kind."); 5607 CodeGenFunction::ComplexPairTy ComplexVal; 5608 if (Val.isScalar()) { 5609 // Convert the input element to the element type of the complex. 5610 QualType DestElementType = 5611 DestType->castAs<ComplexType>()->getElementType(); 5612 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5613 Val.getScalarVal(), SrcType, DestElementType, Loc); 5614 ComplexVal = CodeGenFunction::ComplexPairTy( 5615 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5616 } else { 5617 assert(Val.isComplex() && "Must be a scalar or complex."); 5618 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5619 QualType DestElementType = 5620 DestType->castAs<ComplexType>()->getElementType(); 5621 ComplexVal.first = CGF.EmitScalarConversion( 5622 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5623 ComplexVal.second = CGF.EmitScalarConversion( 5624 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5625 } 5626 return ComplexVal; 5627 } 5628 5629 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5630 LValue LVal, RValue RVal) { 5631 if (LVal.isGlobalReg()) 5632 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5633 else 5634 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5635 } 5636 5637 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5638 llvm::AtomicOrdering AO, LValue LVal, 5639 SourceLocation Loc) { 5640 if (LVal.isGlobalReg()) 5641 return CGF.EmitLoadOfLValue(LVal, Loc); 5642 return CGF.EmitAtomicLoad( 5643 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5644 LVal.isVolatile()); 5645 } 5646 5647 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5648 QualType RValTy, SourceLocation Loc) { 5649 switch (getEvaluationKind(LVal.getType())) { 5650 case TEK_Scalar: 5651 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5652 *this, RVal, RValTy, LVal.getType(), Loc)), 5653 LVal); 5654 break; 5655 case TEK_Complex: 5656 EmitStoreOfComplex( 5657 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5658 /*isInit=*/false); 5659 break; 5660 case TEK_Aggregate: 5661 llvm_unreachable("Must be a scalar or complex."); 5662 } 5663 } 5664 5665 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5666 const Expr *X, const Expr *V, 5667 SourceLocation Loc) { 5668 // v = x; 5669 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5670 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5671 LValue XLValue = CGF.EmitLValue(X); 5672 LValue VLValue = CGF.EmitLValue(V); 5673 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5674 // OpenMP, 2.17.7, atomic Construct 5675 // If the read or capture clause is specified and the acquire, acq_rel, or 5676 // seq_cst clause is specified then the strong flush on exit from the atomic 5677 // operation is also an acquire flush. 5678 switch (AO) { 5679 case llvm::AtomicOrdering::Acquire: 5680 case llvm::AtomicOrdering::AcquireRelease: 5681 case llvm::AtomicOrdering::SequentiallyConsistent: 5682 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5683 llvm::AtomicOrdering::Acquire); 5684 break; 5685 case llvm::AtomicOrdering::Monotonic: 5686 case llvm::AtomicOrdering::Release: 5687 break; 5688 case llvm::AtomicOrdering::NotAtomic: 5689 case llvm::AtomicOrdering::Unordered: 5690 llvm_unreachable("Unexpected ordering."); 5691 } 5692 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5693 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5694 } 5695 5696 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5697 llvm::AtomicOrdering AO, const Expr *X, 5698 const Expr *E, SourceLocation Loc) { 5699 // x = expr; 5700 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5701 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5702 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5703 // OpenMP, 2.17.7, atomic Construct 5704 // If the write, update, or capture clause is specified and the release, 5705 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5706 // the atomic operation is also a release flush. 5707 switch (AO) { 5708 case llvm::AtomicOrdering::Release: 5709 case llvm::AtomicOrdering::AcquireRelease: 5710 case llvm::AtomicOrdering::SequentiallyConsistent: 5711 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5712 llvm::AtomicOrdering::Release); 5713 break; 5714 case llvm::AtomicOrdering::Acquire: 5715 case llvm::AtomicOrdering::Monotonic: 5716 break; 5717 case llvm::AtomicOrdering::NotAtomic: 5718 case llvm::AtomicOrdering::Unordered: 5719 llvm_unreachable("Unexpected ordering."); 5720 } 5721 } 5722 5723 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5724 RValue Update, 5725 BinaryOperatorKind BO, 5726 llvm::AtomicOrdering AO, 5727 bool IsXLHSInRHSPart) { 5728 ASTContext &Context = CGF.getContext(); 5729 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5730 // expression is simple and atomic is allowed for the given type for the 5731 // target platform. 5732 if (BO == BO_Comma || !Update.isScalar() || 5733 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5734 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5735 (Update.getScalarVal()->getType() != 5736 X.getAddress(CGF).getElementType())) || 5737 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5738 !Context.getTargetInfo().hasBuiltinAtomic( 5739 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5740 return std::make_pair(false, RValue::get(nullptr)); 5741 5742 llvm::AtomicRMWInst::BinOp RMWOp; 5743 switch (BO) { 5744 case BO_Add: 5745 RMWOp = llvm::AtomicRMWInst::Add; 5746 break; 5747 case BO_Sub: 5748 if (!IsXLHSInRHSPart) 5749 return std::make_pair(false, RValue::get(nullptr)); 5750 RMWOp = llvm::AtomicRMWInst::Sub; 5751 break; 5752 case BO_And: 5753 RMWOp = llvm::AtomicRMWInst::And; 5754 break; 5755 case BO_Or: 5756 RMWOp = llvm::AtomicRMWInst::Or; 5757 break; 5758 case BO_Xor: 5759 RMWOp = llvm::AtomicRMWInst::Xor; 5760 break; 5761 case BO_LT: 5762 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5763 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5764 : llvm::AtomicRMWInst::Max) 5765 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5766 : llvm::AtomicRMWInst::UMax); 5767 break; 5768 case BO_GT: 5769 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5770 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5771 : llvm::AtomicRMWInst::Min) 5772 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5773 : llvm::AtomicRMWInst::UMin); 5774 break; 5775 case BO_Assign: 5776 RMWOp = llvm::AtomicRMWInst::Xchg; 5777 break; 5778 case BO_Mul: 5779 case BO_Div: 5780 case BO_Rem: 5781 case BO_Shl: 5782 case BO_Shr: 5783 case BO_LAnd: 5784 case BO_LOr: 5785 return std::make_pair(false, RValue::get(nullptr)); 5786 case BO_PtrMemD: 5787 case BO_PtrMemI: 5788 case BO_LE: 5789 case BO_GE: 5790 case BO_EQ: 5791 case BO_NE: 5792 case BO_Cmp: 5793 case BO_AddAssign: 5794 case BO_SubAssign: 5795 case BO_AndAssign: 5796 case BO_OrAssign: 5797 case BO_XorAssign: 5798 case BO_MulAssign: 5799 case BO_DivAssign: 5800 case BO_RemAssign: 5801 case BO_ShlAssign: 5802 case BO_ShrAssign: 5803 case BO_Comma: 5804 llvm_unreachable("Unsupported atomic update operation"); 5805 } 5806 llvm::Value *UpdateVal = Update.getScalarVal(); 5807 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5808 UpdateVal = CGF.Builder.CreateIntCast( 5809 IC, X.getAddress(CGF).getElementType(), 5810 X.getType()->hasSignedIntegerRepresentation()); 5811 } 5812 llvm::Value *Res = 5813 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5814 return std::make_pair(true, RValue::get(Res)); 5815 } 5816 5817 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5818 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5819 llvm::AtomicOrdering AO, SourceLocation Loc, 5820 const llvm::function_ref<RValue(RValue)> CommonGen) { 5821 // Update expressions are allowed to have the following forms: 5822 // x binop= expr; -> xrval + expr; 5823 // x++, ++x -> xrval + 1; 5824 // x--, --x -> xrval - 1; 5825 // x = x binop expr; -> xrval binop expr 5826 // x = expr Op x; - > expr binop xrval; 5827 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5828 if (!Res.first) { 5829 if (X.isGlobalReg()) { 5830 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5831 // 'xrval'. 5832 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5833 } else { 5834 // Perform compare-and-swap procedure. 5835 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5836 } 5837 } 5838 return Res; 5839 } 5840 5841 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5842 llvm::AtomicOrdering AO, const Expr *X, 5843 const Expr *E, const Expr *UE, 5844 bool IsXLHSInRHSPart, SourceLocation Loc) { 5845 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5846 "Update expr in 'atomic update' must be a binary operator."); 5847 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5848 // Update expressions are allowed to have the following forms: 5849 // x binop= expr; -> xrval + expr; 5850 // x++, ++x -> xrval + 1; 5851 // x--, --x -> xrval - 1; 5852 // x = x binop expr; -> xrval binop expr 5853 // x = expr Op x; - > expr binop xrval; 5854 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5855 LValue XLValue = CGF.EmitLValue(X); 5856 RValue ExprRValue = CGF.EmitAnyExpr(E); 5857 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5858 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5859 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5860 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5861 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5862 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5863 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5864 return CGF.EmitAnyExpr(UE); 5865 }; 5866 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5867 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5868 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5869 // OpenMP, 2.17.7, atomic Construct 5870 // If the write, update, or capture clause is specified and the release, 5871 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5872 // the atomic operation is also a release flush. 5873 switch (AO) { 5874 case llvm::AtomicOrdering::Release: 5875 case llvm::AtomicOrdering::AcquireRelease: 5876 case llvm::AtomicOrdering::SequentiallyConsistent: 5877 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5878 llvm::AtomicOrdering::Release); 5879 break; 5880 case llvm::AtomicOrdering::Acquire: 5881 case llvm::AtomicOrdering::Monotonic: 5882 break; 5883 case llvm::AtomicOrdering::NotAtomic: 5884 case llvm::AtomicOrdering::Unordered: 5885 llvm_unreachable("Unexpected ordering."); 5886 } 5887 } 5888 5889 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5890 QualType SourceType, QualType ResType, 5891 SourceLocation Loc) { 5892 switch (CGF.getEvaluationKind(ResType)) { 5893 case TEK_Scalar: 5894 return RValue::get( 5895 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5896 case TEK_Complex: { 5897 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5898 return RValue::getComplex(Res.first, Res.second); 5899 } 5900 case TEK_Aggregate: 5901 break; 5902 } 5903 llvm_unreachable("Must be a scalar or complex."); 5904 } 5905 5906 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5907 llvm::AtomicOrdering AO, 5908 bool IsPostfixUpdate, const Expr *V, 5909 const Expr *X, const Expr *E, 5910 const Expr *UE, bool IsXLHSInRHSPart, 5911 SourceLocation Loc) { 5912 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5913 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5914 RValue NewVVal; 5915 LValue VLValue = CGF.EmitLValue(V); 5916 LValue XLValue = CGF.EmitLValue(X); 5917 RValue ExprRValue = CGF.EmitAnyExpr(E); 5918 QualType NewVValType; 5919 if (UE) { 5920 // 'x' is updated with some additional value. 5921 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5922 "Update expr in 'atomic capture' must be a binary operator."); 5923 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5924 // Update expressions are allowed to have the following forms: 5925 // x binop= expr; -> xrval + expr; 5926 // x++, ++x -> xrval + 1; 5927 // x--, --x -> xrval - 1; 5928 // x = x binop expr; -> xrval binop expr 5929 // x = expr Op x; - > expr binop xrval; 5930 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5931 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5932 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5933 NewVValType = XRValExpr->getType(); 5934 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5935 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5936 IsPostfixUpdate](RValue XRValue) { 5937 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5938 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5939 RValue Res = CGF.EmitAnyExpr(UE); 5940 NewVVal = IsPostfixUpdate ? XRValue : Res; 5941 return Res; 5942 }; 5943 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5944 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5945 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5946 if (Res.first) { 5947 // 'atomicrmw' instruction was generated. 5948 if (IsPostfixUpdate) { 5949 // Use old value from 'atomicrmw'. 5950 NewVVal = Res.second; 5951 } else { 5952 // 'atomicrmw' does not provide new value, so evaluate it using old 5953 // value of 'x'. 5954 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5955 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5956 NewVVal = CGF.EmitAnyExpr(UE); 5957 } 5958 } 5959 } else { 5960 // 'x' is simply rewritten with some 'expr'. 5961 NewVValType = X->getType().getNonReferenceType(); 5962 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5963 X->getType().getNonReferenceType(), Loc); 5964 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5965 NewVVal = XRValue; 5966 return ExprRValue; 5967 }; 5968 // Try to perform atomicrmw xchg, otherwise simple exchange. 5969 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5970 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5971 Loc, Gen); 5972 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5973 if (Res.first) { 5974 // 'atomicrmw' instruction was generated. 5975 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5976 } 5977 } 5978 // Emit post-update store to 'v' of old/new 'x' value. 5979 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5980 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5981 // OpenMP 5.1 removes the required flush for capture clause. 5982 if (CGF.CGM.getLangOpts().OpenMP < 51) { 5983 // OpenMP, 2.17.7, atomic Construct 5984 // If the write, update, or capture clause is specified and the release, 5985 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5986 // the atomic operation is also a release flush. 5987 // If the read or capture clause is specified and the acquire, acq_rel, or 5988 // seq_cst clause is specified then the strong flush on exit from the atomic 5989 // operation is also an acquire flush. 5990 switch (AO) { 5991 case llvm::AtomicOrdering::Release: 5992 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5993 llvm::AtomicOrdering::Release); 5994 break; 5995 case llvm::AtomicOrdering::Acquire: 5996 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5997 llvm::AtomicOrdering::Acquire); 5998 break; 5999 case llvm::AtomicOrdering::AcquireRelease: 6000 case llvm::AtomicOrdering::SequentiallyConsistent: 6001 CGF.CGM.getOpenMPRuntime().emitFlush( 6002 CGF, llvm::None, Loc, llvm::AtomicOrdering::AcquireRelease); 6003 break; 6004 case llvm::AtomicOrdering::Monotonic: 6005 break; 6006 case llvm::AtomicOrdering::NotAtomic: 6007 case llvm::AtomicOrdering::Unordered: 6008 llvm_unreachable("Unexpected ordering."); 6009 } 6010 } 6011 } 6012 6013 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 6014 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 6015 const Expr *X, const Expr *V, const Expr *E, 6016 const Expr *UE, bool IsXLHSInRHSPart, 6017 SourceLocation Loc) { 6018 switch (Kind) { 6019 case OMPC_read: 6020 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 6021 break; 6022 case OMPC_write: 6023 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 6024 break; 6025 case OMPC_unknown: 6026 case OMPC_update: 6027 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 6028 break; 6029 case OMPC_capture: 6030 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 6031 IsXLHSInRHSPart, Loc); 6032 break; 6033 case OMPC_compare: 6034 // Do nothing here as we already emit an error. 6035 break; 6036 case OMPC_if: 6037 case OMPC_final: 6038 case OMPC_num_threads: 6039 case OMPC_private: 6040 case OMPC_firstprivate: 6041 case OMPC_lastprivate: 6042 case OMPC_reduction: 6043 case OMPC_task_reduction: 6044 case OMPC_in_reduction: 6045 case OMPC_safelen: 6046 case OMPC_simdlen: 6047 case OMPC_sizes: 6048 case OMPC_full: 6049 case OMPC_partial: 6050 case OMPC_allocator: 6051 case OMPC_allocate: 6052 case OMPC_collapse: 6053 case OMPC_default: 6054 case OMPC_seq_cst: 6055 case OMPC_acq_rel: 6056 case OMPC_acquire: 6057 case OMPC_release: 6058 case OMPC_relaxed: 6059 case OMPC_shared: 6060 case OMPC_linear: 6061 case OMPC_aligned: 6062 case OMPC_copyin: 6063 case OMPC_copyprivate: 6064 case OMPC_flush: 6065 case OMPC_depobj: 6066 case OMPC_proc_bind: 6067 case OMPC_schedule: 6068 case OMPC_ordered: 6069 case OMPC_nowait: 6070 case OMPC_untied: 6071 case OMPC_threadprivate: 6072 case OMPC_depend: 6073 case OMPC_mergeable: 6074 case OMPC_device: 6075 case OMPC_threads: 6076 case OMPC_simd: 6077 case OMPC_map: 6078 case OMPC_num_teams: 6079 case OMPC_thread_limit: 6080 case OMPC_priority: 6081 case OMPC_grainsize: 6082 case OMPC_nogroup: 6083 case OMPC_num_tasks: 6084 case OMPC_hint: 6085 case OMPC_dist_schedule: 6086 case OMPC_defaultmap: 6087 case OMPC_uniform: 6088 case OMPC_to: 6089 case OMPC_from: 6090 case OMPC_use_device_ptr: 6091 case OMPC_use_device_addr: 6092 case OMPC_is_device_ptr: 6093 case OMPC_unified_address: 6094 case OMPC_unified_shared_memory: 6095 case OMPC_reverse_offload: 6096 case OMPC_dynamic_allocators: 6097 case OMPC_atomic_default_mem_order: 6098 case OMPC_device_type: 6099 case OMPC_match: 6100 case OMPC_nontemporal: 6101 case OMPC_order: 6102 case OMPC_destroy: 6103 case OMPC_detach: 6104 case OMPC_inclusive: 6105 case OMPC_exclusive: 6106 case OMPC_uses_allocators: 6107 case OMPC_affinity: 6108 case OMPC_init: 6109 case OMPC_inbranch: 6110 case OMPC_notinbranch: 6111 case OMPC_link: 6112 case OMPC_indirect: 6113 case OMPC_use: 6114 case OMPC_novariants: 6115 case OMPC_nocontext: 6116 case OMPC_filter: 6117 case OMPC_when: 6118 case OMPC_adjust_args: 6119 case OMPC_append_args: 6120 case OMPC_memory_order: 6121 case OMPC_bind: 6122 case OMPC_align: 6123 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 6124 } 6125 } 6126 6127 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 6128 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 6129 bool MemOrderingSpecified = false; 6130 if (S.getSingleClause<OMPSeqCstClause>()) { 6131 AO = llvm::AtomicOrdering::SequentiallyConsistent; 6132 MemOrderingSpecified = true; 6133 } else if (S.getSingleClause<OMPAcqRelClause>()) { 6134 AO = llvm::AtomicOrdering::AcquireRelease; 6135 MemOrderingSpecified = true; 6136 } else if (S.getSingleClause<OMPAcquireClause>()) { 6137 AO = llvm::AtomicOrdering::Acquire; 6138 MemOrderingSpecified = true; 6139 } else if (S.getSingleClause<OMPReleaseClause>()) { 6140 AO = llvm::AtomicOrdering::Release; 6141 MemOrderingSpecified = true; 6142 } else if (S.getSingleClause<OMPRelaxedClause>()) { 6143 AO = llvm::AtomicOrdering::Monotonic; 6144 MemOrderingSpecified = true; 6145 } 6146 OpenMPClauseKind Kind = OMPC_unknown; 6147 for (const OMPClause *C : S.clauses()) { 6148 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 6149 // if it is first). 6150 if (C->getClauseKind() != OMPC_seq_cst && 6151 C->getClauseKind() != OMPC_acq_rel && 6152 C->getClauseKind() != OMPC_acquire && 6153 C->getClauseKind() != OMPC_release && 6154 C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) { 6155 Kind = C->getClauseKind(); 6156 break; 6157 } 6158 } 6159 if (!MemOrderingSpecified) { 6160 llvm::AtomicOrdering DefaultOrder = 6161 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 6162 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 6163 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 6164 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 6165 Kind == OMPC_capture)) { 6166 AO = DefaultOrder; 6167 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 6168 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 6169 AO = llvm::AtomicOrdering::Release; 6170 } else if (Kind == OMPC_read) { 6171 assert(Kind == OMPC_read && "Unexpected atomic kind."); 6172 AO = llvm::AtomicOrdering::Acquire; 6173 } 6174 } 6175 } 6176 6177 LexicalScope Scope(*this, S.getSourceRange()); 6178 EmitStopPoint(S.getAssociatedStmt()); 6179 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 6180 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 6181 S.getBeginLoc()); 6182 } 6183 6184 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 6185 const OMPExecutableDirective &S, 6186 const RegionCodeGenTy &CodeGen) { 6187 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 6188 CodeGenModule &CGM = CGF.CGM; 6189 6190 // On device emit this construct as inlined code. 6191 if (CGM.getLangOpts().OpenMPIsDevice) { 6192 OMPLexicalScope Scope(CGF, S, OMPD_target); 6193 CGM.getOpenMPRuntime().emitInlinedDirective( 6194 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6195 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6196 }); 6197 return; 6198 } 6199 6200 auto LPCRegion = CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 6201 llvm::Function *Fn = nullptr; 6202 llvm::Constant *FnID = nullptr; 6203 6204 const Expr *IfCond = nullptr; 6205 // Check for the at most one if clause associated with the target region. 6206 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6207 if (C->getNameModifier() == OMPD_unknown || 6208 C->getNameModifier() == OMPD_target) { 6209 IfCond = C->getCondition(); 6210 break; 6211 } 6212 } 6213 6214 // Check if we have any device clause associated with the directive. 6215 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 6216 nullptr, OMPC_DEVICE_unknown); 6217 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 6218 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 6219 6220 // Check if we have an if clause whose conditional always evaluates to false 6221 // or if we do not have any targets specified. If so the target region is not 6222 // an offload entry point. 6223 bool IsOffloadEntry = true; 6224 if (IfCond) { 6225 bool Val; 6226 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 6227 IsOffloadEntry = false; 6228 } 6229 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6230 IsOffloadEntry = false; 6231 6232 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 6233 StringRef ParentName; 6234 // In case we have Ctors/Dtors we use the complete type variant to produce 6235 // the mangling of the device outlined kernel. 6236 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 6237 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 6238 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 6239 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 6240 else 6241 ParentName = 6242 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 6243 6244 // Emit target region as a standalone region. 6245 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 6246 IsOffloadEntry, CodeGen); 6247 OMPLexicalScope Scope(CGF, S, OMPD_task); 6248 auto &&SizeEmitter = 6249 [IsOffloadEntry](CodeGenFunction &CGF, 6250 const OMPLoopDirective &D) -> llvm::Value * { 6251 if (IsOffloadEntry) { 6252 OMPLoopScope(CGF, D); 6253 // Emit calculation of the iterations count. 6254 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6255 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6256 /*isSigned=*/false); 6257 return NumIterations; 6258 } 6259 return nullptr; 6260 }; 6261 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6262 SizeEmitter); 6263 } 6264 6265 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6266 PrePostActionTy &Action) { 6267 Action.Enter(CGF); 6268 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6269 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6270 CGF.EmitOMPPrivateClause(S, PrivateScope); 6271 (void)PrivateScope.Privatize(); 6272 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6273 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6274 6275 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6276 CGF.EnsureInsertPoint(); 6277 } 6278 6279 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6280 StringRef ParentName, 6281 const OMPTargetDirective &S) { 6282 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6283 emitTargetRegion(CGF, S, Action); 6284 }; 6285 llvm::Function *Fn; 6286 llvm::Constant *Addr; 6287 // Emit target region as a standalone region. 6288 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6289 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6290 assert(Fn && Addr && "Target device function emission failed."); 6291 } 6292 6293 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6294 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6295 emitTargetRegion(CGF, S, Action); 6296 }; 6297 emitCommonOMPTargetDirective(*this, S, CodeGen); 6298 } 6299 6300 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6301 const OMPExecutableDirective &S, 6302 OpenMPDirectiveKind InnermostKind, 6303 const RegionCodeGenTy &CodeGen) { 6304 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6305 llvm::Function *OutlinedFn = 6306 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6307 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6308 6309 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6310 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6311 if (NT || TL) { 6312 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6313 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6314 6315 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6316 S.getBeginLoc()); 6317 } 6318 6319 OMPTeamsScope Scope(CGF, S); 6320 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6321 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6322 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6323 CapturedVars); 6324 } 6325 6326 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6327 // Emit teams region as a standalone region. 6328 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6329 Action.Enter(CGF); 6330 OMPPrivateScope PrivateScope(CGF); 6331 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6332 CGF.EmitOMPPrivateClause(S, PrivateScope); 6333 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6334 (void)PrivateScope.Privatize(); 6335 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6336 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6337 }; 6338 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6339 emitPostUpdateForReductionClause(*this, S, 6340 [](CodeGenFunction &) { return nullptr; }); 6341 } 6342 6343 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6344 const OMPTargetTeamsDirective &S) { 6345 auto *CS = S.getCapturedStmt(OMPD_teams); 6346 Action.Enter(CGF); 6347 // Emit teams region as a standalone region. 6348 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6349 Action.Enter(CGF); 6350 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6351 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6352 CGF.EmitOMPPrivateClause(S, PrivateScope); 6353 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6354 (void)PrivateScope.Privatize(); 6355 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6356 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6357 CGF.EmitStmt(CS->getCapturedStmt()); 6358 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6359 }; 6360 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6361 emitPostUpdateForReductionClause(CGF, S, 6362 [](CodeGenFunction &) { return nullptr; }); 6363 } 6364 6365 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6366 CodeGenModule &CGM, StringRef ParentName, 6367 const OMPTargetTeamsDirective &S) { 6368 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6369 emitTargetTeamsRegion(CGF, Action, S); 6370 }; 6371 llvm::Function *Fn; 6372 llvm::Constant *Addr; 6373 // Emit target region as a standalone region. 6374 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6375 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6376 assert(Fn && Addr && "Target device function emission failed."); 6377 } 6378 6379 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6380 const OMPTargetTeamsDirective &S) { 6381 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6382 emitTargetTeamsRegion(CGF, Action, S); 6383 }; 6384 emitCommonOMPTargetDirective(*this, S, CodeGen); 6385 } 6386 6387 static void 6388 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6389 const OMPTargetTeamsDistributeDirective &S) { 6390 Action.Enter(CGF); 6391 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6392 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6393 }; 6394 6395 // Emit teams region as a standalone region. 6396 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6397 PrePostActionTy &Action) { 6398 Action.Enter(CGF); 6399 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6400 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6401 (void)PrivateScope.Privatize(); 6402 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6403 CodeGenDistribute); 6404 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6405 }; 6406 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6407 emitPostUpdateForReductionClause(CGF, S, 6408 [](CodeGenFunction &) { return nullptr; }); 6409 } 6410 6411 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6412 CodeGenModule &CGM, StringRef ParentName, 6413 const OMPTargetTeamsDistributeDirective &S) { 6414 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6415 emitTargetTeamsDistributeRegion(CGF, Action, S); 6416 }; 6417 llvm::Function *Fn; 6418 llvm::Constant *Addr; 6419 // Emit target region as a standalone region. 6420 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6421 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6422 assert(Fn && Addr && "Target device function emission failed."); 6423 } 6424 6425 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6426 const OMPTargetTeamsDistributeDirective &S) { 6427 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6428 emitTargetTeamsDistributeRegion(CGF, Action, S); 6429 }; 6430 emitCommonOMPTargetDirective(*this, S, CodeGen); 6431 } 6432 6433 static void emitTargetTeamsDistributeSimdRegion( 6434 CodeGenFunction &CGF, PrePostActionTy &Action, 6435 const OMPTargetTeamsDistributeSimdDirective &S) { 6436 Action.Enter(CGF); 6437 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6438 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6439 }; 6440 6441 // Emit teams region as a standalone region. 6442 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6443 PrePostActionTy &Action) { 6444 Action.Enter(CGF); 6445 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6446 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6447 (void)PrivateScope.Privatize(); 6448 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6449 CodeGenDistribute); 6450 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6451 }; 6452 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6453 emitPostUpdateForReductionClause(CGF, S, 6454 [](CodeGenFunction &) { return nullptr; }); 6455 } 6456 6457 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6458 CodeGenModule &CGM, StringRef ParentName, 6459 const OMPTargetTeamsDistributeSimdDirective &S) { 6460 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6461 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6462 }; 6463 llvm::Function *Fn; 6464 llvm::Constant *Addr; 6465 // Emit target region as a standalone region. 6466 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6467 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6468 assert(Fn && Addr && "Target device function emission failed."); 6469 } 6470 6471 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6472 const OMPTargetTeamsDistributeSimdDirective &S) { 6473 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6474 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6475 }; 6476 emitCommonOMPTargetDirective(*this, S, CodeGen); 6477 } 6478 6479 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6480 const OMPTeamsDistributeDirective &S) { 6481 6482 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6483 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6484 }; 6485 6486 // Emit teams region as a standalone region. 6487 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6488 PrePostActionTy &Action) { 6489 Action.Enter(CGF); 6490 OMPPrivateScope PrivateScope(CGF); 6491 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6492 (void)PrivateScope.Privatize(); 6493 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6494 CodeGenDistribute); 6495 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6496 }; 6497 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6498 emitPostUpdateForReductionClause(*this, S, 6499 [](CodeGenFunction &) { return nullptr; }); 6500 } 6501 6502 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6503 const OMPTeamsDistributeSimdDirective &S) { 6504 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6505 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6506 }; 6507 6508 // Emit teams region as a standalone region. 6509 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6510 PrePostActionTy &Action) { 6511 Action.Enter(CGF); 6512 OMPPrivateScope PrivateScope(CGF); 6513 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6514 (void)PrivateScope.Privatize(); 6515 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6516 CodeGenDistribute); 6517 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6518 }; 6519 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6520 emitPostUpdateForReductionClause(*this, S, 6521 [](CodeGenFunction &) { return nullptr; }); 6522 } 6523 6524 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6525 const OMPTeamsDistributeParallelForDirective &S) { 6526 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6527 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6528 S.getDistInc()); 6529 }; 6530 6531 // Emit teams region as a standalone region. 6532 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6533 PrePostActionTy &Action) { 6534 Action.Enter(CGF); 6535 OMPPrivateScope PrivateScope(CGF); 6536 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6537 (void)PrivateScope.Privatize(); 6538 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6539 CodeGenDistribute); 6540 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6541 }; 6542 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6543 emitPostUpdateForReductionClause(*this, S, 6544 [](CodeGenFunction &) { return nullptr; }); 6545 } 6546 6547 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6548 const OMPTeamsDistributeParallelForSimdDirective &S) { 6549 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6550 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6551 S.getDistInc()); 6552 }; 6553 6554 // Emit teams region as a standalone region. 6555 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6556 PrePostActionTy &Action) { 6557 Action.Enter(CGF); 6558 OMPPrivateScope PrivateScope(CGF); 6559 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6560 (void)PrivateScope.Privatize(); 6561 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6562 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6563 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6564 }; 6565 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6566 CodeGen); 6567 emitPostUpdateForReductionClause(*this, S, 6568 [](CodeGenFunction &) { return nullptr; }); 6569 } 6570 6571 static void emitTargetTeamsDistributeParallelForRegion( 6572 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 6573 PrePostActionTy &Action) { 6574 Action.Enter(CGF); 6575 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6576 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6577 S.getDistInc()); 6578 }; 6579 6580 // Emit teams region as a standalone region. 6581 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6582 PrePostActionTy &Action) { 6583 Action.Enter(CGF); 6584 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6585 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6586 (void)PrivateScope.Privatize(); 6587 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6588 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6589 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6590 }; 6591 6592 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 6593 CodeGenTeams); 6594 emitPostUpdateForReductionClause(CGF, S, 6595 [](CodeGenFunction &) { return nullptr; }); 6596 } 6597 6598 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 6599 CodeGenModule &CGM, StringRef ParentName, 6600 const OMPTargetTeamsDistributeParallelForDirective &S) { 6601 // Emit SPMD target teams distribute parallel for region as a standalone 6602 // region. 6603 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6604 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6605 }; 6606 llvm::Function *Fn; 6607 llvm::Constant *Addr; 6608 // Emit target region as a standalone region. 6609 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6610 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6611 assert(Fn && Addr && "Target device function emission failed."); 6612 } 6613 6614 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 6615 const OMPTargetTeamsDistributeParallelForDirective &S) { 6616 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6617 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6618 }; 6619 emitCommonOMPTargetDirective(*this, S, CodeGen); 6620 } 6621 6622 static void emitTargetTeamsDistributeParallelForSimdRegion( 6623 CodeGenFunction &CGF, 6624 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 6625 PrePostActionTy &Action) { 6626 Action.Enter(CGF); 6627 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6628 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6629 S.getDistInc()); 6630 }; 6631 6632 // Emit teams region as a standalone region. 6633 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6634 PrePostActionTy &Action) { 6635 Action.Enter(CGF); 6636 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6637 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6638 (void)PrivateScope.Privatize(); 6639 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6640 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6641 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6642 }; 6643 6644 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 6645 CodeGenTeams); 6646 emitPostUpdateForReductionClause(CGF, S, 6647 [](CodeGenFunction &) { return nullptr; }); 6648 } 6649 6650 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 6651 CodeGenModule &CGM, StringRef ParentName, 6652 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6653 // Emit SPMD target teams distribute parallel for simd region as a standalone 6654 // region. 6655 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6656 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6657 }; 6658 llvm::Function *Fn; 6659 llvm::Constant *Addr; 6660 // Emit target region as a standalone region. 6661 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6662 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6663 assert(Fn && Addr && "Target device function emission failed."); 6664 } 6665 6666 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 6667 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6668 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6669 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6670 }; 6671 emitCommonOMPTargetDirective(*this, S, CodeGen); 6672 } 6673 6674 void CodeGenFunction::EmitOMPCancellationPointDirective( 6675 const OMPCancellationPointDirective &S) { 6676 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 6677 S.getCancelRegion()); 6678 } 6679 6680 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 6681 const Expr *IfCond = nullptr; 6682 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6683 if (C->getNameModifier() == OMPD_unknown || 6684 C->getNameModifier() == OMPD_cancel) { 6685 IfCond = C->getCondition(); 6686 break; 6687 } 6688 } 6689 if (CGM.getLangOpts().OpenMPIRBuilder) { 6690 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6691 // TODO: This check is necessary as we only generate `omp parallel` through 6692 // the OpenMPIRBuilder for now. 6693 if (S.getCancelRegion() == OMPD_parallel || 6694 S.getCancelRegion() == OMPD_sections || 6695 S.getCancelRegion() == OMPD_section) { 6696 llvm::Value *IfCondition = nullptr; 6697 if (IfCond) 6698 IfCondition = EmitScalarExpr(IfCond, 6699 /*IgnoreResultAssign=*/true); 6700 return Builder.restoreIP( 6701 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 6702 } 6703 } 6704 6705 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 6706 S.getCancelRegion()); 6707 } 6708 6709 CodeGenFunction::JumpDest 6710 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 6711 if (Kind == OMPD_parallel || Kind == OMPD_task || 6712 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 6713 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 6714 return ReturnBlock; 6715 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 6716 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 6717 Kind == OMPD_distribute_parallel_for || 6718 Kind == OMPD_target_parallel_for || 6719 Kind == OMPD_teams_distribute_parallel_for || 6720 Kind == OMPD_target_teams_distribute_parallel_for); 6721 return OMPCancelStack.getExitBlock(); 6722 } 6723 6724 void CodeGenFunction::EmitOMPUseDevicePtrClause( 6725 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 6726 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6727 auto OrigVarIt = C.varlist_begin(); 6728 auto InitIt = C.inits().begin(); 6729 for (const Expr *PvtVarIt : C.private_copies()) { 6730 const auto *OrigVD = 6731 cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6732 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6733 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6734 6735 // In order to identify the right initializer we need to match the 6736 // declaration used by the mapping logic. In some cases we may get 6737 // OMPCapturedExprDecl that refers to the original declaration. 6738 const ValueDecl *MatchingVD = OrigVD; 6739 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6740 // OMPCapturedExprDecl are used to privative fields of the current 6741 // structure. 6742 const auto *ME = cast<MemberExpr>(OED->getInit()); 6743 assert(isa<CXXThisExpr>(ME->getBase()) && 6744 "Base should be the current struct!"); 6745 MatchingVD = ME->getMemberDecl(); 6746 } 6747 6748 // If we don't have information about the current list item, move on to 6749 // the next one. 6750 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6751 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6752 continue; 6753 6754 bool IsRegistered = PrivateScope.addPrivate( 6755 OrigVD, [this, OrigVD, InitAddrIt, InitVD, PvtVD]() { 6756 // Initialize the temporary initialization variable with the address 6757 // we get from the runtime library. We have to cast the source address 6758 // because it is always a void *. References are materialized in the 6759 // privatization scope, so the initialization here disregards the fact 6760 // the original variable is a reference. 6761 QualType AddrQTy = getContext().getPointerType( 6762 OrigVD->getType().getNonReferenceType()); 6763 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 6764 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 6765 setAddrOfLocalVar(InitVD, InitAddr); 6766 6767 // Emit private declaration, it will be initialized by the value we 6768 // declaration we just added to the local declarations map. 6769 EmitDecl(*PvtVD); 6770 6771 // The initialization variables reached its purpose in the emission 6772 // of the previous declaration, so we don't need it anymore. 6773 LocalDeclMap.erase(InitVD); 6774 6775 // Return the address of the private variable. 6776 return GetAddrOfLocalVar(PvtVD); 6777 }); 6778 assert(IsRegistered && "firstprivate var already registered as private"); 6779 // Silence the warning about unused variable. 6780 (void)IsRegistered; 6781 6782 ++OrigVarIt; 6783 ++InitIt; 6784 } 6785 } 6786 6787 static const VarDecl *getBaseDecl(const Expr *Ref) { 6788 const Expr *Base = Ref->IgnoreParenImpCasts(); 6789 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6790 Base = OASE->getBase()->IgnoreParenImpCasts(); 6791 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6792 Base = ASE->getBase()->IgnoreParenImpCasts(); 6793 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6794 } 6795 6796 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6797 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6798 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6799 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6800 for (const Expr *Ref : C.varlists()) { 6801 const VarDecl *OrigVD = getBaseDecl(Ref); 6802 if (!Processed.insert(OrigVD).second) 6803 continue; 6804 // In order to identify the right initializer we need to match the 6805 // declaration used by the mapping logic. In some cases we may get 6806 // OMPCapturedExprDecl that refers to the original declaration. 6807 const ValueDecl *MatchingVD = OrigVD; 6808 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6809 // OMPCapturedExprDecl are used to privative fields of the current 6810 // structure. 6811 const auto *ME = cast<MemberExpr>(OED->getInit()); 6812 assert(isa<CXXThisExpr>(ME->getBase()) && 6813 "Base should be the current struct!"); 6814 MatchingVD = ME->getMemberDecl(); 6815 } 6816 6817 // If we don't have information about the current list item, move on to 6818 // the next one. 6819 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6820 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6821 continue; 6822 6823 Address PrivAddr = InitAddrIt->getSecond(); 6824 // For declrefs and variable length array need to load the pointer for 6825 // correct mapping, since the pointer to the data was passed to the runtime. 6826 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6827 MatchingVD->getType()->isArrayType()) 6828 PrivAddr = 6829 EmitLoadOfPointer(PrivAddr, getContext() 6830 .getPointerType(OrigVD->getType()) 6831 ->castAs<PointerType>()); 6832 llvm::Type *RealTy = 6833 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6834 ->getPointerTo(); 6835 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6836 6837 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6838 } 6839 } 6840 6841 // Generate the instructions for '#pragma omp target data' directive. 6842 void CodeGenFunction::EmitOMPTargetDataDirective( 6843 const OMPTargetDataDirective &S) { 6844 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 6845 /*SeparateBeginEndCalls=*/true); 6846 6847 // Create a pre/post action to signal the privatization of the device pointer. 6848 // This action can be replaced by the OpenMP runtime code generation to 6849 // deactivate privatization. 6850 bool PrivatizeDevicePointers = false; 6851 class DevicePointerPrivActionTy : public PrePostActionTy { 6852 bool &PrivatizeDevicePointers; 6853 6854 public: 6855 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6856 : PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6857 void Enter(CodeGenFunction &CGF) override { 6858 PrivatizeDevicePointers = true; 6859 } 6860 }; 6861 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6862 6863 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6864 CodeGenFunction &CGF, PrePostActionTy &Action) { 6865 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6866 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6867 }; 6868 6869 // Codegen that selects whether to generate the privatization code or not. 6870 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6871 &InnermostCodeGen](CodeGenFunction &CGF, 6872 PrePostActionTy &Action) { 6873 RegionCodeGenTy RCG(InnermostCodeGen); 6874 PrivatizeDevicePointers = false; 6875 6876 // Call the pre-action to change the status of PrivatizeDevicePointers if 6877 // needed. 6878 Action.Enter(CGF); 6879 6880 if (PrivatizeDevicePointers) { 6881 OMPPrivateScope PrivateScope(CGF); 6882 // Emit all instances of the use_device_ptr clause. 6883 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6884 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6885 Info.CaptureDeviceAddrMap); 6886 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6887 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6888 Info.CaptureDeviceAddrMap); 6889 (void)PrivateScope.Privatize(); 6890 RCG(CGF); 6891 } else { 6892 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6893 RCG(CGF); 6894 } 6895 }; 6896 6897 // Forward the provided action to the privatization codegen. 6898 RegionCodeGenTy PrivRCG(PrivCodeGen); 6899 PrivRCG.setAction(Action); 6900 6901 // Notwithstanding the body of the region is emitted as inlined directive, 6902 // we don't use an inline scope as changes in the references inside the 6903 // region are expected to be visible outside, so we do not privative them. 6904 OMPLexicalScope Scope(CGF, S); 6905 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6906 PrivRCG); 6907 }; 6908 6909 RegionCodeGenTy RCG(CodeGen); 6910 6911 // If we don't have target devices, don't bother emitting the data mapping 6912 // code. 6913 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6914 RCG(*this); 6915 return; 6916 } 6917 6918 // Check if we have any if clause associated with the directive. 6919 const Expr *IfCond = nullptr; 6920 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6921 IfCond = C->getCondition(); 6922 6923 // Check if we have any device clause associated with the directive. 6924 const Expr *Device = nullptr; 6925 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6926 Device = C->getDevice(); 6927 6928 // Set the action to signal privatization of device pointers. 6929 RCG.setAction(PrivAction); 6930 6931 // Emit region code. 6932 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6933 Info); 6934 } 6935 6936 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6937 const OMPTargetEnterDataDirective &S) { 6938 // If we don't have target devices, don't bother emitting the data mapping 6939 // code. 6940 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6941 return; 6942 6943 // Check if we have any if clause associated with the directive. 6944 const Expr *IfCond = nullptr; 6945 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6946 IfCond = C->getCondition(); 6947 6948 // Check if we have any device clause associated with the directive. 6949 const Expr *Device = nullptr; 6950 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6951 Device = C->getDevice(); 6952 6953 OMPLexicalScope Scope(*this, S, OMPD_task); 6954 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6955 } 6956 6957 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6958 const OMPTargetExitDataDirective &S) { 6959 // If we don't have target devices, don't bother emitting the data mapping 6960 // code. 6961 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6962 return; 6963 6964 // Check if we have any if clause associated with the directive. 6965 const Expr *IfCond = nullptr; 6966 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6967 IfCond = C->getCondition(); 6968 6969 // Check if we have any device clause associated with the directive. 6970 const Expr *Device = nullptr; 6971 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6972 Device = C->getDevice(); 6973 6974 OMPLexicalScope Scope(*this, S, OMPD_task); 6975 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6976 } 6977 6978 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6979 const OMPTargetParallelDirective &S, 6980 PrePostActionTy &Action) { 6981 // Get the captured statement associated with the 'parallel' region. 6982 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6983 Action.Enter(CGF); 6984 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6985 Action.Enter(CGF); 6986 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6987 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6988 CGF.EmitOMPPrivateClause(S, PrivateScope); 6989 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6990 (void)PrivateScope.Privatize(); 6991 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6992 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6993 // TODO: Add support for clauses. 6994 CGF.EmitStmt(CS->getCapturedStmt()); 6995 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6996 }; 6997 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6998 emitEmptyBoundParameters); 6999 emitPostUpdateForReductionClause(CGF, S, 7000 [](CodeGenFunction &) { return nullptr; }); 7001 } 7002 7003 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 7004 CodeGenModule &CGM, StringRef ParentName, 7005 const OMPTargetParallelDirective &S) { 7006 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7007 emitTargetParallelRegion(CGF, S, Action); 7008 }; 7009 llvm::Function *Fn; 7010 llvm::Constant *Addr; 7011 // Emit target region as a standalone region. 7012 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7013 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7014 assert(Fn && Addr && "Target device function emission failed."); 7015 } 7016 7017 void CodeGenFunction::EmitOMPTargetParallelDirective( 7018 const OMPTargetParallelDirective &S) { 7019 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7020 emitTargetParallelRegion(CGF, S, Action); 7021 }; 7022 emitCommonOMPTargetDirective(*this, S, CodeGen); 7023 } 7024 7025 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 7026 const OMPTargetParallelForDirective &S, 7027 PrePostActionTy &Action) { 7028 Action.Enter(CGF); 7029 // Emit directive as a combined directive that consists of two implicit 7030 // directives: 'parallel' with 'for' directive. 7031 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7032 Action.Enter(CGF); 7033 CodeGenFunction::OMPCancelStackRAII CancelRegion( 7034 CGF, OMPD_target_parallel_for, S.hasCancel()); 7035 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7036 emitDispatchForLoopBounds); 7037 }; 7038 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 7039 emitEmptyBoundParameters); 7040 } 7041 7042 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 7043 CodeGenModule &CGM, StringRef ParentName, 7044 const OMPTargetParallelForDirective &S) { 7045 // Emit SPMD target parallel for region as a standalone region. 7046 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7047 emitTargetParallelForRegion(CGF, S, Action); 7048 }; 7049 llvm::Function *Fn; 7050 llvm::Constant *Addr; 7051 // Emit target region as a standalone region. 7052 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7053 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7054 assert(Fn && Addr && "Target device function emission failed."); 7055 } 7056 7057 void CodeGenFunction::EmitOMPTargetParallelForDirective( 7058 const OMPTargetParallelForDirective &S) { 7059 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7060 emitTargetParallelForRegion(CGF, S, Action); 7061 }; 7062 emitCommonOMPTargetDirective(*this, S, CodeGen); 7063 } 7064 7065 static void 7066 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 7067 const OMPTargetParallelForSimdDirective &S, 7068 PrePostActionTy &Action) { 7069 Action.Enter(CGF); 7070 // Emit directive as a combined directive that consists of two implicit 7071 // directives: 'parallel' with 'for' directive. 7072 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7073 Action.Enter(CGF); 7074 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7075 emitDispatchForLoopBounds); 7076 }; 7077 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 7078 emitEmptyBoundParameters); 7079 } 7080 7081 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 7082 CodeGenModule &CGM, StringRef ParentName, 7083 const OMPTargetParallelForSimdDirective &S) { 7084 // Emit SPMD target parallel for region as a standalone region. 7085 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7086 emitTargetParallelForSimdRegion(CGF, S, Action); 7087 }; 7088 llvm::Function *Fn; 7089 llvm::Constant *Addr; 7090 // Emit target region as a standalone region. 7091 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7092 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7093 assert(Fn && Addr && "Target device function emission failed."); 7094 } 7095 7096 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 7097 const OMPTargetParallelForSimdDirective &S) { 7098 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7099 emitTargetParallelForSimdRegion(CGF, S, Action); 7100 }; 7101 emitCommonOMPTargetDirective(*this, S, CodeGen); 7102 } 7103 7104 /// Emit a helper variable and return corresponding lvalue. 7105 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 7106 const ImplicitParamDecl *PVD, 7107 CodeGenFunction::OMPPrivateScope &Privates) { 7108 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 7109 Privates.addPrivate(VDecl, 7110 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 7111 } 7112 7113 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 7114 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 7115 // Emit outlined function for task construct. 7116 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 7117 Address CapturedStruct = Address::invalid(); 7118 { 7119 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7120 CapturedStruct = GenerateCapturedStmtArgument(*CS); 7121 } 7122 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 7123 const Expr *IfCond = nullptr; 7124 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 7125 if (C->getNameModifier() == OMPD_unknown || 7126 C->getNameModifier() == OMPD_taskloop) { 7127 IfCond = C->getCondition(); 7128 break; 7129 } 7130 } 7131 7132 OMPTaskDataTy Data; 7133 // Check if taskloop must be emitted without taskgroup. 7134 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 7135 // TODO: Check if we should emit tied or untied task. 7136 Data.Tied = true; 7137 // Set scheduling for taskloop 7138 if (const auto *Clause = S.getSingleClause<OMPGrainsizeClause>()) { 7139 // grainsize clause 7140 Data.Schedule.setInt(/*IntVal=*/false); 7141 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 7142 } else if (const auto *Clause = S.getSingleClause<OMPNumTasksClause>()) { 7143 // num_tasks clause 7144 Data.Schedule.setInt(/*IntVal=*/true); 7145 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 7146 } 7147 7148 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 7149 // if (PreCond) { 7150 // for (IV in 0..LastIteration) BODY; 7151 // <Final counter/linear vars updates>; 7152 // } 7153 // 7154 7155 // Emit: if (PreCond) - begin. 7156 // If the condition constant folds and can be elided, avoid emitting the 7157 // whole loop. 7158 bool CondConstant; 7159 llvm::BasicBlock *ContBlock = nullptr; 7160 OMPLoopScope PreInitScope(CGF, S); 7161 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 7162 if (!CondConstant) 7163 return; 7164 } else { 7165 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 7166 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 7167 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 7168 CGF.getProfileCount(&S)); 7169 CGF.EmitBlock(ThenBlock); 7170 CGF.incrementProfileCounter(&S); 7171 } 7172 7173 (void)CGF.EmitOMPLinearClauseInit(S); 7174 7175 OMPPrivateScope LoopScope(CGF); 7176 // Emit helper vars inits. 7177 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 7178 auto *I = CS->getCapturedDecl()->param_begin(); 7179 auto *LBP = std::next(I, LowerBound); 7180 auto *UBP = std::next(I, UpperBound); 7181 auto *STP = std::next(I, Stride); 7182 auto *LIP = std::next(I, LastIter); 7183 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 7184 LoopScope); 7185 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 7186 LoopScope); 7187 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 7188 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 7189 LoopScope); 7190 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 7191 CGF.EmitOMPLinearClause(S, LoopScope); 7192 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 7193 (void)LoopScope.Privatize(); 7194 // Emit the loop iteration variable. 7195 const Expr *IVExpr = S.getIterationVariable(); 7196 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 7197 CGF.EmitVarDecl(*IVDecl); 7198 CGF.EmitIgnoredExpr(S.getInit()); 7199 7200 // Emit the iterations count variable. 7201 // If it is not a variable, Sema decided to calculate iterations count on 7202 // each iteration (e.g., it is foldable into a constant). 7203 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 7204 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 7205 // Emit calculation of the iterations count. 7206 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 7207 } 7208 7209 { 7210 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7211 emitCommonSimdLoop( 7212 CGF, S, 7213 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7214 if (isOpenMPSimdDirective(S.getDirectiveKind())) 7215 CGF.EmitOMPSimdInit(S); 7216 }, 7217 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 7218 CGF.EmitOMPInnerLoop( 7219 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 7220 [&S](CodeGenFunction &CGF) { 7221 emitOMPLoopBodyWithStopPoint(CGF, S, 7222 CodeGenFunction::JumpDest()); 7223 }, 7224 [](CodeGenFunction &) {}); 7225 }); 7226 } 7227 // Emit: if (PreCond) - end. 7228 if (ContBlock) { 7229 CGF.EmitBranch(ContBlock); 7230 CGF.EmitBlock(ContBlock, true); 7231 } 7232 // Emit final copy of the lastprivate variables if IsLastIter != 0. 7233 if (HasLastprivateClause) { 7234 CGF.EmitOMPLastprivateClauseFinal( 7235 S, isOpenMPSimdDirective(S.getDirectiveKind()), 7236 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 7237 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7238 (*LIP)->getType(), S.getBeginLoc()))); 7239 } 7240 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 7241 return CGF.Builder.CreateIsNotNull( 7242 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7243 (*LIP)->getType(), S.getBeginLoc())); 7244 }); 7245 }; 7246 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 7247 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 7248 const OMPTaskDataTy &Data) { 7249 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 7250 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 7251 OMPLoopScope PreInitScope(CGF, S); 7252 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 7253 OutlinedFn, SharedsTy, 7254 CapturedStruct, IfCond, Data); 7255 }; 7256 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7257 CodeGen); 7258 }; 7259 if (Data.Nogroup) { 7260 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7261 } else { 7262 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7263 *this, 7264 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7265 PrePostActionTy &Action) { 7266 Action.Enter(CGF); 7267 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7268 Data); 7269 }, 7270 S.getBeginLoc()); 7271 } 7272 } 7273 7274 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7275 auto LPCRegion = 7276 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7277 EmitOMPTaskLoopBasedDirective(S); 7278 } 7279 7280 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7281 const OMPTaskLoopSimdDirective &S) { 7282 auto LPCRegion = 7283 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7284 OMPLexicalScope Scope(*this, S); 7285 EmitOMPTaskLoopBasedDirective(S); 7286 } 7287 7288 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7289 const OMPMasterTaskLoopDirective &S) { 7290 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7291 Action.Enter(CGF); 7292 EmitOMPTaskLoopBasedDirective(S); 7293 }; 7294 auto LPCRegion = 7295 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7296 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 7297 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7298 } 7299 7300 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7301 const OMPMasterTaskLoopSimdDirective &S) { 7302 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7303 Action.Enter(CGF); 7304 EmitOMPTaskLoopBasedDirective(S); 7305 }; 7306 auto LPCRegion = 7307 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7308 OMPLexicalScope Scope(*this, S); 7309 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7310 } 7311 7312 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7313 const OMPParallelMasterTaskLoopDirective &S) { 7314 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7315 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7316 PrePostActionTy &Action) { 7317 Action.Enter(CGF); 7318 CGF.EmitOMPTaskLoopBasedDirective(S); 7319 }; 7320 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7321 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7322 S.getBeginLoc()); 7323 }; 7324 auto LPCRegion = 7325 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7326 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7327 emitEmptyBoundParameters); 7328 } 7329 7330 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7331 const OMPParallelMasterTaskLoopSimdDirective &S) { 7332 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7333 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7334 PrePostActionTy &Action) { 7335 Action.Enter(CGF); 7336 CGF.EmitOMPTaskLoopBasedDirective(S); 7337 }; 7338 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7339 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7340 S.getBeginLoc()); 7341 }; 7342 auto LPCRegion = 7343 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7344 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7345 emitEmptyBoundParameters); 7346 } 7347 7348 // Generate the instructions for '#pragma omp target update' directive. 7349 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7350 const OMPTargetUpdateDirective &S) { 7351 // If we don't have target devices, don't bother emitting the data mapping 7352 // code. 7353 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7354 return; 7355 7356 // Check if we have any if clause associated with the directive. 7357 const Expr *IfCond = nullptr; 7358 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7359 IfCond = C->getCondition(); 7360 7361 // Check if we have any device clause associated with the directive. 7362 const Expr *Device = nullptr; 7363 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7364 Device = C->getDevice(); 7365 7366 OMPLexicalScope Scope(*this, S, OMPD_task); 7367 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7368 } 7369 7370 void CodeGenFunction::EmitOMPGenericLoopDirective( 7371 const OMPGenericLoopDirective &S) { 7372 // Unimplemented, just inline the underlying statement for now. 7373 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7374 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 7375 }; 7376 OMPLexicalScope Scope(*this, S, OMPD_unknown); 7377 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_loop, CodeGen); 7378 } 7379 7380 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7381 const OMPExecutableDirective &D) { 7382 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7383 EmitOMPScanDirective(*SD); 7384 return; 7385 } 7386 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7387 return; 7388 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7389 OMPPrivateScope GlobalsScope(CGF); 7390 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7391 // Capture global firstprivates to avoid crash. 7392 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7393 for (const Expr *Ref : C->varlists()) { 7394 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7395 if (!DRE) 7396 continue; 7397 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7398 if (!VD || VD->hasLocalStorage()) 7399 continue; 7400 if (!CGF.LocalDeclMap.count(VD)) { 7401 LValue GlobLVal = CGF.EmitLValue(Ref); 7402 GlobalsScope.addPrivate( 7403 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7404 } 7405 } 7406 } 7407 } 7408 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7409 (void)GlobalsScope.Privatize(); 7410 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7411 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7412 } else { 7413 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7414 for (const Expr *E : LD->counters()) { 7415 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7416 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7417 LValue GlobLVal = CGF.EmitLValue(E); 7418 GlobalsScope.addPrivate( 7419 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7420 } 7421 if (isa<OMPCapturedExprDecl>(VD)) { 7422 // Emit only those that were not explicitly referenced in clauses. 7423 if (!CGF.LocalDeclMap.count(VD)) 7424 CGF.EmitVarDecl(*VD); 7425 } 7426 } 7427 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7428 if (!C->getNumForLoops()) 7429 continue; 7430 for (unsigned I = LD->getLoopsNumber(), 7431 E = C->getLoopNumIterations().size(); 7432 I < E; ++I) { 7433 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7434 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7435 // Emit only those that were not explicitly referenced in clauses. 7436 if (!CGF.LocalDeclMap.count(VD)) 7437 CGF.EmitVarDecl(*VD); 7438 } 7439 } 7440 } 7441 } 7442 (void)GlobalsScope.Privatize(); 7443 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7444 } 7445 }; 7446 if (D.getDirectiveKind() == OMPD_atomic || 7447 D.getDirectiveKind() == OMPD_critical || 7448 D.getDirectiveKind() == OMPD_section || 7449 D.getDirectiveKind() == OMPD_master || 7450 D.getDirectiveKind() == OMPD_masked) { 7451 EmitStmt(D.getAssociatedStmt()); 7452 } else { 7453 auto LPCRegion = 7454 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7455 OMPSimdLexicalScope Scope(*this, D); 7456 CGM.getOpenMPRuntime().emitInlinedDirective( 7457 *this, 7458 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7459 : D.getDirectiveKind(), 7460 CodeGen); 7461 } 7462 // Check for outer lastprivate conditional update. 7463 checkForLastprivateConditionalUpdate(*this, D); 7464 } 7465