1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit OpenMP nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCleanup.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Stmt.h"
19 #include "clang/AST/StmtOpenMP.h"
20 #include "clang/AST/DeclOpenMP.h"
21 using namespace clang;
22 using namespace CodeGen;
23 
24 namespace {
25 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
26 /// for captured expressions.
27 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
28   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
29     for (const auto *C : S.clauses()) {
30       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
31         if (const auto *PreInit =
32                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
33           for (const auto *I : PreInit->decls()) {
34             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
35               CGF.EmitVarDecl(cast<VarDecl>(*I));
36             } else {
37               CodeGenFunction::AutoVarEmission Emission =
38                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
39               CGF.EmitAutoVarCleanups(Emission);
40             }
41           }
42         }
43       }
44     }
45   }
46   CodeGenFunction::OMPPrivateScope InlinedShareds;
47 
48   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
49     return CGF.LambdaCaptureFields.lookup(VD) ||
50            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
51            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
52   }
53 
54 public:
55   OMPLexicalScope(
56       CodeGenFunction &CGF, const OMPExecutableDirective &S,
57       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
58       const bool EmitPreInitStmt = true)
59       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
60         InlinedShareds(CGF) {
61     if (EmitPreInitStmt)
62       emitPreInitStmt(CGF, S);
63     if (!CapturedRegion.hasValue())
64       return;
65     assert(S.hasAssociatedStmt() &&
66            "Expected associated statement for inlined directive.");
67     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
68     for (const auto &C : CS->captures()) {
69       if (C.capturesVariable() || C.capturesVariableByCopy()) {
70         auto *VD = C.getCapturedVar();
71         assert(VD == VD->getCanonicalDecl() &&
72                "Canonical decl must be captured.");
73         DeclRefExpr DRE(
74             CGF.getContext(), const_cast<VarDecl *>(VD),
75             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
76                                        InlinedShareds.isGlobalVarCaptured(VD)),
77             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
78         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
79           return CGF.EmitLValue(&DRE).getAddress();
80         });
81       }
82     }
83     (void)InlinedShareds.Privatize();
84   }
85 };
86 
87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
88 /// for captured expressions.
89 class OMPParallelScope final : public OMPLexicalScope {
90   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
91     OpenMPDirectiveKind Kind = S.getDirectiveKind();
92     return !(isOpenMPTargetExecutionDirective(Kind) ||
93              isOpenMPLoopBoundSharingDirective(Kind)) &&
94            isOpenMPParallelDirective(Kind);
95   }
96 
97 public:
98   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
99       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
100                         EmitPreInitStmt(S)) {}
101 };
102 
103 /// Lexical scope for OpenMP teams construct, that handles correct codegen
104 /// for captured expressions.
105 class OMPTeamsScope final : public OMPLexicalScope {
106   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
107     OpenMPDirectiveKind Kind = S.getDirectiveKind();
108     return !isOpenMPTargetExecutionDirective(Kind) &&
109            isOpenMPTeamsDirective(Kind);
110   }
111 
112 public:
113   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
114       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
115                         EmitPreInitStmt(S)) {}
116 };
117 
118 /// Private scope for OpenMP loop-based directives, that supports capturing
119 /// of used expression from loop statement.
120 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
121   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
122     CodeGenFunction::OMPMapVars PreCondVars;
123     llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
124     for (const auto *E : S.counters()) {
125       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
126       EmittedAsPrivate.insert(VD->getCanonicalDecl());
127       (void)PreCondVars.setVarAddr(
128           CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
129     }
130     // Mark private vars as undefs.
131     for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
132       for (const Expr *IRef : C->varlists()) {
133         const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
134         if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
135           (void)PreCondVars.setVarAddr(
136               CGF, OrigVD,
137               Address(llvm::UndefValue::get(
138                           CGF.ConvertTypeForMem(CGF.getContext().getPointerType(
139                               OrigVD->getType().getNonReferenceType()))),
140                       CGF.getContext().getDeclAlign(OrigVD)));
141         }
142       }
143     }
144     (void)PreCondVars.apply(CGF);
145     // Emit init, __range and __end variables for C++ range loops.
146     const Stmt *Body =
147         S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
148     for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) {
149       Body = Body->IgnoreContainers();
150       if (auto *For = dyn_cast<ForStmt>(Body)) {
151         Body = For->getBody();
152       } else {
153         assert(isa<CXXForRangeStmt>(Body) &&
154                "Expected canonical for loop or range-based for loop.");
155         auto *CXXFor = cast<CXXForRangeStmt>(Body);
156         if (const Stmt *Init = CXXFor->getInit())
157           CGF.EmitStmt(Init);
158         CGF.EmitStmt(CXXFor->getRangeStmt());
159         CGF.EmitStmt(CXXFor->getEndStmt());
160         Body = CXXFor->getBody();
161       }
162     }
163     if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) {
164       for (const auto *I : PreInits->decls())
165         CGF.EmitVarDecl(cast<VarDecl>(*I));
166     }
167     PreCondVars.restore(CGF);
168   }
169 
170 public:
171   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
172       : CodeGenFunction::RunCleanupsScope(CGF) {
173     emitPreInitStmt(CGF, S);
174   }
175 };
176 
177 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
178   CodeGenFunction::OMPPrivateScope InlinedShareds;
179 
180   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
181     return CGF.LambdaCaptureFields.lookup(VD) ||
182            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
183            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
184             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
185   }
186 
187 public:
188   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
189       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
190         InlinedShareds(CGF) {
191     for (const auto *C : S.clauses()) {
192       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
193         if (const auto *PreInit =
194                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
195           for (const auto *I : PreInit->decls()) {
196             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
197               CGF.EmitVarDecl(cast<VarDecl>(*I));
198             } else {
199               CodeGenFunction::AutoVarEmission Emission =
200                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
201               CGF.EmitAutoVarCleanups(Emission);
202             }
203           }
204         }
205       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
206         for (const Expr *E : UDP->varlists()) {
207           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
208           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
209             CGF.EmitVarDecl(*OED);
210         }
211       }
212     }
213     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
214       CGF.EmitOMPPrivateClause(S, InlinedShareds);
215     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
216       if (const Expr *E = TG->getReductionRef())
217         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
218     }
219     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
220     while (CS) {
221       for (auto &C : CS->captures()) {
222         if (C.capturesVariable() || C.capturesVariableByCopy()) {
223           auto *VD = C.getCapturedVar();
224           assert(VD == VD->getCanonicalDecl() &&
225                  "Canonical decl must be captured.");
226           DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
227                           isCapturedVar(CGF, VD) ||
228                               (CGF.CapturedStmtInfo &&
229                                InlinedShareds.isGlobalVarCaptured(VD)),
230                           VD->getType().getNonReferenceType(), VK_LValue,
231                           C.getLocation());
232           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
233             return CGF.EmitLValue(&DRE).getAddress();
234           });
235         }
236       }
237       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
238     }
239     (void)InlinedShareds.Privatize();
240   }
241 };
242 
243 } // namespace
244 
245 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
246                                          const OMPExecutableDirective &S,
247                                          const RegionCodeGenTy &CodeGen);
248 
249 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
250   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
251     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
252       OrigVD = OrigVD->getCanonicalDecl();
253       bool IsCaptured =
254           LambdaCaptureFields.lookup(OrigVD) ||
255           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
256           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
257       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured,
258                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
259       return EmitLValue(&DRE);
260     }
261   }
262   return EmitLValue(E);
263 }
264 
265 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
266   ASTContext &C = getContext();
267   llvm::Value *Size = nullptr;
268   auto SizeInChars = C.getTypeSizeInChars(Ty);
269   if (SizeInChars.isZero()) {
270     // getTypeSizeInChars() returns 0 for a VLA.
271     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
272       VlaSizePair VlaSize = getVLASize(VAT);
273       Ty = VlaSize.Type;
274       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
275                   : VlaSize.NumElts;
276     }
277     SizeInChars = C.getTypeSizeInChars(Ty);
278     if (SizeInChars.isZero())
279       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
280     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
281   }
282   return CGM.getSize(SizeInChars);
283 }
284 
285 void CodeGenFunction::GenerateOpenMPCapturedVars(
286     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
287   const RecordDecl *RD = S.getCapturedRecordDecl();
288   auto CurField = RD->field_begin();
289   auto CurCap = S.captures().begin();
290   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
291                                                  E = S.capture_init_end();
292        I != E; ++I, ++CurField, ++CurCap) {
293     if (CurField->hasCapturedVLAType()) {
294       const VariableArrayType *VAT = CurField->getCapturedVLAType();
295       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
296       CapturedVars.push_back(Val);
297     } else if (CurCap->capturesThis()) {
298       CapturedVars.push_back(CXXThisValue);
299     } else if (CurCap->capturesVariableByCopy()) {
300       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
301 
302       // If the field is not a pointer, we need to save the actual value
303       // and load it as a void pointer.
304       if (!CurField->getType()->isAnyPointerType()) {
305         ASTContext &Ctx = getContext();
306         Address DstAddr = CreateMemTemp(
307             Ctx.getUIntPtrType(),
308             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
309         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
310 
311         llvm::Value *SrcAddrVal = EmitScalarConversion(
312             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
313             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
314         LValue SrcLV =
315             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
316 
317         // Store the value using the source type pointer.
318         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
319 
320         // Load the value using the destination type pointer.
321         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
322       }
323       CapturedVars.push_back(CV);
324     } else {
325       assert(CurCap->capturesVariable() && "Expected capture by reference.");
326       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
327     }
328   }
329 }
330 
331 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
332                                     QualType DstType, StringRef Name,
333                                     LValue AddrLV) {
334   ASTContext &Ctx = CGF.getContext();
335 
336   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
337       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
338       Ctx.getPointerType(DstType), Loc);
339   Address TmpAddr =
340       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
341           .getAddress();
342   return TmpAddr;
343 }
344 
345 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
346   if (T->isLValueReferenceType())
347     return C.getLValueReferenceType(
348         getCanonicalParamType(C, T.getNonReferenceType()),
349         /*SpelledAsLValue=*/false);
350   if (T->isPointerType())
351     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
352   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
353     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
354       return getCanonicalParamType(C, VLA->getElementType());
355     if (!A->isVariablyModifiedType())
356       return C.getCanonicalType(T);
357   }
358   return C.getCanonicalParamType(T);
359 }
360 
361 namespace {
362   /// Contains required data for proper outlined function codegen.
363   struct FunctionOptions {
364     /// Captured statement for which the function is generated.
365     const CapturedStmt *S = nullptr;
366     /// true if cast to/from  UIntPtr is required for variables captured by
367     /// value.
368     const bool UIntPtrCastRequired = true;
369     /// true if only casted arguments must be registered as local args or VLA
370     /// sizes.
371     const bool RegisterCastedArgsOnly = false;
372     /// Name of the generated function.
373     const StringRef FunctionName;
374     explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
375                              bool RegisterCastedArgsOnly,
376                              StringRef FunctionName)
377         : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
378           RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
379           FunctionName(FunctionName) {}
380   };
381 }
382 
383 static llvm::Function *emitOutlinedFunctionPrologue(
384     CodeGenFunction &CGF, FunctionArgList &Args,
385     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
386         &LocalAddrs,
387     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
388         &VLASizes,
389     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
390   const CapturedDecl *CD = FO.S->getCapturedDecl();
391   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
392   assert(CD->hasBody() && "missing CapturedDecl body");
393 
394   CXXThisValue = nullptr;
395   // Build the argument list.
396   CodeGenModule &CGM = CGF.CGM;
397   ASTContext &Ctx = CGM.getContext();
398   FunctionArgList TargetArgs;
399   Args.append(CD->param_begin(),
400               std::next(CD->param_begin(), CD->getContextParamPosition()));
401   TargetArgs.append(
402       CD->param_begin(),
403       std::next(CD->param_begin(), CD->getContextParamPosition()));
404   auto I = FO.S->captures().begin();
405   FunctionDecl *DebugFunctionDecl = nullptr;
406   if (!FO.UIntPtrCastRequired) {
407     FunctionProtoType::ExtProtoInfo EPI;
408     QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI);
409     DebugFunctionDecl = FunctionDecl::Create(
410         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
411         SourceLocation(), DeclarationName(), FunctionTy,
412         Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static,
413         /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
414   }
415   for (const FieldDecl *FD : RD->fields()) {
416     QualType ArgType = FD->getType();
417     IdentifierInfo *II = nullptr;
418     VarDecl *CapVar = nullptr;
419 
420     // If this is a capture by copy and the type is not a pointer, the outlined
421     // function argument type should be uintptr and the value properly casted to
422     // uintptr. This is necessary given that the runtime library is only able to
423     // deal with pointers. We can pass in the same way the VLA type sizes to the
424     // outlined function.
425     if (FO.UIntPtrCastRequired &&
426         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
427          I->capturesVariableArrayType()))
428       ArgType = Ctx.getUIntPtrType();
429 
430     if (I->capturesVariable() || I->capturesVariableByCopy()) {
431       CapVar = I->getCapturedVar();
432       II = CapVar->getIdentifier();
433     } else if (I->capturesThis()) {
434       II = &Ctx.Idents.get("this");
435     } else {
436       assert(I->capturesVariableArrayType());
437       II = &Ctx.Idents.get("vla");
438     }
439     if (ArgType->isVariablyModifiedType())
440       ArgType = getCanonicalParamType(Ctx, ArgType);
441     VarDecl *Arg;
442     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
443       Arg = ParmVarDecl::Create(
444           Ctx, DebugFunctionDecl,
445           CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
446           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
447           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
448     } else {
449       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
450                                       II, ArgType, ImplicitParamDecl::Other);
451     }
452     Args.emplace_back(Arg);
453     // Do not cast arguments if we emit function with non-original types.
454     TargetArgs.emplace_back(
455         FO.UIntPtrCastRequired
456             ? Arg
457             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
458     ++I;
459   }
460   Args.append(
461       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
462       CD->param_end());
463   TargetArgs.append(
464       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
465       CD->param_end());
466 
467   // Create the function declaration.
468   const CGFunctionInfo &FuncInfo =
469       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
470   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
471 
472   auto *F =
473       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
474                              FO.FunctionName, &CGM.getModule());
475   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
476   if (CD->isNothrow())
477     F->setDoesNotThrow();
478   F->setDoesNotRecurse();
479 
480   // Generate the function.
481   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
482                     FO.S->getBeginLoc(), CD->getBody()->getBeginLoc());
483   unsigned Cnt = CD->getContextParamPosition();
484   I = FO.S->captures().begin();
485   for (const FieldDecl *FD : RD->fields()) {
486     // Do not map arguments if we emit function with non-original types.
487     Address LocalAddr(Address::invalid());
488     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
489       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
490                                                              TargetArgs[Cnt]);
491     } else {
492       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
493     }
494     // If we are capturing a pointer by copy we don't need to do anything, just
495     // use the value that we get from the arguments.
496     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
497       const VarDecl *CurVD = I->getCapturedVar();
498       if (!FO.RegisterCastedArgsOnly)
499         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
500       ++Cnt;
501       ++I;
502       continue;
503     }
504 
505     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
506                                         AlignmentSource::Decl);
507     if (FD->hasCapturedVLAType()) {
508       if (FO.UIntPtrCastRequired) {
509         ArgLVal = CGF.MakeAddrLValue(
510             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
511                                  Args[Cnt]->getName(), ArgLVal),
512             FD->getType(), AlignmentSource::Decl);
513       }
514       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
515       const VariableArrayType *VAT = FD->getCapturedVLAType();
516       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
517     } else if (I->capturesVariable()) {
518       const VarDecl *Var = I->getCapturedVar();
519       QualType VarTy = Var->getType();
520       Address ArgAddr = ArgLVal.getAddress();
521       if (ArgLVal.getType()->isLValueReferenceType()) {
522         ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
523       } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
524         assert(ArgLVal.getType()->isPointerType());
525         ArgAddr = CGF.EmitLoadOfPointer(
526             ArgAddr, ArgLVal.getType()->castAs<PointerType>());
527       }
528       if (!FO.RegisterCastedArgsOnly) {
529         LocalAddrs.insert(
530             {Args[Cnt],
531              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
532       }
533     } else if (I->capturesVariableByCopy()) {
534       assert(!FD->getType()->isAnyPointerType() &&
535              "Not expecting a captured pointer.");
536       const VarDecl *Var = I->getCapturedVar();
537       LocalAddrs.insert({Args[Cnt],
538                          {Var, FO.UIntPtrCastRequired
539                                    ? castValueFromUintptr(
540                                          CGF, I->getLocation(), FD->getType(),
541                                          Args[Cnt]->getName(), ArgLVal)
542                                    : ArgLVal.getAddress()}});
543     } else {
544       // If 'this' is captured, load it into CXXThisValue.
545       assert(I->capturesThis());
546       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
547       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}});
548     }
549     ++Cnt;
550     ++I;
551   }
552 
553   return F;
554 }
555 
556 llvm::Function *
557 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
558   assert(
559       CapturedStmtInfo &&
560       "CapturedStmtInfo should be set when generating the captured function");
561   const CapturedDecl *CD = S.getCapturedDecl();
562   // Build the argument list.
563   bool NeedWrapperFunction =
564       getDebugInfo() &&
565       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo;
566   FunctionArgList Args;
567   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
568   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
569   SmallString<256> Buffer;
570   llvm::raw_svector_ostream Out(Buffer);
571   Out << CapturedStmtInfo->getHelperName();
572   if (NeedWrapperFunction)
573     Out << "_debug__";
574   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
575                      Out.str());
576   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
577                                                    VLASizes, CXXThisValue, FO);
578   CodeGenFunction::OMPPrivateScope LocalScope(*this);
579   for (const auto &LocalAddrPair : LocalAddrs) {
580     if (LocalAddrPair.second.first) {
581       LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() {
582         return LocalAddrPair.second.second;
583       });
584     }
585   }
586   (void)LocalScope.Privatize();
587   for (const auto &VLASizePair : VLASizes)
588     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
589   PGO.assignRegionCounters(GlobalDecl(CD), F);
590   CapturedStmtInfo->EmitBody(*this, CD->getBody());
591   (void)LocalScope.ForceCleanup();
592   FinishFunction(CD->getBodyRBrace());
593   if (!NeedWrapperFunction)
594     return F;
595 
596   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
597                             /*RegisterCastedArgsOnly=*/true,
598                             CapturedStmtInfo->getHelperName());
599   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
600   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
601   Args.clear();
602   LocalAddrs.clear();
603   VLASizes.clear();
604   llvm::Function *WrapperF =
605       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
606                                    WrapperCGF.CXXThisValue, WrapperFO);
607   llvm::SmallVector<llvm::Value *, 4> CallArgs;
608   for (const auto *Arg : Args) {
609     llvm::Value *CallArg;
610     auto I = LocalAddrs.find(Arg);
611     if (I != LocalAddrs.end()) {
612       LValue LV = WrapperCGF.MakeAddrLValue(
613           I->second.second,
614           I->second.first ? I->second.first->getType() : Arg->getType(),
615           AlignmentSource::Decl);
616       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
617     } else {
618       auto EI = VLASizes.find(Arg);
619       if (EI != VLASizes.end()) {
620         CallArg = EI->second.second;
621       } else {
622         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
623                                               Arg->getType(),
624                                               AlignmentSource::Decl);
625         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
626       }
627     }
628     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
629   }
630   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(),
631                                                   F, CallArgs);
632   WrapperCGF.FinishFunction();
633   return WrapperF;
634 }
635 
636 //===----------------------------------------------------------------------===//
637 //                              OpenMP Directive Emission
638 //===----------------------------------------------------------------------===//
639 void CodeGenFunction::EmitOMPAggregateAssign(
640     Address DestAddr, Address SrcAddr, QualType OriginalType,
641     const llvm::function_ref<void(Address, Address)> CopyGen) {
642   // Perform element-by-element initialization.
643   QualType ElementTy;
644 
645   // Drill down to the base element type on both arrays.
646   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
647   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
648   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
649 
650   llvm::Value *SrcBegin = SrcAddr.getPointer();
651   llvm::Value *DestBegin = DestAddr.getPointer();
652   // Cast from pointer to array type to pointer to single element.
653   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
654   // The basic structure here is a while-do loop.
655   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
656   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
657   llvm::Value *IsEmpty =
658       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
659   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
660 
661   // Enter the loop body, making that address the current address.
662   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
663   EmitBlock(BodyBB);
664 
665   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
666 
667   llvm::PHINode *SrcElementPHI =
668     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
669   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
670   Address SrcElementCurrent =
671       Address(SrcElementPHI,
672               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
673 
674   llvm::PHINode *DestElementPHI =
675     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
676   DestElementPHI->addIncoming(DestBegin, EntryBB);
677   Address DestElementCurrent =
678     Address(DestElementPHI,
679             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
680 
681   // Emit copy.
682   CopyGen(DestElementCurrent, SrcElementCurrent);
683 
684   // Shift the address forward by one element.
685   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
686       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
687   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
688       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
689   // Check whether we've reached the end.
690   llvm::Value *Done =
691       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
692   Builder.CreateCondBr(Done, DoneBB, BodyBB);
693   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
694   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
695 
696   // Done.
697   EmitBlock(DoneBB, /*IsFinished=*/true);
698 }
699 
700 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
701                                   Address SrcAddr, const VarDecl *DestVD,
702                                   const VarDecl *SrcVD, const Expr *Copy) {
703   if (OriginalType->isArrayType()) {
704     const auto *BO = dyn_cast<BinaryOperator>(Copy);
705     if (BO && BO->getOpcode() == BO_Assign) {
706       // Perform simple memcpy for simple copying.
707       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
708       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
709       EmitAggregateAssign(Dest, Src, OriginalType);
710     } else {
711       // For arrays with complex element types perform element by element
712       // copying.
713       EmitOMPAggregateAssign(
714           DestAddr, SrcAddr, OriginalType,
715           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
716             // Working with the single array element, so have to remap
717             // destination and source variables to corresponding array
718             // elements.
719             CodeGenFunction::OMPPrivateScope Remap(*this);
720             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
721             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
722             (void)Remap.Privatize();
723             EmitIgnoredExpr(Copy);
724           });
725     }
726   } else {
727     // Remap pseudo source variable to private copy.
728     CodeGenFunction::OMPPrivateScope Remap(*this);
729     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
730     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
731     (void)Remap.Privatize();
732     // Emit copying of the whole variable.
733     EmitIgnoredExpr(Copy);
734   }
735 }
736 
737 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
738                                                 OMPPrivateScope &PrivateScope) {
739   if (!HaveInsertPoint())
740     return false;
741   bool DeviceConstTarget =
742       getLangOpts().OpenMPIsDevice &&
743       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
744   bool FirstprivateIsLastprivate = false;
745   llvm::DenseSet<const VarDecl *> Lastprivates;
746   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
747     for (const auto *D : C->varlists())
748       Lastprivates.insert(
749           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
750   }
751   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
752   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
753   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
754   // Force emission of the firstprivate copy if the directive does not emit
755   // outlined function, like omp for, omp simd, omp distribute etc.
756   bool MustEmitFirstprivateCopy =
757       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
758   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
759     auto IRef = C->varlist_begin();
760     auto InitsRef = C->inits().begin();
761     for (const Expr *IInit : C->private_copies()) {
762       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
763       bool ThisFirstprivateIsLastprivate =
764           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
765       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
766       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
767       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
768           !FD->getType()->isReferenceType() &&
769           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
770         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
771         ++IRef;
772         ++InitsRef;
773         continue;
774       }
775       // Do not emit copy for firstprivate constant variables in target regions,
776       // captured by reference.
777       if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) &&
778           FD && FD->getType()->isReferenceType() &&
779           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
780         (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this,
781                                                                     OrigVD);
782         ++IRef;
783         ++InitsRef;
784         continue;
785       }
786       FirstprivateIsLastprivate =
787           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
788       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
789         const auto *VDInit =
790             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
791         bool IsRegistered;
792         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
793                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
794                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
795         LValue OriginalLVal;
796         if (!FD) {
797           // Check if the firstprivate variable is just a constant value.
798           ConstantEmission CE = tryEmitAsConstant(&DRE);
799           if (CE && !CE.isReference()) {
800             // Constant value, no need to create a copy.
801             ++IRef;
802             ++InitsRef;
803             continue;
804           }
805           if (CE && CE.isReference()) {
806             OriginalLVal = CE.getReferenceLValue(*this, &DRE);
807           } else {
808             assert(!CE && "Expected non-constant firstprivate.");
809             OriginalLVal = EmitLValue(&DRE);
810           }
811         } else {
812           OriginalLVal = EmitLValue(&DRE);
813         }
814         QualType Type = VD->getType();
815         if (Type->isArrayType()) {
816           // Emit VarDecl with copy init for arrays.
817           // Get the address of the original variable captured in current
818           // captured region.
819           IsRegistered = PrivateScope.addPrivate(
820               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
821                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
822                 const Expr *Init = VD->getInit();
823                 if (!isa<CXXConstructExpr>(Init) ||
824                     isTrivialInitializer(Init)) {
825                   // Perform simple memcpy.
826                   LValue Dest =
827                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
828                   EmitAggregateAssign(Dest, OriginalLVal, Type);
829                 } else {
830                   EmitOMPAggregateAssign(
831                       Emission.getAllocatedAddress(), OriginalLVal.getAddress(),
832                       Type,
833                       [this, VDInit, Init](Address DestElement,
834                                            Address SrcElement) {
835                         // Clean up any temporaries needed by the
836                         // initialization.
837                         RunCleanupsScope InitScope(*this);
838                         // Emit initialization for single element.
839                         setAddrOfLocalVar(VDInit, SrcElement);
840                         EmitAnyExprToMem(Init, DestElement,
841                                          Init->getType().getQualifiers(),
842                                          /*IsInitializer*/ false);
843                         LocalDeclMap.erase(VDInit);
844                       });
845                 }
846                 EmitAutoVarCleanups(Emission);
847                 return Emission.getAllocatedAddress();
848               });
849         } else {
850           Address OriginalAddr = OriginalLVal.getAddress();
851           IsRegistered = PrivateScope.addPrivate(
852               OrigVD, [this, VDInit, OriginalAddr, VD]() {
853                 // Emit private VarDecl with copy init.
854                 // Remap temp VDInit variable to the address of the original
855                 // variable (for proper handling of captured global variables).
856                 setAddrOfLocalVar(VDInit, OriginalAddr);
857                 EmitDecl(*VD);
858                 LocalDeclMap.erase(VDInit);
859                 return GetAddrOfLocalVar(VD);
860               });
861         }
862         assert(IsRegistered &&
863                "firstprivate var already registered as private");
864         // Silence the warning about unused variable.
865         (void)IsRegistered;
866       }
867       ++IRef;
868       ++InitsRef;
869     }
870   }
871   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
872 }
873 
874 void CodeGenFunction::EmitOMPPrivateClause(
875     const OMPExecutableDirective &D,
876     CodeGenFunction::OMPPrivateScope &PrivateScope) {
877   if (!HaveInsertPoint())
878     return;
879   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
880   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
881     auto IRef = C->varlist_begin();
882     for (const Expr *IInit : C->private_copies()) {
883       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
884       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
885         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
886         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
887           // Emit private VarDecl with copy init.
888           EmitDecl(*VD);
889           return GetAddrOfLocalVar(VD);
890         });
891         assert(IsRegistered && "private var already registered as private");
892         // Silence the warning about unused variable.
893         (void)IsRegistered;
894       }
895       ++IRef;
896     }
897   }
898 }
899 
900 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
901   if (!HaveInsertPoint())
902     return false;
903   // threadprivate_var1 = master_threadprivate_var1;
904   // operator=(threadprivate_var2, master_threadprivate_var2);
905   // ...
906   // __kmpc_barrier(&loc, global_tid);
907   llvm::DenseSet<const VarDecl *> CopiedVars;
908   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
909   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
910     auto IRef = C->varlist_begin();
911     auto ISrcRef = C->source_exprs().begin();
912     auto IDestRef = C->destination_exprs().begin();
913     for (const Expr *AssignOp : C->assignment_ops()) {
914       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
915       QualType Type = VD->getType();
916       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
917         // Get the address of the master variable. If we are emitting code with
918         // TLS support, the address is passed from the master as field in the
919         // captured declaration.
920         Address MasterAddr = Address::invalid();
921         if (getLangOpts().OpenMPUseTLS &&
922             getContext().getTargetInfo().isTLSSupported()) {
923           assert(CapturedStmtInfo->lookup(VD) &&
924                  "Copyin threadprivates should have been captured!");
925           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true,
926                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
927           MasterAddr = EmitLValue(&DRE).getAddress();
928           LocalDeclMap.erase(VD);
929         } else {
930           MasterAddr =
931             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
932                                         : CGM.GetAddrOfGlobal(VD),
933                     getContext().getDeclAlign(VD));
934         }
935         // Get the address of the threadprivate variable.
936         Address PrivateAddr = EmitLValue(*IRef).getAddress();
937         if (CopiedVars.size() == 1) {
938           // At first check if current thread is a master thread. If it is, no
939           // need to copy data.
940           CopyBegin = createBasicBlock("copyin.not.master");
941           CopyEnd = createBasicBlock("copyin.not.master.end");
942           Builder.CreateCondBr(
943               Builder.CreateICmpNE(
944                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
945                   Builder.CreatePtrToInt(PrivateAddr.getPointer(),
946                                          CGM.IntPtrTy)),
947               CopyBegin, CopyEnd);
948           EmitBlock(CopyBegin);
949         }
950         const auto *SrcVD =
951             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
952         const auto *DestVD =
953             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
954         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
955       }
956       ++IRef;
957       ++ISrcRef;
958       ++IDestRef;
959     }
960   }
961   if (CopyEnd) {
962     // Exit out of copying procedure for non-master thread.
963     EmitBlock(CopyEnd, /*IsFinished=*/true);
964     return true;
965   }
966   return false;
967 }
968 
969 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
970     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
971   if (!HaveInsertPoint())
972     return false;
973   bool HasAtLeastOneLastprivate = false;
974   llvm::DenseSet<const VarDecl *> SIMDLCVs;
975   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
976     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
977     for (const Expr *C : LoopDirective->counters()) {
978       SIMDLCVs.insert(
979           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
980     }
981   }
982   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
983   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
984     HasAtLeastOneLastprivate = true;
985     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
986         !getLangOpts().OpenMPSimd)
987       break;
988     auto IRef = C->varlist_begin();
989     auto IDestRef = C->destination_exprs().begin();
990     for (const Expr *IInit : C->private_copies()) {
991       // Keep the address of the original variable for future update at the end
992       // of the loop.
993       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
994       // Taskloops do not require additional initialization, it is done in
995       // runtime support library.
996       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
997         const auto *DestVD =
998             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
999         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
1000           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1001                           /*RefersToEnclosingVariableOrCapture=*/
1002                               CapturedStmtInfo->lookup(OrigVD) != nullptr,
1003                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
1004           return EmitLValue(&DRE).getAddress();
1005         });
1006         // Check if the variable is also a firstprivate: in this case IInit is
1007         // not generated. Initialization of this variable will happen in codegen
1008         // for 'firstprivate' clause.
1009         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
1010           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
1011           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
1012             // Emit private VarDecl with copy init.
1013             EmitDecl(*VD);
1014             return GetAddrOfLocalVar(VD);
1015           });
1016           assert(IsRegistered &&
1017                  "lastprivate var already registered as private");
1018           (void)IsRegistered;
1019         }
1020       }
1021       ++IRef;
1022       ++IDestRef;
1023     }
1024   }
1025   return HasAtLeastOneLastprivate;
1026 }
1027 
1028 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
1029     const OMPExecutableDirective &D, bool NoFinals,
1030     llvm::Value *IsLastIterCond) {
1031   if (!HaveInsertPoint())
1032     return;
1033   // Emit following code:
1034   // if (<IsLastIterCond>) {
1035   //   orig_var1 = private_orig_var1;
1036   //   ...
1037   //   orig_varn = private_orig_varn;
1038   // }
1039   llvm::BasicBlock *ThenBB = nullptr;
1040   llvm::BasicBlock *DoneBB = nullptr;
1041   if (IsLastIterCond) {
1042     ThenBB = createBasicBlock(".omp.lastprivate.then");
1043     DoneBB = createBasicBlock(".omp.lastprivate.done");
1044     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1045     EmitBlock(ThenBB);
1046   }
1047   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1048   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1049   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1050     auto IC = LoopDirective->counters().begin();
1051     for (const Expr *F : LoopDirective->finals()) {
1052       const auto *D =
1053           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1054       if (NoFinals)
1055         AlreadyEmittedVars.insert(D);
1056       else
1057         LoopCountersAndUpdates[D] = F;
1058       ++IC;
1059     }
1060   }
1061   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1062     auto IRef = C->varlist_begin();
1063     auto ISrcRef = C->source_exprs().begin();
1064     auto IDestRef = C->destination_exprs().begin();
1065     for (const Expr *AssignOp : C->assignment_ops()) {
1066       const auto *PrivateVD =
1067           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1068       QualType Type = PrivateVD->getType();
1069       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1070       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1071         // If lastprivate variable is a loop control variable for loop-based
1072         // directive, update its value before copyin back to original
1073         // variable.
1074         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1075           EmitIgnoredExpr(FinalExpr);
1076         const auto *SrcVD =
1077             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1078         const auto *DestVD =
1079             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1080         // Get the address of the original variable.
1081         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1082         // Get the address of the private variable.
1083         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1084         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1085           PrivateAddr =
1086               Address(Builder.CreateLoad(PrivateAddr),
1087                       getNaturalTypeAlignment(RefTy->getPointeeType()));
1088         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1089       }
1090       ++IRef;
1091       ++ISrcRef;
1092       ++IDestRef;
1093     }
1094     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1095       EmitIgnoredExpr(PostUpdate);
1096   }
1097   if (IsLastIterCond)
1098     EmitBlock(DoneBB, /*IsFinished=*/true);
1099 }
1100 
1101 void CodeGenFunction::EmitOMPReductionClauseInit(
1102     const OMPExecutableDirective &D,
1103     CodeGenFunction::OMPPrivateScope &PrivateScope) {
1104   if (!HaveInsertPoint())
1105     return;
1106   SmallVector<const Expr *, 4> Shareds;
1107   SmallVector<const Expr *, 4> Privates;
1108   SmallVector<const Expr *, 4> ReductionOps;
1109   SmallVector<const Expr *, 4> LHSs;
1110   SmallVector<const Expr *, 4> RHSs;
1111   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1112     auto IPriv = C->privates().begin();
1113     auto IRed = C->reduction_ops().begin();
1114     auto ILHS = C->lhs_exprs().begin();
1115     auto IRHS = C->rhs_exprs().begin();
1116     for (const Expr *Ref : C->varlists()) {
1117       Shareds.emplace_back(Ref);
1118       Privates.emplace_back(*IPriv);
1119       ReductionOps.emplace_back(*IRed);
1120       LHSs.emplace_back(*ILHS);
1121       RHSs.emplace_back(*IRHS);
1122       std::advance(IPriv, 1);
1123       std::advance(IRed, 1);
1124       std::advance(ILHS, 1);
1125       std::advance(IRHS, 1);
1126     }
1127   }
1128   ReductionCodeGen RedCG(Shareds, Privates, ReductionOps);
1129   unsigned Count = 0;
1130   auto ILHS = LHSs.begin();
1131   auto IRHS = RHSs.begin();
1132   auto IPriv = Privates.begin();
1133   for (const Expr *IRef : Shareds) {
1134     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1135     // Emit private VarDecl with reduction init.
1136     RedCG.emitSharedLValue(*this, Count);
1137     RedCG.emitAggregateType(*this, Count);
1138     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1139     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1140                              RedCG.getSharedLValue(Count),
1141                              [&Emission](CodeGenFunction &CGF) {
1142                                CGF.EmitAutoVarInit(Emission);
1143                                return true;
1144                              });
1145     EmitAutoVarCleanups(Emission);
1146     Address BaseAddr = RedCG.adjustPrivateAddress(
1147         *this, Count, Emission.getAllocatedAddress());
1148     bool IsRegistered = PrivateScope.addPrivate(
1149         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1150     assert(IsRegistered && "private var already registered as private");
1151     // Silence the warning about unused variable.
1152     (void)IsRegistered;
1153 
1154     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1155     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1156     QualType Type = PrivateVD->getType();
1157     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1158     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1159       // Store the address of the original variable associated with the LHS
1160       // implicit variable.
1161       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1162         return RedCG.getSharedLValue(Count).getAddress();
1163       });
1164       PrivateScope.addPrivate(
1165           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1166     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1167                isa<ArraySubscriptExpr>(IRef)) {
1168       // Store the address of the original variable associated with the LHS
1169       // implicit variable.
1170       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() {
1171         return RedCG.getSharedLValue(Count).getAddress();
1172       });
1173       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1174         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1175                                             ConvertTypeForMem(RHSVD->getType()),
1176                                             "rhs.begin");
1177       });
1178     } else {
1179       QualType Type = PrivateVD->getType();
1180       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1181       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress();
1182       // Store the address of the original variable associated with the LHS
1183       // implicit variable.
1184       if (IsArray) {
1185         OriginalAddr = Builder.CreateElementBitCast(
1186             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1187       }
1188       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1189       PrivateScope.addPrivate(
1190           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1191             return IsArray
1192                        ? Builder.CreateElementBitCast(
1193                              GetAddrOfLocalVar(PrivateVD),
1194                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1195                        : GetAddrOfLocalVar(PrivateVD);
1196           });
1197     }
1198     ++ILHS;
1199     ++IRHS;
1200     ++IPriv;
1201     ++Count;
1202   }
1203 }
1204 
1205 void CodeGenFunction::EmitOMPReductionClauseFinal(
1206     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1207   if (!HaveInsertPoint())
1208     return;
1209   llvm::SmallVector<const Expr *, 8> Privates;
1210   llvm::SmallVector<const Expr *, 8> LHSExprs;
1211   llvm::SmallVector<const Expr *, 8> RHSExprs;
1212   llvm::SmallVector<const Expr *, 8> ReductionOps;
1213   bool HasAtLeastOneReduction = false;
1214   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1215     HasAtLeastOneReduction = true;
1216     Privates.append(C->privates().begin(), C->privates().end());
1217     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1218     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1219     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1220   }
1221   if (HasAtLeastOneReduction) {
1222     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1223                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1224                       ReductionKind == OMPD_simd;
1225     bool SimpleReduction = ReductionKind == OMPD_simd;
1226     // Emit nowait reduction if nowait clause is present or directive is a
1227     // parallel directive (it always has implicit barrier).
1228     CGM.getOpenMPRuntime().emitReduction(
1229         *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
1230         {WithNowait, SimpleReduction, ReductionKind});
1231   }
1232 }
1233 
1234 static void emitPostUpdateForReductionClause(
1235     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1236     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1237   if (!CGF.HaveInsertPoint())
1238     return;
1239   llvm::BasicBlock *DoneBB = nullptr;
1240   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1241     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1242       if (!DoneBB) {
1243         if (llvm::Value *Cond = CondGen(CGF)) {
1244           // If the first post-update expression is found, emit conditional
1245           // block if it was requested.
1246           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1247           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1248           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1249           CGF.EmitBlock(ThenBB);
1250         }
1251       }
1252       CGF.EmitIgnoredExpr(PostUpdate);
1253     }
1254   }
1255   if (DoneBB)
1256     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1257 }
1258 
1259 namespace {
1260 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1261 /// parallel function. This is necessary for combined constructs such as
1262 /// 'distribute parallel for'
1263 typedef llvm::function_ref<void(CodeGenFunction &,
1264                                 const OMPExecutableDirective &,
1265                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1266     CodeGenBoundParametersTy;
1267 } // anonymous namespace
1268 
1269 static void emitCommonOMPParallelDirective(
1270     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1271     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1272     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1273   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1274   llvm::Function *OutlinedFn =
1275       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1276           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1277   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1278     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1279     llvm::Value *NumThreads =
1280         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1281                            /*IgnoreResultAssign=*/true);
1282     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1283         CGF, NumThreads, NumThreadsClause->getBeginLoc());
1284   }
1285   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1286     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1287     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1288         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
1289   }
1290   const Expr *IfCond = nullptr;
1291   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1292     if (C->getNameModifier() == OMPD_unknown ||
1293         C->getNameModifier() == OMPD_parallel) {
1294       IfCond = C->getCondition();
1295       break;
1296     }
1297   }
1298 
1299   OMPParallelScope Scope(CGF, S);
1300   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1301   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1302   // lower and upper bounds with the pragma 'for' chunking mechanism.
1303   // The following lambda takes care of appending the lower and upper bound
1304   // parameters when necessary
1305   CodeGenBoundParameters(CGF, S, CapturedVars);
1306   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1307   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
1308                                               CapturedVars, IfCond);
1309 }
1310 
1311 static void emitEmptyBoundParameters(CodeGenFunction &,
1312                                      const OMPExecutableDirective &,
1313                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1314 
1315 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1316   // Emit parallel region as a standalone region.
1317   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1318     Action.Enter(CGF);
1319     OMPPrivateScope PrivateScope(CGF);
1320     bool Copyins = CGF.EmitOMPCopyinClause(S);
1321     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1322     if (Copyins) {
1323       // Emit implicit barrier to synchronize threads and avoid data races on
1324       // propagation master's thread values of threadprivate variables to local
1325       // instances of that variables of all other implicit threads.
1326       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1327           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
1328           /*ForceSimpleCall=*/true);
1329     }
1330     CGF.EmitOMPPrivateClause(S, PrivateScope);
1331     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1332     (void)PrivateScope.Privatize();
1333     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1334     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1335   };
1336   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1337                                  emitEmptyBoundParameters);
1338   emitPostUpdateForReductionClause(*this, S,
1339                                    [](CodeGenFunction &) { return nullptr; });
1340 }
1341 
1342 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1343                                       JumpDest LoopExit) {
1344   RunCleanupsScope BodyScope(*this);
1345   // Update counters values on current iteration.
1346   for (const Expr *UE : D.updates())
1347     EmitIgnoredExpr(UE);
1348   // Update the linear variables.
1349   // In distribute directives only loop counters may be marked as linear, no
1350   // need to generate the code for them.
1351   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1352     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1353       for (const Expr *UE : C->updates())
1354         EmitIgnoredExpr(UE);
1355     }
1356   }
1357 
1358   // On a continue in the body, jump to the end.
1359   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1360   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1361   for (const Expr *E : D.finals_conditions()) {
1362     if (!E)
1363       continue;
1364     // Check that loop counter in non-rectangular nest fits into the iteration
1365     // space.
1366     llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next");
1367     EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(),
1368                          getProfileCount(D.getBody()));
1369     EmitBlock(NextBB);
1370   }
1371   // Emit loop variables for C++ range loops.
1372   const Stmt *Body =
1373       D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
1374   for (unsigned Cnt = 0; Cnt < D.getCollapsedNumber(); ++Cnt) {
1375     Body = Body->IgnoreContainers();
1376     if (auto *For = dyn_cast<ForStmt>(Body)) {
1377       Body = For->getBody();
1378     } else {
1379       assert(isa<CXXForRangeStmt>(Body) &&
1380              "Expected canonical for loop or range-based for loop.");
1381       auto *CXXFor = cast<CXXForRangeStmt>(Body);
1382       EmitStmt(CXXFor->getLoopVarStmt());
1383       Body = CXXFor->getBody();
1384     }
1385   }
1386   // Emit loop body.
1387   EmitStmt(D.getBody());
1388   // The end (updates/cleanups).
1389   EmitBlock(Continue.getBlock());
1390   BreakContinueStack.pop_back();
1391 }
1392 
1393 void CodeGenFunction::EmitOMPInnerLoop(
1394     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1395     const Expr *IncExpr,
1396     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
1397     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
1398   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1399 
1400   // Start the loop with a block that tests the condition.
1401   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1402   EmitBlock(CondBlock);
1403   const SourceRange R = S.getSourceRange();
1404   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1405                  SourceLocToDebugLoc(R.getEnd()));
1406 
1407   // If there are any cleanups between here and the loop-exit scope,
1408   // create a block to stage a loop exit along.
1409   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1410   if (RequiresCleanup)
1411     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1412 
1413   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
1414 
1415   // Emit condition.
1416   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1417   if (ExitBlock != LoopExit.getBlock()) {
1418     EmitBlock(ExitBlock);
1419     EmitBranchThroughCleanup(LoopExit);
1420   }
1421 
1422   EmitBlock(LoopBody);
1423   incrementProfileCounter(&S);
1424 
1425   // Create a block for the increment.
1426   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1427   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1428 
1429   BodyGen(*this);
1430 
1431   // Emit "IV = IV + 1" and a back-edge to the condition block.
1432   EmitBlock(Continue.getBlock());
1433   EmitIgnoredExpr(IncExpr);
1434   PostIncGen(*this);
1435   BreakContinueStack.pop_back();
1436   EmitBranch(CondBlock);
1437   LoopStack.pop();
1438   // Emit the fall-through block.
1439   EmitBlock(LoopExit.getBlock());
1440 }
1441 
1442 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1443   if (!HaveInsertPoint())
1444     return false;
1445   // Emit inits for the linear variables.
1446   bool HasLinears = false;
1447   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1448     for (const Expr *Init : C->inits()) {
1449       HasLinears = true;
1450       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1451       if (const auto *Ref =
1452               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1453         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1454         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1455         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1456                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1457                         VD->getInit()->getType(), VK_LValue,
1458                         VD->getInit()->getExprLoc());
1459         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1460                                                 VD->getType()),
1461                        /*capturedByInit=*/false);
1462         EmitAutoVarCleanups(Emission);
1463       } else {
1464         EmitVarDecl(*VD);
1465       }
1466     }
1467     // Emit the linear steps for the linear clauses.
1468     // If a step is not constant, it is pre-calculated before the loop.
1469     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1470       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1471         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1472         // Emit calculation of the linear step.
1473         EmitIgnoredExpr(CS);
1474       }
1475   }
1476   return HasLinears;
1477 }
1478 
1479 void CodeGenFunction::EmitOMPLinearClauseFinal(
1480     const OMPLoopDirective &D,
1481     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1482   if (!HaveInsertPoint())
1483     return;
1484   llvm::BasicBlock *DoneBB = nullptr;
1485   // Emit the final values of the linear variables.
1486   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1487     auto IC = C->varlist_begin();
1488     for (const Expr *F : C->finals()) {
1489       if (!DoneBB) {
1490         if (llvm::Value *Cond = CondGen(*this)) {
1491           // If the first post-update expression is found, emit conditional
1492           // block if it was requested.
1493           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
1494           DoneBB = createBasicBlock(".omp.linear.pu.done");
1495           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1496           EmitBlock(ThenBB);
1497         }
1498       }
1499       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1500       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1501                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1502                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1503       Address OrigAddr = EmitLValue(&DRE).getAddress();
1504       CodeGenFunction::OMPPrivateScope VarScope(*this);
1505       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1506       (void)VarScope.Privatize();
1507       EmitIgnoredExpr(F);
1508       ++IC;
1509     }
1510     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1511       EmitIgnoredExpr(PostUpdate);
1512   }
1513   if (DoneBB)
1514     EmitBlock(DoneBB, /*IsFinished=*/true);
1515 }
1516 
1517 static void emitAlignedClause(CodeGenFunction &CGF,
1518                               const OMPExecutableDirective &D) {
1519   if (!CGF.HaveInsertPoint())
1520     return;
1521   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1522     unsigned ClauseAlignment = 0;
1523     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
1524       auto *AlignmentCI =
1525           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1526       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1527     }
1528     for (const Expr *E : Clause->varlists()) {
1529       unsigned Alignment = ClauseAlignment;
1530       if (Alignment == 0) {
1531         // OpenMP [2.8.1, Description]
1532         // If no optional parameter is specified, implementation-defined default
1533         // alignments for SIMD instructions on the target platforms are assumed.
1534         Alignment =
1535             CGF.getContext()
1536                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1537                     E->getType()->getPointeeType()))
1538                 .getQuantity();
1539       }
1540       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1541              "alignment is not power of 2");
1542       if (Alignment != 0) {
1543         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1544         CGF.EmitAlignmentAssumption(
1545             PtrValue, E, /*No second loc needed*/ SourceLocation(), Alignment);
1546       }
1547     }
1548   }
1549 }
1550 
1551 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1552     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1553   if (!HaveInsertPoint())
1554     return;
1555   auto I = S.private_counters().begin();
1556   for (const Expr *E : S.counters()) {
1557     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1558     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1559     // Emit var without initialization.
1560     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
1561     EmitAutoVarCleanups(VarEmission);
1562     LocalDeclMap.erase(PrivateVD);
1563     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
1564       return VarEmission.getAllocatedAddress();
1565     });
1566     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1567         VD->hasGlobalStorage()) {
1568       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
1569         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD),
1570                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1571                         E->getType(), VK_LValue, E->getExprLoc());
1572         return EmitLValue(&DRE).getAddress();
1573       });
1574     } else {
1575       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
1576         return VarEmission.getAllocatedAddress();
1577       });
1578     }
1579     ++I;
1580   }
1581   // Privatize extra loop counters used in loops for ordered(n) clauses.
1582   for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
1583     if (!C->getNumForLoops())
1584       continue;
1585     for (unsigned I = S.getCollapsedNumber(),
1586                   E = C->getLoopNumIterations().size();
1587          I < E; ++I) {
1588       const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
1589       const auto *VD = cast<VarDecl>(DRE->getDecl());
1590       // Override only those variables that can be captured to avoid re-emission
1591       // of the variables declared within the loops.
1592       if (DRE->refersToEnclosingVariableOrCapture()) {
1593         (void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
1594           return CreateMemTemp(DRE->getType(), VD->getName());
1595         });
1596       }
1597     }
1598   }
1599 }
1600 
1601 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1602                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1603                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1604   if (!CGF.HaveInsertPoint())
1605     return;
1606   {
1607     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1608     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1609     (void)PreCondScope.Privatize();
1610     // Get initial values of real counters.
1611     for (const Expr *I : S.inits()) {
1612       CGF.EmitIgnoredExpr(I);
1613     }
1614   }
1615   // Create temp loop control variables with their init values to support
1616   // non-rectangular loops.
1617   CodeGenFunction::OMPMapVars PreCondVars;
1618   for (const Expr * E: S.dependent_counters()) {
1619     if (!E)
1620       continue;
1621     assert(!E->getType().getNonReferenceType()->isRecordType() &&
1622            "dependent counter must not be an iterator.");
1623     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1624     Address CounterAddr =
1625         CGF.CreateMemTemp(VD->getType().getNonReferenceType());
1626     (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr);
1627   }
1628   (void)PreCondVars.apply(CGF);
1629   for (const Expr *E : S.dependent_inits()) {
1630     if (!E)
1631       continue;
1632     CGF.EmitIgnoredExpr(E);
1633   }
1634   // Check that loop is executed at least one time.
1635   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1636   PreCondVars.restore(CGF);
1637 }
1638 
1639 void CodeGenFunction::EmitOMPLinearClause(
1640     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1641   if (!HaveInsertPoint())
1642     return;
1643   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1644   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1645     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1646     for (const Expr *C : LoopDirective->counters()) {
1647       SIMDLCVs.insert(
1648           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1649     }
1650   }
1651   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1652     auto CurPrivate = C->privates().begin();
1653     for (const Expr *E : C->varlists()) {
1654       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1655       const auto *PrivateVD =
1656           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1657       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1658         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
1659           // Emit private VarDecl with copy init.
1660           EmitVarDecl(*PrivateVD);
1661           return GetAddrOfLocalVar(PrivateVD);
1662         });
1663         assert(IsRegistered && "linear var already registered as private");
1664         // Silence the warning about unused variable.
1665         (void)IsRegistered;
1666       } else {
1667         EmitVarDecl(*PrivateVD);
1668       }
1669       ++CurPrivate;
1670     }
1671   }
1672 }
1673 
1674 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1675                                      const OMPExecutableDirective &D,
1676                                      bool IsMonotonic) {
1677   if (!CGF.HaveInsertPoint())
1678     return;
1679   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1680     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1681                                  /*ignoreResult=*/true);
1682     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1683     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1684     // In presence of finite 'safelen', it may be unsafe to mark all
1685     // the memory instructions parallel, because loop-carried
1686     // dependences of 'safelen' iterations are possible.
1687     if (!IsMonotonic)
1688       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1689   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1690     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1691                                  /*ignoreResult=*/true);
1692     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1693     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1694     // In presence of finite 'safelen', it may be unsafe to mark all
1695     // the memory instructions parallel, because loop-carried
1696     // dependences of 'safelen' iterations are possible.
1697     CGF.LoopStack.setParallel(/*Enable=*/false);
1698   }
1699 }
1700 
1701 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1702                                       bool IsMonotonic) {
1703   // Walk clauses and process safelen/lastprivate.
1704   LoopStack.setParallel(!IsMonotonic);
1705   LoopStack.setVectorizeEnable();
1706   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1707 }
1708 
1709 void CodeGenFunction::EmitOMPSimdFinal(
1710     const OMPLoopDirective &D,
1711     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1712   if (!HaveInsertPoint())
1713     return;
1714   llvm::BasicBlock *DoneBB = nullptr;
1715   auto IC = D.counters().begin();
1716   auto IPC = D.private_counters().begin();
1717   for (const Expr *F : D.finals()) {
1718     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1719     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1720     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1721     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1722         OrigVD->hasGlobalStorage() || CED) {
1723       if (!DoneBB) {
1724         if (llvm::Value *Cond = CondGen(*this)) {
1725           // If the first post-update expression is found, emit conditional
1726           // block if it was requested.
1727           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
1728           DoneBB = createBasicBlock(".omp.final.done");
1729           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1730           EmitBlock(ThenBB);
1731         }
1732       }
1733       Address OrigAddr = Address::invalid();
1734       if (CED) {
1735         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1736       } else {
1737         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD),
1738                         /*RefersToEnclosingVariableOrCapture=*/false,
1739                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1740         OrigAddr = EmitLValue(&DRE).getAddress();
1741       }
1742       OMPPrivateScope VarScope(*this);
1743       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1744       (void)VarScope.Privatize();
1745       EmitIgnoredExpr(F);
1746     }
1747     ++IC;
1748     ++IPC;
1749   }
1750   if (DoneBB)
1751     EmitBlock(DoneBB, /*IsFinished=*/true);
1752 }
1753 
1754 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
1755                                          const OMPLoopDirective &S,
1756                                          CodeGenFunction::JumpDest LoopExit) {
1757   CGF.EmitOMPLoopBody(S, LoopExit);
1758   CGF.EmitStopPoint(&S);
1759 }
1760 
1761 /// Emit a helper variable and return corresponding lvalue.
1762 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1763                                const DeclRefExpr *Helper) {
1764   auto VDecl = cast<VarDecl>(Helper->getDecl());
1765   CGF.EmitVarDecl(*VDecl);
1766   return CGF.EmitLValue(Helper);
1767 }
1768 
1769 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
1770                               PrePostActionTy &Action) {
1771   Action.Enter(CGF);
1772   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
1773          "Expected simd directive");
1774   OMPLoopScope PreInitScope(CGF, S);
1775   // if (PreCond) {
1776   //   for (IV in 0..LastIteration) BODY;
1777   //   <Final counter/linear vars updates>;
1778   // }
1779   //
1780   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
1781       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
1782       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
1783     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
1784     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
1785   }
1786 
1787   // Emit: if (PreCond) - begin.
1788   // If the condition constant folds and can be elided, avoid emitting the
1789   // whole loop.
1790   bool CondConstant;
1791   llvm::BasicBlock *ContBlock = nullptr;
1792   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1793     if (!CondConstant)
1794       return;
1795   } else {
1796     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
1797     ContBlock = CGF.createBasicBlock("simd.if.end");
1798     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1799                 CGF.getProfileCount(&S));
1800     CGF.EmitBlock(ThenBlock);
1801     CGF.incrementProfileCounter(&S);
1802   }
1803 
1804   // Emit the loop iteration variable.
1805   const Expr *IVExpr = S.getIterationVariable();
1806   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1807   CGF.EmitVarDecl(*IVDecl);
1808   CGF.EmitIgnoredExpr(S.getInit());
1809 
1810   // Emit the iterations count variable.
1811   // If it is not a variable, Sema decided to calculate iterations count on
1812   // each iteration (e.g., it is foldable into a constant).
1813   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1814     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1815     // Emit calculation of the iterations count.
1816     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1817   }
1818 
1819   CGF.EmitOMPSimdInit(S);
1820 
1821   emitAlignedClause(CGF, S);
1822   (void)CGF.EmitOMPLinearClauseInit(S);
1823   {
1824     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
1825     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1826     CGF.EmitOMPLinearClause(S, LoopScope);
1827     CGF.EmitOMPPrivateClause(S, LoopScope);
1828     CGF.EmitOMPReductionClauseInit(S, LoopScope);
1829     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1830     (void)LoopScope.Privatize();
1831     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
1832       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
1833     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1834                          S.getInc(),
1835                          [&S](CodeGenFunction &CGF) {
1836                            CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest());
1837                            CGF.EmitStopPoint(&S);
1838                          },
1839                          [](CodeGenFunction &) {});
1840     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
1841     // Emit final copy of the lastprivate variables at the end of loops.
1842     if (HasLastprivateClause)
1843       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1844     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
1845     emitPostUpdateForReductionClause(CGF, S,
1846                                      [](CodeGenFunction &) { return nullptr; });
1847   }
1848   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
1849   // Emit: if (PreCond) - end.
1850   if (ContBlock) {
1851     CGF.EmitBranch(ContBlock);
1852     CGF.EmitBlock(ContBlock, true);
1853   }
1854 }
1855 
1856 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1857   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1858     emitOMPSimdRegion(CGF, S, Action);
1859   };
1860   OMPLexicalScope Scope(*this, S, OMPD_unknown);
1861   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1862 }
1863 
1864 void CodeGenFunction::EmitOMPOuterLoop(
1865     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
1866     CodeGenFunction::OMPPrivateScope &LoopScope,
1867     const CodeGenFunction::OMPLoopArguments &LoopArgs,
1868     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
1869     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
1870   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1871 
1872   const Expr *IVExpr = S.getIterationVariable();
1873   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1874   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1875 
1876   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1877 
1878   // Start the loop with a block that tests the condition.
1879   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
1880   EmitBlock(CondBlock);
1881   const SourceRange R = S.getSourceRange();
1882   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1883                  SourceLocToDebugLoc(R.getEnd()));
1884 
1885   llvm::Value *BoolCondVal = nullptr;
1886   if (!DynamicOrOrdered) {
1887     // UB = min(UB, GlobalUB) or
1888     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
1889     // 'distribute parallel for')
1890     EmitIgnoredExpr(LoopArgs.EUB);
1891     // IV = LB
1892     EmitIgnoredExpr(LoopArgs.Init);
1893     // IV < UB
1894     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
1895   } else {
1896     BoolCondVal =
1897         RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
1898                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
1899   }
1900 
1901   // If there are any cleanups between here and the loop-exit scope,
1902   // create a block to stage a loop exit along.
1903   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1904   if (LoopScope.requiresCleanups())
1905     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1906 
1907   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
1908   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1909   if (ExitBlock != LoopExit.getBlock()) {
1910     EmitBlock(ExitBlock);
1911     EmitBranchThroughCleanup(LoopExit);
1912   }
1913   EmitBlock(LoopBody);
1914 
1915   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1916   // LB for loop condition and emitted it above).
1917   if (DynamicOrOrdered)
1918     EmitIgnoredExpr(LoopArgs.Init);
1919 
1920   // Create a block for the increment.
1921   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1922   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1923 
1924   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1925   // with dynamic/guided scheduling and without ordered clause.
1926   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1927     LoopStack.setParallel(!IsMonotonic);
1928   else
1929     EmitOMPSimdInit(S, IsMonotonic);
1930 
1931   SourceLocation Loc = S.getBeginLoc();
1932 
1933   // when 'distribute' is not combined with a 'for':
1934   // while (idx <= UB) { BODY; ++idx; }
1935   // when 'distribute' is combined with a 'for'
1936   // (e.g. 'distribute parallel for')
1937   // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
1938   EmitOMPInnerLoop(
1939       S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
1940       [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
1941         CodeGenLoop(CGF, S, LoopExit);
1942       },
1943       [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
1944         CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
1945       });
1946 
1947   EmitBlock(Continue.getBlock());
1948   BreakContinueStack.pop_back();
1949   if (!DynamicOrOrdered) {
1950     // Emit "LB = LB + Stride", "UB = UB + Stride".
1951     EmitIgnoredExpr(LoopArgs.NextLB);
1952     EmitIgnoredExpr(LoopArgs.NextUB);
1953   }
1954 
1955   EmitBranch(CondBlock);
1956   LoopStack.pop();
1957   // Emit the fall-through block.
1958   EmitBlock(LoopExit.getBlock());
1959 
1960   // Tell the runtime we are done.
1961   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
1962     if (!DynamicOrOrdered)
1963       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
1964                                                      S.getDirectiveKind());
1965   };
1966   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
1967 }
1968 
1969 void CodeGenFunction::EmitOMPForOuterLoop(
1970     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1971     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1972     const OMPLoopArguments &LoopArgs,
1973     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
1974   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
1975 
1976   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1977   const bool DynamicOrOrdered =
1978       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1979 
1980   assert((Ordered ||
1981           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1982                                  LoopArgs.Chunk != nullptr)) &&
1983          "static non-chunked schedule does not need outer loop");
1984 
1985   // Emit outer loop.
1986   //
1987   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1988   // When schedule(dynamic,chunk_size) is specified, the iterations are
1989   // distributed to threads in the team in chunks as the threads request them.
1990   // Each thread executes a chunk of iterations, then requests another chunk,
1991   // until no chunks remain to be distributed. Each chunk contains chunk_size
1992   // iterations, except for the last chunk to be distributed, which may have
1993   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1994   //
1995   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1996   // to threads in the team in chunks as the executing threads request them.
1997   // Each thread executes a chunk of iterations, then requests another chunk,
1998   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1999   // each chunk is proportional to the number of unassigned iterations divided
2000   // by the number of threads in the team, decreasing to 1. For a chunk_size
2001   // with value k (greater than 1), the size of each chunk is determined in the
2002   // same way, with the restriction that the chunks do not contain fewer than k
2003   // iterations (except for the last chunk to be assigned, which may have fewer
2004   // than k iterations).
2005   //
2006   // When schedule(auto) is specified, the decision regarding scheduling is
2007   // delegated to the compiler and/or runtime system. The programmer gives the
2008   // implementation the freedom to choose any possible mapping of iterations to
2009   // threads in the team.
2010   //
2011   // When schedule(runtime) is specified, the decision regarding scheduling is
2012   // deferred until run time, and the schedule and chunk size are taken from the
2013   // run-sched-var ICV. If the ICV is set to auto, the schedule is
2014   // implementation defined
2015   //
2016   // while(__kmpc_dispatch_next(&LB, &UB)) {
2017   //   idx = LB;
2018   //   while (idx <= UB) { BODY; ++idx;
2019   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
2020   //   } // inner loop
2021   // }
2022   //
2023   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2024   // When schedule(static, chunk_size) is specified, iterations are divided into
2025   // chunks of size chunk_size, and the chunks are assigned to the threads in
2026   // the team in a round-robin fashion in the order of the thread number.
2027   //
2028   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
2029   //   while (idx <= UB) { BODY; ++idx; } // inner loop
2030   //   LB = LB + ST;
2031   //   UB = UB + ST;
2032   // }
2033   //
2034 
2035   const Expr *IVExpr = S.getIterationVariable();
2036   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2037   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2038 
2039   if (DynamicOrOrdered) {
2040     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
2041         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
2042     llvm::Value *LBVal = DispatchBounds.first;
2043     llvm::Value *UBVal = DispatchBounds.second;
2044     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
2045                                                              LoopArgs.Chunk};
2046     RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
2047                            IVSigned, Ordered, DipatchRTInputValues);
2048   } else {
2049     CGOpenMPRuntime::StaticRTInput StaticInit(
2050         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
2051         LoopArgs.ST, LoopArgs.Chunk);
2052     RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2053                          ScheduleKind, StaticInit);
2054   }
2055 
2056   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
2057                                     const unsigned IVSize,
2058                                     const bool IVSigned) {
2059     if (Ordered) {
2060       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
2061                                                             IVSigned);
2062     }
2063   };
2064 
2065   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
2066                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
2067   OuterLoopArgs.IncExpr = S.getInc();
2068   OuterLoopArgs.Init = S.getInit();
2069   OuterLoopArgs.Cond = S.getCond();
2070   OuterLoopArgs.NextLB = S.getNextLowerBound();
2071   OuterLoopArgs.NextUB = S.getNextUpperBound();
2072   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
2073                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
2074 }
2075 
2076 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
2077                              const unsigned IVSize, const bool IVSigned) {}
2078 
2079 void CodeGenFunction::EmitOMPDistributeOuterLoop(
2080     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
2081     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
2082     const CodeGenLoopTy &CodeGenLoopContent) {
2083 
2084   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2085 
2086   // Emit outer loop.
2087   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
2088   // dynamic
2089   //
2090 
2091   const Expr *IVExpr = S.getIterationVariable();
2092   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2093   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2094 
2095   CGOpenMPRuntime::StaticRTInput StaticInit(
2096       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
2097       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
2098   RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
2099 
2100   // for combined 'distribute' and 'for' the increment expression of distribute
2101   // is stored in DistInc. For 'distribute' alone, it is in Inc.
2102   Expr *IncExpr;
2103   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
2104     IncExpr = S.getDistInc();
2105   else
2106     IncExpr = S.getInc();
2107 
2108   // this routine is shared by 'omp distribute parallel for' and
2109   // 'omp distribute': select the right EUB expression depending on the
2110   // directive
2111   OMPLoopArguments OuterLoopArgs;
2112   OuterLoopArgs.LB = LoopArgs.LB;
2113   OuterLoopArgs.UB = LoopArgs.UB;
2114   OuterLoopArgs.ST = LoopArgs.ST;
2115   OuterLoopArgs.IL = LoopArgs.IL;
2116   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2117   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2118                           ? S.getCombinedEnsureUpperBound()
2119                           : S.getEnsureUpperBound();
2120   OuterLoopArgs.IncExpr = IncExpr;
2121   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2122                            ? S.getCombinedInit()
2123                            : S.getInit();
2124   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2125                            ? S.getCombinedCond()
2126                            : S.getCond();
2127   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2128                              ? S.getCombinedNextLowerBound()
2129                              : S.getNextLowerBound();
2130   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2131                              ? S.getCombinedNextUpperBound()
2132                              : S.getNextUpperBound();
2133 
2134   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2135                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2136                    emitEmptyOrdered);
2137 }
2138 
2139 static std::pair<LValue, LValue>
2140 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2141                                      const OMPExecutableDirective &S) {
2142   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2143   LValue LB =
2144       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2145   LValue UB =
2146       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2147 
2148   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2149   // parallel for') we need to use the 'distribute'
2150   // chunk lower and upper bounds rather than the whole loop iteration
2151   // space. These are parameters to the outlined function for 'parallel'
2152   // and we copy the bounds of the previous schedule into the
2153   // the current ones.
2154   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2155   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2156   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2157       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2158   PrevLBVal = CGF.EmitScalarConversion(
2159       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2160       LS.getIterationVariable()->getType(),
2161       LS.getPrevLowerBoundVariable()->getExprLoc());
2162   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2163       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2164   PrevUBVal = CGF.EmitScalarConversion(
2165       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2166       LS.getIterationVariable()->getType(),
2167       LS.getPrevUpperBoundVariable()->getExprLoc());
2168 
2169   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2170   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2171 
2172   return {LB, UB};
2173 }
2174 
2175 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2176 /// we need to use the LB and UB expressions generated by the worksharing
2177 /// code generation support, whereas in non combined situations we would
2178 /// just emit 0 and the LastIteration expression
2179 /// This function is necessary due to the difference of the LB and UB
2180 /// types for the RT emission routines for 'for_static_init' and
2181 /// 'for_dispatch_init'
2182 static std::pair<llvm::Value *, llvm::Value *>
2183 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2184                                         const OMPExecutableDirective &S,
2185                                         Address LB, Address UB) {
2186   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2187   const Expr *IVExpr = LS.getIterationVariable();
2188   // when implementing a dynamic schedule for a 'for' combined with a
2189   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2190   // is not normalized as each team only executes its own assigned
2191   // distribute chunk
2192   QualType IteratorTy = IVExpr->getType();
2193   llvm::Value *LBVal =
2194       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2195   llvm::Value *UBVal =
2196       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2197   return {LBVal, UBVal};
2198 }
2199 
2200 static void emitDistributeParallelForDistributeInnerBoundParams(
2201     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2202     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2203   const auto &Dir = cast<OMPLoopDirective>(S);
2204   LValue LB =
2205       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2206   llvm::Value *LBCast = CGF.Builder.CreateIntCast(
2207       CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2208   CapturedVars.push_back(LBCast);
2209   LValue UB =
2210       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2211 
2212   llvm::Value *UBCast = CGF.Builder.CreateIntCast(
2213       CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
2214   CapturedVars.push_back(UBCast);
2215 }
2216 
2217 static void
2218 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2219                                  const OMPLoopDirective &S,
2220                                  CodeGenFunction::JumpDest LoopExit) {
2221   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2222                                          PrePostActionTy &Action) {
2223     Action.Enter(CGF);
2224     bool HasCancel = false;
2225     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2226       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2227         HasCancel = D->hasCancel();
2228       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2229         HasCancel = D->hasCancel();
2230       else if (const auto *D =
2231                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2232         HasCancel = D->hasCancel();
2233     }
2234     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2235                                                      HasCancel);
2236     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2237                                emitDistributeParallelForInnerBounds,
2238                                emitDistributeParallelForDispatchBounds);
2239   };
2240 
2241   emitCommonOMPParallelDirective(
2242       CGF, S,
2243       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2244       CGInlinedWorksharingLoop,
2245       emitDistributeParallelForDistributeInnerBoundParams);
2246 }
2247 
2248 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2249     const OMPDistributeParallelForDirective &S) {
2250   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2251     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2252                               S.getDistInc());
2253   };
2254   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2255   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2256 }
2257 
2258 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2259     const OMPDistributeParallelForSimdDirective &S) {
2260   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2261     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2262                               S.getDistInc());
2263   };
2264   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2265   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2266 }
2267 
2268 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2269     const OMPDistributeSimdDirective &S) {
2270   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2271     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
2272   };
2273   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2274   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2275 }
2276 
2277 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
2278     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
2279   // Emit SPMD target parallel for region as a standalone region.
2280   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2281     emitOMPSimdRegion(CGF, S, Action);
2282   };
2283   llvm::Function *Fn;
2284   llvm::Constant *Addr;
2285   // Emit target region as a standalone region.
2286   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
2287       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
2288   assert(Fn && Addr && "Target device function emission failed.");
2289 }
2290 
2291 void CodeGenFunction::EmitOMPTargetSimdDirective(
2292     const OMPTargetSimdDirective &S) {
2293   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2294     emitOMPSimdRegion(CGF, S, Action);
2295   };
2296   emitCommonOMPTargetDirective(*this, S, CodeGen);
2297 }
2298 
2299 namespace {
2300   struct ScheduleKindModifiersTy {
2301     OpenMPScheduleClauseKind Kind;
2302     OpenMPScheduleClauseModifier M1;
2303     OpenMPScheduleClauseModifier M2;
2304     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
2305                             OpenMPScheduleClauseModifier M1,
2306                             OpenMPScheduleClauseModifier M2)
2307         : Kind(Kind), M1(M1), M2(M2) {}
2308   };
2309 } // namespace
2310 
2311 bool CodeGenFunction::EmitOMPWorksharingLoop(
2312     const OMPLoopDirective &S, Expr *EUB,
2313     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2314     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2315   // Emit the loop iteration variable.
2316   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2317   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
2318   EmitVarDecl(*IVDecl);
2319 
2320   // Emit the iterations count variable.
2321   // If it is not a variable, Sema decided to calculate iterations count on each
2322   // iteration (e.g., it is foldable into a constant).
2323   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2324     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2325     // Emit calculation of the iterations count.
2326     EmitIgnoredExpr(S.getCalcLastIteration());
2327   }
2328 
2329   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2330 
2331   bool HasLastprivateClause;
2332   // Check pre-condition.
2333   {
2334     OMPLoopScope PreInitScope(*this, S);
2335     // Skip the entire loop if we don't meet the precondition.
2336     // If the condition constant folds and can be elided, avoid emitting the
2337     // whole loop.
2338     bool CondConstant;
2339     llvm::BasicBlock *ContBlock = nullptr;
2340     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2341       if (!CondConstant)
2342         return false;
2343     } else {
2344       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
2345       ContBlock = createBasicBlock("omp.precond.end");
2346       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2347                   getProfileCount(&S));
2348       EmitBlock(ThenBlock);
2349       incrementProfileCounter(&S);
2350     }
2351 
2352     RunCleanupsScope DoacrossCleanupScope(*this);
2353     bool Ordered = false;
2354     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2355       if (OrderedClause->getNumForLoops())
2356         RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
2357       else
2358         Ordered = true;
2359     }
2360 
2361     llvm::DenseSet<const Expr *> EmittedFinals;
2362     emitAlignedClause(*this, S);
2363     bool HasLinears = EmitOMPLinearClauseInit(S);
2364     // Emit helper vars inits.
2365 
2366     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
2367     LValue LB = Bounds.first;
2368     LValue UB = Bounds.second;
2369     LValue ST =
2370         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2371     LValue IL =
2372         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2373 
2374     // Emit 'then' code.
2375     {
2376       OMPPrivateScope LoopScope(*this);
2377       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
2378         // Emit implicit barrier to synchronize threads and avoid data races on
2379         // initialization of firstprivate variables and post-update of
2380         // lastprivate variables.
2381         CGM.getOpenMPRuntime().emitBarrierCall(
2382             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2383             /*ForceSimpleCall=*/true);
2384       }
2385       EmitOMPPrivateClause(S, LoopScope);
2386       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2387       EmitOMPReductionClauseInit(S, LoopScope);
2388       EmitOMPPrivateLoopCounters(S, LoopScope);
2389       EmitOMPLinearClause(S, LoopScope);
2390       (void)LoopScope.Privatize();
2391       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2392         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
2393 
2394       // Detect the loop schedule kind and chunk.
2395       const Expr *ChunkExpr = nullptr;
2396       OpenMPScheduleTy ScheduleKind;
2397       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
2398         ScheduleKind.Schedule = C->getScheduleKind();
2399         ScheduleKind.M1 = C->getFirstScheduleModifier();
2400         ScheduleKind.M2 = C->getSecondScheduleModifier();
2401         ChunkExpr = C->getChunkSize();
2402       } else {
2403         // Default behaviour for schedule clause.
2404         CGM.getOpenMPRuntime().getDefaultScheduleAndChunk(
2405             *this, S, ScheduleKind.Schedule, ChunkExpr);
2406       }
2407       bool HasChunkSizeOne = false;
2408       llvm::Value *Chunk = nullptr;
2409       if (ChunkExpr) {
2410         Chunk = EmitScalarExpr(ChunkExpr);
2411         Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(),
2412                                      S.getIterationVariable()->getType(),
2413                                      S.getBeginLoc());
2414         Expr::EvalResult Result;
2415         if (ChunkExpr->EvaluateAsInt(Result, getContext())) {
2416           llvm::APSInt EvaluatedChunk = Result.Val.getInt();
2417           HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1);
2418         }
2419       }
2420       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2421       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2422       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2423       // If the static schedule kind is specified or if the ordered clause is
2424       // specified, and if no monotonic modifier is specified, the effect will
2425       // be as if the monotonic modifier was specified.
2426       bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule,
2427           /* Chunked */ Chunk != nullptr) && HasChunkSizeOne &&
2428           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
2429       if ((RT.isStaticNonchunked(ScheduleKind.Schedule,
2430                                  /* Chunked */ Chunk != nullptr) ||
2431            StaticChunkedOne) &&
2432           !Ordered) {
2433         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2434           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2435         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2436         // When no chunk_size is specified, the iteration space is divided into
2437         // chunks that are approximately equal in size, and at most one chunk is
2438         // distributed to each thread. Note that the size of the chunks is
2439         // unspecified in this case.
2440         CGOpenMPRuntime::StaticRTInput StaticInit(
2441             IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(),
2442             UB.getAddress(), ST.getAddress(),
2443             StaticChunkedOne ? Chunk : nullptr);
2444         RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2445                              ScheduleKind, StaticInit);
2446         JumpDest LoopExit =
2447             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2448         // UB = min(UB, GlobalUB);
2449         if (!StaticChunkedOne)
2450           EmitIgnoredExpr(S.getEnsureUpperBound());
2451         // IV = LB;
2452         EmitIgnoredExpr(S.getInit());
2453         // For unchunked static schedule generate:
2454         //
2455         // while (idx <= UB) {
2456         //   BODY;
2457         //   ++idx;
2458         // }
2459         //
2460         // For static schedule with chunk one:
2461         //
2462         // while (IV <= PrevUB) {
2463         //   BODY;
2464         //   IV += ST;
2465         // }
2466         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
2467             StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(),
2468             StaticChunkedOne ? S.getDistInc() : S.getInc(),
2469             [&S, LoopExit](CodeGenFunction &CGF) {
2470              CGF.EmitOMPLoopBody(S, LoopExit);
2471              CGF.EmitStopPoint(&S);
2472             },
2473             [](CodeGenFunction &) {});
2474         EmitBlock(LoopExit.getBlock());
2475         // Tell the runtime we are done.
2476         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2477           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2478                                                          S.getDirectiveKind());
2479         };
2480         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2481       } else {
2482         const bool IsMonotonic =
2483             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2484             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2485             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2486             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2487         // Emit the outer loop, which requests its work chunk [LB..UB] from
2488         // runtime and runs the inner loop to process it.
2489         const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(),
2490                                              ST.getAddress(), IL.getAddress(),
2491                                              Chunk, EUB);
2492         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2493                             LoopArguments, CGDispatchBounds);
2494       }
2495       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2496         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
2497           return CGF.Builder.CreateIsNotNull(
2498               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2499         });
2500       }
2501       EmitOMPReductionClauseFinal(
2502           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
2503                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
2504                  : /*Parallel only*/ OMPD_parallel);
2505       // Emit post-update of the reduction variables if IsLastIter != 0.
2506       emitPostUpdateForReductionClause(
2507           *this, S, [IL, &S](CodeGenFunction &CGF) {
2508             return CGF.Builder.CreateIsNotNull(
2509                 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2510           });
2511       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2512       if (HasLastprivateClause)
2513         EmitOMPLastprivateClauseFinal(
2514             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2515             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
2516     }
2517     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
2518       return CGF.Builder.CreateIsNotNull(
2519           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2520     });
2521     DoacrossCleanupScope.ForceCleanup();
2522     // We're now done with the loop, so jump to the continuation block.
2523     if (ContBlock) {
2524       EmitBranch(ContBlock);
2525       EmitBlock(ContBlock, /*IsFinished=*/true);
2526     }
2527   }
2528   return HasLastprivateClause;
2529 }
2530 
2531 /// The following two functions generate expressions for the loop lower
2532 /// and upper bounds in case of static and dynamic (dispatch) schedule
2533 /// of the associated 'for' or 'distribute' loop.
2534 static std::pair<LValue, LValue>
2535 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
2536   const auto &LS = cast<OMPLoopDirective>(S);
2537   LValue LB =
2538       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2539   LValue UB =
2540       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2541   return {LB, UB};
2542 }
2543 
2544 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
2545 /// consider the lower and upper bound expressions generated by the
2546 /// worksharing loop support, but we use 0 and the iteration space size as
2547 /// constants
2548 static std::pair<llvm::Value *, llvm::Value *>
2549 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
2550                           Address LB, Address UB) {
2551   const auto &LS = cast<OMPLoopDirective>(S);
2552   const Expr *IVExpr = LS.getIterationVariable();
2553   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
2554   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
2555   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
2556   return {LBVal, UBVal};
2557 }
2558 
2559 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2560   bool HasLastprivates = false;
2561   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2562                                           PrePostActionTy &) {
2563     OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel());
2564     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2565                                                  emitForLoopBounds,
2566                                                  emitDispatchForLoopBounds);
2567   };
2568   {
2569     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2570     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2571                                                 S.hasCancel());
2572   }
2573 
2574   // Emit an implicit barrier at the end.
2575   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2576     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2577 }
2578 
2579 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2580   bool HasLastprivates = false;
2581   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2582                                           PrePostActionTy &) {
2583     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2584                                                  emitForLoopBounds,
2585                                                  emitDispatchForLoopBounds);
2586   };
2587   {
2588     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2589     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2590   }
2591 
2592   // Emit an implicit barrier at the end.
2593   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2594     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2595 }
2596 
2597 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2598                                 const Twine &Name,
2599                                 llvm::Value *Init = nullptr) {
2600   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2601   if (Init)
2602     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2603   return LVal;
2604 }
2605 
2606 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2607   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
2608   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
2609   bool HasLastprivates = false;
2610   auto &&CodeGen = [&S, CapturedStmt, CS,
2611                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
2612     ASTContext &C = CGF.getContext();
2613     QualType KmpInt32Ty =
2614         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2615     // Emit helper vars inits.
2616     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2617                                   CGF.Builder.getInt32(0));
2618     llvm::ConstantInt *GlobalUBVal = CS != nullptr
2619                                          ? CGF.Builder.getInt32(CS->size() - 1)
2620                                          : CGF.Builder.getInt32(0);
2621     LValue UB =
2622         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2623     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2624                                   CGF.Builder.getInt32(1));
2625     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2626                                   CGF.Builder.getInt32(0));
2627     // Loop counter.
2628     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2629     OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2630     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2631     OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2632     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2633     // Generate condition for loop.
2634     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2635                         OK_Ordinary, S.getBeginLoc(), FPOptions());
2636     // Increment for loop counter.
2637     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2638                       S.getBeginLoc(), true);
2639     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
2640       // Iterate through all sections and emit a switch construct:
2641       // switch (IV) {
2642       //   case 0:
2643       //     <SectionStmt[0]>;
2644       //     break;
2645       // ...
2646       //   case <NumSection> - 1:
2647       //     <SectionStmt[<NumSection> - 1]>;
2648       //     break;
2649       // }
2650       // .omp.sections.exit:
2651       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2652       llvm::SwitchInst *SwitchStmt =
2653           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
2654                                    ExitBB, CS == nullptr ? 1 : CS->size());
2655       if (CS) {
2656         unsigned CaseNumber = 0;
2657         for (const Stmt *SubStmt : CS->children()) {
2658           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2659           CGF.EmitBlock(CaseBB);
2660           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2661           CGF.EmitStmt(SubStmt);
2662           CGF.EmitBranch(ExitBB);
2663           ++CaseNumber;
2664         }
2665       } else {
2666         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
2667         CGF.EmitBlock(CaseBB);
2668         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2669         CGF.EmitStmt(CapturedStmt);
2670         CGF.EmitBranch(ExitBB);
2671       }
2672       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2673     };
2674 
2675     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2676     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2677       // Emit implicit barrier to synchronize threads and avoid data races on
2678       // initialization of firstprivate variables and post-update of lastprivate
2679       // variables.
2680       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2681           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2682           /*ForceSimpleCall=*/true);
2683     }
2684     CGF.EmitOMPPrivateClause(S, LoopScope);
2685     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2686     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2687     (void)LoopScope.Privatize();
2688     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2689       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
2690 
2691     // Emit static non-chunked loop.
2692     OpenMPScheduleTy ScheduleKind;
2693     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2694     CGOpenMPRuntime::StaticRTInput StaticInit(
2695         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
2696         LB.getAddress(), UB.getAddress(), ST.getAddress());
2697     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2698         CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
2699     // UB = min(UB, GlobalUB);
2700     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
2701     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
2702         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2703     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2704     // IV = LB;
2705     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
2706     // while (idx <= UB) { BODY; ++idx; }
2707     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2708                          [](CodeGenFunction &) {});
2709     // Tell the runtime we are done.
2710     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2711       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2712                                                      S.getDirectiveKind());
2713     };
2714     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
2715     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
2716     // Emit post-update of the reduction variables if IsLastIter != 0.
2717     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
2718       return CGF.Builder.CreateIsNotNull(
2719           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2720     });
2721 
2722     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2723     if (HasLastprivates)
2724       CGF.EmitOMPLastprivateClauseFinal(
2725           S, /*NoFinals=*/false,
2726           CGF.Builder.CreateIsNotNull(
2727               CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
2728   };
2729 
2730   bool HasCancel = false;
2731   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2732     HasCancel = OSD->hasCancel();
2733   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2734     HasCancel = OPSD->hasCancel();
2735   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
2736   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2737                                               HasCancel);
2738   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2739   // clause. Otherwise the barrier will be generated by the codegen for the
2740   // directive.
2741   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2742     // Emit implicit barrier to synchronize threads and avoid data races on
2743     // initialization of firstprivate variables.
2744     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
2745                                            OMPD_unknown);
2746   }
2747 }
2748 
2749 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2750   {
2751     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2752     EmitSections(S);
2753   }
2754   // Emit an implicit barrier at the end.
2755   if (!S.getSingleClause<OMPNowaitClause>()) {
2756     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
2757                                            OMPD_sections);
2758   }
2759 }
2760 
2761 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2762   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2763     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2764   };
2765   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2766   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2767                                               S.hasCancel());
2768 }
2769 
2770 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2771   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2772   llvm::SmallVector<const Expr *, 8> DestExprs;
2773   llvm::SmallVector<const Expr *, 8> SrcExprs;
2774   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2775   // Check if there are any 'copyprivate' clauses associated with this
2776   // 'single' construct.
2777   // Build a list of copyprivate variables along with helper expressions
2778   // (<source>, <destination>, <destination>=<source> expressions)
2779   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2780     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2781     DestExprs.append(C->destination_exprs().begin(),
2782                      C->destination_exprs().end());
2783     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2784     AssignmentOps.append(C->assignment_ops().begin(),
2785                          C->assignment_ops().end());
2786   }
2787   // Emit code for 'single' region along with 'copyprivate' clauses
2788   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2789     Action.Enter(CGF);
2790     OMPPrivateScope SingleScope(CGF);
2791     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2792     CGF.EmitOMPPrivateClause(S, SingleScope);
2793     (void)SingleScope.Privatize();
2794     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2795   };
2796   {
2797     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2798     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
2799                                             CopyprivateVars, DestExprs,
2800                                             SrcExprs, AssignmentOps);
2801   }
2802   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2803   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2804   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2805     CGM.getOpenMPRuntime().emitBarrierCall(
2806         *this, S.getBeginLoc(),
2807         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2808   }
2809 }
2810 
2811 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2812   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2813     Action.Enter(CGF);
2814     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2815   };
2816   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2817   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
2818 }
2819 
2820 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2821   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2822     Action.Enter(CGF);
2823     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
2824   };
2825   const Expr *Hint = nullptr;
2826   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
2827     Hint = HintClause->getHint();
2828   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2829   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2830                                             S.getDirectiveName().getAsString(),
2831                                             CodeGen, S.getBeginLoc(), Hint);
2832 }
2833 
2834 void CodeGenFunction::EmitOMPParallelForDirective(
2835     const OMPParallelForDirective &S) {
2836   // Emit directive as a combined directive that consists of two implicit
2837   // directives: 'parallel' with 'for' directive.
2838   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2839     Action.Enter(CGF);
2840     OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel());
2841     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2842                                emitDispatchForLoopBounds);
2843   };
2844   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
2845                                  emitEmptyBoundParameters);
2846 }
2847 
2848 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2849     const OMPParallelForSimdDirective &S) {
2850   // Emit directive as a combined directive that consists of two implicit
2851   // directives: 'parallel' with 'for' directive.
2852   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2853     Action.Enter(CGF);
2854     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2855                                emitDispatchForLoopBounds);
2856   };
2857   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen,
2858                                  emitEmptyBoundParameters);
2859 }
2860 
2861 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2862     const OMPParallelSectionsDirective &S) {
2863   // Emit directive as a combined directive that consists of two implicit
2864   // directives: 'parallel' with 'sections' directive.
2865   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2866     Action.Enter(CGF);
2867     CGF.EmitSections(S);
2868   };
2869   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
2870                                  emitEmptyBoundParameters);
2871 }
2872 
2873 void CodeGenFunction::EmitOMPTaskBasedDirective(
2874     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
2875     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
2876     OMPTaskDataTy &Data) {
2877   // Emit outlined function for task construct.
2878   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
2879   auto I = CS->getCapturedDecl()->param_begin();
2880   auto PartId = std::next(I);
2881   auto TaskT = std::next(I, 4);
2882   // Check if the task is final
2883   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2884     // If the condition constant folds and can be elided, try to avoid emitting
2885     // the condition and the dead arm of the if/else.
2886     const Expr *Cond = Clause->getCondition();
2887     bool CondConstant;
2888     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2889       Data.Final.setInt(CondConstant);
2890     else
2891       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2892   } else {
2893     // By default the task is not final.
2894     Data.Final.setInt(/*IntVal=*/false);
2895   }
2896   // Check if the task has 'priority' clause.
2897   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2898     const Expr *Prio = Clause->getPriority();
2899     Data.Priority.setInt(/*IntVal=*/true);
2900     Data.Priority.setPointer(EmitScalarConversion(
2901         EmitScalarExpr(Prio), Prio->getType(),
2902         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2903         Prio->getExprLoc()));
2904   }
2905   // The first function argument for tasks is a thread id, the second one is a
2906   // part id (0 for tied tasks, >=0 for untied task).
2907   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2908   // Get list of private variables.
2909   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2910     auto IRef = C->varlist_begin();
2911     for (const Expr *IInit : C->private_copies()) {
2912       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2913       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2914         Data.PrivateVars.push_back(*IRef);
2915         Data.PrivateCopies.push_back(IInit);
2916       }
2917       ++IRef;
2918     }
2919   }
2920   EmittedAsPrivate.clear();
2921   // Get list of firstprivate variables.
2922   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2923     auto IRef = C->varlist_begin();
2924     auto IElemInitRef = C->inits().begin();
2925     for (const Expr *IInit : C->private_copies()) {
2926       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2927       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2928         Data.FirstprivateVars.push_back(*IRef);
2929         Data.FirstprivateCopies.push_back(IInit);
2930         Data.FirstprivateInits.push_back(*IElemInitRef);
2931       }
2932       ++IRef;
2933       ++IElemInitRef;
2934     }
2935   }
2936   // Get list of lastprivate variables (for taskloops).
2937   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2938   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2939     auto IRef = C->varlist_begin();
2940     auto ID = C->destination_exprs().begin();
2941     for (const Expr *IInit : C->private_copies()) {
2942       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2943       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2944         Data.LastprivateVars.push_back(*IRef);
2945         Data.LastprivateCopies.push_back(IInit);
2946       }
2947       LastprivateDstsOrigs.insert(
2948           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2949            cast<DeclRefExpr>(*IRef)});
2950       ++IRef;
2951       ++ID;
2952     }
2953   }
2954   SmallVector<const Expr *, 4> LHSs;
2955   SmallVector<const Expr *, 4> RHSs;
2956   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
2957     auto IPriv = C->privates().begin();
2958     auto IRed = C->reduction_ops().begin();
2959     auto ILHS = C->lhs_exprs().begin();
2960     auto IRHS = C->rhs_exprs().begin();
2961     for (const Expr *Ref : C->varlists()) {
2962       Data.ReductionVars.emplace_back(Ref);
2963       Data.ReductionCopies.emplace_back(*IPriv);
2964       Data.ReductionOps.emplace_back(*IRed);
2965       LHSs.emplace_back(*ILHS);
2966       RHSs.emplace_back(*IRHS);
2967       std::advance(IPriv, 1);
2968       std::advance(IRed, 1);
2969       std::advance(ILHS, 1);
2970       std::advance(IRHS, 1);
2971     }
2972   }
2973   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
2974       *this, S.getBeginLoc(), LHSs, RHSs, Data);
2975   // Build list of dependences.
2976   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2977     for (const Expr *IRef : C->varlists())
2978       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
2979   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
2980                     CapturedRegion](CodeGenFunction &CGF,
2981                                     PrePostActionTy &Action) {
2982     // Set proper addresses for generated private copies.
2983     OMPPrivateScope Scope(CGF);
2984     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2985         !Data.LastprivateVars.empty()) {
2986       llvm::FunctionType *CopyFnTy = llvm::FunctionType::get(
2987           CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true);
2988       enum { PrivatesParam = 2, CopyFnParam = 3 };
2989       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
2990           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
2991       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
2992           CS->getCapturedDecl()->getParam(PrivatesParam)));
2993       // Map privates.
2994       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2995       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2996       CallArgs.push_back(PrivatesPtr);
2997       for (const Expr *E : Data.PrivateVars) {
2998         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2999         Address PrivatePtr = CGF.CreateMemTemp(
3000             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
3001         PrivatePtrs.emplace_back(VD, PrivatePtr);
3002         CallArgs.push_back(PrivatePtr.getPointer());
3003       }
3004       for (const Expr *E : Data.FirstprivateVars) {
3005         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3006         Address PrivatePtr =
3007             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3008                               ".firstpriv.ptr.addr");
3009         PrivatePtrs.emplace_back(VD, PrivatePtr);
3010         CallArgs.push_back(PrivatePtr.getPointer());
3011       }
3012       for (const Expr *E : Data.LastprivateVars) {
3013         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3014         Address PrivatePtr =
3015             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3016                               ".lastpriv.ptr.addr");
3017         PrivatePtrs.emplace_back(VD, PrivatePtr);
3018         CallArgs.push_back(PrivatePtr.getPointer());
3019       }
3020       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3021           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
3022       for (const auto &Pair : LastprivateDstsOrigs) {
3023         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
3024         DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD),
3025                         /*RefersToEnclosingVariableOrCapture=*/
3026                             CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
3027                         Pair.second->getType(), VK_LValue,
3028                         Pair.second->getExprLoc());
3029         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
3030           return CGF.EmitLValue(&DRE).getAddress();
3031         });
3032       }
3033       for (const auto &Pair : PrivatePtrs) {
3034         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
3035                             CGF.getContext().getDeclAlign(Pair.first));
3036         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
3037       }
3038     }
3039     if (Data.Reductions) {
3040       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
3041       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies,
3042                              Data.ReductionOps);
3043       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
3044           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
3045       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
3046         RedCG.emitSharedLValue(CGF, Cnt);
3047         RedCG.emitAggregateType(CGF, Cnt);
3048         // FIXME: This must removed once the runtime library is fixed.
3049         // Emit required threadprivate variables for
3050         // initializer/combiner/finalizer.
3051         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
3052                                                            RedCG, Cnt);
3053         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
3054             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
3055         Replacement =
3056             Address(CGF.EmitScalarConversion(
3057                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
3058                         CGF.getContext().getPointerType(
3059                             Data.ReductionCopies[Cnt]->getType()),
3060                         Data.ReductionCopies[Cnt]->getExprLoc()),
3061                     Replacement.getAlignment());
3062         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
3063         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
3064                          [Replacement]() { return Replacement; });
3065       }
3066     }
3067     // Privatize all private variables except for in_reduction items.
3068     (void)Scope.Privatize();
3069     SmallVector<const Expr *, 4> InRedVars;
3070     SmallVector<const Expr *, 4> InRedPrivs;
3071     SmallVector<const Expr *, 4> InRedOps;
3072     SmallVector<const Expr *, 4> TaskgroupDescriptors;
3073     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
3074       auto IPriv = C->privates().begin();
3075       auto IRed = C->reduction_ops().begin();
3076       auto ITD = C->taskgroup_descriptors().begin();
3077       for (const Expr *Ref : C->varlists()) {
3078         InRedVars.emplace_back(Ref);
3079         InRedPrivs.emplace_back(*IPriv);
3080         InRedOps.emplace_back(*IRed);
3081         TaskgroupDescriptors.emplace_back(*ITD);
3082         std::advance(IPriv, 1);
3083         std::advance(IRed, 1);
3084         std::advance(ITD, 1);
3085       }
3086     }
3087     // Privatize in_reduction items here, because taskgroup descriptors must be
3088     // privatized earlier.
3089     OMPPrivateScope InRedScope(CGF);
3090     if (!InRedVars.empty()) {
3091       ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps);
3092       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
3093         RedCG.emitSharedLValue(CGF, Cnt);
3094         RedCG.emitAggregateType(CGF, Cnt);
3095         // The taskgroup descriptor variable is always implicit firstprivate and
3096         // privatized already during processing of the firstprivates.
3097         // FIXME: This must removed once the runtime library is fixed.
3098         // Emit required threadprivate variables for
3099         // initializer/combiner/finalizer.
3100         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
3101                                                            RedCG, Cnt);
3102         llvm::Value *ReductionsPtr =
3103             CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]),
3104                                  TaskgroupDescriptors[Cnt]->getExprLoc());
3105         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
3106             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
3107         Replacement = Address(
3108             CGF.EmitScalarConversion(
3109                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
3110                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
3111                 InRedPrivs[Cnt]->getExprLoc()),
3112             Replacement.getAlignment());
3113         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
3114         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
3115                               [Replacement]() { return Replacement; });
3116       }
3117     }
3118     (void)InRedScope.Privatize();
3119 
3120     Action.Enter(CGF);
3121     BodyGen(CGF);
3122   };
3123   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3124       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
3125       Data.NumberOfParts);
3126   OMPLexicalScope Scope(*this, S);
3127   TaskGen(*this, OutlinedFn, Data);
3128 }
3129 
3130 static ImplicitParamDecl *
3131 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
3132                                   QualType Ty, CapturedDecl *CD,
3133                                   SourceLocation Loc) {
3134   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3135                                            ImplicitParamDecl::Other);
3136   auto *OrigRef = DeclRefExpr::Create(
3137       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
3138       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3139   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3140                                               ImplicitParamDecl::Other);
3141   auto *PrivateRef = DeclRefExpr::Create(
3142       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
3143       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3144   QualType ElemType = C.getBaseElementType(Ty);
3145   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
3146                                            ImplicitParamDecl::Other);
3147   auto *InitRef = DeclRefExpr::Create(
3148       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
3149       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
3150   PrivateVD->setInitStyle(VarDecl::CInit);
3151   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
3152                                               InitRef, /*BasePath=*/nullptr,
3153                                               VK_RValue));
3154   Data.FirstprivateVars.emplace_back(OrigRef);
3155   Data.FirstprivateCopies.emplace_back(PrivateRef);
3156   Data.FirstprivateInits.emplace_back(InitRef);
3157   return OrigVD;
3158 }
3159 
3160 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
3161     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
3162     OMPTargetDataInfo &InputInfo) {
3163   // Emit outlined function for task construct.
3164   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3165   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3166   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3167   auto I = CS->getCapturedDecl()->param_begin();
3168   auto PartId = std::next(I);
3169   auto TaskT = std::next(I, 4);
3170   OMPTaskDataTy Data;
3171   // The task is not final.
3172   Data.Final.setInt(/*IntVal=*/false);
3173   // Get list of firstprivate variables.
3174   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
3175     auto IRef = C->varlist_begin();
3176     auto IElemInitRef = C->inits().begin();
3177     for (auto *IInit : C->private_copies()) {
3178       Data.FirstprivateVars.push_back(*IRef);
3179       Data.FirstprivateCopies.push_back(IInit);
3180       Data.FirstprivateInits.push_back(*IElemInitRef);
3181       ++IRef;
3182       ++IElemInitRef;
3183     }
3184   }
3185   OMPPrivateScope TargetScope(*this);
3186   VarDecl *BPVD = nullptr;
3187   VarDecl *PVD = nullptr;
3188   VarDecl *SVD = nullptr;
3189   if (InputInfo.NumberOfTargetItems > 0) {
3190     auto *CD = CapturedDecl::Create(
3191         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
3192     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
3193     QualType BaseAndPointersType = getContext().getConstantArrayType(
3194         getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal,
3195         /*IndexTypeQuals=*/0);
3196     BPVD = createImplicitFirstprivateForType(
3197         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3198     PVD = createImplicitFirstprivateForType(
3199         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3200     QualType SizesType = getContext().getConstantArrayType(
3201         getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1),
3202         ArrSize, nullptr, ArrayType::Normal,
3203         /*IndexTypeQuals=*/0);
3204     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
3205                                             S.getBeginLoc());
3206     TargetScope.addPrivate(
3207         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
3208     TargetScope.addPrivate(PVD,
3209                            [&InputInfo]() { return InputInfo.PointersArray; });
3210     TargetScope.addPrivate(SVD,
3211                            [&InputInfo]() { return InputInfo.SizesArray; });
3212   }
3213   (void)TargetScope.Privatize();
3214   // Build list of dependences.
3215   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
3216     for (const Expr *IRef : C->varlists())
3217       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
3218   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD,
3219                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
3220     // Set proper addresses for generated private copies.
3221     OMPPrivateScope Scope(CGF);
3222     if (!Data.FirstprivateVars.empty()) {
3223       llvm::FunctionType *CopyFnTy = llvm::FunctionType::get(
3224           CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true);
3225       enum { PrivatesParam = 2, CopyFnParam = 3 };
3226       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
3227           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
3228       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
3229           CS->getCapturedDecl()->getParam(PrivatesParam)));
3230       // Map privates.
3231       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
3232       llvm::SmallVector<llvm::Value *, 16> CallArgs;
3233       CallArgs.push_back(PrivatesPtr);
3234       for (const Expr *E : Data.FirstprivateVars) {
3235         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3236         Address PrivatePtr =
3237             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3238                               ".firstpriv.ptr.addr");
3239         PrivatePtrs.emplace_back(VD, PrivatePtr);
3240         CallArgs.push_back(PrivatePtr.getPointer());
3241       }
3242       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3243           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
3244       for (const auto &Pair : PrivatePtrs) {
3245         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
3246                             CGF.getContext().getDeclAlign(Pair.first));
3247         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
3248       }
3249     }
3250     // Privatize all private variables except for in_reduction items.
3251     (void)Scope.Privatize();
3252     if (InputInfo.NumberOfTargetItems > 0) {
3253       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
3254           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0);
3255       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
3256           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0);
3257       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
3258           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0);
3259     }
3260 
3261     Action.Enter(CGF);
3262     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
3263     BodyGen(CGF);
3264   };
3265   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3266       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
3267       Data.NumberOfParts);
3268   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
3269   IntegerLiteral IfCond(getContext(), TrueOrFalse,
3270                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3271                         SourceLocation());
3272 
3273   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
3274                                       SharedsTy, CapturedStruct, &IfCond, Data);
3275 }
3276 
3277 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
3278   // Emit outlined function for task construct.
3279   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3280   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3281   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3282   const Expr *IfCond = nullptr;
3283   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3284     if (C->getNameModifier() == OMPD_unknown ||
3285         C->getNameModifier() == OMPD_task) {
3286       IfCond = C->getCondition();
3287       break;
3288     }
3289   }
3290 
3291   OMPTaskDataTy Data;
3292   // Check if we should emit tied or untied task.
3293   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
3294   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
3295     CGF.EmitStmt(CS->getCapturedStmt());
3296   };
3297   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3298                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
3299                             const OMPTaskDataTy &Data) {
3300     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
3301                                             SharedsTy, CapturedStruct, IfCond,
3302                                             Data);
3303   };
3304   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
3305 }
3306 
3307 void CodeGenFunction::EmitOMPTaskyieldDirective(
3308     const OMPTaskyieldDirective &S) {
3309   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
3310 }
3311 
3312 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
3313   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
3314 }
3315 
3316 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
3317   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
3318 }
3319 
3320 void CodeGenFunction::EmitOMPTaskgroupDirective(
3321     const OMPTaskgroupDirective &S) {
3322   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3323     Action.Enter(CGF);
3324     if (const Expr *E = S.getReductionRef()) {
3325       SmallVector<const Expr *, 4> LHSs;
3326       SmallVector<const Expr *, 4> RHSs;
3327       OMPTaskDataTy Data;
3328       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
3329         auto IPriv = C->privates().begin();
3330         auto IRed = C->reduction_ops().begin();
3331         auto ILHS = C->lhs_exprs().begin();
3332         auto IRHS = C->rhs_exprs().begin();
3333         for (const Expr *Ref : C->varlists()) {
3334           Data.ReductionVars.emplace_back(Ref);
3335           Data.ReductionCopies.emplace_back(*IPriv);
3336           Data.ReductionOps.emplace_back(*IRed);
3337           LHSs.emplace_back(*ILHS);
3338           RHSs.emplace_back(*IRHS);
3339           std::advance(IPriv, 1);
3340           std::advance(IRed, 1);
3341           std::advance(ILHS, 1);
3342           std::advance(IRHS, 1);
3343         }
3344       }
3345       llvm::Value *ReductionDesc =
3346           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
3347                                                            LHSs, RHSs, Data);
3348       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3349       CGF.EmitVarDecl(*VD);
3350       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
3351                             /*Volatile=*/false, E->getType());
3352     }
3353     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3354   };
3355   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3356   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
3357 }
3358 
3359 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
3360   CGM.getOpenMPRuntime().emitFlush(
3361       *this,
3362       [&S]() -> ArrayRef<const Expr *> {
3363         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
3364           return llvm::makeArrayRef(FlushClause->varlist_begin(),
3365                                     FlushClause->varlist_end());
3366         return llvm::None;
3367       }(),
3368       S.getBeginLoc());
3369 }
3370 
3371 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
3372                                             const CodeGenLoopTy &CodeGenLoop,
3373                                             Expr *IncExpr) {
3374   // Emit the loop iteration variable.
3375   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3376   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3377   EmitVarDecl(*IVDecl);
3378 
3379   // Emit the iterations count variable.
3380   // If it is not a variable, Sema decided to calculate iterations count on each
3381   // iteration (e.g., it is foldable into a constant).
3382   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3383     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3384     // Emit calculation of the iterations count.
3385     EmitIgnoredExpr(S.getCalcLastIteration());
3386   }
3387 
3388   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3389 
3390   bool HasLastprivateClause = false;
3391   // Check pre-condition.
3392   {
3393     OMPLoopScope PreInitScope(*this, S);
3394     // Skip the entire loop if we don't meet the precondition.
3395     // If the condition constant folds and can be elided, avoid emitting the
3396     // whole loop.
3397     bool CondConstant;
3398     llvm::BasicBlock *ContBlock = nullptr;
3399     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3400       if (!CondConstant)
3401         return;
3402     } else {
3403       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3404       ContBlock = createBasicBlock("omp.precond.end");
3405       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3406                   getProfileCount(&S));
3407       EmitBlock(ThenBlock);
3408       incrementProfileCounter(&S);
3409     }
3410 
3411     emitAlignedClause(*this, S);
3412     // Emit 'then' code.
3413     {
3414       // Emit helper vars inits.
3415 
3416       LValue LB = EmitOMPHelperVar(
3417           *this, cast<DeclRefExpr>(
3418                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3419                           ? S.getCombinedLowerBoundVariable()
3420                           : S.getLowerBoundVariable())));
3421       LValue UB = EmitOMPHelperVar(
3422           *this, cast<DeclRefExpr>(
3423                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3424                           ? S.getCombinedUpperBoundVariable()
3425                           : S.getUpperBoundVariable())));
3426       LValue ST =
3427           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3428       LValue IL =
3429           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3430 
3431       OMPPrivateScope LoopScope(*this);
3432       if (EmitOMPFirstprivateClause(S, LoopScope)) {
3433         // Emit implicit barrier to synchronize threads and avoid data races
3434         // on initialization of firstprivate variables and post-update of
3435         // lastprivate variables.
3436         CGM.getOpenMPRuntime().emitBarrierCall(
3437             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3438             /*ForceSimpleCall=*/true);
3439       }
3440       EmitOMPPrivateClause(S, LoopScope);
3441       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3442           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3443           !isOpenMPTeamsDirective(S.getDirectiveKind()))
3444         EmitOMPReductionClauseInit(S, LoopScope);
3445       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3446       EmitOMPPrivateLoopCounters(S, LoopScope);
3447       (void)LoopScope.Privatize();
3448       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3449         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
3450 
3451       // Detect the distribute schedule kind and chunk.
3452       llvm::Value *Chunk = nullptr;
3453       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
3454       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
3455         ScheduleKind = C->getDistScheduleKind();
3456         if (const Expr *Ch = C->getChunkSize()) {
3457           Chunk = EmitScalarExpr(Ch);
3458           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
3459                                        S.getIterationVariable()->getType(),
3460                                        S.getBeginLoc());
3461         }
3462       } else {
3463         // Default behaviour for dist_schedule clause.
3464         CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk(
3465             *this, S, ScheduleKind, Chunk);
3466       }
3467       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3468       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3469 
3470       // OpenMP [2.10.8, distribute Construct, Description]
3471       // If dist_schedule is specified, kind must be static. If specified,
3472       // iterations are divided into chunks of size chunk_size, chunks are
3473       // assigned to the teams of the league in a round-robin fashion in the
3474       // order of the team number. When no chunk_size is specified, the
3475       // iteration space is divided into chunks that are approximately equal
3476       // in size, and at most one chunk is distributed to each team of the
3477       // league. The size of the chunks is unspecified in this case.
3478       bool StaticChunked = RT.isStaticChunked(
3479           ScheduleKind, /* Chunked */ Chunk != nullptr) &&
3480           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
3481       if (RT.isStaticNonchunked(ScheduleKind,
3482                                 /* Chunked */ Chunk != nullptr) ||
3483           StaticChunked) {
3484         if (isOpenMPSimdDirective(S.getDirectiveKind()))
3485           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
3486         CGOpenMPRuntime::StaticRTInput StaticInit(
3487             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(),
3488             LB.getAddress(), UB.getAddress(), ST.getAddress(),
3489             StaticChunked ? Chunk : nullptr);
3490         RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
3491                                     StaticInit);
3492         JumpDest LoopExit =
3493             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3494         // UB = min(UB, GlobalUB);
3495         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3496                             ? S.getCombinedEnsureUpperBound()
3497                             : S.getEnsureUpperBound());
3498         // IV = LB;
3499         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3500                             ? S.getCombinedInit()
3501                             : S.getInit());
3502 
3503         const Expr *Cond =
3504             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3505                 ? S.getCombinedCond()
3506                 : S.getCond();
3507 
3508         if (StaticChunked)
3509           Cond = S.getCombinedDistCond();
3510 
3511         // For static unchunked schedules generate:
3512         //
3513         //  1. For distribute alone, codegen
3514         //    while (idx <= UB) {
3515         //      BODY;
3516         //      ++idx;
3517         //    }
3518         //
3519         //  2. When combined with 'for' (e.g. as in 'distribute parallel for')
3520         //    while (idx <= UB) {
3521         //      <CodeGen rest of pragma>(LB, UB);
3522         //      idx += ST;
3523         //    }
3524         //
3525         // For static chunk one schedule generate:
3526         //
3527         // while (IV <= GlobalUB) {
3528         //   <CodeGen rest of pragma>(LB, UB);
3529         //   LB += ST;
3530         //   UB += ST;
3531         //   UB = min(UB, GlobalUB);
3532         //   IV = LB;
3533         // }
3534         //
3535         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr,
3536                          [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
3537                            CodeGenLoop(CGF, S, LoopExit);
3538                          },
3539                          [&S, StaticChunked](CodeGenFunction &CGF) {
3540                            if (StaticChunked) {
3541                              CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound());
3542                              CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound());
3543                              CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound());
3544                              CGF.EmitIgnoredExpr(S.getCombinedInit());
3545                            }
3546                          });
3547         EmitBlock(LoopExit.getBlock());
3548         // Tell the runtime we are done.
3549         RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind());
3550       } else {
3551         // Emit the outer loop, which requests its work chunk [LB..UB] from
3552         // runtime and runs the inner loop to process it.
3553         const OMPLoopArguments LoopArguments = {
3554             LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(),
3555             Chunk};
3556         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
3557                                    CodeGenLoop);
3558       }
3559       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3560         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3561           return CGF.Builder.CreateIsNotNull(
3562               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3563         });
3564       }
3565       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3566           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3567           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
3568         EmitOMPReductionClauseFinal(S, OMPD_simd);
3569         // Emit post-update of the reduction variables if IsLastIter != 0.
3570         emitPostUpdateForReductionClause(
3571             *this, S, [IL, &S](CodeGenFunction &CGF) {
3572               return CGF.Builder.CreateIsNotNull(
3573                   CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3574             });
3575       }
3576       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3577       if (HasLastprivateClause) {
3578         EmitOMPLastprivateClauseFinal(
3579             S, /*NoFinals=*/false,
3580             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
3581       }
3582     }
3583 
3584     // We're now done with the loop, so jump to the continuation block.
3585     if (ContBlock) {
3586       EmitBranch(ContBlock);
3587       EmitBlock(ContBlock, true);
3588     }
3589   }
3590 }
3591 
3592 void CodeGenFunction::EmitOMPDistributeDirective(
3593     const OMPDistributeDirective &S) {
3594   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3595     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
3596   };
3597   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3598   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
3599 }
3600 
3601 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
3602                                                    const CapturedStmt *S) {
3603   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3604   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
3605   CGF.CapturedStmtInfo = &CapStmtInfo;
3606   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
3607   Fn->setDoesNotRecurse();
3608   return Fn;
3609 }
3610 
3611 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
3612   if (S.hasClausesOfKind<OMPDependClause>()) {
3613     assert(!S.getAssociatedStmt() &&
3614            "No associated statement must be in ordered depend construct.");
3615     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
3616       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
3617     return;
3618   }
3619   const auto *C = S.getSingleClause<OMPSIMDClause>();
3620   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
3621                                  PrePostActionTy &Action) {
3622     const CapturedStmt *CS = S.getInnermostCapturedStmt();
3623     if (C) {
3624       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3625       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3626       llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
3627       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
3628                                                       OutlinedFn, CapturedVars);
3629     } else {
3630       Action.Enter(CGF);
3631       CGF.EmitStmt(CS->getCapturedStmt());
3632     }
3633   };
3634   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3635   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
3636 }
3637 
3638 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
3639                                          QualType SrcType, QualType DestType,
3640                                          SourceLocation Loc) {
3641   assert(CGF.hasScalarEvaluationKind(DestType) &&
3642          "DestType must have scalar evaluation kind.");
3643   assert(!Val.isAggregate() && "Must be a scalar or complex.");
3644   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
3645                                                    DestType, Loc)
3646                         : CGF.EmitComplexToScalarConversion(
3647                               Val.getComplexVal(), SrcType, DestType, Loc);
3648 }
3649 
3650 static CodeGenFunction::ComplexPairTy
3651 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
3652                       QualType DestType, SourceLocation Loc) {
3653   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
3654          "DestType must have complex evaluation kind.");
3655   CodeGenFunction::ComplexPairTy ComplexVal;
3656   if (Val.isScalar()) {
3657     // Convert the input element to the element type of the complex.
3658     QualType DestElementType =
3659         DestType->castAs<ComplexType>()->getElementType();
3660     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
3661         Val.getScalarVal(), SrcType, DestElementType, Loc);
3662     ComplexVal = CodeGenFunction::ComplexPairTy(
3663         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
3664   } else {
3665     assert(Val.isComplex() && "Must be a scalar or complex.");
3666     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
3667     QualType DestElementType =
3668         DestType->castAs<ComplexType>()->getElementType();
3669     ComplexVal.first = CGF.EmitScalarConversion(
3670         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
3671     ComplexVal.second = CGF.EmitScalarConversion(
3672         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
3673   }
3674   return ComplexVal;
3675 }
3676 
3677 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
3678                                   LValue LVal, RValue RVal) {
3679   if (LVal.isGlobalReg()) {
3680     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
3681   } else {
3682     CGF.EmitAtomicStore(RVal, LVal,
3683                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3684                                  : llvm::AtomicOrdering::Monotonic,
3685                         LVal.isVolatile(), /*isInit=*/false);
3686   }
3687 }
3688 
3689 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
3690                                          QualType RValTy, SourceLocation Loc) {
3691   switch (getEvaluationKind(LVal.getType())) {
3692   case TEK_Scalar:
3693     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
3694                                *this, RVal, RValTy, LVal.getType(), Loc)),
3695                            LVal);
3696     break;
3697   case TEK_Complex:
3698     EmitStoreOfComplex(
3699         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
3700         /*isInit=*/false);
3701     break;
3702   case TEK_Aggregate:
3703     llvm_unreachable("Must be a scalar or complex.");
3704   }
3705 }
3706 
3707 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
3708                                   const Expr *X, const Expr *V,
3709                                   SourceLocation Loc) {
3710   // v = x;
3711   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
3712   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
3713   LValue XLValue = CGF.EmitLValue(X);
3714   LValue VLValue = CGF.EmitLValue(V);
3715   RValue Res = XLValue.isGlobalReg()
3716                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
3717                    : CGF.EmitAtomicLoad(
3718                          XLValue, Loc,
3719                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3720                                   : llvm::AtomicOrdering::Monotonic,
3721                          XLValue.isVolatile());
3722   // OpenMP, 2.12.6, atomic Construct
3723   // Any atomic construct with a seq_cst clause forces the atomically
3724   // performed operation to include an implicit flush operation without a
3725   // list.
3726   if (IsSeqCst)
3727     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3728   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
3729 }
3730 
3731 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
3732                                    const Expr *X, const Expr *E,
3733                                    SourceLocation Loc) {
3734   // x = expr;
3735   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
3736   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
3737   // OpenMP, 2.12.6, atomic Construct
3738   // Any atomic construct with a seq_cst clause forces the atomically
3739   // performed operation to include an implicit flush operation without a
3740   // list.
3741   if (IsSeqCst)
3742     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3743 }
3744 
3745 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
3746                                                 RValue Update,
3747                                                 BinaryOperatorKind BO,
3748                                                 llvm::AtomicOrdering AO,
3749                                                 bool IsXLHSInRHSPart) {
3750   ASTContext &Context = CGF.getContext();
3751   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
3752   // expression is simple and atomic is allowed for the given type for the
3753   // target platform.
3754   if (BO == BO_Comma || !Update.isScalar() ||
3755       !Update.getScalarVal()->getType()->isIntegerTy() ||
3756       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
3757                         (Update.getScalarVal()->getType() !=
3758                          X.getAddress().getElementType())) ||
3759       !X.getAddress().getElementType()->isIntegerTy() ||
3760       !Context.getTargetInfo().hasBuiltinAtomic(
3761           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
3762     return std::make_pair(false, RValue::get(nullptr));
3763 
3764   llvm::AtomicRMWInst::BinOp RMWOp;
3765   switch (BO) {
3766   case BO_Add:
3767     RMWOp = llvm::AtomicRMWInst::Add;
3768     break;
3769   case BO_Sub:
3770     if (!IsXLHSInRHSPart)
3771       return std::make_pair(false, RValue::get(nullptr));
3772     RMWOp = llvm::AtomicRMWInst::Sub;
3773     break;
3774   case BO_And:
3775     RMWOp = llvm::AtomicRMWInst::And;
3776     break;
3777   case BO_Or:
3778     RMWOp = llvm::AtomicRMWInst::Or;
3779     break;
3780   case BO_Xor:
3781     RMWOp = llvm::AtomicRMWInst::Xor;
3782     break;
3783   case BO_LT:
3784     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3785                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
3786                                    : llvm::AtomicRMWInst::Max)
3787                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
3788                                    : llvm::AtomicRMWInst::UMax);
3789     break;
3790   case BO_GT:
3791     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3792                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
3793                                    : llvm::AtomicRMWInst::Min)
3794                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
3795                                    : llvm::AtomicRMWInst::UMin);
3796     break;
3797   case BO_Assign:
3798     RMWOp = llvm::AtomicRMWInst::Xchg;
3799     break;
3800   case BO_Mul:
3801   case BO_Div:
3802   case BO_Rem:
3803   case BO_Shl:
3804   case BO_Shr:
3805   case BO_LAnd:
3806   case BO_LOr:
3807     return std::make_pair(false, RValue::get(nullptr));
3808   case BO_PtrMemD:
3809   case BO_PtrMemI:
3810   case BO_LE:
3811   case BO_GE:
3812   case BO_EQ:
3813   case BO_NE:
3814   case BO_Cmp:
3815   case BO_AddAssign:
3816   case BO_SubAssign:
3817   case BO_AndAssign:
3818   case BO_OrAssign:
3819   case BO_XorAssign:
3820   case BO_MulAssign:
3821   case BO_DivAssign:
3822   case BO_RemAssign:
3823   case BO_ShlAssign:
3824   case BO_ShrAssign:
3825   case BO_Comma:
3826     llvm_unreachable("Unsupported atomic update operation");
3827   }
3828   llvm::Value *UpdateVal = Update.getScalarVal();
3829   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3830     UpdateVal = CGF.Builder.CreateIntCast(
3831         IC, X.getAddress().getElementType(),
3832         X.getType()->hasSignedIntegerRepresentation());
3833   }
3834   llvm::Value *Res =
3835       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3836   return std::make_pair(true, RValue::get(Res));
3837 }
3838 
3839 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3840     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3841     llvm::AtomicOrdering AO, SourceLocation Loc,
3842     const llvm::function_ref<RValue(RValue)> CommonGen) {
3843   // Update expressions are allowed to have the following forms:
3844   // x binop= expr; -> xrval + expr;
3845   // x++, ++x -> xrval + 1;
3846   // x--, --x -> xrval - 1;
3847   // x = x binop expr; -> xrval binop expr
3848   // x = expr Op x; - > expr binop xrval;
3849   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3850   if (!Res.first) {
3851     if (X.isGlobalReg()) {
3852       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3853       // 'xrval'.
3854       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3855     } else {
3856       // Perform compare-and-swap procedure.
3857       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3858     }
3859   }
3860   return Res;
3861 }
3862 
3863 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3864                                     const Expr *X, const Expr *E,
3865                                     const Expr *UE, bool IsXLHSInRHSPart,
3866                                     SourceLocation Loc) {
3867   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3868          "Update expr in 'atomic update' must be a binary operator.");
3869   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3870   // Update expressions are allowed to have the following forms:
3871   // x binop= expr; -> xrval + expr;
3872   // x++, ++x -> xrval + 1;
3873   // x--, --x -> xrval - 1;
3874   // x = x binop expr; -> xrval binop expr
3875   // x = expr Op x; - > expr binop xrval;
3876   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3877   LValue XLValue = CGF.EmitLValue(X);
3878   RValue ExprRValue = CGF.EmitAnyExpr(E);
3879   llvm::AtomicOrdering AO = IsSeqCst
3880                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3881                                 : llvm::AtomicOrdering::Monotonic;
3882   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3883   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3884   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3885   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3886   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
3887     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3888     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3889     return CGF.EmitAnyExpr(UE);
3890   };
3891   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3892       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3893   // OpenMP, 2.12.6, atomic Construct
3894   // Any atomic construct with a seq_cst clause forces the atomically
3895   // performed operation to include an implicit flush operation without a
3896   // list.
3897   if (IsSeqCst)
3898     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3899 }
3900 
3901 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3902                             QualType SourceType, QualType ResType,
3903                             SourceLocation Loc) {
3904   switch (CGF.getEvaluationKind(ResType)) {
3905   case TEK_Scalar:
3906     return RValue::get(
3907         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3908   case TEK_Complex: {
3909     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3910     return RValue::getComplex(Res.first, Res.second);
3911   }
3912   case TEK_Aggregate:
3913     break;
3914   }
3915   llvm_unreachable("Must be a scalar or complex.");
3916 }
3917 
3918 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3919                                      bool IsPostfixUpdate, const Expr *V,
3920                                      const Expr *X, const Expr *E,
3921                                      const Expr *UE, bool IsXLHSInRHSPart,
3922                                      SourceLocation Loc) {
3923   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3924   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3925   RValue NewVVal;
3926   LValue VLValue = CGF.EmitLValue(V);
3927   LValue XLValue = CGF.EmitLValue(X);
3928   RValue ExprRValue = CGF.EmitAnyExpr(E);
3929   llvm::AtomicOrdering AO = IsSeqCst
3930                                 ? llvm::AtomicOrdering::SequentiallyConsistent
3931                                 : llvm::AtomicOrdering::Monotonic;
3932   QualType NewVValType;
3933   if (UE) {
3934     // 'x' is updated with some additional value.
3935     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3936            "Update expr in 'atomic capture' must be a binary operator.");
3937     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3938     // Update expressions are allowed to have the following forms:
3939     // x binop= expr; -> xrval + expr;
3940     // x++, ++x -> xrval + 1;
3941     // x--, --x -> xrval - 1;
3942     // x = x binop expr; -> xrval binop expr
3943     // x = expr Op x; - > expr binop xrval;
3944     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3945     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3946     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3947     NewVValType = XRValExpr->getType();
3948     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3949     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3950                   IsPostfixUpdate](RValue XRValue) {
3951       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3952       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3953       RValue Res = CGF.EmitAnyExpr(UE);
3954       NewVVal = IsPostfixUpdate ? XRValue : Res;
3955       return Res;
3956     };
3957     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3958         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3959     if (Res.first) {
3960       // 'atomicrmw' instruction was generated.
3961       if (IsPostfixUpdate) {
3962         // Use old value from 'atomicrmw'.
3963         NewVVal = Res.second;
3964       } else {
3965         // 'atomicrmw' does not provide new value, so evaluate it using old
3966         // value of 'x'.
3967         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3968         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3969         NewVVal = CGF.EmitAnyExpr(UE);
3970       }
3971     }
3972   } else {
3973     // 'x' is simply rewritten with some 'expr'.
3974     NewVValType = X->getType().getNonReferenceType();
3975     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3976                                X->getType().getNonReferenceType(), Loc);
3977     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
3978       NewVVal = XRValue;
3979       return ExprRValue;
3980     };
3981     // Try to perform atomicrmw xchg, otherwise simple exchange.
3982     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3983         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3984         Loc, Gen);
3985     if (Res.first) {
3986       // 'atomicrmw' instruction was generated.
3987       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3988     }
3989   }
3990   // Emit post-update store to 'v' of old/new 'x' value.
3991   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3992   // OpenMP, 2.12.6, atomic Construct
3993   // Any atomic construct with a seq_cst clause forces the atomically
3994   // performed operation to include an implicit flush operation without a
3995   // list.
3996   if (IsSeqCst)
3997     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3998 }
3999 
4000 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
4001                               bool IsSeqCst, bool IsPostfixUpdate,
4002                               const Expr *X, const Expr *V, const Expr *E,
4003                               const Expr *UE, bool IsXLHSInRHSPart,
4004                               SourceLocation Loc) {
4005   switch (Kind) {
4006   case OMPC_read:
4007     emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
4008     break;
4009   case OMPC_write:
4010     emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
4011     break;
4012   case OMPC_unknown:
4013   case OMPC_update:
4014     emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
4015     break;
4016   case OMPC_capture:
4017     emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
4018                              IsXLHSInRHSPart, Loc);
4019     break;
4020   case OMPC_if:
4021   case OMPC_final:
4022   case OMPC_num_threads:
4023   case OMPC_private:
4024   case OMPC_firstprivate:
4025   case OMPC_lastprivate:
4026   case OMPC_reduction:
4027   case OMPC_task_reduction:
4028   case OMPC_in_reduction:
4029   case OMPC_safelen:
4030   case OMPC_simdlen:
4031   case OMPC_allocator:
4032   case OMPC_allocate:
4033   case OMPC_collapse:
4034   case OMPC_default:
4035   case OMPC_seq_cst:
4036   case OMPC_shared:
4037   case OMPC_linear:
4038   case OMPC_aligned:
4039   case OMPC_copyin:
4040   case OMPC_copyprivate:
4041   case OMPC_flush:
4042   case OMPC_proc_bind:
4043   case OMPC_schedule:
4044   case OMPC_ordered:
4045   case OMPC_nowait:
4046   case OMPC_untied:
4047   case OMPC_threadprivate:
4048   case OMPC_depend:
4049   case OMPC_mergeable:
4050   case OMPC_device:
4051   case OMPC_threads:
4052   case OMPC_simd:
4053   case OMPC_map:
4054   case OMPC_num_teams:
4055   case OMPC_thread_limit:
4056   case OMPC_priority:
4057   case OMPC_grainsize:
4058   case OMPC_nogroup:
4059   case OMPC_num_tasks:
4060   case OMPC_hint:
4061   case OMPC_dist_schedule:
4062   case OMPC_defaultmap:
4063   case OMPC_uniform:
4064   case OMPC_to:
4065   case OMPC_from:
4066   case OMPC_use_device_ptr:
4067   case OMPC_is_device_ptr:
4068   case OMPC_unified_address:
4069   case OMPC_unified_shared_memory:
4070   case OMPC_reverse_offload:
4071   case OMPC_dynamic_allocators:
4072   case OMPC_atomic_default_mem_order:
4073   case OMPC_device_type:
4074   case OMPC_match:
4075     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
4076   }
4077 }
4078 
4079 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
4080   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
4081   OpenMPClauseKind Kind = OMPC_unknown;
4082   for (const OMPClause *C : S.clauses()) {
4083     // Find first clause (skip seq_cst clause, if it is first).
4084     if (C->getClauseKind() != OMPC_seq_cst) {
4085       Kind = C->getClauseKind();
4086       break;
4087     }
4088   }
4089 
4090   const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers();
4091   if (const auto *FE = dyn_cast<FullExpr>(CS))
4092     enterFullExpression(FE);
4093   // Processing for statements under 'atomic capture'.
4094   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
4095     for (const Stmt *C : Compound->body()) {
4096       if (const auto *FE = dyn_cast<FullExpr>(C))
4097         enterFullExpression(FE);
4098     }
4099   }
4100 
4101   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
4102                                             PrePostActionTy &) {
4103     CGF.EmitStopPoint(CS);
4104     emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
4105                       S.getV(), S.getExpr(), S.getUpdateExpr(),
4106                       S.isXLHSInRHSPart(), S.getBeginLoc());
4107   };
4108   OMPLexicalScope Scope(*this, S, OMPD_unknown);
4109   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
4110 }
4111 
4112 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
4113                                          const OMPExecutableDirective &S,
4114                                          const RegionCodeGenTy &CodeGen) {
4115   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
4116   CodeGenModule &CGM = CGF.CGM;
4117 
4118   // On device emit this construct as inlined code.
4119   if (CGM.getLangOpts().OpenMPIsDevice) {
4120     OMPLexicalScope Scope(CGF, S, OMPD_target);
4121     CGM.getOpenMPRuntime().emitInlinedDirective(
4122         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4123           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4124         });
4125     return;
4126   }
4127 
4128   llvm::Function *Fn = nullptr;
4129   llvm::Constant *FnID = nullptr;
4130 
4131   const Expr *IfCond = nullptr;
4132   // Check for the at most one if clause associated with the target region.
4133   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4134     if (C->getNameModifier() == OMPD_unknown ||
4135         C->getNameModifier() == OMPD_target) {
4136       IfCond = C->getCondition();
4137       break;
4138     }
4139   }
4140 
4141   // Check if we have any device clause associated with the directive.
4142   const Expr *Device = nullptr;
4143   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4144     Device = C->getDevice();
4145 
4146   // Check if we have an if clause whose conditional always evaluates to false
4147   // or if we do not have any targets specified. If so the target region is not
4148   // an offload entry point.
4149   bool IsOffloadEntry = true;
4150   if (IfCond) {
4151     bool Val;
4152     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
4153       IsOffloadEntry = false;
4154   }
4155   if (CGM.getLangOpts().OMPTargetTriples.empty())
4156     IsOffloadEntry = false;
4157 
4158   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
4159   StringRef ParentName;
4160   // In case we have Ctors/Dtors we use the complete type variant to produce
4161   // the mangling of the device outlined kernel.
4162   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
4163     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
4164   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
4165     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
4166   else
4167     ParentName =
4168         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
4169 
4170   // Emit target region as a standalone region.
4171   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
4172                                                     IsOffloadEntry, CodeGen);
4173   OMPLexicalScope Scope(CGF, S, OMPD_task);
4174   auto &&SizeEmitter =
4175       [IsOffloadEntry](CodeGenFunction &CGF,
4176                        const OMPLoopDirective &D) -> llvm::Value * {
4177     if (IsOffloadEntry) {
4178       OMPLoopScope(CGF, D);
4179       // Emit calculation of the iterations count.
4180       llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations());
4181       NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty,
4182                                                 /*isSigned=*/false);
4183       return NumIterations;
4184     }
4185     return nullptr;
4186   };
4187   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device,
4188                                         SizeEmitter);
4189 }
4190 
4191 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
4192                              PrePostActionTy &Action) {
4193   Action.Enter(CGF);
4194   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4195   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4196   CGF.EmitOMPPrivateClause(S, PrivateScope);
4197   (void)PrivateScope.Privatize();
4198   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4199     CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4200 
4201   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
4202 }
4203 
4204 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
4205                                                   StringRef ParentName,
4206                                                   const OMPTargetDirective &S) {
4207   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4208     emitTargetRegion(CGF, S, Action);
4209   };
4210   llvm::Function *Fn;
4211   llvm::Constant *Addr;
4212   // Emit target region as a standalone region.
4213   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4214       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4215   assert(Fn && Addr && "Target device function emission failed.");
4216 }
4217 
4218 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
4219   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4220     emitTargetRegion(CGF, S, Action);
4221   };
4222   emitCommonOMPTargetDirective(*this, S, CodeGen);
4223 }
4224 
4225 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
4226                                         const OMPExecutableDirective &S,
4227                                         OpenMPDirectiveKind InnermostKind,
4228                                         const RegionCodeGenTy &CodeGen) {
4229   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
4230   llvm::Function *OutlinedFn =
4231       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
4232           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
4233 
4234   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
4235   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
4236   if (NT || TL) {
4237     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
4238     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
4239 
4240     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
4241                                                   S.getBeginLoc());
4242   }
4243 
4244   OMPTeamsScope Scope(CGF, S);
4245   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
4246   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
4247   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
4248                                            CapturedVars);
4249 }
4250 
4251 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
4252   // Emit teams region as a standalone region.
4253   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4254     Action.Enter(CGF);
4255     OMPPrivateScope PrivateScope(CGF);
4256     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4257     CGF.EmitOMPPrivateClause(S, PrivateScope);
4258     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4259     (void)PrivateScope.Privatize();
4260     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
4261     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4262   };
4263   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4264   emitPostUpdateForReductionClause(*this, S,
4265                                    [](CodeGenFunction &) { return nullptr; });
4266 }
4267 
4268 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4269                                   const OMPTargetTeamsDirective &S) {
4270   auto *CS = S.getCapturedStmt(OMPD_teams);
4271   Action.Enter(CGF);
4272   // Emit teams region as a standalone region.
4273   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4274     Action.Enter(CGF);
4275     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4276     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4277     CGF.EmitOMPPrivateClause(S, PrivateScope);
4278     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4279     (void)PrivateScope.Privatize();
4280     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4281       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4282     CGF.EmitStmt(CS->getCapturedStmt());
4283     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4284   };
4285   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
4286   emitPostUpdateForReductionClause(CGF, S,
4287                                    [](CodeGenFunction &) { return nullptr; });
4288 }
4289 
4290 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
4291     CodeGenModule &CGM, StringRef ParentName,
4292     const OMPTargetTeamsDirective &S) {
4293   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4294     emitTargetTeamsRegion(CGF, Action, S);
4295   };
4296   llvm::Function *Fn;
4297   llvm::Constant *Addr;
4298   // Emit target region as a standalone region.
4299   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4300       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4301   assert(Fn && Addr && "Target device function emission failed.");
4302 }
4303 
4304 void CodeGenFunction::EmitOMPTargetTeamsDirective(
4305     const OMPTargetTeamsDirective &S) {
4306   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4307     emitTargetTeamsRegion(CGF, Action, S);
4308   };
4309   emitCommonOMPTargetDirective(*this, S, CodeGen);
4310 }
4311 
4312 static void
4313 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4314                                 const OMPTargetTeamsDistributeDirective &S) {
4315   Action.Enter(CGF);
4316   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4317     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4318   };
4319 
4320   // Emit teams region as a standalone region.
4321   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4322                                             PrePostActionTy &Action) {
4323     Action.Enter(CGF);
4324     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4325     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4326     (void)PrivateScope.Privatize();
4327     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4328                                                     CodeGenDistribute);
4329     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4330   };
4331   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
4332   emitPostUpdateForReductionClause(CGF, S,
4333                                    [](CodeGenFunction &) { return nullptr; });
4334 }
4335 
4336 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
4337     CodeGenModule &CGM, StringRef ParentName,
4338     const OMPTargetTeamsDistributeDirective &S) {
4339   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4340     emitTargetTeamsDistributeRegion(CGF, Action, S);
4341   };
4342   llvm::Function *Fn;
4343   llvm::Constant *Addr;
4344   // Emit target region as a standalone region.
4345   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4346       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4347   assert(Fn && Addr && "Target device function emission failed.");
4348 }
4349 
4350 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
4351     const OMPTargetTeamsDistributeDirective &S) {
4352   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4353     emitTargetTeamsDistributeRegion(CGF, Action, S);
4354   };
4355   emitCommonOMPTargetDirective(*this, S, CodeGen);
4356 }
4357 
4358 static void emitTargetTeamsDistributeSimdRegion(
4359     CodeGenFunction &CGF, PrePostActionTy &Action,
4360     const OMPTargetTeamsDistributeSimdDirective &S) {
4361   Action.Enter(CGF);
4362   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4363     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4364   };
4365 
4366   // Emit teams region as a standalone region.
4367   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4368                                             PrePostActionTy &Action) {
4369     Action.Enter(CGF);
4370     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4371     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4372     (void)PrivateScope.Privatize();
4373     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4374                                                     CodeGenDistribute);
4375     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4376   };
4377   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
4378   emitPostUpdateForReductionClause(CGF, S,
4379                                    [](CodeGenFunction &) { return nullptr; });
4380 }
4381 
4382 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
4383     CodeGenModule &CGM, StringRef ParentName,
4384     const OMPTargetTeamsDistributeSimdDirective &S) {
4385   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4386     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4387   };
4388   llvm::Function *Fn;
4389   llvm::Constant *Addr;
4390   // Emit target region as a standalone region.
4391   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4392       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4393   assert(Fn && Addr && "Target device function emission failed.");
4394 }
4395 
4396 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
4397     const OMPTargetTeamsDistributeSimdDirective &S) {
4398   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4399     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4400   };
4401   emitCommonOMPTargetDirective(*this, S, CodeGen);
4402 }
4403 
4404 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
4405     const OMPTeamsDistributeDirective &S) {
4406 
4407   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4408     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4409   };
4410 
4411   // Emit teams region as a standalone region.
4412   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4413                                             PrePostActionTy &Action) {
4414     Action.Enter(CGF);
4415     OMPPrivateScope PrivateScope(CGF);
4416     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4417     (void)PrivateScope.Privatize();
4418     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4419                                                     CodeGenDistribute);
4420     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4421   };
4422   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4423   emitPostUpdateForReductionClause(*this, S,
4424                                    [](CodeGenFunction &) { return nullptr; });
4425 }
4426 
4427 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
4428     const OMPTeamsDistributeSimdDirective &S) {
4429   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4430     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4431   };
4432 
4433   // Emit teams region as a standalone region.
4434   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4435                                             PrePostActionTy &Action) {
4436     Action.Enter(CGF);
4437     OMPPrivateScope PrivateScope(CGF);
4438     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4439     (void)PrivateScope.Privatize();
4440     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
4441                                                     CodeGenDistribute);
4442     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4443   };
4444   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
4445   emitPostUpdateForReductionClause(*this, S,
4446                                    [](CodeGenFunction &) { return nullptr; });
4447 }
4448 
4449 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
4450     const OMPTeamsDistributeParallelForDirective &S) {
4451   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4452     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4453                               S.getDistInc());
4454   };
4455 
4456   // Emit teams region as a standalone region.
4457   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4458                                             PrePostActionTy &Action) {
4459     Action.Enter(CGF);
4460     OMPPrivateScope PrivateScope(CGF);
4461     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4462     (void)PrivateScope.Privatize();
4463     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4464                                                     CodeGenDistribute);
4465     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4466   };
4467   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4468   emitPostUpdateForReductionClause(*this, S,
4469                                    [](CodeGenFunction &) { return nullptr; });
4470 }
4471 
4472 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
4473     const OMPTeamsDistributeParallelForSimdDirective &S) {
4474   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4475     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4476                               S.getDistInc());
4477   };
4478 
4479   // Emit teams region as a standalone region.
4480   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4481                                             PrePostActionTy &Action) {
4482     Action.Enter(CGF);
4483     OMPPrivateScope PrivateScope(CGF);
4484     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4485     (void)PrivateScope.Privatize();
4486     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4487         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4488     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4489   };
4490   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4491   emitPostUpdateForReductionClause(*this, S,
4492                                    [](CodeGenFunction &) { return nullptr; });
4493 }
4494 
4495 static void emitTargetTeamsDistributeParallelForRegion(
4496     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
4497     PrePostActionTy &Action) {
4498   Action.Enter(CGF);
4499   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4500     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4501                               S.getDistInc());
4502   };
4503 
4504   // Emit teams region as a standalone region.
4505   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4506                                                  PrePostActionTy &Action) {
4507     Action.Enter(CGF);
4508     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4509     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4510     (void)PrivateScope.Privatize();
4511     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4512         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4513     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4514   };
4515 
4516   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
4517                               CodeGenTeams);
4518   emitPostUpdateForReductionClause(CGF, S,
4519                                    [](CodeGenFunction &) { return nullptr; });
4520 }
4521 
4522 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
4523     CodeGenModule &CGM, StringRef ParentName,
4524     const OMPTargetTeamsDistributeParallelForDirective &S) {
4525   // Emit SPMD target teams distribute parallel for region as a standalone
4526   // region.
4527   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4528     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4529   };
4530   llvm::Function *Fn;
4531   llvm::Constant *Addr;
4532   // Emit target region as a standalone region.
4533   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4534       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4535   assert(Fn && Addr && "Target device function emission failed.");
4536 }
4537 
4538 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
4539     const OMPTargetTeamsDistributeParallelForDirective &S) {
4540   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4541     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
4542   };
4543   emitCommonOMPTargetDirective(*this, S, CodeGen);
4544 }
4545 
4546 static void emitTargetTeamsDistributeParallelForSimdRegion(
4547     CodeGenFunction &CGF,
4548     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
4549     PrePostActionTy &Action) {
4550   Action.Enter(CGF);
4551   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4552     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4553                               S.getDistInc());
4554   };
4555 
4556   // Emit teams region as a standalone region.
4557   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4558                                                  PrePostActionTy &Action) {
4559     Action.Enter(CGF);
4560     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4561     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4562     (void)PrivateScope.Privatize();
4563     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4564         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4565     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4566   };
4567 
4568   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
4569                               CodeGenTeams);
4570   emitPostUpdateForReductionClause(CGF, S,
4571                                    [](CodeGenFunction &) { return nullptr; });
4572 }
4573 
4574 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
4575     CodeGenModule &CGM, StringRef ParentName,
4576     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4577   // Emit SPMD target teams distribute parallel for simd region as a standalone
4578   // region.
4579   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4580     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4581   };
4582   llvm::Function *Fn;
4583   llvm::Constant *Addr;
4584   // Emit target region as a standalone region.
4585   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4586       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4587   assert(Fn && Addr && "Target device function emission failed.");
4588 }
4589 
4590 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
4591     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
4592   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4593     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
4594   };
4595   emitCommonOMPTargetDirective(*this, S, CodeGen);
4596 }
4597 
4598 void CodeGenFunction::EmitOMPCancellationPointDirective(
4599     const OMPCancellationPointDirective &S) {
4600   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
4601                                                    S.getCancelRegion());
4602 }
4603 
4604 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
4605   const Expr *IfCond = nullptr;
4606   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4607     if (C->getNameModifier() == OMPD_unknown ||
4608         C->getNameModifier() == OMPD_cancel) {
4609       IfCond = C->getCondition();
4610       break;
4611     }
4612   }
4613   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
4614                                         S.getCancelRegion());
4615 }
4616 
4617 CodeGenFunction::JumpDest
4618 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
4619   if (Kind == OMPD_parallel || Kind == OMPD_task ||
4620       Kind == OMPD_target_parallel)
4621     return ReturnBlock;
4622   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
4623          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
4624          Kind == OMPD_distribute_parallel_for ||
4625          Kind == OMPD_target_parallel_for ||
4626          Kind == OMPD_teams_distribute_parallel_for ||
4627          Kind == OMPD_target_teams_distribute_parallel_for);
4628   return OMPCancelStack.getExitBlock();
4629 }
4630 
4631 void CodeGenFunction::EmitOMPUseDevicePtrClause(
4632     const OMPClause &NC, OMPPrivateScope &PrivateScope,
4633     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
4634   const auto &C = cast<OMPUseDevicePtrClause>(NC);
4635   auto OrigVarIt = C.varlist_begin();
4636   auto InitIt = C.inits().begin();
4637   for (const Expr *PvtVarIt : C.private_copies()) {
4638     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
4639     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
4640     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
4641 
4642     // In order to identify the right initializer we need to match the
4643     // declaration used by the mapping logic. In some cases we may get
4644     // OMPCapturedExprDecl that refers to the original declaration.
4645     const ValueDecl *MatchingVD = OrigVD;
4646     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
4647       // OMPCapturedExprDecl are used to privative fields of the current
4648       // structure.
4649       const auto *ME = cast<MemberExpr>(OED->getInit());
4650       assert(isa<CXXThisExpr>(ME->getBase()) &&
4651              "Base should be the current struct!");
4652       MatchingVD = ME->getMemberDecl();
4653     }
4654 
4655     // If we don't have information about the current list item, move on to
4656     // the next one.
4657     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
4658     if (InitAddrIt == CaptureDeviceAddrMap.end())
4659       continue;
4660 
4661     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
4662                                                          InitAddrIt, InitVD,
4663                                                          PvtVD]() {
4664       // Initialize the temporary initialization variable with the address we
4665       // get from the runtime library. We have to cast the source address
4666       // because it is always a void *. References are materialized in the
4667       // privatization scope, so the initialization here disregards the fact
4668       // the original variable is a reference.
4669       QualType AddrQTy =
4670           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
4671       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
4672       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
4673       setAddrOfLocalVar(InitVD, InitAddr);
4674 
4675       // Emit private declaration, it will be initialized by the value we
4676       // declaration we just added to the local declarations map.
4677       EmitDecl(*PvtVD);
4678 
4679       // The initialization variables reached its purpose in the emission
4680       // of the previous declaration, so we don't need it anymore.
4681       LocalDeclMap.erase(InitVD);
4682 
4683       // Return the address of the private variable.
4684       return GetAddrOfLocalVar(PvtVD);
4685     });
4686     assert(IsRegistered && "firstprivate var already registered as private");
4687     // Silence the warning about unused variable.
4688     (void)IsRegistered;
4689 
4690     ++OrigVarIt;
4691     ++InitIt;
4692   }
4693 }
4694 
4695 // Generate the instructions for '#pragma omp target data' directive.
4696 void CodeGenFunction::EmitOMPTargetDataDirective(
4697     const OMPTargetDataDirective &S) {
4698   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
4699 
4700   // Create a pre/post action to signal the privatization of the device pointer.
4701   // This action can be replaced by the OpenMP runtime code generation to
4702   // deactivate privatization.
4703   bool PrivatizeDevicePointers = false;
4704   class DevicePointerPrivActionTy : public PrePostActionTy {
4705     bool &PrivatizeDevicePointers;
4706 
4707   public:
4708     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
4709         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
4710     void Enter(CodeGenFunction &CGF) override {
4711       PrivatizeDevicePointers = true;
4712     }
4713   };
4714   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
4715 
4716   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
4717                        CodeGenFunction &CGF, PrePostActionTy &Action) {
4718     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4719       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4720     };
4721 
4722     // Codegen that selects whether to generate the privatization code or not.
4723     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
4724                           &InnermostCodeGen](CodeGenFunction &CGF,
4725                                              PrePostActionTy &Action) {
4726       RegionCodeGenTy RCG(InnermostCodeGen);
4727       PrivatizeDevicePointers = false;
4728 
4729       // Call the pre-action to change the status of PrivatizeDevicePointers if
4730       // needed.
4731       Action.Enter(CGF);
4732 
4733       if (PrivatizeDevicePointers) {
4734         OMPPrivateScope PrivateScope(CGF);
4735         // Emit all instances of the use_device_ptr clause.
4736         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
4737           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
4738                                         Info.CaptureDeviceAddrMap);
4739         (void)PrivateScope.Privatize();
4740         RCG(CGF);
4741       } else {
4742         RCG(CGF);
4743       }
4744     };
4745 
4746     // Forward the provided action to the privatization codegen.
4747     RegionCodeGenTy PrivRCG(PrivCodeGen);
4748     PrivRCG.setAction(Action);
4749 
4750     // Notwithstanding the body of the region is emitted as inlined directive,
4751     // we don't use an inline scope as changes in the references inside the
4752     // region are expected to be visible outside, so we do not privative them.
4753     OMPLexicalScope Scope(CGF, S);
4754     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
4755                                                     PrivRCG);
4756   };
4757 
4758   RegionCodeGenTy RCG(CodeGen);
4759 
4760   // If we don't have target devices, don't bother emitting the data mapping
4761   // code.
4762   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
4763     RCG(*this);
4764     return;
4765   }
4766 
4767   // Check if we have any if clause associated with the directive.
4768   const Expr *IfCond = nullptr;
4769   if (const auto *C = S.getSingleClause<OMPIfClause>())
4770     IfCond = C->getCondition();
4771 
4772   // Check if we have any device clause associated with the directive.
4773   const Expr *Device = nullptr;
4774   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4775     Device = C->getDevice();
4776 
4777   // Set the action to signal privatization of device pointers.
4778   RCG.setAction(PrivAction);
4779 
4780   // Emit region code.
4781   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
4782                                              Info);
4783 }
4784 
4785 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
4786     const OMPTargetEnterDataDirective &S) {
4787   // If we don't have target devices, don't bother emitting the data mapping
4788   // code.
4789   if (CGM.getLangOpts().OMPTargetTriples.empty())
4790     return;
4791 
4792   // Check if we have any if clause associated with the directive.
4793   const Expr *IfCond = nullptr;
4794   if (const auto *C = S.getSingleClause<OMPIfClause>())
4795     IfCond = C->getCondition();
4796 
4797   // Check if we have any device clause associated with the directive.
4798   const Expr *Device = nullptr;
4799   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4800     Device = C->getDevice();
4801 
4802   OMPLexicalScope Scope(*this, S, OMPD_task);
4803   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4804 }
4805 
4806 void CodeGenFunction::EmitOMPTargetExitDataDirective(
4807     const OMPTargetExitDataDirective &S) {
4808   // If we don't have target devices, don't bother emitting the data mapping
4809   // code.
4810   if (CGM.getLangOpts().OMPTargetTriples.empty())
4811     return;
4812 
4813   // Check if we have any if clause associated with the directive.
4814   const Expr *IfCond = nullptr;
4815   if (const auto *C = S.getSingleClause<OMPIfClause>())
4816     IfCond = C->getCondition();
4817 
4818   // Check if we have any device clause associated with the directive.
4819   const Expr *Device = nullptr;
4820   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
4821     Device = C->getDevice();
4822 
4823   OMPLexicalScope Scope(*this, S, OMPD_task);
4824   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4825 }
4826 
4827 static void emitTargetParallelRegion(CodeGenFunction &CGF,
4828                                      const OMPTargetParallelDirective &S,
4829                                      PrePostActionTy &Action) {
4830   // Get the captured statement associated with the 'parallel' region.
4831   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
4832   Action.Enter(CGF);
4833   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4834     Action.Enter(CGF);
4835     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4836     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4837     CGF.EmitOMPPrivateClause(S, PrivateScope);
4838     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4839     (void)PrivateScope.Privatize();
4840     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4841       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4842     // TODO: Add support for clauses.
4843     CGF.EmitStmt(CS->getCapturedStmt());
4844     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
4845   };
4846   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
4847                                  emitEmptyBoundParameters);
4848   emitPostUpdateForReductionClause(CGF, S,
4849                                    [](CodeGenFunction &) { return nullptr; });
4850 }
4851 
4852 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
4853     CodeGenModule &CGM, StringRef ParentName,
4854     const OMPTargetParallelDirective &S) {
4855   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4856     emitTargetParallelRegion(CGF, S, Action);
4857   };
4858   llvm::Function *Fn;
4859   llvm::Constant *Addr;
4860   // Emit target region as a standalone region.
4861   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4862       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4863   assert(Fn && Addr && "Target device function emission failed.");
4864 }
4865 
4866 void CodeGenFunction::EmitOMPTargetParallelDirective(
4867     const OMPTargetParallelDirective &S) {
4868   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4869     emitTargetParallelRegion(CGF, S, Action);
4870   };
4871   emitCommonOMPTargetDirective(*this, S, CodeGen);
4872 }
4873 
4874 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
4875                                         const OMPTargetParallelForDirective &S,
4876                                         PrePostActionTy &Action) {
4877   Action.Enter(CGF);
4878   // Emit directive as a combined directive that consists of two implicit
4879   // directives: 'parallel' with 'for' directive.
4880   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4881     Action.Enter(CGF);
4882     CodeGenFunction::OMPCancelStackRAII CancelRegion(
4883         CGF, OMPD_target_parallel_for, S.hasCancel());
4884     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4885                                emitDispatchForLoopBounds);
4886   };
4887   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
4888                                  emitEmptyBoundParameters);
4889 }
4890 
4891 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
4892     CodeGenModule &CGM, StringRef ParentName,
4893     const OMPTargetParallelForDirective &S) {
4894   // Emit SPMD target parallel for region as a standalone region.
4895   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4896     emitTargetParallelForRegion(CGF, S, Action);
4897   };
4898   llvm::Function *Fn;
4899   llvm::Constant *Addr;
4900   // Emit target region as a standalone region.
4901   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4902       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4903   assert(Fn && Addr && "Target device function emission failed.");
4904 }
4905 
4906 void CodeGenFunction::EmitOMPTargetParallelForDirective(
4907     const OMPTargetParallelForDirective &S) {
4908   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4909     emitTargetParallelForRegion(CGF, S, Action);
4910   };
4911   emitCommonOMPTargetDirective(*this, S, CodeGen);
4912 }
4913 
4914 static void
4915 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
4916                                 const OMPTargetParallelForSimdDirective &S,
4917                                 PrePostActionTy &Action) {
4918   Action.Enter(CGF);
4919   // Emit directive as a combined directive that consists of two implicit
4920   // directives: 'parallel' with 'for' directive.
4921   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4922     Action.Enter(CGF);
4923     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
4924                                emitDispatchForLoopBounds);
4925   };
4926   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
4927                                  emitEmptyBoundParameters);
4928 }
4929 
4930 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
4931     CodeGenModule &CGM, StringRef ParentName,
4932     const OMPTargetParallelForSimdDirective &S) {
4933   // Emit SPMD target parallel for region as a standalone region.
4934   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4935     emitTargetParallelForSimdRegion(CGF, S, Action);
4936   };
4937   llvm::Function *Fn;
4938   llvm::Constant *Addr;
4939   // Emit target region as a standalone region.
4940   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4941       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4942   assert(Fn && Addr && "Target device function emission failed.");
4943 }
4944 
4945 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
4946     const OMPTargetParallelForSimdDirective &S) {
4947   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4948     emitTargetParallelForSimdRegion(CGF, S, Action);
4949   };
4950   emitCommonOMPTargetDirective(*this, S, CodeGen);
4951 }
4952 
4953 /// Emit a helper variable and return corresponding lvalue.
4954 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
4955                      const ImplicitParamDecl *PVD,
4956                      CodeGenFunction::OMPPrivateScope &Privates) {
4957   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
4958   Privates.addPrivate(VDecl,
4959                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
4960 }
4961 
4962 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
4963   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
4964   // Emit outlined function for task construct.
4965   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
4966   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4967   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4968   const Expr *IfCond = nullptr;
4969   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4970     if (C->getNameModifier() == OMPD_unknown ||
4971         C->getNameModifier() == OMPD_taskloop) {
4972       IfCond = C->getCondition();
4973       break;
4974     }
4975   }
4976 
4977   OMPTaskDataTy Data;
4978   // Check if taskloop must be emitted without taskgroup.
4979   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
4980   // TODO: Check if we should emit tied or untied task.
4981   Data.Tied = true;
4982   // Set scheduling for taskloop
4983   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
4984     // grainsize clause
4985     Data.Schedule.setInt(/*IntVal=*/false);
4986     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
4987   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
4988     // num_tasks clause
4989     Data.Schedule.setInt(/*IntVal=*/true);
4990     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
4991   }
4992 
4993   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
4994     // if (PreCond) {
4995     //   for (IV in 0..LastIteration) BODY;
4996     //   <Final counter/linear vars updates>;
4997     // }
4998     //
4999 
5000     // Emit: if (PreCond) - begin.
5001     // If the condition constant folds and can be elided, avoid emitting the
5002     // whole loop.
5003     bool CondConstant;
5004     llvm::BasicBlock *ContBlock = nullptr;
5005     OMPLoopScope PreInitScope(CGF, S);
5006     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
5007       if (!CondConstant)
5008         return;
5009     } else {
5010       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
5011       ContBlock = CGF.createBasicBlock("taskloop.if.end");
5012       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
5013                   CGF.getProfileCount(&S));
5014       CGF.EmitBlock(ThenBlock);
5015       CGF.incrementProfileCounter(&S);
5016     }
5017 
5018     if (isOpenMPSimdDirective(S.getDirectiveKind()))
5019       CGF.EmitOMPSimdInit(S);
5020 
5021     OMPPrivateScope LoopScope(CGF);
5022     // Emit helper vars inits.
5023     enum { LowerBound = 5, UpperBound, Stride, LastIter };
5024     auto *I = CS->getCapturedDecl()->param_begin();
5025     auto *LBP = std::next(I, LowerBound);
5026     auto *UBP = std::next(I, UpperBound);
5027     auto *STP = std::next(I, Stride);
5028     auto *LIP = std::next(I, LastIter);
5029     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
5030              LoopScope);
5031     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
5032              LoopScope);
5033     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
5034     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
5035              LoopScope);
5036     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
5037     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
5038     (void)LoopScope.Privatize();
5039     // Emit the loop iteration variable.
5040     const Expr *IVExpr = S.getIterationVariable();
5041     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
5042     CGF.EmitVarDecl(*IVDecl);
5043     CGF.EmitIgnoredExpr(S.getInit());
5044 
5045     // Emit the iterations count variable.
5046     // If it is not a variable, Sema decided to calculate iterations count on
5047     // each iteration (e.g., it is foldable into a constant).
5048     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
5049       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
5050       // Emit calculation of the iterations count.
5051       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
5052     }
5053 
5054     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
5055                          S.getInc(),
5056                          [&S](CodeGenFunction &CGF) {
5057                            CGF.EmitOMPLoopBody(S, JumpDest());
5058                            CGF.EmitStopPoint(&S);
5059                          },
5060                          [](CodeGenFunction &) {});
5061     // Emit: if (PreCond) - end.
5062     if (ContBlock) {
5063       CGF.EmitBranch(ContBlock);
5064       CGF.EmitBlock(ContBlock, true);
5065     }
5066     // Emit final copy of the lastprivate variables if IsLastIter != 0.
5067     if (HasLastprivateClause) {
5068       CGF.EmitOMPLastprivateClauseFinal(
5069           S, isOpenMPSimdDirective(S.getDirectiveKind()),
5070           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
5071               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
5072               (*LIP)->getType(), S.getBeginLoc())));
5073     }
5074   };
5075   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
5076                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
5077                             const OMPTaskDataTy &Data) {
5078     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
5079                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
5080       OMPLoopScope PreInitScope(CGF, S);
5081       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
5082                                                   OutlinedFn, SharedsTy,
5083                                                   CapturedStruct, IfCond, Data);
5084     };
5085     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
5086                                                     CodeGen);
5087   };
5088   if (Data.Nogroup) {
5089     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
5090   } else {
5091     CGM.getOpenMPRuntime().emitTaskgroupRegion(
5092         *this,
5093         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
5094                                         PrePostActionTy &Action) {
5095           Action.Enter(CGF);
5096           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
5097                                         Data);
5098         },
5099         S.getBeginLoc());
5100   }
5101 }
5102 
5103 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
5104   EmitOMPTaskLoopBasedDirective(S);
5105 }
5106 
5107 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
5108     const OMPTaskLoopSimdDirective &S) {
5109   EmitOMPTaskLoopBasedDirective(S);
5110 }
5111 
5112 // Generate the instructions for '#pragma omp target update' directive.
5113 void CodeGenFunction::EmitOMPTargetUpdateDirective(
5114     const OMPTargetUpdateDirective &S) {
5115   // If we don't have target devices, don't bother emitting the data mapping
5116   // code.
5117   if (CGM.getLangOpts().OMPTargetTriples.empty())
5118     return;
5119 
5120   // Check if we have any if clause associated with the directive.
5121   const Expr *IfCond = nullptr;
5122   if (const auto *C = S.getSingleClause<OMPIfClause>())
5123     IfCond = C->getCondition();
5124 
5125   // Check if we have any device clause associated with the directive.
5126   const Expr *Device = nullptr;
5127   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
5128     Device = C->getDevice();
5129 
5130   OMPLexicalScope Scope(*this, S, OMPD_task);
5131   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
5132 }
5133 
5134 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
5135     const OMPExecutableDirective &D) {
5136   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
5137     return;
5138   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
5139     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
5140       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
5141     } else {
5142       OMPPrivateScope LoopGlobals(CGF);
5143       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
5144         for (const Expr *E : LD->counters()) {
5145           const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
5146           if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) {
5147             LValue GlobLVal = CGF.EmitLValue(E);
5148             LoopGlobals.addPrivate(
5149                 VD, [&GlobLVal]() { return GlobLVal.getAddress(); });
5150           }
5151           if (isa<OMPCapturedExprDecl>(VD)) {
5152             // Emit only those that were not explicitly referenced in clauses.
5153             if (!CGF.LocalDeclMap.count(VD))
5154               CGF.EmitVarDecl(*VD);
5155           }
5156         }
5157         for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
5158           if (!C->getNumForLoops())
5159             continue;
5160           for (unsigned I = LD->getCollapsedNumber(),
5161                         E = C->getLoopNumIterations().size();
5162                I < E; ++I) {
5163             if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
5164                     cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
5165               // Emit only those that were not explicitly referenced in clauses.
5166               if (!CGF.LocalDeclMap.count(VD))
5167                 CGF.EmitVarDecl(*VD);
5168             }
5169           }
5170         }
5171       }
5172       LoopGlobals.Privatize();
5173       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
5174     }
5175   };
5176   OMPSimdLexicalScope Scope(*this, D);
5177   CGM.getOpenMPRuntime().emitInlinedDirective(
5178       *this,
5179       isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
5180                                                   : D.getDirectiveKind(),
5181       CodeGen);
5182 }
5183