1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCleanup.h" 15 #include "CGOpenMPRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "llvm/IR/CallSite.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 namespace { 27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 28 /// for captured expressions. 29 class OMPLexicalScope final : public CodeGenFunction::LexicalScope { 30 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 31 for (const auto *C : S.clauses()) { 32 if (auto *CPI = OMPClauseWithPreInit::get(C)) { 33 if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 34 for (const auto *I : PreInit->decls()) { 35 if (!I->hasAttr<OMPCaptureNoInitAttr>()) 36 CGF.EmitVarDecl(cast<VarDecl>(*I)); 37 else { 38 CodeGenFunction::AutoVarEmission Emission = 39 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 40 CGF.EmitAutoVarCleanups(Emission); 41 } 42 } 43 } 44 } 45 } 46 } 47 CodeGenFunction::OMPPrivateScope InlinedShareds; 48 49 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 50 return CGF.LambdaCaptureFields.lookup(VD) || 51 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 52 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 53 } 54 55 public: 56 OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 bool AsInlined = false) 58 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 59 InlinedShareds(CGF) { 60 emitPreInitStmt(CGF, S); 61 if (AsInlined) { 62 if (S.hasAssociatedStmt()) { 63 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 64 for (auto &C : CS->captures()) { 65 if (C.capturesVariable() || C.capturesVariableByCopy()) { 66 auto *VD = C.getCapturedVar(); 67 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 68 isCapturedVar(CGF, VD) || 69 (CGF.CapturedStmtInfo && 70 InlinedShareds.isGlobalVarCaptured(VD)), 71 VD->getType().getNonReferenceType(), VK_LValue, 72 SourceLocation()); 73 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 74 return CGF.EmitLValue(&DRE).getAddress(); 75 }); 76 } 77 } 78 (void)InlinedShareds.Privatize(); 79 } 80 } 81 } 82 }; 83 84 /// Private scope for OpenMP loop-based directives, that supports capturing 85 /// of used expression from loop statement. 86 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 87 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 88 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 89 if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) { 90 for (const auto *I : PreInits->decls()) 91 CGF.EmitVarDecl(cast<VarDecl>(*I)); 92 } 93 } 94 } 95 96 public: 97 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 98 : CodeGenFunction::RunCleanupsScope(CGF) { 99 emitPreInitStmt(CGF, S); 100 } 101 }; 102 103 } // namespace 104 105 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 106 auto &C = getContext(); 107 llvm::Value *Size = nullptr; 108 auto SizeInChars = C.getTypeSizeInChars(Ty); 109 if (SizeInChars.isZero()) { 110 // getTypeSizeInChars() returns 0 for a VLA. 111 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 112 llvm::Value *ArraySize; 113 std::tie(ArraySize, Ty) = getVLASize(VAT); 114 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 115 } 116 SizeInChars = C.getTypeSizeInChars(Ty); 117 if (SizeInChars.isZero()) 118 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 119 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 120 } else 121 Size = CGM.getSize(SizeInChars); 122 return Size; 123 } 124 125 void CodeGenFunction::GenerateOpenMPCapturedVars( 126 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 127 const RecordDecl *RD = S.getCapturedRecordDecl(); 128 auto CurField = RD->field_begin(); 129 auto CurCap = S.captures().begin(); 130 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 131 E = S.capture_init_end(); 132 I != E; ++I, ++CurField, ++CurCap) { 133 if (CurField->hasCapturedVLAType()) { 134 auto VAT = CurField->getCapturedVLAType(); 135 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 136 CapturedVars.push_back(Val); 137 } else if (CurCap->capturesThis()) 138 CapturedVars.push_back(CXXThisValue); 139 else if (CurCap->capturesVariableByCopy()) { 140 llvm::Value *CV = 141 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal(); 142 143 // If the field is not a pointer, we need to save the actual value 144 // and load it as a void pointer. 145 if (!CurField->getType()->isAnyPointerType()) { 146 auto &Ctx = getContext(); 147 auto DstAddr = CreateMemTemp( 148 Ctx.getUIntPtrType(), 149 Twine(CurCap->getCapturedVar()->getName()) + ".casted"); 150 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 151 152 auto *SrcAddrVal = EmitScalarConversion( 153 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 154 Ctx.getPointerType(CurField->getType()), SourceLocation()); 155 LValue SrcLV = 156 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 157 158 // Store the value using the source type pointer. 159 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 160 161 // Load the value using the destination type pointer. 162 CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal(); 163 } 164 CapturedVars.push_back(CV); 165 } else { 166 assert(CurCap->capturesVariable() && "Expected capture by reference."); 167 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 168 } 169 } 170 } 171 172 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 173 StringRef Name, LValue AddrLV, 174 bool isReferenceType = false) { 175 ASTContext &Ctx = CGF.getContext(); 176 177 auto *CastedPtr = CGF.EmitScalarConversion( 178 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 179 Ctx.getPointerType(DstType), SourceLocation()); 180 auto TmpAddr = 181 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 182 .getAddress(); 183 184 // If we are dealing with references we need to return the address of the 185 // reference instead of the reference of the value. 186 if (isReferenceType) { 187 QualType RefType = Ctx.getLValueReferenceType(DstType); 188 auto *RefVal = TmpAddr.getPointer(); 189 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 190 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 191 CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true); 192 } 193 194 return TmpAddr; 195 } 196 197 llvm::Function * 198 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 199 assert( 200 CapturedStmtInfo && 201 "CapturedStmtInfo should be set when generating the captured function"); 202 const CapturedDecl *CD = S.getCapturedDecl(); 203 const RecordDecl *RD = S.getCapturedRecordDecl(); 204 assert(CD->hasBody() && "missing CapturedDecl body"); 205 206 // Build the argument list. 207 ASTContext &Ctx = CGM.getContext(); 208 FunctionArgList Args; 209 Args.append(CD->param_begin(), 210 std::next(CD->param_begin(), CD->getContextParamPosition())); 211 auto I = S.captures().begin(); 212 for (auto *FD : RD->fields()) { 213 QualType ArgType = FD->getType(); 214 IdentifierInfo *II = nullptr; 215 VarDecl *CapVar = nullptr; 216 217 // If this is a capture by copy and the type is not a pointer, the outlined 218 // function argument type should be uintptr and the value properly casted to 219 // uintptr. This is necessary given that the runtime library is only able to 220 // deal with pointers. We can pass in the same way the VLA type sizes to the 221 // outlined function. 222 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 223 I->capturesVariableArrayType()) 224 ArgType = Ctx.getUIntPtrType(); 225 226 if (I->capturesVariable() || I->capturesVariableByCopy()) { 227 CapVar = I->getCapturedVar(); 228 II = CapVar->getIdentifier(); 229 } else if (I->capturesThis()) 230 II = &getContext().Idents.get("this"); 231 else { 232 assert(I->capturesVariableArrayType()); 233 II = &getContext().Idents.get("vla"); 234 } 235 if (ArgType->isVariablyModifiedType()) { 236 bool IsReference = ArgType->isLValueReferenceType(); 237 ArgType = 238 getContext().getCanonicalParamType(ArgType.getNonReferenceType()); 239 if (IsReference && !ArgType->isPointerType()) { 240 ArgType = getContext().getLValueReferenceType( 241 ArgType, /*SpelledAsLValue=*/false); 242 } 243 } 244 Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr, 245 FD->getLocation(), II, ArgType)); 246 ++I; 247 } 248 Args.append( 249 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 250 CD->param_end()); 251 252 // Create the function declaration. 253 FunctionType::ExtInfo ExtInfo; 254 const CGFunctionInfo &FuncInfo = 255 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 256 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 257 258 llvm::Function *F = llvm::Function::Create( 259 FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 260 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 261 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 262 if (CD->isNothrow()) 263 F->addFnAttr(llvm::Attribute::NoUnwind); 264 265 // Generate the function. 266 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 267 CD->getBody()->getLocStart()); 268 unsigned Cnt = CD->getContextParamPosition(); 269 I = S.captures().begin(); 270 for (auto *FD : RD->fields()) { 271 // If we are capturing a pointer by copy we don't need to do anything, just 272 // use the value that we get from the arguments. 273 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 274 const VarDecl *CurVD = I->getCapturedVar(); 275 Address LocalAddr = GetAddrOfLocalVar(Args[Cnt]); 276 // If the variable is a reference we need to materialize it here. 277 if (CurVD->getType()->isReferenceType()) { 278 Address RefAddr = CreateMemTemp(CurVD->getType(), getPointerAlign(), 279 ".materialized_ref"); 280 EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr, /*Volatile=*/false, 281 CurVD->getType()); 282 LocalAddr = RefAddr; 283 } 284 setAddrOfLocalVar(CurVD, LocalAddr); 285 ++Cnt; 286 ++I; 287 continue; 288 } 289 290 LValue ArgLVal = 291 MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(), 292 AlignmentSource::Decl); 293 if (FD->hasCapturedVLAType()) { 294 LValue CastedArgLVal = 295 MakeAddrLValue(castValueFromUintptr(*this, FD->getType(), 296 Args[Cnt]->getName(), ArgLVal), 297 FD->getType(), AlignmentSource::Decl); 298 auto *ExprArg = 299 EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal(); 300 auto VAT = FD->getCapturedVLAType(); 301 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 302 } else if (I->capturesVariable()) { 303 auto *Var = I->getCapturedVar(); 304 QualType VarTy = Var->getType(); 305 Address ArgAddr = ArgLVal.getAddress(); 306 if (!VarTy->isReferenceType()) { 307 if (ArgLVal.getType()->isLValueReferenceType()) { 308 ArgAddr = EmitLoadOfReference( 309 ArgAddr, ArgLVal.getType()->castAs<ReferenceType>()); 310 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 311 assert(ArgLVal.getType()->isPointerType()); 312 ArgAddr = EmitLoadOfPointer( 313 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 314 } 315 } 316 setAddrOfLocalVar( 317 Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var))); 318 } else if (I->capturesVariableByCopy()) { 319 assert(!FD->getType()->isAnyPointerType() && 320 "Not expecting a captured pointer."); 321 auto *Var = I->getCapturedVar(); 322 QualType VarTy = Var->getType(); 323 setAddrOfLocalVar(Var, castValueFromUintptr(*this, FD->getType(), 324 Args[Cnt]->getName(), ArgLVal, 325 VarTy->isReferenceType())); 326 } else { 327 // If 'this' is captured, load it into CXXThisValue. 328 assert(I->capturesThis()); 329 CXXThisValue = 330 EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal(); 331 } 332 ++Cnt; 333 ++I; 334 } 335 336 PGO.assignRegionCounters(GlobalDecl(CD), F); 337 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 338 FinishFunction(CD->getBodyRBrace()); 339 340 return F; 341 } 342 343 //===----------------------------------------------------------------------===// 344 // OpenMP Directive Emission 345 //===----------------------------------------------------------------------===// 346 void CodeGenFunction::EmitOMPAggregateAssign( 347 Address DestAddr, Address SrcAddr, QualType OriginalType, 348 const llvm::function_ref<void(Address, Address)> &CopyGen) { 349 // Perform element-by-element initialization. 350 QualType ElementTy; 351 352 // Drill down to the base element type on both arrays. 353 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 354 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 355 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 356 357 auto SrcBegin = SrcAddr.getPointer(); 358 auto DestBegin = DestAddr.getPointer(); 359 // Cast from pointer to array type to pointer to single element. 360 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 361 // The basic structure here is a while-do loop. 362 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 363 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 364 auto IsEmpty = 365 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 366 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 367 368 // Enter the loop body, making that address the current address. 369 auto EntryBB = Builder.GetInsertBlock(); 370 EmitBlock(BodyBB); 371 372 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 373 374 llvm::PHINode *SrcElementPHI = 375 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 376 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 377 Address SrcElementCurrent = 378 Address(SrcElementPHI, 379 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 380 381 llvm::PHINode *DestElementPHI = 382 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 383 DestElementPHI->addIncoming(DestBegin, EntryBB); 384 Address DestElementCurrent = 385 Address(DestElementPHI, 386 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 387 388 // Emit copy. 389 CopyGen(DestElementCurrent, SrcElementCurrent); 390 391 // Shift the address forward by one element. 392 auto DestElementNext = Builder.CreateConstGEP1_32( 393 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 394 auto SrcElementNext = Builder.CreateConstGEP1_32( 395 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 396 // Check whether we've reached the end. 397 auto Done = 398 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 399 Builder.CreateCondBr(Done, DoneBB, BodyBB); 400 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 401 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 402 403 // Done. 404 EmitBlock(DoneBB, /*IsFinished=*/true); 405 } 406 407 /// Check if the combiner is a call to UDR combiner and if it is so return the 408 /// UDR decl used for reduction. 409 static const OMPDeclareReductionDecl * 410 getReductionInit(const Expr *ReductionOp) { 411 if (auto *CE = dyn_cast<CallExpr>(ReductionOp)) 412 if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) 413 if (auto *DRE = 414 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) 415 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) 416 return DRD; 417 return nullptr; 418 } 419 420 static void emitInitWithReductionInitializer(CodeGenFunction &CGF, 421 const OMPDeclareReductionDecl *DRD, 422 const Expr *InitOp, 423 Address Private, Address Original, 424 QualType Ty) { 425 if (DRD->getInitializer()) { 426 std::pair<llvm::Function *, llvm::Function *> Reduction = 427 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); 428 auto *CE = cast<CallExpr>(InitOp); 429 auto *OVE = cast<OpaqueValueExpr>(CE->getCallee()); 430 const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); 431 const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); 432 auto *LHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr()); 433 auto *RHSDRE = cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr()); 434 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 435 PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), 436 [=]() -> Address { return Private; }); 437 PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), 438 [=]() -> Address { return Original; }); 439 (void)PrivateScope.Privatize(); 440 RValue Func = RValue::get(Reduction.second); 441 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); 442 CGF.EmitIgnoredExpr(InitOp); 443 } else { 444 llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); 445 auto *GV = new llvm::GlobalVariable( 446 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 447 llvm::GlobalValue::PrivateLinkage, Init, ".init"); 448 LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); 449 RValue InitRVal; 450 switch (CGF.getEvaluationKind(Ty)) { 451 case TEK_Scalar: 452 InitRVal = CGF.EmitLoadOfLValue(LV, SourceLocation()); 453 break; 454 case TEK_Complex: 455 InitRVal = 456 RValue::getComplex(CGF.EmitLoadOfComplex(LV, SourceLocation())); 457 break; 458 case TEK_Aggregate: 459 InitRVal = RValue::getAggregate(LV.getAddress()); 460 break; 461 } 462 OpaqueValueExpr OVE(SourceLocation(), Ty, VK_RValue); 463 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); 464 CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), 465 /*IsInitializer=*/false); 466 } 467 } 468 469 /// \brief Emit initialization of arrays of complex types. 470 /// \param DestAddr Address of the array. 471 /// \param Type Type of array. 472 /// \param Init Initial expression of array. 473 /// \param SrcAddr Address of the original array. 474 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, 475 QualType Type, const Expr *Init, 476 Address SrcAddr = Address::invalid()) { 477 auto *DRD = getReductionInit(Init); 478 // Perform element-by-element initialization. 479 QualType ElementTy; 480 481 // Drill down to the base element type on both arrays. 482 auto ArrayTy = Type->getAsArrayTypeUnsafe(); 483 auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); 484 DestAddr = 485 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); 486 if (DRD) 487 SrcAddr = 488 CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 489 490 llvm::Value *SrcBegin = nullptr; 491 if (DRD) 492 SrcBegin = SrcAddr.getPointer(); 493 auto DestBegin = DestAddr.getPointer(); 494 // Cast from pointer to array type to pointer to single element. 495 auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); 496 // The basic structure here is a while-do loop. 497 auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); 498 auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); 499 auto IsEmpty = 500 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); 501 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 502 503 // Enter the loop body, making that address the current address. 504 auto EntryBB = CGF.Builder.GetInsertBlock(); 505 CGF.EmitBlock(BodyBB); 506 507 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); 508 509 llvm::PHINode *SrcElementPHI = nullptr; 510 Address SrcElementCurrent = Address::invalid(); 511 if (DRD) { 512 SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, 513 "omp.arraycpy.srcElementPast"); 514 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 515 SrcElementCurrent = 516 Address(SrcElementPHI, 517 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 518 } 519 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( 520 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 521 DestElementPHI->addIncoming(DestBegin, EntryBB); 522 Address DestElementCurrent = 523 Address(DestElementPHI, 524 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 525 526 // Emit copy. 527 { 528 CodeGenFunction::RunCleanupsScope InitScope(CGF); 529 if (DRD && (DRD->getInitializer() || !Init)) { 530 emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, 531 SrcElementCurrent, ElementTy); 532 } else 533 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), 534 /*IsInitializer=*/false); 535 } 536 537 if (DRD) { 538 // Shift the address forward by one element. 539 auto SrcElementNext = CGF.Builder.CreateConstGEP1_32( 540 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 541 SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); 542 } 543 544 // Shift the address forward by one element. 545 auto DestElementNext = CGF.Builder.CreateConstGEP1_32( 546 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 547 // Check whether we've reached the end. 548 auto Done = 549 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 550 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); 551 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); 552 553 // Done. 554 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 555 } 556 557 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 558 Address SrcAddr, const VarDecl *DestVD, 559 const VarDecl *SrcVD, const Expr *Copy) { 560 if (OriginalType->isArrayType()) { 561 auto *BO = dyn_cast<BinaryOperator>(Copy); 562 if (BO && BO->getOpcode() == BO_Assign) { 563 // Perform simple memcpy for simple copying. 564 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 565 } else { 566 // For arrays with complex element types perform element by element 567 // copying. 568 EmitOMPAggregateAssign( 569 DestAddr, SrcAddr, OriginalType, 570 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 571 // Working with the single array element, so have to remap 572 // destination and source variables to corresponding array 573 // elements. 574 CodeGenFunction::OMPPrivateScope Remap(*this); 575 Remap.addPrivate(DestVD, [DestElement]() -> Address { 576 return DestElement; 577 }); 578 Remap.addPrivate( 579 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 580 (void)Remap.Privatize(); 581 EmitIgnoredExpr(Copy); 582 }); 583 } 584 } else { 585 // Remap pseudo source variable to private copy. 586 CodeGenFunction::OMPPrivateScope Remap(*this); 587 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 588 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 589 (void)Remap.Privatize(); 590 // Emit copying of the whole variable. 591 EmitIgnoredExpr(Copy); 592 } 593 } 594 595 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 596 OMPPrivateScope &PrivateScope) { 597 if (!HaveInsertPoint()) 598 return false; 599 bool FirstprivateIsLastprivate = false; 600 llvm::DenseSet<const VarDecl *> Lastprivates; 601 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 602 for (const auto *D : C->varlists()) 603 Lastprivates.insert( 604 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 605 } 606 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 607 CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt())); 608 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 609 auto IRef = C->varlist_begin(); 610 auto InitsRef = C->inits().begin(); 611 for (auto IInit : C->private_copies()) { 612 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 613 bool ThisFirstprivateIsLastprivate = 614 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 615 auto *CapFD = CapturesInfo.lookup(OrigVD); 616 auto *FD = CapturedStmtInfo->lookup(OrigVD); 617 if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) && 618 !FD->getType()->isReferenceType()) { 619 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 620 ++IRef; 621 ++InitsRef; 622 continue; 623 } 624 FirstprivateIsLastprivate = 625 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 626 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 627 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 628 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 629 bool IsRegistered; 630 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 631 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 632 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 633 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 634 QualType Type = VD->getType(); 635 if (Type->isArrayType()) { 636 // Emit VarDecl with copy init for arrays. 637 // Get the address of the original variable captured in current 638 // captured region. 639 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 640 auto Emission = EmitAutoVarAlloca(*VD); 641 auto *Init = VD->getInit(); 642 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 643 // Perform simple memcpy. 644 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 645 Type); 646 } else { 647 EmitOMPAggregateAssign( 648 Emission.getAllocatedAddress(), OriginalAddr, Type, 649 [this, VDInit, Init](Address DestElement, 650 Address SrcElement) { 651 // Clean up any temporaries needed by the initialization. 652 RunCleanupsScope InitScope(*this); 653 // Emit initialization for single element. 654 setAddrOfLocalVar(VDInit, SrcElement); 655 EmitAnyExprToMem(Init, DestElement, 656 Init->getType().getQualifiers(), 657 /*IsInitializer*/ false); 658 LocalDeclMap.erase(VDInit); 659 }); 660 } 661 EmitAutoVarCleanups(Emission); 662 return Emission.getAllocatedAddress(); 663 }); 664 } else { 665 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 666 // Emit private VarDecl with copy init. 667 // Remap temp VDInit variable to the address of the original 668 // variable 669 // (for proper handling of captured global variables). 670 setAddrOfLocalVar(VDInit, OriginalAddr); 671 EmitDecl(*VD); 672 LocalDeclMap.erase(VDInit); 673 return GetAddrOfLocalVar(VD); 674 }); 675 } 676 assert(IsRegistered && 677 "firstprivate var already registered as private"); 678 // Silence the warning about unused variable. 679 (void)IsRegistered; 680 } 681 ++IRef; 682 ++InitsRef; 683 } 684 } 685 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 686 } 687 688 void CodeGenFunction::EmitOMPPrivateClause( 689 const OMPExecutableDirective &D, 690 CodeGenFunction::OMPPrivateScope &PrivateScope) { 691 if (!HaveInsertPoint()) 692 return; 693 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 694 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 695 auto IRef = C->varlist_begin(); 696 for (auto IInit : C->private_copies()) { 697 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 698 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 699 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 700 bool IsRegistered = 701 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 702 // Emit private VarDecl with copy init. 703 EmitDecl(*VD); 704 return GetAddrOfLocalVar(VD); 705 }); 706 assert(IsRegistered && "private var already registered as private"); 707 // Silence the warning about unused variable. 708 (void)IsRegistered; 709 } 710 ++IRef; 711 } 712 } 713 } 714 715 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 716 if (!HaveInsertPoint()) 717 return false; 718 // threadprivate_var1 = master_threadprivate_var1; 719 // operator=(threadprivate_var2, master_threadprivate_var2); 720 // ... 721 // __kmpc_barrier(&loc, global_tid); 722 llvm::DenseSet<const VarDecl *> CopiedVars; 723 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 724 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 725 auto IRef = C->varlist_begin(); 726 auto ISrcRef = C->source_exprs().begin(); 727 auto IDestRef = C->destination_exprs().begin(); 728 for (auto *AssignOp : C->assignment_ops()) { 729 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 730 QualType Type = VD->getType(); 731 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 732 // Get the address of the master variable. If we are emitting code with 733 // TLS support, the address is passed from the master as field in the 734 // captured declaration. 735 Address MasterAddr = Address::invalid(); 736 if (getLangOpts().OpenMPUseTLS && 737 getContext().getTargetInfo().isTLSSupported()) { 738 assert(CapturedStmtInfo->lookup(VD) && 739 "Copyin threadprivates should have been captured!"); 740 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 741 VK_LValue, (*IRef)->getExprLoc()); 742 MasterAddr = EmitLValue(&DRE).getAddress(); 743 LocalDeclMap.erase(VD); 744 } else { 745 MasterAddr = 746 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 747 : CGM.GetAddrOfGlobal(VD), 748 getContext().getDeclAlign(VD)); 749 } 750 // Get the address of the threadprivate variable. 751 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 752 if (CopiedVars.size() == 1) { 753 // At first check if current thread is a master thread. If it is, no 754 // need to copy data. 755 CopyBegin = createBasicBlock("copyin.not.master"); 756 CopyEnd = createBasicBlock("copyin.not.master.end"); 757 Builder.CreateCondBr( 758 Builder.CreateICmpNE( 759 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 760 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 761 CopyBegin, CopyEnd); 762 EmitBlock(CopyBegin); 763 } 764 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 765 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 766 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 767 } 768 ++IRef; 769 ++ISrcRef; 770 ++IDestRef; 771 } 772 } 773 if (CopyEnd) { 774 // Exit out of copying procedure for non-master thread. 775 EmitBlock(CopyEnd, /*IsFinished=*/true); 776 return true; 777 } 778 return false; 779 } 780 781 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 782 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 783 if (!HaveInsertPoint()) 784 return false; 785 bool HasAtLeastOneLastprivate = false; 786 llvm::DenseSet<const VarDecl *> SIMDLCVs; 787 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 788 auto *LoopDirective = cast<OMPLoopDirective>(&D); 789 for (auto *C : LoopDirective->counters()) { 790 SIMDLCVs.insert( 791 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 792 } 793 } 794 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 795 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 796 HasAtLeastOneLastprivate = true; 797 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) 798 break; 799 auto IRef = C->varlist_begin(); 800 auto IDestRef = C->destination_exprs().begin(); 801 for (auto *IInit : C->private_copies()) { 802 // Keep the address of the original variable for future update at the end 803 // of the loop. 804 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 805 // Taskloops do not require additional initialization, it is done in 806 // runtime support library. 807 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 808 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 809 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 810 DeclRefExpr DRE( 811 const_cast<VarDecl *>(OrigVD), 812 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 813 OrigVD) != nullptr, 814 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 815 return EmitLValue(&DRE).getAddress(); 816 }); 817 // Check if the variable is also a firstprivate: in this case IInit is 818 // not generated. Initialization of this variable will happen in codegen 819 // for 'firstprivate' clause. 820 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 821 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 822 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 823 // Emit private VarDecl with copy init. 824 EmitDecl(*VD); 825 return GetAddrOfLocalVar(VD); 826 }); 827 assert(IsRegistered && 828 "lastprivate var already registered as private"); 829 (void)IsRegistered; 830 } 831 } 832 ++IRef; 833 ++IDestRef; 834 } 835 } 836 return HasAtLeastOneLastprivate; 837 } 838 839 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 840 const OMPExecutableDirective &D, bool NoFinals, 841 llvm::Value *IsLastIterCond) { 842 if (!HaveInsertPoint()) 843 return; 844 // Emit following code: 845 // if (<IsLastIterCond>) { 846 // orig_var1 = private_orig_var1; 847 // ... 848 // orig_varn = private_orig_varn; 849 // } 850 llvm::BasicBlock *ThenBB = nullptr; 851 llvm::BasicBlock *DoneBB = nullptr; 852 if (IsLastIterCond) { 853 ThenBB = createBasicBlock(".omp.lastprivate.then"); 854 DoneBB = createBasicBlock(".omp.lastprivate.done"); 855 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 856 EmitBlock(ThenBB); 857 } 858 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 859 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 860 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 861 auto IC = LoopDirective->counters().begin(); 862 for (auto F : LoopDirective->finals()) { 863 auto *D = 864 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 865 if (NoFinals) 866 AlreadyEmittedVars.insert(D); 867 else 868 LoopCountersAndUpdates[D] = F; 869 ++IC; 870 } 871 } 872 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 873 auto IRef = C->varlist_begin(); 874 auto ISrcRef = C->source_exprs().begin(); 875 auto IDestRef = C->destination_exprs().begin(); 876 for (auto *AssignOp : C->assignment_ops()) { 877 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 878 QualType Type = PrivateVD->getType(); 879 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 880 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 881 // If lastprivate variable is a loop control variable for loop-based 882 // directive, update its value before copyin back to original 883 // variable. 884 if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 885 EmitIgnoredExpr(FinalExpr); 886 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 887 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 888 // Get the address of the original variable. 889 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 890 // Get the address of the private variable. 891 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 892 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 893 PrivateAddr = 894 Address(Builder.CreateLoad(PrivateAddr), 895 getNaturalTypeAlignment(RefTy->getPointeeType())); 896 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 897 } 898 ++IRef; 899 ++ISrcRef; 900 ++IDestRef; 901 } 902 if (auto *PostUpdate = C->getPostUpdateExpr()) 903 EmitIgnoredExpr(PostUpdate); 904 } 905 if (IsLastIterCond) 906 EmitBlock(DoneBB, /*IsFinished=*/true); 907 } 908 909 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 910 LValue BaseLV, llvm::Value *Addr) { 911 Address Tmp = Address::invalid(); 912 Address TopTmp = Address::invalid(); 913 Address MostTopTmp = Address::invalid(); 914 BaseTy = BaseTy.getNonReferenceType(); 915 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 916 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 917 Tmp = CGF.CreateMemTemp(BaseTy); 918 if (TopTmp.isValid()) 919 CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); 920 else 921 MostTopTmp = Tmp; 922 TopTmp = Tmp; 923 BaseTy = BaseTy->getPointeeType(); 924 } 925 llvm::Type *Ty = BaseLV.getPointer()->getType(); 926 if (Tmp.isValid()) 927 Ty = Tmp.getElementType(); 928 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); 929 if (Tmp.isValid()) { 930 CGF.Builder.CreateStore(Addr, Tmp); 931 return MostTopTmp; 932 } 933 return Address(Addr, BaseLV.getAlignment()); 934 } 935 936 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 937 LValue BaseLV) { 938 BaseTy = BaseTy.getNonReferenceType(); 939 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 940 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 941 if (auto *PtrTy = BaseTy->getAs<PointerType>()) 942 BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy); 943 else { 944 BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(), 945 BaseTy->castAs<ReferenceType>()); 946 } 947 BaseTy = BaseTy->getPointeeType(); 948 } 949 return CGF.MakeAddrLValue( 950 Address( 951 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 952 BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()), 953 BaseLV.getAlignment()), 954 BaseLV.getType(), BaseLV.getAlignmentSource()); 955 } 956 957 void CodeGenFunction::EmitOMPReductionClauseInit( 958 const OMPExecutableDirective &D, 959 CodeGenFunction::OMPPrivateScope &PrivateScope) { 960 if (!HaveInsertPoint()) 961 return; 962 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 963 auto ILHS = C->lhs_exprs().begin(); 964 auto IRHS = C->rhs_exprs().begin(); 965 auto IPriv = C->privates().begin(); 966 auto IRed = C->reduction_ops().begin(); 967 for (auto IRef : C->varlists()) { 968 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 969 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 970 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 971 auto *DRD = getReductionInit(*IRed); 972 if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) { 973 auto *Base = OASE->getBase()->IgnoreParenImpCasts(); 974 while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 975 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 976 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 977 Base = TempASE->getBase()->IgnoreParenImpCasts(); 978 auto *DE = cast<DeclRefExpr>(Base); 979 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 980 auto OASELValueLB = EmitOMPArraySectionExpr(OASE); 981 auto OASELValueUB = 982 EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); 983 auto OriginalBaseLValue = EmitLValue(DE); 984 LValue BaseLValue = 985 loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(), 986 OriginalBaseLValue); 987 // Store the address of the original variable associated with the LHS 988 // implicit variable. 989 PrivateScope.addPrivate(LHSVD, [OASELValueLB]() -> Address { 990 return OASELValueLB.getAddress(); 991 }); 992 // Emit reduction copy. 993 bool IsRegistered = PrivateScope.addPrivate( 994 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB, 995 OASELValueUB, OriginalBaseLValue, DRD, IRed]() -> Address { 996 // Emit VarDecl with copy init for arrays. 997 // Get the address of the original variable captured in current 998 // captured region. 999 auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(), 1000 OASELValueLB.getPointer()); 1001 Size = Builder.CreateNUWAdd( 1002 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); 1003 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1004 *this, cast<OpaqueValueExpr>( 1005 getContext() 1006 .getAsVariableArrayType(PrivateVD->getType()) 1007 ->getSizeExpr()), 1008 RValue::get(Size)); 1009 EmitVariablyModifiedType(PrivateVD->getType()); 1010 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1011 auto Addr = Emission.getAllocatedAddress(); 1012 auto *Init = PrivateVD->getInit(); 1013 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1014 DRD ? *IRed : Init, 1015 OASELValueLB.getAddress()); 1016 EmitAutoVarCleanups(Emission); 1017 // Emit private VarDecl with reduction init. 1018 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1019 OASELValueLB.getPointer()); 1020 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1021 return castToBase(*this, OrigVD->getType(), 1022 OASELValueLB.getType(), OriginalBaseLValue, 1023 Ptr); 1024 }); 1025 assert(IsRegistered && "private var already registered as private"); 1026 // Silence the warning about unused variable. 1027 (void)IsRegistered; 1028 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1029 return GetAddrOfLocalVar(PrivateVD); 1030 }); 1031 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) { 1032 auto *Base = ASE->getBase()->IgnoreParenImpCasts(); 1033 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 1034 Base = TempASE->getBase()->IgnoreParenImpCasts(); 1035 auto *DE = cast<DeclRefExpr>(Base); 1036 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 1037 auto ASELValue = EmitLValue(ASE); 1038 auto OriginalBaseLValue = EmitLValue(DE); 1039 LValue BaseLValue = loadToBegin( 1040 *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue); 1041 // Store the address of the original variable associated with the LHS 1042 // implicit variable. 1043 PrivateScope.addPrivate( 1044 LHSVD, [ASELValue]() -> Address { return ASELValue.getAddress(); }); 1045 // Emit reduction copy. 1046 bool IsRegistered = PrivateScope.addPrivate( 1047 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue, 1048 OriginalBaseLValue, DRD, IRed]() -> Address { 1049 // Emit private VarDecl with reduction init. 1050 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1051 auto Addr = Emission.getAllocatedAddress(); 1052 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1053 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1054 ASELValue.getAddress(), 1055 ASELValue.getType()); 1056 } else 1057 EmitAutoVarInit(Emission); 1058 EmitAutoVarCleanups(Emission); 1059 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 1060 ASELValue.getPointer()); 1061 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 1062 return castToBase(*this, OrigVD->getType(), ASELValue.getType(), 1063 OriginalBaseLValue, Ptr); 1064 }); 1065 assert(IsRegistered && "private var already registered as private"); 1066 // Silence the warning about unused variable. 1067 (void)IsRegistered; 1068 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1069 return Builder.CreateElementBitCast( 1070 GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()), 1071 "rhs.begin"); 1072 }); 1073 } else { 1074 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 1075 QualType Type = PrivateVD->getType(); 1076 if (getContext().getAsArrayType(Type)) { 1077 // Store the address of the original variable associated with the LHS 1078 // implicit variable. 1079 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1080 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1081 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1082 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 1083 PrivateScope.addPrivate(LHSVD, [this, &OriginalAddr, 1084 LHSVD]() -> Address { 1085 OriginalAddr = Builder.CreateElementBitCast( 1086 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1087 return OriginalAddr; 1088 }); 1089 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 1090 if (Type->isVariablyModifiedType()) { 1091 CodeGenFunction::OpaqueValueMapping OpaqueMap( 1092 *this, cast<OpaqueValueExpr>( 1093 getContext() 1094 .getAsVariableArrayType(PrivateVD->getType()) 1095 ->getSizeExpr()), 1096 RValue::get( 1097 getTypeSize(OrigVD->getType().getNonReferenceType()))); 1098 EmitVariablyModifiedType(Type); 1099 } 1100 auto Emission = EmitAutoVarAlloca(*PrivateVD); 1101 auto Addr = Emission.getAllocatedAddress(); 1102 auto *Init = PrivateVD->getInit(); 1103 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), 1104 DRD ? *IRed : Init, OriginalAddr); 1105 EmitAutoVarCleanups(Emission); 1106 return Emission.getAllocatedAddress(); 1107 }); 1108 assert(IsRegistered && "private var already registered as private"); 1109 // Silence the warning about unused variable. 1110 (void)IsRegistered; 1111 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 1112 return Builder.CreateElementBitCast( 1113 GetAddrOfLocalVar(PrivateVD), 1114 ConvertTypeForMem(RHSVD->getType()), "rhs.begin"); 1115 }); 1116 } else { 1117 // Store the address of the original variable associated with the LHS 1118 // implicit variable. 1119 Address OriginalAddr = Address::invalid(); 1120 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef, 1121 &OriginalAddr]() -> Address { 1122 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1123 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1124 IRef->getType(), VK_LValue, IRef->getExprLoc()); 1125 OriginalAddr = EmitLValue(&DRE).getAddress(); 1126 return OriginalAddr; 1127 }); 1128 // Emit reduction copy. 1129 bool IsRegistered = PrivateScope.addPrivate( 1130 OrigVD, [this, PrivateVD, OriginalAddr, DRD, IRed]() -> Address { 1131 // Emit private VarDecl with reduction init. 1132 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1133 auto Addr = Emission.getAllocatedAddress(); 1134 if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { 1135 emitInitWithReductionInitializer(*this, DRD, *IRed, Addr, 1136 OriginalAddr, 1137 PrivateVD->getType()); 1138 } else 1139 EmitAutoVarInit(Emission); 1140 EmitAutoVarCleanups(Emission); 1141 return Addr; 1142 }); 1143 assert(IsRegistered && "private var already registered as private"); 1144 // Silence the warning about unused variable. 1145 (void)IsRegistered; 1146 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 1147 return GetAddrOfLocalVar(PrivateVD); 1148 }); 1149 } 1150 } 1151 ++ILHS; 1152 ++IRHS; 1153 ++IPriv; 1154 ++IRed; 1155 } 1156 } 1157 } 1158 1159 void CodeGenFunction::EmitOMPReductionClauseFinal( 1160 const OMPExecutableDirective &D) { 1161 if (!HaveInsertPoint()) 1162 return; 1163 llvm::SmallVector<const Expr *, 8> Privates; 1164 llvm::SmallVector<const Expr *, 8> LHSExprs; 1165 llvm::SmallVector<const Expr *, 8> RHSExprs; 1166 llvm::SmallVector<const Expr *, 8> ReductionOps; 1167 bool HasAtLeastOneReduction = false; 1168 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1169 HasAtLeastOneReduction = true; 1170 Privates.append(C->privates().begin(), C->privates().end()); 1171 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1172 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1173 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1174 } 1175 if (HasAtLeastOneReduction) { 1176 // Emit nowait reduction if nowait clause is present or directive is a 1177 // parallel directive (it always has implicit barrier). 1178 CGM.getOpenMPRuntime().emitReduction( 1179 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 1180 D.getSingleClause<OMPNowaitClause>() || 1181 isOpenMPParallelDirective(D.getDirectiveKind()) || 1182 D.getDirectiveKind() == OMPD_simd, 1183 D.getDirectiveKind() == OMPD_simd); 1184 } 1185 } 1186 1187 static void emitPostUpdateForReductionClause( 1188 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1189 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1190 if (!CGF.HaveInsertPoint()) 1191 return; 1192 llvm::BasicBlock *DoneBB = nullptr; 1193 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1194 if (auto *PostUpdate = C->getPostUpdateExpr()) { 1195 if (!DoneBB) { 1196 if (auto *Cond = CondGen(CGF)) { 1197 // If the first post-update expression is found, emit conditional 1198 // block if it was requested. 1199 auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1200 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1201 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1202 CGF.EmitBlock(ThenBB); 1203 } 1204 } 1205 CGF.EmitIgnoredExpr(PostUpdate); 1206 } 1207 } 1208 if (DoneBB) 1209 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1210 } 1211 1212 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 1213 const OMPExecutableDirective &S, 1214 OpenMPDirectiveKind InnermostKind, 1215 const RegionCodeGenTy &CodeGen) { 1216 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1217 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1218 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1219 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1220 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1221 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1222 /*IgnoreResultAssign*/ true); 1223 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1224 CGF, NumThreads, NumThreadsClause->getLocStart()); 1225 } 1226 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1227 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1228 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1229 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 1230 } 1231 const Expr *IfCond = nullptr; 1232 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1233 if (C->getNameModifier() == OMPD_unknown || 1234 C->getNameModifier() == OMPD_parallel) { 1235 IfCond = C->getCondition(); 1236 break; 1237 } 1238 } 1239 1240 OMPLexicalScope Scope(CGF, S); 1241 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1242 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1243 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 1244 CapturedVars, IfCond); 1245 } 1246 1247 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1248 // Emit parallel region as a standalone region. 1249 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1250 OMPPrivateScope PrivateScope(CGF); 1251 bool Copyins = CGF.EmitOMPCopyinClause(S); 1252 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1253 if (Copyins) { 1254 // Emit implicit barrier to synchronize threads and avoid data races on 1255 // propagation master's thread values of threadprivate variables to local 1256 // instances of that variables of all other implicit threads. 1257 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1258 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1259 /*ForceSimpleCall=*/true); 1260 } 1261 CGF.EmitOMPPrivateClause(S, PrivateScope); 1262 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1263 (void)PrivateScope.Privatize(); 1264 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1265 CGF.EmitOMPReductionClauseFinal(S); 1266 }; 1267 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 1268 emitPostUpdateForReductionClause( 1269 *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1270 } 1271 1272 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1273 JumpDest LoopExit) { 1274 RunCleanupsScope BodyScope(*this); 1275 // Update counters values on current iteration. 1276 for (auto I : D.updates()) { 1277 EmitIgnoredExpr(I); 1278 } 1279 // Update the linear variables. 1280 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1281 for (auto *U : C->updates()) 1282 EmitIgnoredExpr(U); 1283 } 1284 1285 // On a continue in the body, jump to the end. 1286 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1287 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1288 // Emit loop body. 1289 EmitStmt(D.getBody()); 1290 // The end (updates/cleanups). 1291 EmitBlock(Continue.getBlock()); 1292 BreakContinueStack.pop_back(); 1293 } 1294 1295 void CodeGenFunction::EmitOMPInnerLoop( 1296 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1297 const Expr *IncExpr, 1298 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1299 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1300 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1301 1302 // Start the loop with a block that tests the condition. 1303 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1304 EmitBlock(CondBlock); 1305 const SourceRange &R = S.getSourceRange(); 1306 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1307 SourceLocToDebugLoc(R.getEnd())); 1308 1309 // If there are any cleanups between here and the loop-exit scope, 1310 // create a block to stage a loop exit along. 1311 auto ExitBlock = LoopExit.getBlock(); 1312 if (RequiresCleanup) 1313 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1314 1315 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1316 1317 // Emit condition. 1318 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1319 if (ExitBlock != LoopExit.getBlock()) { 1320 EmitBlock(ExitBlock); 1321 EmitBranchThroughCleanup(LoopExit); 1322 } 1323 1324 EmitBlock(LoopBody); 1325 incrementProfileCounter(&S); 1326 1327 // Create a block for the increment. 1328 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1329 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1330 1331 BodyGen(*this); 1332 1333 // Emit "IV = IV + 1" and a back-edge to the condition block. 1334 EmitBlock(Continue.getBlock()); 1335 EmitIgnoredExpr(IncExpr); 1336 PostIncGen(*this); 1337 BreakContinueStack.pop_back(); 1338 EmitBranch(CondBlock); 1339 LoopStack.pop(); 1340 // Emit the fall-through block. 1341 EmitBlock(LoopExit.getBlock()); 1342 } 1343 1344 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1345 if (!HaveInsertPoint()) 1346 return; 1347 // Emit inits for the linear variables. 1348 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1349 for (auto *Init : C->inits()) { 1350 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1351 if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1352 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1353 auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1354 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1355 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1356 VD->getInit()->getType(), VK_LValue, 1357 VD->getInit()->getExprLoc()); 1358 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1359 VD->getType()), 1360 /*capturedByInit=*/false); 1361 EmitAutoVarCleanups(Emission); 1362 } else 1363 EmitVarDecl(*VD); 1364 } 1365 // Emit the linear steps for the linear clauses. 1366 // If a step is not constant, it is pre-calculated before the loop. 1367 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1368 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1369 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1370 // Emit calculation of the linear step. 1371 EmitIgnoredExpr(CS); 1372 } 1373 } 1374 } 1375 1376 void CodeGenFunction::EmitOMPLinearClauseFinal( 1377 const OMPLoopDirective &D, 1378 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1379 if (!HaveInsertPoint()) 1380 return; 1381 llvm::BasicBlock *DoneBB = nullptr; 1382 // Emit the final values of the linear variables. 1383 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1384 auto IC = C->varlist_begin(); 1385 for (auto *F : C->finals()) { 1386 if (!DoneBB) { 1387 if (auto *Cond = CondGen(*this)) { 1388 // If the first post-update expression is found, emit conditional 1389 // block if it was requested. 1390 auto *ThenBB = createBasicBlock(".omp.linear.pu"); 1391 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1392 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1393 EmitBlock(ThenBB); 1394 } 1395 } 1396 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1397 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1398 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1399 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1400 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1401 CodeGenFunction::OMPPrivateScope VarScope(*this); 1402 VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; }); 1403 (void)VarScope.Privatize(); 1404 EmitIgnoredExpr(F); 1405 ++IC; 1406 } 1407 if (auto *PostUpdate = C->getPostUpdateExpr()) 1408 EmitIgnoredExpr(PostUpdate); 1409 } 1410 if (DoneBB) 1411 EmitBlock(DoneBB, /*IsFinished=*/true); 1412 } 1413 1414 static void emitAlignedClause(CodeGenFunction &CGF, 1415 const OMPExecutableDirective &D) { 1416 if (!CGF.HaveInsertPoint()) 1417 return; 1418 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1419 unsigned ClauseAlignment = 0; 1420 if (auto AlignmentExpr = Clause->getAlignment()) { 1421 auto AlignmentCI = 1422 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1423 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1424 } 1425 for (auto E : Clause->varlists()) { 1426 unsigned Alignment = ClauseAlignment; 1427 if (Alignment == 0) { 1428 // OpenMP [2.8.1, Description] 1429 // If no optional parameter is specified, implementation-defined default 1430 // alignments for SIMD instructions on the target platforms are assumed. 1431 Alignment = 1432 CGF.getContext() 1433 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1434 E->getType()->getPointeeType())) 1435 .getQuantity(); 1436 } 1437 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1438 "alignment is not power of 2"); 1439 if (Alignment != 0) { 1440 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1441 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1442 } 1443 } 1444 } 1445 } 1446 1447 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1448 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1449 if (!HaveInsertPoint()) 1450 return; 1451 auto I = S.private_counters().begin(); 1452 for (auto *E : S.counters()) { 1453 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1454 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1455 (void)LoopScope.addPrivate(VD, [&]() -> Address { 1456 // Emit var without initialization. 1457 if (!LocalDeclMap.count(PrivateVD)) { 1458 auto VarEmission = EmitAutoVarAlloca(*PrivateVD); 1459 EmitAutoVarCleanups(VarEmission); 1460 } 1461 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1462 /*RefersToEnclosingVariableOrCapture=*/false, 1463 (*I)->getType(), VK_LValue, (*I)->getExprLoc()); 1464 return EmitLValue(&DRE).getAddress(); 1465 }); 1466 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1467 VD->hasGlobalStorage()) { 1468 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1469 DeclRefExpr DRE(const_cast<VarDecl *>(VD), 1470 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1471 E->getType(), VK_LValue, E->getExprLoc()); 1472 return EmitLValue(&DRE).getAddress(); 1473 }); 1474 } 1475 ++I; 1476 } 1477 } 1478 1479 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1480 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1481 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1482 if (!CGF.HaveInsertPoint()) 1483 return; 1484 { 1485 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1486 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1487 (void)PreCondScope.Privatize(); 1488 // Get initial values of real counters. 1489 for (auto I : S.inits()) { 1490 CGF.EmitIgnoredExpr(I); 1491 } 1492 } 1493 // Check that loop is executed at least one time. 1494 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1495 } 1496 1497 void CodeGenFunction::EmitOMPLinearClause( 1498 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1499 if (!HaveInsertPoint()) 1500 return; 1501 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1502 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1503 auto *LoopDirective = cast<OMPLoopDirective>(&D); 1504 for (auto *C : LoopDirective->counters()) { 1505 SIMDLCVs.insert( 1506 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1507 } 1508 } 1509 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1510 auto CurPrivate = C->privates().begin(); 1511 for (auto *E : C->varlists()) { 1512 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1513 auto *PrivateVD = 1514 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1515 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1516 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1517 // Emit private VarDecl with copy init. 1518 EmitVarDecl(*PrivateVD); 1519 return GetAddrOfLocalVar(PrivateVD); 1520 }); 1521 assert(IsRegistered && "linear var already registered as private"); 1522 // Silence the warning about unused variable. 1523 (void)IsRegistered; 1524 } else 1525 EmitVarDecl(*PrivateVD); 1526 ++CurPrivate; 1527 } 1528 } 1529 } 1530 1531 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1532 const OMPExecutableDirective &D, 1533 bool IsMonotonic) { 1534 if (!CGF.HaveInsertPoint()) 1535 return; 1536 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1537 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1538 /*ignoreResult=*/true); 1539 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1540 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1541 // In presence of finite 'safelen', it may be unsafe to mark all 1542 // the memory instructions parallel, because loop-carried 1543 // dependences of 'safelen' iterations are possible. 1544 if (!IsMonotonic) 1545 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1546 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1547 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1548 /*ignoreResult=*/true); 1549 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1550 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1551 // In presence of finite 'safelen', it may be unsafe to mark all 1552 // the memory instructions parallel, because loop-carried 1553 // dependences of 'safelen' iterations are possible. 1554 CGF.LoopStack.setParallel(false); 1555 } 1556 } 1557 1558 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1559 bool IsMonotonic) { 1560 // Walk clauses and process safelen/lastprivate. 1561 LoopStack.setParallel(!IsMonotonic); 1562 LoopStack.setVectorizeEnable(true); 1563 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1564 } 1565 1566 void CodeGenFunction::EmitOMPSimdFinal( 1567 const OMPLoopDirective &D, 1568 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) { 1569 if (!HaveInsertPoint()) 1570 return; 1571 llvm::BasicBlock *DoneBB = nullptr; 1572 auto IC = D.counters().begin(); 1573 auto IPC = D.private_counters().begin(); 1574 for (auto F : D.finals()) { 1575 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1576 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1577 auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1578 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1579 OrigVD->hasGlobalStorage() || CED) { 1580 if (!DoneBB) { 1581 if (auto *Cond = CondGen(*this)) { 1582 // If the first post-update expression is found, emit conditional 1583 // block if it was requested. 1584 auto *ThenBB = createBasicBlock(".omp.final.then"); 1585 DoneBB = createBasicBlock(".omp.final.done"); 1586 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1587 EmitBlock(ThenBB); 1588 } 1589 } 1590 Address OrigAddr = Address::invalid(); 1591 if (CED) 1592 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1593 else { 1594 DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD), 1595 /*RefersToEnclosingVariableOrCapture=*/false, 1596 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1597 OrigAddr = EmitLValue(&DRE).getAddress(); 1598 } 1599 OMPPrivateScope VarScope(*this); 1600 VarScope.addPrivate(OrigVD, 1601 [OrigAddr]() -> Address { return OrigAddr; }); 1602 (void)VarScope.Privatize(); 1603 EmitIgnoredExpr(F); 1604 } 1605 ++IC; 1606 ++IPC; 1607 } 1608 if (DoneBB) 1609 EmitBlock(DoneBB, /*IsFinished=*/true); 1610 } 1611 1612 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1613 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1614 OMPLoopScope PreInitScope(CGF, S); 1615 // if (PreCond) { 1616 // for (IV in 0..LastIteration) BODY; 1617 // <Final counter/linear vars updates>; 1618 // } 1619 // 1620 1621 // Emit: if (PreCond) - begin. 1622 // If the condition constant folds and can be elided, avoid emitting the 1623 // whole loop. 1624 bool CondConstant; 1625 llvm::BasicBlock *ContBlock = nullptr; 1626 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1627 if (!CondConstant) 1628 return; 1629 } else { 1630 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1631 ContBlock = CGF.createBasicBlock("simd.if.end"); 1632 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1633 CGF.getProfileCount(&S)); 1634 CGF.EmitBlock(ThenBlock); 1635 CGF.incrementProfileCounter(&S); 1636 } 1637 1638 // Emit the loop iteration variable. 1639 const Expr *IVExpr = S.getIterationVariable(); 1640 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1641 CGF.EmitVarDecl(*IVDecl); 1642 CGF.EmitIgnoredExpr(S.getInit()); 1643 1644 // Emit the iterations count variable. 1645 // If it is not a variable, Sema decided to calculate iterations count on 1646 // each iteration (e.g., it is foldable into a constant). 1647 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1648 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1649 // Emit calculation of the iterations count. 1650 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1651 } 1652 1653 CGF.EmitOMPSimdInit(S); 1654 1655 emitAlignedClause(CGF, S); 1656 CGF.EmitOMPLinearClauseInit(S); 1657 { 1658 OMPPrivateScope LoopScope(CGF); 1659 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1660 CGF.EmitOMPLinearClause(S, LoopScope); 1661 CGF.EmitOMPPrivateClause(S, LoopScope); 1662 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1663 bool HasLastprivateClause = 1664 CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1665 (void)LoopScope.Privatize(); 1666 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1667 S.getInc(), 1668 [&S](CodeGenFunction &CGF) { 1669 CGF.EmitOMPLoopBody(S, JumpDest()); 1670 CGF.EmitStopPoint(&S); 1671 }, 1672 [](CodeGenFunction &) {}); 1673 CGF.EmitOMPSimdFinal( 1674 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1675 // Emit final copy of the lastprivate variables at the end of loops. 1676 if (HasLastprivateClause) 1677 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1678 CGF.EmitOMPReductionClauseFinal(S); 1679 emitPostUpdateForReductionClause( 1680 CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1681 } 1682 CGF.EmitOMPLinearClauseFinal( 1683 S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; }); 1684 // Emit: if (PreCond) - end. 1685 if (ContBlock) { 1686 CGF.EmitBranch(ContBlock); 1687 CGF.EmitBlock(ContBlock, true); 1688 } 1689 }; 1690 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1691 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1692 } 1693 1694 void CodeGenFunction::EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 1695 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1696 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1697 auto &RT = CGM.getOpenMPRuntime(); 1698 1699 const Expr *IVExpr = S.getIterationVariable(); 1700 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1701 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1702 1703 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1704 1705 // Start the loop with a block that tests the condition. 1706 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1707 EmitBlock(CondBlock); 1708 const SourceRange &R = S.getSourceRange(); 1709 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1710 SourceLocToDebugLoc(R.getEnd())); 1711 1712 llvm::Value *BoolCondVal = nullptr; 1713 if (!DynamicOrOrdered) { 1714 // UB = min(UB, GlobalUB) 1715 EmitIgnoredExpr(S.getEnsureUpperBound()); 1716 // IV = LB 1717 EmitIgnoredExpr(S.getInit()); 1718 // IV < UB 1719 BoolCondVal = EvaluateExprAsBool(S.getCond()); 1720 } else { 1721 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, IL, 1722 LB, UB, ST); 1723 } 1724 1725 // If there are any cleanups between here and the loop-exit scope, 1726 // create a block to stage a loop exit along. 1727 auto ExitBlock = LoopExit.getBlock(); 1728 if (LoopScope.requiresCleanups()) 1729 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1730 1731 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1732 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1733 if (ExitBlock != LoopExit.getBlock()) { 1734 EmitBlock(ExitBlock); 1735 EmitBranchThroughCleanup(LoopExit); 1736 } 1737 EmitBlock(LoopBody); 1738 1739 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1740 // LB for loop condition and emitted it above). 1741 if (DynamicOrOrdered) 1742 EmitIgnoredExpr(S.getInit()); 1743 1744 // Create a block for the increment. 1745 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1746 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1747 1748 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1749 // with dynamic/guided scheduling and without ordered clause. 1750 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1751 LoopStack.setParallel(!IsMonotonic); 1752 else 1753 EmitOMPSimdInit(S, IsMonotonic); 1754 1755 SourceLocation Loc = S.getLocStart(); 1756 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1757 [&S, LoopExit](CodeGenFunction &CGF) { 1758 CGF.EmitOMPLoopBody(S, LoopExit); 1759 CGF.EmitStopPoint(&S); 1760 }, 1761 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1762 if (Ordered) { 1763 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1764 CGF, Loc, IVSize, IVSigned); 1765 } 1766 }); 1767 1768 EmitBlock(Continue.getBlock()); 1769 BreakContinueStack.pop_back(); 1770 if (!DynamicOrOrdered) { 1771 // Emit "LB = LB + Stride", "UB = UB + Stride". 1772 EmitIgnoredExpr(S.getNextLowerBound()); 1773 EmitIgnoredExpr(S.getNextUpperBound()); 1774 } 1775 1776 EmitBranch(CondBlock); 1777 LoopStack.pop(); 1778 // Emit the fall-through block. 1779 EmitBlock(LoopExit.getBlock()); 1780 1781 // Tell the runtime we are done. 1782 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1783 if (!DynamicOrOrdered) 1784 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd()); 1785 }; 1786 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1787 } 1788 1789 void CodeGenFunction::EmitOMPForOuterLoop( 1790 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1791 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1792 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1793 auto &RT = CGM.getOpenMPRuntime(); 1794 1795 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1796 const bool DynamicOrOrdered = 1797 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1798 1799 assert((Ordered || 1800 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1801 /*Chunked=*/Chunk != nullptr)) && 1802 "static non-chunked schedule does not need outer loop"); 1803 1804 // Emit outer loop. 1805 // 1806 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1807 // When schedule(dynamic,chunk_size) is specified, the iterations are 1808 // distributed to threads in the team in chunks as the threads request them. 1809 // Each thread executes a chunk of iterations, then requests another chunk, 1810 // until no chunks remain to be distributed. Each chunk contains chunk_size 1811 // iterations, except for the last chunk to be distributed, which may have 1812 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1813 // 1814 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1815 // to threads in the team in chunks as the executing threads request them. 1816 // Each thread executes a chunk of iterations, then requests another chunk, 1817 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1818 // each chunk is proportional to the number of unassigned iterations divided 1819 // by the number of threads in the team, decreasing to 1. For a chunk_size 1820 // with value k (greater than 1), the size of each chunk is determined in the 1821 // same way, with the restriction that the chunks do not contain fewer than k 1822 // iterations (except for the last chunk to be assigned, which may have fewer 1823 // than k iterations). 1824 // 1825 // When schedule(auto) is specified, the decision regarding scheduling is 1826 // delegated to the compiler and/or runtime system. The programmer gives the 1827 // implementation the freedom to choose any possible mapping of iterations to 1828 // threads in the team. 1829 // 1830 // When schedule(runtime) is specified, the decision regarding scheduling is 1831 // deferred until run time, and the schedule and chunk size are taken from the 1832 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1833 // implementation defined 1834 // 1835 // while(__kmpc_dispatch_next(&LB, &UB)) { 1836 // idx = LB; 1837 // while (idx <= UB) { BODY; ++idx; 1838 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1839 // } // inner loop 1840 // } 1841 // 1842 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1843 // When schedule(static, chunk_size) is specified, iterations are divided into 1844 // chunks of size chunk_size, and the chunks are assigned to the threads in 1845 // the team in a round-robin fashion in the order of the thread number. 1846 // 1847 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1848 // while (idx <= UB) { BODY; ++idx; } // inner loop 1849 // LB = LB + ST; 1850 // UB = UB + ST; 1851 // } 1852 // 1853 1854 const Expr *IVExpr = S.getIterationVariable(); 1855 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1856 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1857 1858 if (DynamicOrOrdered) { 1859 llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration()); 1860 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize, 1861 IVSigned, Ordered, UBVal, Chunk); 1862 } else { 1863 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, 1864 Ordered, IL, LB, UB, ST, Chunk); 1865 } 1866 1867 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, Ordered, LB, UB, 1868 ST, IL, Chunk); 1869 } 1870 1871 void CodeGenFunction::EmitOMPDistributeOuterLoop( 1872 OpenMPDistScheduleClauseKind ScheduleKind, 1873 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 1874 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1875 1876 auto &RT = CGM.getOpenMPRuntime(); 1877 1878 // Emit outer loop. 1879 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 1880 // dynamic 1881 // 1882 1883 const Expr *IVExpr = S.getIterationVariable(); 1884 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1885 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1886 1887 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 1888 IVSize, IVSigned, /* Ordered = */ false, 1889 IL, LB, UB, ST, Chunk); 1890 1891 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, 1892 S, LoopScope, /* Ordered = */ false, LB, UB, ST, IL, Chunk); 1893 } 1894 1895 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 1896 const OMPDistributeParallelForDirective &S) { 1897 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1898 CGM.getOpenMPRuntime().emitInlinedDirective( 1899 *this, OMPD_distribute_parallel_for, 1900 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1901 OMPLoopScope PreInitScope(CGF, S); 1902 OMPCancelStackRAII CancelRegion(CGF, OMPD_distribute_parallel_for, 1903 /*HasCancel=*/false); 1904 CGF.EmitStmt( 1905 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1906 }); 1907 } 1908 1909 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 1910 const OMPDistributeParallelForSimdDirective &S) { 1911 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1912 CGM.getOpenMPRuntime().emitInlinedDirective( 1913 *this, OMPD_distribute_parallel_for_simd, 1914 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1915 OMPLoopScope PreInitScope(CGF, S); 1916 CGF.EmitStmt( 1917 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1918 }); 1919 } 1920 1921 void CodeGenFunction::EmitOMPDistributeSimdDirective( 1922 const OMPDistributeSimdDirective &S) { 1923 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1924 CGM.getOpenMPRuntime().emitInlinedDirective( 1925 *this, OMPD_distribute_simd, 1926 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1927 OMPLoopScope PreInitScope(CGF, S); 1928 CGF.EmitStmt( 1929 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1930 }); 1931 } 1932 1933 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 1934 const OMPTargetParallelForSimdDirective &S) { 1935 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1936 CGM.getOpenMPRuntime().emitInlinedDirective( 1937 *this, OMPD_target_parallel_for_simd, 1938 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1939 OMPLoopScope PreInitScope(CGF, S); 1940 CGF.EmitStmt( 1941 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1942 }); 1943 } 1944 1945 void CodeGenFunction::EmitOMPTargetSimdDirective( 1946 const OMPTargetSimdDirective &S) { 1947 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1948 CGM.getOpenMPRuntime().emitInlinedDirective( 1949 *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1950 OMPLoopScope PreInitScope(CGF, S); 1951 CGF.EmitStmt( 1952 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1953 }); 1954 } 1955 1956 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 1957 const OMPTeamsDistributeDirective &S) { 1958 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1959 CGM.getOpenMPRuntime().emitInlinedDirective( 1960 *this, OMPD_teams_distribute, 1961 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1962 OMPLoopScope PreInitScope(CGF, S); 1963 CGF.EmitStmt( 1964 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1965 }); 1966 } 1967 1968 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 1969 const OMPTeamsDistributeSimdDirective &S) { 1970 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1971 CGM.getOpenMPRuntime().emitInlinedDirective( 1972 *this, OMPD_teams_distribute_simd, 1973 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1974 OMPLoopScope PreInitScope(CGF, S); 1975 CGF.EmitStmt( 1976 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1977 }); 1978 } 1979 1980 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 1981 const OMPTeamsDistributeParallelForSimdDirective &S) { 1982 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1983 CGM.getOpenMPRuntime().emitInlinedDirective( 1984 *this, OMPD_teams_distribute_parallel_for_simd, 1985 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1986 OMPLoopScope PreInitScope(CGF, S); 1987 CGF.EmitStmt( 1988 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1989 }); 1990 } 1991 1992 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 1993 const OMPTeamsDistributeParallelForDirective &S) { 1994 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 1995 CGM.getOpenMPRuntime().emitInlinedDirective( 1996 *this, OMPD_teams_distribute_parallel_for, 1997 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 1998 OMPLoopScope PreInitScope(CGF, S); 1999 CGF.EmitStmt( 2000 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2001 }); 2002 } 2003 2004 void CodeGenFunction::EmitOMPTargetTeamsDirective( 2005 const OMPTargetTeamsDirective &S) { 2006 CGM.getOpenMPRuntime().emitInlinedDirective( 2007 *this, OMPD_target_teams, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2008 CGF.EmitStmt( 2009 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2010 }); 2011 } 2012 2013 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 2014 const OMPTargetTeamsDistributeDirective &S) { 2015 CGM.getOpenMPRuntime().emitInlinedDirective( 2016 *this, OMPD_target_teams_distribute, 2017 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2018 CGF.EmitStmt( 2019 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2020 }); 2021 } 2022 2023 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 2024 const OMPTargetTeamsDistributeParallelForDirective &S) { 2025 CGM.getOpenMPRuntime().emitInlinedDirective( 2026 *this, OMPD_target_teams_distribute_parallel_for, 2027 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2028 CGF.EmitStmt( 2029 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2030 }); 2031 } 2032 2033 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2034 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 2035 CGM.getOpenMPRuntime().emitInlinedDirective( 2036 *this, OMPD_target_teams_distribute_parallel_for_simd, 2037 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2038 CGF.EmitStmt( 2039 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2040 }); 2041 } 2042 2043 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 2044 const OMPTargetTeamsDistributeSimdDirective &S) { 2045 CGM.getOpenMPRuntime().emitInlinedDirective( 2046 *this, OMPD_target_teams_distribute_simd, 2047 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2048 CGF.EmitStmt( 2049 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2050 }); 2051 } 2052 2053 /// \brief Emit a helper variable and return corresponding lvalue. 2054 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2055 const DeclRefExpr *Helper) { 2056 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2057 CGF.EmitVarDecl(*VDecl); 2058 return CGF.EmitLValue(Helper); 2059 } 2060 2061 namespace { 2062 struct ScheduleKindModifiersTy { 2063 OpenMPScheduleClauseKind Kind; 2064 OpenMPScheduleClauseModifier M1; 2065 OpenMPScheduleClauseModifier M2; 2066 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2067 OpenMPScheduleClauseModifier M1, 2068 OpenMPScheduleClauseModifier M2) 2069 : Kind(Kind), M1(M1), M2(M2) {} 2070 }; 2071 } // namespace 2072 2073 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 2074 // Emit the loop iteration variable. 2075 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2076 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2077 EmitVarDecl(*IVDecl); 2078 2079 // Emit the iterations count variable. 2080 // If it is not a variable, Sema decided to calculate iterations count on each 2081 // iteration (e.g., it is foldable into a constant). 2082 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2083 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2084 // Emit calculation of the iterations count. 2085 EmitIgnoredExpr(S.getCalcLastIteration()); 2086 } 2087 2088 auto &RT = CGM.getOpenMPRuntime(); 2089 2090 bool HasLastprivateClause; 2091 // Check pre-condition. 2092 { 2093 OMPLoopScope PreInitScope(*this, S); 2094 // Skip the entire loop if we don't meet the precondition. 2095 // If the condition constant folds and can be elided, avoid emitting the 2096 // whole loop. 2097 bool CondConstant; 2098 llvm::BasicBlock *ContBlock = nullptr; 2099 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2100 if (!CondConstant) 2101 return false; 2102 } else { 2103 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2104 ContBlock = createBasicBlock("omp.precond.end"); 2105 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2106 getProfileCount(&S)); 2107 EmitBlock(ThenBlock); 2108 incrementProfileCounter(&S); 2109 } 2110 2111 bool Ordered = false; 2112 if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2113 if (OrderedClause->getNumForLoops()) 2114 RT.emitDoacrossInit(*this, S); 2115 else 2116 Ordered = true; 2117 } 2118 2119 llvm::DenseSet<const Expr *> EmittedFinals; 2120 emitAlignedClause(*this, S); 2121 EmitOMPLinearClauseInit(S); 2122 // Emit helper vars inits. 2123 LValue LB = 2124 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2125 LValue UB = 2126 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2127 LValue ST = 2128 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2129 LValue IL = 2130 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2131 2132 // Emit 'then' code. 2133 { 2134 OMPPrivateScope LoopScope(*this); 2135 if (EmitOMPFirstprivateClause(S, LoopScope)) { 2136 // Emit implicit barrier to synchronize threads and avoid data races on 2137 // initialization of firstprivate variables and post-update of 2138 // lastprivate variables. 2139 CGM.getOpenMPRuntime().emitBarrierCall( 2140 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2141 /*ForceSimpleCall=*/true); 2142 } 2143 EmitOMPPrivateClause(S, LoopScope); 2144 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2145 EmitOMPReductionClauseInit(S, LoopScope); 2146 EmitOMPPrivateLoopCounters(S, LoopScope); 2147 EmitOMPLinearClause(S, LoopScope); 2148 (void)LoopScope.Privatize(); 2149 2150 // Detect the loop schedule kind and chunk. 2151 llvm::Value *Chunk = nullptr; 2152 OpenMPScheduleTy ScheduleKind; 2153 if (auto *C = S.getSingleClause<OMPScheduleClause>()) { 2154 ScheduleKind.Schedule = C->getScheduleKind(); 2155 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2156 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2157 if (const auto *Ch = C->getChunkSize()) { 2158 Chunk = EmitScalarExpr(Ch); 2159 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2160 S.getIterationVariable()->getType(), 2161 S.getLocStart()); 2162 } 2163 } 2164 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2165 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2166 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2167 // If the static schedule kind is specified or if the ordered clause is 2168 // specified, and if no monotonic modifier is specified, the effect will 2169 // be as if the monotonic modifier was specified. 2170 if (RT.isStaticNonchunked(ScheduleKind.Schedule, 2171 /* Chunked */ Chunk != nullptr) && 2172 !Ordered) { 2173 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2174 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2175 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2176 // When no chunk_size is specified, the iteration space is divided into 2177 // chunks that are approximately equal in size, and at most one chunk is 2178 // distributed to each thread. Note that the size of the chunks is 2179 // unspecified in this case. 2180 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 2181 IVSize, IVSigned, Ordered, 2182 IL.getAddress(), LB.getAddress(), 2183 UB.getAddress(), ST.getAddress()); 2184 auto LoopExit = 2185 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2186 // UB = min(UB, GlobalUB); 2187 EmitIgnoredExpr(S.getEnsureUpperBound()); 2188 // IV = LB; 2189 EmitIgnoredExpr(S.getInit()); 2190 // while (idx <= UB) { BODY; ++idx; } 2191 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2192 S.getInc(), 2193 [&S, LoopExit](CodeGenFunction &CGF) { 2194 CGF.EmitOMPLoopBody(S, LoopExit); 2195 CGF.EmitStopPoint(&S); 2196 }, 2197 [](CodeGenFunction &) {}); 2198 EmitBlock(LoopExit.getBlock()); 2199 // Tell the runtime we are done. 2200 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2201 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd()); 2202 }; 2203 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2204 } else { 2205 const bool IsMonotonic = 2206 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2207 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2208 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2209 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2210 // Emit the outer loop, which requests its work chunk [LB..UB] from 2211 // runtime and runs the inner loop to process it. 2212 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2213 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2214 IL.getAddress(), Chunk); 2215 } 2216 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2217 EmitOMPSimdFinal(S, 2218 [&](CodeGenFunction &CGF) -> llvm::Value * { 2219 return CGF.Builder.CreateIsNotNull( 2220 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2221 }); 2222 } 2223 EmitOMPReductionClauseFinal(S); 2224 // Emit post-update of the reduction variables if IsLastIter != 0. 2225 emitPostUpdateForReductionClause( 2226 *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2227 return CGF.Builder.CreateIsNotNull( 2228 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2229 }); 2230 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2231 if (HasLastprivateClause) 2232 EmitOMPLastprivateClauseFinal( 2233 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2234 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 2235 } 2236 EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2237 return CGF.Builder.CreateIsNotNull( 2238 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2239 }); 2240 // We're now done with the loop, so jump to the continuation block. 2241 if (ContBlock) { 2242 EmitBranch(ContBlock); 2243 EmitBlock(ContBlock, true); 2244 } 2245 } 2246 return HasLastprivateClause; 2247 } 2248 2249 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2250 bool HasLastprivates = false; 2251 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2252 PrePostActionTy &) { 2253 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2254 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2255 }; 2256 { 2257 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2258 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2259 S.hasCancel()); 2260 } 2261 2262 // Emit an implicit barrier at the end. 2263 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2264 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2265 } 2266 } 2267 2268 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2269 bool HasLastprivates = false; 2270 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2271 PrePostActionTy &) { 2272 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 2273 }; 2274 { 2275 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2276 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2277 } 2278 2279 // Emit an implicit barrier at the end. 2280 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 2281 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 2282 } 2283 } 2284 2285 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2286 const Twine &Name, 2287 llvm::Value *Init = nullptr) { 2288 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2289 if (Init) 2290 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2291 return LVal; 2292 } 2293 2294 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2295 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 2296 auto *CS = dyn_cast<CompoundStmt>(Stmt); 2297 bool HasLastprivates = false; 2298 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF, 2299 PrePostActionTy &) { 2300 auto &C = CGF.CGM.getContext(); 2301 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2302 // Emit helper vars inits. 2303 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2304 CGF.Builder.getInt32(0)); 2305 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 2306 : CGF.Builder.getInt32(0); 2307 LValue UB = 2308 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2309 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2310 CGF.Builder.getInt32(1)); 2311 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2312 CGF.Builder.getInt32(0)); 2313 // Loop counter. 2314 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2315 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2316 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2317 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 2318 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2319 // Generate condition for loop. 2320 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2321 OK_Ordinary, S.getLocStart(), 2322 /*fpContractable=*/false); 2323 // Increment for loop counter. 2324 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2325 S.getLocStart()); 2326 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 2327 // Iterate through all sections and emit a switch construct: 2328 // switch (IV) { 2329 // case 0: 2330 // <SectionStmt[0]>; 2331 // break; 2332 // ... 2333 // case <NumSection> - 1: 2334 // <SectionStmt[<NumSection> - 1]>; 2335 // break; 2336 // } 2337 // .omp.sections.exit: 2338 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2339 auto *SwitchStmt = CGF.Builder.CreateSwitch( 2340 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 2341 CS == nullptr ? 1 : CS->size()); 2342 if (CS) { 2343 unsigned CaseNumber = 0; 2344 for (auto *SubStmt : CS->children()) { 2345 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2346 CGF.EmitBlock(CaseBB); 2347 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2348 CGF.EmitStmt(SubStmt); 2349 CGF.EmitBranch(ExitBB); 2350 ++CaseNumber; 2351 } 2352 } else { 2353 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2354 CGF.EmitBlock(CaseBB); 2355 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2356 CGF.EmitStmt(Stmt); 2357 CGF.EmitBranch(ExitBB); 2358 } 2359 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2360 }; 2361 2362 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2363 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2364 // Emit implicit barrier to synchronize threads and avoid data races on 2365 // initialization of firstprivate variables and post-update of lastprivate 2366 // variables. 2367 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2368 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2369 /*ForceSimpleCall=*/true); 2370 } 2371 CGF.EmitOMPPrivateClause(S, LoopScope); 2372 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2373 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2374 (void)LoopScope.Privatize(); 2375 2376 // Emit static non-chunked loop. 2377 OpenMPScheduleTy ScheduleKind; 2378 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2379 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2380 CGF, S.getLocStart(), ScheduleKind, /*IVSize=*/32, 2381 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(), 2382 UB.getAddress(), ST.getAddress()); 2383 // UB = min(UB, GlobalUB); 2384 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 2385 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 2386 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2387 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2388 // IV = LB; 2389 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 2390 // while (idx <= UB) { BODY; ++idx; } 2391 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2392 [](CodeGenFunction &) {}); 2393 // Tell the runtime we are done. 2394 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2395 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd()); 2396 }; 2397 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2398 CGF.EmitOMPReductionClauseFinal(S); 2399 // Emit post-update of the reduction variables if IsLastIter != 0. 2400 emitPostUpdateForReductionClause( 2401 CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * { 2402 return CGF.Builder.CreateIsNotNull( 2403 CGF.EmitLoadOfScalar(IL, S.getLocStart())); 2404 }); 2405 2406 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2407 if (HasLastprivates) 2408 CGF.EmitOMPLastprivateClauseFinal( 2409 S, /*NoFinals=*/false, 2410 CGF.Builder.CreateIsNotNull( 2411 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 2412 }; 2413 2414 bool HasCancel = false; 2415 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2416 HasCancel = OSD->hasCancel(); 2417 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2418 HasCancel = OPSD->hasCancel(); 2419 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2420 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2421 HasCancel); 2422 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2423 // clause. Otherwise the barrier will be generated by the codegen for the 2424 // directive. 2425 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2426 // Emit implicit barrier to synchronize threads and avoid data races on 2427 // initialization of firstprivate variables. 2428 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2429 OMPD_unknown); 2430 } 2431 } 2432 2433 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2434 { 2435 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2436 EmitSections(S); 2437 } 2438 // Emit an implicit barrier at the end. 2439 if (!S.getSingleClause<OMPNowaitClause>()) { 2440 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 2441 OMPD_sections); 2442 } 2443 } 2444 2445 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2446 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2447 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2448 }; 2449 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2450 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2451 S.hasCancel()); 2452 } 2453 2454 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2455 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2456 llvm::SmallVector<const Expr *, 8> DestExprs; 2457 llvm::SmallVector<const Expr *, 8> SrcExprs; 2458 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2459 // Check if there are any 'copyprivate' clauses associated with this 2460 // 'single' construct. 2461 // Build a list of copyprivate variables along with helper expressions 2462 // (<source>, <destination>, <destination>=<source> expressions) 2463 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2464 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2465 DestExprs.append(C->destination_exprs().begin(), 2466 C->destination_exprs().end()); 2467 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2468 AssignmentOps.append(C->assignment_ops().begin(), 2469 C->assignment_ops().end()); 2470 } 2471 // Emit code for 'single' region along with 'copyprivate' clauses 2472 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2473 Action.Enter(CGF); 2474 OMPPrivateScope SingleScope(CGF); 2475 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2476 CGF.EmitOMPPrivateClause(S, SingleScope); 2477 (void)SingleScope.Privatize(); 2478 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2479 }; 2480 { 2481 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2482 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 2483 CopyprivateVars, DestExprs, 2484 SrcExprs, AssignmentOps); 2485 } 2486 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2487 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2488 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2489 CGM.getOpenMPRuntime().emitBarrierCall( 2490 *this, S.getLocStart(), 2491 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2492 } 2493 } 2494 2495 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2496 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2497 Action.Enter(CGF); 2498 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2499 }; 2500 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2501 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 2502 } 2503 2504 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2505 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2506 Action.Enter(CGF); 2507 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2508 }; 2509 Expr *Hint = nullptr; 2510 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 2511 Hint = HintClause->getHint(); 2512 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2513 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2514 S.getDirectiveName().getAsString(), 2515 CodeGen, S.getLocStart(), Hint); 2516 } 2517 2518 void CodeGenFunction::EmitOMPParallelForDirective( 2519 const OMPParallelForDirective &S) { 2520 // Emit directive as a combined directive that consists of two implicit 2521 // directives: 'parallel' with 'for' directive. 2522 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2523 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2524 CGF.EmitOMPWorksharingLoop(S); 2525 }; 2526 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 2527 } 2528 2529 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2530 const OMPParallelForSimdDirective &S) { 2531 // Emit directive as a combined directive that consists of two implicit 2532 // directives: 'parallel' with 'for' directive. 2533 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2534 CGF.EmitOMPWorksharingLoop(S); 2535 }; 2536 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 2537 } 2538 2539 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2540 const OMPParallelSectionsDirective &S) { 2541 // Emit directive as a combined directive that consists of two implicit 2542 // directives: 'parallel' with 'sections' directive. 2543 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2544 CGF.EmitSections(S); 2545 }; 2546 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 2547 } 2548 2549 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2550 const RegionCodeGenTy &BodyGen, 2551 const TaskGenTy &TaskGen, 2552 OMPTaskDataTy &Data) { 2553 // Emit outlined function for task construct. 2554 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2555 auto *I = CS->getCapturedDecl()->param_begin(); 2556 auto *PartId = std::next(I); 2557 auto *TaskT = std::next(I, 4); 2558 // Check if the task is final 2559 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2560 // If the condition constant folds and can be elided, try to avoid emitting 2561 // the condition and the dead arm of the if/else. 2562 auto *Cond = Clause->getCondition(); 2563 bool CondConstant; 2564 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2565 Data.Final.setInt(CondConstant); 2566 else 2567 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2568 } else { 2569 // By default the task is not final. 2570 Data.Final.setInt(/*IntVal=*/false); 2571 } 2572 // Check if the task has 'priority' clause. 2573 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2574 auto *Prio = Clause->getPriority(); 2575 Data.Priority.setInt(/*IntVal=*/true); 2576 Data.Priority.setPointer(EmitScalarConversion( 2577 EmitScalarExpr(Prio), Prio->getType(), 2578 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2579 Prio->getExprLoc())); 2580 } 2581 // The first function argument for tasks is a thread id, the second one is a 2582 // part id (0 for tied tasks, >=0 for untied task). 2583 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2584 // Get list of private variables. 2585 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2586 auto IRef = C->varlist_begin(); 2587 for (auto *IInit : C->private_copies()) { 2588 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2589 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2590 Data.PrivateVars.push_back(*IRef); 2591 Data.PrivateCopies.push_back(IInit); 2592 } 2593 ++IRef; 2594 } 2595 } 2596 EmittedAsPrivate.clear(); 2597 // Get list of firstprivate variables. 2598 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2599 auto IRef = C->varlist_begin(); 2600 auto IElemInitRef = C->inits().begin(); 2601 for (auto *IInit : C->private_copies()) { 2602 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2603 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2604 Data.FirstprivateVars.push_back(*IRef); 2605 Data.FirstprivateCopies.push_back(IInit); 2606 Data.FirstprivateInits.push_back(*IElemInitRef); 2607 } 2608 ++IRef; 2609 ++IElemInitRef; 2610 } 2611 } 2612 // Get list of lastprivate variables (for taskloops). 2613 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2614 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2615 auto IRef = C->varlist_begin(); 2616 auto ID = C->destination_exprs().begin(); 2617 for (auto *IInit : C->private_copies()) { 2618 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2619 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2620 Data.LastprivateVars.push_back(*IRef); 2621 Data.LastprivateCopies.push_back(IInit); 2622 } 2623 LastprivateDstsOrigs.insert( 2624 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2625 cast<DeclRefExpr>(*IRef)}); 2626 ++IRef; 2627 ++ID; 2628 } 2629 } 2630 // Build list of dependences. 2631 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2632 for (auto *IRef : C->varlists()) 2633 Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2634 auto &&CodeGen = [&Data, CS, &BodyGen, &LastprivateDstsOrigs]( 2635 CodeGenFunction &CGF, PrePostActionTy &Action) { 2636 // Set proper addresses for generated private copies. 2637 OMPPrivateScope Scope(CGF); 2638 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2639 !Data.LastprivateVars.empty()) { 2640 auto *CopyFn = CGF.Builder.CreateLoad( 2641 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2642 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2643 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2644 // Map privates. 2645 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2646 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2647 CallArgs.push_back(PrivatesPtr); 2648 for (auto *E : Data.PrivateVars) { 2649 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2650 Address PrivatePtr = CGF.CreateMemTemp( 2651 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2652 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2653 CallArgs.push_back(PrivatePtr.getPointer()); 2654 } 2655 for (auto *E : Data.FirstprivateVars) { 2656 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2657 Address PrivatePtr = 2658 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2659 ".firstpriv.ptr.addr"); 2660 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2661 CallArgs.push_back(PrivatePtr.getPointer()); 2662 } 2663 for (auto *E : Data.LastprivateVars) { 2664 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2665 Address PrivatePtr = 2666 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2667 ".lastpriv.ptr.addr"); 2668 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2669 CallArgs.push_back(PrivatePtr.getPointer()); 2670 } 2671 CGF.EmitRuntimeCall(CopyFn, CallArgs); 2672 for (auto &&Pair : LastprivateDstsOrigs) { 2673 auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2674 DeclRefExpr DRE( 2675 const_cast<VarDecl *>(OrigVD), 2676 /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup( 2677 OrigVD) != nullptr, 2678 Pair.second->getType(), VK_LValue, Pair.second->getExprLoc()); 2679 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2680 return CGF.EmitLValue(&DRE).getAddress(); 2681 }); 2682 } 2683 for (auto &&Pair : PrivatePtrs) { 2684 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2685 CGF.getContext().getDeclAlign(Pair.first)); 2686 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2687 } 2688 } 2689 (void)Scope.Privatize(); 2690 2691 Action.Enter(CGF); 2692 BodyGen(CGF); 2693 }; 2694 auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2695 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 2696 Data.NumberOfParts); 2697 OMPLexicalScope Scope(*this, S); 2698 TaskGen(*this, OutlinedFn, Data); 2699 } 2700 2701 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 2702 // Emit outlined function for task construct. 2703 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2704 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 2705 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2706 const Expr *IfCond = nullptr; 2707 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2708 if (C->getNameModifier() == OMPD_unknown || 2709 C->getNameModifier() == OMPD_task) { 2710 IfCond = C->getCondition(); 2711 break; 2712 } 2713 } 2714 2715 OMPTaskDataTy Data; 2716 // Check if we should emit tied or untied task. 2717 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 2718 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 2719 CGF.EmitStmt(CS->getCapturedStmt()); 2720 }; 2721 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 2722 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 2723 const OMPTaskDataTy &Data) { 2724 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn, 2725 SharedsTy, CapturedStruct, IfCond, 2726 Data); 2727 }; 2728 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 2729 } 2730 2731 void CodeGenFunction::EmitOMPTaskyieldDirective( 2732 const OMPTaskyieldDirective &S) { 2733 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2734 } 2735 2736 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2737 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2738 } 2739 2740 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2741 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2742 } 2743 2744 void CodeGenFunction::EmitOMPTaskgroupDirective( 2745 const OMPTaskgroupDirective &S) { 2746 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2747 Action.Enter(CGF); 2748 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2749 }; 2750 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2751 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 2752 } 2753 2754 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 2755 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 2756 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 2757 return llvm::makeArrayRef(FlushClause->varlist_begin(), 2758 FlushClause->varlist_end()); 2759 } 2760 return llvm::None; 2761 }(), S.getLocStart()); 2762 } 2763 2764 void CodeGenFunction::EmitOMPDistributeLoop(const OMPDistributeDirective &S) { 2765 // Emit the loop iteration variable. 2766 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2767 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2768 EmitVarDecl(*IVDecl); 2769 2770 // Emit the iterations count variable. 2771 // If it is not a variable, Sema decided to calculate iterations count on each 2772 // iteration (e.g., it is foldable into a constant). 2773 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2774 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2775 // Emit calculation of the iterations count. 2776 EmitIgnoredExpr(S.getCalcLastIteration()); 2777 } 2778 2779 auto &RT = CGM.getOpenMPRuntime(); 2780 2781 bool HasLastprivateClause = false; 2782 // Check pre-condition. 2783 { 2784 OMPLoopScope PreInitScope(*this, S); 2785 // Skip the entire loop if we don't meet the precondition. 2786 // If the condition constant folds and can be elided, avoid emitting the 2787 // whole loop. 2788 bool CondConstant; 2789 llvm::BasicBlock *ContBlock = nullptr; 2790 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2791 if (!CondConstant) 2792 return; 2793 } else { 2794 auto *ThenBlock = createBasicBlock("omp.precond.then"); 2795 ContBlock = createBasicBlock("omp.precond.end"); 2796 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2797 getProfileCount(&S)); 2798 EmitBlock(ThenBlock); 2799 incrementProfileCounter(&S); 2800 } 2801 2802 // Emit 'then' code. 2803 { 2804 // Emit helper vars inits. 2805 LValue LB = 2806 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2807 LValue UB = 2808 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2809 LValue ST = 2810 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2811 LValue IL = 2812 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2813 2814 OMPPrivateScope LoopScope(*this); 2815 if (EmitOMPFirstprivateClause(S, LoopScope)) { 2816 // Emit implicit barrier to synchronize threads and avoid data races on 2817 // initialization of firstprivate variables and post-update of 2818 // lastprivate variables. 2819 CGM.getOpenMPRuntime().emitBarrierCall( 2820 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 2821 /*ForceSimpleCall=*/true); 2822 } 2823 EmitOMPPrivateClause(S, LoopScope); 2824 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2825 EmitOMPPrivateLoopCounters(S, LoopScope); 2826 (void)LoopScope.Privatize(); 2827 2828 // Detect the distribute schedule kind and chunk. 2829 llvm::Value *Chunk = nullptr; 2830 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 2831 if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 2832 ScheduleKind = C->getDistScheduleKind(); 2833 if (const auto *Ch = C->getChunkSize()) { 2834 Chunk = EmitScalarExpr(Ch); 2835 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 2836 S.getIterationVariable()->getType(), 2837 S.getLocStart()); 2838 } 2839 } 2840 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2841 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2842 2843 // OpenMP [2.10.8, distribute Construct, Description] 2844 // If dist_schedule is specified, kind must be static. If specified, 2845 // iterations are divided into chunks of size chunk_size, chunks are 2846 // assigned to the teams of the league in a round-robin fashion in the 2847 // order of the team number. When no chunk_size is specified, the 2848 // iteration space is divided into chunks that are approximately equal 2849 // in size, and at most one chunk is distributed to each team of the 2850 // league. The size of the chunks is unspecified in this case. 2851 if (RT.isStaticNonchunked(ScheduleKind, 2852 /* Chunked */ Chunk != nullptr)) { 2853 RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, 2854 IVSize, IVSigned, /* Ordered = */ false, 2855 IL.getAddress(), LB.getAddress(), 2856 UB.getAddress(), ST.getAddress()); 2857 auto LoopExit = 2858 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2859 // UB = min(UB, GlobalUB); 2860 EmitIgnoredExpr(S.getEnsureUpperBound()); 2861 // IV = LB; 2862 EmitIgnoredExpr(S.getInit()); 2863 // while (idx <= UB) { BODY; ++idx; } 2864 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 2865 S.getInc(), 2866 [&S, LoopExit](CodeGenFunction &CGF) { 2867 CGF.EmitOMPLoopBody(S, LoopExit); 2868 CGF.EmitStopPoint(&S); 2869 }, 2870 [](CodeGenFunction &) {}); 2871 EmitBlock(LoopExit.getBlock()); 2872 // Tell the runtime we are done. 2873 RT.emitForStaticFinish(*this, S.getLocStart()); 2874 } else { 2875 // Emit the outer loop, which requests its work chunk [LB..UB] from 2876 // runtime and runs the inner loop to process it. 2877 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, 2878 LB.getAddress(), UB.getAddress(), ST.getAddress(), 2879 IL.getAddress(), Chunk); 2880 } 2881 2882 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2883 if (HasLastprivateClause) 2884 EmitOMPLastprivateClauseFinal( 2885 S, /*NoFinals=*/false, 2886 Builder.CreateIsNotNull( 2887 EmitLoadOfScalar(IL, S.getLocStart()))); 2888 } 2889 2890 // We're now done with the loop, so jump to the continuation block. 2891 if (ContBlock) { 2892 EmitBranch(ContBlock); 2893 EmitBlock(ContBlock, true); 2894 } 2895 } 2896 } 2897 2898 void CodeGenFunction::EmitOMPDistributeDirective( 2899 const OMPDistributeDirective &S) { 2900 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2901 CGF.EmitOMPDistributeLoop(S); 2902 }; 2903 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2904 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen, 2905 false); 2906 } 2907 2908 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 2909 const CapturedStmt *S) { 2910 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 2911 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 2912 CGF.CapturedStmtInfo = &CapStmtInfo; 2913 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 2914 Fn->addFnAttr(llvm::Attribute::NoInline); 2915 return Fn; 2916 } 2917 2918 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 2919 if (!S.getAssociatedStmt()) { 2920 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 2921 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 2922 return; 2923 } 2924 auto *C = S.getSingleClause<OMPSIMDClause>(); 2925 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 2926 PrePostActionTy &Action) { 2927 if (C) { 2928 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2929 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2930 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 2931 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 2932 CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars); 2933 } else { 2934 Action.Enter(CGF); 2935 CGF.EmitStmt( 2936 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2937 } 2938 }; 2939 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 2940 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 2941 } 2942 2943 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 2944 QualType SrcType, QualType DestType, 2945 SourceLocation Loc) { 2946 assert(CGF.hasScalarEvaluationKind(DestType) && 2947 "DestType must have scalar evaluation kind."); 2948 assert(!Val.isAggregate() && "Must be a scalar or complex."); 2949 return Val.isScalar() 2950 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 2951 Loc) 2952 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 2953 DestType, Loc); 2954 } 2955 2956 static CodeGenFunction::ComplexPairTy 2957 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 2958 QualType DestType, SourceLocation Loc) { 2959 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 2960 "DestType must have complex evaluation kind."); 2961 CodeGenFunction::ComplexPairTy ComplexVal; 2962 if (Val.isScalar()) { 2963 // Convert the input element to the element type of the complex. 2964 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2965 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 2966 DestElementType, Loc); 2967 ComplexVal = CodeGenFunction::ComplexPairTy( 2968 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 2969 } else { 2970 assert(Val.isComplex() && "Must be a scalar or complex."); 2971 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 2972 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2973 ComplexVal.first = CGF.EmitScalarConversion( 2974 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 2975 ComplexVal.second = CGF.EmitScalarConversion( 2976 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 2977 } 2978 return ComplexVal; 2979 } 2980 2981 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 2982 LValue LVal, RValue RVal) { 2983 if (LVal.isGlobalReg()) { 2984 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 2985 } else { 2986 CGF.EmitAtomicStore(RVal, LVal, 2987 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 2988 : llvm::AtomicOrdering::Monotonic, 2989 LVal.isVolatile(), /*IsInit=*/false); 2990 } 2991 } 2992 2993 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 2994 QualType RValTy, SourceLocation Loc) { 2995 switch (getEvaluationKind(LVal.getType())) { 2996 case TEK_Scalar: 2997 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 2998 *this, RVal, RValTy, LVal.getType(), Loc)), 2999 LVal); 3000 break; 3001 case TEK_Complex: 3002 EmitStoreOfComplex( 3003 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3004 /*isInit=*/false); 3005 break; 3006 case TEK_Aggregate: 3007 llvm_unreachable("Must be a scalar or complex."); 3008 } 3009 } 3010 3011 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3012 const Expr *X, const Expr *V, 3013 SourceLocation Loc) { 3014 // v = x; 3015 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3016 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3017 LValue XLValue = CGF.EmitLValue(X); 3018 LValue VLValue = CGF.EmitLValue(V); 3019 RValue Res = XLValue.isGlobalReg() 3020 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3021 : CGF.EmitAtomicLoad( 3022 XLValue, Loc, 3023 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3024 : llvm::AtomicOrdering::Monotonic, 3025 XLValue.isVolatile()); 3026 // OpenMP, 2.12.6, atomic Construct 3027 // Any atomic construct with a seq_cst clause forces the atomically 3028 // performed operation to include an implicit flush operation without a 3029 // list. 3030 if (IsSeqCst) 3031 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3032 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3033 } 3034 3035 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3036 const Expr *X, const Expr *E, 3037 SourceLocation Loc) { 3038 // x = expr; 3039 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3040 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3041 // OpenMP, 2.12.6, atomic Construct 3042 // Any atomic construct with a seq_cst clause forces the atomically 3043 // performed operation to include an implicit flush operation without a 3044 // list. 3045 if (IsSeqCst) 3046 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3047 } 3048 3049 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3050 RValue Update, 3051 BinaryOperatorKind BO, 3052 llvm::AtomicOrdering AO, 3053 bool IsXLHSInRHSPart) { 3054 auto &Context = CGF.CGM.getContext(); 3055 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3056 // expression is simple and atomic is allowed for the given type for the 3057 // target platform. 3058 if (BO == BO_Comma || !Update.isScalar() || 3059 !Update.getScalarVal()->getType()->isIntegerTy() || 3060 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3061 (Update.getScalarVal()->getType() != 3062 X.getAddress().getElementType())) || 3063 !X.getAddress().getElementType()->isIntegerTy() || 3064 !Context.getTargetInfo().hasBuiltinAtomic( 3065 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3066 return std::make_pair(false, RValue::get(nullptr)); 3067 3068 llvm::AtomicRMWInst::BinOp RMWOp; 3069 switch (BO) { 3070 case BO_Add: 3071 RMWOp = llvm::AtomicRMWInst::Add; 3072 break; 3073 case BO_Sub: 3074 if (!IsXLHSInRHSPart) 3075 return std::make_pair(false, RValue::get(nullptr)); 3076 RMWOp = llvm::AtomicRMWInst::Sub; 3077 break; 3078 case BO_And: 3079 RMWOp = llvm::AtomicRMWInst::And; 3080 break; 3081 case BO_Or: 3082 RMWOp = llvm::AtomicRMWInst::Or; 3083 break; 3084 case BO_Xor: 3085 RMWOp = llvm::AtomicRMWInst::Xor; 3086 break; 3087 case BO_LT: 3088 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3089 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3090 : llvm::AtomicRMWInst::Max) 3091 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3092 : llvm::AtomicRMWInst::UMax); 3093 break; 3094 case BO_GT: 3095 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3096 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3097 : llvm::AtomicRMWInst::Min) 3098 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3099 : llvm::AtomicRMWInst::UMin); 3100 break; 3101 case BO_Assign: 3102 RMWOp = llvm::AtomicRMWInst::Xchg; 3103 break; 3104 case BO_Mul: 3105 case BO_Div: 3106 case BO_Rem: 3107 case BO_Shl: 3108 case BO_Shr: 3109 case BO_LAnd: 3110 case BO_LOr: 3111 return std::make_pair(false, RValue::get(nullptr)); 3112 case BO_PtrMemD: 3113 case BO_PtrMemI: 3114 case BO_LE: 3115 case BO_GE: 3116 case BO_EQ: 3117 case BO_NE: 3118 case BO_AddAssign: 3119 case BO_SubAssign: 3120 case BO_AndAssign: 3121 case BO_OrAssign: 3122 case BO_XorAssign: 3123 case BO_MulAssign: 3124 case BO_DivAssign: 3125 case BO_RemAssign: 3126 case BO_ShlAssign: 3127 case BO_ShrAssign: 3128 case BO_Comma: 3129 llvm_unreachable("Unsupported atomic update operation"); 3130 } 3131 auto *UpdateVal = Update.getScalarVal(); 3132 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3133 UpdateVal = CGF.Builder.CreateIntCast( 3134 IC, X.getAddress().getElementType(), 3135 X.getType()->hasSignedIntegerRepresentation()); 3136 } 3137 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3138 return std::make_pair(true, RValue::get(Res)); 3139 } 3140 3141 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3142 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3143 llvm::AtomicOrdering AO, SourceLocation Loc, 3144 const llvm::function_ref<RValue(RValue)> &CommonGen) { 3145 // Update expressions are allowed to have the following forms: 3146 // x binop= expr; -> xrval + expr; 3147 // x++, ++x -> xrval + 1; 3148 // x--, --x -> xrval - 1; 3149 // x = x binop expr; -> xrval binop expr 3150 // x = expr Op x; - > expr binop xrval; 3151 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3152 if (!Res.first) { 3153 if (X.isGlobalReg()) { 3154 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3155 // 'xrval'. 3156 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3157 } else { 3158 // Perform compare-and-swap procedure. 3159 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3160 } 3161 } 3162 return Res; 3163 } 3164 3165 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3166 const Expr *X, const Expr *E, 3167 const Expr *UE, bool IsXLHSInRHSPart, 3168 SourceLocation Loc) { 3169 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3170 "Update expr in 'atomic update' must be a binary operator."); 3171 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3172 // Update expressions are allowed to have the following forms: 3173 // x binop= expr; -> xrval + expr; 3174 // x++, ++x -> xrval + 1; 3175 // x--, --x -> xrval - 1; 3176 // x = x binop expr; -> xrval binop expr 3177 // x = expr Op x; - > expr binop xrval; 3178 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3179 LValue XLValue = CGF.EmitLValue(X); 3180 RValue ExprRValue = CGF.EmitAnyExpr(E); 3181 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3182 : llvm::AtomicOrdering::Monotonic; 3183 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3184 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3185 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3186 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3187 auto Gen = 3188 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 3189 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3190 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3191 return CGF.EmitAnyExpr(UE); 3192 }; 3193 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3194 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3195 // OpenMP, 2.12.6, atomic Construct 3196 // Any atomic construct with a seq_cst clause forces the atomically 3197 // performed operation to include an implicit flush operation without a 3198 // list. 3199 if (IsSeqCst) 3200 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3201 } 3202 3203 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3204 QualType SourceType, QualType ResType, 3205 SourceLocation Loc) { 3206 switch (CGF.getEvaluationKind(ResType)) { 3207 case TEK_Scalar: 3208 return RValue::get( 3209 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3210 case TEK_Complex: { 3211 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3212 return RValue::getComplex(Res.first, Res.second); 3213 } 3214 case TEK_Aggregate: 3215 break; 3216 } 3217 llvm_unreachable("Must be a scalar or complex."); 3218 } 3219 3220 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3221 bool IsPostfixUpdate, const Expr *V, 3222 const Expr *X, const Expr *E, 3223 const Expr *UE, bool IsXLHSInRHSPart, 3224 SourceLocation Loc) { 3225 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3226 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3227 RValue NewVVal; 3228 LValue VLValue = CGF.EmitLValue(V); 3229 LValue XLValue = CGF.EmitLValue(X); 3230 RValue ExprRValue = CGF.EmitAnyExpr(E); 3231 auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3232 : llvm::AtomicOrdering::Monotonic; 3233 QualType NewVValType; 3234 if (UE) { 3235 // 'x' is updated with some additional value. 3236 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3237 "Update expr in 'atomic capture' must be a binary operator."); 3238 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3239 // Update expressions are allowed to have the following forms: 3240 // x binop= expr; -> xrval + expr; 3241 // x++, ++x -> xrval + 1; 3242 // x--, --x -> xrval - 1; 3243 // x = x binop expr; -> xrval binop expr 3244 // x = expr Op x; - > expr binop xrval; 3245 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3246 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3247 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3248 NewVValType = XRValExpr->getType(); 3249 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3250 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3251 IsPostfixUpdate](RValue XRValue) -> RValue { 3252 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3253 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3254 RValue Res = CGF.EmitAnyExpr(UE); 3255 NewVVal = IsPostfixUpdate ? XRValue : Res; 3256 return Res; 3257 }; 3258 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3259 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3260 if (Res.first) { 3261 // 'atomicrmw' instruction was generated. 3262 if (IsPostfixUpdate) { 3263 // Use old value from 'atomicrmw'. 3264 NewVVal = Res.second; 3265 } else { 3266 // 'atomicrmw' does not provide new value, so evaluate it using old 3267 // value of 'x'. 3268 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3269 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3270 NewVVal = CGF.EmitAnyExpr(UE); 3271 } 3272 } 3273 } else { 3274 // 'x' is simply rewritten with some 'expr'. 3275 NewVValType = X->getType().getNonReferenceType(); 3276 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3277 X->getType().getNonReferenceType(), Loc); 3278 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) -> RValue { 3279 NewVVal = XRValue; 3280 return ExprRValue; 3281 }; 3282 // Try to perform atomicrmw xchg, otherwise simple exchange. 3283 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3284 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3285 Loc, Gen); 3286 if (Res.first) { 3287 // 'atomicrmw' instruction was generated. 3288 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3289 } 3290 } 3291 // Emit post-update store to 'v' of old/new 'x' value. 3292 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3293 // OpenMP, 2.12.6, atomic Construct 3294 // Any atomic construct with a seq_cst clause forces the atomically 3295 // performed operation to include an implicit flush operation without a 3296 // list. 3297 if (IsSeqCst) 3298 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3299 } 3300 3301 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3302 bool IsSeqCst, bool IsPostfixUpdate, 3303 const Expr *X, const Expr *V, const Expr *E, 3304 const Expr *UE, bool IsXLHSInRHSPart, 3305 SourceLocation Loc) { 3306 switch (Kind) { 3307 case OMPC_read: 3308 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3309 break; 3310 case OMPC_write: 3311 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3312 break; 3313 case OMPC_unknown: 3314 case OMPC_update: 3315 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3316 break; 3317 case OMPC_capture: 3318 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3319 IsXLHSInRHSPart, Loc); 3320 break; 3321 case OMPC_if: 3322 case OMPC_final: 3323 case OMPC_num_threads: 3324 case OMPC_private: 3325 case OMPC_firstprivate: 3326 case OMPC_lastprivate: 3327 case OMPC_reduction: 3328 case OMPC_safelen: 3329 case OMPC_simdlen: 3330 case OMPC_collapse: 3331 case OMPC_default: 3332 case OMPC_seq_cst: 3333 case OMPC_shared: 3334 case OMPC_linear: 3335 case OMPC_aligned: 3336 case OMPC_copyin: 3337 case OMPC_copyprivate: 3338 case OMPC_flush: 3339 case OMPC_proc_bind: 3340 case OMPC_schedule: 3341 case OMPC_ordered: 3342 case OMPC_nowait: 3343 case OMPC_untied: 3344 case OMPC_threadprivate: 3345 case OMPC_depend: 3346 case OMPC_mergeable: 3347 case OMPC_device: 3348 case OMPC_threads: 3349 case OMPC_simd: 3350 case OMPC_map: 3351 case OMPC_num_teams: 3352 case OMPC_thread_limit: 3353 case OMPC_priority: 3354 case OMPC_grainsize: 3355 case OMPC_nogroup: 3356 case OMPC_num_tasks: 3357 case OMPC_hint: 3358 case OMPC_dist_schedule: 3359 case OMPC_defaultmap: 3360 case OMPC_uniform: 3361 case OMPC_to: 3362 case OMPC_from: 3363 case OMPC_use_device_ptr: 3364 case OMPC_is_device_ptr: 3365 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3366 } 3367 } 3368 3369 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 3370 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 3371 OpenMPClauseKind Kind = OMPC_unknown; 3372 for (auto *C : S.clauses()) { 3373 // Find first clause (skip seq_cst clause, if it is first). 3374 if (C->getClauseKind() != OMPC_seq_cst) { 3375 Kind = C->getClauseKind(); 3376 break; 3377 } 3378 } 3379 3380 const auto *CS = 3381 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 3382 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 3383 enterFullExpression(EWC); 3384 } 3385 // Processing for statements under 'atomic capture'. 3386 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 3387 for (const auto *C : Compound->body()) { 3388 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 3389 enterFullExpression(EWC); 3390 } 3391 } 3392 } 3393 3394 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 3395 PrePostActionTy &) { 3396 CGF.EmitStopPoint(CS); 3397 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 3398 S.getV(), S.getExpr(), S.getUpdateExpr(), 3399 S.isXLHSInRHSPart(), S.getLocStart()); 3400 }; 3401 OMPLexicalScope Scope(*this, S, /*AsInlined=*/true); 3402 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 3403 } 3404 3405 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 3406 const OMPExecutableDirective &S, 3407 const RegionCodeGenTy &CodeGen) { 3408 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 3409 CodeGenModule &CGM = CGF.CGM; 3410 const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt()); 3411 3412 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3413 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); 3414 3415 llvm::Function *Fn = nullptr; 3416 llvm::Constant *FnID = nullptr; 3417 3418 // Check if we have any if clause associated with the directive. 3419 const Expr *IfCond = nullptr; 3420 3421 if (auto *C = S.getSingleClause<OMPIfClause>()) { 3422 IfCond = C->getCondition(); 3423 } 3424 3425 // Check if we have any device clause associated with the directive. 3426 const Expr *Device = nullptr; 3427 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 3428 Device = C->getDevice(); 3429 } 3430 3431 // Check if we have an if clause whose conditional always evaluates to false 3432 // or if we do not have any targets specified. If so the target region is not 3433 // an offload entry point. 3434 bool IsOffloadEntry = true; 3435 if (IfCond) { 3436 bool Val; 3437 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 3438 IsOffloadEntry = false; 3439 } 3440 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3441 IsOffloadEntry = false; 3442 3443 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 3444 StringRef ParentName; 3445 // In case we have Ctors/Dtors we use the complete type variant to produce 3446 // the mangling of the device outlined kernel. 3447 if (auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 3448 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 3449 else if (auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 3450 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 3451 else 3452 ParentName = 3453 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 3454 3455 // Emit target region as a standalone region. 3456 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 3457 IsOffloadEntry, CodeGen); 3458 OMPLexicalScope Scope(CGF, S); 3459 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 3460 CapturedVars); 3461 } 3462 3463 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 3464 PrePostActionTy &Action) { 3465 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 3466 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3467 CGF.EmitOMPPrivateClause(S, PrivateScope); 3468 (void)PrivateScope.Privatize(); 3469 3470 Action.Enter(CGF); 3471 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3472 } 3473 3474 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3475 StringRef ParentName, 3476 const OMPTargetDirective &S) { 3477 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3478 emitTargetRegion(CGF, S, Action); 3479 }; 3480 llvm::Function *Fn; 3481 llvm::Constant *Addr; 3482 // Emit target region as a standalone region. 3483 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3484 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3485 assert(Fn && Addr && "Target device function emission failed."); 3486 } 3487 3488 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 3489 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3490 emitTargetRegion(CGF, S, Action); 3491 }; 3492 emitCommonOMPTargetDirective(*this, S, CodeGen); 3493 } 3494 3495 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 3496 const OMPExecutableDirective &S, 3497 OpenMPDirectiveKind InnermostKind, 3498 const RegionCodeGenTy &CodeGen) { 3499 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 3500 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 3501 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 3502 3503 const OMPTeamsDirective &TD = *dyn_cast<OMPTeamsDirective>(&S); 3504 const OMPNumTeamsClause *NT = TD.getSingleClause<OMPNumTeamsClause>(); 3505 const OMPThreadLimitClause *TL = TD.getSingleClause<OMPThreadLimitClause>(); 3506 if (NT || TL) { 3507 Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr; 3508 Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr; 3509 3510 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 3511 S.getLocStart()); 3512 } 3513 3514 OMPLexicalScope Scope(CGF, S); 3515 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3516 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3517 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn, 3518 CapturedVars); 3519 } 3520 3521 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 3522 // Emit teams region as a standalone region. 3523 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3524 OMPPrivateScope PrivateScope(CGF); 3525 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3526 CGF.EmitOMPPrivateClause(S, PrivateScope); 3527 (void)PrivateScope.Privatize(); 3528 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3529 }; 3530 emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen); 3531 } 3532 3533 void CodeGenFunction::EmitOMPCancellationPointDirective( 3534 const OMPCancellationPointDirective &S) { 3535 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 3536 S.getCancelRegion()); 3537 } 3538 3539 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 3540 const Expr *IfCond = nullptr; 3541 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3542 if (C->getNameModifier() == OMPD_unknown || 3543 C->getNameModifier() == OMPD_cancel) { 3544 IfCond = C->getCondition(); 3545 break; 3546 } 3547 } 3548 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 3549 S.getCancelRegion()); 3550 } 3551 3552 CodeGenFunction::JumpDest 3553 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 3554 if (Kind == OMPD_parallel || Kind == OMPD_task || 3555 Kind == OMPD_target_parallel) 3556 return ReturnBlock; 3557 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 3558 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 3559 Kind == OMPD_distribute_parallel_for || 3560 Kind == OMPD_target_parallel_for); 3561 return OMPCancelStack.getExitBlock(); 3562 } 3563 3564 void CodeGenFunction::EmitOMPUseDevicePtrClause( 3565 const OMPClause &NC, OMPPrivateScope &PrivateScope, 3566 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 3567 const auto &C = cast<OMPUseDevicePtrClause>(NC); 3568 auto OrigVarIt = C.varlist_begin(); 3569 auto InitIt = C.inits().begin(); 3570 for (auto PvtVarIt : C.private_copies()) { 3571 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 3572 auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 3573 auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 3574 3575 // In order to identify the right initializer we need to match the 3576 // declaration used by the mapping logic. In some cases we may get 3577 // OMPCapturedExprDecl that refers to the original declaration. 3578 const ValueDecl *MatchingVD = OrigVD; 3579 if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 3580 // OMPCapturedExprDecl are used to privative fields of the current 3581 // structure. 3582 auto *ME = cast<MemberExpr>(OED->getInit()); 3583 assert(isa<CXXThisExpr>(ME->getBase()) && 3584 "Base should be the current struct!"); 3585 MatchingVD = ME->getMemberDecl(); 3586 } 3587 3588 // If we don't have information about the current list item, move on to 3589 // the next one. 3590 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 3591 if (InitAddrIt == CaptureDeviceAddrMap.end()) 3592 continue; 3593 3594 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 3595 // Initialize the temporary initialization variable with the address we 3596 // get from the runtime library. We have to cast the source address 3597 // because it is always a void *. References are materialized in the 3598 // privatization scope, so the initialization here disregards the fact 3599 // the original variable is a reference. 3600 QualType AddrQTy = 3601 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 3602 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 3603 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 3604 setAddrOfLocalVar(InitVD, InitAddr); 3605 3606 // Emit private declaration, it will be initialized by the value we 3607 // declaration we just added to the local declarations map. 3608 EmitDecl(*PvtVD); 3609 3610 // The initialization variables reached its purpose in the emission 3611 // ofthe previous declaration, so we don't need it anymore. 3612 LocalDeclMap.erase(InitVD); 3613 3614 // Return the address of the private variable. 3615 return GetAddrOfLocalVar(PvtVD); 3616 }); 3617 assert(IsRegistered && "firstprivate var already registered as private"); 3618 // Silence the warning about unused variable. 3619 (void)IsRegistered; 3620 3621 ++OrigVarIt; 3622 ++InitIt; 3623 } 3624 } 3625 3626 // Generate the instructions for '#pragma omp target data' directive. 3627 void CodeGenFunction::EmitOMPTargetDataDirective( 3628 const OMPTargetDataDirective &S) { 3629 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 3630 3631 // Create a pre/post action to signal the privatization of the device pointer. 3632 // This action can be replaced by the OpenMP runtime code generation to 3633 // deactivate privatization. 3634 bool PrivatizeDevicePointers = false; 3635 class DevicePointerPrivActionTy : public PrePostActionTy { 3636 bool &PrivatizeDevicePointers; 3637 3638 public: 3639 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 3640 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 3641 void Enter(CodeGenFunction &CGF) override { 3642 PrivatizeDevicePointers = true; 3643 } 3644 }; 3645 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 3646 3647 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 3648 CodeGenFunction &CGF, PrePostActionTy &Action) { 3649 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3650 CGF.EmitStmt( 3651 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 3652 }; 3653 3654 // Codegen that selects wheather to generate the privatization code or not. 3655 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 3656 &InnermostCodeGen](CodeGenFunction &CGF, 3657 PrePostActionTy &Action) { 3658 RegionCodeGenTy RCG(InnermostCodeGen); 3659 PrivatizeDevicePointers = false; 3660 3661 // Call the pre-action to change the status of PrivatizeDevicePointers if 3662 // needed. 3663 Action.Enter(CGF); 3664 3665 if (PrivatizeDevicePointers) { 3666 OMPPrivateScope PrivateScope(CGF); 3667 // Emit all instances of the use_device_ptr clause. 3668 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 3669 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 3670 Info.CaptureDeviceAddrMap); 3671 (void)PrivateScope.Privatize(); 3672 RCG(CGF); 3673 } else 3674 RCG(CGF); 3675 }; 3676 3677 // Forward the provided action to the privatization codegen. 3678 RegionCodeGenTy PrivRCG(PrivCodeGen); 3679 PrivRCG.setAction(Action); 3680 3681 // Notwithstanding the body of the region is emitted as inlined directive, 3682 // we don't use an inline scope as changes in the references inside the 3683 // region are expected to be visible outside, so we do not privative them. 3684 OMPLexicalScope Scope(CGF, S); 3685 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 3686 PrivRCG); 3687 }; 3688 3689 RegionCodeGenTy RCG(CodeGen); 3690 3691 // If we don't have target devices, don't bother emitting the data mapping 3692 // code. 3693 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 3694 RCG(*this); 3695 return; 3696 } 3697 3698 // Check if we have any if clause associated with the directive. 3699 const Expr *IfCond = nullptr; 3700 if (auto *C = S.getSingleClause<OMPIfClause>()) 3701 IfCond = C->getCondition(); 3702 3703 // Check if we have any device clause associated with the directive. 3704 const Expr *Device = nullptr; 3705 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3706 Device = C->getDevice(); 3707 3708 // Set the action to signal privatization of device pointers. 3709 RCG.setAction(PrivAction); 3710 3711 // Emit region code. 3712 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 3713 Info); 3714 } 3715 3716 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 3717 const OMPTargetEnterDataDirective &S) { 3718 // If we don't have target devices, don't bother emitting the data mapping 3719 // code. 3720 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3721 return; 3722 3723 // Check if we have any if clause associated with the directive. 3724 const Expr *IfCond = nullptr; 3725 if (auto *C = S.getSingleClause<OMPIfClause>()) 3726 IfCond = C->getCondition(); 3727 3728 // Check if we have any device clause associated with the directive. 3729 const Expr *Device = nullptr; 3730 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3731 Device = C->getDevice(); 3732 3733 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3734 } 3735 3736 void CodeGenFunction::EmitOMPTargetExitDataDirective( 3737 const OMPTargetExitDataDirective &S) { 3738 // If we don't have target devices, don't bother emitting the data mapping 3739 // code. 3740 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3741 return; 3742 3743 // Check if we have any if clause associated with the directive. 3744 const Expr *IfCond = nullptr; 3745 if (auto *C = S.getSingleClause<OMPIfClause>()) 3746 IfCond = C->getCondition(); 3747 3748 // Check if we have any device clause associated with the directive. 3749 const Expr *Device = nullptr; 3750 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3751 Device = C->getDevice(); 3752 3753 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3754 } 3755 3756 static void emitTargetParallelRegion(CodeGenFunction &CGF, 3757 const OMPTargetParallelDirective &S, 3758 PrePostActionTy &Action) { 3759 // Get the captured statement associated with the 'parallel' region. 3760 auto *CS = S.getCapturedStmt(OMPD_parallel); 3761 Action.Enter(CGF); 3762 auto &&CodeGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3763 // TODO: Add support for clauses. 3764 CGF.EmitStmt(CS->getCapturedStmt()); 3765 }; 3766 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen); 3767 } 3768 3769 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 3770 CodeGenModule &CGM, StringRef ParentName, 3771 const OMPTargetParallelDirective &S) { 3772 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3773 emitTargetParallelRegion(CGF, S, Action); 3774 }; 3775 llvm::Function *Fn; 3776 llvm::Constant *Addr; 3777 // Emit target region as a standalone region. 3778 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3779 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3780 assert(Fn && Addr && "Target device function emission failed."); 3781 } 3782 3783 void CodeGenFunction::EmitOMPTargetParallelDirective( 3784 const OMPTargetParallelDirective &S) { 3785 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3786 emitTargetParallelRegion(CGF, S, Action); 3787 }; 3788 emitCommonOMPTargetDirective(*this, S, CodeGen); 3789 } 3790 3791 void CodeGenFunction::EmitOMPTargetParallelForDirective( 3792 const OMPTargetParallelForDirective &S) { 3793 // TODO: codegen for target parallel for. 3794 } 3795 3796 /// Emit a helper variable and return corresponding lvalue. 3797 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 3798 const ImplicitParamDecl *PVD, 3799 CodeGenFunction::OMPPrivateScope &Privates) { 3800 auto *VDecl = cast<VarDecl>(Helper->getDecl()); 3801 Privates.addPrivate( 3802 VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); }); 3803 } 3804 3805 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 3806 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 3807 // Emit outlined function for task construct. 3808 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 3809 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 3810 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3811 const Expr *IfCond = nullptr; 3812 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3813 if (C->getNameModifier() == OMPD_unknown || 3814 C->getNameModifier() == OMPD_taskloop) { 3815 IfCond = C->getCondition(); 3816 break; 3817 } 3818 } 3819 3820 OMPTaskDataTy Data; 3821 // Check if taskloop must be emitted without taskgroup. 3822 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 3823 // TODO: Check if we should emit tied or untied task. 3824 Data.Tied = true; 3825 // Set scheduling for taskloop 3826 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 3827 // grainsize clause 3828 Data.Schedule.setInt(/*IntVal=*/false); 3829 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 3830 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 3831 // num_tasks clause 3832 Data.Schedule.setInt(/*IntVal=*/true); 3833 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 3834 } 3835 3836 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 3837 // if (PreCond) { 3838 // for (IV in 0..LastIteration) BODY; 3839 // <Final counter/linear vars updates>; 3840 // } 3841 // 3842 3843 // Emit: if (PreCond) - begin. 3844 // If the condition constant folds and can be elided, avoid emitting the 3845 // whole loop. 3846 bool CondConstant; 3847 llvm::BasicBlock *ContBlock = nullptr; 3848 OMPLoopScope PreInitScope(CGF, S); 3849 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3850 if (!CondConstant) 3851 return; 3852 } else { 3853 auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 3854 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 3855 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 3856 CGF.getProfileCount(&S)); 3857 CGF.EmitBlock(ThenBlock); 3858 CGF.incrementProfileCounter(&S); 3859 } 3860 3861 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3862 CGF.EmitOMPSimdInit(S); 3863 3864 OMPPrivateScope LoopScope(CGF); 3865 // Emit helper vars inits. 3866 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 3867 auto *I = CS->getCapturedDecl()->param_begin(); 3868 auto *LBP = std::next(I, LowerBound); 3869 auto *UBP = std::next(I, UpperBound); 3870 auto *STP = std::next(I, Stride); 3871 auto *LIP = std::next(I, LastIter); 3872 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 3873 LoopScope); 3874 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 3875 LoopScope); 3876 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 3877 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 3878 LoopScope); 3879 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 3880 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3881 (void)LoopScope.Privatize(); 3882 // Emit the loop iteration variable. 3883 const Expr *IVExpr = S.getIterationVariable(); 3884 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 3885 CGF.EmitVarDecl(*IVDecl); 3886 CGF.EmitIgnoredExpr(S.getInit()); 3887 3888 // Emit the iterations count variable. 3889 // If it is not a variable, Sema decided to calculate iterations count on 3890 // each iteration (e.g., it is foldable into a constant). 3891 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3892 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3893 // Emit calculation of the iterations count. 3894 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 3895 } 3896 3897 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 3898 S.getInc(), 3899 [&S](CodeGenFunction &CGF) { 3900 CGF.EmitOMPLoopBody(S, JumpDest()); 3901 CGF.EmitStopPoint(&S); 3902 }, 3903 [](CodeGenFunction &) {}); 3904 // Emit: if (PreCond) - end. 3905 if (ContBlock) { 3906 CGF.EmitBranch(ContBlock); 3907 CGF.EmitBlock(ContBlock, true); 3908 } 3909 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3910 if (HasLastprivateClause) { 3911 CGF.EmitOMPLastprivateClauseFinal( 3912 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3913 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 3914 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 3915 (*LIP)->getType(), S.getLocStart()))); 3916 } 3917 }; 3918 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3919 IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn, 3920 const OMPTaskDataTy &Data) { 3921 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) { 3922 OMPLoopScope PreInitScope(CGF, S); 3923 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S, 3924 OutlinedFn, SharedsTy, 3925 CapturedStruct, IfCond, Data); 3926 }; 3927 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 3928 CodeGen); 3929 }; 3930 EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data); 3931 } 3932 3933 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 3934 EmitOMPTaskLoopBasedDirective(S); 3935 } 3936 3937 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 3938 const OMPTaskLoopSimdDirective &S) { 3939 EmitOMPTaskLoopBasedDirective(S); 3940 } 3941 3942 // Generate the instructions for '#pragma omp target update' directive. 3943 void CodeGenFunction::EmitOMPTargetUpdateDirective( 3944 const OMPTargetUpdateDirective &S) { 3945 // If we don't have target devices, don't bother emitting the data mapping 3946 // code. 3947 if (CGM.getLangOpts().OMPTargetTriples.empty()) 3948 return; 3949 3950 // Check if we have any if clause associated with the directive. 3951 const Expr *IfCond = nullptr; 3952 if (auto *C = S.getSingleClause<OMPIfClause>()) 3953 IfCond = C->getCondition(); 3954 3955 // Check if we have any device clause associated with the directive. 3956 const Expr *Device = nullptr; 3957 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 3958 Device = C->getDevice(); 3959 3960 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 3961 } 3962