1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 using namespace clang; 21 using namespace CodeGen; 22 23 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 24 auto &C = getContext(); 25 llvm::Value *Size = nullptr; 26 auto SizeInChars = C.getTypeSizeInChars(Ty); 27 if (SizeInChars.isZero()) { 28 // getTypeSizeInChars() returns 0 for a VLA. 29 while (auto *VAT = C.getAsVariableArrayType(Ty)) { 30 llvm::Value *ArraySize; 31 std::tie(ArraySize, Ty) = getVLASize(VAT); 32 Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize; 33 } 34 SizeInChars = C.getTypeSizeInChars(Ty); 35 if (SizeInChars.isZero()) 36 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 37 Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 38 } else 39 Size = CGM.getSize(SizeInChars); 40 return Size; 41 } 42 43 void CodeGenFunction::GenerateOpenMPCapturedVars( 44 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 45 const RecordDecl *RD = S.getCapturedRecordDecl(); 46 auto CurField = RD->field_begin(); 47 auto CurCap = S.captures().begin(); 48 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 49 E = S.capture_init_end(); 50 I != E; ++I, ++CurField, ++CurCap) { 51 if (CurField->hasCapturedVLAType()) { 52 auto VAT = CurField->getCapturedVLAType(); 53 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 54 CapturedVars.push_back(Val); 55 } else if (CurCap->capturesThis()) 56 CapturedVars.push_back(CXXThisValue); 57 else if (CurCap->capturesVariableByCopy()) 58 CapturedVars.push_back( 59 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal()); 60 else { 61 assert(CurCap->capturesVariable() && "Expected capture by reference."); 62 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 63 } 64 } 65 } 66 67 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 68 StringRef Name, LValue AddrLV, 69 bool isReferenceType = false) { 70 ASTContext &Ctx = CGF.getContext(); 71 72 auto *CastedPtr = CGF.EmitScalarConversion( 73 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 74 Ctx.getPointerType(DstType), SourceLocation()); 75 auto TmpAddr = 76 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 77 .getAddress(); 78 79 // If we are dealing with references we need to return the address of the 80 // reference instead of the reference of the value. 81 if (isReferenceType) { 82 QualType RefType = Ctx.getLValueReferenceType(DstType); 83 auto *RefVal = TmpAddr.getPointer(); 84 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 85 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 86 CGF.EmitScalarInit(RefVal, TmpLVal); 87 } 88 89 return TmpAddr; 90 } 91 92 llvm::Function * 93 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 94 assert( 95 CapturedStmtInfo && 96 "CapturedStmtInfo should be set when generating the captured function"); 97 const CapturedDecl *CD = S.getCapturedDecl(); 98 const RecordDecl *RD = S.getCapturedRecordDecl(); 99 assert(CD->hasBody() && "missing CapturedDecl body"); 100 101 // Build the argument list. 102 ASTContext &Ctx = CGM.getContext(); 103 FunctionArgList Args; 104 Args.append(CD->param_begin(), 105 std::next(CD->param_begin(), CD->getContextParamPosition())); 106 auto I = S.captures().begin(); 107 for (auto *FD : RD->fields()) { 108 QualType ArgType = FD->getType(); 109 IdentifierInfo *II = nullptr; 110 VarDecl *CapVar = nullptr; 111 112 // If this is a capture by copy and the type is not a pointer, the outlined 113 // function argument type should be uintptr and the value properly casted to 114 // uintptr. This is necessary given that the runtime library is only able to 115 // deal with pointers. We can pass in the same way the VLA type sizes to the 116 // outlined function. 117 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 118 I->capturesVariableArrayType()) 119 ArgType = Ctx.getUIntPtrType(); 120 121 if (I->capturesVariable() || I->capturesVariableByCopy()) { 122 CapVar = I->getCapturedVar(); 123 II = CapVar->getIdentifier(); 124 } else if (I->capturesThis()) 125 II = &getContext().Idents.get("this"); 126 else { 127 assert(I->capturesVariableArrayType()); 128 II = &getContext().Idents.get("vla"); 129 } 130 if (ArgType->isVariablyModifiedType()) 131 ArgType = getContext().getVariableArrayDecayedType(ArgType); 132 Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr, 133 FD->getLocation(), II, ArgType)); 134 ++I; 135 } 136 Args.append( 137 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 138 CD->param_end()); 139 140 // Create the function declaration. 141 FunctionType::ExtInfo ExtInfo; 142 const CGFunctionInfo &FuncInfo = 143 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 144 /*IsVariadic=*/false); 145 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 146 147 llvm::Function *F = llvm::Function::Create( 148 FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 149 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 150 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 151 if (CD->isNothrow()) 152 F->addFnAttr(llvm::Attribute::NoUnwind); 153 154 // Generate the function. 155 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 156 CD->getBody()->getLocStart()); 157 unsigned Cnt = CD->getContextParamPosition(); 158 I = S.captures().begin(); 159 for (auto *FD : RD->fields()) { 160 // If we are capturing a pointer by copy we don't need to do anything, just 161 // use the value that we get from the arguments. 162 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 163 setAddrOfLocalVar(I->getCapturedVar(), GetAddrOfLocalVar(Args[Cnt])); 164 ++Cnt, ++I; 165 continue; 166 } 167 168 LValue ArgLVal = 169 MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(), 170 AlignmentSource::Decl); 171 if (FD->hasCapturedVLAType()) { 172 LValue CastedArgLVal = 173 MakeAddrLValue(castValueFromUintptr(*this, FD->getType(), 174 Args[Cnt]->getName(), ArgLVal), 175 FD->getType(), AlignmentSource::Decl); 176 auto *ExprArg = 177 EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal(); 178 auto VAT = FD->getCapturedVLAType(); 179 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 180 } else if (I->capturesVariable()) { 181 auto *Var = I->getCapturedVar(); 182 QualType VarTy = Var->getType(); 183 Address ArgAddr = ArgLVal.getAddress(); 184 if (!VarTy->isReferenceType()) { 185 ArgAddr = EmitLoadOfReference( 186 ArgAddr, ArgLVal.getType()->castAs<ReferenceType>()); 187 } 188 setAddrOfLocalVar( 189 Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var))); 190 } else if (I->capturesVariableByCopy()) { 191 assert(!FD->getType()->isAnyPointerType() && 192 "Not expecting a captured pointer."); 193 auto *Var = I->getCapturedVar(); 194 QualType VarTy = Var->getType(); 195 setAddrOfLocalVar(I->getCapturedVar(), 196 castValueFromUintptr(*this, FD->getType(), 197 Args[Cnt]->getName(), ArgLVal, 198 VarTy->isReferenceType())); 199 } else { 200 // If 'this' is captured, load it into CXXThisValue. 201 assert(I->capturesThis()); 202 CXXThisValue = 203 EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal(); 204 } 205 ++Cnt, ++I; 206 } 207 208 PGO.assignRegionCounters(GlobalDecl(CD), F); 209 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 210 FinishFunction(CD->getBodyRBrace()); 211 212 return F; 213 } 214 215 //===----------------------------------------------------------------------===// 216 // OpenMP Directive Emission 217 //===----------------------------------------------------------------------===// 218 void CodeGenFunction::EmitOMPAggregateAssign( 219 Address DestAddr, Address SrcAddr, QualType OriginalType, 220 const llvm::function_ref<void(Address, Address)> &CopyGen) { 221 // Perform element-by-element initialization. 222 QualType ElementTy; 223 224 // Drill down to the base element type on both arrays. 225 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 226 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 227 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 228 229 auto SrcBegin = SrcAddr.getPointer(); 230 auto DestBegin = DestAddr.getPointer(); 231 // Cast from pointer to array type to pointer to single element. 232 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 233 // The basic structure here is a while-do loop. 234 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 235 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 236 auto IsEmpty = 237 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 238 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 239 240 // Enter the loop body, making that address the current address. 241 auto EntryBB = Builder.GetInsertBlock(); 242 EmitBlock(BodyBB); 243 244 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 245 246 llvm::PHINode *SrcElementPHI = 247 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 248 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 249 Address SrcElementCurrent = 250 Address(SrcElementPHI, 251 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 252 253 llvm::PHINode *DestElementPHI = 254 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 255 DestElementPHI->addIncoming(DestBegin, EntryBB); 256 Address DestElementCurrent = 257 Address(DestElementPHI, 258 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 259 260 // Emit copy. 261 CopyGen(DestElementCurrent, SrcElementCurrent); 262 263 // Shift the address forward by one element. 264 auto DestElementNext = Builder.CreateConstGEP1_32( 265 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 266 auto SrcElementNext = Builder.CreateConstGEP1_32( 267 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 268 // Check whether we've reached the end. 269 auto Done = 270 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 271 Builder.CreateCondBr(Done, DoneBB, BodyBB); 272 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 273 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 274 275 // Done. 276 EmitBlock(DoneBB, /*IsFinished=*/true); 277 } 278 279 /// \brief Emit initialization of arrays of complex types. 280 /// \param DestAddr Address of the array. 281 /// \param Type Type of array. 282 /// \param Init Initial expression of array. 283 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, 284 QualType Type, const Expr *Init) { 285 // Perform element-by-element initialization. 286 QualType ElementTy; 287 288 // Drill down to the base element type on both arrays. 289 auto ArrayTy = Type->getAsArrayTypeUnsafe(); 290 auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); 291 DestAddr = 292 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); 293 294 auto DestBegin = DestAddr.getPointer(); 295 // Cast from pointer to array type to pointer to single element. 296 auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); 297 // The basic structure here is a while-do loop. 298 auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); 299 auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); 300 auto IsEmpty = 301 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); 302 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 303 304 // Enter the loop body, making that address the current address. 305 auto EntryBB = CGF.Builder.GetInsertBlock(); 306 CGF.EmitBlock(BodyBB); 307 308 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); 309 310 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( 311 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 312 DestElementPHI->addIncoming(DestBegin, EntryBB); 313 Address DestElementCurrent = 314 Address(DestElementPHI, 315 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 316 317 // Emit copy. 318 { 319 CodeGenFunction::RunCleanupsScope InitScope(CGF); 320 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), 321 /*IsInitializer=*/false); 322 } 323 324 // Shift the address forward by one element. 325 auto DestElementNext = CGF.Builder.CreateConstGEP1_32( 326 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 327 // Check whether we've reached the end. 328 auto Done = 329 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 330 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); 331 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); 332 333 // Done. 334 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 335 } 336 337 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 338 Address SrcAddr, const VarDecl *DestVD, 339 const VarDecl *SrcVD, const Expr *Copy) { 340 if (OriginalType->isArrayType()) { 341 auto *BO = dyn_cast<BinaryOperator>(Copy); 342 if (BO && BO->getOpcode() == BO_Assign) { 343 // Perform simple memcpy for simple copying. 344 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 345 } else { 346 // For arrays with complex element types perform element by element 347 // copying. 348 EmitOMPAggregateAssign( 349 DestAddr, SrcAddr, OriginalType, 350 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 351 // Working with the single array element, so have to remap 352 // destination and source variables to corresponding array 353 // elements. 354 CodeGenFunction::OMPPrivateScope Remap(*this); 355 Remap.addPrivate(DestVD, [DestElement]() -> Address { 356 return DestElement; 357 }); 358 Remap.addPrivate( 359 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 360 (void)Remap.Privatize(); 361 EmitIgnoredExpr(Copy); 362 }); 363 } 364 } else { 365 // Remap pseudo source variable to private copy. 366 CodeGenFunction::OMPPrivateScope Remap(*this); 367 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 368 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 369 (void)Remap.Privatize(); 370 // Emit copying of the whole variable. 371 EmitIgnoredExpr(Copy); 372 } 373 } 374 375 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 376 OMPPrivateScope &PrivateScope) { 377 if (!HaveInsertPoint()) 378 return false; 379 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 380 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 381 auto IRef = C->varlist_begin(); 382 auto InitsRef = C->inits().begin(); 383 for (auto IInit : C->private_copies()) { 384 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 385 if (EmittedAsFirstprivate.count(OrigVD) == 0) { 386 EmittedAsFirstprivate.insert(OrigVD); 387 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 388 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 389 bool IsRegistered; 390 DeclRefExpr DRE( 391 const_cast<VarDecl *>(OrigVD), 392 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 393 OrigVD) != nullptr, 394 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 395 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 396 QualType Type = OrigVD->getType(); 397 if (Type->isArrayType()) { 398 // Emit VarDecl with copy init for arrays. 399 // Get the address of the original variable captured in current 400 // captured region. 401 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 402 auto Emission = EmitAutoVarAlloca(*VD); 403 auto *Init = VD->getInit(); 404 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 405 // Perform simple memcpy. 406 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 407 Type); 408 } else { 409 EmitOMPAggregateAssign( 410 Emission.getAllocatedAddress(), OriginalAddr, Type, 411 [this, VDInit, Init](Address DestElement, 412 Address SrcElement) { 413 // Clean up any temporaries needed by the initialization. 414 RunCleanupsScope InitScope(*this); 415 // Emit initialization for single element. 416 setAddrOfLocalVar(VDInit, SrcElement); 417 EmitAnyExprToMem(Init, DestElement, 418 Init->getType().getQualifiers(), 419 /*IsInitializer*/ false); 420 LocalDeclMap.erase(VDInit); 421 }); 422 } 423 EmitAutoVarCleanups(Emission); 424 return Emission.getAllocatedAddress(); 425 }); 426 } else { 427 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 428 // Emit private VarDecl with copy init. 429 // Remap temp VDInit variable to the address of the original 430 // variable 431 // (for proper handling of captured global variables). 432 setAddrOfLocalVar(VDInit, OriginalAddr); 433 EmitDecl(*VD); 434 LocalDeclMap.erase(VDInit); 435 return GetAddrOfLocalVar(VD); 436 }); 437 } 438 assert(IsRegistered && 439 "firstprivate var already registered as private"); 440 // Silence the warning about unused variable. 441 (void)IsRegistered; 442 } 443 ++IRef, ++InitsRef; 444 } 445 } 446 return !EmittedAsFirstprivate.empty(); 447 } 448 449 void CodeGenFunction::EmitOMPPrivateClause( 450 const OMPExecutableDirective &D, 451 CodeGenFunction::OMPPrivateScope &PrivateScope) { 452 if (!HaveInsertPoint()) 453 return; 454 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 455 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 456 auto IRef = C->varlist_begin(); 457 for (auto IInit : C->private_copies()) { 458 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 459 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 460 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 461 bool IsRegistered = 462 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 463 // Emit private VarDecl with copy init. 464 EmitDecl(*VD); 465 return GetAddrOfLocalVar(VD); 466 }); 467 assert(IsRegistered && "private var already registered as private"); 468 // Silence the warning about unused variable. 469 (void)IsRegistered; 470 } 471 ++IRef; 472 } 473 } 474 } 475 476 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 477 if (!HaveInsertPoint()) 478 return false; 479 // threadprivate_var1 = master_threadprivate_var1; 480 // operator=(threadprivate_var2, master_threadprivate_var2); 481 // ... 482 // __kmpc_barrier(&loc, global_tid); 483 llvm::DenseSet<const VarDecl *> CopiedVars; 484 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 485 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 486 auto IRef = C->varlist_begin(); 487 auto ISrcRef = C->source_exprs().begin(); 488 auto IDestRef = C->destination_exprs().begin(); 489 for (auto *AssignOp : C->assignment_ops()) { 490 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 491 QualType Type = VD->getType(); 492 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 493 494 // Get the address of the master variable. If we are emitting code with 495 // TLS support, the address is passed from the master as field in the 496 // captured declaration. 497 Address MasterAddr = Address::invalid(); 498 if (getLangOpts().OpenMPUseTLS && 499 getContext().getTargetInfo().isTLSSupported()) { 500 assert(CapturedStmtInfo->lookup(VD) && 501 "Copyin threadprivates should have been captured!"); 502 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 503 VK_LValue, (*IRef)->getExprLoc()); 504 MasterAddr = EmitLValue(&DRE).getAddress(); 505 LocalDeclMap.erase(VD); 506 } else { 507 MasterAddr = 508 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 509 : CGM.GetAddrOfGlobal(VD), 510 getContext().getDeclAlign(VD)); 511 } 512 // Get the address of the threadprivate variable. 513 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 514 if (CopiedVars.size() == 1) { 515 // At first check if current thread is a master thread. If it is, no 516 // need to copy data. 517 CopyBegin = createBasicBlock("copyin.not.master"); 518 CopyEnd = createBasicBlock("copyin.not.master.end"); 519 Builder.CreateCondBr( 520 Builder.CreateICmpNE( 521 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 522 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 523 CopyBegin, CopyEnd); 524 EmitBlock(CopyBegin); 525 } 526 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 527 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 528 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 529 } 530 ++IRef; 531 ++ISrcRef; 532 ++IDestRef; 533 } 534 } 535 if (CopyEnd) { 536 // Exit out of copying procedure for non-master thread. 537 EmitBlock(CopyEnd, /*IsFinished=*/true); 538 return true; 539 } 540 return false; 541 } 542 543 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 544 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 545 if (!HaveInsertPoint()) 546 return false; 547 bool HasAtLeastOneLastprivate = false; 548 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 549 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 550 HasAtLeastOneLastprivate = true; 551 auto IRef = C->varlist_begin(); 552 auto IDestRef = C->destination_exprs().begin(); 553 for (auto *IInit : C->private_copies()) { 554 // Keep the address of the original variable for future update at the end 555 // of the loop. 556 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 557 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 558 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 559 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 560 DeclRefExpr DRE( 561 const_cast<VarDecl *>(OrigVD), 562 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 563 OrigVD) != nullptr, 564 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 565 return EmitLValue(&DRE).getAddress(); 566 }); 567 // Check if the variable is also a firstprivate: in this case IInit is 568 // not generated. Initialization of this variable will happen in codegen 569 // for 'firstprivate' clause. 570 if (IInit) { 571 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 572 bool IsRegistered = 573 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 574 // Emit private VarDecl with copy init. 575 EmitDecl(*VD); 576 return GetAddrOfLocalVar(VD); 577 }); 578 assert(IsRegistered && 579 "lastprivate var already registered as private"); 580 (void)IsRegistered; 581 } 582 } 583 ++IRef, ++IDestRef; 584 } 585 } 586 return HasAtLeastOneLastprivate; 587 } 588 589 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 590 const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) { 591 if (!HaveInsertPoint()) 592 return; 593 // Emit following code: 594 // if (<IsLastIterCond>) { 595 // orig_var1 = private_orig_var1; 596 // ... 597 // orig_varn = private_orig_varn; 598 // } 599 llvm::BasicBlock *ThenBB = nullptr; 600 llvm::BasicBlock *DoneBB = nullptr; 601 if (IsLastIterCond) { 602 ThenBB = createBasicBlock(".omp.lastprivate.then"); 603 DoneBB = createBasicBlock(".omp.lastprivate.done"); 604 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 605 EmitBlock(ThenBB); 606 } 607 llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates; 608 const Expr *LastIterVal = nullptr; 609 const Expr *IVExpr = nullptr; 610 const Expr *IncExpr = nullptr; 611 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 612 if (isOpenMPWorksharingDirective(D.getDirectiveKind())) { 613 LastIterVal = cast<VarDecl>(cast<DeclRefExpr>( 614 LoopDirective->getUpperBoundVariable()) 615 ->getDecl()) 616 ->getAnyInitializer(); 617 IVExpr = LoopDirective->getIterationVariable(); 618 IncExpr = LoopDirective->getInc(); 619 auto IUpdate = LoopDirective->updates().begin(); 620 for (auto *E : LoopDirective->counters()) { 621 auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 622 LoopCountersAndUpdates[D] = *IUpdate; 623 ++IUpdate; 624 } 625 } 626 } 627 { 628 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 629 bool FirstLCV = true; 630 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 631 auto IRef = C->varlist_begin(); 632 auto ISrcRef = C->source_exprs().begin(); 633 auto IDestRef = C->destination_exprs().begin(); 634 for (auto *AssignOp : C->assignment_ops()) { 635 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 636 QualType Type = PrivateVD->getType(); 637 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 638 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 639 // If lastprivate variable is a loop control variable for loop-based 640 // directive, update its value before copyin back to original 641 // variable. 642 if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) { 643 if (FirstLCV && LastIterVal) { 644 EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(), 645 IVExpr->getType().getQualifiers(), 646 /*IsInitializer=*/false); 647 EmitIgnoredExpr(IncExpr); 648 FirstLCV = false; 649 } 650 EmitIgnoredExpr(UpExpr); 651 } 652 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 653 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 654 // Get the address of the original variable. 655 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 656 // Get the address of the private variable. 657 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 658 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 659 PrivateAddr = 660 Address(Builder.CreateLoad(PrivateAddr), 661 getNaturalTypeAlignment(RefTy->getPointeeType())); 662 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 663 } 664 ++IRef; 665 ++ISrcRef; 666 ++IDestRef; 667 } 668 } 669 } 670 if (IsLastIterCond) { 671 EmitBlock(DoneBB, /*IsFinished=*/true); 672 } 673 } 674 675 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 676 LValue BaseLV, llvm::Value *Addr) { 677 Address Tmp = Address::invalid(); 678 Address TopTmp = Address::invalid(); 679 Address MostTopTmp = Address::invalid(); 680 BaseTy = BaseTy.getNonReferenceType(); 681 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 682 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 683 Tmp = CGF.CreateMemTemp(BaseTy); 684 if (TopTmp.isValid()) 685 CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); 686 else 687 MostTopTmp = Tmp; 688 TopTmp = Tmp; 689 BaseTy = BaseTy->getPointeeType(); 690 } 691 llvm::Type *Ty = BaseLV.getPointer()->getType(); 692 if (Tmp.isValid()) 693 Ty = Tmp.getElementType(); 694 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); 695 if (Tmp.isValid()) { 696 CGF.Builder.CreateStore(Addr, Tmp); 697 return MostTopTmp; 698 } 699 return Address(Addr, BaseLV.getAlignment()); 700 } 701 702 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, 703 LValue BaseLV) { 704 BaseTy = BaseTy.getNonReferenceType(); 705 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && 706 !CGF.getContext().hasSameType(BaseTy, ElTy)) { 707 if (auto *PtrTy = BaseTy->getAs<PointerType>()) 708 BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy); 709 else { 710 BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(), 711 BaseTy->castAs<ReferenceType>()); 712 } 713 BaseTy = BaseTy->getPointeeType(); 714 } 715 return CGF.MakeAddrLValue( 716 Address( 717 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 718 BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()), 719 BaseLV.getAlignment()), 720 BaseLV.getType(), BaseLV.getAlignmentSource()); 721 } 722 723 void CodeGenFunction::EmitOMPReductionClauseInit( 724 const OMPExecutableDirective &D, 725 CodeGenFunction::OMPPrivateScope &PrivateScope) { 726 if (!HaveInsertPoint()) 727 return; 728 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 729 auto ILHS = C->lhs_exprs().begin(); 730 auto IRHS = C->rhs_exprs().begin(); 731 auto IPriv = C->privates().begin(); 732 for (auto IRef : C->varlists()) { 733 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 734 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 735 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 736 if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) { 737 auto *Base = OASE->getBase()->IgnoreParenImpCasts(); 738 while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 739 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 740 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 741 Base = TempASE->getBase()->IgnoreParenImpCasts(); 742 auto *DE = cast<DeclRefExpr>(Base); 743 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 744 auto OASELValueLB = EmitOMPArraySectionExpr(OASE); 745 auto OASELValueUB = 746 EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); 747 auto OriginalBaseLValue = EmitLValue(DE); 748 LValue BaseLValue = 749 loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(), 750 OriginalBaseLValue); 751 // Store the address of the original variable associated with the LHS 752 // implicit variable. 753 PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address { 754 return OASELValueLB.getAddress(); 755 }); 756 // Emit reduction copy. 757 bool IsRegistered = PrivateScope.addPrivate( 758 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB, 759 OASELValueUB, OriginalBaseLValue]() -> Address { 760 // Emit VarDecl with copy init for arrays. 761 // Get the address of the original variable captured in current 762 // captured region. 763 auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(), 764 OASELValueLB.getPointer()); 765 Size = Builder.CreateNUWAdd( 766 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); 767 CodeGenFunction::OpaqueValueMapping OpaqueMap( 768 *this, cast<OpaqueValueExpr>( 769 getContext() 770 .getAsVariableArrayType(PrivateVD->getType()) 771 ->getSizeExpr()), 772 RValue::get(Size)); 773 EmitVariablyModifiedType(PrivateVD->getType()); 774 auto Emission = EmitAutoVarAlloca(*PrivateVD); 775 auto Addr = Emission.getAllocatedAddress(); 776 auto *Init = PrivateVD->getInit(); 777 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), Init); 778 EmitAutoVarCleanups(Emission); 779 // Emit private VarDecl with reduction init. 780 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 781 OASELValueLB.getPointer()); 782 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 783 return castToBase(*this, OrigVD->getType(), 784 OASELValueLB.getType(), OriginalBaseLValue, 785 Ptr); 786 }); 787 assert(IsRegistered && "private var already registered as private"); 788 // Silence the warning about unused variable. 789 (void)IsRegistered; 790 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 791 return GetAddrOfLocalVar(PrivateVD); 792 }); 793 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) { 794 auto *Base = ASE->getBase()->IgnoreParenImpCasts(); 795 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 796 Base = TempASE->getBase()->IgnoreParenImpCasts(); 797 auto *DE = cast<DeclRefExpr>(Base); 798 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 799 auto ASELValue = EmitLValue(ASE); 800 auto OriginalBaseLValue = EmitLValue(DE); 801 LValue BaseLValue = loadToBegin( 802 *this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue); 803 // Store the address of the original variable associated with the LHS 804 // implicit variable. 805 PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address { 806 return ASELValue.getAddress(); 807 }); 808 // Emit reduction copy. 809 bool IsRegistered = PrivateScope.addPrivate( 810 OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue, 811 OriginalBaseLValue]() -> Address { 812 // Emit private VarDecl with reduction init. 813 EmitDecl(*PrivateVD); 814 auto Addr = GetAddrOfLocalVar(PrivateVD); 815 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 816 ASELValue.getPointer()); 817 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 818 return castToBase(*this, OrigVD->getType(), ASELValue.getType(), 819 OriginalBaseLValue, Ptr); 820 }); 821 assert(IsRegistered && "private var already registered as private"); 822 // Silence the warning about unused variable. 823 (void)IsRegistered; 824 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 825 return Builder.CreateElementBitCast( 826 GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()), 827 "rhs.begin"); 828 }); 829 } else { 830 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 831 QualType Type = PrivateVD->getType(); 832 if (getContext().getAsArrayType(Type)) { 833 // Store the address of the original variable associated with the LHS 834 // implicit variable. 835 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 836 CapturedStmtInfo->lookup(OrigVD) != nullptr, 837 IRef->getType(), VK_LValue, IRef->getExprLoc()); 838 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 839 PrivateScope.addPrivate(LHSVD, [this, OriginalAddr, 840 LHSVD]() -> Address { 841 return Builder.CreateElementBitCast( 842 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), 843 "lhs.begin"); 844 }); 845 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 846 if (Type->isVariablyModifiedType()) { 847 CodeGenFunction::OpaqueValueMapping OpaqueMap( 848 *this, cast<OpaqueValueExpr>( 849 getContext() 850 .getAsVariableArrayType(PrivateVD->getType()) 851 ->getSizeExpr()), 852 RValue::get( 853 getTypeSize(OrigVD->getType().getNonReferenceType()))); 854 EmitVariablyModifiedType(Type); 855 } 856 auto Emission = EmitAutoVarAlloca(*PrivateVD); 857 auto Addr = Emission.getAllocatedAddress(); 858 auto *Init = PrivateVD->getInit(); 859 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), Init); 860 EmitAutoVarCleanups(Emission); 861 return Emission.getAllocatedAddress(); 862 }); 863 assert(IsRegistered && "private var already registered as private"); 864 // Silence the warning about unused variable. 865 (void)IsRegistered; 866 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address { 867 return Builder.CreateElementBitCast( 868 GetAddrOfLocalVar(PrivateVD), 869 ConvertTypeForMem(RHSVD->getType()), "rhs.begin"); 870 }); 871 } else { 872 // Store the address of the original variable associated with the LHS 873 // implicit variable. 874 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> Address { 875 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 876 CapturedStmtInfo->lookup(OrigVD) != nullptr, 877 IRef->getType(), VK_LValue, IRef->getExprLoc()); 878 return EmitLValue(&DRE).getAddress(); 879 }); 880 // Emit reduction copy. 881 bool IsRegistered = 882 PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> Address { 883 // Emit private VarDecl with reduction init. 884 EmitDecl(*PrivateVD); 885 return GetAddrOfLocalVar(PrivateVD); 886 }); 887 assert(IsRegistered && "private var already registered as private"); 888 // Silence the warning about unused variable. 889 (void)IsRegistered; 890 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 891 return GetAddrOfLocalVar(PrivateVD); 892 }); 893 } 894 } 895 ++ILHS, ++IRHS, ++IPriv; 896 } 897 } 898 } 899 900 void CodeGenFunction::EmitOMPReductionClauseFinal( 901 const OMPExecutableDirective &D) { 902 if (!HaveInsertPoint()) 903 return; 904 llvm::SmallVector<const Expr *, 8> Privates; 905 llvm::SmallVector<const Expr *, 8> LHSExprs; 906 llvm::SmallVector<const Expr *, 8> RHSExprs; 907 llvm::SmallVector<const Expr *, 8> ReductionOps; 908 bool HasAtLeastOneReduction = false; 909 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 910 HasAtLeastOneReduction = true; 911 Privates.append(C->privates().begin(), C->privates().end()); 912 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 913 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 914 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 915 } 916 if (HasAtLeastOneReduction) { 917 // Emit nowait reduction if nowait clause is present or directive is a 918 // parallel directive (it always has implicit barrier). 919 CGM.getOpenMPRuntime().emitReduction( 920 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 921 D.getSingleClause<OMPNowaitClause>() || 922 isOpenMPParallelDirective(D.getDirectiveKind()) || 923 D.getDirectiveKind() == OMPD_simd, 924 D.getDirectiveKind() == OMPD_simd); 925 } 926 } 927 928 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 929 const OMPExecutableDirective &S, 930 OpenMPDirectiveKind InnermostKind, 931 const RegionCodeGenTy &CodeGen) { 932 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 933 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 934 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 935 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 936 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 937 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 938 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 939 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 940 /*IgnoreResultAssign*/ true); 941 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 942 CGF, NumThreads, NumThreadsClause->getLocStart()); 943 } 944 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 945 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 946 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 947 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 948 } 949 const Expr *IfCond = nullptr; 950 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 951 if (C->getNameModifier() == OMPD_unknown || 952 C->getNameModifier() == OMPD_parallel) { 953 IfCond = C->getCondition(); 954 break; 955 } 956 } 957 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 958 CapturedVars, IfCond); 959 } 960 961 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 962 LexicalScope Scope(*this, S.getSourceRange()); 963 // Emit parallel region as a standalone region. 964 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 965 OMPPrivateScope PrivateScope(CGF); 966 bool Copyins = CGF.EmitOMPCopyinClause(S); 967 bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope); 968 if (Copyins || Firstprivates) { 969 // Emit implicit barrier to synchronize threads and avoid data races on 970 // initialization of firstprivate variables or propagation master's thread 971 // values of threadprivate variables to local instances of that variables 972 // of all other implicit threads. 973 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 974 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 975 /*ForceSimpleCall=*/true); 976 } 977 CGF.EmitOMPPrivateClause(S, PrivateScope); 978 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 979 (void)PrivateScope.Privatize(); 980 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 981 CGF.EmitOMPReductionClauseFinal(S); 982 }; 983 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 984 } 985 986 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 987 JumpDest LoopExit) { 988 RunCleanupsScope BodyScope(*this); 989 // Update counters values on current iteration. 990 for (auto I : D.updates()) { 991 EmitIgnoredExpr(I); 992 } 993 // Update the linear variables. 994 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 995 for (auto U : C->updates()) { 996 EmitIgnoredExpr(U); 997 } 998 } 999 1000 // On a continue in the body, jump to the end. 1001 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 1002 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1003 // Emit loop body. 1004 EmitStmt(D.getBody()); 1005 // The end (updates/cleanups). 1006 EmitBlock(Continue.getBlock()); 1007 BreakContinueStack.pop_back(); 1008 // TODO: Update lastprivates if the SeparateIter flag is true. 1009 // This will be implemented in a follow-up OMPLastprivateClause patch, but 1010 // result should be still correct without it, as we do not make these 1011 // variables private yet. 1012 } 1013 1014 void CodeGenFunction::EmitOMPInnerLoop( 1015 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1016 const Expr *IncExpr, 1017 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 1018 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 1019 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1020 1021 // Start the loop with a block that tests the condition. 1022 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1023 EmitBlock(CondBlock); 1024 LoopStack.push(CondBlock); 1025 1026 // If there are any cleanups between here and the loop-exit scope, 1027 // create a block to stage a loop exit along. 1028 auto ExitBlock = LoopExit.getBlock(); 1029 if (RequiresCleanup) 1030 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1031 1032 auto LoopBody = createBasicBlock("omp.inner.for.body"); 1033 1034 // Emit condition. 1035 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1036 if (ExitBlock != LoopExit.getBlock()) { 1037 EmitBlock(ExitBlock); 1038 EmitBranchThroughCleanup(LoopExit); 1039 } 1040 1041 EmitBlock(LoopBody); 1042 incrementProfileCounter(&S); 1043 1044 // Create a block for the increment. 1045 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1046 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1047 1048 BodyGen(*this); 1049 1050 // Emit "IV = IV + 1" and a back-edge to the condition block. 1051 EmitBlock(Continue.getBlock()); 1052 EmitIgnoredExpr(IncExpr); 1053 PostIncGen(*this); 1054 BreakContinueStack.pop_back(); 1055 EmitBranch(CondBlock); 1056 LoopStack.pop(); 1057 // Emit the fall-through block. 1058 EmitBlock(LoopExit.getBlock()); 1059 } 1060 1061 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1062 if (!HaveInsertPoint()) 1063 return; 1064 // Emit inits for the linear variables. 1065 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1066 for (auto Init : C->inits()) { 1067 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1068 auto *OrigVD = cast<VarDecl>( 1069 cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl()); 1070 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1071 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1072 VD->getInit()->getType(), VK_LValue, 1073 VD->getInit()->getExprLoc()); 1074 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1075 EmitExprAsInit(&DRE, VD, 1076 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 1077 /*capturedByInit=*/false); 1078 EmitAutoVarCleanups(Emission); 1079 } 1080 // Emit the linear steps for the linear clauses. 1081 // If a step is not constant, it is pre-calculated before the loop. 1082 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1083 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1084 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1085 // Emit calculation of the linear step. 1086 EmitIgnoredExpr(CS); 1087 } 1088 } 1089 } 1090 1091 static void emitLinearClauseFinal(CodeGenFunction &CGF, 1092 const OMPLoopDirective &D) { 1093 if (!CGF.HaveInsertPoint()) 1094 return; 1095 // Emit the final values of the linear variables. 1096 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1097 auto IC = C->varlist_begin(); 1098 for (auto F : C->finals()) { 1099 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1100 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1101 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 1102 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1103 Address OrigAddr = CGF.EmitLValue(&DRE).getAddress(); 1104 CodeGenFunction::OMPPrivateScope VarScope(CGF); 1105 VarScope.addPrivate(OrigVD, 1106 [OrigAddr]() -> Address { return OrigAddr; }); 1107 (void)VarScope.Privatize(); 1108 CGF.EmitIgnoredExpr(F); 1109 ++IC; 1110 } 1111 } 1112 } 1113 1114 static void emitAlignedClause(CodeGenFunction &CGF, 1115 const OMPExecutableDirective &D) { 1116 if (!CGF.HaveInsertPoint()) 1117 return; 1118 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1119 unsigned ClauseAlignment = 0; 1120 if (auto AlignmentExpr = Clause->getAlignment()) { 1121 auto AlignmentCI = 1122 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1123 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1124 } 1125 for (auto E : Clause->varlists()) { 1126 unsigned Alignment = ClauseAlignment; 1127 if (Alignment == 0) { 1128 // OpenMP [2.8.1, Description] 1129 // If no optional parameter is specified, implementation-defined default 1130 // alignments for SIMD instructions on the target platforms are assumed. 1131 Alignment = 1132 CGF.getContext() 1133 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1134 E->getType()->getPointeeType())) 1135 .getQuantity(); 1136 } 1137 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1138 "alignment is not power of 2"); 1139 if (Alignment != 0) { 1140 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1141 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1142 } 1143 } 1144 } 1145 } 1146 1147 static void emitPrivateLoopCounters(CodeGenFunction &CGF, 1148 CodeGenFunction::OMPPrivateScope &LoopScope, 1149 ArrayRef<Expr *> Counters, 1150 ArrayRef<Expr *> PrivateCounters) { 1151 if (!CGF.HaveInsertPoint()) 1152 return; 1153 auto I = PrivateCounters.begin(); 1154 for (auto *E : Counters) { 1155 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1156 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1157 Address Addr = Address::invalid(); 1158 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1159 // Emit var without initialization. 1160 auto VarEmission = CGF.EmitAutoVarAlloca(*PrivateVD); 1161 CGF.EmitAutoVarCleanups(VarEmission); 1162 Addr = VarEmission.getAllocatedAddress(); 1163 return Addr; 1164 }); 1165 (void)LoopScope.addPrivate(VD, [&]() -> Address { return Addr; }); 1166 ++I; 1167 } 1168 } 1169 1170 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1171 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1172 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1173 if (!CGF.HaveInsertPoint()) 1174 return; 1175 { 1176 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1177 emitPrivateLoopCounters(CGF, PreCondScope, S.counters(), 1178 S.private_counters()); 1179 (void)PreCondScope.Privatize(); 1180 // Get initial values of real counters. 1181 for (auto I : S.inits()) { 1182 CGF.EmitIgnoredExpr(I); 1183 } 1184 } 1185 // Check that loop is executed at least one time. 1186 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1187 } 1188 1189 static void 1190 emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D, 1191 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1192 if (!CGF.HaveInsertPoint()) 1193 return; 1194 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1195 auto CurPrivate = C->privates().begin(); 1196 for (auto *E : C->varlists()) { 1197 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1198 auto *PrivateVD = 1199 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1200 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1201 // Emit private VarDecl with copy init. 1202 CGF.EmitVarDecl(*PrivateVD); 1203 return CGF.GetAddrOfLocalVar(PrivateVD); 1204 }); 1205 assert(IsRegistered && "linear var already registered as private"); 1206 // Silence the warning about unused variable. 1207 (void)IsRegistered; 1208 ++CurPrivate; 1209 } 1210 } 1211 } 1212 1213 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1214 const OMPExecutableDirective &D, 1215 bool IsMonotonic) { 1216 if (!CGF.HaveInsertPoint()) 1217 return; 1218 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1219 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1220 /*ignoreResult=*/true); 1221 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1222 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1223 // In presence of finite 'safelen', it may be unsafe to mark all 1224 // the memory instructions parallel, because loop-carried 1225 // dependences of 'safelen' iterations are possible. 1226 if (!IsMonotonic) 1227 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1228 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1229 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1230 /*ignoreResult=*/true); 1231 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1232 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1233 // In presence of finite 'safelen', it may be unsafe to mark all 1234 // the memory instructions parallel, because loop-carried 1235 // dependences of 'safelen' iterations are possible. 1236 CGF.LoopStack.setParallel(false); 1237 } 1238 } 1239 1240 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1241 bool IsMonotonic) { 1242 // Walk clauses and process safelen/lastprivate. 1243 LoopStack.setParallel(!IsMonotonic); 1244 LoopStack.setVectorizeEnable(true); 1245 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1246 } 1247 1248 void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) { 1249 if (!HaveInsertPoint()) 1250 return; 1251 auto IC = D.counters().begin(); 1252 for (auto F : D.finals()) { 1253 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1254 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) { 1255 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1256 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1257 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1258 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1259 OMPPrivateScope VarScope(*this); 1260 VarScope.addPrivate(OrigVD, 1261 [OrigAddr]() -> Address { return OrigAddr; }); 1262 (void)VarScope.Privatize(); 1263 EmitIgnoredExpr(F); 1264 } 1265 ++IC; 1266 } 1267 emitLinearClauseFinal(*this, D); 1268 } 1269 1270 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1271 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1272 // if (PreCond) { 1273 // for (IV in 0..LastIteration) BODY; 1274 // <Final counter/linear vars updates>; 1275 // } 1276 // 1277 1278 // Emit: if (PreCond) - begin. 1279 // If the condition constant folds and can be elided, avoid emitting the 1280 // whole loop. 1281 bool CondConstant; 1282 llvm::BasicBlock *ContBlock = nullptr; 1283 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1284 if (!CondConstant) 1285 return; 1286 } else { 1287 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1288 ContBlock = CGF.createBasicBlock("simd.if.end"); 1289 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1290 CGF.getProfileCount(&S)); 1291 CGF.EmitBlock(ThenBlock); 1292 CGF.incrementProfileCounter(&S); 1293 } 1294 1295 // Emit the loop iteration variable. 1296 const Expr *IVExpr = S.getIterationVariable(); 1297 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1298 CGF.EmitVarDecl(*IVDecl); 1299 CGF.EmitIgnoredExpr(S.getInit()); 1300 1301 // Emit the iterations count variable. 1302 // If it is not a variable, Sema decided to calculate iterations count on 1303 // each iteration (e.g., it is foldable into a constant). 1304 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1305 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1306 // Emit calculation of the iterations count. 1307 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1308 } 1309 1310 CGF.EmitOMPSimdInit(S); 1311 1312 emitAlignedClause(CGF, S); 1313 CGF.EmitOMPLinearClauseInit(S); 1314 bool HasLastprivateClause; 1315 { 1316 OMPPrivateScope LoopScope(CGF); 1317 emitPrivateLoopCounters(CGF, LoopScope, S.counters(), 1318 S.private_counters()); 1319 emitPrivateLinearVars(CGF, S, LoopScope); 1320 CGF.EmitOMPPrivateClause(S, LoopScope); 1321 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1322 HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1323 (void)LoopScope.Privatize(); 1324 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1325 S.getInc(), 1326 [&S](CodeGenFunction &CGF) { 1327 CGF.EmitOMPLoopBody(S, JumpDest()); 1328 CGF.EmitStopPoint(&S); 1329 }, 1330 [](CodeGenFunction &) {}); 1331 // Emit final copy of the lastprivate variables at the end of loops. 1332 if (HasLastprivateClause) { 1333 CGF.EmitOMPLastprivateClauseFinal(S); 1334 } 1335 CGF.EmitOMPReductionClauseFinal(S); 1336 } 1337 CGF.EmitOMPSimdFinal(S); 1338 // Emit: if (PreCond) - end. 1339 if (ContBlock) { 1340 CGF.EmitBranch(ContBlock); 1341 CGF.EmitBlock(ContBlock, true); 1342 } 1343 }; 1344 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1345 } 1346 1347 void CodeGenFunction::EmitOMPForOuterLoop( 1348 OpenMPScheduleClauseKind ScheduleKind, bool IsMonotonic, 1349 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1350 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) { 1351 auto &RT = CGM.getOpenMPRuntime(); 1352 1353 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1354 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind); 1355 1356 assert((Ordered || 1357 !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) && 1358 "static non-chunked schedule does not need outer loop"); 1359 1360 // Emit outer loop. 1361 // 1362 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1363 // When schedule(dynamic,chunk_size) is specified, the iterations are 1364 // distributed to threads in the team in chunks as the threads request them. 1365 // Each thread executes a chunk of iterations, then requests another chunk, 1366 // until no chunks remain to be distributed. Each chunk contains chunk_size 1367 // iterations, except for the last chunk to be distributed, which may have 1368 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1369 // 1370 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1371 // to threads in the team in chunks as the executing threads request them. 1372 // Each thread executes a chunk of iterations, then requests another chunk, 1373 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1374 // each chunk is proportional to the number of unassigned iterations divided 1375 // by the number of threads in the team, decreasing to 1. For a chunk_size 1376 // with value k (greater than 1), the size of each chunk is determined in the 1377 // same way, with the restriction that the chunks do not contain fewer than k 1378 // iterations (except for the last chunk to be assigned, which may have fewer 1379 // than k iterations). 1380 // 1381 // When schedule(auto) is specified, the decision regarding scheduling is 1382 // delegated to the compiler and/or runtime system. The programmer gives the 1383 // implementation the freedom to choose any possible mapping of iterations to 1384 // threads in the team. 1385 // 1386 // When schedule(runtime) is specified, the decision regarding scheduling is 1387 // deferred until run time, and the schedule and chunk size are taken from the 1388 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1389 // implementation defined 1390 // 1391 // while(__kmpc_dispatch_next(&LB, &UB)) { 1392 // idx = LB; 1393 // while (idx <= UB) { BODY; ++idx; 1394 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1395 // } // inner loop 1396 // } 1397 // 1398 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1399 // When schedule(static, chunk_size) is specified, iterations are divided into 1400 // chunks of size chunk_size, and the chunks are assigned to the threads in 1401 // the team in a round-robin fashion in the order of the thread number. 1402 // 1403 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1404 // while (idx <= UB) { BODY; ++idx; } // inner loop 1405 // LB = LB + ST; 1406 // UB = UB + ST; 1407 // } 1408 // 1409 1410 const Expr *IVExpr = S.getIterationVariable(); 1411 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1412 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1413 1414 if (DynamicOrOrdered) { 1415 llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration()); 1416 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, 1417 IVSize, IVSigned, Ordered, UBVal, Chunk); 1418 } else { 1419 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 1420 IVSize, IVSigned, Ordered, IL, LB, UB, ST, Chunk); 1421 } 1422 1423 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1424 1425 // Start the loop with a block that tests the condition. 1426 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1427 EmitBlock(CondBlock); 1428 LoopStack.push(CondBlock); 1429 1430 llvm::Value *BoolCondVal = nullptr; 1431 if (!DynamicOrOrdered) { 1432 // UB = min(UB, GlobalUB) 1433 EmitIgnoredExpr(S.getEnsureUpperBound()); 1434 // IV = LB 1435 EmitIgnoredExpr(S.getInit()); 1436 // IV < UB 1437 BoolCondVal = EvaluateExprAsBool(S.getCond()); 1438 } else { 1439 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, 1440 IL, LB, UB, ST); 1441 } 1442 1443 // If there are any cleanups between here and the loop-exit scope, 1444 // create a block to stage a loop exit along. 1445 auto ExitBlock = LoopExit.getBlock(); 1446 if (LoopScope.requiresCleanups()) 1447 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1448 1449 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1450 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1451 if (ExitBlock != LoopExit.getBlock()) { 1452 EmitBlock(ExitBlock); 1453 EmitBranchThroughCleanup(LoopExit); 1454 } 1455 EmitBlock(LoopBody); 1456 1457 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1458 // LB for loop condition and emitted it above). 1459 if (DynamicOrOrdered) 1460 EmitIgnoredExpr(S.getInit()); 1461 1462 // Create a block for the increment. 1463 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1464 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1465 1466 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1467 // with dynamic/guided scheduling and without ordered clause. 1468 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1469 LoopStack.setParallel(!IsMonotonic); 1470 else 1471 EmitOMPSimdInit(S, IsMonotonic); 1472 1473 SourceLocation Loc = S.getLocStart(); 1474 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1475 [&S, LoopExit](CodeGenFunction &CGF) { 1476 CGF.EmitOMPLoopBody(S, LoopExit); 1477 CGF.EmitStopPoint(&S); 1478 }, 1479 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1480 if (Ordered) { 1481 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1482 CGF, Loc, IVSize, IVSigned); 1483 } 1484 }); 1485 1486 EmitBlock(Continue.getBlock()); 1487 BreakContinueStack.pop_back(); 1488 if (!DynamicOrOrdered) { 1489 // Emit "LB = LB + Stride", "UB = UB + Stride". 1490 EmitIgnoredExpr(S.getNextLowerBound()); 1491 EmitIgnoredExpr(S.getNextUpperBound()); 1492 } 1493 1494 EmitBranch(CondBlock); 1495 LoopStack.pop(); 1496 // Emit the fall-through block. 1497 EmitBlock(LoopExit.getBlock()); 1498 1499 // Tell the runtime we are done. 1500 if (!DynamicOrOrdered) 1501 RT.emitForStaticFinish(*this, S.getLocEnd()); 1502 } 1503 1504 /// \brief Emit a helper variable and return corresponding lvalue. 1505 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1506 const DeclRefExpr *Helper) { 1507 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1508 CGF.EmitVarDecl(*VDecl); 1509 return CGF.EmitLValue(Helper); 1510 } 1511 1512 namespace { 1513 struct ScheduleKindModifiersTy { 1514 OpenMPScheduleClauseKind Kind; 1515 OpenMPScheduleClauseModifier M1; 1516 OpenMPScheduleClauseModifier M2; 1517 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 1518 OpenMPScheduleClauseModifier M1, 1519 OpenMPScheduleClauseModifier M2) 1520 : Kind(Kind), M1(M1), M2(M2) {} 1521 }; 1522 } // namespace 1523 1524 static std::pair<llvm::Value * /*Chunk*/, ScheduleKindModifiersTy> 1525 emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S, 1526 bool OuterRegion) { 1527 // Detect the loop schedule kind and chunk. 1528 auto ScheduleKind = OMPC_SCHEDULE_unknown; 1529 OpenMPScheduleClauseModifier M1 = OMPC_SCHEDULE_MODIFIER_unknown; 1530 OpenMPScheduleClauseModifier M2 = OMPC_SCHEDULE_MODIFIER_unknown; 1531 llvm::Value *Chunk = nullptr; 1532 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 1533 ScheduleKind = C->getScheduleKind(); 1534 M1 = C->getFirstScheduleModifier(); 1535 M2 = C->getSecondScheduleModifier(); 1536 if (const auto *Ch = C->getChunkSize()) { 1537 if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) { 1538 if (OuterRegion) 1539 CGF.EmitVarDecl(*cast<VarDecl>(ImpRef->getDecl())); 1540 else 1541 Ch = ImpRef; 1542 } 1543 if (!C->getHelperChunkSize() || !OuterRegion) { 1544 Chunk = CGF.EmitScalarExpr(Ch); 1545 Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(), 1546 S.getIterationVariable()->getType(), 1547 S.getLocStart()); 1548 } 1549 } 1550 } 1551 return std::make_pair(Chunk, ScheduleKindModifiersTy(ScheduleKind, M1, M2)); 1552 } 1553 1554 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 1555 // Emit the loop iteration variable. 1556 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 1557 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 1558 EmitVarDecl(*IVDecl); 1559 1560 // Emit the iterations count variable. 1561 // If it is not a variable, Sema decided to calculate iterations count on each 1562 // iteration (e.g., it is foldable into a constant). 1563 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1564 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1565 // Emit calculation of the iterations count. 1566 EmitIgnoredExpr(S.getCalcLastIteration()); 1567 } 1568 1569 auto &RT = CGM.getOpenMPRuntime(); 1570 1571 bool HasLastprivateClause; 1572 // Check pre-condition. 1573 { 1574 // Skip the entire loop if we don't meet the precondition. 1575 // If the condition constant folds and can be elided, avoid emitting the 1576 // whole loop. 1577 bool CondConstant; 1578 llvm::BasicBlock *ContBlock = nullptr; 1579 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1580 if (!CondConstant) 1581 return false; 1582 } else { 1583 auto *ThenBlock = createBasicBlock("omp.precond.then"); 1584 ContBlock = createBasicBlock("omp.precond.end"); 1585 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 1586 getProfileCount(&S)); 1587 EmitBlock(ThenBlock); 1588 incrementProfileCounter(&S); 1589 } 1590 1591 emitAlignedClause(*this, S); 1592 EmitOMPLinearClauseInit(S); 1593 // Emit 'then' code. 1594 { 1595 // Emit helper vars inits. 1596 LValue LB = 1597 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1598 LValue UB = 1599 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1600 LValue ST = 1601 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 1602 LValue IL = 1603 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 1604 1605 OMPPrivateScope LoopScope(*this); 1606 if (EmitOMPFirstprivateClause(S, LoopScope)) { 1607 // Emit implicit barrier to synchronize threads and avoid data races on 1608 // initialization of firstprivate variables. 1609 CGM.getOpenMPRuntime().emitBarrierCall( 1610 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1611 /*ForceSimpleCall=*/true); 1612 } 1613 EmitOMPPrivateClause(S, LoopScope); 1614 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 1615 EmitOMPReductionClauseInit(S, LoopScope); 1616 emitPrivateLoopCounters(*this, LoopScope, S.counters(), 1617 S.private_counters()); 1618 emitPrivateLinearVars(*this, S, LoopScope); 1619 (void)LoopScope.Privatize(); 1620 1621 // Detect the loop schedule kind and chunk. 1622 llvm::Value *Chunk; 1623 OpenMPScheduleClauseKind ScheduleKind; 1624 auto ScheduleInfo = 1625 emitScheduleClause(*this, S, /*OuterRegion=*/false); 1626 Chunk = ScheduleInfo.first; 1627 ScheduleKind = ScheduleInfo.second.Kind; 1628 const OpenMPScheduleClauseModifier M1 = ScheduleInfo.second.M1; 1629 const OpenMPScheduleClauseModifier M2 = ScheduleInfo.second.M2; 1630 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1631 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1632 const bool Ordered = S.getSingleClause<OMPOrderedClause>() != nullptr; 1633 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 1634 // If the static schedule kind is specified or if the ordered clause is 1635 // specified, and if no monotonic modifier is specified, the effect will 1636 // be as if the monotonic modifier was specified. 1637 if (RT.isStaticNonchunked(ScheduleKind, 1638 /* Chunked */ Chunk != nullptr) && 1639 !Ordered) { 1640 if (isOpenMPSimdDirective(S.getDirectiveKind())) 1641 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 1642 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1643 // When no chunk_size is specified, the iteration space is divided into 1644 // chunks that are approximately equal in size, and at most one chunk is 1645 // distributed to each thread. Note that the size of the chunks is 1646 // unspecified in this case. 1647 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 1648 IVSize, IVSigned, Ordered, 1649 IL.getAddress(), LB.getAddress(), 1650 UB.getAddress(), ST.getAddress()); 1651 auto LoopExit = 1652 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 1653 // UB = min(UB, GlobalUB); 1654 EmitIgnoredExpr(S.getEnsureUpperBound()); 1655 // IV = LB; 1656 EmitIgnoredExpr(S.getInit()); 1657 // while (idx <= UB) { BODY; ++idx; } 1658 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1659 S.getInc(), 1660 [&S, LoopExit](CodeGenFunction &CGF) { 1661 CGF.EmitOMPLoopBody(S, LoopExit); 1662 CGF.EmitStopPoint(&S); 1663 }, 1664 [](CodeGenFunction &) {}); 1665 EmitBlock(LoopExit.getBlock()); 1666 // Tell the runtime we are done. 1667 RT.emitForStaticFinish(*this, S.getLocStart()); 1668 } else { 1669 const bool IsMonotonic = Ordered || 1670 ScheduleKind == OMPC_SCHEDULE_static || 1671 ScheduleKind == OMPC_SCHEDULE_unknown || 1672 M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 1673 M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 1674 // Emit the outer loop, which requests its work chunk [LB..UB] from 1675 // runtime and runs the inner loop to process it. 1676 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 1677 LB.getAddress(), UB.getAddress(), ST.getAddress(), 1678 IL.getAddress(), Chunk); 1679 } 1680 EmitOMPReductionClauseFinal(S); 1681 // Emit final copy of the lastprivate variables if IsLastIter != 0. 1682 if (HasLastprivateClause) 1683 EmitOMPLastprivateClauseFinal( 1684 S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 1685 } 1686 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 1687 EmitOMPSimdFinal(S); 1688 } 1689 // We're now done with the loop, so jump to the continuation block. 1690 if (ContBlock) { 1691 EmitBranch(ContBlock); 1692 EmitBlock(ContBlock, true); 1693 } 1694 } 1695 return HasLastprivateClause; 1696 } 1697 1698 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 1699 LexicalScope Scope(*this, S.getSourceRange()); 1700 bool HasLastprivates = false; 1701 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) { 1702 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 1703 }; 1704 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 1705 S.hasCancel()); 1706 1707 // Emit an implicit barrier at the end. 1708 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 1709 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 1710 } 1711 } 1712 1713 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 1714 LexicalScope Scope(*this, S.getSourceRange()); 1715 bool HasLastprivates = false; 1716 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) { 1717 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 1718 }; 1719 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1720 1721 // Emit an implicit barrier at the end. 1722 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 1723 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 1724 } 1725 } 1726 1727 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 1728 const Twine &Name, 1729 llvm::Value *Init = nullptr) { 1730 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 1731 if (Init) 1732 CGF.EmitScalarInit(Init, LVal); 1733 return LVal; 1734 } 1735 1736 OpenMPDirectiveKind 1737 CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 1738 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 1739 auto *CS = dyn_cast<CompoundStmt>(Stmt); 1740 bool HasLastprivates = false; 1741 auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF) { 1742 auto &C = CGF.CGM.getContext(); 1743 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 1744 // Emit helper vars inits. 1745 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 1746 CGF.Builder.getInt32(0)); 1747 auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1) 1748 : CGF.Builder.getInt32(0); 1749 LValue UB = 1750 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 1751 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 1752 CGF.Builder.getInt32(1)); 1753 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 1754 CGF.Builder.getInt32(0)); 1755 // Loop counter. 1756 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 1757 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 1758 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 1759 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 1760 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 1761 // Generate condition for loop. 1762 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 1763 OK_Ordinary, S.getLocStart(), 1764 /*fpContractable=*/false); 1765 // Increment for loop counter. 1766 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 1767 S.getLocStart()); 1768 auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) { 1769 // Iterate through all sections and emit a switch construct: 1770 // switch (IV) { 1771 // case 0: 1772 // <SectionStmt[0]>; 1773 // break; 1774 // ... 1775 // case <NumSection> - 1: 1776 // <SectionStmt[<NumSection> - 1]>; 1777 // break; 1778 // } 1779 // .omp.sections.exit: 1780 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 1781 auto *SwitchStmt = CGF.Builder.CreateSwitch( 1782 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 1783 CS == nullptr ? 1 : CS->size()); 1784 if (CS) { 1785 unsigned CaseNumber = 0; 1786 for (auto *SubStmt : CS->children()) { 1787 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 1788 CGF.EmitBlock(CaseBB); 1789 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 1790 CGF.EmitStmt(SubStmt); 1791 CGF.EmitBranch(ExitBB); 1792 ++CaseNumber; 1793 } 1794 } else { 1795 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 1796 CGF.EmitBlock(CaseBB); 1797 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 1798 CGF.EmitStmt(Stmt); 1799 CGF.EmitBranch(ExitBB); 1800 } 1801 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1802 }; 1803 1804 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1805 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 1806 // Emit implicit barrier to synchronize threads and avoid data races on 1807 // initialization of firstprivate variables. 1808 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1809 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1810 /*ForceSimpleCall=*/true); 1811 } 1812 CGF.EmitOMPPrivateClause(S, LoopScope); 1813 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1814 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1815 (void)LoopScope.Privatize(); 1816 1817 // Emit static non-chunked loop. 1818 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 1819 CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32, 1820 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(), 1821 UB.getAddress(), ST.getAddress()); 1822 // UB = min(UB, GlobalUB); 1823 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 1824 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 1825 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 1826 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 1827 // IV = LB; 1828 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 1829 // while (idx <= UB) { BODY; ++idx; } 1830 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 1831 [](CodeGenFunction &) {}); 1832 // Tell the runtime we are done. 1833 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart()); 1834 CGF.EmitOMPReductionClauseFinal(S); 1835 1836 // Emit final copy of the lastprivate variables if IsLastIter != 0. 1837 if (HasLastprivates) 1838 CGF.EmitOMPLastprivateClauseFinal( 1839 S, CGF.Builder.CreateIsNotNull( 1840 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 1841 }; 1842 1843 bool HasCancel = false; 1844 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 1845 HasCancel = OSD->hasCancel(); 1846 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 1847 HasCancel = OPSD->hasCancel(); 1848 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 1849 HasCancel); 1850 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 1851 // clause. Otherwise the barrier will be generated by the codegen for the 1852 // directive. 1853 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 1854 // Emit implicit barrier to synchronize threads and avoid data races on 1855 // initialization of firstprivate variables. 1856 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 1857 OMPD_unknown); 1858 } 1859 return OMPD_sections; 1860 } 1861 1862 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 1863 LexicalScope Scope(*this, S.getSourceRange()); 1864 OpenMPDirectiveKind EmittedAs = EmitSections(S); 1865 // Emit an implicit barrier at the end. 1866 if (!S.getSingleClause<OMPNowaitClause>()) { 1867 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs); 1868 } 1869 } 1870 1871 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 1872 LexicalScope Scope(*this, S.getSourceRange()); 1873 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1874 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1875 }; 1876 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 1877 S.hasCancel()); 1878 } 1879 1880 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 1881 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 1882 llvm::SmallVector<const Expr *, 8> DestExprs; 1883 llvm::SmallVector<const Expr *, 8> SrcExprs; 1884 llvm::SmallVector<const Expr *, 8> AssignmentOps; 1885 // Check if there are any 'copyprivate' clauses associated with this 1886 // 'single' 1887 // construct. 1888 // Build a list of copyprivate variables along with helper expressions 1889 // (<source>, <destination>, <destination>=<source> expressions) 1890 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 1891 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 1892 DestExprs.append(C->destination_exprs().begin(), 1893 C->destination_exprs().end()); 1894 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 1895 AssignmentOps.append(C->assignment_ops().begin(), 1896 C->assignment_ops().end()); 1897 } 1898 LexicalScope Scope(*this, S.getSourceRange()); 1899 // Emit code for 'single' region along with 'copyprivate' clauses 1900 bool HasFirstprivates; 1901 auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) { 1902 CodeGenFunction::OMPPrivateScope SingleScope(CGF); 1903 HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope); 1904 CGF.EmitOMPPrivateClause(S, SingleScope); 1905 (void)SingleScope.Privatize(); 1906 1907 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1908 }; 1909 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 1910 CopyprivateVars, DestExprs, SrcExprs, 1911 AssignmentOps); 1912 // Emit an implicit barrier at the end (to avoid data race on firstprivate 1913 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 1914 if ((!S.getSingleClause<OMPNowaitClause>() || HasFirstprivates) && 1915 CopyprivateVars.empty()) { 1916 CGM.getOpenMPRuntime().emitBarrierCall( 1917 *this, S.getLocStart(), 1918 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 1919 } 1920 } 1921 1922 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 1923 LexicalScope Scope(*this, S.getSourceRange()); 1924 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1925 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1926 }; 1927 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 1928 } 1929 1930 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 1931 LexicalScope Scope(*this, S.getSourceRange()); 1932 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1933 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1934 }; 1935 Expr *Hint = nullptr; 1936 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 1937 Hint = HintClause->getHint(); 1938 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 1939 S.getDirectiveName().getAsString(), 1940 CodeGen, S.getLocStart(), Hint); 1941 } 1942 1943 void CodeGenFunction::EmitOMPParallelForDirective( 1944 const OMPParallelForDirective &S) { 1945 // Emit directive as a combined directive that consists of two implicit 1946 // directives: 'parallel' with 'for' directive. 1947 LexicalScope Scope(*this, S.getSourceRange()); 1948 (void)emitScheduleClause(*this, S, /*OuterRegion=*/true); 1949 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1950 CGF.EmitOMPWorksharingLoop(S); 1951 }; 1952 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 1953 } 1954 1955 void CodeGenFunction::EmitOMPParallelForSimdDirective( 1956 const OMPParallelForSimdDirective &S) { 1957 // Emit directive as a combined directive that consists of two implicit 1958 // directives: 'parallel' with 'for' directive. 1959 LexicalScope Scope(*this, S.getSourceRange()); 1960 (void)emitScheduleClause(*this, S, /*OuterRegion=*/true); 1961 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1962 CGF.EmitOMPWorksharingLoop(S); 1963 }; 1964 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 1965 } 1966 1967 void CodeGenFunction::EmitOMPParallelSectionsDirective( 1968 const OMPParallelSectionsDirective &S) { 1969 // Emit directive as a combined directive that consists of two implicit 1970 // directives: 'parallel' with 'sections' directive. 1971 LexicalScope Scope(*this, S.getSourceRange()); 1972 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1973 (void)CGF.EmitSections(S); 1974 }; 1975 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 1976 } 1977 1978 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 1979 // Emit outlined function for task construct. 1980 LexicalScope Scope(*this, S.getSourceRange()); 1981 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1982 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 1983 auto *I = CS->getCapturedDecl()->param_begin(); 1984 auto *PartId = std::next(I); 1985 // The first function argument for tasks is a thread id, the second one is a 1986 // part id (0 for tied tasks, >=0 for untied task). 1987 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 1988 // Get list of private variables. 1989 llvm::SmallVector<const Expr *, 8> PrivateVars; 1990 llvm::SmallVector<const Expr *, 8> PrivateCopies; 1991 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 1992 auto IRef = C->varlist_begin(); 1993 for (auto *IInit : C->private_copies()) { 1994 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1995 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 1996 PrivateVars.push_back(*IRef); 1997 PrivateCopies.push_back(IInit); 1998 } 1999 ++IRef; 2000 } 2001 } 2002 EmittedAsPrivate.clear(); 2003 // Get list of firstprivate variables. 2004 llvm::SmallVector<const Expr *, 8> FirstprivateVars; 2005 llvm::SmallVector<const Expr *, 8> FirstprivateCopies; 2006 llvm::SmallVector<const Expr *, 8> FirstprivateInits; 2007 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2008 auto IRef = C->varlist_begin(); 2009 auto IElemInitRef = C->inits().begin(); 2010 for (auto *IInit : C->private_copies()) { 2011 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2012 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2013 FirstprivateVars.push_back(*IRef); 2014 FirstprivateCopies.push_back(IInit); 2015 FirstprivateInits.push_back(*IElemInitRef); 2016 } 2017 ++IRef, ++IElemInitRef; 2018 } 2019 } 2020 // Build list of dependences. 2021 llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8> 2022 Dependences; 2023 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 2024 for (auto *IRef : C->varlists()) { 2025 Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 2026 } 2027 } 2028 auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars]( 2029 CodeGenFunction &CGF) { 2030 // Set proper addresses for generated private copies. 2031 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2032 OMPPrivateScope Scope(CGF); 2033 if (!PrivateVars.empty() || !FirstprivateVars.empty()) { 2034 auto *CopyFn = CGF.Builder.CreateLoad( 2035 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 2036 auto *PrivatesPtr = CGF.Builder.CreateLoad( 2037 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 2038 // Map privates. 2039 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> 2040 PrivatePtrs; 2041 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2042 CallArgs.push_back(PrivatesPtr); 2043 for (auto *E : PrivateVars) { 2044 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2045 Address PrivatePtr = 2046 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType())); 2047 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2048 CallArgs.push_back(PrivatePtr.getPointer()); 2049 } 2050 for (auto *E : FirstprivateVars) { 2051 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2052 Address PrivatePtr = 2053 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType())); 2054 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 2055 CallArgs.push_back(PrivatePtr.getPointer()); 2056 } 2057 CGF.EmitRuntimeCall(CopyFn, CallArgs); 2058 for (auto &&Pair : PrivatePtrs) { 2059 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2060 CGF.getContext().getDeclAlign(Pair.first)); 2061 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2062 } 2063 } 2064 (void)Scope.Privatize(); 2065 if (*PartId) { 2066 // TODO: emit code for untied tasks. 2067 } 2068 CGF.EmitStmt(CS->getCapturedStmt()); 2069 }; 2070 auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 2071 S, *I, OMPD_task, CodeGen); 2072 // Check if we should emit tied or untied task. 2073 bool Tied = !S.getSingleClause<OMPUntiedClause>(); 2074 // Check if the task is final 2075 llvm::PointerIntPair<llvm::Value *, 1, bool> Final; 2076 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2077 // If the condition constant folds and can be elided, try to avoid emitting 2078 // the condition and the dead arm of the if/else. 2079 auto *Cond = Clause->getCondition(); 2080 bool CondConstant; 2081 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2082 Final.setInt(CondConstant); 2083 else 2084 Final.setPointer(EvaluateExprAsBool(Cond)); 2085 } else { 2086 // By default the task is not final. 2087 Final.setInt(/*IntVal=*/false); 2088 } 2089 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2090 const Expr *IfCond = nullptr; 2091 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2092 if (C->getNameModifier() == OMPD_unknown || 2093 C->getNameModifier() == OMPD_task) { 2094 IfCond = C->getCondition(); 2095 break; 2096 } 2097 } 2098 CGM.getOpenMPRuntime().emitTaskCall( 2099 *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy, 2100 CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars, 2101 FirstprivateCopies, FirstprivateInits, Dependences); 2102 } 2103 2104 void CodeGenFunction::EmitOMPTaskyieldDirective( 2105 const OMPTaskyieldDirective &S) { 2106 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2107 } 2108 2109 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2110 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2111 } 2112 2113 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2114 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2115 } 2116 2117 void CodeGenFunction::EmitOMPTaskgroupDirective( 2118 const OMPTaskgroupDirective &S) { 2119 LexicalScope Scope(*this, S.getSourceRange()); 2120 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2121 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2122 }; 2123 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 2124 } 2125 2126 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 2127 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 2128 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 2129 return llvm::makeArrayRef(FlushClause->varlist_begin(), 2130 FlushClause->varlist_end()); 2131 } 2132 return llvm::None; 2133 }(), S.getLocStart()); 2134 } 2135 2136 void CodeGenFunction::EmitOMPDistributeDirective( 2137 const OMPDistributeDirective &S) { 2138 llvm_unreachable("CodeGen for 'omp distribute' is not supported yet."); 2139 } 2140 2141 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 2142 const CapturedStmt *S) { 2143 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 2144 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 2145 CGF.CapturedStmtInfo = &CapStmtInfo; 2146 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 2147 Fn->addFnAttr(llvm::Attribute::NoInline); 2148 return Fn; 2149 } 2150 2151 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 2152 if (!S.getAssociatedStmt()) 2153 return; 2154 LexicalScope Scope(*this, S.getSourceRange()); 2155 auto *C = S.getSingleClause<OMPSIMDClause>(); 2156 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF) { 2157 if (C) { 2158 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2159 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2160 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 2161 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 2162 CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars); 2163 } else { 2164 CGF.EmitStmt( 2165 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2166 } 2167 }; 2168 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 2169 } 2170 2171 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 2172 QualType SrcType, QualType DestType, 2173 SourceLocation Loc) { 2174 assert(CGF.hasScalarEvaluationKind(DestType) && 2175 "DestType must have scalar evaluation kind."); 2176 assert(!Val.isAggregate() && "Must be a scalar or complex."); 2177 return Val.isScalar() 2178 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 2179 Loc) 2180 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 2181 DestType, Loc); 2182 } 2183 2184 static CodeGenFunction::ComplexPairTy 2185 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 2186 QualType DestType, SourceLocation Loc) { 2187 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 2188 "DestType must have complex evaluation kind."); 2189 CodeGenFunction::ComplexPairTy ComplexVal; 2190 if (Val.isScalar()) { 2191 // Convert the input element to the element type of the complex. 2192 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2193 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 2194 DestElementType, Loc); 2195 ComplexVal = CodeGenFunction::ComplexPairTy( 2196 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 2197 } else { 2198 assert(Val.isComplex() && "Must be a scalar or complex."); 2199 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 2200 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2201 ComplexVal.first = CGF.EmitScalarConversion( 2202 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 2203 ComplexVal.second = CGF.EmitScalarConversion( 2204 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 2205 } 2206 return ComplexVal; 2207 } 2208 2209 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 2210 LValue LVal, RValue RVal) { 2211 if (LVal.isGlobalReg()) { 2212 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 2213 } else { 2214 CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent 2215 : llvm::Monotonic, 2216 LVal.isVolatile(), /*IsInit=*/false); 2217 } 2218 } 2219 2220 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 2221 QualType RValTy, SourceLocation Loc) { 2222 switch (getEvaluationKind(LVal.getType())) { 2223 case TEK_Scalar: 2224 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 2225 *this, RVal, RValTy, LVal.getType(), Loc)), 2226 LVal); 2227 break; 2228 case TEK_Complex: 2229 EmitStoreOfComplex( 2230 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 2231 /*isInit=*/false); 2232 break; 2233 case TEK_Aggregate: 2234 llvm_unreachable("Must be a scalar or complex."); 2235 } 2236 } 2237 2238 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 2239 const Expr *X, const Expr *V, 2240 SourceLocation Loc) { 2241 // v = x; 2242 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 2243 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 2244 LValue XLValue = CGF.EmitLValue(X); 2245 LValue VLValue = CGF.EmitLValue(V); 2246 RValue Res = XLValue.isGlobalReg() 2247 ? CGF.EmitLoadOfLValue(XLValue, Loc) 2248 : CGF.EmitAtomicLoad(XLValue, Loc, 2249 IsSeqCst ? llvm::SequentiallyConsistent 2250 : llvm::Monotonic, 2251 XLValue.isVolatile()); 2252 // OpenMP, 2.12.6, atomic Construct 2253 // Any atomic construct with a seq_cst clause forces the atomically 2254 // performed operation to include an implicit flush operation without a 2255 // list. 2256 if (IsSeqCst) 2257 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2258 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 2259 } 2260 2261 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 2262 const Expr *X, const Expr *E, 2263 SourceLocation Loc) { 2264 // x = expr; 2265 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 2266 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 2267 // OpenMP, 2.12.6, atomic Construct 2268 // Any atomic construct with a seq_cst clause forces the atomically 2269 // performed operation to include an implicit flush operation without a 2270 // list. 2271 if (IsSeqCst) 2272 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2273 } 2274 2275 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 2276 RValue Update, 2277 BinaryOperatorKind BO, 2278 llvm::AtomicOrdering AO, 2279 bool IsXLHSInRHSPart) { 2280 auto &Context = CGF.CGM.getContext(); 2281 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 2282 // expression is simple and atomic is allowed for the given type for the 2283 // target platform. 2284 if (BO == BO_Comma || !Update.isScalar() || 2285 !Update.getScalarVal()->getType()->isIntegerTy() || 2286 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 2287 (Update.getScalarVal()->getType() != 2288 X.getAddress().getElementType())) || 2289 !X.getAddress().getElementType()->isIntegerTy() || 2290 !Context.getTargetInfo().hasBuiltinAtomic( 2291 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 2292 return std::make_pair(false, RValue::get(nullptr)); 2293 2294 llvm::AtomicRMWInst::BinOp RMWOp; 2295 switch (BO) { 2296 case BO_Add: 2297 RMWOp = llvm::AtomicRMWInst::Add; 2298 break; 2299 case BO_Sub: 2300 if (!IsXLHSInRHSPart) 2301 return std::make_pair(false, RValue::get(nullptr)); 2302 RMWOp = llvm::AtomicRMWInst::Sub; 2303 break; 2304 case BO_And: 2305 RMWOp = llvm::AtomicRMWInst::And; 2306 break; 2307 case BO_Or: 2308 RMWOp = llvm::AtomicRMWInst::Or; 2309 break; 2310 case BO_Xor: 2311 RMWOp = llvm::AtomicRMWInst::Xor; 2312 break; 2313 case BO_LT: 2314 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2315 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 2316 : llvm::AtomicRMWInst::Max) 2317 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 2318 : llvm::AtomicRMWInst::UMax); 2319 break; 2320 case BO_GT: 2321 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2322 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 2323 : llvm::AtomicRMWInst::Min) 2324 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 2325 : llvm::AtomicRMWInst::UMin); 2326 break; 2327 case BO_Assign: 2328 RMWOp = llvm::AtomicRMWInst::Xchg; 2329 break; 2330 case BO_Mul: 2331 case BO_Div: 2332 case BO_Rem: 2333 case BO_Shl: 2334 case BO_Shr: 2335 case BO_LAnd: 2336 case BO_LOr: 2337 return std::make_pair(false, RValue::get(nullptr)); 2338 case BO_PtrMemD: 2339 case BO_PtrMemI: 2340 case BO_LE: 2341 case BO_GE: 2342 case BO_EQ: 2343 case BO_NE: 2344 case BO_AddAssign: 2345 case BO_SubAssign: 2346 case BO_AndAssign: 2347 case BO_OrAssign: 2348 case BO_XorAssign: 2349 case BO_MulAssign: 2350 case BO_DivAssign: 2351 case BO_RemAssign: 2352 case BO_ShlAssign: 2353 case BO_ShrAssign: 2354 case BO_Comma: 2355 llvm_unreachable("Unsupported atomic update operation"); 2356 } 2357 auto *UpdateVal = Update.getScalarVal(); 2358 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 2359 UpdateVal = CGF.Builder.CreateIntCast( 2360 IC, X.getAddress().getElementType(), 2361 X.getType()->hasSignedIntegerRepresentation()); 2362 } 2363 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 2364 return std::make_pair(true, RValue::get(Res)); 2365 } 2366 2367 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 2368 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2369 llvm::AtomicOrdering AO, SourceLocation Loc, 2370 const llvm::function_ref<RValue(RValue)> &CommonGen) { 2371 // Update expressions are allowed to have the following forms: 2372 // x binop= expr; -> xrval + expr; 2373 // x++, ++x -> xrval + 1; 2374 // x--, --x -> xrval - 1; 2375 // x = x binop expr; -> xrval binop expr 2376 // x = expr Op x; - > expr binop xrval; 2377 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 2378 if (!Res.first) { 2379 if (X.isGlobalReg()) { 2380 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 2381 // 'xrval'. 2382 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 2383 } else { 2384 // Perform compare-and-swap procedure. 2385 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 2386 } 2387 } 2388 return Res; 2389 } 2390 2391 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 2392 const Expr *X, const Expr *E, 2393 const Expr *UE, bool IsXLHSInRHSPart, 2394 SourceLocation Loc) { 2395 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 2396 "Update expr in 'atomic update' must be a binary operator."); 2397 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 2398 // Update expressions are allowed to have the following forms: 2399 // x binop= expr; -> xrval + expr; 2400 // x++, ++x -> xrval + 1; 2401 // x--, --x -> xrval - 1; 2402 // x = x binop expr; -> xrval binop expr 2403 // x = expr Op x; - > expr binop xrval; 2404 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 2405 LValue XLValue = CGF.EmitLValue(X); 2406 RValue ExprRValue = CGF.EmitAnyExpr(E); 2407 auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic; 2408 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 2409 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 2410 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 2411 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 2412 auto Gen = 2413 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 2414 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 2415 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 2416 return CGF.EmitAnyExpr(UE); 2417 }; 2418 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 2419 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 2420 // OpenMP, 2.12.6, atomic Construct 2421 // Any atomic construct with a seq_cst clause forces the atomically 2422 // performed operation to include an implicit flush operation without a 2423 // list. 2424 if (IsSeqCst) 2425 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2426 } 2427 2428 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 2429 QualType SourceType, QualType ResType, 2430 SourceLocation Loc) { 2431 switch (CGF.getEvaluationKind(ResType)) { 2432 case TEK_Scalar: 2433 return RValue::get( 2434 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 2435 case TEK_Complex: { 2436 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 2437 return RValue::getComplex(Res.first, Res.second); 2438 } 2439 case TEK_Aggregate: 2440 break; 2441 } 2442 llvm_unreachable("Must be a scalar or complex."); 2443 } 2444 2445 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 2446 bool IsPostfixUpdate, const Expr *V, 2447 const Expr *X, const Expr *E, 2448 const Expr *UE, bool IsXLHSInRHSPart, 2449 SourceLocation Loc) { 2450 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 2451 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 2452 RValue NewVVal; 2453 LValue VLValue = CGF.EmitLValue(V); 2454 LValue XLValue = CGF.EmitLValue(X); 2455 RValue ExprRValue = CGF.EmitAnyExpr(E); 2456 auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic; 2457 QualType NewVValType; 2458 if (UE) { 2459 // 'x' is updated with some additional value. 2460 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 2461 "Update expr in 'atomic capture' must be a binary operator."); 2462 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 2463 // Update expressions are allowed to have the following forms: 2464 // x binop= expr; -> xrval + expr; 2465 // x++, ++x -> xrval + 1; 2466 // x--, --x -> xrval - 1; 2467 // x = x binop expr; -> xrval binop expr 2468 // x = expr Op x; - > expr binop xrval; 2469 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 2470 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 2471 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 2472 NewVValType = XRValExpr->getType(); 2473 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 2474 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 2475 IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue { 2476 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 2477 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 2478 RValue Res = CGF.EmitAnyExpr(UE); 2479 NewVVal = IsPostfixUpdate ? XRValue : Res; 2480 return Res; 2481 }; 2482 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 2483 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 2484 if (Res.first) { 2485 // 'atomicrmw' instruction was generated. 2486 if (IsPostfixUpdate) { 2487 // Use old value from 'atomicrmw'. 2488 NewVVal = Res.second; 2489 } else { 2490 // 'atomicrmw' does not provide new value, so evaluate it using old 2491 // value of 'x'. 2492 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 2493 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 2494 NewVVal = CGF.EmitAnyExpr(UE); 2495 } 2496 } 2497 } else { 2498 // 'x' is simply rewritten with some 'expr'. 2499 NewVValType = X->getType().getNonReferenceType(); 2500 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 2501 X->getType().getNonReferenceType(), Loc); 2502 auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue { 2503 NewVVal = XRValue; 2504 return ExprRValue; 2505 }; 2506 // Try to perform atomicrmw xchg, otherwise simple exchange. 2507 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 2508 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 2509 Loc, Gen); 2510 if (Res.first) { 2511 // 'atomicrmw' instruction was generated. 2512 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 2513 } 2514 } 2515 // Emit post-update store to 'v' of old/new 'x' value. 2516 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 2517 // OpenMP, 2.12.6, atomic Construct 2518 // Any atomic construct with a seq_cst clause forces the atomically 2519 // performed operation to include an implicit flush operation without a 2520 // list. 2521 if (IsSeqCst) 2522 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2523 } 2524 2525 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 2526 bool IsSeqCst, bool IsPostfixUpdate, 2527 const Expr *X, const Expr *V, const Expr *E, 2528 const Expr *UE, bool IsXLHSInRHSPart, 2529 SourceLocation Loc) { 2530 switch (Kind) { 2531 case OMPC_read: 2532 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 2533 break; 2534 case OMPC_write: 2535 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 2536 break; 2537 case OMPC_unknown: 2538 case OMPC_update: 2539 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 2540 break; 2541 case OMPC_capture: 2542 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 2543 IsXLHSInRHSPart, Loc); 2544 break; 2545 case OMPC_if: 2546 case OMPC_final: 2547 case OMPC_num_threads: 2548 case OMPC_private: 2549 case OMPC_firstprivate: 2550 case OMPC_lastprivate: 2551 case OMPC_reduction: 2552 case OMPC_safelen: 2553 case OMPC_simdlen: 2554 case OMPC_collapse: 2555 case OMPC_default: 2556 case OMPC_seq_cst: 2557 case OMPC_shared: 2558 case OMPC_linear: 2559 case OMPC_aligned: 2560 case OMPC_copyin: 2561 case OMPC_copyprivate: 2562 case OMPC_flush: 2563 case OMPC_proc_bind: 2564 case OMPC_schedule: 2565 case OMPC_ordered: 2566 case OMPC_nowait: 2567 case OMPC_untied: 2568 case OMPC_threadprivate: 2569 case OMPC_depend: 2570 case OMPC_mergeable: 2571 case OMPC_device: 2572 case OMPC_threads: 2573 case OMPC_simd: 2574 case OMPC_map: 2575 case OMPC_num_teams: 2576 case OMPC_thread_limit: 2577 case OMPC_priority: 2578 case OMPC_grainsize: 2579 case OMPC_nogroup: 2580 case OMPC_num_tasks: 2581 case OMPC_hint: 2582 case OMPC_dist_schedule: 2583 case OMPC_defaultmap: 2584 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 2585 } 2586 } 2587 2588 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 2589 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 2590 OpenMPClauseKind Kind = OMPC_unknown; 2591 for (auto *C : S.clauses()) { 2592 // Find first clause (skip seq_cst clause, if it is first). 2593 if (C->getClauseKind() != OMPC_seq_cst) { 2594 Kind = C->getClauseKind(); 2595 break; 2596 } 2597 } 2598 2599 const auto *CS = 2600 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 2601 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 2602 enterFullExpression(EWC); 2603 } 2604 // Processing for statements under 'atomic capture'. 2605 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 2606 for (const auto *C : Compound->body()) { 2607 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 2608 enterFullExpression(EWC); 2609 } 2610 } 2611 } 2612 2613 LexicalScope Scope(*this, S.getSourceRange()); 2614 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF) { 2615 CGF.EmitStopPoint(CS); 2616 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 2617 S.getV(), S.getExpr(), S.getUpdateExpr(), 2618 S.isXLHSInRHSPart(), S.getLocStart()); 2619 }; 2620 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 2621 } 2622 2623 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 2624 LexicalScope Scope(*this, S.getSourceRange()); 2625 const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt()); 2626 2627 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2628 GenerateOpenMPCapturedVars(CS, CapturedVars); 2629 2630 llvm::Function *Fn = nullptr; 2631 llvm::Constant *FnID = nullptr; 2632 2633 // Check if we have any if clause associated with the directive. 2634 const Expr *IfCond = nullptr; 2635 2636 if (auto *C = S.getSingleClause<OMPIfClause>()) { 2637 IfCond = C->getCondition(); 2638 } 2639 2640 // Check if we have any device clause associated with the directive. 2641 const Expr *Device = nullptr; 2642 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 2643 Device = C->getDevice(); 2644 } 2645 2646 // Check if we have an if clause whose conditional always evaluates to false 2647 // or if we do not have any targets specified. If so the target region is not 2648 // an offload entry point. 2649 bool IsOffloadEntry = true; 2650 if (IfCond) { 2651 bool Val; 2652 if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 2653 IsOffloadEntry = false; 2654 } 2655 if (CGM.getLangOpts().OMPTargetTriples.empty()) 2656 IsOffloadEntry = false; 2657 2658 assert(CurFuncDecl && "No parent declaration for target region!"); 2659 StringRef ParentName; 2660 // In case we have Ctors/Dtors we use the complete type variant to produce 2661 // the mangling of the device outlined kernel. 2662 if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl)) 2663 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 2664 else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl)) 2665 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 2666 else 2667 ParentName = 2668 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl))); 2669 2670 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 2671 IsOffloadEntry); 2672 2673 CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device, 2674 CapturedVars); 2675 } 2676 2677 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) { 2678 llvm_unreachable("CodeGen for 'omp teams' is not supported yet."); 2679 } 2680 2681 void CodeGenFunction::EmitOMPCancellationPointDirective( 2682 const OMPCancellationPointDirective &S) { 2683 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 2684 S.getCancelRegion()); 2685 } 2686 2687 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 2688 const Expr *IfCond = nullptr; 2689 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2690 if (C->getNameModifier() == OMPD_unknown || 2691 C->getNameModifier() == OMPD_cancel) { 2692 IfCond = C->getCondition(); 2693 break; 2694 } 2695 } 2696 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 2697 S.getCancelRegion()); 2698 } 2699 2700 CodeGenFunction::JumpDest 2701 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 2702 if (Kind == OMPD_parallel || Kind == OMPD_task) 2703 return ReturnBlock; 2704 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 2705 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for); 2706 return BreakContinueStack.back().BreakBlock; 2707 } 2708 2709 // Generate the instructions for '#pragma omp target data' directive. 2710 void CodeGenFunction::EmitOMPTargetDataDirective( 2711 const OMPTargetDataDirective &S) { 2712 // emit the code inside the construct for now 2713 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2714 CGM.getOpenMPRuntime().emitInlinedDirective( 2715 *this, OMPD_target_data, 2716 [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); }); 2717 } 2718 2719 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 2720 const OMPTargetEnterDataDirective &S) { 2721 // TODO: codegen for target enter data. 2722 } 2723 2724 void CodeGenFunction::EmitOMPTargetExitDataDirective( 2725 const OMPTargetExitDataDirective &S) { 2726 // TODO: codegen for target exit data. 2727 } 2728 2729 void CodeGenFunction::EmitOMPTargetParallelDirective( 2730 const OMPTargetParallelDirective &S) { 2731 // TODO: codegen for target parallel. 2732 } 2733 2734 void CodeGenFunction::EmitOMPTargetParallelForDirective( 2735 const OMPTargetParallelForDirective &S) { 2736 // TODO: codegen for target parallel for. 2737 } 2738 2739 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 2740 // emit the code inside the construct for now 2741 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2742 CGM.getOpenMPRuntime().emitInlinedDirective( 2743 *this, OMPD_taskloop, 2744 [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); }); 2745 } 2746 2747 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 2748 const OMPTaskLoopSimdDirective &S) { 2749 // emit the code inside the construct for now 2750 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2751 CGM.getOpenMPRuntime().emitInlinedDirective( 2752 *this, OMPD_taskloop_simd, 2753 [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); }); 2754 } 2755 2756