1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit OpenMP nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCleanup.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/DeclOpenMP.h"
21 #include "clang/AST/OpenMPClause.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/StmtOpenMP.h"
24 #include "clang/Basic/OpenMPKinds.h"
25 #include "clang/Basic/PrettyStackTrace.h"
26 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/Support/AtomicOrdering.h"
29 using namespace clang;
30 using namespace CodeGen;
31 using namespace llvm::omp;
32 
33 namespace {
34 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
35 /// for captured expressions.
36 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
37   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
38     for (const auto *C : S.clauses()) {
39       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
40         if (const auto *PreInit =
41                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
42           for (const auto *I : PreInit->decls()) {
43             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
44               CGF.EmitVarDecl(cast<VarDecl>(*I));
45             } else {
46               CodeGenFunction::AutoVarEmission Emission =
47                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
48               CGF.EmitAutoVarCleanups(Emission);
49             }
50           }
51         }
52       }
53     }
54   }
55   CodeGenFunction::OMPPrivateScope InlinedShareds;
56 
57   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
58     return CGF.LambdaCaptureFields.lookup(VD) ||
59            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
60            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
61   }
62 
63 public:
64   OMPLexicalScope(
65       CodeGenFunction &CGF, const OMPExecutableDirective &S,
66       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
67       const bool EmitPreInitStmt = true)
68       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
69         InlinedShareds(CGF) {
70     if (EmitPreInitStmt)
71       emitPreInitStmt(CGF, S);
72     if (!CapturedRegion.hasValue())
73       return;
74     assert(S.hasAssociatedStmt() &&
75            "Expected associated statement for inlined directive.");
76     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
77     for (const auto &C : CS->captures()) {
78       if (C.capturesVariable() || C.capturesVariableByCopy()) {
79         auto *VD = C.getCapturedVar();
80         assert(VD == VD->getCanonicalDecl() &&
81                "Canonical decl must be captured.");
82         DeclRefExpr DRE(
83             CGF.getContext(), const_cast<VarDecl *>(VD),
84             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
85                                        InlinedShareds.isGlobalVarCaptured(VD)),
86             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
87         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
88           return CGF.EmitLValue(&DRE).getAddress(CGF);
89         });
90       }
91     }
92     (void)InlinedShareds.Privatize();
93   }
94 };
95 
96 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
97 /// for captured expressions.
98 class OMPParallelScope final : public OMPLexicalScope {
99   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
100     OpenMPDirectiveKind Kind = S.getDirectiveKind();
101     return !(isOpenMPTargetExecutionDirective(Kind) ||
102              isOpenMPLoopBoundSharingDirective(Kind)) &&
103            isOpenMPParallelDirective(Kind);
104   }
105 
106 public:
107   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
108       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
109                         EmitPreInitStmt(S)) {}
110 };
111 
112 /// Lexical scope for OpenMP teams construct, that handles correct codegen
113 /// for captured expressions.
114 class OMPTeamsScope final : public OMPLexicalScope {
115   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
116     OpenMPDirectiveKind Kind = S.getDirectiveKind();
117     return !isOpenMPTargetExecutionDirective(Kind) &&
118            isOpenMPTeamsDirective(Kind);
119   }
120 
121 public:
122   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
123       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
124                         EmitPreInitStmt(S)) {}
125 };
126 
127 /// Private scope for OpenMP loop-based directives, that supports capturing
128 /// of used expression from loop statement.
129 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
130   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
131     CodeGenFunction::OMPMapVars PreCondVars;
132     llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
133     for (const auto *E : S.counters()) {
134       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
135       EmittedAsPrivate.insert(VD->getCanonicalDecl());
136       (void)PreCondVars.setVarAddr(
137           CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
138     }
139     // Mark private vars as undefs.
140     for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
141       for (const Expr *IRef : C->varlists()) {
142         const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
143         if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
144           (void)PreCondVars.setVarAddr(
145               CGF, OrigVD,
146               Address(llvm::UndefValue::get(
147                           CGF.ConvertTypeForMem(CGF.getContext().getPointerType(
148                               OrigVD->getType().getNonReferenceType()))),
149                       CGF.getContext().getDeclAlign(OrigVD)));
150         }
151       }
152     }
153     (void)PreCondVars.apply(CGF);
154     // Emit init, __range and __end variables for C++ range loops.
155     const Stmt *Body =
156         S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
157     for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) {
158       Body = OMPLoopDirective::tryToFindNextInnerLoop(
159           Body, /*TryImperfectlyNestedLoops=*/true);
160       if (auto *For = dyn_cast<ForStmt>(Body)) {
161         Body = For->getBody();
162       } else {
163         assert(isa<CXXForRangeStmt>(Body) &&
164                "Expected canonical for loop or range-based for loop.");
165         auto *CXXFor = cast<CXXForRangeStmt>(Body);
166         if (const Stmt *Init = CXXFor->getInit())
167           CGF.EmitStmt(Init);
168         CGF.EmitStmt(CXXFor->getRangeStmt());
169         CGF.EmitStmt(CXXFor->getEndStmt());
170         Body = CXXFor->getBody();
171       }
172     }
173     if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) {
174       for (const auto *I : PreInits->decls())
175         CGF.EmitVarDecl(cast<VarDecl>(*I));
176     }
177     PreCondVars.restore(CGF);
178   }
179 
180 public:
181   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
182       : CodeGenFunction::RunCleanupsScope(CGF) {
183     emitPreInitStmt(CGF, S);
184   }
185 };
186 
187 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
188   CodeGenFunction::OMPPrivateScope InlinedShareds;
189 
190   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
191     return CGF.LambdaCaptureFields.lookup(VD) ||
192            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
193            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
194             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
195   }
196 
197 public:
198   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
199       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
200         InlinedShareds(CGF) {
201     for (const auto *C : S.clauses()) {
202       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
203         if (const auto *PreInit =
204                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
205           for (const auto *I : PreInit->decls()) {
206             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
207               CGF.EmitVarDecl(cast<VarDecl>(*I));
208             } else {
209               CodeGenFunction::AutoVarEmission Emission =
210                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
211               CGF.EmitAutoVarCleanups(Emission);
212             }
213           }
214         }
215       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
216         for (const Expr *E : UDP->varlists()) {
217           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
218           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
219             CGF.EmitVarDecl(*OED);
220         }
221       }
222     }
223     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
224       CGF.EmitOMPPrivateClause(S, InlinedShareds);
225     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
226       if (const Expr *E = TG->getReductionRef())
227         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
228     }
229     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
230     while (CS) {
231       for (auto &C : CS->captures()) {
232         if (C.capturesVariable() || C.capturesVariableByCopy()) {
233           auto *VD = C.getCapturedVar();
234           assert(VD == VD->getCanonicalDecl() &&
235                  "Canonical decl must be captured.");
236           DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
237                           isCapturedVar(CGF, VD) ||
238                               (CGF.CapturedStmtInfo &&
239                                InlinedShareds.isGlobalVarCaptured(VD)),
240                           VD->getType().getNonReferenceType(), VK_LValue,
241                           C.getLocation());
242           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
243             return CGF.EmitLValue(&DRE).getAddress(CGF);
244           });
245         }
246       }
247       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
248     }
249     (void)InlinedShareds.Privatize();
250   }
251 };
252 
253 } // namespace
254 
255 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
256                                          const OMPExecutableDirective &S,
257                                          const RegionCodeGenTy &CodeGen);
258 
259 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
260   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
261     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
262       OrigVD = OrigVD->getCanonicalDecl();
263       bool IsCaptured =
264           LambdaCaptureFields.lookup(OrigVD) ||
265           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
266           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
267       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured,
268                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
269       return EmitLValue(&DRE);
270     }
271   }
272   return EmitLValue(E);
273 }
274 
275 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
276   ASTContext &C = getContext();
277   llvm::Value *Size = nullptr;
278   auto SizeInChars = C.getTypeSizeInChars(Ty);
279   if (SizeInChars.isZero()) {
280     // getTypeSizeInChars() returns 0 for a VLA.
281     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
282       VlaSizePair VlaSize = getVLASize(VAT);
283       Ty = VlaSize.Type;
284       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
285                   : VlaSize.NumElts;
286     }
287     SizeInChars = C.getTypeSizeInChars(Ty);
288     if (SizeInChars.isZero())
289       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
290     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
291   }
292   return CGM.getSize(SizeInChars);
293 }
294 
295 void CodeGenFunction::GenerateOpenMPCapturedVars(
296     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
297   const RecordDecl *RD = S.getCapturedRecordDecl();
298   auto CurField = RD->field_begin();
299   auto CurCap = S.captures().begin();
300   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
301                                                  E = S.capture_init_end();
302        I != E; ++I, ++CurField, ++CurCap) {
303     if (CurField->hasCapturedVLAType()) {
304       const VariableArrayType *VAT = CurField->getCapturedVLAType();
305       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
306       CapturedVars.push_back(Val);
307     } else if (CurCap->capturesThis()) {
308       CapturedVars.push_back(CXXThisValue);
309     } else if (CurCap->capturesVariableByCopy()) {
310       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
311 
312       // If the field is not a pointer, we need to save the actual value
313       // and load it as a void pointer.
314       if (!CurField->getType()->isAnyPointerType()) {
315         ASTContext &Ctx = getContext();
316         Address DstAddr = CreateMemTemp(
317             Ctx.getUIntPtrType(),
318             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
319         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
320 
321         llvm::Value *SrcAddrVal = EmitScalarConversion(
322             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
323             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
324         LValue SrcLV =
325             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
326 
327         // Store the value using the source type pointer.
328         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
329 
330         // Load the value using the destination type pointer.
331         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
332       }
333       CapturedVars.push_back(CV);
334     } else {
335       assert(CurCap->capturesVariable() && "Expected capture by reference.");
336       CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer());
337     }
338   }
339 }
340 
341 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
342                                     QualType DstType, StringRef Name,
343                                     LValue AddrLV) {
344   ASTContext &Ctx = CGF.getContext();
345 
346   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
347       AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(),
348       Ctx.getPointerType(DstType), Loc);
349   Address TmpAddr =
350       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
351           .getAddress(CGF);
352   return TmpAddr;
353 }
354 
355 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
356   if (T->isLValueReferenceType())
357     return C.getLValueReferenceType(
358         getCanonicalParamType(C, T.getNonReferenceType()),
359         /*SpelledAsLValue=*/false);
360   if (T->isPointerType())
361     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
362   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
363     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
364       return getCanonicalParamType(C, VLA->getElementType());
365     if (!A->isVariablyModifiedType())
366       return C.getCanonicalType(T);
367   }
368   return C.getCanonicalParamType(T);
369 }
370 
371 namespace {
372 /// Contains required data for proper outlined function codegen.
373 struct FunctionOptions {
374   /// Captured statement for which the function is generated.
375   const CapturedStmt *S = nullptr;
376   /// true if cast to/from  UIntPtr is required for variables captured by
377   /// value.
378   const bool UIntPtrCastRequired = true;
379   /// true if only casted arguments must be registered as local args or VLA
380   /// sizes.
381   const bool RegisterCastedArgsOnly = false;
382   /// Name of the generated function.
383   const StringRef FunctionName;
384   /// Location of the non-debug version of the outlined function.
385   SourceLocation Loc;
386   explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
387                            bool RegisterCastedArgsOnly, StringRef FunctionName,
388                            SourceLocation Loc)
389       : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
390         RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
391         FunctionName(FunctionName), Loc(Loc) {}
392 };
393 } // namespace
394 
395 static llvm::Function *emitOutlinedFunctionPrologue(
396     CodeGenFunction &CGF, FunctionArgList &Args,
397     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
398         &LocalAddrs,
399     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
400         &VLASizes,
401     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
402   const CapturedDecl *CD = FO.S->getCapturedDecl();
403   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
404   assert(CD->hasBody() && "missing CapturedDecl body");
405 
406   CXXThisValue = nullptr;
407   // Build the argument list.
408   CodeGenModule &CGM = CGF.CGM;
409   ASTContext &Ctx = CGM.getContext();
410   FunctionArgList TargetArgs;
411   Args.append(CD->param_begin(),
412               std::next(CD->param_begin(), CD->getContextParamPosition()));
413   TargetArgs.append(
414       CD->param_begin(),
415       std::next(CD->param_begin(), CD->getContextParamPosition()));
416   auto I = FO.S->captures().begin();
417   FunctionDecl *DebugFunctionDecl = nullptr;
418   if (!FO.UIntPtrCastRequired) {
419     FunctionProtoType::ExtProtoInfo EPI;
420     QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI);
421     DebugFunctionDecl = FunctionDecl::Create(
422         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
423         SourceLocation(), DeclarationName(), FunctionTy,
424         Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static,
425         /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
426   }
427   for (const FieldDecl *FD : RD->fields()) {
428     QualType ArgType = FD->getType();
429     IdentifierInfo *II = nullptr;
430     VarDecl *CapVar = nullptr;
431 
432     // If this is a capture by copy and the type is not a pointer, the outlined
433     // function argument type should be uintptr and the value properly casted to
434     // uintptr. This is necessary given that the runtime library is only able to
435     // deal with pointers. We can pass in the same way the VLA type sizes to the
436     // outlined function.
437     if (FO.UIntPtrCastRequired &&
438         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
439          I->capturesVariableArrayType()))
440       ArgType = Ctx.getUIntPtrType();
441 
442     if (I->capturesVariable() || I->capturesVariableByCopy()) {
443       CapVar = I->getCapturedVar();
444       II = CapVar->getIdentifier();
445     } else if (I->capturesThis()) {
446       II = &Ctx.Idents.get("this");
447     } else {
448       assert(I->capturesVariableArrayType());
449       II = &Ctx.Idents.get("vla");
450     }
451     if (ArgType->isVariablyModifiedType())
452       ArgType = getCanonicalParamType(Ctx, ArgType);
453     VarDecl *Arg;
454     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
455       Arg = ParmVarDecl::Create(
456           Ctx, DebugFunctionDecl,
457           CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
458           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
459           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
460     } else {
461       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
462                                       II, ArgType, ImplicitParamDecl::Other);
463     }
464     Args.emplace_back(Arg);
465     // Do not cast arguments if we emit function with non-original types.
466     TargetArgs.emplace_back(
467         FO.UIntPtrCastRequired
468             ? Arg
469             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
470     ++I;
471   }
472   Args.append(
473       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
474       CD->param_end());
475   TargetArgs.append(
476       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
477       CD->param_end());
478 
479   // Create the function declaration.
480   const CGFunctionInfo &FuncInfo =
481       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
482   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
483 
484   auto *F =
485       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
486                              FO.FunctionName, &CGM.getModule());
487   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
488   if (CD->isNothrow())
489     F->setDoesNotThrow();
490   F->setDoesNotRecurse();
491 
492   // Generate the function.
493   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
494                     FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(),
495                     FO.UIntPtrCastRequired ? FO.Loc
496                                            : CD->getBody()->getBeginLoc());
497   unsigned Cnt = CD->getContextParamPosition();
498   I = FO.S->captures().begin();
499   for (const FieldDecl *FD : RD->fields()) {
500     // Do not map arguments if we emit function with non-original types.
501     Address LocalAddr(Address::invalid());
502     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
503       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
504                                                              TargetArgs[Cnt]);
505     } else {
506       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
507     }
508     // If we are capturing a pointer by copy we don't need to do anything, just
509     // use the value that we get from the arguments.
510     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
511       const VarDecl *CurVD = I->getCapturedVar();
512       if (!FO.RegisterCastedArgsOnly)
513         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
514       ++Cnt;
515       ++I;
516       continue;
517     }
518 
519     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
520                                         AlignmentSource::Decl);
521     if (FD->hasCapturedVLAType()) {
522       if (FO.UIntPtrCastRequired) {
523         ArgLVal = CGF.MakeAddrLValue(
524             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
525                                  Args[Cnt]->getName(), ArgLVal),
526             FD->getType(), AlignmentSource::Decl);
527       }
528       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
529       const VariableArrayType *VAT = FD->getCapturedVLAType();
530       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
531     } else if (I->capturesVariable()) {
532       const VarDecl *Var = I->getCapturedVar();
533       QualType VarTy = Var->getType();
534       Address ArgAddr = ArgLVal.getAddress(CGF);
535       if (ArgLVal.getType()->isLValueReferenceType()) {
536         ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
537       } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
538         assert(ArgLVal.getType()->isPointerType());
539         ArgAddr = CGF.EmitLoadOfPointer(
540             ArgAddr, ArgLVal.getType()->castAs<PointerType>());
541       }
542       if (!FO.RegisterCastedArgsOnly) {
543         LocalAddrs.insert(
544             {Args[Cnt],
545              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
546       }
547     } else if (I->capturesVariableByCopy()) {
548       assert(!FD->getType()->isAnyPointerType() &&
549              "Not expecting a captured pointer.");
550       const VarDecl *Var = I->getCapturedVar();
551       LocalAddrs.insert({Args[Cnt],
552                          {Var, FO.UIntPtrCastRequired
553                                    ? castValueFromUintptr(
554                                          CGF, I->getLocation(), FD->getType(),
555                                          Args[Cnt]->getName(), ArgLVal)
556                                    : ArgLVal.getAddress(CGF)}});
557     } else {
558       // If 'this' is captured, load it into CXXThisValue.
559       assert(I->capturesThis());
560       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
561       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}});
562     }
563     ++Cnt;
564     ++I;
565   }
566 
567   return F;
568 }
569 
570 llvm::Function *
571 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
572                                                     SourceLocation Loc) {
573   assert(
574       CapturedStmtInfo &&
575       "CapturedStmtInfo should be set when generating the captured function");
576   const CapturedDecl *CD = S.getCapturedDecl();
577   // Build the argument list.
578   bool NeedWrapperFunction =
579       getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo();
580   FunctionArgList Args;
581   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
582   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
583   SmallString<256> Buffer;
584   llvm::raw_svector_ostream Out(Buffer);
585   Out << CapturedStmtInfo->getHelperName();
586   if (NeedWrapperFunction)
587     Out << "_debug__";
588   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
589                      Out.str(), Loc);
590   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
591                                                    VLASizes, CXXThisValue, FO);
592   CodeGenFunction::OMPPrivateScope LocalScope(*this);
593   for (const auto &LocalAddrPair : LocalAddrs) {
594     if (LocalAddrPair.second.first) {
595       LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() {
596         return LocalAddrPair.second.second;
597       });
598     }
599   }
600   (void)LocalScope.Privatize();
601   for (const auto &VLASizePair : VLASizes)
602     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
603   PGO.assignRegionCounters(GlobalDecl(CD), F);
604   CapturedStmtInfo->EmitBody(*this, CD->getBody());
605   (void)LocalScope.ForceCleanup();
606   FinishFunction(CD->getBodyRBrace());
607   if (!NeedWrapperFunction)
608     return F;
609 
610   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
611                             /*RegisterCastedArgsOnly=*/true,
612                             CapturedStmtInfo->getHelperName(), Loc);
613   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
614   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
615   Args.clear();
616   LocalAddrs.clear();
617   VLASizes.clear();
618   llvm::Function *WrapperF =
619       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
620                                    WrapperCGF.CXXThisValue, WrapperFO);
621   llvm::SmallVector<llvm::Value *, 4> CallArgs;
622   for (const auto *Arg : Args) {
623     llvm::Value *CallArg;
624     auto I = LocalAddrs.find(Arg);
625     if (I != LocalAddrs.end()) {
626       LValue LV = WrapperCGF.MakeAddrLValue(
627           I->second.second,
628           I->second.first ? I->second.first->getType() : Arg->getType(),
629           AlignmentSource::Decl);
630       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
631     } else {
632       auto EI = VLASizes.find(Arg);
633       if (EI != VLASizes.end()) {
634         CallArg = EI->second.second;
635       } else {
636         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
637                                               Arg->getType(),
638                                               AlignmentSource::Decl);
639         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
640       }
641     }
642     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
643   }
644   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs);
645   WrapperCGF.FinishFunction();
646   return WrapperF;
647 }
648 
649 //===----------------------------------------------------------------------===//
650 //                              OpenMP Directive Emission
651 //===----------------------------------------------------------------------===//
652 void CodeGenFunction::EmitOMPAggregateAssign(
653     Address DestAddr, Address SrcAddr, QualType OriginalType,
654     const llvm::function_ref<void(Address, Address)> CopyGen) {
655   // Perform element-by-element initialization.
656   QualType ElementTy;
657 
658   // Drill down to the base element type on both arrays.
659   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
660   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
661   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
662 
663   llvm::Value *SrcBegin = SrcAddr.getPointer();
664   llvm::Value *DestBegin = DestAddr.getPointer();
665   // Cast from pointer to array type to pointer to single element.
666   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
667   // The basic structure here is a while-do loop.
668   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
669   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
670   llvm::Value *IsEmpty =
671       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
672   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
673 
674   // Enter the loop body, making that address the current address.
675   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
676   EmitBlock(BodyBB);
677 
678   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
679 
680   llvm::PHINode *SrcElementPHI =
681     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
682   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
683   Address SrcElementCurrent =
684       Address(SrcElementPHI,
685               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
686 
687   llvm::PHINode *DestElementPHI =
688     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
689   DestElementPHI->addIncoming(DestBegin, EntryBB);
690   Address DestElementCurrent =
691     Address(DestElementPHI,
692             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
693 
694   // Emit copy.
695   CopyGen(DestElementCurrent, SrcElementCurrent);
696 
697   // Shift the address forward by one element.
698   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
699       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
700   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
701       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
702   // Check whether we've reached the end.
703   llvm::Value *Done =
704       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
705   Builder.CreateCondBr(Done, DoneBB, BodyBB);
706   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
707   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
708 
709   // Done.
710   EmitBlock(DoneBB, /*IsFinished=*/true);
711 }
712 
713 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
714                                   Address SrcAddr, const VarDecl *DestVD,
715                                   const VarDecl *SrcVD, const Expr *Copy) {
716   if (OriginalType->isArrayType()) {
717     const auto *BO = dyn_cast<BinaryOperator>(Copy);
718     if (BO && BO->getOpcode() == BO_Assign) {
719       // Perform simple memcpy for simple copying.
720       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
721       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
722       EmitAggregateAssign(Dest, Src, OriginalType);
723     } else {
724       // For arrays with complex element types perform element by element
725       // copying.
726       EmitOMPAggregateAssign(
727           DestAddr, SrcAddr, OriginalType,
728           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
729             // Working with the single array element, so have to remap
730             // destination and source variables to corresponding array
731             // elements.
732             CodeGenFunction::OMPPrivateScope Remap(*this);
733             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
734             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
735             (void)Remap.Privatize();
736             EmitIgnoredExpr(Copy);
737           });
738     }
739   } else {
740     // Remap pseudo source variable to private copy.
741     CodeGenFunction::OMPPrivateScope Remap(*this);
742     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
743     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
744     (void)Remap.Privatize();
745     // Emit copying of the whole variable.
746     EmitIgnoredExpr(Copy);
747   }
748 }
749 
750 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
751                                                 OMPPrivateScope &PrivateScope) {
752   if (!HaveInsertPoint())
753     return false;
754   bool DeviceConstTarget =
755       getLangOpts().OpenMPIsDevice &&
756       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
757   bool FirstprivateIsLastprivate = false;
758   llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates;
759   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
760     for (const auto *D : C->varlists())
761       Lastprivates.try_emplace(
762           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(),
763           C->getKind());
764   }
765   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
766   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
767   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
768   // Force emission of the firstprivate copy if the directive does not emit
769   // outlined function, like omp for, omp simd, omp distribute etc.
770   bool MustEmitFirstprivateCopy =
771       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
772   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
773     const auto *IRef = C->varlist_begin();
774     const auto *InitsRef = C->inits().begin();
775     for (const Expr *IInit : C->private_copies()) {
776       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
777       bool ThisFirstprivateIsLastprivate =
778           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
779       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
780       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
781       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
782           !FD->getType()->isReferenceType() &&
783           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
784         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
785         ++IRef;
786         ++InitsRef;
787         continue;
788       }
789       // Do not emit copy for firstprivate constant variables in target regions,
790       // captured by reference.
791       if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) &&
792           FD && FD->getType()->isReferenceType() &&
793           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
794         (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this,
795                                                                     OrigVD);
796         ++IRef;
797         ++InitsRef;
798         continue;
799       }
800       FirstprivateIsLastprivate =
801           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
802       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
803         const auto *VDInit =
804             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
805         bool IsRegistered;
806         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
807                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
808                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
809         LValue OriginalLVal;
810         if (!FD) {
811           // Check if the firstprivate variable is just a constant value.
812           ConstantEmission CE = tryEmitAsConstant(&DRE);
813           if (CE && !CE.isReference()) {
814             // Constant value, no need to create a copy.
815             ++IRef;
816             ++InitsRef;
817             continue;
818           }
819           if (CE && CE.isReference()) {
820             OriginalLVal = CE.getReferenceLValue(*this, &DRE);
821           } else {
822             assert(!CE && "Expected non-constant firstprivate.");
823             OriginalLVal = EmitLValue(&DRE);
824           }
825         } else {
826           OriginalLVal = EmitLValue(&DRE);
827         }
828         QualType Type = VD->getType();
829         if (Type->isArrayType()) {
830           // Emit VarDecl with copy init for arrays.
831           // Get the address of the original variable captured in current
832           // captured region.
833           IsRegistered = PrivateScope.addPrivate(
834               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
835                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
836                 const Expr *Init = VD->getInit();
837                 if (!isa<CXXConstructExpr>(Init) ||
838                     isTrivialInitializer(Init)) {
839                   // Perform simple memcpy.
840                   LValue Dest =
841                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
842                   EmitAggregateAssign(Dest, OriginalLVal, Type);
843                 } else {
844                   EmitOMPAggregateAssign(
845                       Emission.getAllocatedAddress(),
846                       OriginalLVal.getAddress(*this), Type,
847                       [this, VDInit, Init](Address DestElement,
848                                            Address SrcElement) {
849                         // Clean up any temporaries needed by the
850                         // initialization.
851                         RunCleanupsScope InitScope(*this);
852                         // Emit initialization for single element.
853                         setAddrOfLocalVar(VDInit, SrcElement);
854                         EmitAnyExprToMem(Init, DestElement,
855                                          Init->getType().getQualifiers(),
856                                          /*IsInitializer*/ false);
857                         LocalDeclMap.erase(VDInit);
858                       });
859                 }
860                 EmitAutoVarCleanups(Emission);
861                 return Emission.getAllocatedAddress();
862               });
863         } else {
864           Address OriginalAddr = OriginalLVal.getAddress(*this);
865           IsRegistered =
866               PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD,
867                                                ThisFirstprivateIsLastprivate,
868                                                OrigVD, &Lastprivates, IRef]() {
869                 // Emit private VarDecl with copy init.
870                 // Remap temp VDInit variable to the address of the original
871                 // variable (for proper handling of captured global variables).
872                 setAddrOfLocalVar(VDInit, OriginalAddr);
873                 EmitDecl(*VD);
874                 LocalDeclMap.erase(VDInit);
875                 if (ThisFirstprivateIsLastprivate &&
876                     Lastprivates[OrigVD->getCanonicalDecl()] ==
877                         OMPC_LASTPRIVATE_conditional) {
878                   // Create/init special variable for lastprivate conditionals.
879                   Address VDAddr =
880                       CGM.getOpenMPRuntime().emitLastprivateConditionalInit(
881                           *this, OrigVD);
882                   llvm::Value *V = EmitLoadOfScalar(
883                       MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(),
884                                      AlignmentSource::Decl),
885                       (*IRef)->getExprLoc());
886                   EmitStoreOfScalar(V,
887                                     MakeAddrLValue(VDAddr, (*IRef)->getType(),
888                                                    AlignmentSource::Decl));
889                   LocalDeclMap.erase(VD);
890                   setAddrOfLocalVar(VD, VDAddr);
891                   return VDAddr;
892                 }
893                 return GetAddrOfLocalVar(VD);
894               });
895         }
896         assert(IsRegistered &&
897                "firstprivate var already registered as private");
898         // Silence the warning about unused variable.
899         (void)IsRegistered;
900       }
901       ++IRef;
902       ++InitsRef;
903     }
904   }
905   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
906 }
907 
908 void CodeGenFunction::EmitOMPPrivateClause(
909     const OMPExecutableDirective &D,
910     CodeGenFunction::OMPPrivateScope &PrivateScope) {
911   if (!HaveInsertPoint())
912     return;
913   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
914   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
915     auto IRef = C->varlist_begin();
916     for (const Expr *IInit : C->private_copies()) {
917       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
918       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
919         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
920         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
921           // Emit private VarDecl with copy init.
922           EmitDecl(*VD);
923           return GetAddrOfLocalVar(VD);
924         });
925         assert(IsRegistered && "private var already registered as private");
926         // Silence the warning about unused variable.
927         (void)IsRegistered;
928       }
929       ++IRef;
930     }
931   }
932 }
933 
934 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
935   if (!HaveInsertPoint())
936     return false;
937   // threadprivate_var1 = master_threadprivate_var1;
938   // operator=(threadprivate_var2, master_threadprivate_var2);
939   // ...
940   // __kmpc_barrier(&loc, global_tid);
941   llvm::DenseSet<const VarDecl *> CopiedVars;
942   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
943   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
944     auto IRef = C->varlist_begin();
945     auto ISrcRef = C->source_exprs().begin();
946     auto IDestRef = C->destination_exprs().begin();
947     for (const Expr *AssignOp : C->assignment_ops()) {
948       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
949       QualType Type = VD->getType();
950       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
951         // Get the address of the master variable. If we are emitting code with
952         // TLS support, the address is passed from the master as field in the
953         // captured declaration.
954         Address MasterAddr = Address::invalid();
955         if (getLangOpts().OpenMPUseTLS &&
956             getContext().getTargetInfo().isTLSSupported()) {
957           assert(CapturedStmtInfo->lookup(VD) &&
958                  "Copyin threadprivates should have been captured!");
959           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true,
960                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
961           MasterAddr = EmitLValue(&DRE).getAddress(*this);
962           LocalDeclMap.erase(VD);
963         } else {
964           MasterAddr =
965             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
966                                         : CGM.GetAddrOfGlobal(VD),
967                     getContext().getDeclAlign(VD));
968         }
969         // Get the address of the threadprivate variable.
970         Address PrivateAddr = EmitLValue(*IRef).getAddress(*this);
971         if (CopiedVars.size() == 1) {
972           // At first check if current thread is a master thread. If it is, no
973           // need to copy data.
974           CopyBegin = createBasicBlock("copyin.not.master");
975           CopyEnd = createBasicBlock("copyin.not.master.end");
976           Builder.CreateCondBr(
977               Builder.CreateICmpNE(
978                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
979                   Builder.CreatePtrToInt(PrivateAddr.getPointer(),
980                                          CGM.IntPtrTy)),
981               CopyBegin, CopyEnd);
982           EmitBlock(CopyBegin);
983         }
984         const auto *SrcVD =
985             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
986         const auto *DestVD =
987             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
988         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
989       }
990       ++IRef;
991       ++ISrcRef;
992       ++IDestRef;
993     }
994   }
995   if (CopyEnd) {
996     // Exit out of copying procedure for non-master thread.
997     EmitBlock(CopyEnd, /*IsFinished=*/true);
998     return true;
999   }
1000   return false;
1001 }
1002 
1003 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
1004     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
1005   if (!HaveInsertPoint())
1006     return false;
1007   bool HasAtLeastOneLastprivate = false;
1008   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1009   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1010     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1011     for (const Expr *C : LoopDirective->counters()) {
1012       SIMDLCVs.insert(
1013           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1014     }
1015   }
1016   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1017   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1018     HasAtLeastOneLastprivate = true;
1019     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
1020         !getLangOpts().OpenMPSimd)
1021       break;
1022     const auto *IRef = C->varlist_begin();
1023     const auto *IDestRef = C->destination_exprs().begin();
1024     for (const Expr *IInit : C->private_copies()) {
1025       // Keep the address of the original variable for future update at the end
1026       // of the loop.
1027       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1028       // Taskloops do not require additional initialization, it is done in
1029       // runtime support library.
1030       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
1031         const auto *DestVD =
1032             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1033         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
1034           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1035                           /*RefersToEnclosingVariableOrCapture=*/
1036                               CapturedStmtInfo->lookup(OrigVD) != nullptr,
1037                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
1038           return EmitLValue(&DRE).getAddress(*this);
1039         });
1040         // Check if the variable is also a firstprivate: in this case IInit is
1041         // not generated. Initialization of this variable will happen in codegen
1042         // for 'firstprivate' clause.
1043         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
1044           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
1045           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C,
1046                                                                OrigVD]() {
1047             if (C->getKind() == OMPC_LASTPRIVATE_conditional) {
1048               Address VDAddr =
1049                   CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this,
1050                                                                         OrigVD);
1051               setAddrOfLocalVar(VD, VDAddr);
1052               return VDAddr;
1053             }
1054             // Emit private VarDecl with copy init.
1055             EmitDecl(*VD);
1056             return GetAddrOfLocalVar(VD);
1057           });
1058           assert(IsRegistered &&
1059                  "lastprivate var already registered as private");
1060           (void)IsRegistered;
1061         }
1062       }
1063       ++IRef;
1064       ++IDestRef;
1065     }
1066   }
1067   return HasAtLeastOneLastprivate;
1068 }
1069 
1070 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
1071     const OMPExecutableDirective &D, bool NoFinals,
1072     llvm::Value *IsLastIterCond) {
1073   if (!HaveInsertPoint())
1074     return;
1075   // Emit following code:
1076   // if (<IsLastIterCond>) {
1077   //   orig_var1 = private_orig_var1;
1078   //   ...
1079   //   orig_varn = private_orig_varn;
1080   // }
1081   llvm::BasicBlock *ThenBB = nullptr;
1082   llvm::BasicBlock *DoneBB = nullptr;
1083   if (IsLastIterCond) {
1084     // Emit implicit barrier if at least one lastprivate conditional is found
1085     // and this is not a simd mode.
1086     if (!getLangOpts().OpenMPSimd &&
1087         llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(),
1088                      [](const OMPLastprivateClause *C) {
1089                        return C->getKind() == OMPC_LASTPRIVATE_conditional;
1090                      })) {
1091       CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(),
1092                                              OMPD_unknown,
1093                                              /*EmitChecks=*/false,
1094                                              /*ForceSimpleCall=*/true);
1095     }
1096     ThenBB = createBasicBlock(".omp.lastprivate.then");
1097     DoneBB = createBasicBlock(".omp.lastprivate.done");
1098     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1099     EmitBlock(ThenBB);
1100   }
1101   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1102   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1103   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1104     auto IC = LoopDirective->counters().begin();
1105     for (const Expr *F : LoopDirective->finals()) {
1106       const auto *D =
1107           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1108       if (NoFinals)
1109         AlreadyEmittedVars.insert(D);
1110       else
1111         LoopCountersAndUpdates[D] = F;
1112       ++IC;
1113     }
1114   }
1115   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1116     auto IRef = C->varlist_begin();
1117     auto ISrcRef = C->source_exprs().begin();
1118     auto IDestRef = C->destination_exprs().begin();
1119     for (const Expr *AssignOp : C->assignment_ops()) {
1120       const auto *PrivateVD =
1121           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1122       QualType Type = PrivateVD->getType();
1123       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1124       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1125         // If lastprivate variable is a loop control variable for loop-based
1126         // directive, update its value before copyin back to original
1127         // variable.
1128         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1129           EmitIgnoredExpr(FinalExpr);
1130         const auto *SrcVD =
1131             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1132         const auto *DestVD =
1133             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1134         // Get the address of the private variable.
1135         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1136         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1137           PrivateAddr =
1138               Address(Builder.CreateLoad(PrivateAddr),
1139                       getNaturalTypeAlignment(RefTy->getPointeeType()));
1140         // Store the last value to the private copy in the last iteration.
1141         if (C->getKind() == OMPC_LASTPRIVATE_conditional)
1142           CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate(
1143               *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD,
1144               (*IRef)->getExprLoc());
1145         // Get the address of the original variable.
1146         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1147         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1148       }
1149       ++IRef;
1150       ++ISrcRef;
1151       ++IDestRef;
1152     }
1153     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1154       EmitIgnoredExpr(PostUpdate);
1155   }
1156   if (IsLastIterCond)
1157     EmitBlock(DoneBB, /*IsFinished=*/true);
1158 }
1159 
1160 void CodeGenFunction::EmitOMPReductionClauseInit(
1161     const OMPExecutableDirective &D,
1162     CodeGenFunction::OMPPrivateScope &PrivateScope) {
1163   if (!HaveInsertPoint())
1164     return;
1165   SmallVector<const Expr *, 4> Shareds;
1166   SmallVector<const Expr *, 4> Privates;
1167   SmallVector<const Expr *, 4> ReductionOps;
1168   SmallVector<const Expr *, 4> LHSs;
1169   SmallVector<const Expr *, 4> RHSs;
1170   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1171     auto IPriv = C->privates().begin();
1172     auto IRed = C->reduction_ops().begin();
1173     auto ILHS = C->lhs_exprs().begin();
1174     auto IRHS = C->rhs_exprs().begin();
1175     for (const Expr *Ref : C->varlists()) {
1176       Shareds.emplace_back(Ref);
1177       Privates.emplace_back(*IPriv);
1178       ReductionOps.emplace_back(*IRed);
1179       LHSs.emplace_back(*ILHS);
1180       RHSs.emplace_back(*IRHS);
1181       std::advance(IPriv, 1);
1182       std::advance(IRed, 1);
1183       std::advance(ILHS, 1);
1184       std::advance(IRHS, 1);
1185     }
1186   }
1187   ReductionCodeGen RedCG(Shareds, Privates, ReductionOps);
1188   unsigned Count = 0;
1189   auto ILHS = LHSs.begin();
1190   auto IRHS = RHSs.begin();
1191   auto IPriv = Privates.begin();
1192   for (const Expr *IRef : Shareds) {
1193     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1194     // Emit private VarDecl with reduction init.
1195     RedCG.emitSharedLValue(*this, Count);
1196     RedCG.emitAggregateType(*this, Count);
1197     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1198     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1199                              RedCG.getSharedLValue(Count),
1200                              [&Emission](CodeGenFunction &CGF) {
1201                                CGF.EmitAutoVarInit(Emission);
1202                                return true;
1203                              });
1204     EmitAutoVarCleanups(Emission);
1205     Address BaseAddr = RedCG.adjustPrivateAddress(
1206         *this, Count, Emission.getAllocatedAddress());
1207     bool IsRegistered = PrivateScope.addPrivate(
1208         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1209     assert(IsRegistered && "private var already registered as private");
1210     // Silence the warning about unused variable.
1211     (void)IsRegistered;
1212 
1213     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1214     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1215     QualType Type = PrivateVD->getType();
1216     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1217     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1218       // Store the address of the original variable associated with the LHS
1219       // implicit variable.
1220       PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
1221         return RedCG.getSharedLValue(Count).getAddress(*this);
1222       });
1223       PrivateScope.addPrivate(
1224           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1225     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1226                isa<ArraySubscriptExpr>(IRef)) {
1227       // Store the address of the original variable associated with the LHS
1228       // implicit variable.
1229       PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
1230         return RedCG.getSharedLValue(Count).getAddress(*this);
1231       });
1232       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1233         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1234                                             ConvertTypeForMem(RHSVD->getType()),
1235                                             "rhs.begin");
1236       });
1237     } else {
1238       QualType Type = PrivateVD->getType();
1239       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1240       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this);
1241       // Store the address of the original variable associated with the LHS
1242       // implicit variable.
1243       if (IsArray) {
1244         OriginalAddr = Builder.CreateElementBitCast(
1245             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1246       }
1247       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1248       PrivateScope.addPrivate(
1249           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1250             return IsArray
1251                        ? Builder.CreateElementBitCast(
1252                              GetAddrOfLocalVar(PrivateVD),
1253                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1254                        : GetAddrOfLocalVar(PrivateVD);
1255           });
1256     }
1257     ++ILHS;
1258     ++IRHS;
1259     ++IPriv;
1260     ++Count;
1261   }
1262 }
1263 
1264 void CodeGenFunction::EmitOMPReductionClauseFinal(
1265     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1266   if (!HaveInsertPoint())
1267     return;
1268   llvm::SmallVector<const Expr *, 8> Privates;
1269   llvm::SmallVector<const Expr *, 8> LHSExprs;
1270   llvm::SmallVector<const Expr *, 8> RHSExprs;
1271   llvm::SmallVector<const Expr *, 8> ReductionOps;
1272   bool HasAtLeastOneReduction = false;
1273   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1274     HasAtLeastOneReduction = true;
1275     Privates.append(C->privates().begin(), C->privates().end());
1276     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1277     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1278     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1279   }
1280   if (HasAtLeastOneReduction) {
1281     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1282                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1283                       ReductionKind == OMPD_simd;
1284     bool SimpleReduction = ReductionKind == OMPD_simd;
1285     // Emit nowait reduction if nowait clause is present or directive is a
1286     // parallel directive (it always has implicit barrier).
1287     CGM.getOpenMPRuntime().emitReduction(
1288         *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
1289         {WithNowait, SimpleReduction, ReductionKind});
1290   }
1291 }
1292 
1293 static void emitPostUpdateForReductionClause(
1294     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1295     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1296   if (!CGF.HaveInsertPoint())
1297     return;
1298   llvm::BasicBlock *DoneBB = nullptr;
1299   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1300     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1301       if (!DoneBB) {
1302         if (llvm::Value *Cond = CondGen(CGF)) {
1303           // If the first post-update expression is found, emit conditional
1304           // block if it was requested.
1305           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1306           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1307           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1308           CGF.EmitBlock(ThenBB);
1309         }
1310       }
1311       CGF.EmitIgnoredExpr(PostUpdate);
1312     }
1313   }
1314   if (DoneBB)
1315     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1316 }
1317 
1318 namespace {
1319 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1320 /// parallel function. This is necessary for combined constructs such as
1321 /// 'distribute parallel for'
1322 typedef llvm::function_ref<void(CodeGenFunction &,
1323                                 const OMPExecutableDirective &,
1324                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1325     CodeGenBoundParametersTy;
1326 } // anonymous namespace
1327 
1328 static void
1329 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF,
1330                                      const OMPExecutableDirective &S) {
1331   if (CGF.getLangOpts().OpenMP < 50)
1332     return;
1333   llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls;
1334   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
1335     for (const Expr *Ref : C->varlists()) {
1336       if (!Ref->getType()->isScalarType())
1337         continue;
1338       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1339       if (!DRE)
1340         continue;
1341       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1342       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1343     }
1344   }
1345   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
1346     for (const Expr *Ref : C->varlists()) {
1347       if (!Ref->getType()->isScalarType())
1348         continue;
1349       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1350       if (!DRE)
1351         continue;
1352       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1353       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1354     }
1355   }
1356   for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
1357     for (const Expr *Ref : C->varlists()) {
1358       if (!Ref->getType()->isScalarType())
1359         continue;
1360       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1361       if (!DRE)
1362         continue;
1363       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1364       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1365     }
1366   }
1367   // Privates should ne analyzed since they are not captured at all.
1368   // Task reductions may be skipped - tasks are ignored.
1369   // Firstprivates do not return value but may be passed by reference - no need
1370   // to check for updated lastprivate conditional.
1371   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
1372     for (const Expr *Ref : C->varlists()) {
1373       if (!Ref->getType()->isScalarType())
1374         continue;
1375       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1376       if (!DRE)
1377         continue;
1378       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1379     }
1380   }
1381   CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional(
1382       CGF, S, PrivateDecls);
1383 }
1384 
1385 static void emitCommonOMPParallelDirective(
1386     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1387     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1388     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1389   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1390   llvm::Function *OutlinedFn =
1391       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1392           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1393   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1394     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1395     llvm::Value *NumThreads =
1396         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1397                            /*IgnoreResultAssign=*/true);
1398     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1399         CGF, NumThreads, NumThreadsClause->getBeginLoc());
1400   }
1401   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1402     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1403     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1404         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
1405   }
1406   const Expr *IfCond = nullptr;
1407   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1408     if (C->getNameModifier() == OMPD_unknown ||
1409         C->getNameModifier() == OMPD_parallel) {
1410       IfCond = C->getCondition();
1411       break;
1412     }
1413   }
1414 
1415   OMPParallelScope Scope(CGF, S);
1416   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1417   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1418   // lower and upper bounds with the pragma 'for' chunking mechanism.
1419   // The following lambda takes care of appending the lower and upper bound
1420   // parameters when necessary
1421   CodeGenBoundParameters(CGF, S, CapturedVars);
1422   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1423   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
1424                                               CapturedVars, IfCond);
1425 }
1426 
1427 static void emitEmptyBoundParameters(CodeGenFunction &,
1428                                      const OMPExecutableDirective &,
1429                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1430 
1431 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1432   if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) {
1433     // Check if we have any if clause associated with the directive.
1434     llvm::Value *IfCond = nullptr;
1435     if (const auto *C = S.getSingleClause<OMPIfClause>())
1436       IfCond = EmitScalarExpr(C->getCondition(),
1437                               /*IgnoreResultAssign=*/true);
1438 
1439     llvm::Value *NumThreads = nullptr;
1440     if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>())
1441       NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(),
1442                                   /*IgnoreResultAssign=*/true);
1443 
1444     ProcBindKind ProcBind = OMP_PROC_BIND_default;
1445     if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>())
1446       ProcBind = ProcBindClause->getProcBindKind();
1447 
1448     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1449 
1450     // The cleanup callback that finalizes all variabels at the given location,
1451     // thus calls destructors etc.
1452     auto FiniCB = [this](InsertPointTy IP) {
1453       CGBuilderTy::InsertPointGuard IPG(Builder);
1454       assert(IP.getBlock()->end() != IP.getPoint() &&
1455              "OpenMP IR Builder should cause terminated block!");
1456       llvm::BasicBlock *IPBB = IP.getBlock();
1457       llvm::BasicBlock *DestBB = IPBB->splitBasicBlock(IP.getPoint());
1458       IPBB->getTerminator()->eraseFromParent();
1459       Builder.SetInsertPoint(IPBB);
1460       CodeGenFunction::JumpDest Dest = getJumpDestInCurrentScope(DestBB);
1461       EmitBranchThroughCleanup(Dest);
1462     };
1463 
1464     // Privatization callback that performs appropriate action for
1465     // shared/private/firstprivate/lastprivate/copyin/... variables.
1466     //
1467     // TODO: This defaults to shared right now.
1468     auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
1469                      llvm::Value &Val, llvm::Value *&ReplVal) {
1470       // The next line is appropriate only for variables (Val) with the
1471       // data-sharing attribute "shared".
1472       ReplVal = &Val;
1473 
1474       return CodeGenIP;
1475     };
1476 
1477     const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1478     const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt();
1479 
1480     auto BodyGenCB = [ParallelRegionBodyStmt,
1481                       this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
1482                             llvm::BasicBlock &ContinuationBB) {
1483       auto OldAllocaIP = AllocaInsertPt;
1484       AllocaInsertPt = &*AllocaIP.getPoint();
1485 
1486       auto OldReturnBlock = ReturnBlock;
1487       ReturnBlock = getJumpDestInCurrentScope(&ContinuationBB);
1488 
1489       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1490       CodeGenIPBB->splitBasicBlock(CodeGenIP.getPoint());
1491       llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator();
1492       CodeGenIPBBTI->removeFromParent();
1493 
1494       Builder.SetInsertPoint(CodeGenIPBB);
1495 
1496       EmitStmt(ParallelRegionBodyStmt);
1497 
1498       Builder.Insert(CodeGenIPBBTI);
1499 
1500       AllocaInsertPt = OldAllocaIP;
1501       ReturnBlock = OldReturnBlock;
1502     };
1503 
1504     CGCapturedStmtInfo CGSI(*CS, CR_OpenMP);
1505     CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI);
1506     Builder.restoreIP(OMPBuilder->CreateParallel(Builder, BodyGenCB, PrivCB,
1507                                                  FiniCB, IfCond, NumThreads,
1508                                                  ProcBind, S.hasCancel()));
1509     return;
1510   }
1511 
1512   // Emit parallel region as a standalone region.
1513   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1514     Action.Enter(CGF);
1515     OMPPrivateScope PrivateScope(CGF);
1516     bool Copyins = CGF.EmitOMPCopyinClause(S);
1517     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1518     if (Copyins) {
1519       // Emit implicit barrier to synchronize threads and avoid data races on
1520       // propagation master's thread values of threadprivate variables to local
1521       // instances of that variables of all other implicit threads.
1522       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1523           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
1524           /*ForceSimpleCall=*/true);
1525     }
1526     CGF.EmitOMPPrivateClause(S, PrivateScope);
1527     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1528     (void)PrivateScope.Privatize();
1529     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1530     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1531   };
1532   {
1533     auto LPCRegion =
1534         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
1535     emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1536                                    emitEmptyBoundParameters);
1537     emitPostUpdateForReductionClause(*this, S,
1538                                      [](CodeGenFunction &) { return nullptr; });
1539   }
1540   // Check for outer lastprivate conditional update.
1541   checkForLastprivateConditionalUpdate(*this, S);
1542 }
1543 
1544 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop,
1545                      int MaxLevel, int Level = 0) {
1546   assert(Level < MaxLevel && "Too deep lookup during loop body codegen.");
1547   const Stmt *SimplifiedS = S->IgnoreContainers();
1548   if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) {
1549     PrettyStackTraceLoc CrashInfo(
1550         CGF.getContext().getSourceManager(), CS->getLBracLoc(),
1551         "LLVM IR generation of compound statement ('{}')");
1552 
1553     // Keep track of the current cleanup stack depth, including debug scopes.
1554     CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange());
1555     for (const Stmt *CurStmt : CS->body())
1556       emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level);
1557     return;
1558   }
1559   if (SimplifiedS == NextLoop) {
1560     if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) {
1561       S = For->getBody();
1562     } else {
1563       assert(isa<CXXForRangeStmt>(SimplifiedS) &&
1564              "Expected canonical for loop or range-based for loop.");
1565       const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS);
1566       CGF.EmitStmt(CXXFor->getLoopVarStmt());
1567       S = CXXFor->getBody();
1568     }
1569     if (Level + 1 < MaxLevel) {
1570       NextLoop = OMPLoopDirective::tryToFindNextInnerLoop(
1571           S, /*TryImperfectlyNestedLoops=*/true);
1572       emitBody(CGF, S, NextLoop, MaxLevel, Level + 1);
1573       return;
1574     }
1575   }
1576   CGF.EmitStmt(S);
1577 }
1578 
1579 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1580                                       JumpDest LoopExit) {
1581   RunCleanupsScope BodyScope(*this);
1582   // Update counters values on current iteration.
1583   for (const Expr *UE : D.updates())
1584     EmitIgnoredExpr(UE);
1585   // Update the linear variables.
1586   // In distribute directives only loop counters may be marked as linear, no
1587   // need to generate the code for them.
1588   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1589     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1590       for (const Expr *UE : C->updates())
1591         EmitIgnoredExpr(UE);
1592     }
1593   }
1594 
1595   // On a continue in the body, jump to the end.
1596   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1597   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1598   for (const Expr *E : D.finals_conditions()) {
1599     if (!E)
1600       continue;
1601     // Check that loop counter in non-rectangular nest fits into the iteration
1602     // space.
1603     llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next");
1604     EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(),
1605                          getProfileCount(D.getBody()));
1606     EmitBlock(NextBB);
1607   }
1608   // Emit loop variables for C++ range loops.
1609   const Stmt *Body =
1610       D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
1611   // Emit loop body.
1612   emitBody(*this, Body,
1613            OMPLoopDirective::tryToFindNextInnerLoop(
1614                Body, /*TryImperfectlyNestedLoops=*/true),
1615            D.getCollapsedNumber());
1616 
1617   // The end (updates/cleanups).
1618   EmitBlock(Continue.getBlock());
1619   BreakContinueStack.pop_back();
1620 }
1621 
1622 void CodeGenFunction::EmitOMPInnerLoop(
1623     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1624     const Expr *IncExpr,
1625     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
1626     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
1627   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1628 
1629   // Start the loop with a block that tests the condition.
1630   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1631   EmitBlock(CondBlock);
1632   const SourceRange R = S.getSourceRange();
1633   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1634                  SourceLocToDebugLoc(R.getEnd()));
1635 
1636   // If there are any cleanups between here and the loop-exit scope,
1637   // create a block to stage a loop exit along.
1638   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1639   if (RequiresCleanup)
1640     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1641 
1642   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
1643 
1644   // Emit condition.
1645   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1646   if (ExitBlock != LoopExit.getBlock()) {
1647     EmitBlock(ExitBlock);
1648     EmitBranchThroughCleanup(LoopExit);
1649   }
1650 
1651   EmitBlock(LoopBody);
1652   incrementProfileCounter(&S);
1653 
1654   // Create a block for the increment.
1655   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1656   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1657 
1658   BodyGen(*this);
1659 
1660   // Emit "IV = IV + 1" and a back-edge to the condition block.
1661   EmitBlock(Continue.getBlock());
1662   EmitIgnoredExpr(IncExpr);
1663   PostIncGen(*this);
1664   BreakContinueStack.pop_back();
1665   EmitBranch(CondBlock);
1666   LoopStack.pop();
1667   // Emit the fall-through block.
1668   EmitBlock(LoopExit.getBlock());
1669 }
1670 
1671 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1672   if (!HaveInsertPoint())
1673     return false;
1674   // Emit inits for the linear variables.
1675   bool HasLinears = false;
1676   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1677     for (const Expr *Init : C->inits()) {
1678       HasLinears = true;
1679       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1680       if (const auto *Ref =
1681               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1682         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1683         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1684         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1685                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1686                         VD->getInit()->getType(), VK_LValue,
1687                         VD->getInit()->getExprLoc());
1688         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1689                                                 VD->getType()),
1690                        /*capturedByInit=*/false);
1691         EmitAutoVarCleanups(Emission);
1692       } else {
1693         EmitVarDecl(*VD);
1694       }
1695     }
1696     // Emit the linear steps for the linear clauses.
1697     // If a step is not constant, it is pre-calculated before the loop.
1698     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1699       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1700         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1701         // Emit calculation of the linear step.
1702         EmitIgnoredExpr(CS);
1703       }
1704   }
1705   return HasLinears;
1706 }
1707 
1708 void CodeGenFunction::EmitOMPLinearClauseFinal(
1709     const OMPLoopDirective &D,
1710     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1711   if (!HaveInsertPoint())
1712     return;
1713   llvm::BasicBlock *DoneBB = nullptr;
1714   // Emit the final values of the linear variables.
1715   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1716     auto IC = C->varlist_begin();
1717     for (const Expr *F : C->finals()) {
1718       if (!DoneBB) {
1719         if (llvm::Value *Cond = CondGen(*this)) {
1720           // If the first post-update expression is found, emit conditional
1721           // block if it was requested.
1722           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
1723           DoneBB = createBasicBlock(".omp.linear.pu.done");
1724           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1725           EmitBlock(ThenBB);
1726         }
1727       }
1728       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1729       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1730                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1731                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1732       Address OrigAddr = EmitLValue(&DRE).getAddress(*this);
1733       CodeGenFunction::OMPPrivateScope VarScope(*this);
1734       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1735       (void)VarScope.Privatize();
1736       EmitIgnoredExpr(F);
1737       ++IC;
1738     }
1739     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1740       EmitIgnoredExpr(PostUpdate);
1741   }
1742   if (DoneBB)
1743     EmitBlock(DoneBB, /*IsFinished=*/true);
1744 }
1745 
1746 static void emitAlignedClause(CodeGenFunction &CGF,
1747                               const OMPExecutableDirective &D) {
1748   if (!CGF.HaveInsertPoint())
1749     return;
1750   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1751     llvm::APInt ClauseAlignment(64, 0);
1752     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
1753       auto *AlignmentCI =
1754           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1755       ClauseAlignment = AlignmentCI->getValue();
1756     }
1757     for (const Expr *E : Clause->varlists()) {
1758       llvm::APInt Alignment(ClauseAlignment);
1759       if (Alignment == 0) {
1760         // OpenMP [2.8.1, Description]
1761         // If no optional parameter is specified, implementation-defined default
1762         // alignments for SIMD instructions on the target platforms are assumed.
1763         Alignment =
1764             CGF.getContext()
1765                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1766                     E->getType()->getPointeeType()))
1767                 .getQuantity();
1768       }
1769       assert((Alignment == 0 || Alignment.isPowerOf2()) &&
1770              "alignment is not power of 2");
1771       if (Alignment != 0) {
1772         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1773         CGF.EmitAlignmentAssumption(
1774             PtrValue, E, /*No second loc needed*/ SourceLocation(),
1775             llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment));
1776       }
1777     }
1778   }
1779 }
1780 
1781 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1782     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1783   if (!HaveInsertPoint())
1784     return;
1785   auto I = S.private_counters().begin();
1786   for (const Expr *E : S.counters()) {
1787     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1788     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1789     // Emit var without initialization.
1790     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
1791     EmitAutoVarCleanups(VarEmission);
1792     LocalDeclMap.erase(PrivateVD);
1793     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
1794       return VarEmission.getAllocatedAddress();
1795     });
1796     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1797         VD->hasGlobalStorage()) {
1798       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
1799         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD),
1800                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1801                         E->getType(), VK_LValue, E->getExprLoc());
1802         return EmitLValue(&DRE).getAddress(*this);
1803       });
1804     } else {
1805       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
1806         return VarEmission.getAllocatedAddress();
1807       });
1808     }
1809     ++I;
1810   }
1811   // Privatize extra loop counters used in loops for ordered(n) clauses.
1812   for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
1813     if (!C->getNumForLoops())
1814       continue;
1815     for (unsigned I = S.getCollapsedNumber(),
1816                   E = C->getLoopNumIterations().size();
1817          I < E; ++I) {
1818       const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
1819       const auto *VD = cast<VarDecl>(DRE->getDecl());
1820       // Override only those variables that can be captured to avoid re-emission
1821       // of the variables declared within the loops.
1822       if (DRE->refersToEnclosingVariableOrCapture()) {
1823         (void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
1824           return CreateMemTemp(DRE->getType(), VD->getName());
1825         });
1826       }
1827     }
1828   }
1829 }
1830 
1831 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1832                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1833                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1834   if (!CGF.HaveInsertPoint())
1835     return;
1836   {
1837     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1838     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1839     (void)PreCondScope.Privatize();
1840     // Get initial values of real counters.
1841     for (const Expr *I : S.inits()) {
1842       CGF.EmitIgnoredExpr(I);
1843     }
1844   }
1845   // Create temp loop control variables with their init values to support
1846   // non-rectangular loops.
1847   CodeGenFunction::OMPMapVars PreCondVars;
1848   for (const Expr * E: S.dependent_counters()) {
1849     if (!E)
1850       continue;
1851     assert(!E->getType().getNonReferenceType()->isRecordType() &&
1852            "dependent counter must not be an iterator.");
1853     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1854     Address CounterAddr =
1855         CGF.CreateMemTemp(VD->getType().getNonReferenceType());
1856     (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr);
1857   }
1858   (void)PreCondVars.apply(CGF);
1859   for (const Expr *E : S.dependent_inits()) {
1860     if (!E)
1861       continue;
1862     CGF.EmitIgnoredExpr(E);
1863   }
1864   // Check that loop is executed at least one time.
1865   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1866   PreCondVars.restore(CGF);
1867 }
1868 
1869 void CodeGenFunction::EmitOMPLinearClause(
1870     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1871   if (!HaveInsertPoint())
1872     return;
1873   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1874   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1875     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1876     for (const Expr *C : LoopDirective->counters()) {
1877       SIMDLCVs.insert(
1878           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1879     }
1880   }
1881   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1882     auto CurPrivate = C->privates().begin();
1883     for (const Expr *E : C->varlists()) {
1884       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1885       const auto *PrivateVD =
1886           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1887       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1888         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
1889           // Emit private VarDecl with copy init.
1890           EmitVarDecl(*PrivateVD);
1891           return GetAddrOfLocalVar(PrivateVD);
1892         });
1893         assert(IsRegistered && "linear var already registered as private");
1894         // Silence the warning about unused variable.
1895         (void)IsRegistered;
1896       } else {
1897         EmitVarDecl(*PrivateVD);
1898       }
1899       ++CurPrivate;
1900     }
1901   }
1902 }
1903 
1904 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1905                                      const OMPExecutableDirective &D,
1906                                      bool IsMonotonic) {
1907   if (!CGF.HaveInsertPoint())
1908     return;
1909   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1910     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1911                                  /*ignoreResult=*/true);
1912     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1913     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1914     // In presence of finite 'safelen', it may be unsafe to mark all
1915     // the memory instructions parallel, because loop-carried
1916     // dependences of 'safelen' iterations are possible.
1917     if (!IsMonotonic)
1918       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1919   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1920     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1921                                  /*ignoreResult=*/true);
1922     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1923     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1924     // In presence of finite 'safelen', it may be unsafe to mark all
1925     // the memory instructions parallel, because loop-carried
1926     // dependences of 'safelen' iterations are possible.
1927     CGF.LoopStack.setParallel(/*Enable=*/false);
1928   }
1929 }
1930 
1931 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1932                                       bool IsMonotonic) {
1933   // Walk clauses and process safelen/lastprivate.
1934   LoopStack.setParallel(!IsMonotonic);
1935   LoopStack.setVectorizeEnable();
1936   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1937   if (const auto *C = D.getSingleClause<OMPOrderClause>())
1938     if (C->getKind() == OMPC_ORDER_concurrent)
1939       LoopStack.setParallel(/*Enable=*/true);
1940 }
1941 
1942 void CodeGenFunction::EmitOMPSimdFinal(
1943     const OMPLoopDirective &D,
1944     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1945   if (!HaveInsertPoint())
1946     return;
1947   llvm::BasicBlock *DoneBB = nullptr;
1948   auto IC = D.counters().begin();
1949   auto IPC = D.private_counters().begin();
1950   for (const Expr *F : D.finals()) {
1951     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1952     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1953     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1954     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1955         OrigVD->hasGlobalStorage() || CED) {
1956       if (!DoneBB) {
1957         if (llvm::Value *Cond = CondGen(*this)) {
1958           // If the first post-update expression is found, emit conditional
1959           // block if it was requested.
1960           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
1961           DoneBB = createBasicBlock(".omp.final.done");
1962           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1963           EmitBlock(ThenBB);
1964         }
1965       }
1966       Address OrigAddr = Address::invalid();
1967       if (CED) {
1968         OrigAddr =
1969             EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this);
1970       } else {
1971         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD),
1972                         /*RefersToEnclosingVariableOrCapture=*/false,
1973                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1974         OrigAddr = EmitLValue(&DRE).getAddress(*this);
1975       }
1976       OMPPrivateScope VarScope(*this);
1977       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
1978       (void)VarScope.Privatize();
1979       EmitIgnoredExpr(F);
1980     }
1981     ++IC;
1982     ++IPC;
1983   }
1984   if (DoneBB)
1985     EmitBlock(DoneBB, /*IsFinished=*/true);
1986 }
1987 
1988 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
1989                                          const OMPLoopDirective &S,
1990                                          CodeGenFunction::JumpDest LoopExit) {
1991   CGF.EmitOMPLoopBody(S, LoopExit);
1992   CGF.EmitStopPoint(&S);
1993 }
1994 
1995 /// Emit a helper variable and return corresponding lvalue.
1996 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1997                                const DeclRefExpr *Helper) {
1998   auto VDecl = cast<VarDecl>(Helper->getDecl());
1999   CGF.EmitVarDecl(*VDecl);
2000   return CGF.EmitLValue(Helper);
2001 }
2002 
2003 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S,
2004                                const RegionCodeGenTy &SimdInitGen,
2005                                const RegionCodeGenTy &BodyCodeGen) {
2006   auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF,
2007                                                     PrePostActionTy &) {
2008     CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S);
2009     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
2010     SimdInitGen(CGF);
2011 
2012     BodyCodeGen(CGF);
2013   };
2014   auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
2015     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
2016     CGF.LoopStack.setVectorizeEnable(/*Enable=*/false);
2017 
2018     BodyCodeGen(CGF);
2019   };
2020   const Expr *IfCond = nullptr;
2021   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2022     if (CGF.getLangOpts().OpenMP >= 50 &&
2023         (C->getNameModifier() == OMPD_unknown ||
2024          C->getNameModifier() == OMPD_simd)) {
2025       IfCond = C->getCondition();
2026       break;
2027     }
2028   }
2029   if (IfCond) {
2030     CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2031   } else {
2032     RegionCodeGenTy ThenRCG(ThenGen);
2033     ThenRCG(CGF);
2034   }
2035 }
2036 
2037 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
2038                               PrePostActionTy &Action) {
2039   Action.Enter(CGF);
2040   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
2041          "Expected simd directive");
2042   OMPLoopScope PreInitScope(CGF, S);
2043   // if (PreCond) {
2044   //   for (IV in 0..LastIteration) BODY;
2045   //   <Final counter/linear vars updates>;
2046   // }
2047   //
2048   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
2049       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
2050       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
2051     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2052     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2053   }
2054 
2055   // Emit: if (PreCond) - begin.
2056   // If the condition constant folds and can be elided, avoid emitting the
2057   // whole loop.
2058   bool CondConstant;
2059   llvm::BasicBlock *ContBlock = nullptr;
2060   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2061     if (!CondConstant)
2062       return;
2063   } else {
2064     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
2065     ContBlock = CGF.createBasicBlock("simd.if.end");
2066     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
2067                 CGF.getProfileCount(&S));
2068     CGF.EmitBlock(ThenBlock);
2069     CGF.incrementProfileCounter(&S);
2070   }
2071 
2072   // Emit the loop iteration variable.
2073   const Expr *IVExpr = S.getIterationVariable();
2074   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
2075   CGF.EmitVarDecl(*IVDecl);
2076   CGF.EmitIgnoredExpr(S.getInit());
2077 
2078   // Emit the iterations count variable.
2079   // If it is not a variable, Sema decided to calculate iterations count on
2080   // each iteration (e.g., it is foldable into a constant).
2081   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2082     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2083     // Emit calculation of the iterations count.
2084     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
2085   }
2086 
2087   emitAlignedClause(CGF, S);
2088   (void)CGF.EmitOMPLinearClauseInit(S);
2089   {
2090     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2091     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
2092     CGF.EmitOMPLinearClause(S, LoopScope);
2093     CGF.EmitOMPPrivateClause(S, LoopScope);
2094     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2095     CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
2096         CGF, S, CGF.EmitLValue(S.getIterationVariable()));
2097     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2098     (void)LoopScope.Privatize();
2099     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2100       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
2101 
2102     emitCommonSimdLoop(
2103         CGF, S,
2104         [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2105           CGF.EmitOMPSimdInit(S);
2106         },
2107         [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2108           CGF.EmitOMPInnerLoop(
2109               S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
2110               [&S](CodeGenFunction &CGF) {
2111                 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest());
2112                 CGF.EmitStopPoint(&S);
2113               },
2114               [](CodeGenFunction &) {});
2115         });
2116     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
2117     // Emit final copy of the lastprivate variables at the end of loops.
2118     if (HasLastprivateClause)
2119       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
2120     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
2121     emitPostUpdateForReductionClause(CGF, S,
2122                                      [](CodeGenFunction &) { return nullptr; });
2123   }
2124   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
2125   // Emit: if (PreCond) - end.
2126   if (ContBlock) {
2127     CGF.EmitBranch(ContBlock);
2128     CGF.EmitBlock(ContBlock, true);
2129   }
2130 }
2131 
2132 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
2133   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2134     emitOMPSimdRegion(CGF, S, Action);
2135   };
2136   {
2137     auto LPCRegion =
2138         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
2139     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2140     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2141   }
2142   // Check for outer lastprivate conditional update.
2143   checkForLastprivateConditionalUpdate(*this, S);
2144 }
2145 
2146 void CodeGenFunction::EmitOMPOuterLoop(
2147     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
2148     CodeGenFunction::OMPPrivateScope &LoopScope,
2149     const CodeGenFunction::OMPLoopArguments &LoopArgs,
2150     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
2151     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
2152   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2153 
2154   const Expr *IVExpr = S.getIterationVariable();
2155   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2156   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2157 
2158   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
2159 
2160   // Start the loop with a block that tests the condition.
2161   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
2162   EmitBlock(CondBlock);
2163   const SourceRange R = S.getSourceRange();
2164   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
2165                  SourceLocToDebugLoc(R.getEnd()));
2166 
2167   llvm::Value *BoolCondVal = nullptr;
2168   if (!DynamicOrOrdered) {
2169     // UB = min(UB, GlobalUB) or
2170     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
2171     // 'distribute parallel for')
2172     EmitIgnoredExpr(LoopArgs.EUB);
2173     // IV = LB
2174     EmitIgnoredExpr(LoopArgs.Init);
2175     // IV < UB
2176     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
2177   } else {
2178     BoolCondVal =
2179         RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
2180                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
2181   }
2182 
2183   // If there are any cleanups between here and the loop-exit scope,
2184   // create a block to stage a loop exit along.
2185   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
2186   if (LoopScope.requiresCleanups())
2187     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
2188 
2189   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
2190   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
2191   if (ExitBlock != LoopExit.getBlock()) {
2192     EmitBlock(ExitBlock);
2193     EmitBranchThroughCleanup(LoopExit);
2194   }
2195   EmitBlock(LoopBody);
2196 
2197   // Emit "IV = LB" (in case of static schedule, we have already calculated new
2198   // LB for loop condition and emitted it above).
2199   if (DynamicOrOrdered)
2200     EmitIgnoredExpr(LoopArgs.Init);
2201 
2202   // Create a block for the increment.
2203   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
2204   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
2205 
2206   emitCommonSimdLoop(
2207       *this, S,
2208       [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) {
2209         // Generate !llvm.loop.parallel metadata for loads and stores for loops
2210         // with dynamic/guided scheduling and without ordered clause.
2211         if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2212           CGF.LoopStack.setParallel(!IsMonotonic);
2213           if (const auto *C = S.getSingleClause<OMPOrderClause>())
2214             if (C->getKind() == OMPC_ORDER_concurrent)
2215               CGF.LoopStack.setParallel(/*Enable=*/true);
2216         } else {
2217           CGF.EmitOMPSimdInit(S, IsMonotonic);
2218         }
2219       },
2220       [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered,
2221        &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2222         SourceLocation Loc = S.getBeginLoc();
2223         // when 'distribute' is not combined with a 'for':
2224         // while (idx <= UB) { BODY; ++idx; }
2225         // when 'distribute' is combined with a 'for'
2226         // (e.g. 'distribute parallel for')
2227         // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
2228         CGF.EmitOMPInnerLoop(
2229             S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
2230             [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
2231               CodeGenLoop(CGF, S, LoopExit);
2232             },
2233             [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
2234               CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
2235             });
2236       });
2237 
2238   EmitBlock(Continue.getBlock());
2239   BreakContinueStack.pop_back();
2240   if (!DynamicOrOrdered) {
2241     // Emit "LB = LB + Stride", "UB = UB + Stride".
2242     EmitIgnoredExpr(LoopArgs.NextLB);
2243     EmitIgnoredExpr(LoopArgs.NextUB);
2244   }
2245 
2246   EmitBranch(CondBlock);
2247   LoopStack.pop();
2248   // Emit the fall-through block.
2249   EmitBlock(LoopExit.getBlock());
2250 
2251   // Tell the runtime we are done.
2252   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
2253     if (!DynamicOrOrdered)
2254       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2255                                                      S.getDirectiveKind());
2256   };
2257   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2258 }
2259 
2260 void CodeGenFunction::EmitOMPForOuterLoop(
2261     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
2262     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2263     const OMPLoopArguments &LoopArgs,
2264     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2265   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2266 
2267   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
2268   const bool DynamicOrOrdered =
2269       Ordered || RT.isDynamic(ScheduleKind.Schedule);
2270 
2271   assert((Ordered ||
2272           !RT.isStaticNonchunked(ScheduleKind.Schedule,
2273                                  LoopArgs.Chunk != nullptr)) &&
2274          "static non-chunked schedule does not need outer loop");
2275 
2276   // Emit outer loop.
2277   //
2278   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2279   // When schedule(dynamic,chunk_size) is specified, the iterations are
2280   // distributed to threads in the team in chunks as the threads request them.
2281   // Each thread executes a chunk of iterations, then requests another chunk,
2282   // until no chunks remain to be distributed. Each chunk contains chunk_size
2283   // iterations, except for the last chunk to be distributed, which may have
2284   // fewer iterations. When no chunk_size is specified, it defaults to 1.
2285   //
2286   // When schedule(guided,chunk_size) is specified, the iterations are assigned
2287   // to threads in the team in chunks as the executing threads request them.
2288   // Each thread executes a chunk of iterations, then requests another chunk,
2289   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
2290   // each chunk is proportional to the number of unassigned iterations divided
2291   // by the number of threads in the team, decreasing to 1. For a chunk_size
2292   // with value k (greater than 1), the size of each chunk is determined in the
2293   // same way, with the restriction that the chunks do not contain fewer than k
2294   // iterations (except for the last chunk to be assigned, which may have fewer
2295   // than k iterations).
2296   //
2297   // When schedule(auto) is specified, the decision regarding scheduling is
2298   // delegated to the compiler and/or runtime system. The programmer gives the
2299   // implementation the freedom to choose any possible mapping of iterations to
2300   // threads in the team.
2301   //
2302   // When schedule(runtime) is specified, the decision regarding scheduling is
2303   // deferred until run time, and the schedule and chunk size are taken from the
2304   // run-sched-var ICV. If the ICV is set to auto, the schedule is
2305   // implementation defined
2306   //
2307   // while(__kmpc_dispatch_next(&LB, &UB)) {
2308   //   idx = LB;
2309   //   while (idx <= UB) { BODY; ++idx;
2310   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
2311   //   } // inner loop
2312   // }
2313   //
2314   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2315   // When schedule(static, chunk_size) is specified, iterations are divided into
2316   // chunks of size chunk_size, and the chunks are assigned to the threads in
2317   // the team in a round-robin fashion in the order of the thread number.
2318   //
2319   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
2320   //   while (idx <= UB) { BODY; ++idx; } // inner loop
2321   //   LB = LB + ST;
2322   //   UB = UB + ST;
2323   // }
2324   //
2325 
2326   const Expr *IVExpr = S.getIterationVariable();
2327   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2328   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2329 
2330   if (DynamicOrOrdered) {
2331     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
2332         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
2333     llvm::Value *LBVal = DispatchBounds.first;
2334     llvm::Value *UBVal = DispatchBounds.second;
2335     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
2336                                                              LoopArgs.Chunk};
2337     RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
2338                            IVSigned, Ordered, DipatchRTInputValues);
2339   } else {
2340     CGOpenMPRuntime::StaticRTInput StaticInit(
2341         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
2342         LoopArgs.ST, LoopArgs.Chunk);
2343     RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2344                          ScheduleKind, StaticInit);
2345   }
2346 
2347   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
2348                                     const unsigned IVSize,
2349                                     const bool IVSigned) {
2350     if (Ordered) {
2351       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
2352                                                             IVSigned);
2353     }
2354   };
2355 
2356   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
2357                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
2358   OuterLoopArgs.IncExpr = S.getInc();
2359   OuterLoopArgs.Init = S.getInit();
2360   OuterLoopArgs.Cond = S.getCond();
2361   OuterLoopArgs.NextLB = S.getNextLowerBound();
2362   OuterLoopArgs.NextUB = S.getNextUpperBound();
2363   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
2364                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
2365 }
2366 
2367 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
2368                              const unsigned IVSize, const bool IVSigned) {}
2369 
2370 void CodeGenFunction::EmitOMPDistributeOuterLoop(
2371     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
2372     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
2373     const CodeGenLoopTy &CodeGenLoopContent) {
2374 
2375   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2376 
2377   // Emit outer loop.
2378   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
2379   // dynamic
2380   //
2381 
2382   const Expr *IVExpr = S.getIterationVariable();
2383   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2384   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2385 
2386   CGOpenMPRuntime::StaticRTInput StaticInit(
2387       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
2388       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
2389   RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
2390 
2391   // for combined 'distribute' and 'for' the increment expression of distribute
2392   // is stored in DistInc. For 'distribute' alone, it is in Inc.
2393   Expr *IncExpr;
2394   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
2395     IncExpr = S.getDistInc();
2396   else
2397     IncExpr = S.getInc();
2398 
2399   // this routine is shared by 'omp distribute parallel for' and
2400   // 'omp distribute': select the right EUB expression depending on the
2401   // directive
2402   OMPLoopArguments OuterLoopArgs;
2403   OuterLoopArgs.LB = LoopArgs.LB;
2404   OuterLoopArgs.UB = LoopArgs.UB;
2405   OuterLoopArgs.ST = LoopArgs.ST;
2406   OuterLoopArgs.IL = LoopArgs.IL;
2407   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2408   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2409                           ? S.getCombinedEnsureUpperBound()
2410                           : S.getEnsureUpperBound();
2411   OuterLoopArgs.IncExpr = IncExpr;
2412   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2413                            ? S.getCombinedInit()
2414                            : S.getInit();
2415   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2416                            ? S.getCombinedCond()
2417                            : S.getCond();
2418   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2419                              ? S.getCombinedNextLowerBound()
2420                              : S.getNextLowerBound();
2421   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2422                              ? S.getCombinedNextUpperBound()
2423                              : S.getNextUpperBound();
2424 
2425   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2426                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2427                    emitEmptyOrdered);
2428 }
2429 
2430 static std::pair<LValue, LValue>
2431 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2432                                      const OMPExecutableDirective &S) {
2433   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2434   LValue LB =
2435       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2436   LValue UB =
2437       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2438 
2439   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2440   // parallel for') we need to use the 'distribute'
2441   // chunk lower and upper bounds rather than the whole loop iteration
2442   // space. These are parameters to the outlined function for 'parallel'
2443   // and we copy the bounds of the previous schedule into the
2444   // the current ones.
2445   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2446   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2447   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2448       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2449   PrevLBVal = CGF.EmitScalarConversion(
2450       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2451       LS.getIterationVariable()->getType(),
2452       LS.getPrevLowerBoundVariable()->getExprLoc());
2453   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2454       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2455   PrevUBVal = CGF.EmitScalarConversion(
2456       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2457       LS.getIterationVariable()->getType(),
2458       LS.getPrevUpperBoundVariable()->getExprLoc());
2459 
2460   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2461   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2462 
2463   return {LB, UB};
2464 }
2465 
2466 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2467 /// we need to use the LB and UB expressions generated by the worksharing
2468 /// code generation support, whereas in non combined situations we would
2469 /// just emit 0 and the LastIteration expression
2470 /// This function is necessary due to the difference of the LB and UB
2471 /// types for the RT emission routines for 'for_static_init' and
2472 /// 'for_dispatch_init'
2473 static std::pair<llvm::Value *, llvm::Value *>
2474 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2475                                         const OMPExecutableDirective &S,
2476                                         Address LB, Address UB) {
2477   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2478   const Expr *IVExpr = LS.getIterationVariable();
2479   // when implementing a dynamic schedule for a 'for' combined with a
2480   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2481   // is not normalized as each team only executes its own assigned
2482   // distribute chunk
2483   QualType IteratorTy = IVExpr->getType();
2484   llvm::Value *LBVal =
2485       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2486   llvm::Value *UBVal =
2487       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2488   return {LBVal, UBVal};
2489 }
2490 
2491 static void emitDistributeParallelForDistributeInnerBoundParams(
2492     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2493     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2494   const auto &Dir = cast<OMPLoopDirective>(S);
2495   LValue LB =
2496       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2497   llvm::Value *LBCast =
2498       CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)),
2499                                 CGF.SizeTy, /*isSigned=*/false);
2500   CapturedVars.push_back(LBCast);
2501   LValue UB =
2502       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2503 
2504   llvm::Value *UBCast =
2505       CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)),
2506                                 CGF.SizeTy, /*isSigned=*/false);
2507   CapturedVars.push_back(UBCast);
2508 }
2509 
2510 static void
2511 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2512                                  const OMPLoopDirective &S,
2513                                  CodeGenFunction::JumpDest LoopExit) {
2514   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2515                                          PrePostActionTy &Action) {
2516     Action.Enter(CGF);
2517     bool HasCancel = false;
2518     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2519       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2520         HasCancel = D->hasCancel();
2521       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2522         HasCancel = D->hasCancel();
2523       else if (const auto *D =
2524                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2525         HasCancel = D->hasCancel();
2526     }
2527     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2528                                                      HasCancel);
2529     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2530                                emitDistributeParallelForInnerBounds,
2531                                emitDistributeParallelForDispatchBounds);
2532   };
2533 
2534   emitCommonOMPParallelDirective(
2535       CGF, S,
2536       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2537       CGInlinedWorksharingLoop,
2538       emitDistributeParallelForDistributeInnerBoundParams);
2539 }
2540 
2541 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2542     const OMPDistributeParallelForDirective &S) {
2543   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2544     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2545                               S.getDistInc());
2546   };
2547   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2548   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2549 }
2550 
2551 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2552     const OMPDistributeParallelForSimdDirective &S) {
2553   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2554     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2555                               S.getDistInc());
2556   };
2557   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2558   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2559 }
2560 
2561 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2562     const OMPDistributeSimdDirective &S) {
2563   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2564     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
2565   };
2566   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2567   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2568 }
2569 
2570 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
2571     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
2572   // Emit SPMD target parallel for region as a standalone region.
2573   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2574     emitOMPSimdRegion(CGF, S, Action);
2575   };
2576   llvm::Function *Fn;
2577   llvm::Constant *Addr;
2578   // Emit target region as a standalone region.
2579   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
2580       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
2581   assert(Fn && Addr && "Target device function emission failed.");
2582 }
2583 
2584 void CodeGenFunction::EmitOMPTargetSimdDirective(
2585     const OMPTargetSimdDirective &S) {
2586   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2587     emitOMPSimdRegion(CGF, S, Action);
2588   };
2589   emitCommonOMPTargetDirective(*this, S, CodeGen);
2590 }
2591 
2592 namespace {
2593   struct ScheduleKindModifiersTy {
2594     OpenMPScheduleClauseKind Kind;
2595     OpenMPScheduleClauseModifier M1;
2596     OpenMPScheduleClauseModifier M2;
2597     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
2598                             OpenMPScheduleClauseModifier M1,
2599                             OpenMPScheduleClauseModifier M2)
2600         : Kind(Kind), M1(M1), M2(M2) {}
2601   };
2602 } // namespace
2603 
2604 bool CodeGenFunction::EmitOMPWorksharingLoop(
2605     const OMPLoopDirective &S, Expr *EUB,
2606     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2607     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2608   // Emit the loop iteration variable.
2609   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2610   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
2611   EmitVarDecl(*IVDecl);
2612 
2613   // Emit the iterations count variable.
2614   // If it is not a variable, Sema decided to calculate iterations count on each
2615   // iteration (e.g., it is foldable into a constant).
2616   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2617     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2618     // Emit calculation of the iterations count.
2619     EmitIgnoredExpr(S.getCalcLastIteration());
2620   }
2621 
2622   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2623 
2624   bool HasLastprivateClause;
2625   // Check pre-condition.
2626   {
2627     OMPLoopScope PreInitScope(*this, S);
2628     // Skip the entire loop if we don't meet the precondition.
2629     // If the condition constant folds and can be elided, avoid emitting the
2630     // whole loop.
2631     bool CondConstant;
2632     llvm::BasicBlock *ContBlock = nullptr;
2633     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2634       if (!CondConstant)
2635         return false;
2636     } else {
2637       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
2638       ContBlock = createBasicBlock("omp.precond.end");
2639       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2640                   getProfileCount(&S));
2641       EmitBlock(ThenBlock);
2642       incrementProfileCounter(&S);
2643     }
2644 
2645     RunCleanupsScope DoacrossCleanupScope(*this);
2646     bool Ordered = false;
2647     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2648       if (OrderedClause->getNumForLoops())
2649         RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
2650       else
2651         Ordered = true;
2652     }
2653 
2654     llvm::DenseSet<const Expr *> EmittedFinals;
2655     emitAlignedClause(*this, S);
2656     bool HasLinears = EmitOMPLinearClauseInit(S);
2657     // Emit helper vars inits.
2658 
2659     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
2660     LValue LB = Bounds.first;
2661     LValue UB = Bounds.second;
2662     LValue ST =
2663         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2664     LValue IL =
2665         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2666 
2667     // Emit 'then' code.
2668     {
2669       OMPPrivateScope LoopScope(*this);
2670       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
2671         // Emit implicit barrier to synchronize threads and avoid data races on
2672         // initialization of firstprivate variables and post-update of
2673         // lastprivate variables.
2674         CGM.getOpenMPRuntime().emitBarrierCall(
2675             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
2676             /*ForceSimpleCall=*/true);
2677       }
2678       EmitOMPPrivateClause(S, LoopScope);
2679       CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
2680           *this, S, EmitLValue(S.getIterationVariable()));
2681       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2682       EmitOMPReductionClauseInit(S, LoopScope);
2683       EmitOMPPrivateLoopCounters(S, LoopScope);
2684       EmitOMPLinearClause(S, LoopScope);
2685       (void)LoopScope.Privatize();
2686       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2687         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
2688 
2689       // Detect the loop schedule kind and chunk.
2690       const Expr *ChunkExpr = nullptr;
2691       OpenMPScheduleTy ScheduleKind;
2692       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
2693         ScheduleKind.Schedule = C->getScheduleKind();
2694         ScheduleKind.M1 = C->getFirstScheduleModifier();
2695         ScheduleKind.M2 = C->getSecondScheduleModifier();
2696         ChunkExpr = C->getChunkSize();
2697       } else {
2698         // Default behaviour for schedule clause.
2699         CGM.getOpenMPRuntime().getDefaultScheduleAndChunk(
2700             *this, S, ScheduleKind.Schedule, ChunkExpr);
2701       }
2702       bool HasChunkSizeOne = false;
2703       llvm::Value *Chunk = nullptr;
2704       if (ChunkExpr) {
2705         Chunk = EmitScalarExpr(ChunkExpr);
2706         Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(),
2707                                      S.getIterationVariable()->getType(),
2708                                      S.getBeginLoc());
2709         Expr::EvalResult Result;
2710         if (ChunkExpr->EvaluateAsInt(Result, getContext())) {
2711           llvm::APSInt EvaluatedChunk = Result.Val.getInt();
2712           HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1);
2713         }
2714       }
2715       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2716       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2717       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2718       // If the static schedule kind is specified or if the ordered clause is
2719       // specified, and if no monotonic modifier is specified, the effect will
2720       // be as if the monotonic modifier was specified.
2721       bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule,
2722           /* Chunked */ Chunk != nullptr) && HasChunkSizeOne &&
2723           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
2724       if ((RT.isStaticNonchunked(ScheduleKind.Schedule,
2725                                  /* Chunked */ Chunk != nullptr) ||
2726            StaticChunkedOne) &&
2727           !Ordered) {
2728         JumpDest LoopExit =
2729             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2730         emitCommonSimdLoop(
2731             *this, S,
2732             [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2733               if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2734                 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2735               } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) {
2736                 if (C->getKind() == OMPC_ORDER_concurrent)
2737                   CGF.LoopStack.setParallel(/*Enable=*/true);
2738               }
2739             },
2740             [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk,
2741              &S, ScheduleKind, LoopExit,
2742              &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2743               // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2744               // When no chunk_size is specified, the iteration space is divided
2745               // into chunks that are approximately equal in size, and at most
2746               // one chunk is distributed to each thread. Note that the size of
2747               // the chunks is unspecified in this case.
2748               CGOpenMPRuntime::StaticRTInput StaticInit(
2749                   IVSize, IVSigned, Ordered, IL.getAddress(CGF),
2750                   LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF),
2751                   StaticChunkedOne ? Chunk : nullptr);
2752               CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2753                   CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind,
2754                   StaticInit);
2755               // UB = min(UB, GlobalUB);
2756               if (!StaticChunkedOne)
2757                 CGF.EmitIgnoredExpr(S.getEnsureUpperBound());
2758               // IV = LB;
2759               CGF.EmitIgnoredExpr(S.getInit());
2760               // For unchunked static schedule generate:
2761               //
2762               // while (idx <= UB) {
2763               //   BODY;
2764               //   ++idx;
2765               // }
2766               //
2767               // For static schedule with chunk one:
2768               //
2769               // while (IV <= PrevUB) {
2770               //   BODY;
2771               //   IV += ST;
2772               // }
2773               CGF.EmitOMPInnerLoop(
2774                   S, LoopScope.requiresCleanups(),
2775                   StaticChunkedOne ? S.getCombinedParForInDistCond()
2776                                    : S.getCond(),
2777                   StaticChunkedOne ? S.getDistInc() : S.getInc(),
2778                   [&S, LoopExit](CodeGenFunction &CGF) {
2779                     CGF.EmitOMPLoopBody(S, LoopExit);
2780                     CGF.EmitStopPoint(&S);
2781                   },
2782                   [](CodeGenFunction &) {});
2783             });
2784         EmitBlock(LoopExit.getBlock());
2785         // Tell the runtime we are done.
2786         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2787           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2788                                                          S.getDirectiveKind());
2789         };
2790         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2791       } else {
2792         const bool IsMonotonic =
2793             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2794             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2795             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2796             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2797         // Emit the outer loop, which requests its work chunk [LB..UB] from
2798         // runtime and runs the inner loop to process it.
2799         const OMPLoopArguments LoopArguments(
2800             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
2801             IL.getAddress(*this), Chunk, EUB);
2802         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2803                             LoopArguments, CGDispatchBounds);
2804       }
2805       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2806         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
2807           return CGF.Builder.CreateIsNotNull(
2808               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2809         });
2810       }
2811       EmitOMPReductionClauseFinal(
2812           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
2813                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
2814                  : /*Parallel only*/ OMPD_parallel);
2815       // Emit post-update of the reduction variables if IsLastIter != 0.
2816       emitPostUpdateForReductionClause(
2817           *this, S, [IL, &S](CodeGenFunction &CGF) {
2818             return CGF.Builder.CreateIsNotNull(
2819                 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2820           });
2821       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2822       if (HasLastprivateClause)
2823         EmitOMPLastprivateClauseFinal(
2824             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2825             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
2826     }
2827     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
2828       return CGF.Builder.CreateIsNotNull(
2829           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
2830     });
2831     DoacrossCleanupScope.ForceCleanup();
2832     // We're now done with the loop, so jump to the continuation block.
2833     if (ContBlock) {
2834       EmitBranch(ContBlock);
2835       EmitBlock(ContBlock, /*IsFinished=*/true);
2836     }
2837   }
2838   return HasLastprivateClause;
2839 }
2840 
2841 /// The following two functions generate expressions for the loop lower
2842 /// and upper bounds in case of static and dynamic (dispatch) schedule
2843 /// of the associated 'for' or 'distribute' loop.
2844 static std::pair<LValue, LValue>
2845 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
2846   const auto &LS = cast<OMPLoopDirective>(S);
2847   LValue LB =
2848       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2849   LValue UB =
2850       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2851   return {LB, UB};
2852 }
2853 
2854 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
2855 /// consider the lower and upper bound expressions generated by the
2856 /// worksharing loop support, but we use 0 and the iteration space size as
2857 /// constants
2858 static std::pair<llvm::Value *, llvm::Value *>
2859 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
2860                           Address LB, Address UB) {
2861   const auto &LS = cast<OMPLoopDirective>(S);
2862   const Expr *IVExpr = LS.getIterationVariable();
2863   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
2864   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
2865   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
2866   return {LBVal, UBVal};
2867 }
2868 
2869 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2870   bool HasLastprivates = false;
2871   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2872                                           PrePostActionTy &) {
2873     OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel());
2874     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2875                                                  emitForLoopBounds,
2876                                                  emitDispatchForLoopBounds);
2877   };
2878   {
2879     auto LPCRegion =
2880         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
2881     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2882     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2883                                                 S.hasCancel());
2884   }
2885 
2886   // Emit an implicit barrier at the end.
2887   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2888     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2889   // Check for outer lastprivate conditional update.
2890   checkForLastprivateConditionalUpdate(*this, S);
2891 }
2892 
2893 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2894   bool HasLastprivates = false;
2895   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2896                                           PrePostActionTy &) {
2897     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2898                                                  emitForLoopBounds,
2899                                                  emitDispatchForLoopBounds);
2900   };
2901   {
2902     auto LPCRegion =
2903         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
2904     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2905     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2906   }
2907 
2908   // Emit an implicit barrier at the end.
2909   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
2910     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
2911   // Check for outer lastprivate conditional update.
2912   checkForLastprivateConditionalUpdate(*this, S);
2913 }
2914 
2915 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2916                                 const Twine &Name,
2917                                 llvm::Value *Init = nullptr) {
2918   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2919   if (Init)
2920     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2921   return LVal;
2922 }
2923 
2924 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2925   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
2926   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
2927   bool HasLastprivates = false;
2928   auto &&CodeGen = [&S, CapturedStmt, CS,
2929                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
2930     ASTContext &C = CGF.getContext();
2931     QualType KmpInt32Ty =
2932         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2933     // Emit helper vars inits.
2934     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2935                                   CGF.Builder.getInt32(0));
2936     llvm::ConstantInt *GlobalUBVal = CS != nullptr
2937                                          ? CGF.Builder.getInt32(CS->size() - 1)
2938                                          : CGF.Builder.getInt32(0);
2939     LValue UB =
2940         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2941     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2942                                   CGF.Builder.getInt32(1));
2943     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2944                                   CGF.Builder.getInt32(0));
2945     // Loop counter.
2946     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2947     OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2948     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2949     OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
2950     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2951     // Generate condition for loop.
2952     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2953                         OK_Ordinary, S.getBeginLoc(), FPOptions());
2954     // Increment for loop counter.
2955     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2956                       S.getBeginLoc(), true);
2957     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
2958       // Iterate through all sections and emit a switch construct:
2959       // switch (IV) {
2960       //   case 0:
2961       //     <SectionStmt[0]>;
2962       //     break;
2963       // ...
2964       //   case <NumSection> - 1:
2965       //     <SectionStmt[<NumSection> - 1]>;
2966       //     break;
2967       // }
2968       // .omp.sections.exit:
2969       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2970       llvm::SwitchInst *SwitchStmt =
2971           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
2972                                    ExitBB, CS == nullptr ? 1 : CS->size());
2973       if (CS) {
2974         unsigned CaseNumber = 0;
2975         for (const Stmt *SubStmt : CS->children()) {
2976           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2977           CGF.EmitBlock(CaseBB);
2978           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2979           CGF.EmitStmt(SubStmt);
2980           CGF.EmitBranch(ExitBB);
2981           ++CaseNumber;
2982         }
2983       } else {
2984         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
2985         CGF.EmitBlock(CaseBB);
2986         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2987         CGF.EmitStmt(CapturedStmt);
2988         CGF.EmitBranch(ExitBB);
2989       }
2990       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2991     };
2992 
2993     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2994     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2995       // Emit implicit barrier to synchronize threads and avoid data races on
2996       // initialization of firstprivate variables and post-update of lastprivate
2997       // variables.
2998       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2999           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3000           /*ForceSimpleCall=*/true);
3001     }
3002     CGF.EmitOMPPrivateClause(S, LoopScope);
3003     CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV);
3004     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3005     CGF.EmitOMPReductionClauseInit(S, LoopScope);
3006     (void)LoopScope.Privatize();
3007     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3008       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
3009 
3010     // Emit static non-chunked loop.
3011     OpenMPScheduleTy ScheduleKind;
3012     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
3013     CGOpenMPRuntime::StaticRTInput StaticInit(
3014         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF),
3015         LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF));
3016     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
3017         CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
3018     // UB = min(UB, GlobalUB);
3019     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
3020     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
3021         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
3022     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
3023     // IV = LB;
3024     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
3025     // while (idx <= UB) { BODY; ++idx; }
3026     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
3027                          [](CodeGenFunction &) {});
3028     // Tell the runtime we are done.
3029     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
3030       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
3031                                                      S.getDirectiveKind());
3032     };
3033     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
3034     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
3035     // Emit post-update of the reduction variables if IsLastIter != 0.
3036     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
3037       return CGF.Builder.CreateIsNotNull(
3038           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3039     });
3040 
3041     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3042     if (HasLastprivates)
3043       CGF.EmitOMPLastprivateClauseFinal(
3044           S, /*NoFinals=*/false,
3045           CGF.Builder.CreateIsNotNull(
3046               CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
3047   };
3048 
3049   bool HasCancel = false;
3050   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
3051     HasCancel = OSD->hasCancel();
3052   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
3053     HasCancel = OPSD->hasCancel();
3054   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
3055   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
3056                                               HasCancel);
3057   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
3058   // clause. Otherwise the barrier will be generated by the codegen for the
3059   // directive.
3060   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
3061     // Emit implicit barrier to synchronize threads and avoid data races on
3062     // initialization of firstprivate variables.
3063     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
3064                                            OMPD_unknown);
3065   }
3066 }
3067 
3068 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
3069   {
3070     auto LPCRegion =
3071         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3072     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3073     EmitSections(S);
3074   }
3075   // Emit an implicit barrier at the end.
3076   if (!S.getSingleClause<OMPNowaitClause>()) {
3077     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
3078                                            OMPD_sections);
3079   }
3080   // Check for outer lastprivate conditional update.
3081   checkForLastprivateConditionalUpdate(*this, S);
3082 }
3083 
3084 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
3085   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3086     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3087   };
3088   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3089   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
3090                                               S.hasCancel());
3091 }
3092 
3093 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
3094   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
3095   llvm::SmallVector<const Expr *, 8> DestExprs;
3096   llvm::SmallVector<const Expr *, 8> SrcExprs;
3097   llvm::SmallVector<const Expr *, 8> AssignmentOps;
3098   // Check if there are any 'copyprivate' clauses associated with this
3099   // 'single' construct.
3100   // Build a list of copyprivate variables along with helper expressions
3101   // (<source>, <destination>, <destination>=<source> expressions)
3102   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
3103     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
3104     DestExprs.append(C->destination_exprs().begin(),
3105                      C->destination_exprs().end());
3106     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
3107     AssignmentOps.append(C->assignment_ops().begin(),
3108                          C->assignment_ops().end());
3109   }
3110   // Emit code for 'single' region along with 'copyprivate' clauses
3111   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3112     Action.Enter(CGF);
3113     OMPPrivateScope SingleScope(CGF);
3114     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
3115     CGF.EmitOMPPrivateClause(S, SingleScope);
3116     (void)SingleScope.Privatize();
3117     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3118   };
3119   {
3120     auto LPCRegion =
3121         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3122     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3123     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
3124                                             CopyprivateVars, DestExprs,
3125                                             SrcExprs, AssignmentOps);
3126   }
3127   // Emit an implicit barrier at the end (to avoid data race on firstprivate
3128   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
3129   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
3130     CGM.getOpenMPRuntime().emitBarrierCall(
3131         *this, S.getBeginLoc(),
3132         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
3133   }
3134   // Check for outer lastprivate conditional update.
3135   checkForLastprivateConditionalUpdate(*this, S);
3136 }
3137 
3138 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3139   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3140     Action.Enter(CGF);
3141     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3142   };
3143   CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc());
3144 }
3145 
3146 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
3147   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3148   emitMaster(*this, S);
3149 }
3150 
3151 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
3152   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3153     Action.Enter(CGF);
3154     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3155   };
3156   const Expr *Hint = nullptr;
3157   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
3158     Hint = HintClause->getHint();
3159   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3160   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
3161                                             S.getDirectiveName().getAsString(),
3162                                             CodeGen, S.getBeginLoc(), Hint);
3163 }
3164 
3165 void CodeGenFunction::EmitOMPParallelForDirective(
3166     const OMPParallelForDirective &S) {
3167   // Emit directive as a combined directive that consists of two implicit
3168   // directives: 'parallel' with 'for' directive.
3169   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3170     Action.Enter(CGF);
3171     OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel());
3172     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
3173                                emitDispatchForLoopBounds);
3174   };
3175   {
3176     auto LPCRegion =
3177         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3178     emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
3179                                    emitEmptyBoundParameters);
3180   }
3181   // Check for outer lastprivate conditional update.
3182   checkForLastprivateConditionalUpdate(*this, S);
3183 }
3184 
3185 void CodeGenFunction::EmitOMPParallelForSimdDirective(
3186     const OMPParallelForSimdDirective &S) {
3187   // Emit directive as a combined directive that consists of two implicit
3188   // directives: 'parallel' with 'for' directive.
3189   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3190     Action.Enter(CGF);
3191     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
3192                                emitDispatchForLoopBounds);
3193   };
3194   {
3195     auto LPCRegion =
3196         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3197     emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen,
3198                                    emitEmptyBoundParameters);
3199   }
3200   // Check for outer lastprivate conditional update.
3201   checkForLastprivateConditionalUpdate(*this, S);
3202 }
3203 
3204 void CodeGenFunction::EmitOMPParallelMasterDirective(
3205     const OMPParallelMasterDirective &S) {
3206   // Emit directive as a combined directive that consists of two implicit
3207   // directives: 'parallel' with 'master' directive.
3208   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3209     Action.Enter(CGF);
3210     OMPPrivateScope PrivateScope(CGF);
3211     bool Copyins = CGF.EmitOMPCopyinClause(S);
3212     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3213     if (Copyins) {
3214       // Emit implicit barrier to synchronize threads and avoid data races on
3215       // propagation master's thread values of threadprivate variables to local
3216       // instances of that variables of all other implicit threads.
3217       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
3218           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3219           /*ForceSimpleCall=*/true);
3220     }
3221     CGF.EmitOMPPrivateClause(S, PrivateScope);
3222     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
3223     (void)PrivateScope.Privatize();
3224     emitMaster(CGF, S);
3225     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
3226   };
3227   {
3228     auto LPCRegion =
3229         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3230     emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen,
3231                                    emitEmptyBoundParameters);
3232     emitPostUpdateForReductionClause(*this, S,
3233                                      [](CodeGenFunction &) { return nullptr; });
3234   }
3235   // Check for outer lastprivate conditional update.
3236   checkForLastprivateConditionalUpdate(*this, S);
3237 }
3238 
3239 void CodeGenFunction::EmitOMPParallelSectionsDirective(
3240     const OMPParallelSectionsDirective &S) {
3241   // Emit directive as a combined directive that consists of two implicit
3242   // directives: 'parallel' with 'sections' directive.
3243   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3244     Action.Enter(CGF);
3245     CGF.EmitSections(S);
3246   };
3247   {
3248     auto LPCRegion =
3249         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3250     emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
3251                                    emitEmptyBoundParameters);
3252   }
3253   // Check for outer lastprivate conditional update.
3254   checkForLastprivateConditionalUpdate(*this, S);
3255 }
3256 
3257 void CodeGenFunction::EmitOMPTaskBasedDirective(
3258     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
3259     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
3260     OMPTaskDataTy &Data) {
3261   // Emit outlined function for task construct.
3262   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
3263   auto I = CS->getCapturedDecl()->param_begin();
3264   auto PartId = std::next(I);
3265   auto TaskT = std::next(I, 4);
3266   // Check if the task is final
3267   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
3268     // If the condition constant folds and can be elided, try to avoid emitting
3269     // the condition and the dead arm of the if/else.
3270     const Expr *Cond = Clause->getCondition();
3271     bool CondConstant;
3272     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
3273       Data.Final.setInt(CondConstant);
3274     else
3275       Data.Final.setPointer(EvaluateExprAsBool(Cond));
3276   } else {
3277     // By default the task is not final.
3278     Data.Final.setInt(/*IntVal=*/false);
3279   }
3280   // Check if the task has 'priority' clause.
3281   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
3282     const Expr *Prio = Clause->getPriority();
3283     Data.Priority.setInt(/*IntVal=*/true);
3284     Data.Priority.setPointer(EmitScalarConversion(
3285         EmitScalarExpr(Prio), Prio->getType(),
3286         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
3287         Prio->getExprLoc()));
3288   }
3289   // The first function argument for tasks is a thread id, the second one is a
3290   // part id (0 for tied tasks, >=0 for untied task).
3291   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
3292   // Get list of private variables.
3293   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
3294     auto IRef = C->varlist_begin();
3295     for (const Expr *IInit : C->private_copies()) {
3296       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
3297       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
3298         Data.PrivateVars.push_back(*IRef);
3299         Data.PrivateCopies.push_back(IInit);
3300       }
3301       ++IRef;
3302     }
3303   }
3304   EmittedAsPrivate.clear();
3305   // Get list of firstprivate variables.
3306   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
3307     auto IRef = C->varlist_begin();
3308     auto IElemInitRef = C->inits().begin();
3309     for (const Expr *IInit : C->private_copies()) {
3310       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
3311       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
3312         Data.FirstprivateVars.push_back(*IRef);
3313         Data.FirstprivateCopies.push_back(IInit);
3314         Data.FirstprivateInits.push_back(*IElemInitRef);
3315       }
3316       ++IRef;
3317       ++IElemInitRef;
3318     }
3319   }
3320   // Get list of lastprivate variables (for taskloops).
3321   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
3322   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
3323     auto IRef = C->varlist_begin();
3324     auto ID = C->destination_exprs().begin();
3325     for (const Expr *IInit : C->private_copies()) {
3326       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
3327       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
3328         Data.LastprivateVars.push_back(*IRef);
3329         Data.LastprivateCopies.push_back(IInit);
3330       }
3331       LastprivateDstsOrigs.insert(
3332           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
3333            cast<DeclRefExpr>(*IRef)});
3334       ++IRef;
3335       ++ID;
3336     }
3337   }
3338   SmallVector<const Expr *, 4> LHSs;
3339   SmallVector<const Expr *, 4> RHSs;
3340   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
3341     auto IPriv = C->privates().begin();
3342     auto IRed = C->reduction_ops().begin();
3343     auto ILHS = C->lhs_exprs().begin();
3344     auto IRHS = C->rhs_exprs().begin();
3345     for (const Expr *Ref : C->varlists()) {
3346       Data.ReductionVars.emplace_back(Ref);
3347       Data.ReductionCopies.emplace_back(*IPriv);
3348       Data.ReductionOps.emplace_back(*IRed);
3349       LHSs.emplace_back(*ILHS);
3350       RHSs.emplace_back(*IRHS);
3351       std::advance(IPriv, 1);
3352       std::advance(IRed, 1);
3353       std::advance(ILHS, 1);
3354       std::advance(IRHS, 1);
3355     }
3356   }
3357   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
3358       *this, S.getBeginLoc(), LHSs, RHSs, Data);
3359   // Build list of dependences.
3360   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
3361     for (const Expr *IRef : C->varlists())
3362       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
3363   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
3364                     CapturedRegion](CodeGenFunction &CGF,
3365                                     PrePostActionTy &Action) {
3366     // Set proper addresses for generated private copies.
3367     OMPPrivateScope Scope(CGF);
3368     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
3369         !Data.LastprivateVars.empty()) {
3370       llvm::FunctionType *CopyFnTy = llvm::FunctionType::get(
3371           CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true);
3372       enum { PrivatesParam = 2, CopyFnParam = 3 };
3373       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
3374           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
3375       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
3376           CS->getCapturedDecl()->getParam(PrivatesParam)));
3377       // Map privates.
3378       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
3379       llvm::SmallVector<llvm::Value *, 16> CallArgs;
3380       CallArgs.push_back(PrivatesPtr);
3381       for (const Expr *E : Data.PrivateVars) {
3382         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3383         Address PrivatePtr = CGF.CreateMemTemp(
3384             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
3385         PrivatePtrs.emplace_back(VD, PrivatePtr);
3386         CallArgs.push_back(PrivatePtr.getPointer());
3387       }
3388       for (const Expr *E : Data.FirstprivateVars) {
3389         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3390         Address PrivatePtr =
3391             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3392                               ".firstpriv.ptr.addr");
3393         PrivatePtrs.emplace_back(VD, PrivatePtr);
3394         CallArgs.push_back(PrivatePtr.getPointer());
3395       }
3396       for (const Expr *E : Data.LastprivateVars) {
3397         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3398         Address PrivatePtr =
3399             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3400                               ".lastpriv.ptr.addr");
3401         PrivatePtrs.emplace_back(VD, PrivatePtr);
3402         CallArgs.push_back(PrivatePtr.getPointer());
3403       }
3404       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3405           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
3406       for (const auto &Pair : LastprivateDstsOrigs) {
3407         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
3408         DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD),
3409                         /*RefersToEnclosingVariableOrCapture=*/
3410                             CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
3411                         Pair.second->getType(), VK_LValue,
3412                         Pair.second->getExprLoc());
3413         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
3414           return CGF.EmitLValue(&DRE).getAddress(CGF);
3415         });
3416       }
3417       for (const auto &Pair : PrivatePtrs) {
3418         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
3419                             CGF.getContext().getDeclAlign(Pair.first));
3420         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
3421       }
3422     }
3423     if (Data.Reductions) {
3424       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
3425       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies,
3426                              Data.ReductionOps);
3427       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
3428           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
3429       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
3430         RedCG.emitSharedLValue(CGF, Cnt);
3431         RedCG.emitAggregateType(CGF, Cnt);
3432         // FIXME: This must removed once the runtime library is fixed.
3433         // Emit required threadprivate variables for
3434         // initializer/combiner/finalizer.
3435         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
3436                                                            RedCG, Cnt);
3437         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
3438             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
3439         Replacement =
3440             Address(CGF.EmitScalarConversion(
3441                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
3442                         CGF.getContext().getPointerType(
3443                             Data.ReductionCopies[Cnt]->getType()),
3444                         Data.ReductionCopies[Cnt]->getExprLoc()),
3445                     Replacement.getAlignment());
3446         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
3447         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
3448                          [Replacement]() { return Replacement; });
3449       }
3450     }
3451     // Privatize all private variables except for in_reduction items.
3452     (void)Scope.Privatize();
3453     SmallVector<const Expr *, 4> InRedVars;
3454     SmallVector<const Expr *, 4> InRedPrivs;
3455     SmallVector<const Expr *, 4> InRedOps;
3456     SmallVector<const Expr *, 4> TaskgroupDescriptors;
3457     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
3458       auto IPriv = C->privates().begin();
3459       auto IRed = C->reduction_ops().begin();
3460       auto ITD = C->taskgroup_descriptors().begin();
3461       for (const Expr *Ref : C->varlists()) {
3462         InRedVars.emplace_back(Ref);
3463         InRedPrivs.emplace_back(*IPriv);
3464         InRedOps.emplace_back(*IRed);
3465         TaskgroupDescriptors.emplace_back(*ITD);
3466         std::advance(IPriv, 1);
3467         std::advance(IRed, 1);
3468         std::advance(ITD, 1);
3469       }
3470     }
3471     // Privatize in_reduction items here, because taskgroup descriptors must be
3472     // privatized earlier.
3473     OMPPrivateScope InRedScope(CGF);
3474     if (!InRedVars.empty()) {
3475       ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps);
3476       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
3477         RedCG.emitSharedLValue(CGF, Cnt);
3478         RedCG.emitAggregateType(CGF, Cnt);
3479         // The taskgroup descriptor variable is always implicit firstprivate and
3480         // privatized already during processing of the firstprivates.
3481         // FIXME: This must removed once the runtime library is fixed.
3482         // Emit required threadprivate variables for
3483         // initializer/combiner/finalizer.
3484         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
3485                                                            RedCG, Cnt);
3486         llvm::Value *ReductionsPtr =
3487             CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]),
3488                                  TaskgroupDescriptors[Cnt]->getExprLoc());
3489         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
3490             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
3491         Replacement = Address(
3492             CGF.EmitScalarConversion(
3493                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
3494                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
3495                 InRedPrivs[Cnt]->getExprLoc()),
3496             Replacement.getAlignment());
3497         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
3498         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
3499                               [Replacement]() { return Replacement; });
3500       }
3501     }
3502     (void)InRedScope.Privatize();
3503 
3504     Action.Enter(CGF);
3505     BodyGen(CGF);
3506   };
3507   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3508       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
3509       Data.NumberOfParts);
3510   OMPLexicalScope Scope(*this, S, llvm::None,
3511                         !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3512                             !isOpenMPSimdDirective(S.getDirectiveKind()));
3513   TaskGen(*this, OutlinedFn, Data);
3514 }
3515 
3516 static ImplicitParamDecl *
3517 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
3518                                   QualType Ty, CapturedDecl *CD,
3519                                   SourceLocation Loc) {
3520   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3521                                            ImplicitParamDecl::Other);
3522   auto *OrigRef = DeclRefExpr::Create(
3523       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
3524       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3525   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
3526                                               ImplicitParamDecl::Other);
3527   auto *PrivateRef = DeclRefExpr::Create(
3528       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
3529       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
3530   QualType ElemType = C.getBaseElementType(Ty);
3531   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
3532                                            ImplicitParamDecl::Other);
3533   auto *InitRef = DeclRefExpr::Create(
3534       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
3535       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
3536   PrivateVD->setInitStyle(VarDecl::CInit);
3537   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
3538                                               InitRef, /*BasePath=*/nullptr,
3539                                               VK_RValue));
3540   Data.FirstprivateVars.emplace_back(OrigRef);
3541   Data.FirstprivateCopies.emplace_back(PrivateRef);
3542   Data.FirstprivateInits.emplace_back(InitRef);
3543   return OrigVD;
3544 }
3545 
3546 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
3547     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
3548     OMPTargetDataInfo &InputInfo) {
3549   // Emit outlined function for task construct.
3550   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3551   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3552   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3553   auto I = CS->getCapturedDecl()->param_begin();
3554   auto PartId = std::next(I);
3555   auto TaskT = std::next(I, 4);
3556   OMPTaskDataTy Data;
3557   // The task is not final.
3558   Data.Final.setInt(/*IntVal=*/false);
3559   // Get list of firstprivate variables.
3560   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
3561     auto IRef = C->varlist_begin();
3562     auto IElemInitRef = C->inits().begin();
3563     for (auto *IInit : C->private_copies()) {
3564       Data.FirstprivateVars.push_back(*IRef);
3565       Data.FirstprivateCopies.push_back(IInit);
3566       Data.FirstprivateInits.push_back(*IElemInitRef);
3567       ++IRef;
3568       ++IElemInitRef;
3569     }
3570   }
3571   OMPPrivateScope TargetScope(*this);
3572   VarDecl *BPVD = nullptr;
3573   VarDecl *PVD = nullptr;
3574   VarDecl *SVD = nullptr;
3575   if (InputInfo.NumberOfTargetItems > 0) {
3576     auto *CD = CapturedDecl::Create(
3577         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
3578     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
3579     QualType BaseAndPointersType = getContext().getConstantArrayType(
3580         getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal,
3581         /*IndexTypeQuals=*/0);
3582     BPVD = createImplicitFirstprivateForType(
3583         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3584     PVD = createImplicitFirstprivateForType(
3585         getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc());
3586     QualType SizesType = getContext().getConstantArrayType(
3587         getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1),
3588         ArrSize, nullptr, ArrayType::Normal,
3589         /*IndexTypeQuals=*/0);
3590     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
3591                                             S.getBeginLoc());
3592     TargetScope.addPrivate(
3593         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
3594     TargetScope.addPrivate(PVD,
3595                            [&InputInfo]() { return InputInfo.PointersArray; });
3596     TargetScope.addPrivate(SVD,
3597                            [&InputInfo]() { return InputInfo.SizesArray; });
3598   }
3599   (void)TargetScope.Privatize();
3600   // Build list of dependences.
3601   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
3602     for (const Expr *IRef : C->varlists())
3603       Data.Dependences.emplace_back(C->getDependencyKind(), IRef);
3604   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD,
3605                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
3606     // Set proper addresses for generated private copies.
3607     OMPPrivateScope Scope(CGF);
3608     if (!Data.FirstprivateVars.empty()) {
3609       llvm::FunctionType *CopyFnTy = llvm::FunctionType::get(
3610           CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true);
3611       enum { PrivatesParam = 2, CopyFnParam = 3 };
3612       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
3613           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
3614       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
3615           CS->getCapturedDecl()->getParam(PrivatesParam)));
3616       // Map privates.
3617       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
3618       llvm::SmallVector<llvm::Value *, 16> CallArgs;
3619       CallArgs.push_back(PrivatesPtr);
3620       for (const Expr *E : Data.FirstprivateVars) {
3621         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3622         Address PrivatePtr =
3623             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
3624                               ".firstpriv.ptr.addr");
3625         PrivatePtrs.emplace_back(VD, PrivatePtr);
3626         CallArgs.push_back(PrivatePtr.getPointer());
3627       }
3628       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3629           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
3630       for (const auto &Pair : PrivatePtrs) {
3631         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
3632                             CGF.getContext().getDeclAlign(Pair.first));
3633         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
3634       }
3635     }
3636     // Privatize all private variables except for in_reduction items.
3637     (void)Scope.Privatize();
3638     if (InputInfo.NumberOfTargetItems > 0) {
3639       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
3640           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0);
3641       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
3642           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0);
3643       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
3644           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0);
3645     }
3646 
3647     Action.Enter(CGF);
3648     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
3649     BodyGen(CGF);
3650   };
3651   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
3652       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
3653       Data.NumberOfParts);
3654   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
3655   IntegerLiteral IfCond(getContext(), TrueOrFalse,
3656                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3657                         SourceLocation());
3658 
3659   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
3660                                       SharedsTy, CapturedStruct, &IfCond, Data);
3661 }
3662 
3663 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
3664   // Emit outlined function for task construct.
3665   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
3666   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
3667   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
3668   const Expr *IfCond = nullptr;
3669   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3670     if (C->getNameModifier() == OMPD_unknown ||
3671         C->getNameModifier() == OMPD_task) {
3672       IfCond = C->getCondition();
3673       break;
3674     }
3675   }
3676 
3677   OMPTaskDataTy Data;
3678   // Check if we should emit tied or untied task.
3679   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
3680   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
3681     CGF.EmitStmt(CS->getCapturedStmt());
3682   };
3683   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
3684                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
3685                             const OMPTaskDataTy &Data) {
3686     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
3687                                             SharedsTy, CapturedStruct, IfCond,
3688                                             Data);
3689   };
3690   auto LPCRegion =
3691       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3692   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
3693 }
3694 
3695 void CodeGenFunction::EmitOMPTaskyieldDirective(
3696     const OMPTaskyieldDirective &S) {
3697   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
3698 }
3699 
3700 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
3701   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
3702 }
3703 
3704 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
3705   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
3706 }
3707 
3708 void CodeGenFunction::EmitOMPTaskgroupDirective(
3709     const OMPTaskgroupDirective &S) {
3710   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3711     Action.Enter(CGF);
3712     if (const Expr *E = S.getReductionRef()) {
3713       SmallVector<const Expr *, 4> LHSs;
3714       SmallVector<const Expr *, 4> RHSs;
3715       OMPTaskDataTy Data;
3716       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
3717         auto IPriv = C->privates().begin();
3718         auto IRed = C->reduction_ops().begin();
3719         auto ILHS = C->lhs_exprs().begin();
3720         auto IRHS = C->rhs_exprs().begin();
3721         for (const Expr *Ref : C->varlists()) {
3722           Data.ReductionVars.emplace_back(Ref);
3723           Data.ReductionCopies.emplace_back(*IPriv);
3724           Data.ReductionOps.emplace_back(*IRed);
3725           LHSs.emplace_back(*ILHS);
3726           RHSs.emplace_back(*IRHS);
3727           std::advance(IPriv, 1);
3728           std::advance(IRed, 1);
3729           std::advance(ILHS, 1);
3730           std::advance(IRHS, 1);
3731         }
3732       }
3733       llvm::Value *ReductionDesc =
3734           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
3735                                                            LHSs, RHSs, Data);
3736       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3737       CGF.EmitVarDecl(*VD);
3738       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
3739                             /*Volatile=*/false, E->getType());
3740     }
3741     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3742   };
3743   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3744   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
3745 }
3746 
3747 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
3748   llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>()
3749                                 ? llvm::AtomicOrdering::NotAtomic
3750                                 : llvm::AtomicOrdering::AcquireRelease;
3751   CGM.getOpenMPRuntime().emitFlush(
3752       *this,
3753       [&S]() -> ArrayRef<const Expr *> {
3754         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
3755           return llvm::makeArrayRef(FlushClause->varlist_begin(),
3756                                     FlushClause->varlist_end());
3757         return llvm::None;
3758       }(),
3759       S.getBeginLoc(), AO);
3760 }
3761 
3762 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
3763                                             const CodeGenLoopTy &CodeGenLoop,
3764                                             Expr *IncExpr) {
3765   // Emit the loop iteration variable.
3766   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3767   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3768   EmitVarDecl(*IVDecl);
3769 
3770   // Emit the iterations count variable.
3771   // If it is not a variable, Sema decided to calculate iterations count on each
3772   // iteration (e.g., it is foldable into a constant).
3773   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3774     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3775     // Emit calculation of the iterations count.
3776     EmitIgnoredExpr(S.getCalcLastIteration());
3777   }
3778 
3779   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3780 
3781   bool HasLastprivateClause = false;
3782   // Check pre-condition.
3783   {
3784     OMPLoopScope PreInitScope(*this, S);
3785     // Skip the entire loop if we don't meet the precondition.
3786     // If the condition constant folds and can be elided, avoid emitting the
3787     // whole loop.
3788     bool CondConstant;
3789     llvm::BasicBlock *ContBlock = nullptr;
3790     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3791       if (!CondConstant)
3792         return;
3793     } else {
3794       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3795       ContBlock = createBasicBlock("omp.precond.end");
3796       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3797                   getProfileCount(&S));
3798       EmitBlock(ThenBlock);
3799       incrementProfileCounter(&S);
3800     }
3801 
3802     emitAlignedClause(*this, S);
3803     // Emit 'then' code.
3804     {
3805       // Emit helper vars inits.
3806 
3807       LValue LB = EmitOMPHelperVar(
3808           *this, cast<DeclRefExpr>(
3809                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3810                           ? S.getCombinedLowerBoundVariable()
3811                           : S.getLowerBoundVariable())));
3812       LValue UB = EmitOMPHelperVar(
3813           *this, cast<DeclRefExpr>(
3814                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3815                           ? S.getCombinedUpperBoundVariable()
3816                           : S.getUpperBoundVariable())));
3817       LValue ST =
3818           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3819       LValue IL =
3820           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3821 
3822       OMPPrivateScope LoopScope(*this);
3823       if (EmitOMPFirstprivateClause(S, LoopScope)) {
3824         // Emit implicit barrier to synchronize threads and avoid data races
3825         // on initialization of firstprivate variables and post-update of
3826         // lastprivate variables.
3827         CGM.getOpenMPRuntime().emitBarrierCall(
3828             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3829             /*ForceSimpleCall=*/true);
3830       }
3831       EmitOMPPrivateClause(S, LoopScope);
3832       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3833           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3834           !isOpenMPTeamsDirective(S.getDirectiveKind()))
3835         EmitOMPReductionClauseInit(S, LoopScope);
3836       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3837       EmitOMPPrivateLoopCounters(S, LoopScope);
3838       (void)LoopScope.Privatize();
3839       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3840         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
3841 
3842       // Detect the distribute schedule kind and chunk.
3843       llvm::Value *Chunk = nullptr;
3844       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
3845       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
3846         ScheduleKind = C->getDistScheduleKind();
3847         if (const Expr *Ch = C->getChunkSize()) {
3848           Chunk = EmitScalarExpr(Ch);
3849           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
3850                                        S.getIterationVariable()->getType(),
3851                                        S.getBeginLoc());
3852         }
3853       } else {
3854         // Default behaviour for dist_schedule clause.
3855         CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk(
3856             *this, S, ScheduleKind, Chunk);
3857       }
3858       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3859       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3860 
3861       // OpenMP [2.10.8, distribute Construct, Description]
3862       // If dist_schedule is specified, kind must be static. If specified,
3863       // iterations are divided into chunks of size chunk_size, chunks are
3864       // assigned to the teams of the league in a round-robin fashion in the
3865       // order of the team number. When no chunk_size is specified, the
3866       // iteration space is divided into chunks that are approximately equal
3867       // in size, and at most one chunk is distributed to each team of the
3868       // league. The size of the chunks is unspecified in this case.
3869       bool StaticChunked = RT.isStaticChunked(
3870           ScheduleKind, /* Chunked */ Chunk != nullptr) &&
3871           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
3872       if (RT.isStaticNonchunked(ScheduleKind,
3873                                 /* Chunked */ Chunk != nullptr) ||
3874           StaticChunked) {
3875         CGOpenMPRuntime::StaticRTInput StaticInit(
3876             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this),
3877             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
3878             StaticChunked ? Chunk : nullptr);
3879         RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
3880                                     StaticInit);
3881         JumpDest LoopExit =
3882             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3883         // UB = min(UB, GlobalUB);
3884         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3885                             ? S.getCombinedEnsureUpperBound()
3886                             : S.getEnsureUpperBound());
3887         // IV = LB;
3888         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3889                             ? S.getCombinedInit()
3890                             : S.getInit());
3891 
3892         const Expr *Cond =
3893             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3894                 ? S.getCombinedCond()
3895                 : S.getCond();
3896 
3897         if (StaticChunked)
3898           Cond = S.getCombinedDistCond();
3899 
3900         // For static unchunked schedules generate:
3901         //
3902         //  1. For distribute alone, codegen
3903         //    while (idx <= UB) {
3904         //      BODY;
3905         //      ++idx;
3906         //    }
3907         //
3908         //  2. When combined with 'for' (e.g. as in 'distribute parallel for')
3909         //    while (idx <= UB) {
3910         //      <CodeGen rest of pragma>(LB, UB);
3911         //      idx += ST;
3912         //    }
3913         //
3914         // For static chunk one schedule generate:
3915         //
3916         // while (IV <= GlobalUB) {
3917         //   <CodeGen rest of pragma>(LB, UB);
3918         //   LB += ST;
3919         //   UB += ST;
3920         //   UB = min(UB, GlobalUB);
3921         //   IV = LB;
3922         // }
3923         //
3924         emitCommonSimdLoop(
3925             *this, S,
3926             [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3927               if (isOpenMPSimdDirective(S.getDirectiveKind()))
3928                 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true);
3929             },
3930             [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop,
3931              StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) {
3932               CGF.EmitOMPInnerLoop(
3933                   S, LoopScope.requiresCleanups(), Cond, IncExpr,
3934                   [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
3935                     CodeGenLoop(CGF, S, LoopExit);
3936                   },
3937                   [&S, StaticChunked](CodeGenFunction &CGF) {
3938                     if (StaticChunked) {
3939                       CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound());
3940                       CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound());
3941                       CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound());
3942                       CGF.EmitIgnoredExpr(S.getCombinedInit());
3943                     }
3944                   });
3945             });
3946         EmitBlock(LoopExit.getBlock());
3947         // Tell the runtime we are done.
3948         RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind());
3949       } else {
3950         // Emit the outer loop, which requests its work chunk [LB..UB] from
3951         // runtime and runs the inner loop to process it.
3952         const OMPLoopArguments LoopArguments = {
3953             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
3954             IL.getAddress(*this), Chunk};
3955         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
3956                                    CodeGenLoop);
3957       }
3958       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3959         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3960           return CGF.Builder.CreateIsNotNull(
3961               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3962         });
3963       }
3964       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
3965           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
3966           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
3967         EmitOMPReductionClauseFinal(S, OMPD_simd);
3968         // Emit post-update of the reduction variables if IsLastIter != 0.
3969         emitPostUpdateForReductionClause(
3970             *this, S, [IL, &S](CodeGenFunction &CGF) {
3971               return CGF.Builder.CreateIsNotNull(
3972                   CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3973             });
3974       }
3975       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3976       if (HasLastprivateClause) {
3977         EmitOMPLastprivateClauseFinal(
3978             S, /*NoFinals=*/false,
3979             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
3980       }
3981     }
3982 
3983     // We're now done with the loop, so jump to the continuation block.
3984     if (ContBlock) {
3985       EmitBranch(ContBlock);
3986       EmitBlock(ContBlock, true);
3987     }
3988   }
3989 }
3990 
3991 void CodeGenFunction::EmitOMPDistributeDirective(
3992     const OMPDistributeDirective &S) {
3993   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3994     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
3995   };
3996   OMPLexicalScope Scope(*this, S, OMPD_unknown);
3997   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
3998 }
3999 
4000 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
4001                                                    const CapturedStmt *S,
4002                                                    SourceLocation Loc) {
4003   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
4004   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
4005   CGF.CapturedStmtInfo = &CapStmtInfo;
4006   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc);
4007   Fn->setDoesNotRecurse();
4008   return Fn;
4009 }
4010 
4011 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
4012   if (S.hasClausesOfKind<OMPDependClause>()) {
4013     assert(!S.getAssociatedStmt() &&
4014            "No associated statement must be in ordered depend construct.");
4015     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
4016       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
4017     return;
4018   }
4019   const auto *C = S.getSingleClause<OMPSIMDClause>();
4020   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
4021                                  PrePostActionTy &Action) {
4022     const CapturedStmt *CS = S.getInnermostCapturedStmt();
4023     if (C) {
4024       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
4025       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
4026       llvm::Function *OutlinedFn =
4027           emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc());
4028       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
4029                                                       OutlinedFn, CapturedVars);
4030     } else {
4031       Action.Enter(CGF);
4032       CGF.EmitStmt(CS->getCapturedStmt());
4033     }
4034   };
4035   OMPLexicalScope Scope(*this, S, OMPD_unknown);
4036   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
4037 }
4038 
4039 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
4040                                          QualType SrcType, QualType DestType,
4041                                          SourceLocation Loc) {
4042   assert(CGF.hasScalarEvaluationKind(DestType) &&
4043          "DestType must have scalar evaluation kind.");
4044   assert(!Val.isAggregate() && "Must be a scalar or complex.");
4045   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
4046                                                    DestType, Loc)
4047                         : CGF.EmitComplexToScalarConversion(
4048                               Val.getComplexVal(), SrcType, DestType, Loc);
4049 }
4050 
4051 static CodeGenFunction::ComplexPairTy
4052 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
4053                       QualType DestType, SourceLocation Loc) {
4054   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
4055          "DestType must have complex evaluation kind.");
4056   CodeGenFunction::ComplexPairTy ComplexVal;
4057   if (Val.isScalar()) {
4058     // Convert the input element to the element type of the complex.
4059     QualType DestElementType =
4060         DestType->castAs<ComplexType>()->getElementType();
4061     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
4062         Val.getScalarVal(), SrcType, DestElementType, Loc);
4063     ComplexVal = CodeGenFunction::ComplexPairTy(
4064         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
4065   } else {
4066     assert(Val.isComplex() && "Must be a scalar or complex.");
4067     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
4068     QualType DestElementType =
4069         DestType->castAs<ComplexType>()->getElementType();
4070     ComplexVal.first = CGF.EmitScalarConversion(
4071         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
4072     ComplexVal.second = CGF.EmitScalarConversion(
4073         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
4074   }
4075   return ComplexVal;
4076 }
4077 
4078 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
4079                                   LValue LVal, RValue RVal) {
4080   if (LVal.isGlobalReg())
4081     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
4082   else
4083     CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false);
4084 }
4085 
4086 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF,
4087                                    llvm::AtomicOrdering AO, LValue LVal,
4088                                    SourceLocation Loc) {
4089   if (LVal.isGlobalReg())
4090     return CGF.EmitLoadOfLValue(LVal, Loc);
4091   return CGF.EmitAtomicLoad(
4092       LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO),
4093       LVal.isVolatile());
4094 }
4095 
4096 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
4097                                          QualType RValTy, SourceLocation Loc) {
4098   switch (getEvaluationKind(LVal.getType())) {
4099   case TEK_Scalar:
4100     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
4101                                *this, RVal, RValTy, LVal.getType(), Loc)),
4102                            LVal);
4103     break;
4104   case TEK_Complex:
4105     EmitStoreOfComplex(
4106         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
4107         /*isInit=*/false);
4108     break;
4109   case TEK_Aggregate:
4110     llvm_unreachable("Must be a scalar or complex.");
4111   }
4112 }
4113 
4114 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
4115                                   const Expr *X, const Expr *V,
4116                                   SourceLocation Loc) {
4117   // v = x;
4118   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
4119   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
4120   LValue XLValue = CGF.EmitLValue(X);
4121   LValue VLValue = CGF.EmitLValue(V);
4122   RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc);
4123   // OpenMP, 2.17.7, atomic Construct
4124   // If the read or capture clause is specified and the acquire, acq_rel, or
4125   // seq_cst clause is specified then the strong flush on exit from the atomic
4126   // operation is also an acquire flush.
4127   switch (AO) {
4128   case llvm::AtomicOrdering::Acquire:
4129   case llvm::AtomicOrdering::AcquireRelease:
4130   case llvm::AtomicOrdering::SequentiallyConsistent:
4131     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
4132                                          llvm::AtomicOrdering::Acquire);
4133     break;
4134   case llvm::AtomicOrdering::Monotonic:
4135   case llvm::AtomicOrdering::Release:
4136     break;
4137   case llvm::AtomicOrdering::NotAtomic:
4138   case llvm::AtomicOrdering::Unordered:
4139     llvm_unreachable("Unexpected ordering.");
4140   }
4141   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
4142   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
4143 }
4144 
4145 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF,
4146                                    llvm::AtomicOrdering AO, const Expr *X,
4147                                    const Expr *E, SourceLocation Loc) {
4148   // x = expr;
4149   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
4150   emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
4151   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
4152   // OpenMP, 2.17.7, atomic Construct
4153   // If the write, update, or capture clause is specified and the release,
4154   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
4155   // the atomic operation is also a release flush.
4156   switch (AO) {
4157   case llvm::AtomicOrdering::Release:
4158   case llvm::AtomicOrdering::AcquireRelease:
4159   case llvm::AtomicOrdering::SequentiallyConsistent:
4160     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
4161                                          llvm::AtomicOrdering::Release);
4162     break;
4163   case llvm::AtomicOrdering::Acquire:
4164   case llvm::AtomicOrdering::Monotonic:
4165     break;
4166   case llvm::AtomicOrdering::NotAtomic:
4167   case llvm::AtomicOrdering::Unordered:
4168     llvm_unreachable("Unexpected ordering.");
4169   }
4170 }
4171 
4172 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
4173                                                 RValue Update,
4174                                                 BinaryOperatorKind BO,
4175                                                 llvm::AtomicOrdering AO,
4176                                                 bool IsXLHSInRHSPart) {
4177   ASTContext &Context = CGF.getContext();
4178   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
4179   // expression is simple and atomic is allowed for the given type for the
4180   // target platform.
4181   if (BO == BO_Comma || !Update.isScalar() ||
4182       !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() ||
4183       (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
4184        (Update.getScalarVal()->getType() !=
4185         X.getAddress(CGF).getElementType())) ||
4186       !X.getAddress(CGF).getElementType()->isIntegerTy() ||
4187       !Context.getTargetInfo().hasBuiltinAtomic(
4188           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
4189     return std::make_pair(false, RValue::get(nullptr));
4190 
4191   llvm::AtomicRMWInst::BinOp RMWOp;
4192   switch (BO) {
4193   case BO_Add:
4194     RMWOp = llvm::AtomicRMWInst::Add;
4195     break;
4196   case BO_Sub:
4197     if (!IsXLHSInRHSPart)
4198       return std::make_pair(false, RValue::get(nullptr));
4199     RMWOp = llvm::AtomicRMWInst::Sub;
4200     break;
4201   case BO_And:
4202     RMWOp = llvm::AtomicRMWInst::And;
4203     break;
4204   case BO_Or:
4205     RMWOp = llvm::AtomicRMWInst::Or;
4206     break;
4207   case BO_Xor:
4208     RMWOp = llvm::AtomicRMWInst::Xor;
4209     break;
4210   case BO_LT:
4211     RMWOp = X.getType()->hasSignedIntegerRepresentation()
4212                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
4213                                    : llvm::AtomicRMWInst::Max)
4214                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
4215                                    : llvm::AtomicRMWInst::UMax);
4216     break;
4217   case BO_GT:
4218     RMWOp = X.getType()->hasSignedIntegerRepresentation()
4219                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
4220                                    : llvm::AtomicRMWInst::Min)
4221                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
4222                                    : llvm::AtomicRMWInst::UMin);
4223     break;
4224   case BO_Assign:
4225     RMWOp = llvm::AtomicRMWInst::Xchg;
4226     break;
4227   case BO_Mul:
4228   case BO_Div:
4229   case BO_Rem:
4230   case BO_Shl:
4231   case BO_Shr:
4232   case BO_LAnd:
4233   case BO_LOr:
4234     return std::make_pair(false, RValue::get(nullptr));
4235   case BO_PtrMemD:
4236   case BO_PtrMemI:
4237   case BO_LE:
4238   case BO_GE:
4239   case BO_EQ:
4240   case BO_NE:
4241   case BO_Cmp:
4242   case BO_AddAssign:
4243   case BO_SubAssign:
4244   case BO_AndAssign:
4245   case BO_OrAssign:
4246   case BO_XorAssign:
4247   case BO_MulAssign:
4248   case BO_DivAssign:
4249   case BO_RemAssign:
4250   case BO_ShlAssign:
4251   case BO_ShrAssign:
4252   case BO_Comma:
4253     llvm_unreachable("Unsupported atomic update operation");
4254   }
4255   llvm::Value *UpdateVal = Update.getScalarVal();
4256   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
4257     UpdateVal = CGF.Builder.CreateIntCast(
4258         IC, X.getAddress(CGF).getElementType(),
4259         X.getType()->hasSignedIntegerRepresentation());
4260   }
4261   llvm::Value *Res =
4262       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO);
4263   return std::make_pair(true, RValue::get(Res));
4264 }
4265 
4266 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
4267     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
4268     llvm::AtomicOrdering AO, SourceLocation Loc,
4269     const llvm::function_ref<RValue(RValue)> CommonGen) {
4270   // Update expressions are allowed to have the following forms:
4271   // x binop= expr; -> xrval + expr;
4272   // x++, ++x -> xrval + 1;
4273   // x--, --x -> xrval - 1;
4274   // x = x binop expr; -> xrval binop expr
4275   // x = expr Op x; - > expr binop xrval;
4276   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
4277   if (!Res.first) {
4278     if (X.isGlobalReg()) {
4279       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
4280       // 'xrval'.
4281       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
4282     } else {
4283       // Perform compare-and-swap procedure.
4284       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
4285     }
4286   }
4287   return Res;
4288 }
4289 
4290 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF,
4291                                     llvm::AtomicOrdering AO, const Expr *X,
4292                                     const Expr *E, const Expr *UE,
4293                                     bool IsXLHSInRHSPart, SourceLocation Loc) {
4294   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
4295          "Update expr in 'atomic update' must be a binary operator.");
4296   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
4297   // Update expressions are allowed to have the following forms:
4298   // x binop= expr; -> xrval + expr;
4299   // x++, ++x -> xrval + 1;
4300   // x--, --x -> xrval - 1;
4301   // x = x binop expr; -> xrval binop expr
4302   // x = expr Op x; - > expr binop xrval;
4303   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
4304   LValue XLValue = CGF.EmitLValue(X);
4305   RValue ExprRValue = CGF.EmitAnyExpr(E);
4306   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
4307   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
4308   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
4309   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
4310   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
4311     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
4312     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
4313     return CGF.EmitAnyExpr(UE);
4314   };
4315   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
4316       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
4317   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
4318   // OpenMP, 2.17.7, atomic Construct
4319   // If the write, update, or capture clause is specified and the release,
4320   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
4321   // the atomic operation is also a release flush.
4322   switch (AO) {
4323   case llvm::AtomicOrdering::Release:
4324   case llvm::AtomicOrdering::AcquireRelease:
4325   case llvm::AtomicOrdering::SequentiallyConsistent:
4326     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
4327                                          llvm::AtomicOrdering::Release);
4328     break;
4329   case llvm::AtomicOrdering::Acquire:
4330   case llvm::AtomicOrdering::Monotonic:
4331     break;
4332   case llvm::AtomicOrdering::NotAtomic:
4333   case llvm::AtomicOrdering::Unordered:
4334     llvm_unreachable("Unexpected ordering.");
4335   }
4336 }
4337 
4338 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
4339                             QualType SourceType, QualType ResType,
4340                             SourceLocation Loc) {
4341   switch (CGF.getEvaluationKind(ResType)) {
4342   case TEK_Scalar:
4343     return RValue::get(
4344         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
4345   case TEK_Complex: {
4346     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
4347     return RValue::getComplex(Res.first, Res.second);
4348   }
4349   case TEK_Aggregate:
4350     break;
4351   }
4352   llvm_unreachable("Must be a scalar or complex.");
4353 }
4354 
4355 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF,
4356                                      llvm::AtomicOrdering AO,
4357                                      bool IsPostfixUpdate, const Expr *V,
4358                                      const Expr *X, const Expr *E,
4359                                      const Expr *UE, bool IsXLHSInRHSPart,
4360                                      SourceLocation Loc) {
4361   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
4362   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
4363   RValue NewVVal;
4364   LValue VLValue = CGF.EmitLValue(V);
4365   LValue XLValue = CGF.EmitLValue(X);
4366   RValue ExprRValue = CGF.EmitAnyExpr(E);
4367   QualType NewVValType;
4368   if (UE) {
4369     // 'x' is updated with some additional value.
4370     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
4371            "Update expr in 'atomic capture' must be a binary operator.");
4372     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
4373     // Update expressions are allowed to have the following forms:
4374     // x binop= expr; -> xrval + expr;
4375     // x++, ++x -> xrval + 1;
4376     // x--, --x -> xrval - 1;
4377     // x = x binop expr; -> xrval binop expr
4378     // x = expr Op x; - > expr binop xrval;
4379     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
4380     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
4381     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
4382     NewVValType = XRValExpr->getType();
4383     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
4384     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
4385                   IsPostfixUpdate](RValue XRValue) {
4386       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
4387       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
4388       RValue Res = CGF.EmitAnyExpr(UE);
4389       NewVVal = IsPostfixUpdate ? XRValue : Res;
4390       return Res;
4391     };
4392     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
4393         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
4394     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
4395     if (Res.first) {
4396       // 'atomicrmw' instruction was generated.
4397       if (IsPostfixUpdate) {
4398         // Use old value from 'atomicrmw'.
4399         NewVVal = Res.second;
4400       } else {
4401         // 'atomicrmw' does not provide new value, so evaluate it using old
4402         // value of 'x'.
4403         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
4404         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
4405         NewVVal = CGF.EmitAnyExpr(UE);
4406       }
4407     }
4408   } else {
4409     // 'x' is simply rewritten with some 'expr'.
4410     NewVValType = X->getType().getNonReferenceType();
4411     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
4412                                X->getType().getNonReferenceType(), Loc);
4413     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
4414       NewVVal = XRValue;
4415       return ExprRValue;
4416     };
4417     // Try to perform atomicrmw xchg, otherwise simple exchange.
4418     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
4419         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
4420         Loc, Gen);
4421     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
4422     if (Res.first) {
4423       // 'atomicrmw' instruction was generated.
4424       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
4425     }
4426   }
4427   // Emit post-update store to 'v' of old/new 'x' value.
4428   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
4429   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
4430   // OpenMP, 2.17.7, atomic Construct
4431   // If the write, update, or capture clause is specified and the release,
4432   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
4433   // the atomic operation is also a release flush.
4434   // If the read or capture clause is specified and the acquire, acq_rel, or
4435   // seq_cst clause is specified then the strong flush on exit from the atomic
4436   // operation is also an acquire flush.
4437   switch (AO) {
4438   case llvm::AtomicOrdering::Release:
4439     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
4440                                          llvm::AtomicOrdering::Release);
4441     break;
4442   case llvm::AtomicOrdering::Acquire:
4443     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
4444                                          llvm::AtomicOrdering::Acquire);
4445     break;
4446   case llvm::AtomicOrdering::AcquireRelease:
4447   case llvm::AtomicOrdering::SequentiallyConsistent:
4448     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
4449                                          llvm::AtomicOrdering::AcquireRelease);
4450     break;
4451   case llvm::AtomicOrdering::Monotonic:
4452     break;
4453   case llvm::AtomicOrdering::NotAtomic:
4454   case llvm::AtomicOrdering::Unordered:
4455     llvm_unreachable("Unexpected ordering.");
4456   }
4457 }
4458 
4459 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
4460                               llvm::AtomicOrdering AO, bool IsPostfixUpdate,
4461                               const Expr *X, const Expr *V, const Expr *E,
4462                               const Expr *UE, bool IsXLHSInRHSPart,
4463                               SourceLocation Loc) {
4464   switch (Kind) {
4465   case OMPC_read:
4466     emitOMPAtomicReadExpr(CGF, AO, X, V, Loc);
4467     break;
4468   case OMPC_write:
4469     emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc);
4470     break;
4471   case OMPC_unknown:
4472   case OMPC_update:
4473     emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc);
4474     break;
4475   case OMPC_capture:
4476     emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE,
4477                              IsXLHSInRHSPart, Loc);
4478     break;
4479   case OMPC_if:
4480   case OMPC_final:
4481   case OMPC_num_threads:
4482   case OMPC_private:
4483   case OMPC_firstprivate:
4484   case OMPC_lastprivate:
4485   case OMPC_reduction:
4486   case OMPC_task_reduction:
4487   case OMPC_in_reduction:
4488   case OMPC_safelen:
4489   case OMPC_simdlen:
4490   case OMPC_allocator:
4491   case OMPC_allocate:
4492   case OMPC_collapse:
4493   case OMPC_default:
4494   case OMPC_seq_cst:
4495   case OMPC_acq_rel:
4496   case OMPC_acquire:
4497   case OMPC_release:
4498   case OMPC_relaxed:
4499   case OMPC_shared:
4500   case OMPC_linear:
4501   case OMPC_aligned:
4502   case OMPC_copyin:
4503   case OMPC_copyprivate:
4504   case OMPC_flush:
4505   case OMPC_proc_bind:
4506   case OMPC_schedule:
4507   case OMPC_ordered:
4508   case OMPC_nowait:
4509   case OMPC_untied:
4510   case OMPC_threadprivate:
4511   case OMPC_depend:
4512   case OMPC_mergeable:
4513   case OMPC_device:
4514   case OMPC_threads:
4515   case OMPC_simd:
4516   case OMPC_map:
4517   case OMPC_num_teams:
4518   case OMPC_thread_limit:
4519   case OMPC_priority:
4520   case OMPC_grainsize:
4521   case OMPC_nogroup:
4522   case OMPC_num_tasks:
4523   case OMPC_hint:
4524   case OMPC_dist_schedule:
4525   case OMPC_defaultmap:
4526   case OMPC_uniform:
4527   case OMPC_to:
4528   case OMPC_from:
4529   case OMPC_use_device_ptr:
4530   case OMPC_is_device_ptr:
4531   case OMPC_unified_address:
4532   case OMPC_unified_shared_memory:
4533   case OMPC_reverse_offload:
4534   case OMPC_dynamic_allocators:
4535   case OMPC_atomic_default_mem_order:
4536   case OMPC_device_type:
4537   case OMPC_match:
4538   case OMPC_nontemporal:
4539   case OMPC_order:
4540     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
4541   }
4542 }
4543 
4544 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
4545   llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic;
4546   bool MemOrderingSpecified = false;
4547   if (S.getSingleClause<OMPSeqCstClause>()) {
4548     AO = llvm::AtomicOrdering::SequentiallyConsistent;
4549     MemOrderingSpecified = true;
4550   } else if (S.getSingleClause<OMPAcqRelClause>()) {
4551     AO = llvm::AtomicOrdering::AcquireRelease;
4552     MemOrderingSpecified = true;
4553   } else if (S.getSingleClause<OMPAcquireClause>()) {
4554     AO = llvm::AtomicOrdering::Acquire;
4555     MemOrderingSpecified = true;
4556   } else if (S.getSingleClause<OMPReleaseClause>()) {
4557     AO = llvm::AtomicOrdering::Release;
4558     MemOrderingSpecified = true;
4559   } else if (S.getSingleClause<OMPRelaxedClause>()) {
4560     AO = llvm::AtomicOrdering::Monotonic;
4561     MemOrderingSpecified = true;
4562   }
4563   OpenMPClauseKind Kind = OMPC_unknown;
4564   for (const OMPClause *C : S.clauses()) {
4565     // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause,
4566     // if it is first).
4567     if (C->getClauseKind() != OMPC_seq_cst &&
4568         C->getClauseKind() != OMPC_acq_rel &&
4569         C->getClauseKind() != OMPC_acquire &&
4570         C->getClauseKind() != OMPC_release &&
4571         C->getClauseKind() != OMPC_relaxed) {
4572       Kind = C->getClauseKind();
4573       break;
4574     }
4575   }
4576   if (!MemOrderingSpecified) {
4577     llvm::AtomicOrdering DefaultOrder =
4578         CGM.getOpenMPRuntime().getDefaultMemoryOrdering();
4579     if (DefaultOrder == llvm::AtomicOrdering::Monotonic ||
4580         DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent ||
4581         (DefaultOrder == llvm::AtomicOrdering::AcquireRelease &&
4582          Kind == OMPC_capture)) {
4583       AO = DefaultOrder;
4584     } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) {
4585       if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) {
4586         AO = llvm::AtomicOrdering::Release;
4587       } else if (Kind == OMPC_read) {
4588         assert(Kind == OMPC_read && "Unexpected atomic kind.");
4589         AO = llvm::AtomicOrdering::Acquire;
4590       }
4591     }
4592   }
4593 
4594   const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers();
4595   if (const auto *FE = dyn_cast<FullExpr>(CS))
4596     enterFullExpression(FE);
4597   // Processing for statements under 'atomic capture'.
4598   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
4599     for (const Stmt *C : Compound->body()) {
4600       if (const auto *FE = dyn_cast<FullExpr>(C))
4601         enterFullExpression(FE);
4602     }
4603   }
4604 
4605   auto &&CodeGen = [&S, Kind, AO, CS](CodeGenFunction &CGF,
4606                                             PrePostActionTy &) {
4607     CGF.EmitStopPoint(CS);
4608     emitOMPAtomicExpr(CGF, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(),
4609                       S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(),
4610                       S.getBeginLoc());
4611   };
4612   OMPLexicalScope Scope(*this, S, OMPD_unknown);
4613   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
4614 }
4615 
4616 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
4617                                          const OMPExecutableDirective &S,
4618                                          const RegionCodeGenTy &CodeGen) {
4619   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
4620   CodeGenModule &CGM = CGF.CGM;
4621 
4622   // On device emit this construct as inlined code.
4623   if (CGM.getLangOpts().OpenMPIsDevice) {
4624     OMPLexicalScope Scope(CGF, S, OMPD_target);
4625     CGM.getOpenMPRuntime().emitInlinedDirective(
4626         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4627           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4628         });
4629     return;
4630   }
4631 
4632   auto LPCRegion =
4633       CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S);
4634   llvm::Function *Fn = nullptr;
4635   llvm::Constant *FnID = nullptr;
4636 
4637   const Expr *IfCond = nullptr;
4638   // Check for the at most one if clause associated with the target region.
4639   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4640     if (C->getNameModifier() == OMPD_unknown ||
4641         C->getNameModifier() == OMPD_target) {
4642       IfCond = C->getCondition();
4643       break;
4644     }
4645   }
4646 
4647   // Check if we have any device clause associated with the directive.
4648   const Expr *Device = nullptr;
4649   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4650     Device = C->getDevice();
4651 
4652   // Check if we have an if clause whose conditional always evaluates to false
4653   // or if we do not have any targets specified. If so the target region is not
4654   // an offload entry point.
4655   bool IsOffloadEntry = true;
4656   if (IfCond) {
4657     bool Val;
4658     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
4659       IsOffloadEntry = false;
4660   }
4661   if (CGM.getLangOpts().OMPTargetTriples.empty())
4662     IsOffloadEntry = false;
4663 
4664   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
4665   StringRef ParentName;
4666   // In case we have Ctors/Dtors we use the complete type variant to produce
4667   // the mangling of the device outlined kernel.
4668   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
4669     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
4670   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
4671     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
4672   else
4673     ParentName =
4674         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
4675 
4676   // Emit target region as a standalone region.
4677   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
4678                                                     IsOffloadEntry, CodeGen);
4679   OMPLexicalScope Scope(CGF, S, OMPD_task);
4680   auto &&SizeEmitter =
4681       [IsOffloadEntry](CodeGenFunction &CGF,
4682                        const OMPLoopDirective &D) -> llvm::Value * {
4683     if (IsOffloadEntry) {
4684       OMPLoopScope(CGF, D);
4685       // Emit calculation of the iterations count.
4686       llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations());
4687       NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty,
4688                                                 /*isSigned=*/false);
4689       return NumIterations;
4690     }
4691     return nullptr;
4692   };
4693   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device,
4694                                         SizeEmitter);
4695 }
4696 
4697 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
4698                              PrePostActionTy &Action) {
4699   Action.Enter(CGF);
4700   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4701   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4702   CGF.EmitOMPPrivateClause(S, PrivateScope);
4703   (void)PrivateScope.Privatize();
4704   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4705     CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4706 
4707   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
4708 }
4709 
4710 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
4711                                                   StringRef ParentName,
4712                                                   const OMPTargetDirective &S) {
4713   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4714     emitTargetRegion(CGF, S, Action);
4715   };
4716   llvm::Function *Fn;
4717   llvm::Constant *Addr;
4718   // Emit target region as a standalone region.
4719   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4720       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4721   assert(Fn && Addr && "Target device function emission failed.");
4722 }
4723 
4724 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
4725   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4726     emitTargetRegion(CGF, S, Action);
4727   };
4728   emitCommonOMPTargetDirective(*this, S, CodeGen);
4729 }
4730 
4731 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
4732                                         const OMPExecutableDirective &S,
4733                                         OpenMPDirectiveKind InnermostKind,
4734                                         const RegionCodeGenTy &CodeGen) {
4735   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
4736   llvm::Function *OutlinedFn =
4737       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
4738           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
4739 
4740   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
4741   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
4742   if (NT || TL) {
4743     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
4744     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
4745 
4746     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
4747                                                   S.getBeginLoc());
4748   }
4749 
4750   OMPTeamsScope Scope(CGF, S);
4751   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
4752   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
4753   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
4754                                            CapturedVars);
4755 }
4756 
4757 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
4758   // Emit teams region as a standalone region.
4759   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4760     Action.Enter(CGF);
4761     OMPPrivateScope PrivateScope(CGF);
4762     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4763     CGF.EmitOMPPrivateClause(S, PrivateScope);
4764     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4765     (void)PrivateScope.Privatize();
4766     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
4767     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4768   };
4769   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4770   emitPostUpdateForReductionClause(*this, S,
4771                                    [](CodeGenFunction &) { return nullptr; });
4772 }
4773 
4774 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4775                                   const OMPTargetTeamsDirective &S) {
4776   auto *CS = S.getCapturedStmt(OMPD_teams);
4777   Action.Enter(CGF);
4778   // Emit teams region as a standalone region.
4779   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
4780     Action.Enter(CGF);
4781     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4782     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4783     CGF.EmitOMPPrivateClause(S, PrivateScope);
4784     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4785     (void)PrivateScope.Privatize();
4786     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4787       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
4788     CGF.EmitStmt(CS->getCapturedStmt());
4789     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4790   };
4791   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
4792   emitPostUpdateForReductionClause(CGF, S,
4793                                    [](CodeGenFunction &) { return nullptr; });
4794 }
4795 
4796 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
4797     CodeGenModule &CGM, StringRef ParentName,
4798     const OMPTargetTeamsDirective &S) {
4799   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4800     emitTargetTeamsRegion(CGF, Action, S);
4801   };
4802   llvm::Function *Fn;
4803   llvm::Constant *Addr;
4804   // Emit target region as a standalone region.
4805   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4806       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4807   assert(Fn && Addr && "Target device function emission failed.");
4808 }
4809 
4810 void CodeGenFunction::EmitOMPTargetTeamsDirective(
4811     const OMPTargetTeamsDirective &S) {
4812   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4813     emitTargetTeamsRegion(CGF, Action, S);
4814   };
4815   emitCommonOMPTargetDirective(*this, S, CodeGen);
4816 }
4817 
4818 static void
4819 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
4820                                 const OMPTargetTeamsDistributeDirective &S) {
4821   Action.Enter(CGF);
4822   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4823     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4824   };
4825 
4826   // Emit teams region as a standalone region.
4827   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4828                                             PrePostActionTy &Action) {
4829     Action.Enter(CGF);
4830     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4831     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4832     (void)PrivateScope.Privatize();
4833     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4834                                                     CodeGenDistribute);
4835     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4836   };
4837   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
4838   emitPostUpdateForReductionClause(CGF, S,
4839                                    [](CodeGenFunction &) { return nullptr; });
4840 }
4841 
4842 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
4843     CodeGenModule &CGM, StringRef ParentName,
4844     const OMPTargetTeamsDistributeDirective &S) {
4845   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4846     emitTargetTeamsDistributeRegion(CGF, Action, S);
4847   };
4848   llvm::Function *Fn;
4849   llvm::Constant *Addr;
4850   // Emit target region as a standalone region.
4851   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4852       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4853   assert(Fn && Addr && "Target device function emission failed.");
4854 }
4855 
4856 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
4857     const OMPTargetTeamsDistributeDirective &S) {
4858   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4859     emitTargetTeamsDistributeRegion(CGF, Action, S);
4860   };
4861   emitCommonOMPTargetDirective(*this, S, CodeGen);
4862 }
4863 
4864 static void emitTargetTeamsDistributeSimdRegion(
4865     CodeGenFunction &CGF, PrePostActionTy &Action,
4866     const OMPTargetTeamsDistributeSimdDirective &S) {
4867   Action.Enter(CGF);
4868   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4869     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4870   };
4871 
4872   // Emit teams region as a standalone region.
4873   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4874                                             PrePostActionTy &Action) {
4875     Action.Enter(CGF);
4876     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4877     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4878     (void)PrivateScope.Privatize();
4879     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4880                                                     CodeGenDistribute);
4881     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4882   };
4883   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
4884   emitPostUpdateForReductionClause(CGF, S,
4885                                    [](CodeGenFunction &) { return nullptr; });
4886 }
4887 
4888 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
4889     CodeGenModule &CGM, StringRef ParentName,
4890     const OMPTargetTeamsDistributeSimdDirective &S) {
4891   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4892     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4893   };
4894   llvm::Function *Fn;
4895   llvm::Constant *Addr;
4896   // Emit target region as a standalone region.
4897   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4898       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4899   assert(Fn && Addr && "Target device function emission failed.");
4900 }
4901 
4902 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
4903     const OMPTargetTeamsDistributeSimdDirective &S) {
4904   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4905     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
4906   };
4907   emitCommonOMPTargetDirective(*this, S, CodeGen);
4908 }
4909 
4910 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
4911     const OMPTeamsDistributeDirective &S) {
4912 
4913   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4914     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4915   };
4916 
4917   // Emit teams region as a standalone region.
4918   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4919                                             PrePostActionTy &Action) {
4920     Action.Enter(CGF);
4921     OMPPrivateScope PrivateScope(CGF);
4922     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4923     (void)PrivateScope.Privatize();
4924     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4925                                                     CodeGenDistribute);
4926     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4927   };
4928   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
4929   emitPostUpdateForReductionClause(*this, S,
4930                                    [](CodeGenFunction &) { return nullptr; });
4931 }
4932 
4933 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
4934     const OMPTeamsDistributeSimdDirective &S) {
4935   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4936     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
4937   };
4938 
4939   // Emit teams region as a standalone region.
4940   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4941                                             PrePostActionTy &Action) {
4942     Action.Enter(CGF);
4943     OMPPrivateScope PrivateScope(CGF);
4944     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4945     (void)PrivateScope.Privatize();
4946     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
4947                                                     CodeGenDistribute);
4948     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4949   };
4950   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
4951   emitPostUpdateForReductionClause(*this, S,
4952                                    [](CodeGenFunction &) { return nullptr; });
4953 }
4954 
4955 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
4956     const OMPTeamsDistributeParallelForDirective &S) {
4957   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4958     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4959                               S.getDistInc());
4960   };
4961 
4962   // Emit teams region as a standalone region.
4963   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4964                                             PrePostActionTy &Action) {
4965     Action.Enter(CGF);
4966     OMPPrivateScope PrivateScope(CGF);
4967     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4968     (void)PrivateScope.Privatize();
4969     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
4970                                                     CodeGenDistribute);
4971     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4972   };
4973   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
4974   emitPostUpdateForReductionClause(*this, S,
4975                                    [](CodeGenFunction &) { return nullptr; });
4976 }
4977 
4978 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
4979     const OMPTeamsDistributeParallelForSimdDirective &S) {
4980   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
4981     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
4982                               S.getDistInc());
4983   };
4984 
4985   // Emit teams region as a standalone region.
4986   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
4987                                             PrePostActionTy &Action) {
4988     Action.Enter(CGF);
4989     OMPPrivateScope PrivateScope(CGF);
4990     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4991     (void)PrivateScope.Privatize();
4992     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
4993         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
4994     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
4995   };
4996   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd,
4997                               CodeGen);
4998   emitPostUpdateForReductionClause(*this, S,
4999                                    [](CodeGenFunction &) { return nullptr; });
5000 }
5001 
5002 static void emitTargetTeamsDistributeParallelForRegion(
5003     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
5004     PrePostActionTy &Action) {
5005   Action.Enter(CGF);
5006   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5007     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
5008                               S.getDistInc());
5009   };
5010 
5011   // Emit teams region as a standalone region.
5012   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5013                                                  PrePostActionTy &Action) {
5014     Action.Enter(CGF);
5015     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5016     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5017     (void)PrivateScope.Privatize();
5018     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
5019         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
5020     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5021   };
5022 
5023   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
5024                               CodeGenTeams);
5025   emitPostUpdateForReductionClause(CGF, S,
5026                                    [](CodeGenFunction &) { return nullptr; });
5027 }
5028 
5029 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
5030     CodeGenModule &CGM, StringRef ParentName,
5031     const OMPTargetTeamsDistributeParallelForDirective &S) {
5032   // Emit SPMD target teams distribute parallel for region as a standalone
5033   // region.
5034   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5035     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
5036   };
5037   llvm::Function *Fn;
5038   llvm::Constant *Addr;
5039   // Emit target region as a standalone region.
5040   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5041       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5042   assert(Fn && Addr && "Target device function emission failed.");
5043 }
5044 
5045 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
5046     const OMPTargetTeamsDistributeParallelForDirective &S) {
5047   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5048     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
5049   };
5050   emitCommonOMPTargetDirective(*this, S, CodeGen);
5051 }
5052 
5053 static void emitTargetTeamsDistributeParallelForSimdRegion(
5054     CodeGenFunction &CGF,
5055     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
5056     PrePostActionTy &Action) {
5057   Action.Enter(CGF);
5058   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5059     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
5060                               S.getDistInc());
5061   };
5062 
5063   // Emit teams region as a standalone region.
5064   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5065                                                  PrePostActionTy &Action) {
5066     Action.Enter(CGF);
5067     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5068     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5069     (void)PrivateScope.Privatize();
5070     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
5071         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
5072     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5073   };
5074 
5075   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
5076                               CodeGenTeams);
5077   emitPostUpdateForReductionClause(CGF, S,
5078                                    [](CodeGenFunction &) { return nullptr; });
5079 }
5080 
5081 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
5082     CodeGenModule &CGM, StringRef ParentName,
5083     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
5084   // Emit SPMD target teams distribute parallel for simd region as a standalone
5085   // region.
5086   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5087     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
5088   };
5089   llvm::Function *Fn;
5090   llvm::Constant *Addr;
5091   // Emit target region as a standalone region.
5092   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5093       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5094   assert(Fn && Addr && "Target device function emission failed.");
5095 }
5096 
5097 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
5098     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
5099   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5100     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
5101   };
5102   emitCommonOMPTargetDirective(*this, S, CodeGen);
5103 }
5104 
5105 void CodeGenFunction::EmitOMPCancellationPointDirective(
5106     const OMPCancellationPointDirective &S) {
5107   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
5108                                                    S.getCancelRegion());
5109 }
5110 
5111 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
5112   const Expr *IfCond = nullptr;
5113   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
5114     if (C->getNameModifier() == OMPD_unknown ||
5115         C->getNameModifier() == OMPD_cancel) {
5116       IfCond = C->getCondition();
5117       break;
5118     }
5119   }
5120   if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) {
5121     // TODO: This check is necessary as we only generate `omp parallel` through
5122     // the OpenMPIRBuilder for now.
5123     if (S.getCancelRegion() == OMPD_parallel) {
5124       llvm::Value *IfCondition = nullptr;
5125       if (IfCond)
5126         IfCondition = EmitScalarExpr(IfCond,
5127                                      /*IgnoreResultAssign=*/true);
5128       return Builder.restoreIP(
5129           OMPBuilder->CreateCancel(Builder, IfCondition, S.getCancelRegion()));
5130     }
5131   }
5132 
5133   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
5134                                         S.getCancelRegion());
5135 }
5136 
5137 CodeGenFunction::JumpDest
5138 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
5139   if (Kind == OMPD_parallel || Kind == OMPD_task ||
5140       Kind == OMPD_target_parallel)
5141     return ReturnBlock;
5142   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
5143          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
5144          Kind == OMPD_distribute_parallel_for ||
5145          Kind == OMPD_target_parallel_for ||
5146          Kind == OMPD_teams_distribute_parallel_for ||
5147          Kind == OMPD_target_teams_distribute_parallel_for);
5148   return OMPCancelStack.getExitBlock();
5149 }
5150 
5151 void CodeGenFunction::EmitOMPUseDevicePtrClause(
5152     const OMPClause &NC, OMPPrivateScope &PrivateScope,
5153     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
5154   const auto &C = cast<OMPUseDevicePtrClause>(NC);
5155   auto OrigVarIt = C.varlist_begin();
5156   auto InitIt = C.inits().begin();
5157   for (const Expr *PvtVarIt : C.private_copies()) {
5158     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
5159     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
5160     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
5161 
5162     // In order to identify the right initializer we need to match the
5163     // declaration used by the mapping logic. In some cases we may get
5164     // OMPCapturedExprDecl that refers to the original declaration.
5165     const ValueDecl *MatchingVD = OrigVD;
5166     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
5167       // OMPCapturedExprDecl are used to privative fields of the current
5168       // structure.
5169       const auto *ME = cast<MemberExpr>(OED->getInit());
5170       assert(isa<CXXThisExpr>(ME->getBase()) &&
5171              "Base should be the current struct!");
5172       MatchingVD = ME->getMemberDecl();
5173     }
5174 
5175     // If we don't have information about the current list item, move on to
5176     // the next one.
5177     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
5178     if (InitAddrIt == CaptureDeviceAddrMap.end())
5179       continue;
5180 
5181     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
5182                                                          InitAddrIt, InitVD,
5183                                                          PvtVD]() {
5184       // Initialize the temporary initialization variable with the address we
5185       // get from the runtime library. We have to cast the source address
5186       // because it is always a void *. References are materialized in the
5187       // privatization scope, so the initialization here disregards the fact
5188       // the original variable is a reference.
5189       QualType AddrQTy =
5190           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
5191       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
5192       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
5193       setAddrOfLocalVar(InitVD, InitAddr);
5194 
5195       // Emit private declaration, it will be initialized by the value we
5196       // declaration we just added to the local declarations map.
5197       EmitDecl(*PvtVD);
5198 
5199       // The initialization variables reached its purpose in the emission
5200       // of the previous declaration, so we don't need it anymore.
5201       LocalDeclMap.erase(InitVD);
5202 
5203       // Return the address of the private variable.
5204       return GetAddrOfLocalVar(PvtVD);
5205     });
5206     assert(IsRegistered && "firstprivate var already registered as private");
5207     // Silence the warning about unused variable.
5208     (void)IsRegistered;
5209 
5210     ++OrigVarIt;
5211     ++InitIt;
5212   }
5213 }
5214 
5215 // Generate the instructions for '#pragma omp target data' directive.
5216 void CodeGenFunction::EmitOMPTargetDataDirective(
5217     const OMPTargetDataDirective &S) {
5218   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
5219 
5220   // Create a pre/post action to signal the privatization of the device pointer.
5221   // This action can be replaced by the OpenMP runtime code generation to
5222   // deactivate privatization.
5223   bool PrivatizeDevicePointers = false;
5224   class DevicePointerPrivActionTy : public PrePostActionTy {
5225     bool &PrivatizeDevicePointers;
5226 
5227   public:
5228     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
5229         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
5230     void Enter(CodeGenFunction &CGF) override {
5231       PrivatizeDevicePointers = true;
5232     }
5233   };
5234   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
5235 
5236   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
5237                        CodeGenFunction &CGF, PrePostActionTy &Action) {
5238     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5239       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
5240     };
5241 
5242     // Codegen that selects whether to generate the privatization code or not.
5243     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
5244                           &InnermostCodeGen](CodeGenFunction &CGF,
5245                                              PrePostActionTy &Action) {
5246       RegionCodeGenTy RCG(InnermostCodeGen);
5247       PrivatizeDevicePointers = false;
5248 
5249       // Call the pre-action to change the status of PrivatizeDevicePointers if
5250       // needed.
5251       Action.Enter(CGF);
5252 
5253       if (PrivatizeDevicePointers) {
5254         OMPPrivateScope PrivateScope(CGF);
5255         // Emit all instances of the use_device_ptr clause.
5256         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
5257           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
5258                                         Info.CaptureDeviceAddrMap);
5259         (void)PrivateScope.Privatize();
5260         RCG(CGF);
5261       } else {
5262         RCG(CGF);
5263       }
5264     };
5265 
5266     // Forward the provided action to the privatization codegen.
5267     RegionCodeGenTy PrivRCG(PrivCodeGen);
5268     PrivRCG.setAction(Action);
5269 
5270     // Notwithstanding the body of the region is emitted as inlined directive,
5271     // we don't use an inline scope as changes in the references inside the
5272     // region are expected to be visible outside, so we do not privative them.
5273     OMPLexicalScope Scope(CGF, S);
5274     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
5275                                                     PrivRCG);
5276   };
5277 
5278   RegionCodeGenTy RCG(CodeGen);
5279 
5280   // If we don't have target devices, don't bother emitting the data mapping
5281   // code.
5282   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
5283     RCG(*this);
5284     return;
5285   }
5286 
5287   // Check if we have any if clause associated with the directive.
5288   const Expr *IfCond = nullptr;
5289   if (const auto *C = S.getSingleClause<OMPIfClause>())
5290     IfCond = C->getCondition();
5291 
5292   // Check if we have any device clause associated with the directive.
5293   const Expr *Device = nullptr;
5294   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
5295     Device = C->getDevice();
5296 
5297   // Set the action to signal privatization of device pointers.
5298   RCG.setAction(PrivAction);
5299 
5300   // Emit region code.
5301   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
5302                                              Info);
5303 }
5304 
5305 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
5306     const OMPTargetEnterDataDirective &S) {
5307   // If we don't have target devices, don't bother emitting the data mapping
5308   // code.
5309   if (CGM.getLangOpts().OMPTargetTriples.empty())
5310     return;
5311 
5312   // Check if we have any if clause associated with the directive.
5313   const Expr *IfCond = nullptr;
5314   if (const auto *C = S.getSingleClause<OMPIfClause>())
5315     IfCond = C->getCondition();
5316 
5317   // Check if we have any device clause associated with the directive.
5318   const Expr *Device = nullptr;
5319   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
5320     Device = C->getDevice();
5321 
5322   OMPLexicalScope Scope(*this, S, OMPD_task);
5323   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
5324 }
5325 
5326 void CodeGenFunction::EmitOMPTargetExitDataDirective(
5327     const OMPTargetExitDataDirective &S) {
5328   // If we don't have target devices, don't bother emitting the data mapping
5329   // code.
5330   if (CGM.getLangOpts().OMPTargetTriples.empty())
5331     return;
5332 
5333   // Check if we have any if clause associated with the directive.
5334   const Expr *IfCond = nullptr;
5335   if (const auto *C = S.getSingleClause<OMPIfClause>())
5336     IfCond = C->getCondition();
5337 
5338   // Check if we have any device clause associated with the directive.
5339   const Expr *Device = nullptr;
5340   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
5341     Device = C->getDevice();
5342 
5343   OMPLexicalScope Scope(*this, S, OMPD_task);
5344   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
5345 }
5346 
5347 static void emitTargetParallelRegion(CodeGenFunction &CGF,
5348                                      const OMPTargetParallelDirective &S,
5349                                      PrePostActionTy &Action) {
5350   // Get the captured statement associated with the 'parallel' region.
5351   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
5352   Action.Enter(CGF);
5353   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
5354     Action.Enter(CGF);
5355     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5356     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5357     CGF.EmitOMPPrivateClause(S, PrivateScope);
5358     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5359     (void)PrivateScope.Privatize();
5360     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
5361       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
5362     // TODO: Add support for clauses.
5363     CGF.EmitStmt(CS->getCapturedStmt());
5364     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
5365   };
5366   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
5367                                  emitEmptyBoundParameters);
5368   emitPostUpdateForReductionClause(CGF, S,
5369                                    [](CodeGenFunction &) { return nullptr; });
5370 }
5371 
5372 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
5373     CodeGenModule &CGM, StringRef ParentName,
5374     const OMPTargetParallelDirective &S) {
5375   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5376     emitTargetParallelRegion(CGF, S, Action);
5377   };
5378   llvm::Function *Fn;
5379   llvm::Constant *Addr;
5380   // Emit target region as a standalone region.
5381   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5382       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5383   assert(Fn && Addr && "Target device function emission failed.");
5384 }
5385 
5386 void CodeGenFunction::EmitOMPTargetParallelDirective(
5387     const OMPTargetParallelDirective &S) {
5388   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5389     emitTargetParallelRegion(CGF, S, Action);
5390   };
5391   emitCommonOMPTargetDirective(*this, S, CodeGen);
5392 }
5393 
5394 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
5395                                         const OMPTargetParallelForDirective &S,
5396                                         PrePostActionTy &Action) {
5397   Action.Enter(CGF);
5398   // Emit directive as a combined directive that consists of two implicit
5399   // directives: 'parallel' with 'for' directive.
5400   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5401     Action.Enter(CGF);
5402     CodeGenFunction::OMPCancelStackRAII CancelRegion(
5403         CGF, OMPD_target_parallel_for, S.hasCancel());
5404     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
5405                                emitDispatchForLoopBounds);
5406   };
5407   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
5408                                  emitEmptyBoundParameters);
5409 }
5410 
5411 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
5412     CodeGenModule &CGM, StringRef ParentName,
5413     const OMPTargetParallelForDirective &S) {
5414   // Emit SPMD target parallel for region as a standalone region.
5415   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5416     emitTargetParallelForRegion(CGF, S, Action);
5417   };
5418   llvm::Function *Fn;
5419   llvm::Constant *Addr;
5420   // Emit target region as a standalone region.
5421   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5422       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5423   assert(Fn && Addr && "Target device function emission failed.");
5424 }
5425 
5426 void CodeGenFunction::EmitOMPTargetParallelForDirective(
5427     const OMPTargetParallelForDirective &S) {
5428   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5429     emitTargetParallelForRegion(CGF, S, Action);
5430   };
5431   emitCommonOMPTargetDirective(*this, S, CodeGen);
5432 }
5433 
5434 static void
5435 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
5436                                 const OMPTargetParallelForSimdDirective &S,
5437                                 PrePostActionTy &Action) {
5438   Action.Enter(CGF);
5439   // Emit directive as a combined directive that consists of two implicit
5440   // directives: 'parallel' with 'for' directive.
5441   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5442     Action.Enter(CGF);
5443     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
5444                                emitDispatchForLoopBounds);
5445   };
5446   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
5447                                  emitEmptyBoundParameters);
5448 }
5449 
5450 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
5451     CodeGenModule &CGM, StringRef ParentName,
5452     const OMPTargetParallelForSimdDirective &S) {
5453   // Emit SPMD target parallel for region as a standalone region.
5454   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5455     emitTargetParallelForSimdRegion(CGF, S, Action);
5456   };
5457   llvm::Function *Fn;
5458   llvm::Constant *Addr;
5459   // Emit target region as a standalone region.
5460   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5461       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5462   assert(Fn && Addr && "Target device function emission failed.");
5463 }
5464 
5465 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
5466     const OMPTargetParallelForSimdDirective &S) {
5467   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5468     emitTargetParallelForSimdRegion(CGF, S, Action);
5469   };
5470   emitCommonOMPTargetDirective(*this, S, CodeGen);
5471 }
5472 
5473 /// Emit a helper variable and return corresponding lvalue.
5474 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
5475                      const ImplicitParamDecl *PVD,
5476                      CodeGenFunction::OMPPrivateScope &Privates) {
5477   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
5478   Privates.addPrivate(VDecl,
5479                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
5480 }
5481 
5482 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
5483   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
5484   // Emit outlined function for task construct.
5485   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
5486   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
5487   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
5488   const Expr *IfCond = nullptr;
5489   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
5490     if (C->getNameModifier() == OMPD_unknown ||
5491         C->getNameModifier() == OMPD_taskloop) {
5492       IfCond = C->getCondition();
5493       break;
5494     }
5495   }
5496 
5497   OMPTaskDataTy Data;
5498   // Check if taskloop must be emitted without taskgroup.
5499   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
5500   // TODO: Check if we should emit tied or untied task.
5501   Data.Tied = true;
5502   // Set scheduling for taskloop
5503   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
5504     // grainsize clause
5505     Data.Schedule.setInt(/*IntVal=*/false);
5506     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
5507   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
5508     // num_tasks clause
5509     Data.Schedule.setInt(/*IntVal=*/true);
5510     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
5511   }
5512 
5513   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
5514     // if (PreCond) {
5515     //   for (IV in 0..LastIteration) BODY;
5516     //   <Final counter/linear vars updates>;
5517     // }
5518     //
5519 
5520     // Emit: if (PreCond) - begin.
5521     // If the condition constant folds and can be elided, avoid emitting the
5522     // whole loop.
5523     bool CondConstant;
5524     llvm::BasicBlock *ContBlock = nullptr;
5525     OMPLoopScope PreInitScope(CGF, S);
5526     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
5527       if (!CondConstant)
5528         return;
5529     } else {
5530       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
5531       ContBlock = CGF.createBasicBlock("taskloop.if.end");
5532       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
5533                   CGF.getProfileCount(&S));
5534       CGF.EmitBlock(ThenBlock);
5535       CGF.incrementProfileCounter(&S);
5536     }
5537 
5538     (void)CGF.EmitOMPLinearClauseInit(S);
5539 
5540     OMPPrivateScope LoopScope(CGF);
5541     // Emit helper vars inits.
5542     enum { LowerBound = 5, UpperBound, Stride, LastIter };
5543     auto *I = CS->getCapturedDecl()->param_begin();
5544     auto *LBP = std::next(I, LowerBound);
5545     auto *UBP = std::next(I, UpperBound);
5546     auto *STP = std::next(I, Stride);
5547     auto *LIP = std::next(I, LastIter);
5548     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
5549              LoopScope);
5550     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
5551              LoopScope);
5552     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
5553     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
5554              LoopScope);
5555     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
5556     CGF.EmitOMPLinearClause(S, LoopScope);
5557     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
5558     (void)LoopScope.Privatize();
5559     // Emit the loop iteration variable.
5560     const Expr *IVExpr = S.getIterationVariable();
5561     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
5562     CGF.EmitVarDecl(*IVDecl);
5563     CGF.EmitIgnoredExpr(S.getInit());
5564 
5565     // Emit the iterations count variable.
5566     // If it is not a variable, Sema decided to calculate iterations count on
5567     // each iteration (e.g., it is foldable into a constant).
5568     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
5569       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
5570       // Emit calculation of the iterations count.
5571       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
5572     }
5573 
5574     {
5575       OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
5576       emitCommonSimdLoop(
5577           CGF, S,
5578           [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5579             if (isOpenMPSimdDirective(S.getDirectiveKind()))
5580               CGF.EmitOMPSimdInit(S);
5581           },
5582           [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
5583             CGF.EmitOMPInnerLoop(
5584                 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
5585                 [&S](CodeGenFunction &CGF) {
5586                   CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest());
5587                   CGF.EmitStopPoint(&S);
5588                 },
5589                 [](CodeGenFunction &) {});
5590           });
5591     }
5592     // Emit: if (PreCond) - end.
5593     if (ContBlock) {
5594       CGF.EmitBranch(ContBlock);
5595       CGF.EmitBlock(ContBlock, true);
5596     }
5597     // Emit final copy of the lastprivate variables if IsLastIter != 0.
5598     if (HasLastprivateClause) {
5599       CGF.EmitOMPLastprivateClauseFinal(
5600           S, isOpenMPSimdDirective(S.getDirectiveKind()),
5601           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
5602               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
5603               (*LIP)->getType(), S.getBeginLoc())));
5604     }
5605     CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) {
5606       return CGF.Builder.CreateIsNotNull(
5607           CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
5608                                (*LIP)->getType(), S.getBeginLoc()));
5609     });
5610   };
5611   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
5612                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
5613                             const OMPTaskDataTy &Data) {
5614     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
5615                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
5616       OMPLoopScope PreInitScope(CGF, S);
5617       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
5618                                                   OutlinedFn, SharedsTy,
5619                                                   CapturedStruct, IfCond, Data);
5620     };
5621     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
5622                                                     CodeGen);
5623   };
5624   if (Data.Nogroup) {
5625     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
5626   } else {
5627     CGM.getOpenMPRuntime().emitTaskgroupRegion(
5628         *this,
5629         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
5630                                         PrePostActionTy &Action) {
5631           Action.Enter(CGF);
5632           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
5633                                         Data);
5634         },
5635         S.getBeginLoc());
5636   }
5637 }
5638 
5639 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
5640   auto LPCRegion =
5641       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
5642   EmitOMPTaskLoopBasedDirective(S);
5643 }
5644 
5645 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
5646     const OMPTaskLoopSimdDirective &S) {
5647   auto LPCRegion =
5648       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
5649   OMPLexicalScope Scope(*this, S);
5650   EmitOMPTaskLoopBasedDirective(S);
5651 }
5652 
5653 void CodeGenFunction::EmitOMPMasterTaskLoopDirective(
5654     const OMPMasterTaskLoopDirective &S) {
5655   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5656     Action.Enter(CGF);
5657     EmitOMPTaskLoopBasedDirective(S);
5658   };
5659   auto LPCRegion =
5660       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
5661   OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false);
5662   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
5663 }
5664 
5665 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective(
5666     const OMPMasterTaskLoopSimdDirective &S) {
5667   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5668     Action.Enter(CGF);
5669     EmitOMPTaskLoopBasedDirective(S);
5670   };
5671   auto LPCRegion =
5672       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
5673   OMPLexicalScope Scope(*this, S);
5674   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
5675 }
5676 
5677 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective(
5678     const OMPParallelMasterTaskLoopDirective &S) {
5679   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5680     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
5681                                   PrePostActionTy &Action) {
5682       Action.Enter(CGF);
5683       CGF.EmitOMPTaskLoopBasedDirective(S);
5684     };
5685     OMPLexicalScope Scope(CGF, S, llvm::None, /*EmitPreInitStmt=*/false);
5686     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
5687                                             S.getBeginLoc());
5688   };
5689   auto LPCRegion =
5690       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
5691   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen,
5692                                  emitEmptyBoundParameters);
5693 }
5694 
5695 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective(
5696     const OMPParallelMasterTaskLoopSimdDirective &S) {
5697   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5698     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
5699                                   PrePostActionTy &Action) {
5700       Action.Enter(CGF);
5701       CGF.EmitOMPTaskLoopBasedDirective(S);
5702     };
5703     OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
5704     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
5705                                             S.getBeginLoc());
5706   };
5707   auto LPCRegion =
5708       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
5709   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen,
5710                                  emitEmptyBoundParameters);
5711 }
5712 
5713 // Generate the instructions for '#pragma omp target update' directive.
5714 void CodeGenFunction::EmitOMPTargetUpdateDirective(
5715     const OMPTargetUpdateDirective &S) {
5716   // If we don't have target devices, don't bother emitting the data mapping
5717   // code.
5718   if (CGM.getLangOpts().OMPTargetTriples.empty())
5719     return;
5720 
5721   // Check if we have any if clause associated with the directive.
5722   const Expr *IfCond = nullptr;
5723   if (const auto *C = S.getSingleClause<OMPIfClause>())
5724     IfCond = C->getCondition();
5725 
5726   // Check if we have any device clause associated with the directive.
5727   const Expr *Device = nullptr;
5728   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
5729     Device = C->getDevice();
5730 
5731   OMPLexicalScope Scope(*this, S, OMPD_task);
5732   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
5733 }
5734 
5735 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
5736     const OMPExecutableDirective &D) {
5737   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
5738     return;
5739   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
5740     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
5741       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
5742     } else {
5743       OMPPrivateScope LoopGlobals(CGF);
5744       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
5745         for (const Expr *E : LD->counters()) {
5746           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
5747           if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) {
5748             LValue GlobLVal = CGF.EmitLValue(E);
5749             LoopGlobals.addPrivate(
5750                 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
5751           }
5752           if (isa<OMPCapturedExprDecl>(VD)) {
5753             // Emit only those that were not explicitly referenced in clauses.
5754             if (!CGF.LocalDeclMap.count(VD))
5755               CGF.EmitVarDecl(*VD);
5756           }
5757         }
5758         for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
5759           if (!C->getNumForLoops())
5760             continue;
5761           for (unsigned I = LD->getCollapsedNumber(),
5762                         E = C->getLoopNumIterations().size();
5763                I < E; ++I) {
5764             if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
5765                     cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
5766               // Emit only those that were not explicitly referenced in clauses.
5767               if (!CGF.LocalDeclMap.count(VD))
5768                 CGF.EmitVarDecl(*VD);
5769             }
5770           }
5771         }
5772       }
5773       LoopGlobals.Privatize();
5774       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
5775     }
5776   };
5777   {
5778     auto LPCRegion =
5779         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D);
5780     OMPSimdLexicalScope Scope(*this, D);
5781     CGM.getOpenMPRuntime().emitInlinedDirective(
5782         *this,
5783         isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
5784                                                     : D.getDirectiveKind(),
5785         CodeGen);
5786   }
5787   // Check for outer lastprivate conditional update.
5788   checkForLastprivateConditionalUpdate(*this, D);
5789 }
5790