1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/Frontend/OpenMP/OMPConstants.h" 28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/Support/AtomicOrdering.h" 32 using namespace clang; 33 using namespace CodeGen; 34 using namespace llvm::omp; 35 36 static const VarDecl *getBaseDecl(const Expr *Ref); 37 38 namespace { 39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 40 /// for captured expressions. 41 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 42 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 43 for (const auto *C : S.clauses()) { 44 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 45 if (const auto *PreInit = 46 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 47 for (const auto *I : PreInit->decls()) { 48 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 49 CGF.EmitVarDecl(cast<VarDecl>(*I)); 50 } else { 51 CodeGenFunction::AutoVarEmission Emission = 52 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 53 CGF.EmitAutoVarCleanups(Emission); 54 } 55 } 56 } 57 } 58 } 59 } 60 CodeGenFunction::OMPPrivateScope InlinedShareds; 61 62 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 63 return CGF.LambdaCaptureFields.lookup(VD) || 64 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 65 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 66 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 67 } 68 69 public: 70 OMPLexicalScope( 71 CodeGenFunction &CGF, const OMPExecutableDirective &S, 72 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 73 const bool EmitPreInitStmt = true) 74 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 75 InlinedShareds(CGF) { 76 if (EmitPreInitStmt) 77 emitPreInitStmt(CGF, S); 78 if (!CapturedRegion.hasValue()) 79 return; 80 assert(S.hasAssociatedStmt() && 81 "Expected associated statement for inlined directive."); 82 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 83 for (const auto &C : CS->captures()) { 84 if (C.capturesVariable() || C.capturesVariableByCopy()) { 85 auto *VD = C.getCapturedVar(); 86 assert(VD == VD->getCanonicalDecl() && 87 "Canonical decl must be captured."); 88 DeclRefExpr DRE( 89 CGF.getContext(), const_cast<VarDecl *>(VD), 90 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 91 InlinedShareds.isGlobalVarCaptured(VD)), 92 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 93 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 94 return CGF.EmitLValue(&DRE).getAddress(CGF); 95 }); 96 } 97 } 98 (void)InlinedShareds.Privatize(); 99 } 100 }; 101 102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 103 /// for captured expressions. 104 class OMPParallelScope final : public OMPLexicalScope { 105 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 106 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 107 return !(isOpenMPTargetExecutionDirective(Kind) || 108 isOpenMPLoopBoundSharingDirective(Kind)) && 109 isOpenMPParallelDirective(Kind); 110 } 111 112 public: 113 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Lexical scope for OpenMP teams construct, that handles correct codegen 119 /// for captured expressions. 120 class OMPTeamsScope final : public OMPLexicalScope { 121 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 122 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 123 return !isOpenMPTargetExecutionDirective(Kind) && 124 isOpenMPTeamsDirective(Kind); 125 } 126 127 public: 128 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 129 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 130 EmitPreInitStmt(S)) {} 131 }; 132 133 /// Private scope for OpenMP loop-based directives, that supports capturing 134 /// of used expression from loop statement. 135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 136 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 137 const DeclStmt *PreInits; 138 CodeGenFunction::OMPMapVars PreCondVars; 139 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 140 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 141 for (const auto *E : LD->counters()) { 142 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 143 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 144 (void)PreCondVars.setVarAddr( 145 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 146 } 147 // Mark private vars as undefs. 148 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 149 for (const Expr *IRef : C->varlists()) { 150 const auto *OrigVD = 151 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 152 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 153 (void)PreCondVars.setVarAddr( 154 CGF, OrigVD, 155 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 156 CGF.getContext().getPointerType( 157 OrigVD->getType().getNonReferenceType()))), 158 CGF.getContext().getDeclAlign(OrigVD))); 159 } 160 } 161 } 162 (void)PreCondVars.apply(CGF); 163 // Emit init, __range and __end variables for C++ range loops. 164 (void)OMPLoopBasedDirective::doForAllLoops( 165 LD->getInnermostCapturedStmt()->getCapturedStmt(), 166 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 167 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 168 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 169 if (const Stmt *Init = CXXFor->getInit()) 170 CGF.EmitStmt(Init); 171 CGF.EmitStmt(CXXFor->getRangeStmt()); 172 CGF.EmitStmt(CXXFor->getEndStmt()); 173 } 174 return false; 175 }); 176 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 177 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 178 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 179 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 180 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 181 } else { 182 llvm_unreachable("Unknown loop-based directive kind."); 183 } 184 if (PreInits) { 185 for (const auto *I : PreInits->decls()) 186 CGF.EmitVarDecl(cast<VarDecl>(*I)); 187 } 188 PreCondVars.restore(CGF); 189 } 190 191 public: 192 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 193 : CodeGenFunction::RunCleanupsScope(CGF) { 194 emitPreInitStmt(CGF, S); 195 } 196 }; 197 198 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 199 CodeGenFunction::OMPPrivateScope InlinedShareds; 200 201 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 202 return CGF.LambdaCaptureFields.lookup(VD) || 203 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 204 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 205 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 206 } 207 208 public: 209 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 210 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 211 InlinedShareds(CGF) { 212 for (const auto *C : S.clauses()) { 213 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 214 if (const auto *PreInit = 215 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 216 for (const auto *I : PreInit->decls()) { 217 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 218 CGF.EmitVarDecl(cast<VarDecl>(*I)); 219 } else { 220 CodeGenFunction::AutoVarEmission Emission = 221 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 222 CGF.EmitAutoVarCleanups(Emission); 223 } 224 } 225 } 226 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 227 for (const Expr *E : UDP->varlists()) { 228 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 229 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 230 CGF.EmitVarDecl(*OED); 231 } 232 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 233 for (const Expr *E : UDP->varlists()) { 234 const Decl *D = getBaseDecl(E); 235 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 236 CGF.EmitVarDecl(*OED); 237 } 238 } 239 } 240 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 241 CGF.EmitOMPPrivateClause(S, InlinedShareds); 242 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 243 if (const Expr *E = TG->getReductionRef()) 244 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 245 } 246 // Temp copy arrays for inscan reductions should not be emitted as they are 247 // not used in simd only mode. 248 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 249 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 250 if (C->getModifier() != OMPC_REDUCTION_inscan) 251 continue; 252 for (const Expr *E : C->copy_array_temps()) 253 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 254 } 255 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 256 while (CS) { 257 for (auto &C : CS->captures()) { 258 if (C.capturesVariable() || C.capturesVariableByCopy()) { 259 auto *VD = C.getCapturedVar(); 260 if (CopyArrayTemps.contains(VD)) 261 continue; 262 assert(VD == VD->getCanonicalDecl() && 263 "Canonical decl must be captured."); 264 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 265 isCapturedVar(CGF, VD) || 266 (CGF.CapturedStmtInfo && 267 InlinedShareds.isGlobalVarCaptured(VD)), 268 VD->getType().getNonReferenceType(), VK_LValue, 269 C.getLocation()); 270 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 271 return CGF.EmitLValue(&DRE).getAddress(CGF); 272 }); 273 } 274 } 275 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 276 } 277 (void)InlinedShareds.Privatize(); 278 } 279 }; 280 281 } // namespace 282 283 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 284 const OMPExecutableDirective &S, 285 const RegionCodeGenTy &CodeGen); 286 287 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 288 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 289 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 290 OrigVD = OrigVD->getCanonicalDecl(); 291 bool IsCaptured = 292 LambdaCaptureFields.lookup(OrigVD) || 293 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 294 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 295 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 296 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 297 return EmitLValue(&DRE); 298 } 299 } 300 return EmitLValue(E); 301 } 302 303 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 304 ASTContext &C = getContext(); 305 llvm::Value *Size = nullptr; 306 auto SizeInChars = C.getTypeSizeInChars(Ty); 307 if (SizeInChars.isZero()) { 308 // getTypeSizeInChars() returns 0 for a VLA. 309 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 310 VlaSizePair VlaSize = getVLASize(VAT); 311 Ty = VlaSize.Type; 312 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 313 : VlaSize.NumElts; 314 } 315 SizeInChars = C.getTypeSizeInChars(Ty); 316 if (SizeInChars.isZero()) 317 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 318 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 319 } 320 return CGM.getSize(SizeInChars); 321 } 322 323 void CodeGenFunction::GenerateOpenMPCapturedVars( 324 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 325 const RecordDecl *RD = S.getCapturedRecordDecl(); 326 auto CurField = RD->field_begin(); 327 auto CurCap = S.captures().begin(); 328 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 329 E = S.capture_init_end(); 330 I != E; ++I, ++CurField, ++CurCap) { 331 if (CurField->hasCapturedVLAType()) { 332 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 333 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 334 CapturedVars.push_back(Val); 335 } else if (CurCap->capturesThis()) { 336 CapturedVars.push_back(CXXThisValue); 337 } else if (CurCap->capturesVariableByCopy()) { 338 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 339 340 // If the field is not a pointer, we need to save the actual value 341 // and load it as a void pointer. 342 if (!CurField->getType()->isAnyPointerType()) { 343 ASTContext &Ctx = getContext(); 344 Address DstAddr = CreateMemTemp( 345 Ctx.getUIntPtrType(), 346 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 347 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 348 349 llvm::Value *SrcAddrVal = EmitScalarConversion( 350 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 351 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 352 LValue SrcLV = 353 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 354 355 // Store the value using the source type pointer. 356 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 357 358 // Load the value using the destination type pointer. 359 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 360 } 361 CapturedVars.push_back(CV); 362 } else { 363 assert(CurCap->capturesVariable() && "Expected capture by reference."); 364 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 365 } 366 } 367 } 368 369 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 370 QualType DstType, StringRef Name, 371 LValue AddrLV) { 372 ASTContext &Ctx = CGF.getContext(); 373 374 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 375 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 376 Ctx.getPointerType(DstType), Loc); 377 Address TmpAddr = 378 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 379 .getAddress(CGF); 380 return TmpAddr; 381 } 382 383 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 384 if (T->isLValueReferenceType()) 385 return C.getLValueReferenceType( 386 getCanonicalParamType(C, T.getNonReferenceType()), 387 /*SpelledAsLValue=*/false); 388 if (T->isPointerType()) 389 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 390 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 391 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 392 return getCanonicalParamType(C, VLA->getElementType()); 393 if (!A->isVariablyModifiedType()) 394 return C.getCanonicalType(T); 395 } 396 return C.getCanonicalParamType(T); 397 } 398 399 namespace { 400 /// Contains required data for proper outlined function codegen. 401 struct FunctionOptions { 402 /// Captured statement for which the function is generated. 403 const CapturedStmt *S = nullptr; 404 /// true if cast to/from UIntPtr is required for variables captured by 405 /// value. 406 const bool UIntPtrCastRequired = true; 407 /// true if only casted arguments must be registered as local args or VLA 408 /// sizes. 409 const bool RegisterCastedArgsOnly = false; 410 /// Name of the generated function. 411 const StringRef FunctionName; 412 /// Location of the non-debug version of the outlined function. 413 SourceLocation Loc; 414 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 415 bool RegisterCastedArgsOnly, StringRef FunctionName, 416 SourceLocation Loc) 417 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 418 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 419 FunctionName(FunctionName), Loc(Loc) {} 420 }; 421 } // namespace 422 423 static llvm::Function *emitOutlinedFunctionPrologue( 424 CodeGenFunction &CGF, FunctionArgList &Args, 425 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 426 &LocalAddrs, 427 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 428 &VLASizes, 429 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 430 const CapturedDecl *CD = FO.S->getCapturedDecl(); 431 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 432 assert(CD->hasBody() && "missing CapturedDecl body"); 433 434 CXXThisValue = nullptr; 435 // Build the argument list. 436 CodeGenModule &CGM = CGF.CGM; 437 ASTContext &Ctx = CGM.getContext(); 438 FunctionArgList TargetArgs; 439 Args.append(CD->param_begin(), 440 std::next(CD->param_begin(), CD->getContextParamPosition())); 441 TargetArgs.append( 442 CD->param_begin(), 443 std::next(CD->param_begin(), CD->getContextParamPosition())); 444 auto I = FO.S->captures().begin(); 445 FunctionDecl *DebugFunctionDecl = nullptr; 446 if (!FO.UIntPtrCastRequired) { 447 FunctionProtoType::ExtProtoInfo EPI; 448 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 449 DebugFunctionDecl = FunctionDecl::Create( 450 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 451 SourceLocation(), DeclarationName(), FunctionTy, 452 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 453 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 454 /*hasWrittenPrototype=*/false); 455 } 456 for (const FieldDecl *FD : RD->fields()) { 457 QualType ArgType = FD->getType(); 458 IdentifierInfo *II = nullptr; 459 VarDecl *CapVar = nullptr; 460 461 // If this is a capture by copy and the type is not a pointer, the outlined 462 // function argument type should be uintptr and the value properly casted to 463 // uintptr. This is necessary given that the runtime library is only able to 464 // deal with pointers. We can pass in the same way the VLA type sizes to the 465 // outlined function. 466 if (FO.UIntPtrCastRequired && 467 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 468 I->capturesVariableArrayType())) 469 ArgType = Ctx.getUIntPtrType(); 470 471 if (I->capturesVariable() || I->capturesVariableByCopy()) { 472 CapVar = I->getCapturedVar(); 473 II = CapVar->getIdentifier(); 474 } else if (I->capturesThis()) { 475 II = &Ctx.Idents.get("this"); 476 } else { 477 assert(I->capturesVariableArrayType()); 478 II = &Ctx.Idents.get("vla"); 479 } 480 if (ArgType->isVariablyModifiedType()) 481 ArgType = getCanonicalParamType(Ctx, ArgType); 482 VarDecl *Arg; 483 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 484 Arg = ParmVarDecl::Create( 485 Ctx, DebugFunctionDecl, 486 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 487 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 488 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 489 } else { 490 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 491 II, ArgType, ImplicitParamDecl::Other); 492 } 493 Args.emplace_back(Arg); 494 // Do not cast arguments if we emit function with non-original types. 495 TargetArgs.emplace_back( 496 FO.UIntPtrCastRequired 497 ? Arg 498 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 499 ++I; 500 } 501 Args.append( 502 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 503 CD->param_end()); 504 TargetArgs.append( 505 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 506 CD->param_end()); 507 508 // Create the function declaration. 509 const CGFunctionInfo &FuncInfo = 510 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 511 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 512 513 auto *F = 514 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 515 FO.FunctionName, &CGM.getModule()); 516 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 517 if (CD->isNothrow()) 518 F->setDoesNotThrow(); 519 F->setDoesNotRecurse(); 520 521 // Always inline the outlined function if optimizations are enabled. 522 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 523 F->addFnAttr(llvm::Attribute::AlwaysInline); 524 525 // Generate the function. 526 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 527 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 528 FO.UIntPtrCastRequired ? FO.Loc 529 : CD->getBody()->getBeginLoc()); 530 unsigned Cnt = CD->getContextParamPosition(); 531 I = FO.S->captures().begin(); 532 for (const FieldDecl *FD : RD->fields()) { 533 // Do not map arguments if we emit function with non-original types. 534 Address LocalAddr(Address::invalid()); 535 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 536 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 537 TargetArgs[Cnt]); 538 } else { 539 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 540 } 541 // If we are capturing a pointer by copy we don't need to do anything, just 542 // use the value that we get from the arguments. 543 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 544 const VarDecl *CurVD = I->getCapturedVar(); 545 if (!FO.RegisterCastedArgsOnly) 546 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 547 ++Cnt; 548 ++I; 549 continue; 550 } 551 552 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 553 AlignmentSource::Decl); 554 if (FD->hasCapturedVLAType()) { 555 if (FO.UIntPtrCastRequired) { 556 ArgLVal = CGF.MakeAddrLValue( 557 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 558 Args[Cnt]->getName(), ArgLVal), 559 FD->getType(), AlignmentSource::Decl); 560 } 561 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 562 const VariableArrayType *VAT = FD->getCapturedVLAType(); 563 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 564 } else if (I->capturesVariable()) { 565 const VarDecl *Var = I->getCapturedVar(); 566 QualType VarTy = Var->getType(); 567 Address ArgAddr = ArgLVal.getAddress(CGF); 568 if (ArgLVal.getType()->isLValueReferenceType()) { 569 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 570 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 571 assert(ArgLVal.getType()->isPointerType()); 572 ArgAddr = CGF.EmitLoadOfPointer( 573 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 574 } 575 if (!FO.RegisterCastedArgsOnly) { 576 LocalAddrs.insert( 577 {Args[Cnt], 578 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 579 } 580 } else if (I->capturesVariableByCopy()) { 581 assert(!FD->getType()->isAnyPointerType() && 582 "Not expecting a captured pointer."); 583 const VarDecl *Var = I->getCapturedVar(); 584 LocalAddrs.insert({Args[Cnt], 585 {Var, FO.UIntPtrCastRequired 586 ? castValueFromUintptr( 587 CGF, I->getLocation(), FD->getType(), 588 Args[Cnt]->getName(), ArgLVal) 589 : ArgLVal.getAddress(CGF)}}); 590 } else { 591 // If 'this' is captured, load it into CXXThisValue. 592 assert(I->capturesThis()); 593 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 594 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 595 } 596 ++Cnt; 597 ++I; 598 } 599 600 return F; 601 } 602 603 llvm::Function * 604 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 605 SourceLocation Loc) { 606 assert( 607 CapturedStmtInfo && 608 "CapturedStmtInfo should be set when generating the captured function"); 609 const CapturedDecl *CD = S.getCapturedDecl(); 610 // Build the argument list. 611 bool NeedWrapperFunction = 612 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 613 FunctionArgList Args; 614 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 615 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 616 SmallString<256> Buffer; 617 llvm::raw_svector_ostream Out(Buffer); 618 Out << CapturedStmtInfo->getHelperName(); 619 if (NeedWrapperFunction) 620 Out << "_debug__"; 621 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 622 Out.str(), Loc); 623 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 624 VLASizes, CXXThisValue, FO); 625 CodeGenFunction::OMPPrivateScope LocalScope(*this); 626 for (const auto &LocalAddrPair : LocalAddrs) { 627 if (LocalAddrPair.second.first) { 628 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 629 return LocalAddrPair.second.second; 630 }); 631 } 632 } 633 (void)LocalScope.Privatize(); 634 for (const auto &VLASizePair : VLASizes) 635 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 636 PGO.assignRegionCounters(GlobalDecl(CD), F); 637 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 638 (void)LocalScope.ForceCleanup(); 639 FinishFunction(CD->getBodyRBrace()); 640 if (!NeedWrapperFunction) 641 return F; 642 643 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 644 /*RegisterCastedArgsOnly=*/true, 645 CapturedStmtInfo->getHelperName(), Loc); 646 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 647 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 648 Args.clear(); 649 LocalAddrs.clear(); 650 VLASizes.clear(); 651 llvm::Function *WrapperF = 652 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 653 WrapperCGF.CXXThisValue, WrapperFO); 654 llvm::SmallVector<llvm::Value *, 4> CallArgs; 655 auto *PI = F->arg_begin(); 656 for (const auto *Arg : Args) { 657 llvm::Value *CallArg; 658 auto I = LocalAddrs.find(Arg); 659 if (I != LocalAddrs.end()) { 660 LValue LV = WrapperCGF.MakeAddrLValue( 661 I->second.second, 662 I->second.first ? I->second.first->getType() : Arg->getType(), 663 AlignmentSource::Decl); 664 if (LV.getType()->isAnyComplexType()) 665 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 666 LV.getAddress(WrapperCGF), 667 PI->getType()->getPointerTo( 668 LV.getAddress(WrapperCGF).getAddressSpace()))); 669 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 670 } else { 671 auto EI = VLASizes.find(Arg); 672 if (EI != VLASizes.end()) { 673 CallArg = EI->second.second; 674 } else { 675 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 676 Arg->getType(), 677 AlignmentSource::Decl); 678 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 679 } 680 } 681 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 682 ++PI; 683 } 684 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 685 WrapperCGF.FinishFunction(); 686 return WrapperF; 687 } 688 689 //===----------------------------------------------------------------------===// 690 // OpenMP Directive Emission 691 //===----------------------------------------------------------------------===// 692 void CodeGenFunction::EmitOMPAggregateAssign( 693 Address DestAddr, Address SrcAddr, QualType OriginalType, 694 const llvm::function_ref<void(Address, Address)> CopyGen) { 695 // Perform element-by-element initialization. 696 QualType ElementTy; 697 698 // Drill down to the base element type on both arrays. 699 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 700 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 701 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 702 703 llvm::Value *SrcBegin = SrcAddr.getPointer(); 704 llvm::Value *DestBegin = DestAddr.getPointer(); 705 // Cast from pointer to array type to pointer to single element. 706 llvm::Value *DestEnd = 707 Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); 708 // The basic structure here is a while-do loop. 709 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 710 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 711 llvm::Value *IsEmpty = 712 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 713 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 714 715 // Enter the loop body, making that address the current address. 716 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 717 EmitBlock(BodyBB); 718 719 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 720 721 llvm::PHINode *SrcElementPHI = 722 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 723 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 724 Address SrcElementCurrent = 725 Address(SrcElementPHI, 726 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 727 728 llvm::PHINode *DestElementPHI = 729 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 730 DestElementPHI->addIncoming(DestBegin, EntryBB); 731 Address DestElementCurrent = 732 Address(DestElementPHI, 733 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 734 735 // Emit copy. 736 CopyGen(DestElementCurrent, SrcElementCurrent); 737 738 // Shift the address forward by one element. 739 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 740 DestAddr.getElementType(), DestElementPHI, /*Idx0=*/1, 741 "omp.arraycpy.dest.element"); 742 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 743 SrcAddr.getElementType(), SrcElementPHI, /*Idx0=*/1, 744 "omp.arraycpy.src.element"); 745 // Check whether we've reached the end. 746 llvm::Value *Done = 747 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 748 Builder.CreateCondBr(Done, DoneBB, BodyBB); 749 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 750 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 751 752 // Done. 753 EmitBlock(DoneBB, /*IsFinished=*/true); 754 } 755 756 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 757 Address SrcAddr, const VarDecl *DestVD, 758 const VarDecl *SrcVD, const Expr *Copy) { 759 if (OriginalType->isArrayType()) { 760 const auto *BO = dyn_cast<BinaryOperator>(Copy); 761 if (BO && BO->getOpcode() == BO_Assign) { 762 // Perform simple memcpy for simple copying. 763 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 764 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 765 EmitAggregateAssign(Dest, Src, OriginalType); 766 } else { 767 // For arrays with complex element types perform element by element 768 // copying. 769 EmitOMPAggregateAssign( 770 DestAddr, SrcAddr, OriginalType, 771 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 772 // Working with the single array element, so have to remap 773 // destination and source variables to corresponding array 774 // elements. 775 CodeGenFunction::OMPPrivateScope Remap(*this); 776 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 777 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 778 (void)Remap.Privatize(); 779 EmitIgnoredExpr(Copy); 780 }); 781 } 782 } else { 783 // Remap pseudo source variable to private copy. 784 CodeGenFunction::OMPPrivateScope Remap(*this); 785 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 786 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 787 (void)Remap.Privatize(); 788 // Emit copying of the whole variable. 789 EmitIgnoredExpr(Copy); 790 } 791 } 792 793 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 794 OMPPrivateScope &PrivateScope) { 795 if (!HaveInsertPoint()) 796 return false; 797 bool DeviceConstTarget = 798 getLangOpts().OpenMPIsDevice && 799 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 800 bool FirstprivateIsLastprivate = false; 801 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 802 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 803 for (const auto *D : C->varlists()) 804 Lastprivates.try_emplace( 805 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 806 C->getKind()); 807 } 808 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 809 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 810 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 811 // Force emission of the firstprivate copy if the directive does not emit 812 // outlined function, like omp for, omp simd, omp distribute etc. 813 bool MustEmitFirstprivateCopy = 814 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 815 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 816 const auto *IRef = C->varlist_begin(); 817 const auto *InitsRef = C->inits().begin(); 818 for (const Expr *IInit : C->private_copies()) { 819 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 820 bool ThisFirstprivateIsLastprivate = 821 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 822 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 823 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 824 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 825 !FD->getType()->isReferenceType() && 826 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 827 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 828 ++IRef; 829 ++InitsRef; 830 continue; 831 } 832 // Do not emit copy for firstprivate constant variables in target regions, 833 // captured by reference. 834 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 835 FD && FD->getType()->isReferenceType() && 836 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 837 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 838 ++IRef; 839 ++InitsRef; 840 continue; 841 } 842 FirstprivateIsLastprivate = 843 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 844 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 845 const auto *VDInit = 846 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 847 bool IsRegistered; 848 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 849 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 850 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 851 LValue OriginalLVal; 852 if (!FD) { 853 // Check if the firstprivate variable is just a constant value. 854 ConstantEmission CE = tryEmitAsConstant(&DRE); 855 if (CE && !CE.isReference()) { 856 // Constant value, no need to create a copy. 857 ++IRef; 858 ++InitsRef; 859 continue; 860 } 861 if (CE && CE.isReference()) { 862 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 863 } else { 864 assert(!CE && "Expected non-constant firstprivate."); 865 OriginalLVal = EmitLValue(&DRE); 866 } 867 } else { 868 OriginalLVal = EmitLValue(&DRE); 869 } 870 QualType Type = VD->getType(); 871 if (Type->isArrayType()) { 872 // Emit VarDecl with copy init for arrays. 873 // Get the address of the original variable captured in current 874 // captured region. 875 IsRegistered = PrivateScope.addPrivate( 876 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 877 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 878 const Expr *Init = VD->getInit(); 879 if (!isa<CXXConstructExpr>(Init) || 880 isTrivialInitializer(Init)) { 881 // Perform simple memcpy. 882 LValue Dest = 883 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 884 EmitAggregateAssign(Dest, OriginalLVal, Type); 885 } else { 886 EmitOMPAggregateAssign( 887 Emission.getAllocatedAddress(), 888 OriginalLVal.getAddress(*this), Type, 889 [this, VDInit, Init](Address DestElement, 890 Address SrcElement) { 891 // Clean up any temporaries needed by the 892 // initialization. 893 RunCleanupsScope InitScope(*this); 894 // Emit initialization for single element. 895 setAddrOfLocalVar(VDInit, SrcElement); 896 EmitAnyExprToMem(Init, DestElement, 897 Init->getType().getQualifiers(), 898 /*IsInitializer*/ false); 899 LocalDeclMap.erase(VDInit); 900 }); 901 } 902 EmitAutoVarCleanups(Emission); 903 return Emission.getAllocatedAddress(); 904 }); 905 } else { 906 Address OriginalAddr = OriginalLVal.getAddress(*this); 907 IsRegistered = 908 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 909 ThisFirstprivateIsLastprivate, 910 OrigVD, &Lastprivates, IRef]() { 911 // Emit private VarDecl with copy init. 912 // Remap temp VDInit variable to the address of the original 913 // variable (for proper handling of captured global variables). 914 setAddrOfLocalVar(VDInit, OriginalAddr); 915 EmitDecl(*VD); 916 LocalDeclMap.erase(VDInit); 917 if (ThisFirstprivateIsLastprivate && 918 Lastprivates[OrigVD->getCanonicalDecl()] == 919 OMPC_LASTPRIVATE_conditional) { 920 // Create/init special variable for lastprivate conditionals. 921 Address VDAddr = 922 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 923 *this, OrigVD); 924 llvm::Value *V = EmitLoadOfScalar( 925 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 926 AlignmentSource::Decl), 927 (*IRef)->getExprLoc()); 928 EmitStoreOfScalar(V, 929 MakeAddrLValue(VDAddr, (*IRef)->getType(), 930 AlignmentSource::Decl)); 931 LocalDeclMap.erase(VD); 932 setAddrOfLocalVar(VD, VDAddr); 933 return VDAddr; 934 } 935 return GetAddrOfLocalVar(VD); 936 }); 937 } 938 assert(IsRegistered && 939 "firstprivate var already registered as private"); 940 // Silence the warning about unused variable. 941 (void)IsRegistered; 942 } 943 ++IRef; 944 ++InitsRef; 945 } 946 } 947 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 948 } 949 950 void CodeGenFunction::EmitOMPPrivateClause( 951 const OMPExecutableDirective &D, 952 CodeGenFunction::OMPPrivateScope &PrivateScope) { 953 if (!HaveInsertPoint()) 954 return; 955 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 956 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 957 auto IRef = C->varlist_begin(); 958 for (const Expr *IInit : C->private_copies()) { 959 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 960 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 961 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 962 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 963 // Emit private VarDecl with copy init. 964 EmitDecl(*VD); 965 return GetAddrOfLocalVar(VD); 966 }); 967 assert(IsRegistered && "private var already registered as private"); 968 // Silence the warning about unused variable. 969 (void)IsRegistered; 970 } 971 ++IRef; 972 } 973 } 974 } 975 976 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 977 if (!HaveInsertPoint()) 978 return false; 979 // threadprivate_var1 = master_threadprivate_var1; 980 // operator=(threadprivate_var2, master_threadprivate_var2); 981 // ... 982 // __kmpc_barrier(&loc, global_tid); 983 llvm::DenseSet<const VarDecl *> CopiedVars; 984 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 985 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 986 auto IRef = C->varlist_begin(); 987 auto ISrcRef = C->source_exprs().begin(); 988 auto IDestRef = C->destination_exprs().begin(); 989 for (const Expr *AssignOp : C->assignment_ops()) { 990 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 991 QualType Type = VD->getType(); 992 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 993 // Get the address of the master variable. If we are emitting code with 994 // TLS support, the address is passed from the master as field in the 995 // captured declaration. 996 Address MasterAddr = Address::invalid(); 997 if (getLangOpts().OpenMPUseTLS && 998 getContext().getTargetInfo().isTLSSupported()) { 999 assert(CapturedStmtInfo->lookup(VD) && 1000 "Copyin threadprivates should have been captured!"); 1001 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 1002 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1003 MasterAddr = EmitLValue(&DRE).getAddress(*this); 1004 LocalDeclMap.erase(VD); 1005 } else { 1006 MasterAddr = 1007 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1008 : CGM.GetAddrOfGlobal(VD), 1009 getContext().getDeclAlign(VD)); 1010 } 1011 // Get the address of the threadprivate variable. 1012 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1013 if (CopiedVars.size() == 1) { 1014 // At first check if current thread is a master thread. If it is, no 1015 // need to copy data. 1016 CopyBegin = createBasicBlock("copyin.not.master"); 1017 CopyEnd = createBasicBlock("copyin.not.master.end"); 1018 // TODO: Avoid ptrtoint conversion. 1019 auto *MasterAddrInt = 1020 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1021 auto *PrivateAddrInt = 1022 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1023 Builder.CreateCondBr( 1024 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1025 CopyEnd); 1026 EmitBlock(CopyBegin); 1027 } 1028 const auto *SrcVD = 1029 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1030 const auto *DestVD = 1031 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1032 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1033 } 1034 ++IRef; 1035 ++ISrcRef; 1036 ++IDestRef; 1037 } 1038 } 1039 if (CopyEnd) { 1040 // Exit out of copying procedure for non-master thread. 1041 EmitBlock(CopyEnd, /*IsFinished=*/true); 1042 return true; 1043 } 1044 return false; 1045 } 1046 1047 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1048 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1049 if (!HaveInsertPoint()) 1050 return false; 1051 bool HasAtLeastOneLastprivate = false; 1052 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1053 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1054 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1055 for (const Expr *C : LoopDirective->counters()) { 1056 SIMDLCVs.insert( 1057 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1058 } 1059 } 1060 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1061 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1062 HasAtLeastOneLastprivate = true; 1063 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1064 !getLangOpts().OpenMPSimd) 1065 break; 1066 const auto *IRef = C->varlist_begin(); 1067 const auto *IDestRef = C->destination_exprs().begin(); 1068 for (const Expr *IInit : C->private_copies()) { 1069 // Keep the address of the original variable for future update at the end 1070 // of the loop. 1071 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1072 // Taskloops do not require additional initialization, it is done in 1073 // runtime support library. 1074 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1075 const auto *DestVD = 1076 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1077 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1078 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1079 /*RefersToEnclosingVariableOrCapture=*/ 1080 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1081 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1082 return EmitLValue(&DRE).getAddress(*this); 1083 }); 1084 // Check if the variable is also a firstprivate: in this case IInit is 1085 // not generated. Initialization of this variable will happen in codegen 1086 // for 'firstprivate' clause. 1087 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1088 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1089 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1090 OrigVD]() { 1091 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1092 Address VDAddr = 1093 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1094 OrigVD); 1095 setAddrOfLocalVar(VD, VDAddr); 1096 return VDAddr; 1097 } 1098 // Emit private VarDecl with copy init. 1099 EmitDecl(*VD); 1100 return GetAddrOfLocalVar(VD); 1101 }); 1102 assert(IsRegistered && 1103 "lastprivate var already registered as private"); 1104 (void)IsRegistered; 1105 } 1106 } 1107 ++IRef; 1108 ++IDestRef; 1109 } 1110 } 1111 return HasAtLeastOneLastprivate; 1112 } 1113 1114 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1115 const OMPExecutableDirective &D, bool NoFinals, 1116 llvm::Value *IsLastIterCond) { 1117 if (!HaveInsertPoint()) 1118 return; 1119 // Emit following code: 1120 // if (<IsLastIterCond>) { 1121 // orig_var1 = private_orig_var1; 1122 // ... 1123 // orig_varn = private_orig_varn; 1124 // } 1125 llvm::BasicBlock *ThenBB = nullptr; 1126 llvm::BasicBlock *DoneBB = nullptr; 1127 if (IsLastIterCond) { 1128 // Emit implicit barrier if at least one lastprivate conditional is found 1129 // and this is not a simd mode. 1130 if (!getLangOpts().OpenMPSimd && 1131 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1132 [](const OMPLastprivateClause *C) { 1133 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1134 })) { 1135 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1136 OMPD_unknown, 1137 /*EmitChecks=*/false, 1138 /*ForceSimpleCall=*/true); 1139 } 1140 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1141 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1142 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1143 EmitBlock(ThenBB); 1144 } 1145 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1146 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1147 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1148 auto IC = LoopDirective->counters().begin(); 1149 for (const Expr *F : LoopDirective->finals()) { 1150 const auto *D = 1151 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1152 if (NoFinals) 1153 AlreadyEmittedVars.insert(D); 1154 else 1155 LoopCountersAndUpdates[D] = F; 1156 ++IC; 1157 } 1158 } 1159 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1160 auto IRef = C->varlist_begin(); 1161 auto ISrcRef = C->source_exprs().begin(); 1162 auto IDestRef = C->destination_exprs().begin(); 1163 for (const Expr *AssignOp : C->assignment_ops()) { 1164 const auto *PrivateVD = 1165 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1166 QualType Type = PrivateVD->getType(); 1167 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1168 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1169 // If lastprivate variable is a loop control variable for loop-based 1170 // directive, update its value before copyin back to original 1171 // variable. 1172 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1173 EmitIgnoredExpr(FinalExpr); 1174 const auto *SrcVD = 1175 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1176 const auto *DestVD = 1177 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1178 // Get the address of the private variable. 1179 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1180 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1181 PrivateAddr = 1182 Address(Builder.CreateLoad(PrivateAddr), 1183 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1184 // Store the last value to the private copy in the last iteration. 1185 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1186 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1187 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1188 (*IRef)->getExprLoc()); 1189 // Get the address of the original variable. 1190 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1191 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1192 } 1193 ++IRef; 1194 ++ISrcRef; 1195 ++IDestRef; 1196 } 1197 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1198 EmitIgnoredExpr(PostUpdate); 1199 } 1200 if (IsLastIterCond) 1201 EmitBlock(DoneBB, /*IsFinished=*/true); 1202 } 1203 1204 void CodeGenFunction::EmitOMPReductionClauseInit( 1205 const OMPExecutableDirective &D, 1206 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1207 if (!HaveInsertPoint()) 1208 return; 1209 SmallVector<const Expr *, 4> Shareds; 1210 SmallVector<const Expr *, 4> Privates; 1211 SmallVector<const Expr *, 4> ReductionOps; 1212 SmallVector<const Expr *, 4> LHSs; 1213 SmallVector<const Expr *, 4> RHSs; 1214 OMPTaskDataTy Data; 1215 SmallVector<const Expr *, 4> TaskLHSs; 1216 SmallVector<const Expr *, 4> TaskRHSs; 1217 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1218 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1219 continue; 1220 Shareds.append(C->varlist_begin(), C->varlist_end()); 1221 Privates.append(C->privates().begin(), C->privates().end()); 1222 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1223 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1224 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1225 if (C->getModifier() == OMPC_REDUCTION_task) { 1226 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1227 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1228 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1229 Data.ReductionOps.append(C->reduction_ops().begin(), 1230 C->reduction_ops().end()); 1231 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1232 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1233 } 1234 } 1235 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1236 unsigned Count = 0; 1237 auto *ILHS = LHSs.begin(); 1238 auto *IRHS = RHSs.begin(); 1239 auto *IPriv = Privates.begin(); 1240 for (const Expr *IRef : Shareds) { 1241 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1242 // Emit private VarDecl with reduction init. 1243 RedCG.emitSharedOrigLValue(*this, Count); 1244 RedCG.emitAggregateType(*this, Count); 1245 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1246 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1247 RedCG.getSharedLValue(Count), 1248 [&Emission](CodeGenFunction &CGF) { 1249 CGF.EmitAutoVarInit(Emission); 1250 return true; 1251 }); 1252 EmitAutoVarCleanups(Emission); 1253 Address BaseAddr = RedCG.adjustPrivateAddress( 1254 *this, Count, Emission.getAllocatedAddress()); 1255 bool IsRegistered = PrivateScope.addPrivate( 1256 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1257 assert(IsRegistered && "private var already registered as private"); 1258 // Silence the warning about unused variable. 1259 (void)IsRegistered; 1260 1261 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1262 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1263 QualType Type = PrivateVD->getType(); 1264 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1265 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1266 // Store the address of the original variable associated with the LHS 1267 // implicit variable. 1268 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1269 return RedCG.getSharedLValue(Count).getAddress(*this); 1270 }); 1271 PrivateScope.addPrivate( 1272 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1273 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1274 isa<ArraySubscriptExpr>(IRef)) { 1275 // Store the address of the original variable associated with the LHS 1276 // implicit variable. 1277 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1278 return RedCG.getSharedLValue(Count).getAddress(*this); 1279 }); 1280 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1281 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1282 ConvertTypeForMem(RHSVD->getType()), 1283 "rhs.begin"); 1284 }); 1285 } else { 1286 QualType Type = PrivateVD->getType(); 1287 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1288 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1289 // Store the address of the original variable associated with the LHS 1290 // implicit variable. 1291 if (IsArray) { 1292 OriginalAddr = Builder.CreateElementBitCast( 1293 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1294 } 1295 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1296 PrivateScope.addPrivate( 1297 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1298 return IsArray 1299 ? Builder.CreateElementBitCast( 1300 GetAddrOfLocalVar(PrivateVD), 1301 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1302 : GetAddrOfLocalVar(PrivateVD); 1303 }); 1304 } 1305 ++ILHS; 1306 ++IRHS; 1307 ++IPriv; 1308 ++Count; 1309 } 1310 if (!Data.ReductionVars.empty()) { 1311 Data.IsReductionWithTaskMod = true; 1312 Data.IsWorksharingReduction = 1313 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1314 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1315 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1316 const Expr *TaskRedRef = nullptr; 1317 switch (D.getDirectiveKind()) { 1318 case OMPD_parallel: 1319 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1320 break; 1321 case OMPD_for: 1322 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1323 break; 1324 case OMPD_sections: 1325 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1326 break; 1327 case OMPD_parallel_for: 1328 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1329 break; 1330 case OMPD_parallel_master: 1331 TaskRedRef = 1332 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1333 break; 1334 case OMPD_parallel_sections: 1335 TaskRedRef = 1336 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1337 break; 1338 case OMPD_target_parallel: 1339 TaskRedRef = 1340 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1341 break; 1342 case OMPD_target_parallel_for: 1343 TaskRedRef = 1344 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1345 break; 1346 case OMPD_distribute_parallel_for: 1347 TaskRedRef = 1348 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1349 break; 1350 case OMPD_teams_distribute_parallel_for: 1351 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1352 .getTaskReductionRefExpr(); 1353 break; 1354 case OMPD_target_teams_distribute_parallel_for: 1355 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1356 .getTaskReductionRefExpr(); 1357 break; 1358 case OMPD_simd: 1359 case OMPD_for_simd: 1360 case OMPD_section: 1361 case OMPD_single: 1362 case OMPD_master: 1363 case OMPD_critical: 1364 case OMPD_parallel_for_simd: 1365 case OMPD_task: 1366 case OMPD_taskyield: 1367 case OMPD_barrier: 1368 case OMPD_taskwait: 1369 case OMPD_taskgroup: 1370 case OMPD_flush: 1371 case OMPD_depobj: 1372 case OMPD_scan: 1373 case OMPD_ordered: 1374 case OMPD_atomic: 1375 case OMPD_teams: 1376 case OMPD_target: 1377 case OMPD_cancellation_point: 1378 case OMPD_cancel: 1379 case OMPD_target_data: 1380 case OMPD_target_enter_data: 1381 case OMPD_target_exit_data: 1382 case OMPD_taskloop: 1383 case OMPD_taskloop_simd: 1384 case OMPD_master_taskloop: 1385 case OMPD_master_taskloop_simd: 1386 case OMPD_parallel_master_taskloop: 1387 case OMPD_parallel_master_taskloop_simd: 1388 case OMPD_distribute: 1389 case OMPD_target_update: 1390 case OMPD_distribute_parallel_for_simd: 1391 case OMPD_distribute_simd: 1392 case OMPD_target_parallel_for_simd: 1393 case OMPD_target_simd: 1394 case OMPD_teams_distribute: 1395 case OMPD_teams_distribute_simd: 1396 case OMPD_teams_distribute_parallel_for_simd: 1397 case OMPD_target_teams: 1398 case OMPD_target_teams_distribute: 1399 case OMPD_target_teams_distribute_parallel_for_simd: 1400 case OMPD_target_teams_distribute_simd: 1401 case OMPD_declare_target: 1402 case OMPD_end_declare_target: 1403 case OMPD_threadprivate: 1404 case OMPD_allocate: 1405 case OMPD_declare_reduction: 1406 case OMPD_declare_mapper: 1407 case OMPD_declare_simd: 1408 case OMPD_requires: 1409 case OMPD_declare_variant: 1410 case OMPD_begin_declare_variant: 1411 case OMPD_end_declare_variant: 1412 case OMPD_unknown: 1413 default: 1414 llvm_unreachable("Enexpected directive with task reductions."); 1415 } 1416 1417 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1418 EmitVarDecl(*VD); 1419 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1420 /*Volatile=*/false, TaskRedRef->getType()); 1421 } 1422 } 1423 1424 void CodeGenFunction::EmitOMPReductionClauseFinal( 1425 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1426 if (!HaveInsertPoint()) 1427 return; 1428 llvm::SmallVector<const Expr *, 8> Privates; 1429 llvm::SmallVector<const Expr *, 8> LHSExprs; 1430 llvm::SmallVector<const Expr *, 8> RHSExprs; 1431 llvm::SmallVector<const Expr *, 8> ReductionOps; 1432 bool HasAtLeastOneReduction = false; 1433 bool IsReductionWithTaskMod = false; 1434 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1435 // Do not emit for inscan reductions. 1436 if (C->getModifier() == OMPC_REDUCTION_inscan) 1437 continue; 1438 HasAtLeastOneReduction = true; 1439 Privates.append(C->privates().begin(), C->privates().end()); 1440 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1441 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1442 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1443 IsReductionWithTaskMod = 1444 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1445 } 1446 if (HasAtLeastOneReduction) { 1447 if (IsReductionWithTaskMod) { 1448 CGM.getOpenMPRuntime().emitTaskReductionFini( 1449 *this, D.getBeginLoc(), 1450 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1451 } 1452 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1453 isOpenMPParallelDirective(D.getDirectiveKind()) || 1454 ReductionKind == OMPD_simd; 1455 bool SimpleReduction = ReductionKind == OMPD_simd; 1456 // Emit nowait reduction if nowait clause is present or directive is a 1457 // parallel directive (it always has implicit barrier). 1458 CGM.getOpenMPRuntime().emitReduction( 1459 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1460 {WithNowait, SimpleReduction, ReductionKind}); 1461 } 1462 } 1463 1464 static void emitPostUpdateForReductionClause( 1465 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1466 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1467 if (!CGF.HaveInsertPoint()) 1468 return; 1469 llvm::BasicBlock *DoneBB = nullptr; 1470 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1471 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1472 if (!DoneBB) { 1473 if (llvm::Value *Cond = CondGen(CGF)) { 1474 // If the first post-update expression is found, emit conditional 1475 // block if it was requested. 1476 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1477 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1478 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1479 CGF.EmitBlock(ThenBB); 1480 } 1481 } 1482 CGF.EmitIgnoredExpr(PostUpdate); 1483 } 1484 } 1485 if (DoneBB) 1486 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1487 } 1488 1489 namespace { 1490 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1491 /// parallel function. This is necessary for combined constructs such as 1492 /// 'distribute parallel for' 1493 typedef llvm::function_ref<void(CodeGenFunction &, 1494 const OMPExecutableDirective &, 1495 llvm::SmallVectorImpl<llvm::Value *> &)> 1496 CodeGenBoundParametersTy; 1497 } // anonymous namespace 1498 1499 static void 1500 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1501 const OMPExecutableDirective &S) { 1502 if (CGF.getLangOpts().OpenMP < 50) 1503 return; 1504 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1505 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1506 for (const Expr *Ref : C->varlists()) { 1507 if (!Ref->getType()->isScalarType()) 1508 continue; 1509 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1510 if (!DRE) 1511 continue; 1512 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1513 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1514 } 1515 } 1516 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1517 for (const Expr *Ref : C->varlists()) { 1518 if (!Ref->getType()->isScalarType()) 1519 continue; 1520 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1521 if (!DRE) 1522 continue; 1523 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1524 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1525 } 1526 } 1527 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1528 for (const Expr *Ref : C->varlists()) { 1529 if (!Ref->getType()->isScalarType()) 1530 continue; 1531 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1532 if (!DRE) 1533 continue; 1534 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1535 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1536 } 1537 } 1538 // Privates should ne analyzed since they are not captured at all. 1539 // Task reductions may be skipped - tasks are ignored. 1540 // Firstprivates do not return value but may be passed by reference - no need 1541 // to check for updated lastprivate conditional. 1542 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1543 for (const Expr *Ref : C->varlists()) { 1544 if (!Ref->getType()->isScalarType()) 1545 continue; 1546 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1547 if (!DRE) 1548 continue; 1549 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1550 } 1551 } 1552 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1553 CGF, S, PrivateDecls); 1554 } 1555 1556 static void emitCommonOMPParallelDirective( 1557 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1558 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1559 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1560 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1561 llvm::Function *OutlinedFn = 1562 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1563 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1564 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1565 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1566 llvm::Value *NumThreads = 1567 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1568 /*IgnoreResultAssign=*/true); 1569 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1570 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1571 } 1572 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1573 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1574 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1575 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1576 } 1577 const Expr *IfCond = nullptr; 1578 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1579 if (C->getNameModifier() == OMPD_unknown || 1580 C->getNameModifier() == OMPD_parallel) { 1581 IfCond = C->getCondition(); 1582 break; 1583 } 1584 } 1585 1586 OMPParallelScope Scope(CGF, S); 1587 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1588 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1589 // lower and upper bounds with the pragma 'for' chunking mechanism. 1590 // The following lambda takes care of appending the lower and upper bound 1591 // parameters when necessary 1592 CodeGenBoundParameters(CGF, S, CapturedVars); 1593 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1594 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1595 CapturedVars, IfCond); 1596 } 1597 1598 static bool isAllocatableDecl(const VarDecl *VD) { 1599 const VarDecl *CVD = VD->getCanonicalDecl(); 1600 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1601 return false; 1602 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1603 // Use the default allocation. 1604 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1605 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1606 !AA->getAllocator()); 1607 } 1608 1609 static void emitEmptyBoundParameters(CodeGenFunction &, 1610 const OMPExecutableDirective &, 1611 llvm::SmallVectorImpl<llvm::Value *> &) {} 1612 1613 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1614 CodeGenFunction &CGF, const VarDecl *VD) { 1615 CodeGenModule &CGM = CGF.CGM; 1616 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1617 1618 if (!VD) 1619 return Address::invalid(); 1620 const VarDecl *CVD = VD->getCanonicalDecl(); 1621 if (!isAllocatableDecl(CVD)) 1622 return Address::invalid(); 1623 llvm::Value *Size; 1624 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1625 if (CVD->getType()->isVariablyModifiedType()) { 1626 Size = CGF.getTypeSize(CVD->getType()); 1627 // Align the size: ((size + align - 1) / align) * align 1628 Size = CGF.Builder.CreateNUWAdd( 1629 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1630 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1631 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1632 } else { 1633 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1634 Size = CGM.getSize(Sz.alignTo(Align)); 1635 } 1636 1637 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1638 assert(AA->getAllocator() && 1639 "Expected allocator expression for non-default allocator."); 1640 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1641 // According to the standard, the original allocator type is a enum (integer). 1642 // Convert to pointer type, if required. 1643 if (Allocator->getType()->isIntegerTy()) 1644 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1645 else if (Allocator->getType()->isPointerTy()) 1646 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1647 CGM.VoidPtrTy); 1648 1649 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1650 CGF.Builder, Size, Allocator, 1651 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1652 llvm::CallInst *FreeCI = 1653 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1654 1655 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1656 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1657 Addr, 1658 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1659 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1660 return Address(Addr, Align); 1661 } 1662 1663 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1664 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1665 SourceLocation Loc) { 1666 CodeGenModule &CGM = CGF.CGM; 1667 if (CGM.getLangOpts().OpenMPUseTLS && 1668 CGM.getContext().getTargetInfo().isTLSSupported()) 1669 return VDAddr; 1670 1671 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1672 1673 llvm::Type *VarTy = VDAddr.getElementType(); 1674 llvm::Value *Data = 1675 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1676 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1677 std::string Suffix = getNameWithSeparators({"cache", ""}); 1678 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1679 1680 llvm::CallInst *ThreadPrivateCacheCall = 1681 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1682 1683 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1684 } 1685 1686 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1687 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1688 SmallString<128> Buffer; 1689 llvm::raw_svector_ostream OS(Buffer); 1690 StringRef Sep = FirstSeparator; 1691 for (StringRef Part : Parts) { 1692 OS << Sep << Part; 1693 Sep = Separator; 1694 } 1695 return OS.str().str(); 1696 } 1697 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1698 if (CGM.getLangOpts().OpenMPIRBuilder) { 1699 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1700 // Check if we have any if clause associated with the directive. 1701 llvm::Value *IfCond = nullptr; 1702 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1703 IfCond = EmitScalarExpr(C->getCondition(), 1704 /*IgnoreResultAssign=*/true); 1705 1706 llvm::Value *NumThreads = nullptr; 1707 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1708 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1709 /*IgnoreResultAssign=*/true); 1710 1711 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1712 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1713 ProcBind = ProcBindClause->getProcBindKind(); 1714 1715 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1716 1717 // The cleanup callback that finalizes all variabels at the given location, 1718 // thus calls destructors etc. 1719 auto FiniCB = [this](InsertPointTy IP) { 1720 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1721 }; 1722 1723 // Privatization callback that performs appropriate action for 1724 // shared/private/firstprivate/lastprivate/copyin/... variables. 1725 // 1726 // TODO: This defaults to shared right now. 1727 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1728 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1729 // The next line is appropriate only for variables (Val) with the 1730 // data-sharing attribute "shared". 1731 ReplVal = &Val; 1732 1733 return CodeGenIP; 1734 }; 1735 1736 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1737 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1738 1739 auto BodyGenCB = [ParallelRegionBodyStmt, 1740 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1741 llvm::BasicBlock &ContinuationBB) { 1742 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1743 ContinuationBB); 1744 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1745 CodeGenIP, ContinuationBB); 1746 }; 1747 1748 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1749 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1750 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1751 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1752 Builder.restoreIP( 1753 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1754 IfCond, NumThreads, ProcBind, S.hasCancel())); 1755 return; 1756 } 1757 1758 // Emit parallel region as a standalone region. 1759 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1760 Action.Enter(CGF); 1761 OMPPrivateScope PrivateScope(CGF); 1762 bool Copyins = CGF.EmitOMPCopyinClause(S); 1763 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1764 if (Copyins) { 1765 // Emit implicit barrier to synchronize threads and avoid data races on 1766 // propagation master's thread values of threadprivate variables to local 1767 // instances of that variables of all other implicit threads. 1768 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1769 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1770 /*ForceSimpleCall=*/true); 1771 } 1772 CGF.EmitOMPPrivateClause(S, PrivateScope); 1773 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1774 (void)PrivateScope.Privatize(); 1775 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1776 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1777 }; 1778 { 1779 auto LPCRegion = 1780 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1781 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1782 emitEmptyBoundParameters); 1783 emitPostUpdateForReductionClause(*this, S, 1784 [](CodeGenFunction &) { return nullptr; }); 1785 } 1786 // Check for outer lastprivate conditional update. 1787 checkForLastprivateConditionalUpdate(*this, S); 1788 } 1789 1790 namespace { 1791 /// RAII to handle scopes for loop transformation directives. 1792 class OMPTransformDirectiveScopeRAII { 1793 OMPLoopScope *Scope = nullptr; 1794 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1795 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1796 1797 public: 1798 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1799 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1800 Scope = new OMPLoopScope(CGF, *Dir); 1801 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1802 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1803 } 1804 } 1805 ~OMPTransformDirectiveScopeRAII() { 1806 if (!Scope) 1807 return; 1808 delete CapInfoRAII; 1809 delete CGSI; 1810 delete Scope; 1811 } 1812 }; 1813 } // namespace 1814 1815 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1816 int MaxLevel, int Level = 0) { 1817 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1818 const Stmt *SimplifiedS = S->IgnoreContainers(); 1819 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1820 PrettyStackTraceLoc CrashInfo( 1821 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1822 "LLVM IR generation of compound statement ('{}')"); 1823 1824 // Keep track of the current cleanup stack depth, including debug scopes. 1825 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1826 for (const Stmt *CurStmt : CS->body()) 1827 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1828 return; 1829 } 1830 if (SimplifiedS == NextLoop) { 1831 if (auto *Dir = dyn_cast<OMPTileDirective>(SimplifiedS)) 1832 SimplifiedS = Dir->getTransformedStmt(); 1833 if (auto *Dir = dyn_cast<OMPUnrollDirective>(SimplifiedS)) 1834 SimplifiedS = Dir->getTransformedStmt(); 1835 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1836 SimplifiedS = CanonLoop->getLoopStmt(); 1837 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1838 S = For->getBody(); 1839 } else { 1840 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1841 "Expected canonical for loop or range-based for loop."); 1842 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1843 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1844 S = CXXFor->getBody(); 1845 } 1846 if (Level + 1 < MaxLevel) { 1847 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1848 S, /*TryImperfectlyNestedLoops=*/true); 1849 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1850 return; 1851 } 1852 } 1853 CGF.EmitStmt(S); 1854 } 1855 1856 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1857 JumpDest LoopExit) { 1858 RunCleanupsScope BodyScope(*this); 1859 // Update counters values on current iteration. 1860 for (const Expr *UE : D.updates()) 1861 EmitIgnoredExpr(UE); 1862 // Update the linear variables. 1863 // In distribute directives only loop counters may be marked as linear, no 1864 // need to generate the code for them. 1865 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1866 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1867 for (const Expr *UE : C->updates()) 1868 EmitIgnoredExpr(UE); 1869 } 1870 } 1871 1872 // On a continue in the body, jump to the end. 1873 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1874 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1875 for (const Expr *E : D.finals_conditions()) { 1876 if (!E) 1877 continue; 1878 // Check that loop counter in non-rectangular nest fits into the iteration 1879 // space. 1880 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1881 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1882 getProfileCount(D.getBody())); 1883 EmitBlock(NextBB); 1884 } 1885 1886 OMPPrivateScope InscanScope(*this); 1887 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1888 bool IsInscanRegion = InscanScope.Privatize(); 1889 if (IsInscanRegion) { 1890 // Need to remember the block before and after scan directive 1891 // to dispatch them correctly depending on the clause used in 1892 // this directive, inclusive or exclusive. For inclusive scan the natural 1893 // order of the blocks is used, for exclusive clause the blocks must be 1894 // executed in reverse order. 1895 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1896 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1897 // No need to allocate inscan exit block, in simd mode it is selected in the 1898 // codegen for the scan directive. 1899 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1900 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1901 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1902 EmitBranch(OMPScanDispatch); 1903 EmitBlock(OMPBeforeScanBlock); 1904 } 1905 1906 // Emit loop variables for C++ range loops. 1907 const Stmt *Body = 1908 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1909 // Emit loop body. 1910 emitBody(*this, Body, 1911 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1912 Body, /*TryImperfectlyNestedLoops=*/true), 1913 D.getLoopsNumber()); 1914 1915 // Jump to the dispatcher at the end of the loop body. 1916 if (IsInscanRegion) 1917 EmitBranch(OMPScanExitBlock); 1918 1919 // The end (updates/cleanups). 1920 EmitBlock(Continue.getBlock()); 1921 BreakContinueStack.pop_back(); 1922 } 1923 1924 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1925 1926 /// Emit a captured statement and return the function as well as its captured 1927 /// closure context. 1928 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1929 const CapturedStmt *S) { 1930 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1931 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1932 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1933 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1934 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1935 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1936 1937 return {F, CapStruct.getPointer(ParentCGF)}; 1938 } 1939 1940 /// Emit a call to a previously captured closure. 1941 static llvm::CallInst * 1942 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1943 llvm::ArrayRef<llvm::Value *> Args) { 1944 // Append the closure context to the argument. 1945 SmallVector<llvm::Value *> EffectiveArgs; 1946 EffectiveArgs.reserve(Args.size() + 1); 1947 llvm::append_range(EffectiveArgs, Args); 1948 EffectiveArgs.push_back(Cap.second); 1949 1950 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1951 } 1952 1953 llvm::CanonicalLoopInfo * 1954 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1955 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1956 1957 EmitStmt(S); 1958 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1959 1960 // The last added loop is the outermost one. 1961 return OMPLoopNestStack.back(); 1962 } 1963 1964 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 1965 const Stmt *SyntacticalLoop = S->getLoopStmt(); 1966 if (!getLangOpts().OpenMPIRBuilder) { 1967 // Ignore if OpenMPIRBuilder is not enabled. 1968 EmitStmt(SyntacticalLoop); 1969 return; 1970 } 1971 1972 LexicalScope ForScope(*this, S->getSourceRange()); 1973 1974 // Emit init statements. The Distance/LoopVar funcs may reference variable 1975 // declarations they contain. 1976 const Stmt *BodyStmt; 1977 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 1978 if (const Stmt *InitStmt = For->getInit()) 1979 EmitStmt(InitStmt); 1980 BodyStmt = For->getBody(); 1981 } else if (const auto *RangeFor = 1982 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 1983 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 1984 EmitStmt(RangeStmt); 1985 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 1986 EmitStmt(BeginStmt); 1987 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 1988 EmitStmt(EndStmt); 1989 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 1990 EmitStmt(LoopVarStmt); 1991 BodyStmt = RangeFor->getBody(); 1992 } else 1993 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 1994 1995 // Emit closure for later use. By-value captures will be captured here. 1996 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 1997 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 1998 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 1999 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2000 2001 // Call the distance function to get the number of iterations of the loop to 2002 // come. 2003 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2004 ->getParam(0) 2005 ->getType() 2006 .getNonReferenceType(); 2007 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2008 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2009 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2010 2011 // Emit the loop structure. 2012 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2013 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2014 llvm::Value *IndVar) { 2015 Builder.restoreIP(CodeGenIP); 2016 2017 // Emit the loop body: Convert the logical iteration number to the loop 2018 // variable and emit the body. 2019 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2020 LValue LCVal = EmitLValue(LoopVarRef); 2021 Address LoopVarAddress = LCVal.getAddress(*this); 2022 emitCapturedStmtCall(*this, LoopVarClosure, 2023 {LoopVarAddress.getPointer(), IndVar}); 2024 2025 RunCleanupsScope BodyScope(*this); 2026 EmitStmt(BodyStmt); 2027 }; 2028 llvm::CanonicalLoopInfo *CL = 2029 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2030 2031 // Finish up the loop. 2032 Builder.restoreIP(CL->getAfterIP()); 2033 ForScope.ForceCleanup(); 2034 2035 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2036 OMPLoopNestStack.push_back(CL); 2037 } 2038 2039 void CodeGenFunction::EmitOMPInnerLoop( 2040 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2041 const Expr *IncExpr, 2042 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2043 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2044 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2045 2046 // Start the loop with a block that tests the condition. 2047 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2048 EmitBlock(CondBlock); 2049 const SourceRange R = S.getSourceRange(); 2050 2051 // If attributes are attached, push to the basic block with them. 2052 const auto &OMPED = cast<OMPExecutableDirective>(S); 2053 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2054 const Stmt *SS = ICS->getCapturedStmt(); 2055 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2056 OMPLoopNestStack.clear(); 2057 if (AS) 2058 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2059 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2060 SourceLocToDebugLoc(R.getEnd())); 2061 else 2062 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2063 SourceLocToDebugLoc(R.getEnd())); 2064 2065 // If there are any cleanups between here and the loop-exit scope, 2066 // create a block to stage a loop exit along. 2067 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2068 if (RequiresCleanup) 2069 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2070 2071 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2072 2073 // Emit condition. 2074 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2075 if (ExitBlock != LoopExit.getBlock()) { 2076 EmitBlock(ExitBlock); 2077 EmitBranchThroughCleanup(LoopExit); 2078 } 2079 2080 EmitBlock(LoopBody); 2081 incrementProfileCounter(&S); 2082 2083 // Create a block for the increment. 2084 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2085 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2086 2087 BodyGen(*this); 2088 2089 // Emit "IV = IV + 1" and a back-edge to the condition block. 2090 EmitBlock(Continue.getBlock()); 2091 EmitIgnoredExpr(IncExpr); 2092 PostIncGen(*this); 2093 BreakContinueStack.pop_back(); 2094 EmitBranch(CondBlock); 2095 LoopStack.pop(); 2096 // Emit the fall-through block. 2097 EmitBlock(LoopExit.getBlock()); 2098 } 2099 2100 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2101 if (!HaveInsertPoint()) 2102 return false; 2103 // Emit inits for the linear variables. 2104 bool HasLinears = false; 2105 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2106 for (const Expr *Init : C->inits()) { 2107 HasLinears = true; 2108 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2109 if (const auto *Ref = 2110 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2111 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2112 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2113 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2114 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2115 VD->getInit()->getType(), VK_LValue, 2116 VD->getInit()->getExprLoc()); 2117 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 2118 VD->getType()), 2119 /*capturedByInit=*/false); 2120 EmitAutoVarCleanups(Emission); 2121 } else { 2122 EmitVarDecl(*VD); 2123 } 2124 } 2125 // Emit the linear steps for the linear clauses. 2126 // If a step is not constant, it is pre-calculated before the loop. 2127 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2128 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2129 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2130 // Emit calculation of the linear step. 2131 EmitIgnoredExpr(CS); 2132 } 2133 } 2134 return HasLinears; 2135 } 2136 2137 void CodeGenFunction::EmitOMPLinearClauseFinal( 2138 const OMPLoopDirective &D, 2139 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2140 if (!HaveInsertPoint()) 2141 return; 2142 llvm::BasicBlock *DoneBB = nullptr; 2143 // Emit the final values of the linear variables. 2144 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2145 auto IC = C->varlist_begin(); 2146 for (const Expr *F : C->finals()) { 2147 if (!DoneBB) { 2148 if (llvm::Value *Cond = CondGen(*this)) { 2149 // If the first post-update expression is found, emit conditional 2150 // block if it was requested. 2151 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2152 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2153 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2154 EmitBlock(ThenBB); 2155 } 2156 } 2157 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2158 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2159 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2160 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2161 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2162 CodeGenFunction::OMPPrivateScope VarScope(*this); 2163 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2164 (void)VarScope.Privatize(); 2165 EmitIgnoredExpr(F); 2166 ++IC; 2167 } 2168 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2169 EmitIgnoredExpr(PostUpdate); 2170 } 2171 if (DoneBB) 2172 EmitBlock(DoneBB, /*IsFinished=*/true); 2173 } 2174 2175 static void emitAlignedClause(CodeGenFunction &CGF, 2176 const OMPExecutableDirective &D) { 2177 if (!CGF.HaveInsertPoint()) 2178 return; 2179 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2180 llvm::APInt ClauseAlignment(64, 0); 2181 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2182 auto *AlignmentCI = 2183 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2184 ClauseAlignment = AlignmentCI->getValue(); 2185 } 2186 for (const Expr *E : Clause->varlists()) { 2187 llvm::APInt Alignment(ClauseAlignment); 2188 if (Alignment == 0) { 2189 // OpenMP [2.8.1, Description] 2190 // If no optional parameter is specified, implementation-defined default 2191 // alignments for SIMD instructions on the target platforms are assumed. 2192 Alignment = 2193 CGF.getContext() 2194 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2195 E->getType()->getPointeeType())) 2196 .getQuantity(); 2197 } 2198 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2199 "alignment is not power of 2"); 2200 if (Alignment != 0) { 2201 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2202 CGF.emitAlignmentAssumption( 2203 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2204 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2205 } 2206 } 2207 } 2208 } 2209 2210 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2211 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2212 if (!HaveInsertPoint()) 2213 return; 2214 auto I = S.private_counters().begin(); 2215 for (const Expr *E : S.counters()) { 2216 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2217 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2218 // Emit var without initialization. 2219 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2220 EmitAutoVarCleanups(VarEmission); 2221 LocalDeclMap.erase(PrivateVD); 2222 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 2223 return VarEmission.getAllocatedAddress(); 2224 }); 2225 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2226 VD->hasGlobalStorage()) { 2227 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2228 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2229 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2230 E->getType(), VK_LValue, E->getExprLoc()); 2231 return EmitLValue(&DRE).getAddress(*this); 2232 }); 2233 } else { 2234 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2235 return VarEmission.getAllocatedAddress(); 2236 }); 2237 } 2238 ++I; 2239 } 2240 // Privatize extra loop counters used in loops for ordered(n) clauses. 2241 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2242 if (!C->getNumForLoops()) 2243 continue; 2244 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2245 I < E; ++I) { 2246 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2247 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2248 // Override only those variables that can be captured to avoid re-emission 2249 // of the variables declared within the loops. 2250 if (DRE->refersToEnclosingVariableOrCapture()) { 2251 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2252 return CreateMemTemp(DRE->getType(), VD->getName()); 2253 }); 2254 } 2255 } 2256 } 2257 } 2258 2259 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2260 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2261 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2262 if (!CGF.HaveInsertPoint()) 2263 return; 2264 { 2265 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2266 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2267 (void)PreCondScope.Privatize(); 2268 // Get initial values of real counters. 2269 for (const Expr *I : S.inits()) { 2270 CGF.EmitIgnoredExpr(I); 2271 } 2272 } 2273 // Create temp loop control variables with their init values to support 2274 // non-rectangular loops. 2275 CodeGenFunction::OMPMapVars PreCondVars; 2276 for (const Expr * E: S.dependent_counters()) { 2277 if (!E) 2278 continue; 2279 assert(!E->getType().getNonReferenceType()->isRecordType() && 2280 "dependent counter must not be an iterator."); 2281 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2282 Address CounterAddr = 2283 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2284 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2285 } 2286 (void)PreCondVars.apply(CGF); 2287 for (const Expr *E : S.dependent_inits()) { 2288 if (!E) 2289 continue; 2290 CGF.EmitIgnoredExpr(E); 2291 } 2292 // Check that loop is executed at least one time. 2293 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2294 PreCondVars.restore(CGF); 2295 } 2296 2297 void CodeGenFunction::EmitOMPLinearClause( 2298 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2299 if (!HaveInsertPoint()) 2300 return; 2301 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2302 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2303 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2304 for (const Expr *C : LoopDirective->counters()) { 2305 SIMDLCVs.insert( 2306 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2307 } 2308 } 2309 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2310 auto CurPrivate = C->privates().begin(); 2311 for (const Expr *E : C->varlists()) { 2312 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2313 const auto *PrivateVD = 2314 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2315 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2316 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2317 // Emit private VarDecl with copy init. 2318 EmitVarDecl(*PrivateVD); 2319 return GetAddrOfLocalVar(PrivateVD); 2320 }); 2321 assert(IsRegistered && "linear var already registered as private"); 2322 // Silence the warning about unused variable. 2323 (void)IsRegistered; 2324 } else { 2325 EmitVarDecl(*PrivateVD); 2326 } 2327 ++CurPrivate; 2328 } 2329 } 2330 } 2331 2332 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2333 const OMPExecutableDirective &D) { 2334 if (!CGF.HaveInsertPoint()) 2335 return; 2336 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2337 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2338 /*ignoreResult=*/true); 2339 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2340 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2341 // In presence of finite 'safelen', it may be unsafe to mark all 2342 // the memory instructions parallel, because loop-carried 2343 // dependences of 'safelen' iterations are possible. 2344 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2345 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2346 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2347 /*ignoreResult=*/true); 2348 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2349 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2350 // In presence of finite 'safelen', it may be unsafe to mark all 2351 // the memory instructions parallel, because loop-carried 2352 // dependences of 'safelen' iterations are possible. 2353 CGF.LoopStack.setParallel(/*Enable=*/false); 2354 } 2355 } 2356 2357 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2358 // Walk clauses and process safelen/lastprivate. 2359 LoopStack.setParallel(/*Enable=*/true); 2360 LoopStack.setVectorizeEnable(); 2361 emitSimdlenSafelenClause(*this, D); 2362 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2363 if (C->getKind() == OMPC_ORDER_concurrent) 2364 LoopStack.setParallel(/*Enable=*/true); 2365 if ((D.getDirectiveKind() == OMPD_simd || 2366 (getLangOpts().OpenMPSimd && 2367 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2368 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2369 [](const OMPReductionClause *C) { 2370 return C->getModifier() == OMPC_REDUCTION_inscan; 2371 })) 2372 // Disable parallel access in case of prefix sum. 2373 LoopStack.setParallel(/*Enable=*/false); 2374 } 2375 2376 void CodeGenFunction::EmitOMPSimdFinal( 2377 const OMPLoopDirective &D, 2378 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2379 if (!HaveInsertPoint()) 2380 return; 2381 llvm::BasicBlock *DoneBB = nullptr; 2382 auto IC = D.counters().begin(); 2383 auto IPC = D.private_counters().begin(); 2384 for (const Expr *F : D.finals()) { 2385 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2386 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2387 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2388 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2389 OrigVD->hasGlobalStorage() || CED) { 2390 if (!DoneBB) { 2391 if (llvm::Value *Cond = CondGen(*this)) { 2392 // If the first post-update expression is found, emit conditional 2393 // block if it was requested. 2394 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2395 DoneBB = createBasicBlock(".omp.final.done"); 2396 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2397 EmitBlock(ThenBB); 2398 } 2399 } 2400 Address OrigAddr = Address::invalid(); 2401 if (CED) { 2402 OrigAddr = 2403 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2404 } else { 2405 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2406 /*RefersToEnclosingVariableOrCapture=*/false, 2407 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2408 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2409 } 2410 OMPPrivateScope VarScope(*this); 2411 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2412 (void)VarScope.Privatize(); 2413 EmitIgnoredExpr(F); 2414 } 2415 ++IC; 2416 ++IPC; 2417 } 2418 if (DoneBB) 2419 EmitBlock(DoneBB, /*IsFinished=*/true); 2420 } 2421 2422 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2423 const OMPLoopDirective &S, 2424 CodeGenFunction::JumpDest LoopExit) { 2425 CGF.EmitOMPLoopBody(S, LoopExit); 2426 CGF.EmitStopPoint(&S); 2427 } 2428 2429 /// Emit a helper variable and return corresponding lvalue. 2430 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2431 const DeclRefExpr *Helper) { 2432 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2433 CGF.EmitVarDecl(*VDecl); 2434 return CGF.EmitLValue(Helper); 2435 } 2436 2437 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2438 const RegionCodeGenTy &SimdInitGen, 2439 const RegionCodeGenTy &BodyCodeGen) { 2440 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2441 PrePostActionTy &) { 2442 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2443 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2444 SimdInitGen(CGF); 2445 2446 BodyCodeGen(CGF); 2447 }; 2448 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2449 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2450 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2451 2452 BodyCodeGen(CGF); 2453 }; 2454 const Expr *IfCond = nullptr; 2455 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2456 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2457 if (CGF.getLangOpts().OpenMP >= 50 && 2458 (C->getNameModifier() == OMPD_unknown || 2459 C->getNameModifier() == OMPD_simd)) { 2460 IfCond = C->getCondition(); 2461 break; 2462 } 2463 } 2464 } 2465 if (IfCond) { 2466 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2467 } else { 2468 RegionCodeGenTy ThenRCG(ThenGen); 2469 ThenRCG(CGF); 2470 } 2471 } 2472 2473 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2474 PrePostActionTy &Action) { 2475 Action.Enter(CGF); 2476 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2477 "Expected simd directive"); 2478 OMPLoopScope PreInitScope(CGF, S); 2479 // if (PreCond) { 2480 // for (IV in 0..LastIteration) BODY; 2481 // <Final counter/linear vars updates>; 2482 // } 2483 // 2484 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2485 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2486 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2487 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2488 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2489 } 2490 2491 // Emit: if (PreCond) - begin. 2492 // If the condition constant folds and can be elided, avoid emitting the 2493 // whole loop. 2494 bool CondConstant; 2495 llvm::BasicBlock *ContBlock = nullptr; 2496 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2497 if (!CondConstant) 2498 return; 2499 } else { 2500 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2501 ContBlock = CGF.createBasicBlock("simd.if.end"); 2502 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2503 CGF.getProfileCount(&S)); 2504 CGF.EmitBlock(ThenBlock); 2505 CGF.incrementProfileCounter(&S); 2506 } 2507 2508 // Emit the loop iteration variable. 2509 const Expr *IVExpr = S.getIterationVariable(); 2510 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2511 CGF.EmitVarDecl(*IVDecl); 2512 CGF.EmitIgnoredExpr(S.getInit()); 2513 2514 // Emit the iterations count variable. 2515 // If it is not a variable, Sema decided to calculate iterations count on 2516 // each iteration (e.g., it is foldable into a constant). 2517 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2518 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2519 // Emit calculation of the iterations count. 2520 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2521 } 2522 2523 emitAlignedClause(CGF, S); 2524 (void)CGF.EmitOMPLinearClauseInit(S); 2525 { 2526 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2527 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2528 CGF.EmitOMPLinearClause(S, LoopScope); 2529 CGF.EmitOMPPrivateClause(S, LoopScope); 2530 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2531 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2532 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2533 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2534 (void)LoopScope.Privatize(); 2535 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2536 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2537 2538 emitCommonSimdLoop( 2539 CGF, S, 2540 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2541 CGF.EmitOMPSimdInit(S); 2542 }, 2543 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2544 CGF.EmitOMPInnerLoop( 2545 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2546 [&S](CodeGenFunction &CGF) { 2547 emitOMPLoopBodyWithStopPoint(CGF, S, 2548 CodeGenFunction::JumpDest()); 2549 }, 2550 [](CodeGenFunction &) {}); 2551 }); 2552 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2553 // Emit final copy of the lastprivate variables at the end of loops. 2554 if (HasLastprivateClause) 2555 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2556 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2557 emitPostUpdateForReductionClause(CGF, S, 2558 [](CodeGenFunction &) { return nullptr; }); 2559 } 2560 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2561 // Emit: if (PreCond) - end. 2562 if (ContBlock) { 2563 CGF.EmitBranch(ContBlock); 2564 CGF.EmitBlock(ContBlock, true); 2565 } 2566 } 2567 2568 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2569 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2570 OMPFirstScanLoop = true; 2571 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2572 emitOMPSimdRegion(CGF, S, Action); 2573 }; 2574 { 2575 auto LPCRegion = 2576 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2577 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2578 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2579 } 2580 // Check for outer lastprivate conditional update. 2581 checkForLastprivateConditionalUpdate(*this, S); 2582 } 2583 2584 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2585 // Emit the de-sugared statement. 2586 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2587 EmitStmt(S.getTransformedStmt()); 2588 } 2589 2590 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2591 // This function is only called if the unrolled loop is not consumed by any 2592 // other loop-associated construct. Such a loop-associated construct will have 2593 // used the transformed AST. 2594 2595 // Set the unroll metadata for the next emitted loop. 2596 LoopStack.setUnrollState(LoopAttributes::Enable); 2597 2598 if (S.hasClausesOfKind<OMPFullClause>()) { 2599 LoopStack.setUnrollState(LoopAttributes::Full); 2600 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2601 if (Expr *FactorExpr = PartialClause->getFactor()) { 2602 uint64_t Factor = 2603 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2604 assert(Factor >= 1 && "Only positive factors are valid"); 2605 LoopStack.setUnrollCount(Factor); 2606 } 2607 } 2608 2609 EmitStmt(S.getAssociatedStmt()); 2610 } 2611 2612 void CodeGenFunction::EmitOMPOuterLoop( 2613 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2614 CodeGenFunction::OMPPrivateScope &LoopScope, 2615 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2616 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2617 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2618 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2619 2620 const Expr *IVExpr = S.getIterationVariable(); 2621 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2622 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2623 2624 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2625 2626 // Start the loop with a block that tests the condition. 2627 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2628 EmitBlock(CondBlock); 2629 const SourceRange R = S.getSourceRange(); 2630 OMPLoopNestStack.clear(); 2631 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2632 SourceLocToDebugLoc(R.getEnd())); 2633 2634 llvm::Value *BoolCondVal = nullptr; 2635 if (!DynamicOrOrdered) { 2636 // UB = min(UB, GlobalUB) or 2637 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2638 // 'distribute parallel for') 2639 EmitIgnoredExpr(LoopArgs.EUB); 2640 // IV = LB 2641 EmitIgnoredExpr(LoopArgs.Init); 2642 // IV < UB 2643 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2644 } else { 2645 BoolCondVal = 2646 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2647 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2648 } 2649 2650 // If there are any cleanups between here and the loop-exit scope, 2651 // create a block to stage a loop exit along. 2652 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2653 if (LoopScope.requiresCleanups()) 2654 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2655 2656 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2657 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2658 if (ExitBlock != LoopExit.getBlock()) { 2659 EmitBlock(ExitBlock); 2660 EmitBranchThroughCleanup(LoopExit); 2661 } 2662 EmitBlock(LoopBody); 2663 2664 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2665 // LB for loop condition and emitted it above). 2666 if (DynamicOrOrdered) 2667 EmitIgnoredExpr(LoopArgs.Init); 2668 2669 // Create a block for the increment. 2670 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2671 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2672 2673 emitCommonSimdLoop( 2674 *this, S, 2675 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2676 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2677 // with dynamic/guided scheduling and without ordered clause. 2678 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2679 CGF.LoopStack.setParallel(!IsMonotonic); 2680 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2681 if (C->getKind() == OMPC_ORDER_concurrent) 2682 CGF.LoopStack.setParallel(/*Enable=*/true); 2683 } else { 2684 CGF.EmitOMPSimdInit(S); 2685 } 2686 }, 2687 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2688 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2689 SourceLocation Loc = S.getBeginLoc(); 2690 // when 'distribute' is not combined with a 'for': 2691 // while (idx <= UB) { BODY; ++idx; } 2692 // when 'distribute' is combined with a 'for' 2693 // (e.g. 'distribute parallel for') 2694 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2695 CGF.EmitOMPInnerLoop( 2696 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2697 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2698 CodeGenLoop(CGF, S, LoopExit); 2699 }, 2700 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2701 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2702 }); 2703 }); 2704 2705 EmitBlock(Continue.getBlock()); 2706 BreakContinueStack.pop_back(); 2707 if (!DynamicOrOrdered) { 2708 // Emit "LB = LB + Stride", "UB = UB + Stride". 2709 EmitIgnoredExpr(LoopArgs.NextLB); 2710 EmitIgnoredExpr(LoopArgs.NextUB); 2711 } 2712 2713 EmitBranch(CondBlock); 2714 OMPLoopNestStack.clear(); 2715 LoopStack.pop(); 2716 // Emit the fall-through block. 2717 EmitBlock(LoopExit.getBlock()); 2718 2719 // Tell the runtime we are done. 2720 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2721 if (!DynamicOrOrdered) 2722 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2723 S.getDirectiveKind()); 2724 }; 2725 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2726 } 2727 2728 void CodeGenFunction::EmitOMPForOuterLoop( 2729 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2730 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2731 const OMPLoopArguments &LoopArgs, 2732 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2733 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2734 2735 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2736 const bool DynamicOrOrdered = 2737 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2738 2739 assert((Ordered || 2740 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2741 LoopArgs.Chunk != nullptr)) && 2742 "static non-chunked schedule does not need outer loop"); 2743 2744 // Emit outer loop. 2745 // 2746 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2747 // When schedule(dynamic,chunk_size) is specified, the iterations are 2748 // distributed to threads in the team in chunks as the threads request them. 2749 // Each thread executes a chunk of iterations, then requests another chunk, 2750 // until no chunks remain to be distributed. Each chunk contains chunk_size 2751 // iterations, except for the last chunk to be distributed, which may have 2752 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2753 // 2754 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2755 // to threads in the team in chunks as the executing threads request them. 2756 // Each thread executes a chunk of iterations, then requests another chunk, 2757 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2758 // each chunk is proportional to the number of unassigned iterations divided 2759 // by the number of threads in the team, decreasing to 1. For a chunk_size 2760 // with value k (greater than 1), the size of each chunk is determined in the 2761 // same way, with the restriction that the chunks do not contain fewer than k 2762 // iterations (except for the last chunk to be assigned, which may have fewer 2763 // than k iterations). 2764 // 2765 // When schedule(auto) is specified, the decision regarding scheduling is 2766 // delegated to the compiler and/or runtime system. The programmer gives the 2767 // implementation the freedom to choose any possible mapping of iterations to 2768 // threads in the team. 2769 // 2770 // When schedule(runtime) is specified, the decision regarding scheduling is 2771 // deferred until run time, and the schedule and chunk size are taken from the 2772 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2773 // implementation defined 2774 // 2775 // while(__kmpc_dispatch_next(&LB, &UB)) { 2776 // idx = LB; 2777 // while (idx <= UB) { BODY; ++idx; 2778 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2779 // } // inner loop 2780 // } 2781 // 2782 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2783 // When schedule(static, chunk_size) is specified, iterations are divided into 2784 // chunks of size chunk_size, and the chunks are assigned to the threads in 2785 // the team in a round-robin fashion in the order of the thread number. 2786 // 2787 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2788 // while (idx <= UB) { BODY; ++idx; } // inner loop 2789 // LB = LB + ST; 2790 // UB = UB + ST; 2791 // } 2792 // 2793 2794 const Expr *IVExpr = S.getIterationVariable(); 2795 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2796 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2797 2798 if (DynamicOrOrdered) { 2799 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2800 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2801 llvm::Value *LBVal = DispatchBounds.first; 2802 llvm::Value *UBVal = DispatchBounds.second; 2803 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2804 LoopArgs.Chunk}; 2805 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2806 IVSigned, Ordered, DipatchRTInputValues); 2807 } else { 2808 CGOpenMPRuntime::StaticRTInput StaticInit( 2809 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2810 LoopArgs.ST, LoopArgs.Chunk); 2811 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2812 ScheduleKind, StaticInit); 2813 } 2814 2815 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2816 const unsigned IVSize, 2817 const bool IVSigned) { 2818 if (Ordered) { 2819 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2820 IVSigned); 2821 } 2822 }; 2823 2824 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2825 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2826 OuterLoopArgs.IncExpr = S.getInc(); 2827 OuterLoopArgs.Init = S.getInit(); 2828 OuterLoopArgs.Cond = S.getCond(); 2829 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2830 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2831 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2832 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2833 } 2834 2835 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2836 const unsigned IVSize, const bool IVSigned) {} 2837 2838 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2839 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2840 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2841 const CodeGenLoopTy &CodeGenLoopContent) { 2842 2843 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2844 2845 // Emit outer loop. 2846 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2847 // dynamic 2848 // 2849 2850 const Expr *IVExpr = S.getIterationVariable(); 2851 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2852 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2853 2854 CGOpenMPRuntime::StaticRTInput StaticInit( 2855 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2856 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2857 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2858 2859 // for combined 'distribute' and 'for' the increment expression of distribute 2860 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2861 Expr *IncExpr; 2862 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2863 IncExpr = S.getDistInc(); 2864 else 2865 IncExpr = S.getInc(); 2866 2867 // this routine is shared by 'omp distribute parallel for' and 2868 // 'omp distribute': select the right EUB expression depending on the 2869 // directive 2870 OMPLoopArguments OuterLoopArgs; 2871 OuterLoopArgs.LB = LoopArgs.LB; 2872 OuterLoopArgs.UB = LoopArgs.UB; 2873 OuterLoopArgs.ST = LoopArgs.ST; 2874 OuterLoopArgs.IL = LoopArgs.IL; 2875 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2876 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2877 ? S.getCombinedEnsureUpperBound() 2878 : S.getEnsureUpperBound(); 2879 OuterLoopArgs.IncExpr = IncExpr; 2880 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2881 ? S.getCombinedInit() 2882 : S.getInit(); 2883 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2884 ? S.getCombinedCond() 2885 : S.getCond(); 2886 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2887 ? S.getCombinedNextLowerBound() 2888 : S.getNextLowerBound(); 2889 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2890 ? S.getCombinedNextUpperBound() 2891 : S.getNextUpperBound(); 2892 2893 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2894 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2895 emitEmptyOrdered); 2896 } 2897 2898 static std::pair<LValue, LValue> 2899 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2900 const OMPExecutableDirective &S) { 2901 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2902 LValue LB = 2903 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2904 LValue UB = 2905 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2906 2907 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2908 // parallel for') we need to use the 'distribute' 2909 // chunk lower and upper bounds rather than the whole loop iteration 2910 // space. These are parameters to the outlined function for 'parallel' 2911 // and we copy the bounds of the previous schedule into the 2912 // the current ones. 2913 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2914 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2915 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2916 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2917 PrevLBVal = CGF.EmitScalarConversion( 2918 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2919 LS.getIterationVariable()->getType(), 2920 LS.getPrevLowerBoundVariable()->getExprLoc()); 2921 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2922 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2923 PrevUBVal = CGF.EmitScalarConversion( 2924 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2925 LS.getIterationVariable()->getType(), 2926 LS.getPrevUpperBoundVariable()->getExprLoc()); 2927 2928 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2929 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2930 2931 return {LB, UB}; 2932 } 2933 2934 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2935 /// we need to use the LB and UB expressions generated by the worksharing 2936 /// code generation support, whereas in non combined situations we would 2937 /// just emit 0 and the LastIteration expression 2938 /// This function is necessary due to the difference of the LB and UB 2939 /// types for the RT emission routines for 'for_static_init' and 2940 /// 'for_dispatch_init' 2941 static std::pair<llvm::Value *, llvm::Value *> 2942 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2943 const OMPExecutableDirective &S, 2944 Address LB, Address UB) { 2945 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2946 const Expr *IVExpr = LS.getIterationVariable(); 2947 // when implementing a dynamic schedule for a 'for' combined with a 2948 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2949 // is not normalized as each team only executes its own assigned 2950 // distribute chunk 2951 QualType IteratorTy = IVExpr->getType(); 2952 llvm::Value *LBVal = 2953 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2954 llvm::Value *UBVal = 2955 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2956 return {LBVal, UBVal}; 2957 } 2958 2959 static void emitDistributeParallelForDistributeInnerBoundParams( 2960 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2961 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2962 const auto &Dir = cast<OMPLoopDirective>(S); 2963 LValue LB = 2964 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2965 llvm::Value *LBCast = 2966 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2967 CGF.SizeTy, /*isSigned=*/false); 2968 CapturedVars.push_back(LBCast); 2969 LValue UB = 2970 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2971 2972 llvm::Value *UBCast = 2973 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2974 CGF.SizeTy, /*isSigned=*/false); 2975 CapturedVars.push_back(UBCast); 2976 } 2977 2978 static void 2979 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2980 const OMPLoopDirective &S, 2981 CodeGenFunction::JumpDest LoopExit) { 2982 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2983 PrePostActionTy &Action) { 2984 Action.Enter(CGF); 2985 bool HasCancel = false; 2986 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2987 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2988 HasCancel = D->hasCancel(); 2989 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2990 HasCancel = D->hasCancel(); 2991 else if (const auto *D = 2992 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2993 HasCancel = D->hasCancel(); 2994 } 2995 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2996 HasCancel); 2997 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2998 emitDistributeParallelForInnerBounds, 2999 emitDistributeParallelForDispatchBounds); 3000 }; 3001 3002 emitCommonOMPParallelDirective( 3003 CGF, S, 3004 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3005 CGInlinedWorksharingLoop, 3006 emitDistributeParallelForDistributeInnerBoundParams); 3007 } 3008 3009 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3010 const OMPDistributeParallelForDirective &S) { 3011 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3012 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3013 S.getDistInc()); 3014 }; 3015 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3016 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3017 } 3018 3019 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3020 const OMPDistributeParallelForSimdDirective &S) { 3021 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3022 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3023 S.getDistInc()); 3024 }; 3025 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3026 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3027 } 3028 3029 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3030 const OMPDistributeSimdDirective &S) { 3031 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3032 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3033 }; 3034 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3035 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3036 } 3037 3038 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3039 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3040 // Emit SPMD target parallel for region as a standalone region. 3041 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3042 emitOMPSimdRegion(CGF, S, Action); 3043 }; 3044 llvm::Function *Fn; 3045 llvm::Constant *Addr; 3046 // Emit target region as a standalone region. 3047 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3048 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3049 assert(Fn && Addr && "Target device function emission failed."); 3050 } 3051 3052 void CodeGenFunction::EmitOMPTargetSimdDirective( 3053 const OMPTargetSimdDirective &S) { 3054 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3055 emitOMPSimdRegion(CGF, S, Action); 3056 }; 3057 emitCommonOMPTargetDirective(*this, S, CodeGen); 3058 } 3059 3060 namespace { 3061 struct ScheduleKindModifiersTy { 3062 OpenMPScheduleClauseKind Kind; 3063 OpenMPScheduleClauseModifier M1; 3064 OpenMPScheduleClauseModifier M2; 3065 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3066 OpenMPScheduleClauseModifier M1, 3067 OpenMPScheduleClauseModifier M2) 3068 : Kind(Kind), M1(M1), M2(M2) {} 3069 }; 3070 } // namespace 3071 3072 bool CodeGenFunction::EmitOMPWorksharingLoop( 3073 const OMPLoopDirective &S, Expr *EUB, 3074 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3075 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3076 // Emit the loop iteration variable. 3077 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3078 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3079 EmitVarDecl(*IVDecl); 3080 3081 // Emit the iterations count variable. 3082 // If it is not a variable, Sema decided to calculate iterations count on each 3083 // iteration (e.g., it is foldable into a constant). 3084 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3085 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3086 // Emit calculation of the iterations count. 3087 EmitIgnoredExpr(S.getCalcLastIteration()); 3088 } 3089 3090 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3091 3092 bool HasLastprivateClause; 3093 // Check pre-condition. 3094 { 3095 OMPLoopScope PreInitScope(*this, S); 3096 // Skip the entire loop if we don't meet the precondition. 3097 // If the condition constant folds and can be elided, avoid emitting the 3098 // whole loop. 3099 bool CondConstant; 3100 llvm::BasicBlock *ContBlock = nullptr; 3101 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3102 if (!CondConstant) 3103 return false; 3104 } else { 3105 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3106 ContBlock = createBasicBlock("omp.precond.end"); 3107 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3108 getProfileCount(&S)); 3109 EmitBlock(ThenBlock); 3110 incrementProfileCounter(&S); 3111 } 3112 3113 RunCleanupsScope DoacrossCleanupScope(*this); 3114 bool Ordered = false; 3115 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3116 if (OrderedClause->getNumForLoops()) 3117 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3118 else 3119 Ordered = true; 3120 } 3121 3122 llvm::DenseSet<const Expr *> EmittedFinals; 3123 emitAlignedClause(*this, S); 3124 bool HasLinears = EmitOMPLinearClauseInit(S); 3125 // Emit helper vars inits. 3126 3127 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3128 LValue LB = Bounds.first; 3129 LValue UB = Bounds.second; 3130 LValue ST = 3131 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3132 LValue IL = 3133 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3134 3135 // Emit 'then' code. 3136 { 3137 OMPPrivateScope LoopScope(*this); 3138 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3139 // Emit implicit barrier to synchronize threads and avoid data races on 3140 // initialization of firstprivate variables and post-update of 3141 // lastprivate variables. 3142 CGM.getOpenMPRuntime().emitBarrierCall( 3143 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3144 /*ForceSimpleCall=*/true); 3145 } 3146 EmitOMPPrivateClause(S, LoopScope); 3147 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3148 *this, S, EmitLValue(S.getIterationVariable())); 3149 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3150 EmitOMPReductionClauseInit(S, LoopScope); 3151 EmitOMPPrivateLoopCounters(S, LoopScope); 3152 EmitOMPLinearClause(S, LoopScope); 3153 (void)LoopScope.Privatize(); 3154 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3155 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3156 3157 // Detect the loop schedule kind and chunk. 3158 const Expr *ChunkExpr = nullptr; 3159 OpenMPScheduleTy ScheduleKind; 3160 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3161 ScheduleKind.Schedule = C->getScheduleKind(); 3162 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3163 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3164 ChunkExpr = C->getChunkSize(); 3165 } else { 3166 // Default behaviour for schedule clause. 3167 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3168 *this, S, ScheduleKind.Schedule, ChunkExpr); 3169 } 3170 bool HasChunkSizeOne = false; 3171 llvm::Value *Chunk = nullptr; 3172 if (ChunkExpr) { 3173 Chunk = EmitScalarExpr(ChunkExpr); 3174 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3175 S.getIterationVariable()->getType(), 3176 S.getBeginLoc()); 3177 Expr::EvalResult Result; 3178 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3179 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3180 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3181 } 3182 } 3183 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3184 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3185 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3186 // If the static schedule kind is specified or if the ordered clause is 3187 // specified, and if no monotonic modifier is specified, the effect will 3188 // be as if the monotonic modifier was specified. 3189 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 3190 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 3191 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3192 bool IsMonotonic = 3193 Ordered || 3194 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3195 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3196 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3197 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3198 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3199 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3200 /* Chunked */ Chunk != nullptr) || 3201 StaticChunkedOne) && 3202 !Ordered) { 3203 JumpDest LoopExit = 3204 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3205 emitCommonSimdLoop( 3206 *this, S, 3207 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3208 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3209 CGF.EmitOMPSimdInit(S); 3210 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3211 if (C->getKind() == OMPC_ORDER_concurrent) 3212 CGF.LoopStack.setParallel(/*Enable=*/true); 3213 } 3214 }, 3215 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3216 &S, ScheduleKind, LoopExit, 3217 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3218 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3219 // When no chunk_size is specified, the iteration space is divided 3220 // into chunks that are approximately equal in size, and at most 3221 // one chunk is distributed to each thread. Note that the size of 3222 // the chunks is unspecified in this case. 3223 CGOpenMPRuntime::StaticRTInput StaticInit( 3224 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3225 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3226 StaticChunkedOne ? Chunk : nullptr); 3227 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3228 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3229 StaticInit); 3230 // UB = min(UB, GlobalUB); 3231 if (!StaticChunkedOne) 3232 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3233 // IV = LB; 3234 CGF.EmitIgnoredExpr(S.getInit()); 3235 // For unchunked static schedule generate: 3236 // 3237 // while (idx <= UB) { 3238 // BODY; 3239 // ++idx; 3240 // } 3241 // 3242 // For static schedule with chunk one: 3243 // 3244 // while (IV <= PrevUB) { 3245 // BODY; 3246 // IV += ST; 3247 // } 3248 CGF.EmitOMPInnerLoop( 3249 S, LoopScope.requiresCleanups(), 3250 StaticChunkedOne ? S.getCombinedParForInDistCond() 3251 : S.getCond(), 3252 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3253 [&S, LoopExit](CodeGenFunction &CGF) { 3254 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3255 }, 3256 [](CodeGenFunction &) {}); 3257 }); 3258 EmitBlock(LoopExit.getBlock()); 3259 // Tell the runtime we are done. 3260 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3261 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3262 S.getDirectiveKind()); 3263 }; 3264 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3265 } else { 3266 // Emit the outer loop, which requests its work chunk [LB..UB] from 3267 // runtime and runs the inner loop to process it. 3268 const OMPLoopArguments LoopArguments( 3269 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3270 IL.getAddress(*this), Chunk, EUB); 3271 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3272 LoopArguments, CGDispatchBounds); 3273 } 3274 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3275 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3276 return CGF.Builder.CreateIsNotNull( 3277 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3278 }); 3279 } 3280 EmitOMPReductionClauseFinal( 3281 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3282 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3283 : /*Parallel only*/ OMPD_parallel); 3284 // Emit post-update of the reduction variables if IsLastIter != 0. 3285 emitPostUpdateForReductionClause( 3286 *this, S, [IL, &S](CodeGenFunction &CGF) { 3287 return CGF.Builder.CreateIsNotNull( 3288 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3289 }); 3290 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3291 if (HasLastprivateClause) 3292 EmitOMPLastprivateClauseFinal( 3293 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3294 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3295 } 3296 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3297 return CGF.Builder.CreateIsNotNull( 3298 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3299 }); 3300 DoacrossCleanupScope.ForceCleanup(); 3301 // We're now done with the loop, so jump to the continuation block. 3302 if (ContBlock) { 3303 EmitBranch(ContBlock); 3304 EmitBlock(ContBlock, /*IsFinished=*/true); 3305 } 3306 } 3307 return HasLastprivateClause; 3308 } 3309 3310 /// The following two functions generate expressions for the loop lower 3311 /// and upper bounds in case of static and dynamic (dispatch) schedule 3312 /// of the associated 'for' or 'distribute' loop. 3313 static std::pair<LValue, LValue> 3314 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3315 const auto &LS = cast<OMPLoopDirective>(S); 3316 LValue LB = 3317 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3318 LValue UB = 3319 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3320 return {LB, UB}; 3321 } 3322 3323 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3324 /// consider the lower and upper bound expressions generated by the 3325 /// worksharing loop support, but we use 0 and the iteration space size as 3326 /// constants 3327 static std::pair<llvm::Value *, llvm::Value *> 3328 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3329 Address LB, Address UB) { 3330 const auto &LS = cast<OMPLoopDirective>(S); 3331 const Expr *IVExpr = LS.getIterationVariable(); 3332 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3333 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3334 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3335 return {LBVal, UBVal}; 3336 } 3337 3338 /// Emits internal temp array declarations for the directive with inscan 3339 /// reductions. 3340 /// The code is the following: 3341 /// \code 3342 /// size num_iters = <num_iters>; 3343 /// <type> buffer[num_iters]; 3344 /// \endcode 3345 static void emitScanBasedDirectiveDecls( 3346 CodeGenFunction &CGF, const OMPLoopDirective &S, 3347 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3348 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3349 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3350 SmallVector<const Expr *, 4> Shareds; 3351 SmallVector<const Expr *, 4> Privates; 3352 SmallVector<const Expr *, 4> ReductionOps; 3353 SmallVector<const Expr *, 4> CopyArrayTemps; 3354 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3355 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3356 "Only inscan reductions are expected."); 3357 Shareds.append(C->varlist_begin(), C->varlist_end()); 3358 Privates.append(C->privates().begin(), C->privates().end()); 3359 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3360 CopyArrayTemps.append(C->copy_array_temps().begin(), 3361 C->copy_array_temps().end()); 3362 } 3363 { 3364 // Emit buffers for each reduction variables. 3365 // ReductionCodeGen is required to emit correctly the code for array 3366 // reductions. 3367 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3368 unsigned Count = 0; 3369 auto *ITA = CopyArrayTemps.begin(); 3370 for (const Expr *IRef : Privates) { 3371 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3372 // Emit variably modified arrays, used for arrays/array sections 3373 // reductions. 3374 if (PrivateVD->getType()->isVariablyModifiedType()) { 3375 RedCG.emitSharedOrigLValue(CGF, Count); 3376 RedCG.emitAggregateType(CGF, Count); 3377 } 3378 CodeGenFunction::OpaqueValueMapping DimMapping( 3379 CGF, 3380 cast<OpaqueValueExpr>( 3381 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3382 ->getSizeExpr()), 3383 RValue::get(OMPScanNumIterations)); 3384 // Emit temp buffer. 3385 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3386 ++ITA; 3387 ++Count; 3388 } 3389 } 3390 } 3391 3392 /// Emits the code for the directive with inscan reductions. 3393 /// The code is the following: 3394 /// \code 3395 /// #pragma omp ... 3396 /// for (i: 0..<num_iters>) { 3397 /// <input phase>; 3398 /// buffer[i] = red; 3399 /// } 3400 /// #pragma omp master // in parallel region 3401 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3402 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3403 /// buffer[i] op= buffer[i-pow(2,k)]; 3404 /// #pragma omp barrier // in parallel region 3405 /// #pragma omp ... 3406 /// for (0..<num_iters>) { 3407 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3408 /// <scan phase>; 3409 /// } 3410 /// \endcode 3411 static void emitScanBasedDirective( 3412 CodeGenFunction &CGF, const OMPLoopDirective &S, 3413 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3414 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3415 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3416 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3417 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3418 SmallVector<const Expr *, 4> Privates; 3419 SmallVector<const Expr *, 4> ReductionOps; 3420 SmallVector<const Expr *, 4> LHSs; 3421 SmallVector<const Expr *, 4> RHSs; 3422 SmallVector<const Expr *, 4> CopyArrayElems; 3423 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3424 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3425 "Only inscan reductions are expected."); 3426 Privates.append(C->privates().begin(), C->privates().end()); 3427 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3428 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3429 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3430 CopyArrayElems.append(C->copy_array_elems().begin(), 3431 C->copy_array_elems().end()); 3432 } 3433 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3434 { 3435 // Emit loop with input phase: 3436 // #pragma omp ... 3437 // for (i: 0..<num_iters>) { 3438 // <input phase>; 3439 // buffer[i] = red; 3440 // } 3441 CGF.OMPFirstScanLoop = true; 3442 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3443 FirstGen(CGF); 3444 } 3445 // #pragma omp barrier // in parallel region 3446 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3447 &ReductionOps, 3448 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3449 Action.Enter(CGF); 3450 // Emit prefix reduction: 3451 // #pragma omp master // in parallel region 3452 // for (int k = 0; k <= ceil(log2(n)); ++k) 3453 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3454 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3455 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3456 llvm::Function *F = 3457 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3458 llvm::Value *Arg = 3459 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3460 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3461 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3462 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3463 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3464 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3465 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3466 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3467 CGF.EmitBlock(LoopBB); 3468 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3469 // size pow2k = 1; 3470 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3471 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3472 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3473 // for (size i = n - 1; i >= 2 ^ k; --i) 3474 // tmp[i] op= tmp[i-pow2k]; 3475 llvm::BasicBlock *InnerLoopBB = 3476 CGF.createBasicBlock("omp.inner.log.scan.body"); 3477 llvm::BasicBlock *InnerExitBB = 3478 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3479 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3480 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3481 CGF.EmitBlock(InnerLoopBB); 3482 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3483 IVal->addIncoming(NMin1, LoopBB); 3484 { 3485 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3486 auto *ILHS = LHSs.begin(); 3487 auto *IRHS = RHSs.begin(); 3488 for (const Expr *CopyArrayElem : CopyArrayElems) { 3489 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3490 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3491 Address LHSAddr = Address::invalid(); 3492 { 3493 CodeGenFunction::OpaqueValueMapping IdxMapping( 3494 CGF, 3495 cast<OpaqueValueExpr>( 3496 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3497 RValue::get(IVal)); 3498 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3499 } 3500 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3501 Address RHSAddr = Address::invalid(); 3502 { 3503 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3504 CodeGenFunction::OpaqueValueMapping IdxMapping( 3505 CGF, 3506 cast<OpaqueValueExpr>( 3507 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3508 RValue::get(OffsetIVal)); 3509 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3510 } 3511 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3512 ++ILHS; 3513 ++IRHS; 3514 } 3515 PrivScope.Privatize(); 3516 CGF.CGM.getOpenMPRuntime().emitReduction( 3517 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3518 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3519 } 3520 llvm::Value *NextIVal = 3521 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3522 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3523 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3524 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3525 CGF.EmitBlock(InnerExitBB); 3526 llvm::Value *Next = 3527 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3528 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3529 // pow2k <<= 1; 3530 llvm::Value *NextPow2K = 3531 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3532 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3533 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3534 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3535 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3536 CGF.EmitBlock(ExitBB); 3537 }; 3538 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3539 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3540 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3541 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3542 /*ForceSimpleCall=*/true); 3543 } else { 3544 RegionCodeGenTy RCG(CodeGen); 3545 RCG(CGF); 3546 } 3547 3548 CGF.OMPFirstScanLoop = false; 3549 SecondGen(CGF); 3550 } 3551 3552 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3553 const OMPLoopDirective &S, 3554 bool HasCancel) { 3555 bool HasLastprivates; 3556 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3557 [](const OMPReductionClause *C) { 3558 return C->getModifier() == OMPC_REDUCTION_inscan; 3559 })) { 3560 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3561 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3562 OMPLoopScope LoopScope(CGF, S); 3563 return CGF.EmitScalarExpr(S.getNumIterations()); 3564 }; 3565 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3566 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3567 CGF, S.getDirectiveKind(), HasCancel); 3568 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3569 emitForLoopBounds, 3570 emitDispatchForLoopBounds); 3571 // Emit an implicit barrier at the end. 3572 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3573 OMPD_for); 3574 }; 3575 const auto &&SecondGen = [&S, HasCancel, 3576 &HasLastprivates](CodeGenFunction &CGF) { 3577 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3578 CGF, S.getDirectiveKind(), HasCancel); 3579 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3580 emitForLoopBounds, 3581 emitDispatchForLoopBounds); 3582 }; 3583 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3584 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3585 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3586 } else { 3587 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3588 HasCancel); 3589 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3590 emitForLoopBounds, 3591 emitDispatchForLoopBounds); 3592 } 3593 return HasLastprivates; 3594 } 3595 3596 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3597 if (S.hasCancel()) 3598 return false; 3599 for (OMPClause *C : S.clauses()) 3600 if (!isa<OMPNowaitClause>(C)) 3601 return false; 3602 3603 return true; 3604 } 3605 3606 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3607 bool HasLastprivates = false; 3608 bool UseOMPIRBuilder = 3609 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3610 auto &&CodeGen = [this, &S, &HasLastprivates, 3611 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3612 // Use the OpenMPIRBuilder if enabled. 3613 if (UseOMPIRBuilder) { 3614 // Emit the associated statement and get its loop representation. 3615 const Stmt *Inner = S.getRawStmt(); 3616 llvm::CanonicalLoopInfo *CLI = 3617 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3618 3619 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3620 llvm::OpenMPIRBuilder &OMPBuilder = 3621 CGM.getOpenMPRuntime().getOMPBuilder(); 3622 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3623 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3624 OMPBuilder.createWorkshareLoop(Builder, CLI, AllocaIP, NeedsBarrier); 3625 return; 3626 } 3627 3628 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3629 }; 3630 { 3631 auto LPCRegion = 3632 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3633 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3634 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3635 S.hasCancel()); 3636 } 3637 3638 if (!UseOMPIRBuilder) { 3639 // Emit an implicit barrier at the end. 3640 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3641 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3642 } 3643 // Check for outer lastprivate conditional update. 3644 checkForLastprivateConditionalUpdate(*this, S); 3645 } 3646 3647 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3648 bool HasLastprivates = false; 3649 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3650 PrePostActionTy &) { 3651 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3652 }; 3653 { 3654 auto LPCRegion = 3655 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3656 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3657 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3658 } 3659 3660 // Emit an implicit barrier at the end. 3661 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3662 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3663 // Check for outer lastprivate conditional update. 3664 checkForLastprivateConditionalUpdate(*this, S); 3665 } 3666 3667 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3668 const Twine &Name, 3669 llvm::Value *Init = nullptr) { 3670 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3671 if (Init) 3672 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3673 return LVal; 3674 } 3675 3676 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3677 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3678 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3679 bool HasLastprivates = false; 3680 auto &&CodeGen = [&S, CapturedStmt, CS, 3681 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3682 const ASTContext &C = CGF.getContext(); 3683 QualType KmpInt32Ty = 3684 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3685 // Emit helper vars inits. 3686 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3687 CGF.Builder.getInt32(0)); 3688 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3689 ? CGF.Builder.getInt32(CS->size() - 1) 3690 : CGF.Builder.getInt32(0); 3691 LValue UB = 3692 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3693 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3694 CGF.Builder.getInt32(1)); 3695 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3696 CGF.Builder.getInt32(0)); 3697 // Loop counter. 3698 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3699 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3700 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3701 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3702 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3703 // Generate condition for loop. 3704 BinaryOperator *Cond = BinaryOperator::Create( 3705 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 3706 S.getBeginLoc(), FPOptionsOverride()); 3707 // Increment for loop counter. 3708 UnaryOperator *Inc = UnaryOperator::Create( 3709 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 3710 S.getBeginLoc(), true, FPOptionsOverride()); 3711 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3712 // Iterate through all sections and emit a switch construct: 3713 // switch (IV) { 3714 // case 0: 3715 // <SectionStmt[0]>; 3716 // break; 3717 // ... 3718 // case <NumSection> - 1: 3719 // <SectionStmt[<NumSection> - 1]>; 3720 // break; 3721 // } 3722 // .omp.sections.exit: 3723 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3724 llvm::SwitchInst *SwitchStmt = 3725 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3726 ExitBB, CS == nullptr ? 1 : CS->size()); 3727 if (CS) { 3728 unsigned CaseNumber = 0; 3729 for (const Stmt *SubStmt : CS->children()) { 3730 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3731 CGF.EmitBlock(CaseBB); 3732 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3733 CGF.EmitStmt(SubStmt); 3734 CGF.EmitBranch(ExitBB); 3735 ++CaseNumber; 3736 } 3737 } else { 3738 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3739 CGF.EmitBlock(CaseBB); 3740 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3741 CGF.EmitStmt(CapturedStmt); 3742 CGF.EmitBranch(ExitBB); 3743 } 3744 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3745 }; 3746 3747 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3748 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3749 // Emit implicit barrier to synchronize threads and avoid data races on 3750 // initialization of firstprivate variables and post-update of lastprivate 3751 // variables. 3752 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3753 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3754 /*ForceSimpleCall=*/true); 3755 } 3756 CGF.EmitOMPPrivateClause(S, LoopScope); 3757 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3758 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3759 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3760 (void)LoopScope.Privatize(); 3761 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3762 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3763 3764 // Emit static non-chunked loop. 3765 OpenMPScheduleTy ScheduleKind; 3766 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3767 CGOpenMPRuntime::StaticRTInput StaticInit( 3768 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3769 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3770 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3771 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3772 // UB = min(UB, GlobalUB); 3773 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3774 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3775 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3776 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3777 // IV = LB; 3778 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3779 // while (idx <= UB) { BODY; ++idx; } 3780 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3781 [](CodeGenFunction &) {}); 3782 // Tell the runtime we are done. 3783 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3784 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3785 S.getDirectiveKind()); 3786 }; 3787 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3788 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3789 // Emit post-update of the reduction variables if IsLastIter != 0. 3790 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3791 return CGF.Builder.CreateIsNotNull( 3792 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3793 }); 3794 3795 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3796 if (HasLastprivates) 3797 CGF.EmitOMPLastprivateClauseFinal( 3798 S, /*NoFinals=*/false, 3799 CGF.Builder.CreateIsNotNull( 3800 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3801 }; 3802 3803 bool HasCancel = false; 3804 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3805 HasCancel = OSD->hasCancel(); 3806 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3807 HasCancel = OPSD->hasCancel(); 3808 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3809 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3810 HasCancel); 3811 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3812 // clause. Otherwise the barrier will be generated by the codegen for the 3813 // directive. 3814 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3815 // Emit implicit barrier to synchronize threads and avoid data races on 3816 // initialization of firstprivate variables. 3817 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3818 OMPD_unknown); 3819 } 3820 } 3821 3822 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3823 if (CGM.getLangOpts().OpenMPIRBuilder) { 3824 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3825 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3826 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 3827 3828 auto FiniCB = [this](InsertPointTy IP) { 3829 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3830 }; 3831 3832 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 3833 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3834 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3835 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 3836 if (CS) { 3837 for (const Stmt *SubStmt : CS->children()) { 3838 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 3839 InsertPointTy CodeGenIP, 3840 llvm::BasicBlock &FiniBB) { 3841 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 3842 FiniBB); 3843 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP, 3844 FiniBB); 3845 }; 3846 SectionCBVector.push_back(SectionCB); 3847 } 3848 } else { 3849 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 3850 InsertPointTy CodeGenIP, 3851 llvm::BasicBlock &FiniBB) { 3852 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3853 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP, 3854 FiniBB); 3855 }; 3856 SectionCBVector.push_back(SectionCB); 3857 } 3858 3859 // Privatization callback that performs appropriate action for 3860 // shared/private/firstprivate/lastprivate/copyin/... variables. 3861 // 3862 // TODO: This defaults to shared right now. 3863 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 3864 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 3865 // The next line is appropriate only for variables (Val) with the 3866 // data-sharing attribute "shared". 3867 ReplVal = &Val; 3868 3869 return CodeGenIP; 3870 }; 3871 3872 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 3873 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3874 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3875 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3876 Builder.restoreIP(OMPBuilder.createSections( 3877 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 3878 S.getSingleClause<OMPNowaitClause>())); 3879 return; 3880 } 3881 { 3882 auto LPCRegion = 3883 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3884 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3885 EmitSections(S); 3886 } 3887 // Emit an implicit barrier at the end. 3888 if (!S.getSingleClause<OMPNowaitClause>()) { 3889 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3890 OMPD_sections); 3891 } 3892 // Check for outer lastprivate conditional update. 3893 checkForLastprivateConditionalUpdate(*this, S); 3894 } 3895 3896 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3897 if (CGM.getLangOpts().OpenMPIRBuilder) { 3898 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3899 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3900 3901 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 3902 auto FiniCB = [this](InsertPointTy IP) { 3903 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3904 }; 3905 3906 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 3907 InsertPointTy CodeGenIP, 3908 llvm::BasicBlock &FiniBB) { 3909 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3910 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt, 3911 CodeGenIP, FiniBB); 3912 }; 3913 3914 LexicalScope Scope(*this, S.getSourceRange()); 3915 EmitStopPoint(&S); 3916 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 3917 3918 return; 3919 } 3920 LexicalScope Scope(*this, S.getSourceRange()); 3921 EmitStopPoint(&S); 3922 EmitStmt(S.getAssociatedStmt()); 3923 } 3924 3925 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3926 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3927 llvm::SmallVector<const Expr *, 8> DestExprs; 3928 llvm::SmallVector<const Expr *, 8> SrcExprs; 3929 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3930 // Check if there are any 'copyprivate' clauses associated with this 3931 // 'single' construct. 3932 // Build a list of copyprivate variables along with helper expressions 3933 // (<source>, <destination>, <destination>=<source> expressions) 3934 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3935 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3936 DestExprs.append(C->destination_exprs().begin(), 3937 C->destination_exprs().end()); 3938 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3939 AssignmentOps.append(C->assignment_ops().begin(), 3940 C->assignment_ops().end()); 3941 } 3942 // Emit code for 'single' region along with 'copyprivate' clauses 3943 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3944 Action.Enter(CGF); 3945 OMPPrivateScope SingleScope(CGF); 3946 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3947 CGF.EmitOMPPrivateClause(S, SingleScope); 3948 (void)SingleScope.Privatize(); 3949 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3950 }; 3951 { 3952 auto LPCRegion = 3953 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3954 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3955 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3956 CopyprivateVars, DestExprs, 3957 SrcExprs, AssignmentOps); 3958 } 3959 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3960 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3961 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3962 CGM.getOpenMPRuntime().emitBarrierCall( 3963 *this, S.getBeginLoc(), 3964 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3965 } 3966 // Check for outer lastprivate conditional update. 3967 checkForLastprivateConditionalUpdate(*this, S); 3968 } 3969 3970 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3971 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3972 Action.Enter(CGF); 3973 CGF.EmitStmt(S.getRawStmt()); 3974 }; 3975 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3976 } 3977 3978 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3979 if (CGM.getLangOpts().OpenMPIRBuilder) { 3980 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3981 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3982 3983 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 3984 3985 auto FiniCB = [this](InsertPointTy IP) { 3986 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3987 }; 3988 3989 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 3990 InsertPointTy CodeGenIP, 3991 llvm::BasicBlock &FiniBB) { 3992 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3993 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 3994 CodeGenIP, FiniBB); 3995 }; 3996 3997 LexicalScope Scope(*this, S.getSourceRange()); 3998 EmitStopPoint(&S); 3999 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4000 4001 return; 4002 } 4003 LexicalScope Scope(*this, S.getSourceRange()); 4004 EmitStopPoint(&S); 4005 emitMaster(*this, S); 4006 } 4007 4008 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4009 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4010 Action.Enter(CGF); 4011 CGF.EmitStmt(S.getRawStmt()); 4012 }; 4013 Expr *Filter = nullptr; 4014 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4015 Filter = FilterClause->getThreadID(); 4016 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4017 Filter); 4018 } 4019 4020 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4021 if (CGM.getLangOpts().OpenMPIRBuilder) { 4022 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4023 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4024 4025 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4026 const Expr *Filter = nullptr; 4027 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4028 Filter = FilterClause->getThreadID(); 4029 llvm::Value *FilterVal = Filter 4030 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4031 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4032 4033 auto FiniCB = [this](InsertPointTy IP) { 4034 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4035 }; 4036 4037 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4038 InsertPointTy CodeGenIP, 4039 llvm::BasicBlock &FiniBB) { 4040 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4041 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt, 4042 CodeGenIP, FiniBB); 4043 }; 4044 4045 LexicalScope Scope(*this, S.getSourceRange()); 4046 EmitStopPoint(&S); 4047 Builder.restoreIP( 4048 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4049 4050 return; 4051 } 4052 LexicalScope Scope(*this, S.getSourceRange()); 4053 EmitStopPoint(&S); 4054 emitMasked(*this, S); 4055 } 4056 4057 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4058 if (CGM.getLangOpts().OpenMPIRBuilder) { 4059 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4060 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4061 4062 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4063 const Expr *Hint = nullptr; 4064 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4065 Hint = HintClause->getHint(); 4066 4067 // TODO: This is slightly different from what's currently being done in 4068 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4069 // about typing is final. 4070 llvm::Value *HintInst = nullptr; 4071 if (Hint) 4072 HintInst = 4073 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4074 4075 auto FiniCB = [this](InsertPointTy IP) { 4076 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4077 }; 4078 4079 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4080 InsertPointTy CodeGenIP, 4081 llvm::BasicBlock &FiniBB) { 4082 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4083 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 4084 CodeGenIP, FiniBB); 4085 }; 4086 4087 LexicalScope Scope(*this, S.getSourceRange()); 4088 EmitStopPoint(&S); 4089 Builder.restoreIP(OMPBuilder.createCritical( 4090 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4091 HintInst)); 4092 4093 return; 4094 } 4095 4096 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4097 Action.Enter(CGF); 4098 CGF.EmitStmt(S.getAssociatedStmt()); 4099 }; 4100 const Expr *Hint = nullptr; 4101 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4102 Hint = HintClause->getHint(); 4103 LexicalScope Scope(*this, S.getSourceRange()); 4104 EmitStopPoint(&S); 4105 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4106 S.getDirectiveName().getAsString(), 4107 CodeGen, S.getBeginLoc(), Hint); 4108 } 4109 4110 void CodeGenFunction::EmitOMPParallelForDirective( 4111 const OMPParallelForDirective &S) { 4112 // Emit directive as a combined directive that consists of two implicit 4113 // directives: 'parallel' with 'for' directive. 4114 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4115 Action.Enter(CGF); 4116 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4117 }; 4118 { 4119 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4120 [](const OMPReductionClause *C) { 4121 return C->getModifier() == OMPC_REDUCTION_inscan; 4122 })) { 4123 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4124 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4125 CGCapturedStmtInfo CGSI(CR_OpenMP); 4126 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4127 OMPLoopScope LoopScope(CGF, S); 4128 return CGF.EmitScalarExpr(S.getNumIterations()); 4129 }; 4130 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4131 } 4132 auto LPCRegion = 4133 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4134 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4135 emitEmptyBoundParameters); 4136 } 4137 // Check for outer lastprivate conditional update. 4138 checkForLastprivateConditionalUpdate(*this, S); 4139 } 4140 4141 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4142 const OMPParallelForSimdDirective &S) { 4143 // Emit directive as a combined directive that consists of two implicit 4144 // directives: 'parallel' with 'for' directive. 4145 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4146 Action.Enter(CGF); 4147 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4148 }; 4149 { 4150 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4151 [](const OMPReductionClause *C) { 4152 return C->getModifier() == OMPC_REDUCTION_inscan; 4153 })) { 4154 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4155 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4156 CGCapturedStmtInfo CGSI(CR_OpenMP); 4157 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4158 OMPLoopScope LoopScope(CGF, S); 4159 return CGF.EmitScalarExpr(S.getNumIterations()); 4160 }; 4161 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4162 } 4163 auto LPCRegion = 4164 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4165 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4166 emitEmptyBoundParameters); 4167 } 4168 // Check for outer lastprivate conditional update. 4169 checkForLastprivateConditionalUpdate(*this, S); 4170 } 4171 4172 void CodeGenFunction::EmitOMPParallelMasterDirective( 4173 const OMPParallelMasterDirective &S) { 4174 // Emit directive as a combined directive that consists of two implicit 4175 // directives: 'parallel' with 'master' directive. 4176 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4177 Action.Enter(CGF); 4178 OMPPrivateScope PrivateScope(CGF); 4179 bool Copyins = CGF.EmitOMPCopyinClause(S); 4180 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4181 if (Copyins) { 4182 // Emit implicit barrier to synchronize threads and avoid data races on 4183 // propagation master's thread values of threadprivate variables to local 4184 // instances of that variables of all other implicit threads. 4185 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4186 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4187 /*ForceSimpleCall=*/true); 4188 } 4189 CGF.EmitOMPPrivateClause(S, PrivateScope); 4190 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4191 (void)PrivateScope.Privatize(); 4192 emitMaster(CGF, S); 4193 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4194 }; 4195 { 4196 auto LPCRegion = 4197 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4198 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4199 emitEmptyBoundParameters); 4200 emitPostUpdateForReductionClause(*this, S, 4201 [](CodeGenFunction &) { return nullptr; }); 4202 } 4203 // Check for outer lastprivate conditional update. 4204 checkForLastprivateConditionalUpdate(*this, S); 4205 } 4206 4207 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4208 const OMPParallelSectionsDirective &S) { 4209 // Emit directive as a combined directive that consists of two implicit 4210 // directives: 'parallel' with 'sections' directive. 4211 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4212 Action.Enter(CGF); 4213 CGF.EmitSections(S); 4214 }; 4215 { 4216 auto LPCRegion = 4217 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4218 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4219 emitEmptyBoundParameters); 4220 } 4221 // Check for outer lastprivate conditional update. 4222 checkForLastprivateConditionalUpdate(*this, S); 4223 } 4224 4225 namespace { 4226 /// Get the list of variables declared in the context of the untied tasks. 4227 class CheckVarsEscapingUntiedTaskDeclContext final 4228 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4229 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4230 4231 public: 4232 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4233 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4234 void VisitDeclStmt(const DeclStmt *S) { 4235 if (!S) 4236 return; 4237 // Need to privatize only local vars, static locals can be processed as is. 4238 for (const Decl *D : S->decls()) { 4239 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4240 if (VD->hasLocalStorage()) 4241 PrivateDecls.push_back(VD); 4242 } 4243 } 4244 void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; } 4245 void VisitCapturedStmt(const CapturedStmt *) { return; } 4246 void VisitLambdaExpr(const LambdaExpr *) { return; } 4247 void VisitBlockExpr(const BlockExpr *) { return; } 4248 void VisitStmt(const Stmt *S) { 4249 if (!S) 4250 return; 4251 for (const Stmt *Child : S->children()) 4252 if (Child) 4253 Visit(Child); 4254 } 4255 4256 /// Swaps list of vars with the provided one. 4257 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4258 }; 4259 } // anonymous namespace 4260 4261 void CodeGenFunction::EmitOMPTaskBasedDirective( 4262 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4263 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4264 OMPTaskDataTy &Data) { 4265 // Emit outlined function for task construct. 4266 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4267 auto I = CS->getCapturedDecl()->param_begin(); 4268 auto PartId = std::next(I); 4269 auto TaskT = std::next(I, 4); 4270 // Check if the task is final 4271 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4272 // If the condition constant folds and can be elided, try to avoid emitting 4273 // the condition and the dead arm of the if/else. 4274 const Expr *Cond = Clause->getCondition(); 4275 bool CondConstant; 4276 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4277 Data.Final.setInt(CondConstant); 4278 else 4279 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4280 } else { 4281 // By default the task is not final. 4282 Data.Final.setInt(/*IntVal=*/false); 4283 } 4284 // Check if the task has 'priority' clause. 4285 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4286 const Expr *Prio = Clause->getPriority(); 4287 Data.Priority.setInt(/*IntVal=*/true); 4288 Data.Priority.setPointer(EmitScalarConversion( 4289 EmitScalarExpr(Prio), Prio->getType(), 4290 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4291 Prio->getExprLoc())); 4292 } 4293 // The first function argument for tasks is a thread id, the second one is a 4294 // part id (0 for tied tasks, >=0 for untied task). 4295 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4296 // Get list of private variables. 4297 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4298 auto IRef = C->varlist_begin(); 4299 for (const Expr *IInit : C->private_copies()) { 4300 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4301 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4302 Data.PrivateVars.push_back(*IRef); 4303 Data.PrivateCopies.push_back(IInit); 4304 } 4305 ++IRef; 4306 } 4307 } 4308 EmittedAsPrivate.clear(); 4309 // Get list of firstprivate variables. 4310 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4311 auto IRef = C->varlist_begin(); 4312 auto IElemInitRef = C->inits().begin(); 4313 for (const Expr *IInit : C->private_copies()) { 4314 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4315 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4316 Data.FirstprivateVars.push_back(*IRef); 4317 Data.FirstprivateCopies.push_back(IInit); 4318 Data.FirstprivateInits.push_back(*IElemInitRef); 4319 } 4320 ++IRef; 4321 ++IElemInitRef; 4322 } 4323 } 4324 // Get list of lastprivate variables (for taskloops). 4325 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4326 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4327 auto IRef = C->varlist_begin(); 4328 auto ID = C->destination_exprs().begin(); 4329 for (const Expr *IInit : C->private_copies()) { 4330 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4331 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4332 Data.LastprivateVars.push_back(*IRef); 4333 Data.LastprivateCopies.push_back(IInit); 4334 } 4335 LastprivateDstsOrigs.insert( 4336 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4337 cast<DeclRefExpr>(*IRef))); 4338 ++IRef; 4339 ++ID; 4340 } 4341 } 4342 SmallVector<const Expr *, 4> LHSs; 4343 SmallVector<const Expr *, 4> RHSs; 4344 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4345 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4346 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4347 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4348 Data.ReductionOps.append(C->reduction_ops().begin(), 4349 C->reduction_ops().end()); 4350 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4351 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4352 } 4353 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4354 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4355 // Build list of dependences. 4356 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4357 OMPTaskDataTy::DependData &DD = 4358 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4359 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4360 } 4361 // Get list of local vars for untied tasks. 4362 if (!Data.Tied) { 4363 CheckVarsEscapingUntiedTaskDeclContext Checker; 4364 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4365 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4366 Checker.getPrivateDecls().end()); 4367 } 4368 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4369 CapturedRegion](CodeGenFunction &CGF, 4370 PrePostActionTy &Action) { 4371 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4372 std::pair<Address, Address>> 4373 UntiedLocalVars; 4374 // Set proper addresses for generated private copies. 4375 OMPPrivateScope Scope(CGF); 4376 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4377 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4378 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4379 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4380 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4381 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4382 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4383 CS->getCapturedDecl()->getParam(PrivatesParam))); 4384 // Map privates. 4385 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4386 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4387 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4388 CallArgs.push_back(PrivatesPtr); 4389 ParamTypes.push_back(PrivatesPtr->getType()); 4390 for (const Expr *E : Data.PrivateVars) { 4391 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4392 Address PrivatePtr = CGF.CreateMemTemp( 4393 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4394 PrivatePtrs.emplace_back(VD, PrivatePtr); 4395 CallArgs.push_back(PrivatePtr.getPointer()); 4396 ParamTypes.push_back(PrivatePtr.getType()); 4397 } 4398 for (const Expr *E : Data.FirstprivateVars) { 4399 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4400 Address PrivatePtr = 4401 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4402 ".firstpriv.ptr.addr"); 4403 PrivatePtrs.emplace_back(VD, PrivatePtr); 4404 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4405 CallArgs.push_back(PrivatePtr.getPointer()); 4406 ParamTypes.push_back(PrivatePtr.getType()); 4407 } 4408 for (const Expr *E : Data.LastprivateVars) { 4409 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4410 Address PrivatePtr = 4411 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4412 ".lastpriv.ptr.addr"); 4413 PrivatePtrs.emplace_back(VD, PrivatePtr); 4414 CallArgs.push_back(PrivatePtr.getPointer()); 4415 ParamTypes.push_back(PrivatePtr.getType()); 4416 } 4417 for (const VarDecl *VD : Data.PrivateLocals) { 4418 QualType Ty = VD->getType().getNonReferenceType(); 4419 if (VD->getType()->isLValueReferenceType()) 4420 Ty = CGF.getContext().getPointerType(Ty); 4421 if (isAllocatableDecl(VD)) 4422 Ty = CGF.getContext().getPointerType(Ty); 4423 Address PrivatePtr = CGF.CreateMemTemp( 4424 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4425 auto Result = UntiedLocalVars.insert( 4426 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4427 // If key exists update in place. 4428 if (Result.second == false) 4429 *Result.first = std::make_pair( 4430 VD, std::make_pair(PrivatePtr, Address::invalid())); 4431 CallArgs.push_back(PrivatePtr.getPointer()); 4432 ParamTypes.push_back(PrivatePtr.getType()); 4433 } 4434 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4435 ParamTypes, /*isVarArg=*/false); 4436 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4437 CopyFn, CopyFnTy->getPointerTo()); 4438 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4439 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4440 for (const auto &Pair : LastprivateDstsOrigs) { 4441 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4442 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4443 /*RefersToEnclosingVariableOrCapture=*/ 4444 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4445 Pair.second->getType(), VK_LValue, 4446 Pair.second->getExprLoc()); 4447 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4448 return CGF.EmitLValue(&DRE).getAddress(CGF); 4449 }); 4450 } 4451 for (const auto &Pair : PrivatePtrs) { 4452 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4453 CGF.getContext().getDeclAlign(Pair.first)); 4454 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4455 } 4456 // Adjust mapping for internal locals by mapping actual memory instead of 4457 // a pointer to this memory. 4458 for (auto &Pair : UntiedLocalVars) { 4459 if (isAllocatableDecl(Pair.first)) { 4460 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4461 Address Replacement(Ptr, CGF.getPointerAlign()); 4462 Pair.second.first = Replacement; 4463 Ptr = CGF.Builder.CreateLoad(Replacement); 4464 Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4465 Pair.second.second = Replacement; 4466 } else { 4467 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4468 Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4469 Pair.second.first = Replacement; 4470 } 4471 } 4472 } 4473 if (Data.Reductions) { 4474 OMPPrivateScope FirstprivateScope(CGF); 4475 for (const auto &Pair : FirstprivatePtrs) { 4476 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4477 CGF.getContext().getDeclAlign(Pair.first)); 4478 FirstprivateScope.addPrivate(Pair.first, 4479 [Replacement]() { return Replacement; }); 4480 } 4481 (void)FirstprivateScope.Privatize(); 4482 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4483 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4484 Data.ReductionCopies, Data.ReductionOps); 4485 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4486 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4487 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4488 RedCG.emitSharedOrigLValue(CGF, Cnt); 4489 RedCG.emitAggregateType(CGF, Cnt); 4490 // FIXME: This must removed once the runtime library is fixed. 4491 // Emit required threadprivate variables for 4492 // initializer/combiner/finalizer. 4493 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4494 RedCG, Cnt); 4495 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4496 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4497 Replacement = 4498 Address(CGF.EmitScalarConversion( 4499 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4500 CGF.getContext().getPointerType( 4501 Data.ReductionCopies[Cnt]->getType()), 4502 Data.ReductionCopies[Cnt]->getExprLoc()), 4503 Replacement.getAlignment()); 4504 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4505 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4506 [Replacement]() { return Replacement; }); 4507 } 4508 } 4509 // Privatize all private variables except for in_reduction items. 4510 (void)Scope.Privatize(); 4511 SmallVector<const Expr *, 4> InRedVars; 4512 SmallVector<const Expr *, 4> InRedPrivs; 4513 SmallVector<const Expr *, 4> InRedOps; 4514 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4515 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4516 auto IPriv = C->privates().begin(); 4517 auto IRed = C->reduction_ops().begin(); 4518 auto ITD = C->taskgroup_descriptors().begin(); 4519 for (const Expr *Ref : C->varlists()) { 4520 InRedVars.emplace_back(Ref); 4521 InRedPrivs.emplace_back(*IPriv); 4522 InRedOps.emplace_back(*IRed); 4523 TaskgroupDescriptors.emplace_back(*ITD); 4524 std::advance(IPriv, 1); 4525 std::advance(IRed, 1); 4526 std::advance(ITD, 1); 4527 } 4528 } 4529 // Privatize in_reduction items here, because taskgroup descriptors must be 4530 // privatized earlier. 4531 OMPPrivateScope InRedScope(CGF); 4532 if (!InRedVars.empty()) { 4533 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4534 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4535 RedCG.emitSharedOrigLValue(CGF, Cnt); 4536 RedCG.emitAggregateType(CGF, Cnt); 4537 // The taskgroup descriptor variable is always implicit firstprivate and 4538 // privatized already during processing of the firstprivates. 4539 // FIXME: This must removed once the runtime library is fixed. 4540 // Emit required threadprivate variables for 4541 // initializer/combiner/finalizer. 4542 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4543 RedCG, Cnt); 4544 llvm::Value *ReductionsPtr; 4545 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4546 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4547 TRExpr->getExprLoc()); 4548 } else { 4549 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4550 } 4551 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4552 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4553 Replacement = Address( 4554 CGF.EmitScalarConversion( 4555 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4556 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4557 InRedPrivs[Cnt]->getExprLoc()), 4558 Replacement.getAlignment()); 4559 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4560 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4561 [Replacement]() { return Replacement; }); 4562 } 4563 } 4564 (void)InRedScope.Privatize(); 4565 4566 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4567 UntiedLocalVars); 4568 Action.Enter(CGF); 4569 BodyGen(CGF); 4570 }; 4571 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4572 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4573 Data.NumberOfParts); 4574 OMPLexicalScope Scope(*this, S, llvm::None, 4575 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4576 !isOpenMPSimdDirective(S.getDirectiveKind())); 4577 TaskGen(*this, OutlinedFn, Data); 4578 } 4579 4580 static ImplicitParamDecl * 4581 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4582 QualType Ty, CapturedDecl *CD, 4583 SourceLocation Loc) { 4584 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4585 ImplicitParamDecl::Other); 4586 auto *OrigRef = DeclRefExpr::Create( 4587 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4588 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4589 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4590 ImplicitParamDecl::Other); 4591 auto *PrivateRef = DeclRefExpr::Create( 4592 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4593 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4594 QualType ElemType = C.getBaseElementType(Ty); 4595 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4596 ImplicitParamDecl::Other); 4597 auto *InitRef = DeclRefExpr::Create( 4598 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4599 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4600 PrivateVD->setInitStyle(VarDecl::CInit); 4601 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4602 InitRef, /*BasePath=*/nullptr, 4603 VK_PRValue, FPOptionsOverride())); 4604 Data.FirstprivateVars.emplace_back(OrigRef); 4605 Data.FirstprivateCopies.emplace_back(PrivateRef); 4606 Data.FirstprivateInits.emplace_back(InitRef); 4607 return OrigVD; 4608 } 4609 4610 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4611 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4612 OMPTargetDataInfo &InputInfo) { 4613 // Emit outlined function for task construct. 4614 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4615 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4616 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4617 auto I = CS->getCapturedDecl()->param_begin(); 4618 auto PartId = std::next(I); 4619 auto TaskT = std::next(I, 4); 4620 OMPTaskDataTy Data; 4621 // The task is not final. 4622 Data.Final.setInt(/*IntVal=*/false); 4623 // Get list of firstprivate variables. 4624 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4625 auto IRef = C->varlist_begin(); 4626 auto IElemInitRef = C->inits().begin(); 4627 for (auto *IInit : C->private_copies()) { 4628 Data.FirstprivateVars.push_back(*IRef); 4629 Data.FirstprivateCopies.push_back(IInit); 4630 Data.FirstprivateInits.push_back(*IElemInitRef); 4631 ++IRef; 4632 ++IElemInitRef; 4633 } 4634 } 4635 OMPPrivateScope TargetScope(*this); 4636 VarDecl *BPVD = nullptr; 4637 VarDecl *PVD = nullptr; 4638 VarDecl *SVD = nullptr; 4639 VarDecl *MVD = nullptr; 4640 if (InputInfo.NumberOfTargetItems > 0) { 4641 auto *CD = CapturedDecl::Create( 4642 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4643 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4644 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4645 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4646 /*IndexTypeQuals=*/0); 4647 BPVD = createImplicitFirstprivateForType( 4648 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4649 PVD = createImplicitFirstprivateForType( 4650 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4651 QualType SizesType = getContext().getConstantArrayType( 4652 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4653 ArrSize, nullptr, ArrayType::Normal, 4654 /*IndexTypeQuals=*/0); 4655 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4656 S.getBeginLoc()); 4657 TargetScope.addPrivate( 4658 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4659 TargetScope.addPrivate(PVD, 4660 [&InputInfo]() { return InputInfo.PointersArray; }); 4661 TargetScope.addPrivate(SVD, 4662 [&InputInfo]() { return InputInfo.SizesArray; }); 4663 // If there is no user-defined mapper, the mapper array will be nullptr. In 4664 // this case, we don't need to privatize it. 4665 if (!dyn_cast_or_null<llvm::ConstantPointerNull>( 4666 InputInfo.MappersArray.getPointer())) { 4667 MVD = createImplicitFirstprivateForType( 4668 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4669 TargetScope.addPrivate(MVD, 4670 [&InputInfo]() { return InputInfo.MappersArray; }); 4671 } 4672 } 4673 (void)TargetScope.Privatize(); 4674 // Build list of dependences. 4675 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4676 OMPTaskDataTy::DependData &DD = 4677 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4678 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4679 } 4680 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4681 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4682 // Set proper addresses for generated private copies. 4683 OMPPrivateScope Scope(CGF); 4684 if (!Data.FirstprivateVars.empty()) { 4685 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4686 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4687 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4688 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4689 CS->getCapturedDecl()->getParam(PrivatesParam))); 4690 // Map privates. 4691 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4692 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4693 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4694 CallArgs.push_back(PrivatesPtr); 4695 ParamTypes.push_back(PrivatesPtr->getType()); 4696 for (const Expr *E : Data.FirstprivateVars) { 4697 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4698 Address PrivatePtr = 4699 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4700 ".firstpriv.ptr.addr"); 4701 PrivatePtrs.emplace_back(VD, PrivatePtr); 4702 CallArgs.push_back(PrivatePtr.getPointer()); 4703 ParamTypes.push_back(PrivatePtr.getType()); 4704 } 4705 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4706 ParamTypes, /*isVarArg=*/false); 4707 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4708 CopyFn, CopyFnTy->getPointerTo()); 4709 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4710 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4711 for (const auto &Pair : PrivatePtrs) { 4712 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4713 CGF.getContext().getDeclAlign(Pair.first)); 4714 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4715 } 4716 } 4717 // Privatize all private variables except for in_reduction items. 4718 (void)Scope.Privatize(); 4719 if (InputInfo.NumberOfTargetItems > 0) { 4720 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4721 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4722 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4723 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4724 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4725 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4726 // If MVD is nullptr, the mapper array is not privatized 4727 if (MVD) 4728 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4729 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4730 } 4731 4732 Action.Enter(CGF); 4733 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4734 BodyGen(CGF); 4735 }; 4736 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4737 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4738 Data.NumberOfParts); 4739 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4740 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4741 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4742 SourceLocation()); 4743 4744 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4745 SharedsTy, CapturedStruct, &IfCond, Data); 4746 } 4747 4748 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4749 // Emit outlined function for task construct. 4750 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4751 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4752 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4753 const Expr *IfCond = nullptr; 4754 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4755 if (C->getNameModifier() == OMPD_unknown || 4756 C->getNameModifier() == OMPD_task) { 4757 IfCond = C->getCondition(); 4758 break; 4759 } 4760 } 4761 4762 OMPTaskDataTy Data; 4763 // Check if we should emit tied or untied task. 4764 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4765 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4766 CGF.EmitStmt(CS->getCapturedStmt()); 4767 }; 4768 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4769 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4770 const OMPTaskDataTy &Data) { 4771 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4772 SharedsTy, CapturedStruct, IfCond, 4773 Data); 4774 }; 4775 auto LPCRegion = 4776 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4777 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4778 } 4779 4780 void CodeGenFunction::EmitOMPTaskyieldDirective( 4781 const OMPTaskyieldDirective &S) { 4782 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4783 } 4784 4785 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4786 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4787 } 4788 4789 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4790 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 4791 } 4792 4793 void CodeGenFunction::EmitOMPTaskgroupDirective( 4794 const OMPTaskgroupDirective &S) { 4795 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4796 Action.Enter(CGF); 4797 if (const Expr *E = S.getReductionRef()) { 4798 SmallVector<const Expr *, 4> LHSs; 4799 SmallVector<const Expr *, 4> RHSs; 4800 OMPTaskDataTy Data; 4801 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4802 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4803 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4804 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4805 Data.ReductionOps.append(C->reduction_ops().begin(), 4806 C->reduction_ops().end()); 4807 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4808 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4809 } 4810 llvm::Value *ReductionDesc = 4811 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4812 LHSs, RHSs, Data); 4813 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4814 CGF.EmitVarDecl(*VD); 4815 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4816 /*Volatile=*/false, E->getType()); 4817 } 4818 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4819 }; 4820 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4821 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4822 } 4823 4824 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4825 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4826 ? llvm::AtomicOrdering::NotAtomic 4827 : llvm::AtomicOrdering::AcquireRelease; 4828 CGM.getOpenMPRuntime().emitFlush( 4829 *this, 4830 [&S]() -> ArrayRef<const Expr *> { 4831 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4832 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4833 FlushClause->varlist_end()); 4834 return llvm::None; 4835 }(), 4836 S.getBeginLoc(), AO); 4837 } 4838 4839 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4840 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4841 LValue DOLVal = EmitLValue(DO->getDepobj()); 4842 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4843 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4844 DC->getModifier()); 4845 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4846 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4847 *this, Dependencies, DC->getBeginLoc()); 4848 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4849 return; 4850 } 4851 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4852 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4853 return; 4854 } 4855 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4856 CGM.getOpenMPRuntime().emitUpdateClause( 4857 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4858 return; 4859 } 4860 } 4861 4862 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4863 if (!OMPParentLoopDirectiveForScan) 4864 return; 4865 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4866 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4867 SmallVector<const Expr *, 4> Shareds; 4868 SmallVector<const Expr *, 4> Privates; 4869 SmallVector<const Expr *, 4> LHSs; 4870 SmallVector<const Expr *, 4> RHSs; 4871 SmallVector<const Expr *, 4> ReductionOps; 4872 SmallVector<const Expr *, 4> CopyOps; 4873 SmallVector<const Expr *, 4> CopyArrayTemps; 4874 SmallVector<const Expr *, 4> CopyArrayElems; 4875 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4876 if (C->getModifier() != OMPC_REDUCTION_inscan) 4877 continue; 4878 Shareds.append(C->varlist_begin(), C->varlist_end()); 4879 Privates.append(C->privates().begin(), C->privates().end()); 4880 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4881 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4882 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 4883 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 4884 CopyArrayTemps.append(C->copy_array_temps().begin(), 4885 C->copy_array_temps().end()); 4886 CopyArrayElems.append(C->copy_array_elems().begin(), 4887 C->copy_array_elems().end()); 4888 } 4889 if (ParentDir.getDirectiveKind() == OMPD_simd || 4890 (getLangOpts().OpenMPSimd && 4891 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 4892 // For simd directive and simd-based directives in simd only mode, use the 4893 // following codegen: 4894 // int x = 0; 4895 // #pragma omp simd reduction(inscan, +: x) 4896 // for (..) { 4897 // <first part> 4898 // #pragma omp scan inclusive(x) 4899 // <second part> 4900 // } 4901 // is transformed to: 4902 // int x = 0; 4903 // for (..) { 4904 // int x_priv = 0; 4905 // <first part> 4906 // x = x_priv + x; 4907 // x_priv = x; 4908 // <second part> 4909 // } 4910 // and 4911 // int x = 0; 4912 // #pragma omp simd reduction(inscan, +: x) 4913 // for (..) { 4914 // <first part> 4915 // #pragma omp scan exclusive(x) 4916 // <second part> 4917 // } 4918 // to 4919 // int x = 0; 4920 // for (..) { 4921 // int x_priv = 0; 4922 // <second part> 4923 // int temp = x; 4924 // x = x_priv + x; 4925 // x_priv = temp; 4926 // <first part> 4927 // } 4928 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 4929 EmitBranch(IsInclusive 4930 ? OMPScanReduce 4931 : BreakContinueStack.back().ContinueBlock.getBlock()); 4932 EmitBlock(OMPScanDispatch); 4933 { 4934 // New scope for correct construction/destruction of temp variables for 4935 // exclusive scan. 4936 LexicalScope Scope(*this, S.getSourceRange()); 4937 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 4938 EmitBlock(OMPScanReduce); 4939 if (!IsInclusive) { 4940 // Create temp var and copy LHS value to this temp value. 4941 // TMP = LHS; 4942 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4943 const Expr *PrivateExpr = Privates[I]; 4944 const Expr *TempExpr = CopyArrayTemps[I]; 4945 EmitAutoVarDecl( 4946 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 4947 LValue DestLVal = EmitLValue(TempExpr); 4948 LValue SrcLVal = EmitLValue(LHSs[I]); 4949 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4950 SrcLVal.getAddress(*this), 4951 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4952 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4953 CopyOps[I]); 4954 } 4955 } 4956 CGM.getOpenMPRuntime().emitReduction( 4957 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 4958 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 4959 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4960 const Expr *PrivateExpr = Privates[I]; 4961 LValue DestLVal; 4962 LValue SrcLVal; 4963 if (IsInclusive) { 4964 DestLVal = EmitLValue(RHSs[I]); 4965 SrcLVal = EmitLValue(LHSs[I]); 4966 } else { 4967 const Expr *TempExpr = CopyArrayTemps[I]; 4968 DestLVal = EmitLValue(RHSs[I]); 4969 SrcLVal = EmitLValue(TempExpr); 4970 } 4971 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4972 SrcLVal.getAddress(*this), 4973 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4974 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4975 CopyOps[I]); 4976 } 4977 } 4978 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 4979 OMPScanExitBlock = IsInclusive 4980 ? BreakContinueStack.back().ContinueBlock.getBlock() 4981 : OMPScanReduce; 4982 EmitBlock(OMPAfterScanBlock); 4983 return; 4984 } 4985 if (!IsInclusive) { 4986 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4987 EmitBlock(OMPScanExitBlock); 4988 } 4989 if (OMPFirstScanLoop) { 4990 // Emit buffer[i] = red; at the end of the input phase. 4991 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4992 .getIterationVariable() 4993 ->IgnoreParenImpCasts(); 4994 LValue IdxLVal = EmitLValue(IVExpr); 4995 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4996 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4997 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4998 const Expr *PrivateExpr = Privates[I]; 4999 const Expr *OrigExpr = Shareds[I]; 5000 const Expr *CopyArrayElem = CopyArrayElems[I]; 5001 OpaqueValueMapping IdxMapping( 5002 *this, 5003 cast<OpaqueValueExpr>( 5004 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5005 RValue::get(IdxVal)); 5006 LValue DestLVal = EmitLValue(CopyArrayElem); 5007 LValue SrcLVal = EmitLValue(OrigExpr); 5008 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5009 SrcLVal.getAddress(*this), 5010 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5011 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5012 CopyOps[I]); 5013 } 5014 } 5015 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5016 if (IsInclusive) { 5017 EmitBlock(OMPScanExitBlock); 5018 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5019 } 5020 EmitBlock(OMPScanDispatch); 5021 if (!OMPFirstScanLoop) { 5022 // Emit red = buffer[i]; at the entrance to the scan phase. 5023 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5024 .getIterationVariable() 5025 ->IgnoreParenImpCasts(); 5026 LValue IdxLVal = EmitLValue(IVExpr); 5027 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5028 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5029 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5030 if (!IsInclusive) { 5031 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5032 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5033 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5034 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5035 EmitBlock(ContBB); 5036 // Use idx - 1 iteration for exclusive scan. 5037 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5038 } 5039 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5040 const Expr *PrivateExpr = Privates[I]; 5041 const Expr *OrigExpr = Shareds[I]; 5042 const Expr *CopyArrayElem = CopyArrayElems[I]; 5043 OpaqueValueMapping IdxMapping( 5044 *this, 5045 cast<OpaqueValueExpr>( 5046 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5047 RValue::get(IdxVal)); 5048 LValue SrcLVal = EmitLValue(CopyArrayElem); 5049 LValue DestLVal = EmitLValue(OrigExpr); 5050 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5051 SrcLVal.getAddress(*this), 5052 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5053 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5054 CopyOps[I]); 5055 } 5056 if (!IsInclusive) { 5057 EmitBlock(ExclusiveExitBB); 5058 } 5059 } 5060 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5061 : OMPAfterScanBlock); 5062 EmitBlock(OMPAfterScanBlock); 5063 } 5064 5065 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5066 const CodeGenLoopTy &CodeGenLoop, 5067 Expr *IncExpr) { 5068 // Emit the loop iteration variable. 5069 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5070 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5071 EmitVarDecl(*IVDecl); 5072 5073 // Emit the iterations count variable. 5074 // If it is not a variable, Sema decided to calculate iterations count on each 5075 // iteration (e.g., it is foldable into a constant). 5076 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5077 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5078 // Emit calculation of the iterations count. 5079 EmitIgnoredExpr(S.getCalcLastIteration()); 5080 } 5081 5082 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5083 5084 bool HasLastprivateClause = false; 5085 // Check pre-condition. 5086 { 5087 OMPLoopScope PreInitScope(*this, S); 5088 // Skip the entire loop if we don't meet the precondition. 5089 // If the condition constant folds and can be elided, avoid emitting the 5090 // whole loop. 5091 bool CondConstant; 5092 llvm::BasicBlock *ContBlock = nullptr; 5093 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5094 if (!CondConstant) 5095 return; 5096 } else { 5097 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5098 ContBlock = createBasicBlock("omp.precond.end"); 5099 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5100 getProfileCount(&S)); 5101 EmitBlock(ThenBlock); 5102 incrementProfileCounter(&S); 5103 } 5104 5105 emitAlignedClause(*this, S); 5106 // Emit 'then' code. 5107 { 5108 // Emit helper vars inits. 5109 5110 LValue LB = EmitOMPHelperVar( 5111 *this, cast<DeclRefExpr>( 5112 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5113 ? S.getCombinedLowerBoundVariable() 5114 : S.getLowerBoundVariable()))); 5115 LValue UB = EmitOMPHelperVar( 5116 *this, cast<DeclRefExpr>( 5117 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5118 ? S.getCombinedUpperBoundVariable() 5119 : S.getUpperBoundVariable()))); 5120 LValue ST = 5121 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5122 LValue IL = 5123 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5124 5125 OMPPrivateScope LoopScope(*this); 5126 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5127 // Emit implicit barrier to synchronize threads and avoid data races 5128 // on initialization of firstprivate variables and post-update of 5129 // lastprivate variables. 5130 CGM.getOpenMPRuntime().emitBarrierCall( 5131 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5132 /*ForceSimpleCall=*/true); 5133 } 5134 EmitOMPPrivateClause(S, LoopScope); 5135 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5136 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5137 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5138 EmitOMPReductionClauseInit(S, LoopScope); 5139 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5140 EmitOMPPrivateLoopCounters(S, LoopScope); 5141 (void)LoopScope.Privatize(); 5142 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5143 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5144 5145 // Detect the distribute schedule kind and chunk. 5146 llvm::Value *Chunk = nullptr; 5147 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5148 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5149 ScheduleKind = C->getDistScheduleKind(); 5150 if (const Expr *Ch = C->getChunkSize()) { 5151 Chunk = EmitScalarExpr(Ch); 5152 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5153 S.getIterationVariable()->getType(), 5154 S.getBeginLoc()); 5155 } 5156 } else { 5157 // Default behaviour for dist_schedule clause. 5158 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5159 *this, S, ScheduleKind, Chunk); 5160 } 5161 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5162 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5163 5164 // OpenMP [2.10.8, distribute Construct, Description] 5165 // If dist_schedule is specified, kind must be static. If specified, 5166 // iterations are divided into chunks of size chunk_size, chunks are 5167 // assigned to the teams of the league in a round-robin fashion in the 5168 // order of the team number. When no chunk_size is specified, the 5169 // iteration space is divided into chunks that are approximately equal 5170 // in size, and at most one chunk is distributed to each team of the 5171 // league. The size of the chunks is unspecified in this case. 5172 bool StaticChunked = RT.isStaticChunked( 5173 ScheduleKind, /* Chunked */ Chunk != nullptr) && 5174 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5175 if (RT.isStaticNonchunked(ScheduleKind, 5176 /* Chunked */ Chunk != nullptr) || 5177 StaticChunked) { 5178 CGOpenMPRuntime::StaticRTInput StaticInit( 5179 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5180 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5181 StaticChunked ? Chunk : nullptr); 5182 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5183 StaticInit); 5184 JumpDest LoopExit = 5185 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5186 // UB = min(UB, GlobalUB); 5187 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5188 ? S.getCombinedEnsureUpperBound() 5189 : S.getEnsureUpperBound()); 5190 // IV = LB; 5191 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5192 ? S.getCombinedInit() 5193 : S.getInit()); 5194 5195 const Expr *Cond = 5196 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5197 ? S.getCombinedCond() 5198 : S.getCond(); 5199 5200 if (StaticChunked) 5201 Cond = S.getCombinedDistCond(); 5202 5203 // For static unchunked schedules generate: 5204 // 5205 // 1. For distribute alone, codegen 5206 // while (idx <= UB) { 5207 // BODY; 5208 // ++idx; 5209 // } 5210 // 5211 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5212 // while (idx <= UB) { 5213 // <CodeGen rest of pragma>(LB, UB); 5214 // idx += ST; 5215 // } 5216 // 5217 // For static chunk one schedule generate: 5218 // 5219 // while (IV <= GlobalUB) { 5220 // <CodeGen rest of pragma>(LB, UB); 5221 // LB += ST; 5222 // UB += ST; 5223 // UB = min(UB, GlobalUB); 5224 // IV = LB; 5225 // } 5226 // 5227 emitCommonSimdLoop( 5228 *this, S, 5229 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5230 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5231 CGF.EmitOMPSimdInit(S); 5232 }, 5233 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5234 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5235 CGF.EmitOMPInnerLoop( 5236 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5237 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5238 CodeGenLoop(CGF, S, LoopExit); 5239 }, 5240 [&S, StaticChunked](CodeGenFunction &CGF) { 5241 if (StaticChunked) { 5242 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5243 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5244 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5245 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5246 } 5247 }); 5248 }); 5249 EmitBlock(LoopExit.getBlock()); 5250 // Tell the runtime we are done. 5251 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5252 } else { 5253 // Emit the outer loop, which requests its work chunk [LB..UB] from 5254 // runtime and runs the inner loop to process it. 5255 const OMPLoopArguments LoopArguments = { 5256 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5257 IL.getAddress(*this), Chunk}; 5258 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5259 CodeGenLoop); 5260 } 5261 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5262 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5263 return CGF.Builder.CreateIsNotNull( 5264 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5265 }); 5266 } 5267 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5268 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5269 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5270 EmitOMPReductionClauseFinal(S, OMPD_simd); 5271 // Emit post-update of the reduction variables if IsLastIter != 0. 5272 emitPostUpdateForReductionClause( 5273 *this, S, [IL, &S](CodeGenFunction &CGF) { 5274 return CGF.Builder.CreateIsNotNull( 5275 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5276 }); 5277 } 5278 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5279 if (HasLastprivateClause) { 5280 EmitOMPLastprivateClauseFinal( 5281 S, /*NoFinals=*/false, 5282 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5283 } 5284 } 5285 5286 // We're now done with the loop, so jump to the continuation block. 5287 if (ContBlock) { 5288 EmitBranch(ContBlock); 5289 EmitBlock(ContBlock, true); 5290 } 5291 } 5292 } 5293 5294 void CodeGenFunction::EmitOMPDistributeDirective( 5295 const OMPDistributeDirective &S) { 5296 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5297 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5298 }; 5299 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5300 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5301 } 5302 5303 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5304 const CapturedStmt *S, 5305 SourceLocation Loc) { 5306 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5307 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5308 CGF.CapturedStmtInfo = &CapStmtInfo; 5309 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5310 Fn->setDoesNotRecurse(); 5311 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 5312 Fn->addFnAttr(llvm::Attribute::AlwaysInline); 5313 return Fn; 5314 } 5315 5316 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5317 if (S.hasClausesOfKind<OMPDependClause>()) { 5318 assert(!S.hasAssociatedStmt() && 5319 "No associated statement must be in ordered depend construct."); 5320 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5321 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5322 return; 5323 } 5324 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5325 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5326 PrePostActionTy &Action) { 5327 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5328 if (C) { 5329 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5330 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5331 llvm::Function *OutlinedFn = 5332 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5333 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5334 OutlinedFn, CapturedVars); 5335 } else { 5336 Action.Enter(CGF); 5337 CGF.EmitStmt(CS->getCapturedStmt()); 5338 } 5339 }; 5340 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5341 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5342 } 5343 5344 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5345 QualType SrcType, QualType DestType, 5346 SourceLocation Loc) { 5347 assert(CGF.hasScalarEvaluationKind(DestType) && 5348 "DestType must have scalar evaluation kind."); 5349 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5350 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5351 DestType, Loc) 5352 : CGF.EmitComplexToScalarConversion( 5353 Val.getComplexVal(), SrcType, DestType, Loc); 5354 } 5355 5356 static CodeGenFunction::ComplexPairTy 5357 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5358 QualType DestType, SourceLocation Loc) { 5359 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5360 "DestType must have complex evaluation kind."); 5361 CodeGenFunction::ComplexPairTy ComplexVal; 5362 if (Val.isScalar()) { 5363 // Convert the input element to the element type of the complex. 5364 QualType DestElementType = 5365 DestType->castAs<ComplexType>()->getElementType(); 5366 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5367 Val.getScalarVal(), SrcType, DestElementType, Loc); 5368 ComplexVal = CodeGenFunction::ComplexPairTy( 5369 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5370 } else { 5371 assert(Val.isComplex() && "Must be a scalar or complex."); 5372 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5373 QualType DestElementType = 5374 DestType->castAs<ComplexType>()->getElementType(); 5375 ComplexVal.first = CGF.EmitScalarConversion( 5376 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5377 ComplexVal.second = CGF.EmitScalarConversion( 5378 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5379 } 5380 return ComplexVal; 5381 } 5382 5383 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5384 LValue LVal, RValue RVal) { 5385 if (LVal.isGlobalReg()) 5386 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5387 else 5388 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5389 } 5390 5391 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5392 llvm::AtomicOrdering AO, LValue LVal, 5393 SourceLocation Loc) { 5394 if (LVal.isGlobalReg()) 5395 return CGF.EmitLoadOfLValue(LVal, Loc); 5396 return CGF.EmitAtomicLoad( 5397 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5398 LVal.isVolatile()); 5399 } 5400 5401 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5402 QualType RValTy, SourceLocation Loc) { 5403 switch (getEvaluationKind(LVal.getType())) { 5404 case TEK_Scalar: 5405 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5406 *this, RVal, RValTy, LVal.getType(), Loc)), 5407 LVal); 5408 break; 5409 case TEK_Complex: 5410 EmitStoreOfComplex( 5411 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5412 /*isInit=*/false); 5413 break; 5414 case TEK_Aggregate: 5415 llvm_unreachable("Must be a scalar or complex."); 5416 } 5417 } 5418 5419 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5420 const Expr *X, const Expr *V, 5421 SourceLocation Loc) { 5422 // v = x; 5423 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5424 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5425 LValue XLValue = CGF.EmitLValue(X); 5426 LValue VLValue = CGF.EmitLValue(V); 5427 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5428 // OpenMP, 2.17.7, atomic Construct 5429 // If the read or capture clause is specified and the acquire, acq_rel, or 5430 // seq_cst clause is specified then the strong flush on exit from the atomic 5431 // operation is also an acquire flush. 5432 switch (AO) { 5433 case llvm::AtomicOrdering::Acquire: 5434 case llvm::AtomicOrdering::AcquireRelease: 5435 case llvm::AtomicOrdering::SequentiallyConsistent: 5436 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5437 llvm::AtomicOrdering::Acquire); 5438 break; 5439 case llvm::AtomicOrdering::Monotonic: 5440 case llvm::AtomicOrdering::Release: 5441 break; 5442 case llvm::AtomicOrdering::NotAtomic: 5443 case llvm::AtomicOrdering::Unordered: 5444 llvm_unreachable("Unexpected ordering."); 5445 } 5446 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5447 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5448 } 5449 5450 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5451 llvm::AtomicOrdering AO, const Expr *X, 5452 const Expr *E, SourceLocation Loc) { 5453 // x = expr; 5454 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5455 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5456 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5457 // OpenMP, 2.17.7, atomic Construct 5458 // If the write, update, or capture clause is specified and the release, 5459 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5460 // the atomic operation is also a release flush. 5461 switch (AO) { 5462 case llvm::AtomicOrdering::Release: 5463 case llvm::AtomicOrdering::AcquireRelease: 5464 case llvm::AtomicOrdering::SequentiallyConsistent: 5465 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5466 llvm::AtomicOrdering::Release); 5467 break; 5468 case llvm::AtomicOrdering::Acquire: 5469 case llvm::AtomicOrdering::Monotonic: 5470 break; 5471 case llvm::AtomicOrdering::NotAtomic: 5472 case llvm::AtomicOrdering::Unordered: 5473 llvm_unreachable("Unexpected ordering."); 5474 } 5475 } 5476 5477 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5478 RValue Update, 5479 BinaryOperatorKind BO, 5480 llvm::AtomicOrdering AO, 5481 bool IsXLHSInRHSPart) { 5482 ASTContext &Context = CGF.getContext(); 5483 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5484 // expression is simple and atomic is allowed for the given type for the 5485 // target platform. 5486 if (BO == BO_Comma || !Update.isScalar() || 5487 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5488 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5489 (Update.getScalarVal()->getType() != 5490 X.getAddress(CGF).getElementType())) || 5491 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5492 !Context.getTargetInfo().hasBuiltinAtomic( 5493 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5494 return std::make_pair(false, RValue::get(nullptr)); 5495 5496 llvm::AtomicRMWInst::BinOp RMWOp; 5497 switch (BO) { 5498 case BO_Add: 5499 RMWOp = llvm::AtomicRMWInst::Add; 5500 break; 5501 case BO_Sub: 5502 if (!IsXLHSInRHSPart) 5503 return std::make_pair(false, RValue::get(nullptr)); 5504 RMWOp = llvm::AtomicRMWInst::Sub; 5505 break; 5506 case BO_And: 5507 RMWOp = llvm::AtomicRMWInst::And; 5508 break; 5509 case BO_Or: 5510 RMWOp = llvm::AtomicRMWInst::Or; 5511 break; 5512 case BO_Xor: 5513 RMWOp = llvm::AtomicRMWInst::Xor; 5514 break; 5515 case BO_LT: 5516 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5517 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5518 : llvm::AtomicRMWInst::Max) 5519 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5520 : llvm::AtomicRMWInst::UMax); 5521 break; 5522 case BO_GT: 5523 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5524 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5525 : llvm::AtomicRMWInst::Min) 5526 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5527 : llvm::AtomicRMWInst::UMin); 5528 break; 5529 case BO_Assign: 5530 RMWOp = llvm::AtomicRMWInst::Xchg; 5531 break; 5532 case BO_Mul: 5533 case BO_Div: 5534 case BO_Rem: 5535 case BO_Shl: 5536 case BO_Shr: 5537 case BO_LAnd: 5538 case BO_LOr: 5539 return std::make_pair(false, RValue::get(nullptr)); 5540 case BO_PtrMemD: 5541 case BO_PtrMemI: 5542 case BO_LE: 5543 case BO_GE: 5544 case BO_EQ: 5545 case BO_NE: 5546 case BO_Cmp: 5547 case BO_AddAssign: 5548 case BO_SubAssign: 5549 case BO_AndAssign: 5550 case BO_OrAssign: 5551 case BO_XorAssign: 5552 case BO_MulAssign: 5553 case BO_DivAssign: 5554 case BO_RemAssign: 5555 case BO_ShlAssign: 5556 case BO_ShrAssign: 5557 case BO_Comma: 5558 llvm_unreachable("Unsupported atomic update operation"); 5559 } 5560 llvm::Value *UpdateVal = Update.getScalarVal(); 5561 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5562 UpdateVal = CGF.Builder.CreateIntCast( 5563 IC, X.getAddress(CGF).getElementType(), 5564 X.getType()->hasSignedIntegerRepresentation()); 5565 } 5566 llvm::Value *Res = 5567 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5568 return std::make_pair(true, RValue::get(Res)); 5569 } 5570 5571 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5572 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5573 llvm::AtomicOrdering AO, SourceLocation Loc, 5574 const llvm::function_ref<RValue(RValue)> CommonGen) { 5575 // Update expressions are allowed to have the following forms: 5576 // x binop= expr; -> xrval + expr; 5577 // x++, ++x -> xrval + 1; 5578 // x--, --x -> xrval - 1; 5579 // x = x binop expr; -> xrval binop expr 5580 // x = expr Op x; - > expr binop xrval; 5581 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5582 if (!Res.first) { 5583 if (X.isGlobalReg()) { 5584 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5585 // 'xrval'. 5586 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5587 } else { 5588 // Perform compare-and-swap procedure. 5589 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5590 } 5591 } 5592 return Res; 5593 } 5594 5595 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5596 llvm::AtomicOrdering AO, const Expr *X, 5597 const Expr *E, const Expr *UE, 5598 bool IsXLHSInRHSPart, SourceLocation Loc) { 5599 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5600 "Update expr in 'atomic update' must be a binary operator."); 5601 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5602 // Update expressions are allowed to have the following forms: 5603 // x binop= expr; -> xrval + expr; 5604 // x++, ++x -> xrval + 1; 5605 // x--, --x -> xrval - 1; 5606 // x = x binop expr; -> xrval binop expr 5607 // x = expr Op x; - > expr binop xrval; 5608 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5609 LValue XLValue = CGF.EmitLValue(X); 5610 RValue ExprRValue = CGF.EmitAnyExpr(E); 5611 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5612 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5613 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5614 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5615 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5616 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5617 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5618 return CGF.EmitAnyExpr(UE); 5619 }; 5620 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5621 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5622 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5623 // OpenMP, 2.17.7, atomic Construct 5624 // If the write, update, or capture clause is specified and the release, 5625 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5626 // the atomic operation is also a release flush. 5627 switch (AO) { 5628 case llvm::AtomicOrdering::Release: 5629 case llvm::AtomicOrdering::AcquireRelease: 5630 case llvm::AtomicOrdering::SequentiallyConsistent: 5631 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5632 llvm::AtomicOrdering::Release); 5633 break; 5634 case llvm::AtomicOrdering::Acquire: 5635 case llvm::AtomicOrdering::Monotonic: 5636 break; 5637 case llvm::AtomicOrdering::NotAtomic: 5638 case llvm::AtomicOrdering::Unordered: 5639 llvm_unreachable("Unexpected ordering."); 5640 } 5641 } 5642 5643 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5644 QualType SourceType, QualType ResType, 5645 SourceLocation Loc) { 5646 switch (CGF.getEvaluationKind(ResType)) { 5647 case TEK_Scalar: 5648 return RValue::get( 5649 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5650 case TEK_Complex: { 5651 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5652 return RValue::getComplex(Res.first, Res.second); 5653 } 5654 case TEK_Aggregate: 5655 break; 5656 } 5657 llvm_unreachable("Must be a scalar or complex."); 5658 } 5659 5660 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5661 llvm::AtomicOrdering AO, 5662 bool IsPostfixUpdate, const Expr *V, 5663 const Expr *X, const Expr *E, 5664 const Expr *UE, bool IsXLHSInRHSPart, 5665 SourceLocation Loc) { 5666 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5667 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5668 RValue NewVVal; 5669 LValue VLValue = CGF.EmitLValue(V); 5670 LValue XLValue = CGF.EmitLValue(X); 5671 RValue ExprRValue = CGF.EmitAnyExpr(E); 5672 QualType NewVValType; 5673 if (UE) { 5674 // 'x' is updated with some additional value. 5675 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5676 "Update expr in 'atomic capture' must be a binary operator."); 5677 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5678 // Update expressions are allowed to have the following forms: 5679 // x binop= expr; -> xrval + expr; 5680 // x++, ++x -> xrval + 1; 5681 // x--, --x -> xrval - 1; 5682 // x = x binop expr; -> xrval binop expr 5683 // x = expr Op x; - > expr binop xrval; 5684 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5685 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5686 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5687 NewVValType = XRValExpr->getType(); 5688 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5689 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5690 IsPostfixUpdate](RValue XRValue) { 5691 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5692 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5693 RValue Res = CGF.EmitAnyExpr(UE); 5694 NewVVal = IsPostfixUpdate ? XRValue : Res; 5695 return Res; 5696 }; 5697 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5698 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5699 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5700 if (Res.first) { 5701 // 'atomicrmw' instruction was generated. 5702 if (IsPostfixUpdate) { 5703 // Use old value from 'atomicrmw'. 5704 NewVVal = Res.second; 5705 } else { 5706 // 'atomicrmw' does not provide new value, so evaluate it using old 5707 // value of 'x'. 5708 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5709 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5710 NewVVal = CGF.EmitAnyExpr(UE); 5711 } 5712 } 5713 } else { 5714 // 'x' is simply rewritten with some 'expr'. 5715 NewVValType = X->getType().getNonReferenceType(); 5716 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5717 X->getType().getNonReferenceType(), Loc); 5718 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5719 NewVVal = XRValue; 5720 return ExprRValue; 5721 }; 5722 // Try to perform atomicrmw xchg, otherwise simple exchange. 5723 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5724 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5725 Loc, Gen); 5726 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5727 if (Res.first) { 5728 // 'atomicrmw' instruction was generated. 5729 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5730 } 5731 } 5732 // Emit post-update store to 'v' of old/new 'x' value. 5733 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5734 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5735 // OpenMP 5.1 removes the required flush for capture clause. 5736 if (CGF.CGM.getLangOpts().OpenMP < 51) { 5737 // OpenMP, 2.17.7, atomic Construct 5738 // If the write, update, or capture clause is specified and the release, 5739 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5740 // the atomic operation is also a release flush. 5741 // If the read or capture clause is specified and the acquire, acq_rel, or 5742 // seq_cst clause is specified then the strong flush on exit from the atomic 5743 // operation is also an acquire flush. 5744 switch (AO) { 5745 case llvm::AtomicOrdering::Release: 5746 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5747 llvm::AtomicOrdering::Release); 5748 break; 5749 case llvm::AtomicOrdering::Acquire: 5750 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5751 llvm::AtomicOrdering::Acquire); 5752 break; 5753 case llvm::AtomicOrdering::AcquireRelease: 5754 case llvm::AtomicOrdering::SequentiallyConsistent: 5755 CGF.CGM.getOpenMPRuntime().emitFlush( 5756 CGF, llvm::None, Loc, llvm::AtomicOrdering::AcquireRelease); 5757 break; 5758 case llvm::AtomicOrdering::Monotonic: 5759 break; 5760 case llvm::AtomicOrdering::NotAtomic: 5761 case llvm::AtomicOrdering::Unordered: 5762 llvm_unreachable("Unexpected ordering."); 5763 } 5764 } 5765 } 5766 5767 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5768 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5769 const Expr *X, const Expr *V, const Expr *E, 5770 const Expr *UE, bool IsXLHSInRHSPart, 5771 SourceLocation Loc) { 5772 switch (Kind) { 5773 case OMPC_read: 5774 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5775 break; 5776 case OMPC_write: 5777 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5778 break; 5779 case OMPC_unknown: 5780 case OMPC_update: 5781 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5782 break; 5783 case OMPC_capture: 5784 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5785 IsXLHSInRHSPart, Loc); 5786 break; 5787 case OMPC_if: 5788 case OMPC_final: 5789 case OMPC_num_threads: 5790 case OMPC_private: 5791 case OMPC_firstprivate: 5792 case OMPC_lastprivate: 5793 case OMPC_reduction: 5794 case OMPC_task_reduction: 5795 case OMPC_in_reduction: 5796 case OMPC_safelen: 5797 case OMPC_simdlen: 5798 case OMPC_sizes: 5799 case OMPC_full: 5800 case OMPC_partial: 5801 case OMPC_allocator: 5802 case OMPC_allocate: 5803 case OMPC_collapse: 5804 case OMPC_default: 5805 case OMPC_seq_cst: 5806 case OMPC_acq_rel: 5807 case OMPC_acquire: 5808 case OMPC_release: 5809 case OMPC_relaxed: 5810 case OMPC_shared: 5811 case OMPC_linear: 5812 case OMPC_aligned: 5813 case OMPC_copyin: 5814 case OMPC_copyprivate: 5815 case OMPC_flush: 5816 case OMPC_depobj: 5817 case OMPC_proc_bind: 5818 case OMPC_schedule: 5819 case OMPC_ordered: 5820 case OMPC_nowait: 5821 case OMPC_untied: 5822 case OMPC_threadprivate: 5823 case OMPC_depend: 5824 case OMPC_mergeable: 5825 case OMPC_device: 5826 case OMPC_threads: 5827 case OMPC_simd: 5828 case OMPC_map: 5829 case OMPC_num_teams: 5830 case OMPC_thread_limit: 5831 case OMPC_priority: 5832 case OMPC_grainsize: 5833 case OMPC_nogroup: 5834 case OMPC_num_tasks: 5835 case OMPC_hint: 5836 case OMPC_dist_schedule: 5837 case OMPC_defaultmap: 5838 case OMPC_uniform: 5839 case OMPC_to: 5840 case OMPC_from: 5841 case OMPC_use_device_ptr: 5842 case OMPC_use_device_addr: 5843 case OMPC_is_device_ptr: 5844 case OMPC_unified_address: 5845 case OMPC_unified_shared_memory: 5846 case OMPC_reverse_offload: 5847 case OMPC_dynamic_allocators: 5848 case OMPC_atomic_default_mem_order: 5849 case OMPC_device_type: 5850 case OMPC_match: 5851 case OMPC_nontemporal: 5852 case OMPC_order: 5853 case OMPC_destroy: 5854 case OMPC_detach: 5855 case OMPC_inclusive: 5856 case OMPC_exclusive: 5857 case OMPC_uses_allocators: 5858 case OMPC_affinity: 5859 case OMPC_init: 5860 case OMPC_inbranch: 5861 case OMPC_notinbranch: 5862 case OMPC_link: 5863 case OMPC_use: 5864 case OMPC_novariants: 5865 case OMPC_nocontext: 5866 case OMPC_filter: 5867 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 5868 } 5869 } 5870 5871 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 5872 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 5873 bool MemOrderingSpecified = false; 5874 if (S.getSingleClause<OMPSeqCstClause>()) { 5875 AO = llvm::AtomicOrdering::SequentiallyConsistent; 5876 MemOrderingSpecified = true; 5877 } else if (S.getSingleClause<OMPAcqRelClause>()) { 5878 AO = llvm::AtomicOrdering::AcquireRelease; 5879 MemOrderingSpecified = true; 5880 } else if (S.getSingleClause<OMPAcquireClause>()) { 5881 AO = llvm::AtomicOrdering::Acquire; 5882 MemOrderingSpecified = true; 5883 } else if (S.getSingleClause<OMPReleaseClause>()) { 5884 AO = llvm::AtomicOrdering::Release; 5885 MemOrderingSpecified = true; 5886 } else if (S.getSingleClause<OMPRelaxedClause>()) { 5887 AO = llvm::AtomicOrdering::Monotonic; 5888 MemOrderingSpecified = true; 5889 } 5890 OpenMPClauseKind Kind = OMPC_unknown; 5891 for (const OMPClause *C : S.clauses()) { 5892 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 5893 // if it is first). 5894 if (C->getClauseKind() != OMPC_seq_cst && 5895 C->getClauseKind() != OMPC_acq_rel && 5896 C->getClauseKind() != OMPC_acquire && 5897 C->getClauseKind() != OMPC_release && 5898 C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) { 5899 Kind = C->getClauseKind(); 5900 break; 5901 } 5902 } 5903 if (!MemOrderingSpecified) { 5904 llvm::AtomicOrdering DefaultOrder = 5905 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 5906 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 5907 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 5908 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 5909 Kind == OMPC_capture)) { 5910 AO = DefaultOrder; 5911 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 5912 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 5913 AO = llvm::AtomicOrdering::Release; 5914 } else if (Kind == OMPC_read) { 5915 assert(Kind == OMPC_read && "Unexpected atomic kind."); 5916 AO = llvm::AtomicOrdering::Acquire; 5917 } 5918 } 5919 } 5920 5921 LexicalScope Scope(*this, S.getSourceRange()); 5922 EmitStopPoint(S.getAssociatedStmt()); 5923 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 5924 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 5925 S.getBeginLoc()); 5926 } 5927 5928 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 5929 const OMPExecutableDirective &S, 5930 const RegionCodeGenTy &CodeGen) { 5931 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 5932 CodeGenModule &CGM = CGF.CGM; 5933 5934 // On device emit this construct as inlined code. 5935 if (CGM.getLangOpts().OpenMPIsDevice) { 5936 OMPLexicalScope Scope(CGF, S, OMPD_target); 5937 CGM.getOpenMPRuntime().emitInlinedDirective( 5938 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5939 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5940 }); 5941 return; 5942 } 5943 5944 auto LPCRegion = 5945 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 5946 llvm::Function *Fn = nullptr; 5947 llvm::Constant *FnID = nullptr; 5948 5949 const Expr *IfCond = nullptr; 5950 // Check for the at most one if clause associated with the target region. 5951 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5952 if (C->getNameModifier() == OMPD_unknown || 5953 C->getNameModifier() == OMPD_target) { 5954 IfCond = C->getCondition(); 5955 break; 5956 } 5957 } 5958 5959 // Check if we have any device clause associated with the directive. 5960 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 5961 nullptr, OMPC_DEVICE_unknown); 5962 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 5963 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 5964 5965 // Check if we have an if clause whose conditional always evaluates to false 5966 // or if we do not have any targets specified. If so the target region is not 5967 // an offload entry point. 5968 bool IsOffloadEntry = true; 5969 if (IfCond) { 5970 bool Val; 5971 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 5972 IsOffloadEntry = false; 5973 } 5974 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5975 IsOffloadEntry = false; 5976 5977 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 5978 StringRef ParentName; 5979 // In case we have Ctors/Dtors we use the complete type variant to produce 5980 // the mangling of the device outlined kernel. 5981 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 5982 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 5983 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 5984 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 5985 else 5986 ParentName = 5987 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 5988 5989 // Emit target region as a standalone region. 5990 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 5991 IsOffloadEntry, CodeGen); 5992 OMPLexicalScope Scope(CGF, S, OMPD_task); 5993 auto &&SizeEmitter = 5994 [IsOffloadEntry](CodeGenFunction &CGF, 5995 const OMPLoopDirective &D) -> llvm::Value * { 5996 if (IsOffloadEntry) { 5997 OMPLoopScope(CGF, D); 5998 // Emit calculation of the iterations count. 5999 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6000 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6001 /*isSigned=*/false); 6002 return NumIterations; 6003 } 6004 return nullptr; 6005 }; 6006 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6007 SizeEmitter); 6008 } 6009 6010 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6011 PrePostActionTy &Action) { 6012 Action.Enter(CGF); 6013 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6014 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6015 CGF.EmitOMPPrivateClause(S, PrivateScope); 6016 (void)PrivateScope.Privatize(); 6017 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6018 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6019 6020 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6021 CGF.EnsureInsertPoint(); 6022 } 6023 6024 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6025 StringRef ParentName, 6026 const OMPTargetDirective &S) { 6027 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6028 emitTargetRegion(CGF, S, Action); 6029 }; 6030 llvm::Function *Fn; 6031 llvm::Constant *Addr; 6032 // Emit target region as a standalone region. 6033 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6034 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6035 assert(Fn && Addr && "Target device function emission failed."); 6036 } 6037 6038 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6039 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6040 emitTargetRegion(CGF, S, Action); 6041 }; 6042 emitCommonOMPTargetDirective(*this, S, CodeGen); 6043 } 6044 6045 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6046 const OMPExecutableDirective &S, 6047 OpenMPDirectiveKind InnermostKind, 6048 const RegionCodeGenTy &CodeGen) { 6049 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6050 llvm::Function *OutlinedFn = 6051 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6052 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6053 6054 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6055 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6056 if (NT || TL) { 6057 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6058 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6059 6060 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6061 S.getBeginLoc()); 6062 } 6063 6064 OMPTeamsScope Scope(CGF, S); 6065 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6066 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6067 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6068 CapturedVars); 6069 } 6070 6071 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6072 // Emit teams region as a standalone region. 6073 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6074 Action.Enter(CGF); 6075 OMPPrivateScope PrivateScope(CGF); 6076 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6077 CGF.EmitOMPPrivateClause(S, PrivateScope); 6078 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6079 (void)PrivateScope.Privatize(); 6080 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6081 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6082 }; 6083 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6084 emitPostUpdateForReductionClause(*this, S, 6085 [](CodeGenFunction &) { return nullptr; }); 6086 } 6087 6088 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6089 const OMPTargetTeamsDirective &S) { 6090 auto *CS = S.getCapturedStmt(OMPD_teams); 6091 Action.Enter(CGF); 6092 // Emit teams region as a standalone region. 6093 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6094 Action.Enter(CGF); 6095 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6096 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6097 CGF.EmitOMPPrivateClause(S, PrivateScope); 6098 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6099 (void)PrivateScope.Privatize(); 6100 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6101 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6102 CGF.EmitStmt(CS->getCapturedStmt()); 6103 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6104 }; 6105 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6106 emitPostUpdateForReductionClause(CGF, S, 6107 [](CodeGenFunction &) { return nullptr; }); 6108 } 6109 6110 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6111 CodeGenModule &CGM, StringRef ParentName, 6112 const OMPTargetTeamsDirective &S) { 6113 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6114 emitTargetTeamsRegion(CGF, Action, S); 6115 }; 6116 llvm::Function *Fn; 6117 llvm::Constant *Addr; 6118 // Emit target region as a standalone region. 6119 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6120 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6121 assert(Fn && Addr && "Target device function emission failed."); 6122 } 6123 6124 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6125 const OMPTargetTeamsDirective &S) { 6126 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6127 emitTargetTeamsRegion(CGF, Action, S); 6128 }; 6129 emitCommonOMPTargetDirective(*this, S, CodeGen); 6130 } 6131 6132 static void 6133 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6134 const OMPTargetTeamsDistributeDirective &S) { 6135 Action.Enter(CGF); 6136 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6137 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6138 }; 6139 6140 // Emit teams region as a standalone region. 6141 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6142 PrePostActionTy &Action) { 6143 Action.Enter(CGF); 6144 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6145 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6146 (void)PrivateScope.Privatize(); 6147 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6148 CodeGenDistribute); 6149 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6150 }; 6151 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6152 emitPostUpdateForReductionClause(CGF, S, 6153 [](CodeGenFunction &) { return nullptr; }); 6154 } 6155 6156 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6157 CodeGenModule &CGM, StringRef ParentName, 6158 const OMPTargetTeamsDistributeDirective &S) { 6159 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6160 emitTargetTeamsDistributeRegion(CGF, Action, S); 6161 }; 6162 llvm::Function *Fn; 6163 llvm::Constant *Addr; 6164 // Emit target region as a standalone region. 6165 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6166 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6167 assert(Fn && Addr && "Target device function emission failed."); 6168 } 6169 6170 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6171 const OMPTargetTeamsDistributeDirective &S) { 6172 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6173 emitTargetTeamsDistributeRegion(CGF, Action, S); 6174 }; 6175 emitCommonOMPTargetDirective(*this, S, CodeGen); 6176 } 6177 6178 static void emitTargetTeamsDistributeSimdRegion( 6179 CodeGenFunction &CGF, PrePostActionTy &Action, 6180 const OMPTargetTeamsDistributeSimdDirective &S) { 6181 Action.Enter(CGF); 6182 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6183 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6184 }; 6185 6186 // Emit teams region as a standalone region. 6187 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6188 PrePostActionTy &Action) { 6189 Action.Enter(CGF); 6190 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6191 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6192 (void)PrivateScope.Privatize(); 6193 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6194 CodeGenDistribute); 6195 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6196 }; 6197 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6198 emitPostUpdateForReductionClause(CGF, S, 6199 [](CodeGenFunction &) { return nullptr; }); 6200 } 6201 6202 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6203 CodeGenModule &CGM, StringRef ParentName, 6204 const OMPTargetTeamsDistributeSimdDirective &S) { 6205 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6206 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6207 }; 6208 llvm::Function *Fn; 6209 llvm::Constant *Addr; 6210 // Emit target region as a standalone region. 6211 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6212 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6213 assert(Fn && Addr && "Target device function emission failed."); 6214 } 6215 6216 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6217 const OMPTargetTeamsDistributeSimdDirective &S) { 6218 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6219 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6220 }; 6221 emitCommonOMPTargetDirective(*this, S, CodeGen); 6222 } 6223 6224 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6225 const OMPTeamsDistributeDirective &S) { 6226 6227 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6228 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6229 }; 6230 6231 // Emit teams region as a standalone region. 6232 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6233 PrePostActionTy &Action) { 6234 Action.Enter(CGF); 6235 OMPPrivateScope PrivateScope(CGF); 6236 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6237 (void)PrivateScope.Privatize(); 6238 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6239 CodeGenDistribute); 6240 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6241 }; 6242 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6243 emitPostUpdateForReductionClause(*this, S, 6244 [](CodeGenFunction &) { return nullptr; }); 6245 } 6246 6247 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6248 const OMPTeamsDistributeSimdDirective &S) { 6249 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6250 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6251 }; 6252 6253 // Emit teams region as a standalone region. 6254 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6255 PrePostActionTy &Action) { 6256 Action.Enter(CGF); 6257 OMPPrivateScope PrivateScope(CGF); 6258 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6259 (void)PrivateScope.Privatize(); 6260 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6261 CodeGenDistribute); 6262 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6263 }; 6264 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6265 emitPostUpdateForReductionClause(*this, S, 6266 [](CodeGenFunction &) { return nullptr; }); 6267 } 6268 6269 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6270 const OMPTeamsDistributeParallelForDirective &S) { 6271 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6272 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6273 S.getDistInc()); 6274 }; 6275 6276 // Emit teams region as a standalone region. 6277 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6278 PrePostActionTy &Action) { 6279 Action.Enter(CGF); 6280 OMPPrivateScope PrivateScope(CGF); 6281 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6282 (void)PrivateScope.Privatize(); 6283 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6284 CodeGenDistribute); 6285 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6286 }; 6287 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6288 emitPostUpdateForReductionClause(*this, S, 6289 [](CodeGenFunction &) { return nullptr; }); 6290 } 6291 6292 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6293 const OMPTeamsDistributeParallelForSimdDirective &S) { 6294 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6295 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6296 S.getDistInc()); 6297 }; 6298 6299 // Emit teams region as a standalone region. 6300 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6301 PrePostActionTy &Action) { 6302 Action.Enter(CGF); 6303 OMPPrivateScope PrivateScope(CGF); 6304 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6305 (void)PrivateScope.Privatize(); 6306 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6307 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6308 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6309 }; 6310 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6311 CodeGen); 6312 emitPostUpdateForReductionClause(*this, S, 6313 [](CodeGenFunction &) { return nullptr; }); 6314 } 6315 6316 static void emitTargetTeamsDistributeParallelForRegion( 6317 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 6318 PrePostActionTy &Action) { 6319 Action.Enter(CGF); 6320 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6321 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6322 S.getDistInc()); 6323 }; 6324 6325 // Emit teams region as a standalone region. 6326 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6327 PrePostActionTy &Action) { 6328 Action.Enter(CGF); 6329 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6330 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6331 (void)PrivateScope.Privatize(); 6332 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6333 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6334 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6335 }; 6336 6337 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 6338 CodeGenTeams); 6339 emitPostUpdateForReductionClause(CGF, S, 6340 [](CodeGenFunction &) { return nullptr; }); 6341 } 6342 6343 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 6344 CodeGenModule &CGM, StringRef ParentName, 6345 const OMPTargetTeamsDistributeParallelForDirective &S) { 6346 // Emit SPMD target teams distribute parallel for region as a standalone 6347 // region. 6348 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6349 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6350 }; 6351 llvm::Function *Fn; 6352 llvm::Constant *Addr; 6353 // Emit target region as a standalone region. 6354 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6355 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6356 assert(Fn && Addr && "Target device function emission failed."); 6357 } 6358 6359 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 6360 const OMPTargetTeamsDistributeParallelForDirective &S) { 6361 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6362 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6363 }; 6364 emitCommonOMPTargetDirective(*this, S, CodeGen); 6365 } 6366 6367 static void emitTargetTeamsDistributeParallelForSimdRegion( 6368 CodeGenFunction &CGF, 6369 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 6370 PrePostActionTy &Action) { 6371 Action.Enter(CGF); 6372 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6373 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6374 S.getDistInc()); 6375 }; 6376 6377 // Emit teams region as a standalone region. 6378 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6379 PrePostActionTy &Action) { 6380 Action.Enter(CGF); 6381 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6382 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6383 (void)PrivateScope.Privatize(); 6384 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6385 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6386 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6387 }; 6388 6389 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 6390 CodeGenTeams); 6391 emitPostUpdateForReductionClause(CGF, S, 6392 [](CodeGenFunction &) { return nullptr; }); 6393 } 6394 6395 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 6396 CodeGenModule &CGM, StringRef ParentName, 6397 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6398 // Emit SPMD target teams distribute parallel for simd region as a standalone 6399 // region. 6400 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6401 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6402 }; 6403 llvm::Function *Fn; 6404 llvm::Constant *Addr; 6405 // Emit target region as a standalone region. 6406 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6407 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6408 assert(Fn && Addr && "Target device function emission failed."); 6409 } 6410 6411 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 6412 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6413 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6414 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6415 }; 6416 emitCommonOMPTargetDirective(*this, S, CodeGen); 6417 } 6418 6419 void CodeGenFunction::EmitOMPCancellationPointDirective( 6420 const OMPCancellationPointDirective &S) { 6421 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 6422 S.getCancelRegion()); 6423 } 6424 6425 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 6426 const Expr *IfCond = nullptr; 6427 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6428 if (C->getNameModifier() == OMPD_unknown || 6429 C->getNameModifier() == OMPD_cancel) { 6430 IfCond = C->getCondition(); 6431 break; 6432 } 6433 } 6434 if (CGM.getLangOpts().OpenMPIRBuilder) { 6435 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6436 // TODO: This check is necessary as we only generate `omp parallel` through 6437 // the OpenMPIRBuilder for now. 6438 if (S.getCancelRegion() == OMPD_parallel || 6439 S.getCancelRegion() == OMPD_sections || 6440 S.getCancelRegion() == OMPD_section) { 6441 llvm::Value *IfCondition = nullptr; 6442 if (IfCond) 6443 IfCondition = EmitScalarExpr(IfCond, 6444 /*IgnoreResultAssign=*/true); 6445 return Builder.restoreIP( 6446 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 6447 } 6448 } 6449 6450 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 6451 S.getCancelRegion()); 6452 } 6453 6454 CodeGenFunction::JumpDest 6455 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 6456 if (Kind == OMPD_parallel || Kind == OMPD_task || 6457 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 6458 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 6459 return ReturnBlock; 6460 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 6461 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 6462 Kind == OMPD_distribute_parallel_for || 6463 Kind == OMPD_target_parallel_for || 6464 Kind == OMPD_teams_distribute_parallel_for || 6465 Kind == OMPD_target_teams_distribute_parallel_for); 6466 return OMPCancelStack.getExitBlock(); 6467 } 6468 6469 void CodeGenFunction::EmitOMPUseDevicePtrClause( 6470 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 6471 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6472 auto OrigVarIt = C.varlist_begin(); 6473 auto InitIt = C.inits().begin(); 6474 for (const Expr *PvtVarIt : C.private_copies()) { 6475 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6476 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6477 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6478 6479 // In order to identify the right initializer we need to match the 6480 // declaration used by the mapping logic. In some cases we may get 6481 // OMPCapturedExprDecl that refers to the original declaration. 6482 const ValueDecl *MatchingVD = OrigVD; 6483 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6484 // OMPCapturedExprDecl are used to privative fields of the current 6485 // structure. 6486 const auto *ME = cast<MemberExpr>(OED->getInit()); 6487 assert(isa<CXXThisExpr>(ME->getBase()) && 6488 "Base should be the current struct!"); 6489 MatchingVD = ME->getMemberDecl(); 6490 } 6491 6492 // If we don't have information about the current list item, move on to 6493 // the next one. 6494 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6495 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6496 continue; 6497 6498 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 6499 InitAddrIt, InitVD, 6500 PvtVD]() { 6501 // Initialize the temporary initialization variable with the address we 6502 // get from the runtime library. We have to cast the source address 6503 // because it is always a void *. References are materialized in the 6504 // privatization scope, so the initialization here disregards the fact 6505 // the original variable is a reference. 6506 QualType AddrQTy = 6507 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 6508 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 6509 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 6510 setAddrOfLocalVar(InitVD, InitAddr); 6511 6512 // Emit private declaration, it will be initialized by the value we 6513 // declaration we just added to the local declarations map. 6514 EmitDecl(*PvtVD); 6515 6516 // The initialization variables reached its purpose in the emission 6517 // of the previous declaration, so we don't need it anymore. 6518 LocalDeclMap.erase(InitVD); 6519 6520 // Return the address of the private variable. 6521 return GetAddrOfLocalVar(PvtVD); 6522 }); 6523 assert(IsRegistered && "firstprivate var already registered as private"); 6524 // Silence the warning about unused variable. 6525 (void)IsRegistered; 6526 6527 ++OrigVarIt; 6528 ++InitIt; 6529 } 6530 } 6531 6532 static const VarDecl *getBaseDecl(const Expr *Ref) { 6533 const Expr *Base = Ref->IgnoreParenImpCasts(); 6534 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6535 Base = OASE->getBase()->IgnoreParenImpCasts(); 6536 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6537 Base = ASE->getBase()->IgnoreParenImpCasts(); 6538 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6539 } 6540 6541 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6542 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6543 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6544 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6545 for (const Expr *Ref : C.varlists()) { 6546 const VarDecl *OrigVD = getBaseDecl(Ref); 6547 if (!Processed.insert(OrigVD).second) 6548 continue; 6549 // In order to identify the right initializer we need to match the 6550 // declaration used by the mapping logic. In some cases we may get 6551 // OMPCapturedExprDecl that refers to the original declaration. 6552 const ValueDecl *MatchingVD = OrigVD; 6553 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6554 // OMPCapturedExprDecl are used to privative fields of the current 6555 // structure. 6556 const auto *ME = cast<MemberExpr>(OED->getInit()); 6557 assert(isa<CXXThisExpr>(ME->getBase()) && 6558 "Base should be the current struct!"); 6559 MatchingVD = ME->getMemberDecl(); 6560 } 6561 6562 // If we don't have information about the current list item, move on to 6563 // the next one. 6564 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6565 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6566 continue; 6567 6568 Address PrivAddr = InitAddrIt->getSecond(); 6569 // For declrefs and variable length array need to load the pointer for 6570 // correct mapping, since the pointer to the data was passed to the runtime. 6571 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6572 MatchingVD->getType()->isArrayType()) 6573 PrivAddr = 6574 EmitLoadOfPointer(PrivAddr, getContext() 6575 .getPointerType(OrigVD->getType()) 6576 ->castAs<PointerType>()); 6577 llvm::Type *RealTy = 6578 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6579 ->getPointerTo(); 6580 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6581 6582 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6583 } 6584 } 6585 6586 // Generate the instructions for '#pragma omp target data' directive. 6587 void CodeGenFunction::EmitOMPTargetDataDirective( 6588 const OMPTargetDataDirective &S) { 6589 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 6590 /*SeparateBeginEndCalls=*/true); 6591 6592 // Create a pre/post action to signal the privatization of the device pointer. 6593 // This action can be replaced by the OpenMP runtime code generation to 6594 // deactivate privatization. 6595 bool PrivatizeDevicePointers = false; 6596 class DevicePointerPrivActionTy : public PrePostActionTy { 6597 bool &PrivatizeDevicePointers; 6598 6599 public: 6600 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6601 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6602 void Enter(CodeGenFunction &CGF) override { 6603 PrivatizeDevicePointers = true; 6604 } 6605 }; 6606 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6607 6608 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6609 CodeGenFunction &CGF, PrePostActionTy &Action) { 6610 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6611 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6612 }; 6613 6614 // Codegen that selects whether to generate the privatization code or not. 6615 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6616 &InnermostCodeGen](CodeGenFunction &CGF, 6617 PrePostActionTy &Action) { 6618 RegionCodeGenTy RCG(InnermostCodeGen); 6619 PrivatizeDevicePointers = false; 6620 6621 // Call the pre-action to change the status of PrivatizeDevicePointers if 6622 // needed. 6623 Action.Enter(CGF); 6624 6625 if (PrivatizeDevicePointers) { 6626 OMPPrivateScope PrivateScope(CGF); 6627 // Emit all instances of the use_device_ptr clause. 6628 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6629 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6630 Info.CaptureDeviceAddrMap); 6631 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6632 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6633 Info.CaptureDeviceAddrMap); 6634 (void)PrivateScope.Privatize(); 6635 RCG(CGF); 6636 } else { 6637 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6638 RCG(CGF); 6639 } 6640 }; 6641 6642 // Forward the provided action to the privatization codegen. 6643 RegionCodeGenTy PrivRCG(PrivCodeGen); 6644 PrivRCG.setAction(Action); 6645 6646 // Notwithstanding the body of the region is emitted as inlined directive, 6647 // we don't use an inline scope as changes in the references inside the 6648 // region are expected to be visible outside, so we do not privative them. 6649 OMPLexicalScope Scope(CGF, S); 6650 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6651 PrivRCG); 6652 }; 6653 6654 RegionCodeGenTy RCG(CodeGen); 6655 6656 // If we don't have target devices, don't bother emitting the data mapping 6657 // code. 6658 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6659 RCG(*this); 6660 return; 6661 } 6662 6663 // Check if we have any if clause associated with the directive. 6664 const Expr *IfCond = nullptr; 6665 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6666 IfCond = C->getCondition(); 6667 6668 // Check if we have any device clause associated with the directive. 6669 const Expr *Device = nullptr; 6670 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6671 Device = C->getDevice(); 6672 6673 // Set the action to signal privatization of device pointers. 6674 RCG.setAction(PrivAction); 6675 6676 // Emit region code. 6677 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6678 Info); 6679 } 6680 6681 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6682 const OMPTargetEnterDataDirective &S) { 6683 // If we don't have target devices, don't bother emitting the data mapping 6684 // code. 6685 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6686 return; 6687 6688 // Check if we have any if clause associated with the directive. 6689 const Expr *IfCond = nullptr; 6690 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6691 IfCond = C->getCondition(); 6692 6693 // Check if we have any device clause associated with the directive. 6694 const Expr *Device = nullptr; 6695 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6696 Device = C->getDevice(); 6697 6698 OMPLexicalScope Scope(*this, S, OMPD_task); 6699 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6700 } 6701 6702 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6703 const OMPTargetExitDataDirective &S) { 6704 // If we don't have target devices, don't bother emitting the data mapping 6705 // code. 6706 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6707 return; 6708 6709 // Check if we have any if clause associated with the directive. 6710 const Expr *IfCond = nullptr; 6711 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6712 IfCond = C->getCondition(); 6713 6714 // Check if we have any device clause associated with the directive. 6715 const Expr *Device = nullptr; 6716 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6717 Device = C->getDevice(); 6718 6719 OMPLexicalScope Scope(*this, S, OMPD_task); 6720 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6721 } 6722 6723 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6724 const OMPTargetParallelDirective &S, 6725 PrePostActionTy &Action) { 6726 // Get the captured statement associated with the 'parallel' region. 6727 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6728 Action.Enter(CGF); 6729 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6730 Action.Enter(CGF); 6731 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6732 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6733 CGF.EmitOMPPrivateClause(S, PrivateScope); 6734 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6735 (void)PrivateScope.Privatize(); 6736 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6737 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6738 // TODO: Add support for clauses. 6739 CGF.EmitStmt(CS->getCapturedStmt()); 6740 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6741 }; 6742 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6743 emitEmptyBoundParameters); 6744 emitPostUpdateForReductionClause(CGF, S, 6745 [](CodeGenFunction &) { return nullptr; }); 6746 } 6747 6748 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6749 CodeGenModule &CGM, StringRef ParentName, 6750 const OMPTargetParallelDirective &S) { 6751 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6752 emitTargetParallelRegion(CGF, S, Action); 6753 }; 6754 llvm::Function *Fn; 6755 llvm::Constant *Addr; 6756 // Emit target region as a standalone region. 6757 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6758 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6759 assert(Fn && Addr && "Target device function emission failed."); 6760 } 6761 6762 void CodeGenFunction::EmitOMPTargetParallelDirective( 6763 const OMPTargetParallelDirective &S) { 6764 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6765 emitTargetParallelRegion(CGF, S, Action); 6766 }; 6767 emitCommonOMPTargetDirective(*this, S, CodeGen); 6768 } 6769 6770 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6771 const OMPTargetParallelForDirective &S, 6772 PrePostActionTy &Action) { 6773 Action.Enter(CGF); 6774 // Emit directive as a combined directive that consists of two implicit 6775 // directives: 'parallel' with 'for' directive. 6776 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6777 Action.Enter(CGF); 6778 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6779 CGF, OMPD_target_parallel_for, S.hasCancel()); 6780 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6781 emitDispatchForLoopBounds); 6782 }; 6783 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6784 emitEmptyBoundParameters); 6785 } 6786 6787 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6788 CodeGenModule &CGM, StringRef ParentName, 6789 const OMPTargetParallelForDirective &S) { 6790 // Emit SPMD target parallel for region as a standalone region. 6791 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6792 emitTargetParallelForRegion(CGF, S, Action); 6793 }; 6794 llvm::Function *Fn; 6795 llvm::Constant *Addr; 6796 // Emit target region as a standalone region. 6797 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6798 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6799 assert(Fn && Addr && "Target device function emission failed."); 6800 } 6801 6802 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6803 const OMPTargetParallelForDirective &S) { 6804 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6805 emitTargetParallelForRegion(CGF, S, Action); 6806 }; 6807 emitCommonOMPTargetDirective(*this, S, CodeGen); 6808 } 6809 6810 static void 6811 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 6812 const OMPTargetParallelForSimdDirective &S, 6813 PrePostActionTy &Action) { 6814 Action.Enter(CGF); 6815 // Emit directive as a combined directive that consists of two implicit 6816 // directives: 'parallel' with 'for' directive. 6817 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6818 Action.Enter(CGF); 6819 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6820 emitDispatchForLoopBounds); 6821 }; 6822 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 6823 emitEmptyBoundParameters); 6824 } 6825 6826 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 6827 CodeGenModule &CGM, StringRef ParentName, 6828 const OMPTargetParallelForSimdDirective &S) { 6829 // Emit SPMD target parallel for region as a standalone region. 6830 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6831 emitTargetParallelForSimdRegion(CGF, S, Action); 6832 }; 6833 llvm::Function *Fn; 6834 llvm::Constant *Addr; 6835 // Emit target region as a standalone region. 6836 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6837 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6838 assert(Fn && Addr && "Target device function emission failed."); 6839 } 6840 6841 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 6842 const OMPTargetParallelForSimdDirective &S) { 6843 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6844 emitTargetParallelForSimdRegion(CGF, S, Action); 6845 }; 6846 emitCommonOMPTargetDirective(*this, S, CodeGen); 6847 } 6848 6849 /// Emit a helper variable and return corresponding lvalue. 6850 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 6851 const ImplicitParamDecl *PVD, 6852 CodeGenFunction::OMPPrivateScope &Privates) { 6853 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 6854 Privates.addPrivate(VDecl, 6855 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 6856 } 6857 6858 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 6859 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 6860 // Emit outlined function for task construct. 6861 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 6862 Address CapturedStruct = Address::invalid(); 6863 { 6864 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6865 CapturedStruct = GenerateCapturedStmtArgument(*CS); 6866 } 6867 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 6868 const Expr *IfCond = nullptr; 6869 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6870 if (C->getNameModifier() == OMPD_unknown || 6871 C->getNameModifier() == OMPD_taskloop) { 6872 IfCond = C->getCondition(); 6873 break; 6874 } 6875 } 6876 6877 OMPTaskDataTy Data; 6878 // Check if taskloop must be emitted without taskgroup. 6879 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 6880 // TODO: Check if we should emit tied or untied task. 6881 Data.Tied = true; 6882 // Set scheduling for taskloop 6883 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 6884 // grainsize clause 6885 Data.Schedule.setInt(/*IntVal=*/false); 6886 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 6887 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 6888 // num_tasks clause 6889 Data.Schedule.setInt(/*IntVal=*/true); 6890 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 6891 } 6892 6893 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 6894 // if (PreCond) { 6895 // for (IV in 0..LastIteration) BODY; 6896 // <Final counter/linear vars updates>; 6897 // } 6898 // 6899 6900 // Emit: if (PreCond) - begin. 6901 // If the condition constant folds and can be elided, avoid emitting the 6902 // whole loop. 6903 bool CondConstant; 6904 llvm::BasicBlock *ContBlock = nullptr; 6905 OMPLoopScope PreInitScope(CGF, S); 6906 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 6907 if (!CondConstant) 6908 return; 6909 } else { 6910 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 6911 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 6912 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 6913 CGF.getProfileCount(&S)); 6914 CGF.EmitBlock(ThenBlock); 6915 CGF.incrementProfileCounter(&S); 6916 } 6917 6918 (void)CGF.EmitOMPLinearClauseInit(S); 6919 6920 OMPPrivateScope LoopScope(CGF); 6921 // Emit helper vars inits. 6922 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 6923 auto *I = CS->getCapturedDecl()->param_begin(); 6924 auto *LBP = std::next(I, LowerBound); 6925 auto *UBP = std::next(I, UpperBound); 6926 auto *STP = std::next(I, Stride); 6927 auto *LIP = std::next(I, LastIter); 6928 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 6929 LoopScope); 6930 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 6931 LoopScope); 6932 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 6933 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 6934 LoopScope); 6935 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 6936 CGF.EmitOMPLinearClause(S, LoopScope); 6937 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 6938 (void)LoopScope.Privatize(); 6939 // Emit the loop iteration variable. 6940 const Expr *IVExpr = S.getIterationVariable(); 6941 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 6942 CGF.EmitVarDecl(*IVDecl); 6943 CGF.EmitIgnoredExpr(S.getInit()); 6944 6945 // Emit the iterations count variable. 6946 // If it is not a variable, Sema decided to calculate iterations count on 6947 // each iteration (e.g., it is foldable into a constant). 6948 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 6949 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 6950 // Emit calculation of the iterations count. 6951 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 6952 } 6953 6954 { 6955 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6956 emitCommonSimdLoop( 6957 CGF, S, 6958 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6959 if (isOpenMPSimdDirective(S.getDirectiveKind())) 6960 CGF.EmitOMPSimdInit(S); 6961 }, 6962 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 6963 CGF.EmitOMPInnerLoop( 6964 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 6965 [&S](CodeGenFunction &CGF) { 6966 emitOMPLoopBodyWithStopPoint(CGF, S, 6967 CodeGenFunction::JumpDest()); 6968 }, 6969 [](CodeGenFunction &) {}); 6970 }); 6971 } 6972 // Emit: if (PreCond) - end. 6973 if (ContBlock) { 6974 CGF.EmitBranch(ContBlock); 6975 CGF.EmitBlock(ContBlock, true); 6976 } 6977 // Emit final copy of the lastprivate variables if IsLastIter != 0. 6978 if (HasLastprivateClause) { 6979 CGF.EmitOMPLastprivateClauseFinal( 6980 S, isOpenMPSimdDirective(S.getDirectiveKind()), 6981 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 6982 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6983 (*LIP)->getType(), S.getBeginLoc()))); 6984 } 6985 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 6986 return CGF.Builder.CreateIsNotNull( 6987 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6988 (*LIP)->getType(), S.getBeginLoc())); 6989 }); 6990 }; 6991 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 6992 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 6993 const OMPTaskDataTy &Data) { 6994 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 6995 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 6996 OMPLoopScope PreInitScope(CGF, S); 6997 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 6998 OutlinedFn, SharedsTy, 6999 CapturedStruct, IfCond, Data); 7000 }; 7001 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7002 CodeGen); 7003 }; 7004 if (Data.Nogroup) { 7005 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7006 } else { 7007 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7008 *this, 7009 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7010 PrePostActionTy &Action) { 7011 Action.Enter(CGF); 7012 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7013 Data); 7014 }, 7015 S.getBeginLoc()); 7016 } 7017 } 7018 7019 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7020 auto LPCRegion = 7021 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7022 EmitOMPTaskLoopBasedDirective(S); 7023 } 7024 7025 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7026 const OMPTaskLoopSimdDirective &S) { 7027 auto LPCRegion = 7028 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7029 OMPLexicalScope Scope(*this, S); 7030 EmitOMPTaskLoopBasedDirective(S); 7031 } 7032 7033 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7034 const OMPMasterTaskLoopDirective &S) { 7035 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7036 Action.Enter(CGF); 7037 EmitOMPTaskLoopBasedDirective(S); 7038 }; 7039 auto LPCRegion = 7040 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7041 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 7042 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7043 } 7044 7045 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7046 const OMPMasterTaskLoopSimdDirective &S) { 7047 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7048 Action.Enter(CGF); 7049 EmitOMPTaskLoopBasedDirective(S); 7050 }; 7051 auto LPCRegion = 7052 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7053 OMPLexicalScope Scope(*this, S); 7054 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7055 } 7056 7057 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7058 const OMPParallelMasterTaskLoopDirective &S) { 7059 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7060 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7061 PrePostActionTy &Action) { 7062 Action.Enter(CGF); 7063 CGF.EmitOMPTaskLoopBasedDirective(S); 7064 }; 7065 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7066 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7067 S.getBeginLoc()); 7068 }; 7069 auto LPCRegion = 7070 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7071 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7072 emitEmptyBoundParameters); 7073 } 7074 7075 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7076 const OMPParallelMasterTaskLoopSimdDirective &S) { 7077 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7078 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7079 PrePostActionTy &Action) { 7080 Action.Enter(CGF); 7081 CGF.EmitOMPTaskLoopBasedDirective(S); 7082 }; 7083 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7084 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7085 S.getBeginLoc()); 7086 }; 7087 auto LPCRegion = 7088 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7089 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7090 emitEmptyBoundParameters); 7091 } 7092 7093 // Generate the instructions for '#pragma omp target update' directive. 7094 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7095 const OMPTargetUpdateDirective &S) { 7096 // If we don't have target devices, don't bother emitting the data mapping 7097 // code. 7098 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7099 return; 7100 7101 // Check if we have any if clause associated with the directive. 7102 const Expr *IfCond = nullptr; 7103 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7104 IfCond = C->getCondition(); 7105 7106 // Check if we have any device clause associated with the directive. 7107 const Expr *Device = nullptr; 7108 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7109 Device = C->getDevice(); 7110 7111 OMPLexicalScope Scope(*this, S, OMPD_task); 7112 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7113 } 7114 7115 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7116 const OMPExecutableDirective &D) { 7117 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7118 EmitOMPScanDirective(*SD); 7119 return; 7120 } 7121 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7122 return; 7123 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7124 OMPPrivateScope GlobalsScope(CGF); 7125 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7126 // Capture global firstprivates to avoid crash. 7127 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7128 for (const Expr *Ref : C->varlists()) { 7129 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7130 if (!DRE) 7131 continue; 7132 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7133 if (!VD || VD->hasLocalStorage()) 7134 continue; 7135 if (!CGF.LocalDeclMap.count(VD)) { 7136 LValue GlobLVal = CGF.EmitLValue(Ref); 7137 GlobalsScope.addPrivate( 7138 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7139 } 7140 } 7141 } 7142 } 7143 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7144 (void)GlobalsScope.Privatize(); 7145 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7146 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7147 } else { 7148 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7149 for (const Expr *E : LD->counters()) { 7150 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7151 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7152 LValue GlobLVal = CGF.EmitLValue(E); 7153 GlobalsScope.addPrivate( 7154 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7155 } 7156 if (isa<OMPCapturedExprDecl>(VD)) { 7157 // Emit only those that were not explicitly referenced in clauses. 7158 if (!CGF.LocalDeclMap.count(VD)) 7159 CGF.EmitVarDecl(*VD); 7160 } 7161 } 7162 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7163 if (!C->getNumForLoops()) 7164 continue; 7165 for (unsigned I = LD->getLoopsNumber(), 7166 E = C->getLoopNumIterations().size(); 7167 I < E; ++I) { 7168 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7169 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7170 // Emit only those that were not explicitly referenced in clauses. 7171 if (!CGF.LocalDeclMap.count(VD)) 7172 CGF.EmitVarDecl(*VD); 7173 } 7174 } 7175 } 7176 } 7177 (void)GlobalsScope.Privatize(); 7178 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7179 } 7180 }; 7181 if (D.getDirectiveKind() == OMPD_atomic || 7182 D.getDirectiveKind() == OMPD_critical || 7183 D.getDirectiveKind() == OMPD_section || 7184 D.getDirectiveKind() == OMPD_master || 7185 D.getDirectiveKind() == OMPD_masked) { 7186 EmitStmt(D.getAssociatedStmt()); 7187 } else { 7188 auto LPCRegion = 7189 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7190 OMPSimdLexicalScope Scope(*this, D); 7191 CGM.getOpenMPRuntime().emitInlinedDirective( 7192 *this, 7193 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7194 : D.getDirectiveKind(), 7195 CodeGen); 7196 } 7197 // Check for outer lastprivate conditional update. 7198 checkForLastprivateConditionalUpdate(*this, D); 7199 } 7200