1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit OpenMP nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "llvm/IR/CallSite.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
28 /// for captured expressions.
29 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
30   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
31     for (const auto *C : S.clauses()) {
32       if (auto *CPI = OMPClauseWithPreInit::get(C)) {
33         if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
34           for (const auto *I : PreInit->decls()) {
35             if (!I->hasAttr<OMPCaptureNoInitAttr>())
36               CGF.EmitVarDecl(cast<VarDecl>(*I));
37             else {
38               CodeGenFunction::AutoVarEmission Emission =
39                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
40               CGF.EmitAutoVarCleanups(Emission);
41             }
42           }
43         }
44       }
45     }
46   }
47   CodeGenFunction::OMPPrivateScope InlinedShareds;
48 
49   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
50     return CGF.LambdaCaptureFields.lookup(VD) ||
51            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
52            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl));
53   }
54 
55 public:
56   OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S,
57                   bool AsInlined = false, bool EmitPreInitStmt = true)
58       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
59         InlinedShareds(CGF) {
60     if (EmitPreInitStmt)
61       emitPreInitStmt(CGF, S);
62     if (AsInlined) {
63       if (S.hasAssociatedStmt()) {
64         auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
65         for (auto &C : CS->captures()) {
66           if (C.capturesVariable() || C.capturesVariableByCopy()) {
67             auto *VD = C.getCapturedVar();
68             assert(VD == VD->getCanonicalDecl() &&
69                         "Canonical decl must be captured.");
70             DeclRefExpr DRE(const_cast<VarDecl *>(VD),
71                             isCapturedVar(CGF, VD) ||
72                                 (CGF.CapturedStmtInfo &&
73                                  InlinedShareds.isGlobalVarCaptured(VD)),
74                             VD->getType().getNonReferenceType(), VK_LValue,
75                             SourceLocation());
76             InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
77               return CGF.EmitLValue(&DRE).getAddress();
78             });
79           }
80         }
81         (void)InlinedShareds.Privatize();
82       }
83     }
84   }
85 };
86 
87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
88 /// for captured expressions.
89 class OMPParallelScope final : public OMPLexicalScope {
90   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
91     OpenMPDirectiveKind Kind = S.getDirectiveKind();
92     return !(isOpenMPTargetExecutionDirective(Kind) ||
93              isOpenMPLoopBoundSharingDirective(Kind)) &&
94            isOpenMPParallelDirective(Kind);
95   }
96 
97 public:
98   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
99       : OMPLexicalScope(CGF, S,
100                         /*AsInlined=*/false,
101                         /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {}
102 };
103 
104 /// Lexical scope for OpenMP teams construct, that handles correct codegen
105 /// for captured expressions.
106 class OMPTeamsScope final : public OMPLexicalScope {
107   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
108     OpenMPDirectiveKind Kind = S.getDirectiveKind();
109     return !isOpenMPTargetExecutionDirective(Kind) &&
110            isOpenMPTeamsDirective(Kind);
111   }
112 
113 public:
114   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
115       : OMPLexicalScope(CGF, S,
116                         /*AsInlined=*/false,
117                         /*EmitPreInitStmt=*/EmitPreInitStmt(S)) {}
118 };
119 
120 /// Private scope for OpenMP loop-based directives, that supports capturing
121 /// of used expression from loop statement.
122 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
123   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) {
124     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
125       if (auto *PreInits = cast_or_null<DeclStmt>(LD->getPreInits())) {
126         for (const auto *I : PreInits->decls())
127           CGF.EmitVarDecl(cast<VarDecl>(*I));
128       }
129     }
130   }
131 
132 public:
133   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S)
134       : CodeGenFunction::RunCleanupsScope(CGF) {
135     emitPreInitStmt(CGF, S);
136   }
137 };
138 
139 } // namespace
140 
141 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
142   if (auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
143     if (auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
144       OrigVD = OrigVD->getCanonicalDecl();
145       bool IsCaptured =
146           LambdaCaptureFields.lookup(OrigVD) ||
147           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
148           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
149       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), IsCaptured,
150                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
151       return EmitLValue(&DRE);
152     }
153   }
154   return EmitLValue(E);
155 }
156 
157 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
158   auto &C = getContext();
159   llvm::Value *Size = nullptr;
160   auto SizeInChars = C.getTypeSizeInChars(Ty);
161   if (SizeInChars.isZero()) {
162     // getTypeSizeInChars() returns 0 for a VLA.
163     while (auto *VAT = C.getAsVariableArrayType(Ty)) {
164       llvm::Value *ArraySize;
165       std::tie(ArraySize, Ty) = getVLASize(VAT);
166       Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize;
167     }
168     SizeInChars = C.getTypeSizeInChars(Ty);
169     if (SizeInChars.isZero())
170       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
171     Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
172   } else
173     Size = CGM.getSize(SizeInChars);
174   return Size;
175 }
176 
177 void CodeGenFunction::GenerateOpenMPCapturedVars(
178     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
179   const RecordDecl *RD = S.getCapturedRecordDecl();
180   auto CurField = RD->field_begin();
181   auto CurCap = S.captures().begin();
182   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
183                                                  E = S.capture_init_end();
184        I != E; ++I, ++CurField, ++CurCap) {
185     if (CurField->hasCapturedVLAType()) {
186       auto VAT = CurField->getCapturedVLAType();
187       auto *Val = VLASizeMap[VAT->getSizeExpr()];
188       CapturedVars.push_back(Val);
189     } else if (CurCap->capturesThis())
190       CapturedVars.push_back(CXXThisValue);
191     else if (CurCap->capturesVariableByCopy()) {
192       llvm::Value *CV =
193           EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal();
194 
195       // If the field is not a pointer, we need to save the actual value
196       // and load it as a void pointer.
197       if (!CurField->getType()->isAnyPointerType()) {
198         auto &Ctx = getContext();
199         auto DstAddr = CreateMemTemp(
200             Ctx.getUIntPtrType(),
201             Twine(CurCap->getCapturedVar()->getName()) + ".casted");
202         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
203 
204         auto *SrcAddrVal = EmitScalarConversion(
205             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
206             Ctx.getPointerType(CurField->getType()), SourceLocation());
207         LValue SrcLV =
208             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
209 
210         // Store the value using the source type pointer.
211         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
212 
213         // Load the value using the destination type pointer.
214         CV = EmitLoadOfLValue(DstLV, SourceLocation()).getScalarVal();
215       }
216       CapturedVars.push_back(CV);
217     } else {
218       assert(CurCap->capturesVariable() && "Expected capture by reference.");
219       CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
220     }
221   }
222 }
223 
224 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
225                                     StringRef Name, LValue AddrLV,
226                                     bool isReferenceType = false) {
227   ASTContext &Ctx = CGF.getContext();
228 
229   auto *CastedPtr = CGF.EmitScalarConversion(
230       AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
231       Ctx.getPointerType(DstType), SourceLocation());
232   auto TmpAddr =
233       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
234           .getAddress();
235 
236   // If we are dealing with references we need to return the address of the
237   // reference instead of the reference of the value.
238   if (isReferenceType) {
239     QualType RefType = Ctx.getLValueReferenceType(DstType);
240     auto *RefVal = TmpAddr.getPointer();
241     TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
242     auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
243     CGF.EmitStoreThroughLValue(RValue::get(RefVal), TmpLVal, /*isInit*/ true);
244   }
245 
246   return TmpAddr;
247 }
248 
249 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
250   if (T->isLValueReferenceType()) {
251     return C.getLValueReferenceType(
252         getCanonicalParamType(C, T.getNonReferenceType()),
253         /*SpelledAsLValue=*/false);
254   }
255   if (T->isPointerType())
256     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
257   return C.getCanonicalParamType(T);
258 }
259 
260 namespace {
261   /// Contains required data for proper outlined function codegen.
262   struct FunctionOptions {
263     /// Captured statement for which the function is generated.
264     const CapturedStmt *S = nullptr;
265     /// true if cast to/from  UIntPtr is required for variables captured by
266     /// value.
267     const bool UIntPtrCastRequired = true;
268     /// true if only casted arguments must be registered as local args or VLA
269     /// sizes.
270     const bool RegisterCastedArgsOnly = false;
271     /// Name of the generated function.
272     const StringRef FunctionName;
273     explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
274                              bool RegisterCastedArgsOnly,
275                              StringRef FunctionName)
276         : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
277           RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
278           FunctionName(FunctionName) {}
279   };
280 }
281 
282 static llvm::Function *emitOutlinedFunctionPrologue(
283     CodeGenFunction &CGF, FunctionArgList &Args,
284     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
285         &LocalAddrs,
286     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
287         &VLASizes,
288     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
289   const CapturedDecl *CD = FO.S->getCapturedDecl();
290   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
291   assert(CD->hasBody() && "missing CapturedDecl body");
292 
293   CXXThisValue = nullptr;
294   // Build the argument list.
295   CodeGenModule &CGM = CGF.CGM;
296   ASTContext &Ctx = CGM.getContext();
297   FunctionArgList TargetArgs;
298   Args.append(CD->param_begin(),
299               std::next(CD->param_begin(), CD->getContextParamPosition()));
300   TargetArgs.append(
301       CD->param_begin(),
302       std::next(CD->param_begin(), CD->getContextParamPosition()));
303   auto I = FO.S->captures().begin();
304   for (auto *FD : RD->fields()) {
305     QualType ArgType = FD->getType();
306     IdentifierInfo *II = nullptr;
307     VarDecl *CapVar = nullptr;
308 
309     // If this is a capture by copy and the type is not a pointer, the outlined
310     // function argument type should be uintptr and the value properly casted to
311     // uintptr. This is necessary given that the runtime library is only able to
312     // deal with pointers. We can pass in the same way the VLA type sizes to the
313     // outlined function.
314     if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
315         I->capturesVariableArrayType()) {
316       if (FO.UIntPtrCastRequired)
317         ArgType = Ctx.getUIntPtrType();
318     }
319 
320     if (I->capturesVariable() || I->capturesVariableByCopy()) {
321       CapVar = I->getCapturedVar();
322       II = CapVar->getIdentifier();
323     } else if (I->capturesThis())
324       II = &Ctx.Idents.get("this");
325     else {
326       assert(I->capturesVariableArrayType());
327       II = &Ctx.Idents.get("vla");
328     }
329     if (ArgType->isVariablyModifiedType())
330       ArgType = getCanonicalParamType(Ctx, ArgType.getNonReferenceType());
331     auto *Arg =
332         ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), II,
333                                   ArgType, ImplicitParamDecl::Other);
334     Args.emplace_back(Arg);
335     // Do not cast arguments if we emit function with non-original types.
336     TargetArgs.emplace_back(
337         FO.UIntPtrCastRequired
338             ? Arg
339             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
340     ++I;
341   }
342   Args.append(
343       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
344       CD->param_end());
345   TargetArgs.append(
346       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
347       CD->param_end());
348 
349   // Create the function declaration.
350   FunctionType::ExtInfo ExtInfo;
351   const CGFunctionInfo &FuncInfo =
352       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
353   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
354 
355   llvm::Function *F =
356       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
357                              FO.FunctionName, &CGM.getModule());
358   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
359   if (CD->isNothrow())
360     F->setDoesNotThrow();
361 
362   // Generate the function.
363   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
364                     FO.S->getLocStart(), CD->getBody()->getLocStart());
365   unsigned Cnt = CD->getContextParamPosition();
366   I = FO.S->captures().begin();
367   for (auto *FD : RD->fields()) {
368     // Do not map arguments if we emit function with non-original types.
369     Address LocalAddr(Address::invalid());
370     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
371       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
372                                                              TargetArgs[Cnt]);
373     } else {
374       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
375     }
376     // If we are capturing a pointer by copy we don't need to do anything, just
377     // use the value that we get from the arguments.
378     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
379       const VarDecl *CurVD = I->getCapturedVar();
380       // If the variable is a reference we need to materialize it here.
381       if (CurVD->getType()->isReferenceType()) {
382         Address RefAddr = CGF.CreateMemTemp(
383             CurVD->getType(), CGM.getPointerAlign(), ".materialized_ref");
384         CGF.EmitStoreOfScalar(LocalAddr.getPointer(), RefAddr,
385                               /*Volatile=*/false, CurVD->getType());
386         LocalAddr = RefAddr;
387       }
388       if (!FO.RegisterCastedArgsOnly)
389         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
390       ++Cnt;
391       ++I;
392       continue;
393     }
394 
395     LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
396     LValue ArgLVal =
397         CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), BaseInfo);
398     if (FD->hasCapturedVLAType()) {
399       if (FO.UIntPtrCastRequired) {
400         ArgLVal = CGF.MakeAddrLValue(castValueFromUintptr(CGF, FD->getType(),
401                                                           Args[Cnt]->getName(),
402                                                           ArgLVal),
403                                      FD->getType(), BaseInfo);
404       }
405       auto *ExprArg =
406           CGF.EmitLoadOfLValue(ArgLVal, SourceLocation()).getScalarVal();
407       auto VAT = FD->getCapturedVLAType();
408       VLASizes.insert({Args[Cnt], {VAT->getSizeExpr(), ExprArg}});
409     } else if (I->capturesVariable()) {
410       auto *Var = I->getCapturedVar();
411       QualType VarTy = Var->getType();
412       Address ArgAddr = ArgLVal.getAddress();
413       if (!VarTy->isReferenceType()) {
414         if (ArgLVal.getType()->isLValueReferenceType()) {
415           ArgAddr = CGF.EmitLoadOfReference(
416               ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
417         } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
418           assert(ArgLVal.getType()->isPointerType());
419           ArgAddr = CGF.EmitLoadOfPointer(
420               ArgAddr, ArgLVal.getType()->castAs<PointerType>());
421         }
422       }
423       if (!FO.RegisterCastedArgsOnly) {
424         LocalAddrs.insert(
425             {Args[Cnt],
426              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
427       }
428     } else if (I->capturesVariableByCopy()) {
429       assert(!FD->getType()->isAnyPointerType() &&
430              "Not expecting a captured pointer.");
431       auto *Var = I->getCapturedVar();
432       QualType VarTy = Var->getType();
433       LocalAddrs.insert(
434           {Args[Cnt],
435            {Var,
436             FO.UIntPtrCastRequired
437                 ? castValueFromUintptr(CGF, FD->getType(), Args[Cnt]->getName(),
438                                        ArgLVal, VarTy->isReferenceType())
439                 : ArgLVal.getAddress()}});
440     } else {
441       // If 'this' is captured, load it into CXXThisValue.
442       assert(I->capturesThis());
443       CXXThisValue = CGF.EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation())
444                          .getScalarVal();
445       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}});
446     }
447     ++Cnt;
448     ++I;
449   }
450 
451   return F;
452 }
453 
454 llvm::Function *
455 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
456   assert(
457       CapturedStmtInfo &&
458       "CapturedStmtInfo should be set when generating the captured function");
459   const CapturedDecl *CD = S.getCapturedDecl();
460   // Build the argument list.
461   bool NeedWrapperFunction =
462       getDebugInfo() &&
463       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo;
464   FunctionArgList Args;
465   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
466   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
467   SmallString<256> Buffer;
468   llvm::raw_svector_ostream Out(Buffer);
469   Out << CapturedStmtInfo->getHelperName();
470   if (NeedWrapperFunction)
471     Out << "_debug__";
472   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
473                      Out.str());
474   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
475                                                    VLASizes, CXXThisValue, FO);
476   for (const auto &LocalAddrPair : LocalAddrs) {
477     if (LocalAddrPair.second.first) {
478       setAddrOfLocalVar(LocalAddrPair.second.first,
479                         LocalAddrPair.second.second);
480     }
481   }
482   for (const auto &VLASizePair : VLASizes)
483     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
484   PGO.assignRegionCounters(GlobalDecl(CD), F);
485   CapturedStmtInfo->EmitBody(*this, CD->getBody());
486   FinishFunction(CD->getBodyRBrace());
487   if (!NeedWrapperFunction)
488     return F;
489 
490   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
491                             /*RegisterCastedArgsOnly=*/true,
492                             CapturedStmtInfo->getHelperName());
493   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
494   Args.clear();
495   LocalAddrs.clear();
496   VLASizes.clear();
497   llvm::Function *WrapperF =
498       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
499                                    WrapperCGF.CXXThisValue, WrapperFO);
500   LValueBaseInfo BaseInfo(AlignmentSource::Decl, false);
501   llvm::SmallVector<llvm::Value *, 4> CallArgs;
502   for (const auto *Arg : Args) {
503     llvm::Value *CallArg;
504     auto I = LocalAddrs.find(Arg);
505     if (I != LocalAddrs.end()) {
506       LValue LV =
507           WrapperCGF.MakeAddrLValue(I->second.second, Arg->getType(), BaseInfo);
508       CallArg = WrapperCGF.EmitLoadOfScalar(LV, SourceLocation());
509     } else {
510       auto EI = VLASizes.find(Arg);
511       if (EI != VLASizes.end())
512         CallArg = EI->second.second;
513       else {
514         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
515                                               Arg->getType(), BaseInfo);
516         CallArg = WrapperCGF.EmitLoadOfScalar(LV, SourceLocation());
517       }
518     }
519     CallArgs.emplace_back(CallArg);
520   }
521   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getLocStart(),
522                                                   F, CallArgs);
523   WrapperCGF.FinishFunction();
524   return WrapperF;
525 }
526 
527 //===----------------------------------------------------------------------===//
528 //                              OpenMP Directive Emission
529 //===----------------------------------------------------------------------===//
530 void CodeGenFunction::EmitOMPAggregateAssign(
531     Address DestAddr, Address SrcAddr, QualType OriginalType,
532     const llvm::function_ref<void(Address, Address)> &CopyGen) {
533   // Perform element-by-element initialization.
534   QualType ElementTy;
535 
536   // Drill down to the base element type on both arrays.
537   auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
538   auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
539   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
540 
541   auto SrcBegin = SrcAddr.getPointer();
542   auto DestBegin = DestAddr.getPointer();
543   // Cast from pointer to array type to pointer to single element.
544   auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
545   // The basic structure here is a while-do loop.
546   auto BodyBB = createBasicBlock("omp.arraycpy.body");
547   auto DoneBB = createBasicBlock("omp.arraycpy.done");
548   auto IsEmpty =
549       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
550   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
551 
552   // Enter the loop body, making that address the current address.
553   auto EntryBB = Builder.GetInsertBlock();
554   EmitBlock(BodyBB);
555 
556   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
557 
558   llvm::PHINode *SrcElementPHI =
559     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
560   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
561   Address SrcElementCurrent =
562       Address(SrcElementPHI,
563               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
564 
565   llvm::PHINode *DestElementPHI =
566     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
567   DestElementPHI->addIncoming(DestBegin, EntryBB);
568   Address DestElementCurrent =
569     Address(DestElementPHI,
570             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
571 
572   // Emit copy.
573   CopyGen(DestElementCurrent, SrcElementCurrent);
574 
575   // Shift the address forward by one element.
576   auto DestElementNext = Builder.CreateConstGEP1_32(
577       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
578   auto SrcElementNext = Builder.CreateConstGEP1_32(
579       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
580   // Check whether we've reached the end.
581   auto Done =
582       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
583   Builder.CreateCondBr(Done, DoneBB, BodyBB);
584   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
585   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
586 
587   // Done.
588   EmitBlock(DoneBB, /*IsFinished=*/true);
589 }
590 
591 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
592                                   Address SrcAddr, const VarDecl *DestVD,
593                                   const VarDecl *SrcVD, const Expr *Copy) {
594   if (OriginalType->isArrayType()) {
595     auto *BO = dyn_cast<BinaryOperator>(Copy);
596     if (BO && BO->getOpcode() == BO_Assign) {
597       // Perform simple memcpy for simple copying.
598       EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
599     } else {
600       // For arrays with complex element types perform element by element
601       // copying.
602       EmitOMPAggregateAssign(
603           DestAddr, SrcAddr, OriginalType,
604           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
605             // Working with the single array element, so have to remap
606             // destination and source variables to corresponding array
607             // elements.
608             CodeGenFunction::OMPPrivateScope Remap(*this);
609             Remap.addPrivate(DestVD, [DestElement]() -> Address {
610               return DestElement;
611             });
612             Remap.addPrivate(
613                 SrcVD, [SrcElement]() -> Address { return SrcElement; });
614             (void)Remap.Privatize();
615             EmitIgnoredExpr(Copy);
616           });
617     }
618   } else {
619     // Remap pseudo source variable to private copy.
620     CodeGenFunction::OMPPrivateScope Remap(*this);
621     Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
622     Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
623     (void)Remap.Privatize();
624     // Emit copying of the whole variable.
625     EmitIgnoredExpr(Copy);
626   }
627 }
628 
629 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
630                                                 OMPPrivateScope &PrivateScope) {
631   if (!HaveInsertPoint())
632     return false;
633   bool FirstprivateIsLastprivate = false;
634   llvm::DenseSet<const VarDecl *> Lastprivates;
635   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
636     for (const auto *D : C->varlists())
637       Lastprivates.insert(
638           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
639   }
640   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
641   CGCapturedStmtInfo CapturesInfo(cast<CapturedStmt>(*D.getAssociatedStmt()));
642   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
643     auto IRef = C->varlist_begin();
644     auto InitsRef = C->inits().begin();
645     for (auto IInit : C->private_copies()) {
646       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
647       bool ThisFirstprivateIsLastprivate =
648           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
649       auto *CapFD = CapturesInfo.lookup(OrigVD);
650       auto *FD = CapturedStmtInfo->lookup(OrigVD);
651       if (!ThisFirstprivateIsLastprivate && FD && (FD == CapFD) &&
652           !FD->getType()->isReferenceType()) {
653         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
654         ++IRef;
655         ++InitsRef;
656         continue;
657       }
658       FirstprivateIsLastprivate =
659           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
660       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
661         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
662         auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
663         bool IsRegistered;
664         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
665                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
666                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
667         Address OriginalAddr = EmitLValue(&DRE).getAddress();
668         QualType Type = VD->getType();
669         if (Type->isArrayType()) {
670           // Emit VarDecl with copy init for arrays.
671           // Get the address of the original variable captured in current
672           // captured region.
673           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
674             auto Emission = EmitAutoVarAlloca(*VD);
675             auto *Init = VD->getInit();
676             if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
677               // Perform simple memcpy.
678               EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
679                                   Type);
680             } else {
681               EmitOMPAggregateAssign(
682                   Emission.getAllocatedAddress(), OriginalAddr, Type,
683                   [this, VDInit, Init](Address DestElement,
684                                        Address SrcElement) {
685                     // Clean up any temporaries needed by the initialization.
686                     RunCleanupsScope InitScope(*this);
687                     // Emit initialization for single element.
688                     setAddrOfLocalVar(VDInit, SrcElement);
689                     EmitAnyExprToMem(Init, DestElement,
690                                      Init->getType().getQualifiers(),
691                                      /*IsInitializer*/ false);
692                     LocalDeclMap.erase(VDInit);
693                   });
694             }
695             EmitAutoVarCleanups(Emission);
696             return Emission.getAllocatedAddress();
697           });
698         } else {
699           IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
700             // Emit private VarDecl with copy init.
701             // Remap temp VDInit variable to the address of the original
702             // variable
703             // (for proper handling of captured global variables).
704             setAddrOfLocalVar(VDInit, OriginalAddr);
705             EmitDecl(*VD);
706             LocalDeclMap.erase(VDInit);
707             return GetAddrOfLocalVar(VD);
708           });
709         }
710         assert(IsRegistered &&
711                "firstprivate var already registered as private");
712         // Silence the warning about unused variable.
713         (void)IsRegistered;
714       }
715       ++IRef;
716       ++InitsRef;
717     }
718   }
719   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
720 }
721 
722 void CodeGenFunction::EmitOMPPrivateClause(
723     const OMPExecutableDirective &D,
724     CodeGenFunction::OMPPrivateScope &PrivateScope) {
725   if (!HaveInsertPoint())
726     return;
727   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
728   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
729     auto IRef = C->varlist_begin();
730     for (auto IInit : C->private_copies()) {
731       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
732       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
733         auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
734         bool IsRegistered =
735             PrivateScope.addPrivate(OrigVD, [&]() -> Address {
736               // Emit private VarDecl with copy init.
737               EmitDecl(*VD);
738               return GetAddrOfLocalVar(VD);
739             });
740         assert(IsRegistered && "private var already registered as private");
741         // Silence the warning about unused variable.
742         (void)IsRegistered;
743       }
744       ++IRef;
745     }
746   }
747 }
748 
749 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
750   if (!HaveInsertPoint())
751     return false;
752   // threadprivate_var1 = master_threadprivate_var1;
753   // operator=(threadprivate_var2, master_threadprivate_var2);
754   // ...
755   // __kmpc_barrier(&loc, global_tid);
756   llvm::DenseSet<const VarDecl *> CopiedVars;
757   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
758   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
759     auto IRef = C->varlist_begin();
760     auto ISrcRef = C->source_exprs().begin();
761     auto IDestRef = C->destination_exprs().begin();
762     for (auto *AssignOp : C->assignment_ops()) {
763       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
764       QualType Type = VD->getType();
765       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
766         // Get the address of the master variable. If we are emitting code with
767         // TLS support, the address is passed from the master as field in the
768         // captured declaration.
769         Address MasterAddr = Address::invalid();
770         if (getLangOpts().OpenMPUseTLS &&
771             getContext().getTargetInfo().isTLSSupported()) {
772           assert(CapturedStmtInfo->lookup(VD) &&
773                  "Copyin threadprivates should have been captured!");
774           DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
775                           VK_LValue, (*IRef)->getExprLoc());
776           MasterAddr = EmitLValue(&DRE).getAddress();
777           LocalDeclMap.erase(VD);
778         } else {
779           MasterAddr =
780             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
781                                         : CGM.GetAddrOfGlobal(VD),
782                     getContext().getDeclAlign(VD));
783         }
784         // Get the address of the threadprivate variable.
785         Address PrivateAddr = EmitLValue(*IRef).getAddress();
786         if (CopiedVars.size() == 1) {
787           // At first check if current thread is a master thread. If it is, no
788           // need to copy data.
789           CopyBegin = createBasicBlock("copyin.not.master");
790           CopyEnd = createBasicBlock("copyin.not.master.end");
791           Builder.CreateCondBr(
792               Builder.CreateICmpNE(
793                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
794                   Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
795               CopyBegin, CopyEnd);
796           EmitBlock(CopyBegin);
797         }
798         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
799         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
800         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
801       }
802       ++IRef;
803       ++ISrcRef;
804       ++IDestRef;
805     }
806   }
807   if (CopyEnd) {
808     // Exit out of copying procedure for non-master thread.
809     EmitBlock(CopyEnd, /*IsFinished=*/true);
810     return true;
811   }
812   return false;
813 }
814 
815 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
816     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
817   if (!HaveInsertPoint())
818     return false;
819   bool HasAtLeastOneLastprivate = false;
820   llvm::DenseSet<const VarDecl *> SIMDLCVs;
821   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
822     auto *LoopDirective = cast<OMPLoopDirective>(&D);
823     for (auto *C : LoopDirective->counters()) {
824       SIMDLCVs.insert(
825           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
826     }
827   }
828   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
829   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
830     HasAtLeastOneLastprivate = true;
831     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()))
832       break;
833     auto IRef = C->varlist_begin();
834     auto IDestRef = C->destination_exprs().begin();
835     for (auto *IInit : C->private_copies()) {
836       // Keep the address of the original variable for future update at the end
837       // of the loop.
838       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
839       // Taskloops do not require additional initialization, it is done in
840       // runtime support library.
841       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
842         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
843         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
844           DeclRefExpr DRE(
845               const_cast<VarDecl *>(OrigVD),
846               /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
847                   OrigVD) != nullptr,
848               (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
849           return EmitLValue(&DRE).getAddress();
850         });
851         // Check if the variable is also a firstprivate: in this case IInit is
852         // not generated. Initialization of this variable will happen in codegen
853         // for 'firstprivate' clause.
854         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
855           auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
856           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
857             // Emit private VarDecl with copy init.
858             EmitDecl(*VD);
859             return GetAddrOfLocalVar(VD);
860           });
861           assert(IsRegistered &&
862                  "lastprivate var already registered as private");
863           (void)IsRegistered;
864         }
865       }
866       ++IRef;
867       ++IDestRef;
868     }
869   }
870   return HasAtLeastOneLastprivate;
871 }
872 
873 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
874     const OMPExecutableDirective &D, bool NoFinals,
875     llvm::Value *IsLastIterCond) {
876   if (!HaveInsertPoint())
877     return;
878   // Emit following code:
879   // if (<IsLastIterCond>) {
880   //   orig_var1 = private_orig_var1;
881   //   ...
882   //   orig_varn = private_orig_varn;
883   // }
884   llvm::BasicBlock *ThenBB = nullptr;
885   llvm::BasicBlock *DoneBB = nullptr;
886   if (IsLastIterCond) {
887     ThenBB = createBasicBlock(".omp.lastprivate.then");
888     DoneBB = createBasicBlock(".omp.lastprivate.done");
889     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
890     EmitBlock(ThenBB);
891   }
892   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
893   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
894   if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
895     auto IC = LoopDirective->counters().begin();
896     for (auto F : LoopDirective->finals()) {
897       auto *D =
898           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
899       if (NoFinals)
900         AlreadyEmittedVars.insert(D);
901       else
902         LoopCountersAndUpdates[D] = F;
903       ++IC;
904     }
905   }
906   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
907     auto IRef = C->varlist_begin();
908     auto ISrcRef = C->source_exprs().begin();
909     auto IDestRef = C->destination_exprs().begin();
910     for (auto *AssignOp : C->assignment_ops()) {
911       auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
912       QualType Type = PrivateVD->getType();
913       auto *CanonicalVD = PrivateVD->getCanonicalDecl();
914       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
915         // If lastprivate variable is a loop control variable for loop-based
916         // directive, update its value before copyin back to original
917         // variable.
918         if (auto *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
919           EmitIgnoredExpr(FinalExpr);
920         auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
921         auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
922         // Get the address of the original variable.
923         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
924         // Get the address of the private variable.
925         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
926         if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
927           PrivateAddr =
928               Address(Builder.CreateLoad(PrivateAddr),
929                       getNaturalTypeAlignment(RefTy->getPointeeType()));
930         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
931       }
932       ++IRef;
933       ++ISrcRef;
934       ++IDestRef;
935     }
936     if (auto *PostUpdate = C->getPostUpdateExpr())
937       EmitIgnoredExpr(PostUpdate);
938   }
939   if (IsLastIterCond)
940     EmitBlock(DoneBB, /*IsFinished=*/true);
941 }
942 
943 void CodeGenFunction::EmitOMPReductionClauseInit(
944     const OMPExecutableDirective &D,
945     CodeGenFunction::OMPPrivateScope &PrivateScope) {
946   if (!HaveInsertPoint())
947     return;
948   SmallVector<const Expr *, 4> Shareds;
949   SmallVector<const Expr *, 4> Privates;
950   SmallVector<const Expr *, 4> ReductionOps;
951   SmallVector<const Expr *, 4> LHSs;
952   SmallVector<const Expr *, 4> RHSs;
953   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
954     auto IPriv = C->privates().begin();
955     auto IRed = C->reduction_ops().begin();
956     auto ILHS = C->lhs_exprs().begin();
957     auto IRHS = C->rhs_exprs().begin();
958     for (const auto *Ref : C->varlists()) {
959       Shareds.emplace_back(Ref);
960       Privates.emplace_back(*IPriv);
961       ReductionOps.emplace_back(*IRed);
962       LHSs.emplace_back(*ILHS);
963       RHSs.emplace_back(*IRHS);
964       std::advance(IPriv, 1);
965       std::advance(IRed, 1);
966       std::advance(ILHS, 1);
967       std::advance(IRHS, 1);
968     }
969   }
970   ReductionCodeGen RedCG(Shareds, Privates, ReductionOps);
971   unsigned Count = 0;
972   auto ILHS = LHSs.begin();
973   auto IRHS = RHSs.begin();
974   auto IPriv = Privates.begin();
975   for (const auto *IRef : Shareds) {
976     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
977     // Emit private VarDecl with reduction init.
978     RedCG.emitSharedLValue(*this, Count);
979     RedCG.emitAggregateType(*this, Count);
980     auto Emission = EmitAutoVarAlloca(*PrivateVD);
981     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
982                              RedCG.getSharedLValue(Count),
983                              [&Emission](CodeGenFunction &CGF) {
984                                CGF.EmitAutoVarInit(Emission);
985                                return true;
986                              });
987     EmitAutoVarCleanups(Emission);
988     Address BaseAddr = RedCG.adjustPrivateAddress(
989         *this, Count, Emission.getAllocatedAddress());
990     bool IsRegistered = PrivateScope.addPrivate(
991         RedCG.getBaseDecl(Count), [BaseAddr]() -> Address { return BaseAddr; });
992     assert(IsRegistered && "private var already registered as private");
993     // Silence the warning about unused variable.
994     (void)IsRegistered;
995 
996     auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
997     auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
998     if (isa<OMPArraySectionExpr>(IRef)) {
999       // Store the address of the original variable associated with the LHS
1000       // implicit variable.
1001       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address {
1002         return RedCG.getSharedLValue(Count).getAddress();
1003       });
1004       PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
1005         return GetAddrOfLocalVar(PrivateVD);
1006       });
1007     } else if (isa<ArraySubscriptExpr>(IRef)) {
1008       // Store the address of the original variable associated with the LHS
1009       // implicit variable.
1010       PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() -> Address {
1011         return RedCG.getSharedLValue(Count).getAddress();
1012       });
1013       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
1014         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1015                                             ConvertTypeForMem(RHSVD->getType()),
1016                                             "rhs.begin");
1017       });
1018     } else {
1019       QualType Type = PrivateVD->getType();
1020       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1021       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress();
1022       // Store the address of the original variable associated with the LHS
1023       // implicit variable.
1024       if (IsArray) {
1025         OriginalAddr = Builder.CreateElementBitCast(
1026             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1027       }
1028       PrivateScope.addPrivate(
1029           LHSVD, [OriginalAddr]() -> Address { return OriginalAddr; });
1030       PrivateScope.addPrivate(
1031           RHSVD, [this, PrivateVD, RHSVD, IsArray]() -> Address {
1032             return IsArray
1033                        ? Builder.CreateElementBitCast(
1034                              GetAddrOfLocalVar(PrivateVD),
1035                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1036                        : GetAddrOfLocalVar(PrivateVD);
1037           });
1038     }
1039     ++ILHS;
1040     ++IRHS;
1041     ++IPriv;
1042     ++Count;
1043   }
1044 }
1045 
1046 void CodeGenFunction::EmitOMPReductionClauseFinal(
1047     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1048   if (!HaveInsertPoint())
1049     return;
1050   llvm::SmallVector<const Expr *, 8> Privates;
1051   llvm::SmallVector<const Expr *, 8> LHSExprs;
1052   llvm::SmallVector<const Expr *, 8> RHSExprs;
1053   llvm::SmallVector<const Expr *, 8> ReductionOps;
1054   bool HasAtLeastOneReduction = false;
1055   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1056     HasAtLeastOneReduction = true;
1057     Privates.append(C->privates().begin(), C->privates().end());
1058     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1059     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1060     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1061   }
1062   if (HasAtLeastOneReduction) {
1063     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1064                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1065                       D.getDirectiveKind() == OMPD_simd;
1066     bool SimpleReduction = D.getDirectiveKind() == OMPD_simd;
1067     // Emit nowait reduction if nowait clause is present or directive is a
1068     // parallel directive (it always has implicit barrier).
1069     CGM.getOpenMPRuntime().emitReduction(
1070         *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
1071         {WithNowait, SimpleReduction, ReductionKind});
1072   }
1073 }
1074 
1075 static void emitPostUpdateForReductionClause(
1076     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1077     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1078   if (!CGF.HaveInsertPoint())
1079     return;
1080   llvm::BasicBlock *DoneBB = nullptr;
1081   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1082     if (auto *PostUpdate = C->getPostUpdateExpr()) {
1083       if (!DoneBB) {
1084         if (auto *Cond = CondGen(CGF)) {
1085           // If the first post-update expression is found, emit conditional
1086           // block if it was requested.
1087           auto *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1088           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1089           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1090           CGF.EmitBlock(ThenBB);
1091         }
1092       }
1093       CGF.EmitIgnoredExpr(PostUpdate);
1094     }
1095   }
1096   if (DoneBB)
1097     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1098 }
1099 
1100 namespace {
1101 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1102 /// parallel function. This is necessary for combined constructs such as
1103 /// 'distribute parallel for'
1104 typedef llvm::function_ref<void(CodeGenFunction &,
1105                                 const OMPExecutableDirective &,
1106                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1107     CodeGenBoundParametersTy;
1108 } // anonymous namespace
1109 
1110 static void emitCommonOMPParallelDirective(
1111     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1112     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1113     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1114   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1115   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1116       S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1117   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1118     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1119     auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1120                                          /*IgnoreResultAssign*/ true);
1121     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1122         CGF, NumThreads, NumThreadsClause->getLocStart());
1123   }
1124   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1125     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1126     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1127         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
1128   }
1129   const Expr *IfCond = nullptr;
1130   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1131     if (C->getNameModifier() == OMPD_unknown ||
1132         C->getNameModifier() == OMPD_parallel) {
1133       IfCond = C->getCondition();
1134       break;
1135     }
1136   }
1137 
1138   OMPParallelScope Scope(CGF, S);
1139   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1140   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1141   // lower and upper bounds with the pragma 'for' chunking mechanism.
1142   // The following lambda takes care of appending the lower and upper bound
1143   // parameters when necessary
1144   CodeGenBoundParameters(CGF, S, CapturedVars);
1145   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1146   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
1147                                               CapturedVars, IfCond);
1148 }
1149 
1150 static void emitEmptyBoundParameters(CodeGenFunction &,
1151                                      const OMPExecutableDirective &,
1152                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1153 
1154 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1155   // Emit parallel region as a standalone region.
1156   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1157     OMPPrivateScope PrivateScope(CGF);
1158     bool Copyins = CGF.EmitOMPCopyinClause(S);
1159     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1160     if (Copyins) {
1161       // Emit implicit barrier to synchronize threads and avoid data races on
1162       // propagation master's thread values of threadprivate variables to local
1163       // instances of that variables of all other implicit threads.
1164       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1165           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
1166           /*ForceSimpleCall=*/true);
1167     }
1168     CGF.EmitOMPPrivateClause(S, PrivateScope);
1169     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1170     (void)PrivateScope.Privatize();
1171     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
1172     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1173   };
1174   emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1175                                  emitEmptyBoundParameters);
1176   emitPostUpdateForReductionClause(
1177       *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1178 }
1179 
1180 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1181                                       JumpDest LoopExit) {
1182   RunCleanupsScope BodyScope(*this);
1183   // Update counters values on current iteration.
1184   for (auto I : D.updates()) {
1185     EmitIgnoredExpr(I);
1186   }
1187   // Update the linear variables.
1188   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1189     for (auto *U : C->updates())
1190       EmitIgnoredExpr(U);
1191   }
1192 
1193   // On a continue in the body, jump to the end.
1194   auto Continue = getJumpDestInCurrentScope("omp.body.continue");
1195   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1196   // Emit loop body.
1197   EmitStmt(D.getBody());
1198   // The end (updates/cleanups).
1199   EmitBlock(Continue.getBlock());
1200   BreakContinueStack.pop_back();
1201 }
1202 
1203 void CodeGenFunction::EmitOMPInnerLoop(
1204     const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
1205     const Expr *IncExpr,
1206     const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
1207     const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
1208   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
1209 
1210   // Start the loop with a block that tests the condition.
1211   auto CondBlock = createBasicBlock("omp.inner.for.cond");
1212   EmitBlock(CondBlock);
1213   const SourceRange &R = S.getSourceRange();
1214   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1215                  SourceLocToDebugLoc(R.getEnd()));
1216 
1217   // If there are any cleanups between here and the loop-exit scope,
1218   // create a block to stage a loop exit along.
1219   auto ExitBlock = LoopExit.getBlock();
1220   if (RequiresCleanup)
1221     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
1222 
1223   auto LoopBody = createBasicBlock("omp.inner.for.body");
1224 
1225   // Emit condition.
1226   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
1227   if (ExitBlock != LoopExit.getBlock()) {
1228     EmitBlock(ExitBlock);
1229     EmitBranchThroughCleanup(LoopExit);
1230   }
1231 
1232   EmitBlock(LoopBody);
1233   incrementProfileCounter(&S);
1234 
1235   // Create a block for the increment.
1236   auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
1237   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1238 
1239   BodyGen(*this);
1240 
1241   // Emit "IV = IV + 1" and a back-edge to the condition block.
1242   EmitBlock(Continue.getBlock());
1243   EmitIgnoredExpr(IncExpr);
1244   PostIncGen(*this);
1245   BreakContinueStack.pop_back();
1246   EmitBranch(CondBlock);
1247   LoopStack.pop();
1248   // Emit the fall-through block.
1249   EmitBlock(LoopExit.getBlock());
1250 }
1251 
1252 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
1253   if (!HaveInsertPoint())
1254     return false;
1255   // Emit inits for the linear variables.
1256   bool HasLinears = false;
1257   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1258     for (auto *Init : C->inits()) {
1259       HasLinears = true;
1260       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
1261       if (auto *Ref = dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
1262         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
1263         auto *OrigVD = cast<VarDecl>(Ref->getDecl());
1264         DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1265                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
1266                         VD->getInit()->getType(), VK_LValue,
1267                         VD->getInit()->getExprLoc());
1268         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
1269                                                 VD->getType()),
1270                        /*capturedByInit=*/false);
1271         EmitAutoVarCleanups(Emission);
1272       } else
1273         EmitVarDecl(*VD);
1274     }
1275     // Emit the linear steps for the linear clauses.
1276     // If a step is not constant, it is pre-calculated before the loop.
1277     if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
1278       if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
1279         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
1280         // Emit calculation of the linear step.
1281         EmitIgnoredExpr(CS);
1282       }
1283   }
1284   return HasLinears;
1285 }
1286 
1287 void CodeGenFunction::EmitOMPLinearClauseFinal(
1288     const OMPLoopDirective &D,
1289     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1290   if (!HaveInsertPoint())
1291     return;
1292   llvm::BasicBlock *DoneBB = nullptr;
1293   // Emit the final values of the linear variables.
1294   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1295     auto IC = C->varlist_begin();
1296     for (auto *F : C->finals()) {
1297       if (!DoneBB) {
1298         if (auto *Cond = CondGen(*this)) {
1299           // If the first post-update expression is found, emit conditional
1300           // block if it was requested.
1301           auto *ThenBB = createBasicBlock(".omp.linear.pu");
1302           DoneBB = createBasicBlock(".omp.linear.pu.done");
1303           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1304           EmitBlock(ThenBB);
1305         }
1306       }
1307       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
1308       DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
1309                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
1310                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
1311       Address OrigAddr = EmitLValue(&DRE).getAddress();
1312       CodeGenFunction::OMPPrivateScope VarScope(*this);
1313       VarScope.addPrivate(OrigVD, [OrigAddr]() -> Address { return OrigAddr; });
1314       (void)VarScope.Privatize();
1315       EmitIgnoredExpr(F);
1316       ++IC;
1317     }
1318     if (auto *PostUpdate = C->getPostUpdateExpr())
1319       EmitIgnoredExpr(PostUpdate);
1320   }
1321   if (DoneBB)
1322     EmitBlock(DoneBB, /*IsFinished=*/true);
1323 }
1324 
1325 static void emitAlignedClause(CodeGenFunction &CGF,
1326                               const OMPExecutableDirective &D) {
1327   if (!CGF.HaveInsertPoint())
1328     return;
1329   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
1330     unsigned ClauseAlignment = 0;
1331     if (auto AlignmentExpr = Clause->getAlignment()) {
1332       auto AlignmentCI =
1333           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
1334       ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
1335     }
1336     for (auto E : Clause->varlists()) {
1337       unsigned Alignment = ClauseAlignment;
1338       if (Alignment == 0) {
1339         // OpenMP [2.8.1, Description]
1340         // If no optional parameter is specified, implementation-defined default
1341         // alignments for SIMD instructions on the target platforms are assumed.
1342         Alignment =
1343             CGF.getContext()
1344                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
1345                     E->getType()->getPointeeType()))
1346                 .getQuantity();
1347       }
1348       assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
1349              "alignment is not power of 2");
1350       if (Alignment != 0) {
1351         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
1352         CGF.EmitAlignmentAssumption(PtrValue, Alignment);
1353       }
1354     }
1355   }
1356 }
1357 
1358 void CodeGenFunction::EmitOMPPrivateLoopCounters(
1359     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
1360   if (!HaveInsertPoint())
1361     return;
1362   auto I = S.private_counters().begin();
1363   for (auto *E : S.counters()) {
1364     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1365     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
1366     (void)LoopScope.addPrivate(VD, [&]() -> Address {
1367       // Emit var without initialization.
1368       if (!LocalDeclMap.count(PrivateVD)) {
1369         auto VarEmission = EmitAutoVarAlloca(*PrivateVD);
1370         EmitAutoVarCleanups(VarEmission);
1371       }
1372       DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1373                       /*RefersToEnclosingVariableOrCapture=*/false,
1374                       (*I)->getType(), VK_LValue, (*I)->getExprLoc());
1375       return EmitLValue(&DRE).getAddress();
1376     });
1377     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
1378         VD->hasGlobalStorage()) {
1379       (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
1380         DeclRefExpr DRE(const_cast<VarDecl *>(VD),
1381                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
1382                         E->getType(), VK_LValue, E->getExprLoc());
1383         return EmitLValue(&DRE).getAddress();
1384       });
1385     }
1386     ++I;
1387   }
1388 }
1389 
1390 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
1391                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
1392                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
1393   if (!CGF.HaveInsertPoint())
1394     return;
1395   {
1396     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
1397     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
1398     (void)PreCondScope.Privatize();
1399     // Get initial values of real counters.
1400     for (auto I : S.inits()) {
1401       CGF.EmitIgnoredExpr(I);
1402     }
1403   }
1404   // Check that loop is executed at least one time.
1405   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
1406 }
1407 
1408 void CodeGenFunction::EmitOMPLinearClause(
1409     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
1410   if (!HaveInsertPoint())
1411     return;
1412   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1413   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1414     auto *LoopDirective = cast<OMPLoopDirective>(&D);
1415     for (auto *C : LoopDirective->counters()) {
1416       SIMDLCVs.insert(
1417           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1418     }
1419   }
1420   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1421     auto CurPrivate = C->privates().begin();
1422     for (auto *E : C->varlists()) {
1423       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
1424       auto *PrivateVD =
1425           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
1426       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
1427         bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
1428           // Emit private VarDecl with copy init.
1429           EmitVarDecl(*PrivateVD);
1430           return GetAddrOfLocalVar(PrivateVD);
1431         });
1432         assert(IsRegistered && "linear var already registered as private");
1433         // Silence the warning about unused variable.
1434         (void)IsRegistered;
1435       } else
1436         EmitVarDecl(*PrivateVD);
1437       ++CurPrivate;
1438     }
1439   }
1440 }
1441 
1442 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
1443                                      const OMPExecutableDirective &D,
1444                                      bool IsMonotonic) {
1445   if (!CGF.HaveInsertPoint())
1446     return;
1447   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
1448     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
1449                                  /*ignoreResult=*/true);
1450     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1451     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1452     // In presence of finite 'safelen', it may be unsafe to mark all
1453     // the memory instructions parallel, because loop-carried
1454     // dependences of 'safelen' iterations are possible.
1455     if (!IsMonotonic)
1456       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
1457   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
1458     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
1459                                  /*ignoreResult=*/true);
1460     llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
1461     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
1462     // In presence of finite 'safelen', it may be unsafe to mark all
1463     // the memory instructions parallel, because loop-carried
1464     // dependences of 'safelen' iterations are possible.
1465     CGF.LoopStack.setParallel(false);
1466   }
1467 }
1468 
1469 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
1470                                       bool IsMonotonic) {
1471   // Walk clauses and process safelen/lastprivate.
1472   LoopStack.setParallel(!IsMonotonic);
1473   LoopStack.setVectorizeEnable(true);
1474   emitSimdlenSafelenClause(*this, D, IsMonotonic);
1475 }
1476 
1477 void CodeGenFunction::EmitOMPSimdFinal(
1478     const OMPLoopDirective &D,
1479     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen) {
1480   if (!HaveInsertPoint())
1481     return;
1482   llvm::BasicBlock *DoneBB = nullptr;
1483   auto IC = D.counters().begin();
1484   auto IPC = D.private_counters().begin();
1485   for (auto F : D.finals()) {
1486     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
1487     auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
1488     auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
1489     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
1490         OrigVD->hasGlobalStorage() || CED) {
1491       if (!DoneBB) {
1492         if (auto *Cond = CondGen(*this)) {
1493           // If the first post-update expression is found, emit conditional
1494           // block if it was requested.
1495           auto *ThenBB = createBasicBlock(".omp.final.then");
1496           DoneBB = createBasicBlock(".omp.final.done");
1497           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1498           EmitBlock(ThenBB);
1499         }
1500       }
1501       Address OrigAddr = Address::invalid();
1502       if (CED)
1503         OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress();
1504       else {
1505         DeclRefExpr DRE(const_cast<VarDecl *>(PrivateVD),
1506                         /*RefersToEnclosingVariableOrCapture=*/false,
1507                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
1508         OrigAddr = EmitLValue(&DRE).getAddress();
1509       }
1510       OMPPrivateScope VarScope(*this);
1511       VarScope.addPrivate(OrigVD,
1512                           [OrigAddr]() -> Address { return OrigAddr; });
1513       (void)VarScope.Privatize();
1514       EmitIgnoredExpr(F);
1515     }
1516     ++IC;
1517     ++IPC;
1518   }
1519   if (DoneBB)
1520     EmitBlock(DoneBB, /*IsFinished=*/true);
1521 }
1522 
1523 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
1524                                          const OMPLoopDirective &S,
1525                                          CodeGenFunction::JumpDest LoopExit) {
1526   CGF.EmitOMPLoopBody(S, LoopExit);
1527   CGF.EmitStopPoint(&S);
1528 }
1529 
1530 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
1531   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1532     OMPLoopScope PreInitScope(CGF, S);
1533     // if (PreCond) {
1534     //   for (IV in 0..LastIteration) BODY;
1535     //   <Final counter/linear vars updates>;
1536     // }
1537     //
1538 
1539     // Emit: if (PreCond) - begin.
1540     // If the condition constant folds and can be elided, avoid emitting the
1541     // whole loop.
1542     bool CondConstant;
1543     llvm::BasicBlock *ContBlock = nullptr;
1544     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
1545       if (!CondConstant)
1546         return;
1547     } else {
1548       auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
1549       ContBlock = CGF.createBasicBlock("simd.if.end");
1550       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
1551                   CGF.getProfileCount(&S));
1552       CGF.EmitBlock(ThenBlock);
1553       CGF.incrementProfileCounter(&S);
1554     }
1555 
1556     // Emit the loop iteration variable.
1557     const Expr *IVExpr = S.getIterationVariable();
1558     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
1559     CGF.EmitVarDecl(*IVDecl);
1560     CGF.EmitIgnoredExpr(S.getInit());
1561 
1562     // Emit the iterations count variable.
1563     // If it is not a variable, Sema decided to calculate iterations count on
1564     // each iteration (e.g., it is foldable into a constant).
1565     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
1566       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
1567       // Emit calculation of the iterations count.
1568       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
1569     }
1570 
1571     CGF.EmitOMPSimdInit(S);
1572 
1573     emitAlignedClause(CGF, S);
1574     (void)CGF.EmitOMPLinearClauseInit(S);
1575     {
1576       OMPPrivateScope LoopScope(CGF);
1577       CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
1578       CGF.EmitOMPLinearClause(S, LoopScope);
1579       CGF.EmitOMPPrivateClause(S, LoopScope);
1580       CGF.EmitOMPReductionClauseInit(S, LoopScope);
1581       bool HasLastprivateClause =
1582           CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
1583       (void)LoopScope.Privatize();
1584       CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
1585                            S.getInc(),
1586                            [&S](CodeGenFunction &CGF) {
1587                              CGF.EmitOMPLoopBody(S, JumpDest());
1588                              CGF.EmitStopPoint(&S);
1589                            },
1590                            [](CodeGenFunction &) {});
1591       CGF.EmitOMPSimdFinal(
1592           S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1593       // Emit final copy of the lastprivate variables at the end of loops.
1594       if (HasLastprivateClause)
1595         CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
1596       CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
1597       emitPostUpdateForReductionClause(
1598           CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1599     }
1600     CGF.EmitOMPLinearClauseFinal(
1601         S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
1602     // Emit: if (PreCond) - end.
1603     if (ContBlock) {
1604       CGF.EmitBranch(ContBlock);
1605       CGF.EmitBlock(ContBlock, true);
1606     }
1607   };
1608   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1609   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
1610 }
1611 
1612 void CodeGenFunction::EmitOMPOuterLoop(
1613     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
1614     CodeGenFunction::OMPPrivateScope &LoopScope,
1615     const CodeGenFunction::OMPLoopArguments &LoopArgs,
1616     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
1617     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
1618   auto &RT = CGM.getOpenMPRuntime();
1619 
1620   const Expr *IVExpr = S.getIterationVariable();
1621   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1622   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1623 
1624   auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
1625 
1626   // Start the loop with a block that tests the condition.
1627   auto CondBlock = createBasicBlock("omp.dispatch.cond");
1628   EmitBlock(CondBlock);
1629   const SourceRange &R = S.getSourceRange();
1630   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
1631                  SourceLocToDebugLoc(R.getEnd()));
1632 
1633   llvm::Value *BoolCondVal = nullptr;
1634   if (!DynamicOrOrdered) {
1635     // UB = min(UB, GlobalUB) or
1636     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
1637     // 'distribute parallel for')
1638     EmitIgnoredExpr(LoopArgs.EUB);
1639     // IV = LB
1640     EmitIgnoredExpr(LoopArgs.Init);
1641     // IV < UB
1642     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
1643   } else {
1644     BoolCondVal =
1645         RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, LoopArgs.IL,
1646                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
1647   }
1648 
1649   // If there are any cleanups between here and the loop-exit scope,
1650   // create a block to stage a loop exit along.
1651   auto ExitBlock = LoopExit.getBlock();
1652   if (LoopScope.requiresCleanups())
1653     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
1654 
1655   auto LoopBody = createBasicBlock("omp.dispatch.body");
1656   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
1657   if (ExitBlock != LoopExit.getBlock()) {
1658     EmitBlock(ExitBlock);
1659     EmitBranchThroughCleanup(LoopExit);
1660   }
1661   EmitBlock(LoopBody);
1662 
1663   // Emit "IV = LB" (in case of static schedule, we have already calculated new
1664   // LB for loop condition and emitted it above).
1665   if (DynamicOrOrdered)
1666     EmitIgnoredExpr(LoopArgs.Init);
1667 
1668   // Create a block for the increment.
1669   auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
1670   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1671 
1672   // Generate !llvm.loop.parallel metadata for loads and stores for loops
1673   // with dynamic/guided scheduling and without ordered clause.
1674   if (!isOpenMPSimdDirective(S.getDirectiveKind()))
1675     LoopStack.setParallel(!IsMonotonic);
1676   else
1677     EmitOMPSimdInit(S, IsMonotonic);
1678 
1679   SourceLocation Loc = S.getLocStart();
1680 
1681   // when 'distribute' is not combined with a 'for':
1682   // while (idx <= UB) { BODY; ++idx; }
1683   // when 'distribute' is combined with a 'for'
1684   // (e.g. 'distribute parallel for')
1685   // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
1686   EmitOMPInnerLoop(
1687       S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
1688       [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
1689         CodeGenLoop(CGF, S, LoopExit);
1690       },
1691       [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
1692         CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
1693       });
1694 
1695   EmitBlock(Continue.getBlock());
1696   BreakContinueStack.pop_back();
1697   if (!DynamicOrOrdered) {
1698     // Emit "LB = LB + Stride", "UB = UB + Stride".
1699     EmitIgnoredExpr(LoopArgs.NextLB);
1700     EmitIgnoredExpr(LoopArgs.NextUB);
1701   }
1702 
1703   EmitBranch(CondBlock);
1704   LoopStack.pop();
1705   // Emit the fall-through block.
1706   EmitBlock(LoopExit.getBlock());
1707 
1708   // Tell the runtime we are done.
1709   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
1710     if (!DynamicOrOrdered)
1711       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(),
1712                                                      S.getDirectiveKind());
1713   };
1714   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
1715 }
1716 
1717 void CodeGenFunction::EmitOMPForOuterLoop(
1718     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
1719     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
1720     const OMPLoopArguments &LoopArgs,
1721     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
1722   auto &RT = CGM.getOpenMPRuntime();
1723 
1724   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
1725   const bool DynamicOrOrdered =
1726       Ordered || RT.isDynamic(ScheduleKind.Schedule);
1727 
1728   assert((Ordered ||
1729           !RT.isStaticNonchunked(ScheduleKind.Schedule,
1730                                  LoopArgs.Chunk != nullptr)) &&
1731          "static non-chunked schedule does not need outer loop");
1732 
1733   // Emit outer loop.
1734   //
1735   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1736   // When schedule(dynamic,chunk_size) is specified, the iterations are
1737   // distributed to threads in the team in chunks as the threads request them.
1738   // Each thread executes a chunk of iterations, then requests another chunk,
1739   // until no chunks remain to be distributed. Each chunk contains chunk_size
1740   // iterations, except for the last chunk to be distributed, which may have
1741   // fewer iterations. When no chunk_size is specified, it defaults to 1.
1742   //
1743   // When schedule(guided,chunk_size) is specified, the iterations are assigned
1744   // to threads in the team in chunks as the executing threads request them.
1745   // Each thread executes a chunk of iterations, then requests another chunk,
1746   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
1747   // each chunk is proportional to the number of unassigned iterations divided
1748   // by the number of threads in the team, decreasing to 1. For a chunk_size
1749   // with value k (greater than 1), the size of each chunk is determined in the
1750   // same way, with the restriction that the chunks do not contain fewer than k
1751   // iterations (except for the last chunk to be assigned, which may have fewer
1752   // than k iterations).
1753   //
1754   // When schedule(auto) is specified, the decision regarding scheduling is
1755   // delegated to the compiler and/or runtime system. The programmer gives the
1756   // implementation the freedom to choose any possible mapping of iterations to
1757   // threads in the team.
1758   //
1759   // When schedule(runtime) is specified, the decision regarding scheduling is
1760   // deferred until run time, and the schedule and chunk size are taken from the
1761   // run-sched-var ICV. If the ICV is set to auto, the schedule is
1762   // implementation defined
1763   //
1764   // while(__kmpc_dispatch_next(&LB, &UB)) {
1765   //   idx = LB;
1766   //   while (idx <= UB) { BODY; ++idx;
1767   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
1768   //   } // inner loop
1769   // }
1770   //
1771   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
1772   // When schedule(static, chunk_size) is specified, iterations are divided into
1773   // chunks of size chunk_size, and the chunks are assigned to the threads in
1774   // the team in a round-robin fashion in the order of the thread number.
1775   //
1776   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
1777   //   while (idx <= UB) { BODY; ++idx; } // inner loop
1778   //   LB = LB + ST;
1779   //   UB = UB + ST;
1780   // }
1781   //
1782 
1783   const Expr *IVExpr = S.getIterationVariable();
1784   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1785   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1786 
1787   if (DynamicOrOrdered) {
1788     auto DispatchBounds = CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
1789     llvm::Value *LBVal = DispatchBounds.first;
1790     llvm::Value *UBVal = DispatchBounds.second;
1791     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
1792                                                              LoopArgs.Chunk};
1793     RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, IVSize,
1794                            IVSigned, Ordered, DipatchRTInputValues);
1795   } else {
1796     CGOpenMPRuntime::StaticRTInput StaticInit(
1797         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
1798         LoopArgs.ST, LoopArgs.Chunk);
1799     RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(),
1800                          ScheduleKind, StaticInit);
1801   }
1802 
1803   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
1804                                     const unsigned IVSize,
1805                                     const bool IVSigned) {
1806     if (Ordered) {
1807       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
1808                                                             IVSigned);
1809     }
1810   };
1811 
1812   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
1813                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
1814   OuterLoopArgs.IncExpr = S.getInc();
1815   OuterLoopArgs.Init = S.getInit();
1816   OuterLoopArgs.Cond = S.getCond();
1817   OuterLoopArgs.NextLB = S.getNextLowerBound();
1818   OuterLoopArgs.NextUB = S.getNextUpperBound();
1819   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
1820                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
1821 }
1822 
1823 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
1824                              const unsigned IVSize, const bool IVSigned) {}
1825 
1826 void CodeGenFunction::EmitOMPDistributeOuterLoop(
1827     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
1828     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
1829     const CodeGenLoopTy &CodeGenLoopContent) {
1830 
1831   auto &RT = CGM.getOpenMPRuntime();
1832 
1833   // Emit outer loop.
1834   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
1835   // dynamic
1836   //
1837 
1838   const Expr *IVExpr = S.getIterationVariable();
1839   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
1840   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
1841 
1842   CGOpenMPRuntime::StaticRTInput StaticInit(
1843       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
1844       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
1845   RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind, StaticInit);
1846 
1847   // for combined 'distribute' and 'for' the increment expression of distribute
1848   // is store in DistInc. For 'distribute' alone, it is in Inc.
1849   Expr *IncExpr;
1850   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
1851     IncExpr = S.getDistInc();
1852   else
1853     IncExpr = S.getInc();
1854 
1855   // this routine is shared by 'omp distribute parallel for' and
1856   // 'omp distribute': select the right EUB expression depending on the
1857   // directive
1858   OMPLoopArguments OuterLoopArgs;
1859   OuterLoopArgs.LB = LoopArgs.LB;
1860   OuterLoopArgs.UB = LoopArgs.UB;
1861   OuterLoopArgs.ST = LoopArgs.ST;
1862   OuterLoopArgs.IL = LoopArgs.IL;
1863   OuterLoopArgs.Chunk = LoopArgs.Chunk;
1864   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
1865                           ? S.getCombinedEnsureUpperBound()
1866                           : S.getEnsureUpperBound();
1867   OuterLoopArgs.IncExpr = IncExpr;
1868   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
1869                            ? S.getCombinedInit()
1870                            : S.getInit();
1871   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
1872                            ? S.getCombinedCond()
1873                            : S.getCond();
1874   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
1875                              ? S.getCombinedNextLowerBound()
1876                              : S.getNextLowerBound();
1877   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
1878                              ? S.getCombinedNextUpperBound()
1879                              : S.getNextUpperBound();
1880 
1881   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
1882                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
1883                    emitEmptyOrdered);
1884 }
1885 
1886 /// Emit a helper variable and return corresponding lvalue.
1887 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
1888                                const DeclRefExpr *Helper) {
1889   auto VDecl = cast<VarDecl>(Helper->getDecl());
1890   CGF.EmitVarDecl(*VDecl);
1891   return CGF.EmitLValue(Helper);
1892 }
1893 
1894 static std::pair<LValue, LValue>
1895 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
1896                                      const OMPExecutableDirective &S) {
1897   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
1898   LValue LB =
1899       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
1900   LValue UB =
1901       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
1902 
1903   // When composing 'distribute' with 'for' (e.g. as in 'distribute
1904   // parallel for') we need to use the 'distribute'
1905   // chunk lower and upper bounds rather than the whole loop iteration
1906   // space. These are parameters to the outlined function for 'parallel'
1907   // and we copy the bounds of the previous schedule into the
1908   // the current ones.
1909   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
1910   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
1911   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(PrevLB, SourceLocation());
1912   PrevLBVal = CGF.EmitScalarConversion(
1913       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
1914       LS.getIterationVariable()->getType(), SourceLocation());
1915   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(PrevUB, SourceLocation());
1916   PrevUBVal = CGF.EmitScalarConversion(
1917       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
1918       LS.getIterationVariable()->getType(), SourceLocation());
1919 
1920   CGF.EmitStoreOfScalar(PrevLBVal, LB);
1921   CGF.EmitStoreOfScalar(PrevUBVal, UB);
1922 
1923   return {LB, UB};
1924 }
1925 
1926 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
1927 /// we need to use the LB and UB expressions generated by the worksharing
1928 /// code generation support, whereas in non combined situations we would
1929 /// just emit 0 and the LastIteration expression
1930 /// This function is necessary due to the difference of the LB and UB
1931 /// types for the RT emission routines for 'for_static_init' and
1932 /// 'for_dispatch_init'
1933 static std::pair<llvm::Value *, llvm::Value *>
1934 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
1935                                         const OMPExecutableDirective &S,
1936                                         Address LB, Address UB) {
1937   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
1938   const Expr *IVExpr = LS.getIterationVariable();
1939   // when implementing a dynamic schedule for a 'for' combined with a
1940   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
1941   // is not normalized as each team only executes its own assigned
1942   // distribute chunk
1943   QualType IteratorTy = IVExpr->getType();
1944   llvm::Value *LBVal = CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy,
1945                                             SourceLocation());
1946   llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy,
1947                                             SourceLocation());
1948   return {LBVal, UBVal};
1949 }
1950 
1951 static void emitDistributeParallelForDistributeInnerBoundParams(
1952     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1953     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
1954   const auto &Dir = cast<OMPLoopDirective>(S);
1955   LValue LB =
1956       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
1957   auto LBCast = CGF.Builder.CreateIntCast(
1958       CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
1959   CapturedVars.push_back(LBCast);
1960   LValue UB =
1961       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
1962 
1963   auto UBCast = CGF.Builder.CreateIntCast(
1964       CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false);
1965   CapturedVars.push_back(UBCast);
1966 }
1967 
1968 static void
1969 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
1970                                  const OMPLoopDirective &S,
1971                                  CodeGenFunction::JumpDest LoopExit) {
1972   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
1973                                          PrePostActionTy &) {
1974     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
1975                                emitDistributeParallelForInnerBounds,
1976                                emitDistributeParallelForDispatchBounds);
1977   };
1978 
1979   emitCommonOMPParallelDirective(
1980       CGF, S, OMPD_for, CGInlinedWorksharingLoop,
1981       emitDistributeParallelForDistributeInnerBoundParams);
1982 }
1983 
1984 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
1985     const OMPDistributeParallelForDirective &S) {
1986   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
1987     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
1988                               S.getDistInc());
1989   };
1990   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
1991   OMPCancelStackRAII CancelRegion(*this, OMPD_distribute_parallel_for,
1992                                   /*HasCancel=*/false);
1993   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen,
1994                                               /*HasCancel=*/false);
1995 }
1996 
1997 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
1998     const OMPDistributeParallelForSimdDirective &S) {
1999   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2000   CGM.getOpenMPRuntime().emitInlinedDirective(
2001       *this, OMPD_distribute_parallel_for_simd,
2002       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2003         OMPLoopScope PreInitScope(CGF, S);
2004         CGF.EmitStmt(
2005             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2006       });
2007 }
2008 
2009 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2010     const OMPDistributeSimdDirective &S) {
2011   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2012   CGM.getOpenMPRuntime().emitInlinedDirective(
2013       *this, OMPD_distribute_simd,
2014       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2015         OMPLoopScope PreInitScope(CGF, S);
2016         CGF.EmitStmt(
2017             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2018       });
2019 }
2020 
2021 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
2022     const OMPTargetParallelForSimdDirective &S) {
2023   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2024   CGM.getOpenMPRuntime().emitInlinedDirective(
2025       *this, OMPD_target_parallel_for_simd,
2026       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2027         OMPLoopScope PreInitScope(CGF, S);
2028         CGF.EmitStmt(
2029             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2030       });
2031 }
2032 
2033 void CodeGenFunction::EmitOMPTargetSimdDirective(
2034     const OMPTargetSimdDirective &S) {
2035   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2036   CGM.getOpenMPRuntime().emitInlinedDirective(
2037       *this, OMPD_target_simd, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2038         OMPLoopScope PreInitScope(CGF, S);
2039         CGF.EmitStmt(
2040             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2041       });
2042 }
2043 
2044 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
2045     const OMPTeamsDistributeDirective &S) {
2046   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2047   CGM.getOpenMPRuntime().emitInlinedDirective(
2048       *this, OMPD_teams_distribute,
2049       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2050         OMPLoopScope PreInitScope(CGF, S);
2051         CGF.EmitStmt(
2052             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2053       });
2054 }
2055 
2056 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
2057     const OMPTeamsDistributeSimdDirective &S) {
2058   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2059   CGM.getOpenMPRuntime().emitInlinedDirective(
2060       *this, OMPD_teams_distribute_simd,
2061       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2062         OMPLoopScope PreInitScope(CGF, S);
2063         CGF.EmitStmt(
2064             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2065       });
2066 }
2067 
2068 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
2069     const OMPTeamsDistributeParallelForSimdDirective &S) {
2070   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2071   CGM.getOpenMPRuntime().emitInlinedDirective(
2072       *this, OMPD_teams_distribute_parallel_for_simd,
2073       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2074         OMPLoopScope PreInitScope(CGF, S);
2075         CGF.EmitStmt(
2076             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2077       });
2078 }
2079 
2080 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
2081     const OMPTeamsDistributeParallelForDirective &S) {
2082   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2083   CGM.getOpenMPRuntime().emitInlinedDirective(
2084       *this, OMPD_teams_distribute_parallel_for,
2085       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2086         OMPLoopScope PreInitScope(CGF, S);
2087         CGF.EmitStmt(
2088             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2089       });
2090 }
2091 
2092 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
2093     const OMPTargetTeamsDistributeDirective &S) {
2094   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2095   CGM.getOpenMPRuntime().emitInlinedDirective(
2096       *this, OMPD_target_teams_distribute,
2097       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2098         CGF.EmitStmt(
2099             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2100       });
2101 }
2102 
2103 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
2104     const OMPTargetTeamsDistributeParallelForDirective &S) {
2105   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2106   CGM.getOpenMPRuntime().emitInlinedDirective(
2107       *this, OMPD_target_teams_distribute_parallel_for,
2108       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2109         CGF.EmitStmt(
2110             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2111       });
2112 }
2113 
2114 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2115     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
2116   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2117   CGM.getOpenMPRuntime().emitInlinedDirective(
2118       *this, OMPD_target_teams_distribute_parallel_for_simd,
2119       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2120         CGF.EmitStmt(
2121             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2122       });
2123 }
2124 
2125 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
2126     const OMPTargetTeamsDistributeSimdDirective &S) {
2127   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2128   CGM.getOpenMPRuntime().emitInlinedDirective(
2129       *this, OMPD_target_teams_distribute_simd,
2130       [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2131         CGF.EmitStmt(
2132             cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2133       });
2134 }
2135 
2136 namespace {
2137   struct ScheduleKindModifiersTy {
2138     OpenMPScheduleClauseKind Kind;
2139     OpenMPScheduleClauseModifier M1;
2140     OpenMPScheduleClauseModifier M2;
2141     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
2142                             OpenMPScheduleClauseModifier M1,
2143                             OpenMPScheduleClauseModifier M2)
2144         : Kind(Kind), M1(M1), M2(M2) {}
2145   };
2146 } // namespace
2147 
2148 bool CodeGenFunction::EmitOMPWorksharingLoop(
2149     const OMPLoopDirective &S, Expr *EUB,
2150     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2151     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2152   // Emit the loop iteration variable.
2153   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
2154   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
2155   EmitVarDecl(*IVDecl);
2156 
2157   // Emit the iterations count variable.
2158   // If it is not a variable, Sema decided to calculate iterations count on each
2159   // iteration (e.g., it is foldable into a constant).
2160   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2161     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2162     // Emit calculation of the iterations count.
2163     EmitIgnoredExpr(S.getCalcLastIteration());
2164   }
2165 
2166   auto &RT = CGM.getOpenMPRuntime();
2167 
2168   bool HasLastprivateClause;
2169   // Check pre-condition.
2170   {
2171     OMPLoopScope PreInitScope(*this, S);
2172     // Skip the entire loop if we don't meet the precondition.
2173     // If the condition constant folds and can be elided, avoid emitting the
2174     // whole loop.
2175     bool CondConstant;
2176     llvm::BasicBlock *ContBlock = nullptr;
2177     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2178       if (!CondConstant)
2179         return false;
2180     } else {
2181       auto *ThenBlock = createBasicBlock("omp.precond.then");
2182       ContBlock = createBasicBlock("omp.precond.end");
2183       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
2184                   getProfileCount(&S));
2185       EmitBlock(ThenBlock);
2186       incrementProfileCounter(&S);
2187     }
2188 
2189     bool Ordered = false;
2190     if (auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
2191       if (OrderedClause->getNumForLoops())
2192         RT.emitDoacrossInit(*this, S);
2193       else
2194         Ordered = true;
2195     }
2196 
2197     llvm::DenseSet<const Expr *> EmittedFinals;
2198     emitAlignedClause(*this, S);
2199     bool HasLinears = EmitOMPLinearClauseInit(S);
2200     // Emit helper vars inits.
2201 
2202     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
2203     LValue LB = Bounds.first;
2204     LValue UB = Bounds.second;
2205     LValue ST =
2206         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
2207     LValue IL =
2208         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
2209 
2210     // Emit 'then' code.
2211     {
2212       OMPPrivateScope LoopScope(*this);
2213       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
2214         // Emit implicit barrier to synchronize threads and avoid data races on
2215         // initialization of firstprivate variables and post-update of
2216         // lastprivate variables.
2217         CGM.getOpenMPRuntime().emitBarrierCall(
2218             *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2219             /*ForceSimpleCall=*/true);
2220       }
2221       EmitOMPPrivateClause(S, LoopScope);
2222       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
2223       EmitOMPReductionClauseInit(S, LoopScope);
2224       EmitOMPPrivateLoopCounters(S, LoopScope);
2225       EmitOMPLinearClause(S, LoopScope);
2226       (void)LoopScope.Privatize();
2227 
2228       // Detect the loop schedule kind and chunk.
2229       llvm::Value *Chunk = nullptr;
2230       OpenMPScheduleTy ScheduleKind;
2231       if (auto *C = S.getSingleClause<OMPScheduleClause>()) {
2232         ScheduleKind.Schedule = C->getScheduleKind();
2233         ScheduleKind.M1 = C->getFirstScheduleModifier();
2234         ScheduleKind.M2 = C->getSecondScheduleModifier();
2235         if (const auto *Ch = C->getChunkSize()) {
2236           Chunk = EmitScalarExpr(Ch);
2237           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
2238                                        S.getIterationVariable()->getType(),
2239                                        S.getLocStart());
2240         }
2241       }
2242       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2243       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2244       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
2245       // If the static schedule kind is specified or if the ordered clause is
2246       // specified, and if no monotonic modifier is specified, the effect will
2247       // be as if the monotonic modifier was specified.
2248       if (RT.isStaticNonchunked(ScheduleKind.Schedule,
2249                                 /* Chunked */ Chunk != nullptr) &&
2250           !Ordered) {
2251         if (isOpenMPSimdDirective(S.getDirectiveKind()))
2252           EmitOMPSimdInit(S, /*IsMonotonic=*/true);
2253         // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2254         // When no chunk_size is specified, the iteration space is divided into
2255         // chunks that are approximately equal in size, and at most one chunk is
2256         // distributed to each thread. Note that the size of the chunks is
2257         // unspecified in this case.
2258         CGOpenMPRuntime::StaticRTInput StaticInit(
2259             IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(),
2260             UB.getAddress(), ST.getAddress());
2261         RT.emitForStaticInit(*this, S.getLocStart(), S.getDirectiveKind(),
2262                              ScheduleKind, StaticInit);
2263         auto LoopExit =
2264             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
2265         // UB = min(UB, GlobalUB);
2266         EmitIgnoredExpr(S.getEnsureUpperBound());
2267         // IV = LB;
2268         EmitIgnoredExpr(S.getInit());
2269         // while (idx <= UB) { BODY; ++idx; }
2270         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
2271                          S.getInc(),
2272                          [&S, LoopExit](CodeGenFunction &CGF) {
2273                            CGF.EmitOMPLoopBody(S, LoopExit);
2274                            CGF.EmitStopPoint(&S);
2275                          },
2276                          [](CodeGenFunction &) {});
2277         EmitBlock(LoopExit.getBlock());
2278         // Tell the runtime we are done.
2279         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2280           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(),
2281                                                          S.getDirectiveKind());
2282         };
2283         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2284       } else {
2285         const bool IsMonotonic =
2286             Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
2287             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown ||
2288             ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
2289             ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
2290         // Emit the outer loop, which requests its work chunk [LB..UB] from
2291         // runtime and runs the inner loop to process it.
2292         const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(),
2293                                              ST.getAddress(), IL.getAddress(),
2294                                              Chunk, EUB);
2295         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
2296                             LoopArguments, CGDispatchBounds);
2297       }
2298       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2299         EmitOMPSimdFinal(S,
2300                          [&](CodeGenFunction &CGF) -> llvm::Value * {
2301                            return CGF.Builder.CreateIsNotNull(
2302                                CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2303                          });
2304       }
2305       EmitOMPReductionClauseFinal(
2306           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
2307                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
2308                  : /*Parallel only*/ OMPD_parallel);
2309       // Emit post-update of the reduction variables if IsLastIter != 0.
2310       emitPostUpdateForReductionClause(
2311           *this, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2312             return CGF.Builder.CreateIsNotNull(
2313                 CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2314           });
2315       // Emit final copy of the lastprivate variables if IsLastIter != 0.
2316       if (HasLastprivateClause)
2317         EmitOMPLastprivateClauseFinal(
2318             S, isOpenMPSimdDirective(S.getDirectiveKind()),
2319             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
2320     }
2321     EmitOMPLinearClauseFinal(S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2322       return CGF.Builder.CreateIsNotNull(
2323           CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2324     });
2325     // We're now done with the loop, so jump to the continuation block.
2326     if (ContBlock) {
2327       EmitBranch(ContBlock);
2328       EmitBlock(ContBlock, true);
2329     }
2330   }
2331   return HasLastprivateClause;
2332 }
2333 
2334 /// The following two functions generate expressions for the loop lower
2335 /// and upper bounds in case of static and dynamic (dispatch) schedule
2336 /// of the associated 'for' or 'distribute' loop.
2337 static std::pair<LValue, LValue>
2338 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
2339   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2340   LValue LB =
2341       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2342   LValue UB =
2343       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2344   return {LB, UB};
2345 }
2346 
2347 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
2348 /// consider the lower and upper bound expressions generated by the
2349 /// worksharing loop support, but we use 0 and the iteration space size as
2350 /// constants
2351 static std::pair<llvm::Value *, llvm::Value *>
2352 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
2353                           Address LB, Address UB) {
2354   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2355   const Expr *IVExpr = LS.getIterationVariable();
2356   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
2357   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
2358   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
2359   return {LBVal, UBVal};
2360 }
2361 
2362 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
2363   bool HasLastprivates = false;
2364   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2365                                           PrePostActionTy &) {
2366     OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel());
2367     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2368                                                  emitForLoopBounds,
2369                                                  emitDispatchForLoopBounds);
2370   };
2371   {
2372     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2373     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
2374                                                 S.hasCancel());
2375   }
2376 
2377   // Emit an implicit barrier at the end.
2378   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2379     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2380   }
2381 }
2382 
2383 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
2384   bool HasLastprivates = false;
2385   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
2386                                           PrePostActionTy &) {
2387     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
2388                                                  emitForLoopBounds,
2389                                                  emitDispatchForLoopBounds);
2390   };
2391   {
2392     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2393     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2394   }
2395 
2396   // Emit an implicit barrier at the end.
2397   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
2398     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
2399   }
2400 }
2401 
2402 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
2403                                 const Twine &Name,
2404                                 llvm::Value *Init = nullptr) {
2405   auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
2406   if (Init)
2407     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
2408   return LVal;
2409 }
2410 
2411 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
2412   auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
2413   auto *CS = dyn_cast<CompoundStmt>(Stmt);
2414   bool HasLastprivates = false;
2415   auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF,
2416                                                     PrePostActionTy &) {
2417     auto &C = CGF.CGM.getContext();
2418     auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2419     // Emit helper vars inits.
2420     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
2421                                   CGF.Builder.getInt32(0));
2422     auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1)
2423                                       : CGF.Builder.getInt32(0);
2424     LValue UB =
2425         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
2426     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
2427                                   CGF.Builder.getInt32(1));
2428     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
2429                                   CGF.Builder.getInt32(0));
2430     // Loop counter.
2431     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
2432     OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2433     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
2434     OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
2435     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
2436     // Generate condition for loop.
2437     BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
2438                         OK_Ordinary, S.getLocStart(), FPOptions());
2439     // Increment for loop counter.
2440     UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
2441                       S.getLocStart());
2442     auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) {
2443       // Iterate through all sections and emit a switch construct:
2444       // switch (IV) {
2445       //   case 0:
2446       //     <SectionStmt[0]>;
2447       //     break;
2448       // ...
2449       //   case <NumSection> - 1:
2450       //     <SectionStmt[<NumSection> - 1]>;
2451       //     break;
2452       // }
2453       // .omp.sections.exit:
2454       auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
2455       auto *SwitchStmt = CGF.Builder.CreateSwitch(
2456           CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
2457           CS == nullptr ? 1 : CS->size());
2458       if (CS) {
2459         unsigned CaseNumber = 0;
2460         for (auto *SubStmt : CS->children()) {
2461           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2462           CGF.EmitBlock(CaseBB);
2463           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
2464           CGF.EmitStmt(SubStmt);
2465           CGF.EmitBranch(ExitBB);
2466           ++CaseNumber;
2467         }
2468       } else {
2469         auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
2470         CGF.EmitBlock(CaseBB);
2471         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
2472         CGF.EmitStmt(Stmt);
2473         CGF.EmitBranch(ExitBB);
2474       }
2475       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2476     };
2477 
2478     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2479     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
2480       // Emit implicit barrier to synchronize threads and avoid data races on
2481       // initialization of firstprivate variables and post-update of lastprivate
2482       // variables.
2483       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
2484           CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
2485           /*ForceSimpleCall=*/true);
2486     }
2487     CGF.EmitOMPPrivateClause(S, LoopScope);
2488     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2489     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2490     (void)LoopScope.Privatize();
2491 
2492     // Emit static non-chunked loop.
2493     OpenMPScheduleTy ScheduleKind;
2494     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
2495     CGOpenMPRuntime::StaticRTInput StaticInit(
2496         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
2497         LB.getAddress(), UB.getAddress(), ST.getAddress());
2498     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
2499         CGF, S.getLocStart(), S.getDirectiveKind(), ScheduleKind, StaticInit);
2500     // UB = min(UB, GlobalUB);
2501     auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
2502     auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
2503         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
2504     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
2505     // IV = LB;
2506     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
2507     // while (idx <= UB) { BODY; ++idx; }
2508     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
2509                          [](CodeGenFunction &) {});
2510     // Tell the runtime we are done.
2511     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
2512       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocEnd(),
2513                                                      S.getDirectiveKind());
2514     };
2515     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
2516     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
2517     // Emit post-update of the reduction variables if IsLastIter != 0.
2518     emitPostUpdateForReductionClause(
2519         CGF, S, [&](CodeGenFunction &CGF) -> llvm::Value * {
2520           return CGF.Builder.CreateIsNotNull(
2521               CGF.EmitLoadOfScalar(IL, S.getLocStart()));
2522         });
2523 
2524     // Emit final copy of the lastprivate variables if IsLastIter != 0.
2525     if (HasLastprivates)
2526       CGF.EmitOMPLastprivateClauseFinal(
2527           S, /*NoFinals=*/false,
2528           CGF.Builder.CreateIsNotNull(
2529               CGF.EmitLoadOfScalar(IL, S.getLocStart())));
2530   };
2531 
2532   bool HasCancel = false;
2533   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
2534     HasCancel = OSD->hasCancel();
2535   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
2536     HasCancel = OPSD->hasCancel();
2537   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
2538   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
2539                                               HasCancel);
2540   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
2541   // clause. Otherwise the barrier will be generated by the codegen for the
2542   // directive.
2543   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
2544     // Emit implicit barrier to synchronize threads and avoid data races on
2545     // initialization of firstprivate variables.
2546     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2547                                            OMPD_unknown);
2548   }
2549 }
2550 
2551 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
2552   {
2553     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2554     EmitSections(S);
2555   }
2556   // Emit an implicit barrier at the end.
2557   if (!S.getSingleClause<OMPNowaitClause>()) {
2558     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
2559                                            OMPD_sections);
2560   }
2561 }
2562 
2563 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
2564   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2565     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2566   };
2567   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2568   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
2569                                               S.hasCancel());
2570 }
2571 
2572 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
2573   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
2574   llvm::SmallVector<const Expr *, 8> DestExprs;
2575   llvm::SmallVector<const Expr *, 8> SrcExprs;
2576   llvm::SmallVector<const Expr *, 8> AssignmentOps;
2577   // Check if there are any 'copyprivate' clauses associated with this
2578   // 'single' construct.
2579   // Build a list of copyprivate variables along with helper expressions
2580   // (<source>, <destination>, <destination>=<source> expressions)
2581   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
2582     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
2583     DestExprs.append(C->destination_exprs().begin(),
2584                      C->destination_exprs().end());
2585     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
2586     AssignmentOps.append(C->assignment_ops().begin(),
2587                          C->assignment_ops().end());
2588   }
2589   // Emit code for 'single' region along with 'copyprivate' clauses
2590   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2591     Action.Enter(CGF);
2592     OMPPrivateScope SingleScope(CGF);
2593     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
2594     CGF.EmitOMPPrivateClause(S, SingleScope);
2595     (void)SingleScope.Privatize();
2596     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2597   };
2598   {
2599     OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2600     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
2601                                             CopyprivateVars, DestExprs,
2602                                             SrcExprs, AssignmentOps);
2603   }
2604   // Emit an implicit barrier at the end (to avoid data race on firstprivate
2605   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
2606   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
2607     CGM.getOpenMPRuntime().emitBarrierCall(
2608         *this, S.getLocStart(),
2609         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
2610   }
2611 }
2612 
2613 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
2614   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2615     Action.Enter(CGF);
2616     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2617   };
2618   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2619   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
2620 }
2621 
2622 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
2623   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2624     Action.Enter(CGF);
2625     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
2626   };
2627   Expr *Hint = nullptr;
2628   if (auto *HintClause = S.getSingleClause<OMPHintClause>())
2629     Hint = HintClause->getHint();
2630   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
2631   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
2632                                             S.getDirectiveName().getAsString(),
2633                                             CodeGen, S.getLocStart(), Hint);
2634 }
2635 
2636 void CodeGenFunction::EmitOMPParallelForDirective(
2637     const OMPParallelForDirective &S) {
2638   // Emit directive as a combined directive that consists of two implicit
2639   // directives: 'parallel' with 'for' directive.
2640   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2641     OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel());
2642     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2643                                emitDispatchForLoopBounds);
2644   };
2645   emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
2646                                  emitEmptyBoundParameters);
2647 }
2648 
2649 void CodeGenFunction::EmitOMPParallelForSimdDirective(
2650     const OMPParallelForSimdDirective &S) {
2651   // Emit directive as a combined directive that consists of two implicit
2652   // directives: 'parallel' with 'for' directive.
2653   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2654     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
2655                                emitDispatchForLoopBounds);
2656   };
2657   emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen,
2658                                  emitEmptyBoundParameters);
2659 }
2660 
2661 void CodeGenFunction::EmitOMPParallelSectionsDirective(
2662     const OMPParallelSectionsDirective &S) {
2663   // Emit directive as a combined directive that consists of two implicit
2664   // directives: 'parallel' with 'sections' directive.
2665   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2666     CGF.EmitSections(S);
2667   };
2668   emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
2669                                  emitEmptyBoundParameters);
2670 }
2671 
2672 void CodeGenFunction::EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2673                                                 const RegionCodeGenTy &BodyGen,
2674                                                 const TaskGenTy &TaskGen,
2675                                                 OMPTaskDataTy &Data) {
2676   // Emit outlined function for task construct.
2677   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2678   auto *I = CS->getCapturedDecl()->param_begin();
2679   auto *PartId = std::next(I);
2680   auto *TaskT = std::next(I, 4);
2681   // Check if the task is final
2682   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
2683     // If the condition constant folds and can be elided, try to avoid emitting
2684     // the condition and the dead arm of the if/else.
2685     auto *Cond = Clause->getCondition();
2686     bool CondConstant;
2687     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
2688       Data.Final.setInt(CondConstant);
2689     else
2690       Data.Final.setPointer(EvaluateExprAsBool(Cond));
2691   } else {
2692     // By default the task is not final.
2693     Data.Final.setInt(/*IntVal=*/false);
2694   }
2695   // Check if the task has 'priority' clause.
2696   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
2697     auto *Prio = Clause->getPriority();
2698     Data.Priority.setInt(/*IntVal=*/true);
2699     Data.Priority.setPointer(EmitScalarConversion(
2700         EmitScalarExpr(Prio), Prio->getType(),
2701         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
2702         Prio->getExprLoc()));
2703   }
2704   // The first function argument for tasks is a thread id, the second one is a
2705   // part id (0 for tied tasks, >=0 for untied task).
2706   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
2707   // Get list of private variables.
2708   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
2709     auto IRef = C->varlist_begin();
2710     for (auto *IInit : C->private_copies()) {
2711       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2712       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2713         Data.PrivateVars.push_back(*IRef);
2714         Data.PrivateCopies.push_back(IInit);
2715       }
2716       ++IRef;
2717     }
2718   }
2719   EmittedAsPrivate.clear();
2720   // Get list of firstprivate variables.
2721   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
2722     auto IRef = C->varlist_begin();
2723     auto IElemInitRef = C->inits().begin();
2724     for (auto *IInit : C->private_copies()) {
2725       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2726       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2727         Data.FirstprivateVars.push_back(*IRef);
2728         Data.FirstprivateCopies.push_back(IInit);
2729         Data.FirstprivateInits.push_back(*IElemInitRef);
2730       }
2731       ++IRef;
2732       ++IElemInitRef;
2733     }
2734   }
2735   // Get list of lastprivate variables (for taskloops).
2736   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
2737   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
2738     auto IRef = C->varlist_begin();
2739     auto ID = C->destination_exprs().begin();
2740     for (auto *IInit : C->private_copies()) {
2741       auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
2742       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
2743         Data.LastprivateVars.push_back(*IRef);
2744         Data.LastprivateCopies.push_back(IInit);
2745       }
2746       LastprivateDstsOrigs.insert(
2747           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
2748            cast<DeclRefExpr>(*IRef)});
2749       ++IRef;
2750       ++ID;
2751     }
2752   }
2753   SmallVector<const Expr *, 4> LHSs;
2754   SmallVector<const Expr *, 4> RHSs;
2755   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
2756     auto IPriv = C->privates().begin();
2757     auto IRed = C->reduction_ops().begin();
2758     auto ILHS = C->lhs_exprs().begin();
2759     auto IRHS = C->rhs_exprs().begin();
2760     for (const auto *Ref : C->varlists()) {
2761       Data.ReductionVars.emplace_back(Ref);
2762       Data.ReductionCopies.emplace_back(*IPriv);
2763       Data.ReductionOps.emplace_back(*IRed);
2764       LHSs.emplace_back(*ILHS);
2765       RHSs.emplace_back(*IRHS);
2766       std::advance(IPriv, 1);
2767       std::advance(IRed, 1);
2768       std::advance(ILHS, 1);
2769       std::advance(IRHS, 1);
2770     }
2771   }
2772   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
2773       *this, S.getLocStart(), LHSs, RHSs, Data);
2774   // Build list of dependences.
2775   for (const auto *C : S.getClausesOfKind<OMPDependClause>())
2776     for (auto *IRef : C->varlists())
2777       Data.Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
2778   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs](
2779       CodeGenFunction &CGF, PrePostActionTy &Action) {
2780     // Set proper addresses for generated private copies.
2781     OMPPrivateScope Scope(CGF);
2782     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
2783         !Data.LastprivateVars.empty()) {
2784       enum { PrivatesParam = 2, CopyFnParam = 3 };
2785       auto *CopyFn = CGF.Builder.CreateLoad(
2786           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
2787       auto *PrivatesPtr = CGF.Builder.CreateLoad(
2788           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
2789       // Map privates.
2790       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
2791       llvm::SmallVector<llvm::Value *, 16> CallArgs;
2792       CallArgs.push_back(PrivatesPtr);
2793       for (auto *E : Data.PrivateVars) {
2794         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2795         Address PrivatePtr = CGF.CreateMemTemp(
2796             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
2797         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2798         CallArgs.push_back(PrivatePtr.getPointer());
2799       }
2800       for (auto *E : Data.FirstprivateVars) {
2801         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2802         Address PrivatePtr =
2803             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2804                               ".firstpriv.ptr.addr");
2805         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2806         CallArgs.push_back(PrivatePtr.getPointer());
2807       }
2808       for (auto *E : Data.LastprivateVars) {
2809         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2810         Address PrivatePtr =
2811             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
2812                               ".lastpriv.ptr.addr");
2813         PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
2814         CallArgs.push_back(PrivatePtr.getPointer());
2815       }
2816       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(),
2817                                                           CopyFn, CallArgs);
2818       for (auto &&Pair : LastprivateDstsOrigs) {
2819         auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
2820         DeclRefExpr DRE(
2821             const_cast<VarDecl *>(OrigVD),
2822             /*RefersToEnclosingVariableOrCapture=*/CGF.CapturedStmtInfo->lookup(
2823                 OrigVD) != nullptr,
2824             Pair.second->getType(), VK_LValue, Pair.second->getExprLoc());
2825         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
2826           return CGF.EmitLValue(&DRE).getAddress();
2827         });
2828       }
2829       for (auto &&Pair : PrivatePtrs) {
2830         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
2831                             CGF.getContext().getDeclAlign(Pair.first));
2832         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
2833       }
2834     }
2835     if (Data.Reductions) {
2836       OMPLexicalScope LexScope(CGF, S, /*AsInlined=*/true);
2837       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies,
2838                              Data.ReductionOps);
2839       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
2840           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
2841       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
2842         RedCG.emitSharedLValue(CGF, Cnt);
2843         RedCG.emitAggregateType(CGF, Cnt);
2844         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
2845             CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
2846         Replacement =
2847             Address(CGF.EmitScalarConversion(
2848                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
2849                         CGF.getContext().getPointerType(
2850                             Data.ReductionCopies[Cnt]->getType()),
2851                         SourceLocation()),
2852                     Replacement.getAlignment());
2853         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
2854         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
2855                          [Replacement]() { return Replacement; });
2856         // FIXME: This must removed once the runtime library is fixed.
2857         // Emit required threadprivate variables for
2858         // initilizer/combiner/finalizer.
2859         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(),
2860                                                            RedCG, Cnt);
2861       }
2862     }
2863     // Privatize all private variables except for in_reduction items.
2864     (void)Scope.Privatize();
2865     SmallVector<const Expr *, 4> InRedVars;
2866     SmallVector<const Expr *, 4> InRedPrivs;
2867     SmallVector<const Expr *, 4> InRedOps;
2868     SmallVector<const Expr *, 4> TaskgroupDescriptors;
2869     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
2870       auto IPriv = C->privates().begin();
2871       auto IRed = C->reduction_ops().begin();
2872       auto ITD = C->taskgroup_descriptors().begin();
2873       for (const auto *Ref : C->varlists()) {
2874         InRedVars.emplace_back(Ref);
2875         InRedPrivs.emplace_back(*IPriv);
2876         InRedOps.emplace_back(*IRed);
2877         TaskgroupDescriptors.emplace_back(*ITD);
2878         std::advance(IPriv, 1);
2879         std::advance(IRed, 1);
2880         std::advance(ITD, 1);
2881       }
2882     }
2883     // Privatize in_reduction items here, because taskgroup descriptors must be
2884     // privatized earlier.
2885     OMPPrivateScope InRedScope(CGF);
2886     if (!InRedVars.empty()) {
2887       ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps);
2888       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
2889         RedCG.emitSharedLValue(CGF, Cnt);
2890         RedCG.emitAggregateType(CGF, Cnt);
2891         // The taskgroup descriptor variable is always implicit firstprivate and
2892         // privatized already during procoessing of the firstprivates.
2893         llvm::Value *ReductionsPtr = CGF.EmitLoadOfScalar(
2894             CGF.EmitLValue(TaskgroupDescriptors[Cnt]), SourceLocation());
2895         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
2896             CGF, S.getLocStart(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
2897         Replacement = Address(
2898             CGF.EmitScalarConversion(
2899                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
2900                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
2901                 SourceLocation()),
2902             Replacement.getAlignment());
2903         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
2904         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
2905                               [Replacement]() { return Replacement; });
2906         // FIXME: This must removed once the runtime library is fixed.
2907         // Emit required threadprivate variables for
2908         // initilizer/combiner/finalizer.
2909         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getLocStart(),
2910                                                            RedCG, Cnt);
2911       }
2912     }
2913     (void)InRedScope.Privatize();
2914 
2915     Action.Enter(CGF);
2916     BodyGen(CGF);
2917   };
2918   auto *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
2919       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
2920       Data.NumberOfParts);
2921   OMPLexicalScope Scope(*this, S);
2922   TaskGen(*this, OutlinedFn, Data);
2923 }
2924 
2925 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
2926   // Emit outlined function for task construct.
2927   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
2928   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
2929   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
2930   const Expr *IfCond = nullptr;
2931   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2932     if (C->getNameModifier() == OMPD_unknown ||
2933         C->getNameModifier() == OMPD_task) {
2934       IfCond = C->getCondition();
2935       break;
2936     }
2937   }
2938 
2939   OMPTaskDataTy Data;
2940   // Check if we should emit tied or untied task.
2941   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
2942   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
2943     CGF.EmitStmt(CS->getCapturedStmt());
2944   };
2945   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
2946                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
2947                             const OMPTaskDataTy &Data) {
2948     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getLocStart(), S, OutlinedFn,
2949                                             SharedsTy, CapturedStruct, IfCond,
2950                                             Data);
2951   };
2952   EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
2953 }
2954 
2955 void CodeGenFunction::EmitOMPTaskyieldDirective(
2956     const OMPTaskyieldDirective &S) {
2957   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
2958 }
2959 
2960 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
2961   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
2962 }
2963 
2964 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
2965   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
2966 }
2967 
2968 void CodeGenFunction::EmitOMPTaskgroupDirective(
2969     const OMPTaskgroupDirective &S) {
2970   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2971     Action.Enter(CGF);
2972     if (const Expr *E = S.getReductionRef()) {
2973       SmallVector<const Expr *, 4> LHSs;
2974       SmallVector<const Expr *, 4> RHSs;
2975       OMPTaskDataTy Data;
2976       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
2977         auto IPriv = C->privates().begin();
2978         auto IRed = C->reduction_ops().begin();
2979         auto ILHS = C->lhs_exprs().begin();
2980         auto IRHS = C->rhs_exprs().begin();
2981         for (const auto *Ref : C->varlists()) {
2982           Data.ReductionVars.emplace_back(Ref);
2983           Data.ReductionCopies.emplace_back(*IPriv);
2984           Data.ReductionOps.emplace_back(*IRed);
2985           LHSs.emplace_back(*ILHS);
2986           RHSs.emplace_back(*IRHS);
2987           std::advance(IPriv, 1);
2988           std::advance(IRed, 1);
2989           std::advance(ILHS, 1);
2990           std::advance(IRHS, 1);
2991         }
2992       }
2993       llvm::Value *ReductionDesc =
2994           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getLocStart(),
2995                                                            LHSs, RHSs, Data);
2996       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2997       CGF.EmitVarDecl(*VD);
2998       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
2999                             /*Volatile=*/false, E->getType());
3000     }
3001     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3002   };
3003   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3004   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
3005 }
3006 
3007 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
3008   CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
3009     if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
3010       return llvm::makeArrayRef(FlushClause->varlist_begin(),
3011                                 FlushClause->varlist_end());
3012     }
3013     return llvm::None;
3014   }(), S.getLocStart());
3015 }
3016 
3017 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
3018                                             const CodeGenLoopTy &CodeGenLoop,
3019                                             Expr *IncExpr) {
3020   // Emit the loop iteration variable.
3021   auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3022   auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
3023   EmitVarDecl(*IVDecl);
3024 
3025   // Emit the iterations count variable.
3026   // If it is not a variable, Sema decided to calculate iterations count on each
3027   // iteration (e.g., it is foldable into a constant).
3028   if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3029     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3030     // Emit calculation of the iterations count.
3031     EmitIgnoredExpr(S.getCalcLastIteration());
3032   }
3033 
3034   auto &RT = CGM.getOpenMPRuntime();
3035 
3036   bool HasLastprivateClause = false;
3037   // Check pre-condition.
3038   {
3039     OMPLoopScope PreInitScope(*this, S);
3040     // Skip the entire loop if we don't meet the precondition.
3041     // If the condition constant folds and can be elided, avoid emitting the
3042     // whole loop.
3043     bool CondConstant;
3044     llvm::BasicBlock *ContBlock = nullptr;
3045     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3046       if (!CondConstant)
3047         return;
3048     } else {
3049       auto *ThenBlock = createBasicBlock("omp.precond.then");
3050       ContBlock = createBasicBlock("omp.precond.end");
3051       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3052                   getProfileCount(&S));
3053       EmitBlock(ThenBlock);
3054       incrementProfileCounter(&S);
3055     }
3056 
3057     // Emit 'then' code.
3058     {
3059       // Emit helper vars inits.
3060 
3061       LValue LB = EmitOMPHelperVar(
3062           *this, cast<DeclRefExpr>(
3063                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3064                           ? S.getCombinedLowerBoundVariable()
3065                           : S.getLowerBoundVariable())));
3066       LValue UB = EmitOMPHelperVar(
3067           *this, cast<DeclRefExpr>(
3068                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3069                           ? S.getCombinedUpperBoundVariable()
3070                           : S.getUpperBoundVariable())));
3071       LValue ST =
3072           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3073       LValue IL =
3074           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3075 
3076       OMPPrivateScope LoopScope(*this);
3077       if (EmitOMPFirstprivateClause(S, LoopScope)) {
3078         // Emit implicit barrier to synchronize threads and avoid data races on
3079         // initialization of firstprivate variables and post-update of
3080         // lastprivate variables.
3081         CGM.getOpenMPRuntime().emitBarrierCall(
3082           *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
3083           /*ForceSimpleCall=*/true);
3084       }
3085       EmitOMPPrivateClause(S, LoopScope);
3086       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3087       EmitOMPPrivateLoopCounters(S, LoopScope);
3088       (void)LoopScope.Privatize();
3089 
3090       // Detect the distribute schedule kind and chunk.
3091       llvm::Value *Chunk = nullptr;
3092       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
3093       if (auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
3094         ScheduleKind = C->getDistScheduleKind();
3095         if (const auto *Ch = C->getChunkSize()) {
3096           Chunk = EmitScalarExpr(Ch);
3097           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
3098           S.getIterationVariable()->getType(),
3099           S.getLocStart());
3100         }
3101       }
3102       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3103       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3104 
3105       // OpenMP [2.10.8, distribute Construct, Description]
3106       // If dist_schedule is specified, kind must be static. If specified,
3107       // iterations are divided into chunks of size chunk_size, chunks are
3108       // assigned to the teams of the league in a round-robin fashion in the
3109       // order of the team number. When no chunk_size is specified, the
3110       // iteration space is divided into chunks that are approximately equal
3111       // in size, and at most one chunk is distributed to each team of the
3112       // league. The size of the chunks is unspecified in this case.
3113       if (RT.isStaticNonchunked(ScheduleKind,
3114                                 /* Chunked */ Chunk != nullptr)) {
3115         CGOpenMPRuntime::StaticRTInput StaticInit(
3116             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(),
3117             LB.getAddress(), UB.getAddress(), ST.getAddress());
3118         RT.emitDistributeStaticInit(*this, S.getLocStart(), ScheduleKind,
3119                                     StaticInit);
3120         auto LoopExit =
3121             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3122         // UB = min(UB, GlobalUB);
3123         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3124                             ? S.getCombinedEnsureUpperBound()
3125                             : S.getEnsureUpperBound());
3126         // IV = LB;
3127         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3128                             ? S.getCombinedInit()
3129                             : S.getInit());
3130 
3131         Expr *Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
3132                          ? S.getCombinedCond()
3133                          : S.getCond();
3134 
3135         // for distribute alone,  codegen
3136         // while (idx <= UB) { BODY; ++idx; }
3137         // when combined with 'for' (e.g. as in 'distribute parallel for')
3138         // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
3139         EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr,
3140                          [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
3141                            CodeGenLoop(CGF, S, LoopExit);
3142                          },
3143                          [](CodeGenFunction &) {});
3144         EmitBlock(LoopExit.getBlock());
3145         // Tell the runtime we are done.
3146         RT.emitForStaticFinish(*this, S.getLocStart(), S.getDirectiveKind());
3147       } else {
3148         // Emit the outer loop, which requests its work chunk [LB..UB] from
3149         // runtime and runs the inner loop to process it.
3150         const OMPLoopArguments LoopArguments = {
3151             LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(),
3152             Chunk};
3153         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
3154                                    CodeGenLoop);
3155       }
3156 
3157       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3158       if (HasLastprivateClause)
3159         EmitOMPLastprivateClauseFinal(
3160             S, /*NoFinals=*/false,
3161             Builder.CreateIsNotNull(
3162                 EmitLoadOfScalar(IL, S.getLocStart())));
3163     }
3164 
3165     // We're now done with the loop, so jump to the continuation block.
3166     if (ContBlock) {
3167       EmitBranch(ContBlock);
3168       EmitBlock(ContBlock, true);
3169     }
3170   }
3171 }
3172 
3173 void CodeGenFunction::EmitOMPDistributeDirective(
3174     const OMPDistributeDirective &S) {
3175   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3176 
3177     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
3178   };
3179   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3180   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen,
3181                                               false);
3182 }
3183 
3184 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
3185                                                    const CapturedStmt *S) {
3186   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3187   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
3188   CGF.CapturedStmtInfo = &CapStmtInfo;
3189   auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
3190   Fn->addFnAttr(llvm::Attribute::NoInline);
3191   return Fn;
3192 }
3193 
3194 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
3195   if (!S.getAssociatedStmt()) {
3196     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
3197       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
3198     return;
3199   }
3200   auto *C = S.getSingleClause<OMPSIMDClause>();
3201   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
3202                                  PrePostActionTy &Action) {
3203     if (C) {
3204       auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
3205       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3206       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3207       auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
3208       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getLocStart(),
3209                                                       OutlinedFn, CapturedVars);
3210     } else {
3211       Action.Enter(CGF);
3212       CGF.EmitStmt(
3213           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3214     }
3215   };
3216   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3217   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
3218 }
3219 
3220 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
3221                                          QualType SrcType, QualType DestType,
3222                                          SourceLocation Loc) {
3223   assert(CGF.hasScalarEvaluationKind(DestType) &&
3224          "DestType must have scalar evaluation kind.");
3225   assert(!Val.isAggregate() && "Must be a scalar or complex.");
3226   return Val.isScalar()
3227              ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
3228                                         Loc)
3229              : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
3230                                                  DestType, Loc);
3231 }
3232 
3233 static CodeGenFunction::ComplexPairTy
3234 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
3235                       QualType DestType, SourceLocation Loc) {
3236   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
3237          "DestType must have complex evaluation kind.");
3238   CodeGenFunction::ComplexPairTy ComplexVal;
3239   if (Val.isScalar()) {
3240     // Convert the input element to the element type of the complex.
3241     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
3242     auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
3243                                               DestElementType, Loc);
3244     ComplexVal = CodeGenFunction::ComplexPairTy(
3245         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
3246   } else {
3247     assert(Val.isComplex() && "Must be a scalar or complex.");
3248     auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
3249     auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
3250     ComplexVal.first = CGF.EmitScalarConversion(
3251         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
3252     ComplexVal.second = CGF.EmitScalarConversion(
3253         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
3254   }
3255   return ComplexVal;
3256 }
3257 
3258 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
3259                                   LValue LVal, RValue RVal) {
3260   if (LVal.isGlobalReg()) {
3261     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
3262   } else {
3263     CGF.EmitAtomicStore(RVal, LVal,
3264                         IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3265                                  : llvm::AtomicOrdering::Monotonic,
3266                         LVal.isVolatile(), /*IsInit=*/false);
3267   }
3268 }
3269 
3270 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
3271                                          QualType RValTy, SourceLocation Loc) {
3272   switch (getEvaluationKind(LVal.getType())) {
3273   case TEK_Scalar:
3274     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
3275                                *this, RVal, RValTy, LVal.getType(), Loc)),
3276                            LVal);
3277     break;
3278   case TEK_Complex:
3279     EmitStoreOfComplex(
3280         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
3281         /*isInit=*/false);
3282     break;
3283   case TEK_Aggregate:
3284     llvm_unreachable("Must be a scalar or complex.");
3285   }
3286 }
3287 
3288 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
3289                                   const Expr *X, const Expr *V,
3290                                   SourceLocation Loc) {
3291   // v = x;
3292   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
3293   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
3294   LValue XLValue = CGF.EmitLValue(X);
3295   LValue VLValue = CGF.EmitLValue(V);
3296   RValue Res = XLValue.isGlobalReg()
3297                    ? CGF.EmitLoadOfLValue(XLValue, Loc)
3298                    : CGF.EmitAtomicLoad(
3299                          XLValue, Loc,
3300                          IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3301                                   : llvm::AtomicOrdering::Monotonic,
3302                          XLValue.isVolatile());
3303   // OpenMP, 2.12.6, atomic Construct
3304   // Any atomic construct with a seq_cst clause forces the atomically
3305   // performed operation to include an implicit flush operation without a
3306   // list.
3307   if (IsSeqCst)
3308     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3309   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
3310 }
3311 
3312 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
3313                                    const Expr *X, const Expr *E,
3314                                    SourceLocation Loc) {
3315   // x = expr;
3316   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
3317   emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
3318   // OpenMP, 2.12.6, atomic Construct
3319   // Any atomic construct with a seq_cst clause forces the atomically
3320   // performed operation to include an implicit flush operation without a
3321   // list.
3322   if (IsSeqCst)
3323     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3324 }
3325 
3326 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
3327                                                 RValue Update,
3328                                                 BinaryOperatorKind BO,
3329                                                 llvm::AtomicOrdering AO,
3330                                                 bool IsXLHSInRHSPart) {
3331   auto &Context = CGF.CGM.getContext();
3332   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
3333   // expression is simple and atomic is allowed for the given type for the
3334   // target platform.
3335   if (BO == BO_Comma || !Update.isScalar() ||
3336       !Update.getScalarVal()->getType()->isIntegerTy() ||
3337       !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
3338                         (Update.getScalarVal()->getType() !=
3339                          X.getAddress().getElementType())) ||
3340       !X.getAddress().getElementType()->isIntegerTy() ||
3341       !Context.getTargetInfo().hasBuiltinAtomic(
3342           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
3343     return std::make_pair(false, RValue::get(nullptr));
3344 
3345   llvm::AtomicRMWInst::BinOp RMWOp;
3346   switch (BO) {
3347   case BO_Add:
3348     RMWOp = llvm::AtomicRMWInst::Add;
3349     break;
3350   case BO_Sub:
3351     if (!IsXLHSInRHSPart)
3352       return std::make_pair(false, RValue::get(nullptr));
3353     RMWOp = llvm::AtomicRMWInst::Sub;
3354     break;
3355   case BO_And:
3356     RMWOp = llvm::AtomicRMWInst::And;
3357     break;
3358   case BO_Or:
3359     RMWOp = llvm::AtomicRMWInst::Or;
3360     break;
3361   case BO_Xor:
3362     RMWOp = llvm::AtomicRMWInst::Xor;
3363     break;
3364   case BO_LT:
3365     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3366                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
3367                                    : llvm::AtomicRMWInst::Max)
3368                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
3369                                    : llvm::AtomicRMWInst::UMax);
3370     break;
3371   case BO_GT:
3372     RMWOp = X.getType()->hasSignedIntegerRepresentation()
3373                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
3374                                    : llvm::AtomicRMWInst::Min)
3375                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
3376                                    : llvm::AtomicRMWInst::UMin);
3377     break;
3378   case BO_Assign:
3379     RMWOp = llvm::AtomicRMWInst::Xchg;
3380     break;
3381   case BO_Mul:
3382   case BO_Div:
3383   case BO_Rem:
3384   case BO_Shl:
3385   case BO_Shr:
3386   case BO_LAnd:
3387   case BO_LOr:
3388     return std::make_pair(false, RValue::get(nullptr));
3389   case BO_PtrMemD:
3390   case BO_PtrMemI:
3391   case BO_LE:
3392   case BO_GE:
3393   case BO_EQ:
3394   case BO_NE:
3395   case BO_AddAssign:
3396   case BO_SubAssign:
3397   case BO_AndAssign:
3398   case BO_OrAssign:
3399   case BO_XorAssign:
3400   case BO_MulAssign:
3401   case BO_DivAssign:
3402   case BO_RemAssign:
3403   case BO_ShlAssign:
3404   case BO_ShrAssign:
3405   case BO_Comma:
3406     llvm_unreachable("Unsupported atomic update operation");
3407   }
3408   auto *UpdateVal = Update.getScalarVal();
3409   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
3410     UpdateVal = CGF.Builder.CreateIntCast(
3411         IC, X.getAddress().getElementType(),
3412         X.getType()->hasSignedIntegerRepresentation());
3413   }
3414   auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
3415   return std::make_pair(true, RValue::get(Res));
3416 }
3417 
3418 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
3419     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3420     llvm::AtomicOrdering AO, SourceLocation Loc,
3421     const llvm::function_ref<RValue(RValue)> &CommonGen) {
3422   // Update expressions are allowed to have the following forms:
3423   // x binop= expr; -> xrval + expr;
3424   // x++, ++x -> xrval + 1;
3425   // x--, --x -> xrval - 1;
3426   // x = x binop expr; -> xrval binop expr
3427   // x = expr Op x; - > expr binop xrval;
3428   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
3429   if (!Res.first) {
3430     if (X.isGlobalReg()) {
3431       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
3432       // 'xrval'.
3433       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
3434     } else {
3435       // Perform compare-and-swap procedure.
3436       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
3437     }
3438   }
3439   return Res;
3440 }
3441 
3442 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
3443                                     const Expr *X, const Expr *E,
3444                                     const Expr *UE, bool IsXLHSInRHSPart,
3445                                     SourceLocation Loc) {
3446   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3447          "Update expr in 'atomic update' must be a binary operator.");
3448   auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3449   // Update expressions are allowed to have the following forms:
3450   // x binop= expr; -> xrval + expr;
3451   // x++, ++x -> xrval + 1;
3452   // x--, --x -> xrval - 1;
3453   // x = x binop expr; -> xrval binop expr
3454   // x = expr Op x; - > expr binop xrval;
3455   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
3456   LValue XLValue = CGF.EmitLValue(X);
3457   RValue ExprRValue = CGF.EmitAnyExpr(E);
3458   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3459                      : llvm::AtomicOrdering::Monotonic;
3460   auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3461   auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3462   auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3463   auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3464   auto Gen =
3465       [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
3466         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3467         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3468         return CGF.EmitAnyExpr(UE);
3469       };
3470   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
3471       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3472   // OpenMP, 2.12.6, atomic Construct
3473   // Any atomic construct with a seq_cst clause forces the atomically
3474   // performed operation to include an implicit flush operation without a
3475   // list.
3476   if (IsSeqCst)
3477     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3478 }
3479 
3480 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
3481                             QualType SourceType, QualType ResType,
3482                             SourceLocation Loc) {
3483   switch (CGF.getEvaluationKind(ResType)) {
3484   case TEK_Scalar:
3485     return RValue::get(
3486         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
3487   case TEK_Complex: {
3488     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
3489     return RValue::getComplex(Res.first, Res.second);
3490   }
3491   case TEK_Aggregate:
3492     break;
3493   }
3494   llvm_unreachable("Must be a scalar or complex.");
3495 }
3496 
3497 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
3498                                      bool IsPostfixUpdate, const Expr *V,
3499                                      const Expr *X, const Expr *E,
3500                                      const Expr *UE, bool IsXLHSInRHSPart,
3501                                      SourceLocation Loc) {
3502   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
3503   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
3504   RValue NewVVal;
3505   LValue VLValue = CGF.EmitLValue(V);
3506   LValue XLValue = CGF.EmitLValue(X);
3507   RValue ExprRValue = CGF.EmitAnyExpr(E);
3508   auto AO = IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent
3509                      : llvm::AtomicOrdering::Monotonic;
3510   QualType NewVValType;
3511   if (UE) {
3512     // 'x' is updated with some additional value.
3513     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
3514            "Update expr in 'atomic capture' must be a binary operator.");
3515     auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
3516     // Update expressions are allowed to have the following forms:
3517     // x binop= expr; -> xrval + expr;
3518     // x++, ++x -> xrval + 1;
3519     // x--, --x -> xrval - 1;
3520     // x = x binop expr; -> xrval binop expr
3521     // x = expr Op x; - > expr binop xrval;
3522     auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
3523     auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
3524     auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
3525     NewVValType = XRValExpr->getType();
3526     auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
3527     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
3528                   IsPostfixUpdate](RValue XRValue) -> RValue {
3529       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3530       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
3531       RValue Res = CGF.EmitAnyExpr(UE);
3532       NewVVal = IsPostfixUpdate ? XRValue : Res;
3533       return Res;
3534     };
3535     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3536         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
3537     if (Res.first) {
3538       // 'atomicrmw' instruction was generated.
3539       if (IsPostfixUpdate) {
3540         // Use old value from 'atomicrmw'.
3541         NewVVal = Res.second;
3542       } else {
3543         // 'atomicrmw' does not provide new value, so evaluate it using old
3544         // value of 'x'.
3545         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
3546         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
3547         NewVVal = CGF.EmitAnyExpr(UE);
3548       }
3549     }
3550   } else {
3551     // 'x' is simply rewritten with some 'expr'.
3552     NewVValType = X->getType().getNonReferenceType();
3553     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
3554                                X->getType().getNonReferenceType(), Loc);
3555     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) -> RValue {
3556       NewVVal = XRValue;
3557       return ExprRValue;
3558     };
3559     // Try to perform atomicrmw xchg, otherwise simple exchange.
3560     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
3561         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
3562         Loc, Gen);
3563     if (Res.first) {
3564       // 'atomicrmw' instruction was generated.
3565       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
3566     }
3567   }
3568   // Emit post-update store to 'v' of old/new 'x' value.
3569   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
3570   // OpenMP, 2.12.6, atomic Construct
3571   // Any atomic construct with a seq_cst clause forces the atomically
3572   // performed operation to include an implicit flush operation without a
3573   // list.
3574   if (IsSeqCst)
3575     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
3576 }
3577 
3578 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
3579                               bool IsSeqCst, bool IsPostfixUpdate,
3580                               const Expr *X, const Expr *V, const Expr *E,
3581                               const Expr *UE, bool IsXLHSInRHSPart,
3582                               SourceLocation Loc) {
3583   switch (Kind) {
3584   case OMPC_read:
3585     EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
3586     break;
3587   case OMPC_write:
3588     EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
3589     break;
3590   case OMPC_unknown:
3591   case OMPC_update:
3592     EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
3593     break;
3594   case OMPC_capture:
3595     EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
3596                              IsXLHSInRHSPart, Loc);
3597     break;
3598   case OMPC_if:
3599   case OMPC_final:
3600   case OMPC_num_threads:
3601   case OMPC_private:
3602   case OMPC_firstprivate:
3603   case OMPC_lastprivate:
3604   case OMPC_reduction:
3605   case OMPC_task_reduction:
3606   case OMPC_in_reduction:
3607   case OMPC_safelen:
3608   case OMPC_simdlen:
3609   case OMPC_collapse:
3610   case OMPC_default:
3611   case OMPC_seq_cst:
3612   case OMPC_shared:
3613   case OMPC_linear:
3614   case OMPC_aligned:
3615   case OMPC_copyin:
3616   case OMPC_copyprivate:
3617   case OMPC_flush:
3618   case OMPC_proc_bind:
3619   case OMPC_schedule:
3620   case OMPC_ordered:
3621   case OMPC_nowait:
3622   case OMPC_untied:
3623   case OMPC_threadprivate:
3624   case OMPC_depend:
3625   case OMPC_mergeable:
3626   case OMPC_device:
3627   case OMPC_threads:
3628   case OMPC_simd:
3629   case OMPC_map:
3630   case OMPC_num_teams:
3631   case OMPC_thread_limit:
3632   case OMPC_priority:
3633   case OMPC_grainsize:
3634   case OMPC_nogroup:
3635   case OMPC_num_tasks:
3636   case OMPC_hint:
3637   case OMPC_dist_schedule:
3638   case OMPC_defaultmap:
3639   case OMPC_uniform:
3640   case OMPC_to:
3641   case OMPC_from:
3642   case OMPC_use_device_ptr:
3643   case OMPC_is_device_ptr:
3644     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
3645   }
3646 }
3647 
3648 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
3649   bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
3650   OpenMPClauseKind Kind = OMPC_unknown;
3651   for (auto *C : S.clauses()) {
3652     // Find first clause (skip seq_cst clause, if it is first).
3653     if (C->getClauseKind() != OMPC_seq_cst) {
3654       Kind = C->getClauseKind();
3655       break;
3656     }
3657   }
3658 
3659   const auto *CS =
3660       S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
3661   if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
3662     enterFullExpression(EWC);
3663   }
3664   // Processing for statements under 'atomic capture'.
3665   if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
3666     for (const auto *C : Compound->body()) {
3667       if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
3668         enterFullExpression(EWC);
3669       }
3670     }
3671   }
3672 
3673   auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF,
3674                                             PrePostActionTy &) {
3675     CGF.EmitStopPoint(CS);
3676     EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
3677                       S.getV(), S.getExpr(), S.getUpdateExpr(),
3678                       S.isXLHSInRHSPart(), S.getLocStart());
3679   };
3680   OMPLexicalScope Scope(*this, S, /*AsInlined=*/true);
3681   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
3682 }
3683 
3684 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
3685                                          const OMPExecutableDirective &S,
3686                                          const RegionCodeGenTy &CodeGen) {
3687   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
3688   CodeGenModule &CGM = CGF.CGM;
3689   const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());
3690 
3691   llvm::Function *Fn = nullptr;
3692   llvm::Constant *FnID = nullptr;
3693 
3694   const Expr *IfCond = nullptr;
3695   // Check for the at most one if clause associated with the target region.
3696   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3697     if (C->getNameModifier() == OMPD_unknown ||
3698         C->getNameModifier() == OMPD_target) {
3699       IfCond = C->getCondition();
3700       break;
3701     }
3702   }
3703 
3704   // Check if we have any device clause associated with the directive.
3705   const Expr *Device = nullptr;
3706   if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
3707     Device = C->getDevice();
3708   }
3709 
3710   // Check if we have an if clause whose conditional always evaluates to false
3711   // or if we do not have any targets specified. If so the target region is not
3712   // an offload entry point.
3713   bool IsOffloadEntry = true;
3714   if (IfCond) {
3715     bool Val;
3716     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
3717       IsOffloadEntry = false;
3718   }
3719   if (CGM.getLangOpts().OMPTargetTriples.empty())
3720     IsOffloadEntry = false;
3721 
3722   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
3723   StringRef ParentName;
3724   // In case we have Ctors/Dtors we use the complete type variant to produce
3725   // the mangling of the device outlined kernel.
3726   if (auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
3727     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
3728   else if (auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
3729     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
3730   else
3731     ParentName =
3732         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
3733 
3734   // Emit target region as a standalone region.
3735   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
3736                                                     IsOffloadEntry, CodeGen);
3737   OMPLexicalScope Scope(CGF, S);
3738   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3739   CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
3740   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device,
3741                                         CapturedVars);
3742 }
3743 
3744 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
3745                              PrePostActionTy &Action) {
3746   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
3747   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3748   CGF.EmitOMPPrivateClause(S, PrivateScope);
3749   (void)PrivateScope.Privatize();
3750 
3751   Action.Enter(CGF);
3752   CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3753 }
3754 
3755 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3756                                                   StringRef ParentName,
3757                                                   const OMPTargetDirective &S) {
3758   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3759     emitTargetRegion(CGF, S, Action);
3760   };
3761   llvm::Function *Fn;
3762   llvm::Constant *Addr;
3763   // Emit target region as a standalone region.
3764   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3765       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
3766   assert(Fn && Addr && "Target device function emission failed.");
3767 }
3768 
3769 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
3770   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3771     emitTargetRegion(CGF, S, Action);
3772   };
3773   emitCommonOMPTargetDirective(*this, S, CodeGen);
3774 }
3775 
3776 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
3777                                         const OMPExecutableDirective &S,
3778                                         OpenMPDirectiveKind InnermostKind,
3779                                         const RegionCodeGenTy &CodeGen) {
3780   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
3781   auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
3782       S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
3783 
3784   const OMPNumTeamsClause *NT = S.getSingleClause<OMPNumTeamsClause>();
3785   const OMPThreadLimitClause *TL = S.getSingleClause<OMPThreadLimitClause>();
3786   if (NT || TL) {
3787     Expr *NumTeams = (NT) ? NT->getNumTeams() : nullptr;
3788     Expr *ThreadLimit = (TL) ? TL->getThreadLimit() : nullptr;
3789 
3790     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
3791                                                   S.getLocStart());
3792   }
3793 
3794   OMPTeamsScope Scope(CGF, S);
3795   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
3796   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
3797   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getLocStart(), OutlinedFn,
3798                                            CapturedVars);
3799 }
3800 
3801 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
3802   // Emit teams region as a standalone region.
3803   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3804     OMPPrivateScope PrivateScope(CGF);
3805     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3806     CGF.EmitOMPPrivateClause(S, PrivateScope);
3807     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
3808     (void)PrivateScope.Privatize();
3809     CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3810     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
3811   };
3812   emitCommonOMPTeamsDirective(*this, S, OMPD_teams, CodeGen);
3813   emitPostUpdateForReductionClause(
3814       *this, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
3815 }
3816 
3817 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
3818                                   const OMPTargetTeamsDirective &S) {
3819   auto *CS = S.getCapturedStmt(OMPD_teams);
3820   Action.Enter(CGF);
3821   auto &&CodeGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
3822     // TODO: Add support for clauses.
3823     CGF.EmitStmt(CS->getCapturedStmt());
3824   };
3825   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
3826 }
3827 
3828 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
3829     CodeGenModule &CGM, StringRef ParentName,
3830     const OMPTargetTeamsDirective &S) {
3831   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3832     emitTargetTeamsRegion(CGF, Action, S);
3833   };
3834   llvm::Function *Fn;
3835   llvm::Constant *Addr;
3836   // Emit target region as a standalone region.
3837   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3838       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
3839   assert(Fn && Addr && "Target device function emission failed.");
3840 }
3841 
3842 void CodeGenFunction::EmitOMPTargetTeamsDirective(
3843     const OMPTargetTeamsDirective &S) {
3844   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3845     emitTargetTeamsRegion(CGF, Action, S);
3846   };
3847   emitCommonOMPTargetDirective(*this, S, CodeGen);
3848 }
3849 
3850 void CodeGenFunction::EmitOMPCancellationPointDirective(
3851     const OMPCancellationPointDirective &S) {
3852   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
3853                                                    S.getCancelRegion());
3854 }
3855 
3856 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
3857   const Expr *IfCond = nullptr;
3858   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
3859     if (C->getNameModifier() == OMPD_unknown ||
3860         C->getNameModifier() == OMPD_cancel) {
3861       IfCond = C->getCondition();
3862       break;
3863     }
3864   }
3865   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
3866                                         S.getCancelRegion());
3867 }
3868 
3869 CodeGenFunction::JumpDest
3870 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
3871   if (Kind == OMPD_parallel || Kind == OMPD_task ||
3872       Kind == OMPD_target_parallel)
3873     return ReturnBlock;
3874   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
3875          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
3876          Kind == OMPD_distribute_parallel_for ||
3877          Kind == OMPD_target_parallel_for);
3878   return OMPCancelStack.getExitBlock();
3879 }
3880 
3881 void CodeGenFunction::EmitOMPUseDevicePtrClause(
3882     const OMPClause &NC, OMPPrivateScope &PrivateScope,
3883     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
3884   const auto &C = cast<OMPUseDevicePtrClause>(NC);
3885   auto OrigVarIt = C.varlist_begin();
3886   auto InitIt = C.inits().begin();
3887   for (auto PvtVarIt : C.private_copies()) {
3888     auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
3889     auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
3890     auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
3891 
3892     // In order to identify the right initializer we need to match the
3893     // declaration used by the mapping logic. In some cases we may get
3894     // OMPCapturedExprDecl that refers to the original declaration.
3895     const ValueDecl *MatchingVD = OrigVD;
3896     if (auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
3897       // OMPCapturedExprDecl are used to privative fields of the current
3898       // structure.
3899       auto *ME = cast<MemberExpr>(OED->getInit());
3900       assert(isa<CXXThisExpr>(ME->getBase()) &&
3901              "Base should be the current struct!");
3902       MatchingVD = ME->getMemberDecl();
3903     }
3904 
3905     // If we don't have information about the current list item, move on to
3906     // the next one.
3907     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
3908     if (InitAddrIt == CaptureDeviceAddrMap.end())
3909       continue;
3910 
3911     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
3912       // Initialize the temporary initialization variable with the address we
3913       // get from the runtime library. We have to cast the source address
3914       // because it is always a void *. References are materialized in the
3915       // privatization scope, so the initialization here disregards the fact
3916       // the original variable is a reference.
3917       QualType AddrQTy =
3918           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
3919       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
3920       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
3921       setAddrOfLocalVar(InitVD, InitAddr);
3922 
3923       // Emit private declaration, it will be initialized by the value we
3924       // declaration we just added to the local declarations map.
3925       EmitDecl(*PvtVD);
3926 
3927       // The initialization variables reached its purpose in the emission
3928       // ofthe previous declaration, so we don't need it anymore.
3929       LocalDeclMap.erase(InitVD);
3930 
3931       // Return the address of the private variable.
3932       return GetAddrOfLocalVar(PvtVD);
3933     });
3934     assert(IsRegistered && "firstprivate var already registered as private");
3935     // Silence the warning about unused variable.
3936     (void)IsRegistered;
3937 
3938     ++OrigVarIt;
3939     ++InitIt;
3940   }
3941 }
3942 
3943 // Generate the instructions for '#pragma omp target data' directive.
3944 void CodeGenFunction::EmitOMPTargetDataDirective(
3945     const OMPTargetDataDirective &S) {
3946   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true);
3947 
3948   // Create a pre/post action to signal the privatization of the device pointer.
3949   // This action can be replaced by the OpenMP runtime code generation to
3950   // deactivate privatization.
3951   bool PrivatizeDevicePointers = false;
3952   class DevicePointerPrivActionTy : public PrePostActionTy {
3953     bool &PrivatizeDevicePointers;
3954 
3955   public:
3956     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
3957         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
3958     void Enter(CodeGenFunction &CGF) override {
3959       PrivatizeDevicePointers = true;
3960     }
3961   };
3962   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
3963 
3964   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
3965       CodeGenFunction &CGF, PrePostActionTy &Action) {
3966     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
3967       CGF.EmitStmt(
3968           cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
3969     };
3970 
3971     // Codegen that selects wheather to generate the privatization code or not.
3972     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
3973                           &InnermostCodeGen](CodeGenFunction &CGF,
3974                                              PrePostActionTy &Action) {
3975       RegionCodeGenTy RCG(InnermostCodeGen);
3976       PrivatizeDevicePointers = false;
3977 
3978       // Call the pre-action to change the status of PrivatizeDevicePointers if
3979       // needed.
3980       Action.Enter(CGF);
3981 
3982       if (PrivatizeDevicePointers) {
3983         OMPPrivateScope PrivateScope(CGF);
3984         // Emit all instances of the use_device_ptr clause.
3985         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
3986           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
3987                                         Info.CaptureDeviceAddrMap);
3988         (void)PrivateScope.Privatize();
3989         RCG(CGF);
3990       } else
3991         RCG(CGF);
3992     };
3993 
3994     // Forward the provided action to the privatization codegen.
3995     RegionCodeGenTy PrivRCG(PrivCodeGen);
3996     PrivRCG.setAction(Action);
3997 
3998     // Notwithstanding the body of the region is emitted as inlined directive,
3999     // we don't use an inline scope as changes in the references inside the
4000     // region are expected to be visible outside, so we do not privative them.
4001     OMPLexicalScope Scope(CGF, S);
4002     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
4003                                                     PrivRCG);
4004   };
4005 
4006   RegionCodeGenTy RCG(CodeGen);
4007 
4008   // If we don't have target devices, don't bother emitting the data mapping
4009   // code.
4010   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
4011     RCG(*this);
4012     return;
4013   }
4014 
4015   // Check if we have any if clause associated with the directive.
4016   const Expr *IfCond = nullptr;
4017   if (auto *C = S.getSingleClause<OMPIfClause>())
4018     IfCond = C->getCondition();
4019 
4020   // Check if we have any device clause associated with the directive.
4021   const Expr *Device = nullptr;
4022   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4023     Device = C->getDevice();
4024 
4025   // Set the action to signal privatization of device pointers.
4026   RCG.setAction(PrivAction);
4027 
4028   // Emit region code.
4029   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
4030                                              Info);
4031 }
4032 
4033 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
4034     const OMPTargetEnterDataDirective &S) {
4035   // If we don't have target devices, don't bother emitting the data mapping
4036   // code.
4037   if (CGM.getLangOpts().OMPTargetTriples.empty())
4038     return;
4039 
4040   // Check if we have any if clause associated with the directive.
4041   const Expr *IfCond = nullptr;
4042   if (auto *C = S.getSingleClause<OMPIfClause>())
4043     IfCond = C->getCondition();
4044 
4045   // Check if we have any device clause associated with the directive.
4046   const Expr *Device = nullptr;
4047   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4048     Device = C->getDevice();
4049 
4050   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4051 }
4052 
4053 void CodeGenFunction::EmitOMPTargetExitDataDirective(
4054     const OMPTargetExitDataDirective &S) {
4055   // If we don't have target devices, don't bother emitting the data mapping
4056   // code.
4057   if (CGM.getLangOpts().OMPTargetTriples.empty())
4058     return;
4059 
4060   // Check if we have any if clause associated with the directive.
4061   const Expr *IfCond = nullptr;
4062   if (auto *C = S.getSingleClause<OMPIfClause>())
4063     IfCond = C->getCondition();
4064 
4065   // Check if we have any device clause associated with the directive.
4066   const Expr *Device = nullptr;
4067   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4068     Device = C->getDevice();
4069 
4070   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4071 }
4072 
4073 static void emitTargetParallelRegion(CodeGenFunction &CGF,
4074                                      const OMPTargetParallelDirective &S,
4075                                      PrePostActionTy &Action) {
4076   // Get the captured statement associated with the 'parallel' region.
4077   auto *CS = S.getCapturedStmt(OMPD_parallel);
4078   Action.Enter(CGF);
4079   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &) {
4080     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
4081     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
4082     CGF.EmitOMPPrivateClause(S, PrivateScope);
4083     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4084     (void)PrivateScope.Privatize();
4085     // TODO: Add support for clauses.
4086     CGF.EmitStmt(CS->getCapturedStmt());
4087     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
4088   };
4089   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
4090                                  emitEmptyBoundParameters);
4091   emitPostUpdateForReductionClause(
4092       CGF, S, [](CodeGenFunction &) -> llvm::Value * { return nullptr; });
4093 }
4094 
4095 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
4096     CodeGenModule &CGM, StringRef ParentName,
4097     const OMPTargetParallelDirective &S) {
4098   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4099     emitTargetParallelRegion(CGF, S, Action);
4100   };
4101   llvm::Function *Fn;
4102   llvm::Constant *Addr;
4103   // Emit target region as a standalone region.
4104   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
4105       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
4106   assert(Fn && Addr && "Target device function emission failed.");
4107 }
4108 
4109 void CodeGenFunction::EmitOMPTargetParallelDirective(
4110     const OMPTargetParallelDirective &S) {
4111   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4112     emitTargetParallelRegion(CGF, S, Action);
4113   };
4114   emitCommonOMPTargetDirective(*this, S, CodeGen);
4115 }
4116 
4117 void CodeGenFunction::EmitOMPTargetParallelForDirective(
4118     const OMPTargetParallelForDirective &S) {
4119   // TODO: codegen for target parallel for.
4120 }
4121 
4122 /// Emit a helper variable and return corresponding lvalue.
4123 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
4124                      const ImplicitParamDecl *PVD,
4125                      CodeGenFunction::OMPPrivateScope &Privates) {
4126   auto *VDecl = cast<VarDecl>(Helper->getDecl());
4127   Privates.addPrivate(
4128       VDecl, [&CGF, PVD]() -> Address { return CGF.GetAddrOfLocalVar(PVD); });
4129 }
4130 
4131 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
4132   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
4133   // Emit outlined function for task construct.
4134   auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
4135   auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
4136   auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4137   const Expr *IfCond = nullptr;
4138   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4139     if (C->getNameModifier() == OMPD_unknown ||
4140         C->getNameModifier() == OMPD_taskloop) {
4141       IfCond = C->getCondition();
4142       break;
4143     }
4144   }
4145 
4146   OMPTaskDataTy Data;
4147   // Check if taskloop must be emitted without taskgroup.
4148   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
4149   // TODO: Check if we should emit tied or untied task.
4150   Data.Tied = true;
4151   // Set scheduling for taskloop
4152   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
4153     // grainsize clause
4154     Data.Schedule.setInt(/*IntVal=*/false);
4155     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
4156   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
4157     // num_tasks clause
4158     Data.Schedule.setInt(/*IntVal=*/true);
4159     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
4160   }
4161 
4162   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
4163     // if (PreCond) {
4164     //   for (IV in 0..LastIteration) BODY;
4165     //   <Final counter/linear vars updates>;
4166     // }
4167     //
4168 
4169     // Emit: if (PreCond) - begin.
4170     // If the condition constant folds and can be elided, avoid emitting the
4171     // whole loop.
4172     bool CondConstant;
4173     llvm::BasicBlock *ContBlock = nullptr;
4174     OMPLoopScope PreInitScope(CGF, S);
4175     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
4176       if (!CondConstant)
4177         return;
4178     } else {
4179       auto *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
4180       ContBlock = CGF.createBasicBlock("taskloop.if.end");
4181       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
4182                   CGF.getProfileCount(&S));
4183       CGF.EmitBlock(ThenBlock);
4184       CGF.incrementProfileCounter(&S);
4185     }
4186 
4187     if (isOpenMPSimdDirective(S.getDirectiveKind()))
4188       CGF.EmitOMPSimdInit(S);
4189 
4190     OMPPrivateScope LoopScope(CGF);
4191     // Emit helper vars inits.
4192     enum { LowerBound = 5, UpperBound, Stride, LastIter };
4193     auto *I = CS->getCapturedDecl()->param_begin();
4194     auto *LBP = std::next(I, LowerBound);
4195     auto *UBP = std::next(I, UpperBound);
4196     auto *STP = std::next(I, Stride);
4197     auto *LIP = std::next(I, LastIter);
4198     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
4199              LoopScope);
4200     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
4201              LoopScope);
4202     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
4203     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
4204              LoopScope);
4205     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
4206     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
4207     (void)LoopScope.Privatize();
4208     // Emit the loop iteration variable.
4209     const Expr *IVExpr = S.getIterationVariable();
4210     const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
4211     CGF.EmitVarDecl(*IVDecl);
4212     CGF.EmitIgnoredExpr(S.getInit());
4213 
4214     // Emit the iterations count variable.
4215     // If it is not a variable, Sema decided to calculate iterations count on
4216     // each iteration (e.g., it is foldable into a constant).
4217     if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
4218       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
4219       // Emit calculation of the iterations count.
4220       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
4221     }
4222 
4223     CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
4224                          S.getInc(),
4225                          [&S](CodeGenFunction &CGF) {
4226                            CGF.EmitOMPLoopBody(S, JumpDest());
4227                            CGF.EmitStopPoint(&S);
4228                          },
4229                          [](CodeGenFunction &) {});
4230     // Emit: if (PreCond) - end.
4231     if (ContBlock) {
4232       CGF.EmitBranch(ContBlock);
4233       CGF.EmitBlock(ContBlock, true);
4234     }
4235     // Emit final copy of the lastprivate variables if IsLastIter != 0.
4236     if (HasLastprivateClause) {
4237       CGF.EmitOMPLastprivateClauseFinal(
4238           S, isOpenMPSimdDirective(S.getDirectiveKind()),
4239           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
4240               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
4241               (*LIP)->getType(), S.getLocStart())));
4242     }
4243   };
4244   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
4245                     IfCond](CodeGenFunction &CGF, llvm::Value *OutlinedFn,
4246                             const OMPTaskDataTy &Data) {
4247     auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &) {
4248       OMPLoopScope PreInitScope(CGF, S);
4249       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getLocStart(), S,
4250                                                   OutlinedFn, SharedsTy,
4251                                                   CapturedStruct, IfCond, Data);
4252     };
4253     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
4254                                                     CodeGen);
4255   };
4256   if (Data.Nogroup)
4257     EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
4258   else {
4259     CGM.getOpenMPRuntime().emitTaskgroupRegion(
4260         *this,
4261         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
4262                                         PrePostActionTy &Action) {
4263           Action.Enter(CGF);
4264           CGF.EmitOMPTaskBasedDirective(S, BodyGen, TaskGen, Data);
4265         },
4266         S.getLocStart());
4267   }
4268 }
4269 
4270 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
4271   EmitOMPTaskLoopBasedDirective(S);
4272 }
4273 
4274 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
4275     const OMPTaskLoopSimdDirective &S) {
4276   EmitOMPTaskLoopBasedDirective(S);
4277 }
4278 
4279 // Generate the instructions for '#pragma omp target update' directive.
4280 void CodeGenFunction::EmitOMPTargetUpdateDirective(
4281     const OMPTargetUpdateDirective &S) {
4282   // If we don't have target devices, don't bother emitting the data mapping
4283   // code.
4284   if (CGM.getLangOpts().OMPTargetTriples.empty())
4285     return;
4286 
4287   // Check if we have any if clause associated with the directive.
4288   const Expr *IfCond = nullptr;
4289   if (auto *C = S.getSingleClause<OMPIfClause>())
4290     IfCond = C->getCondition();
4291 
4292   // Check if we have any device clause associated with the directive.
4293   const Expr *Device = nullptr;
4294   if (auto *C = S.getSingleClause<OMPDeviceClause>())
4295     Device = C->getDevice();
4296 
4297   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
4298 }
4299