1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit OpenMP nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCleanup.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/DeclOpenMP.h"
21 #include "clang/AST/OpenMPClause.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/StmtOpenMP.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/OpenMPKinds.h"
26 #include "clang/Basic/PrettyStackTrace.h"
27 #include "llvm/Frontend/OpenMP/OMPConstants.h"
28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/Support/AtomicOrdering.h"
32 using namespace clang;
33 using namespace CodeGen;
34 using namespace llvm::omp;
35 
36 static const VarDecl *getBaseDecl(const Expr *Ref);
37 
38 namespace {
39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen
40 /// for captured expressions.
41 class OMPLexicalScope : public CodeGenFunction::LexicalScope {
42   void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
43     for (const auto *C : S.clauses()) {
44       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
45         if (const auto *PreInit =
46                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
47           for (const auto *I : PreInit->decls()) {
48             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
49               CGF.EmitVarDecl(cast<VarDecl>(*I));
50             } else {
51               CodeGenFunction::AutoVarEmission Emission =
52                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
53               CGF.EmitAutoVarCleanups(Emission);
54             }
55           }
56         }
57       }
58     }
59   }
60   CodeGenFunction::OMPPrivateScope InlinedShareds;
61 
62   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
63     return CGF.LambdaCaptureFields.lookup(VD) ||
64            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
65            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
66             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
67   }
68 
69 public:
70   OMPLexicalScope(
71       CodeGenFunction &CGF, const OMPExecutableDirective &S,
72       const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None,
73       const bool EmitPreInitStmt = true)
74       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
75         InlinedShareds(CGF) {
76     if (EmitPreInitStmt)
77       emitPreInitStmt(CGF, S);
78     if (!CapturedRegion.hasValue())
79       return;
80     assert(S.hasAssociatedStmt() &&
81            "Expected associated statement for inlined directive.");
82     const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion);
83     for (const auto &C : CS->captures()) {
84       if (C.capturesVariable() || C.capturesVariableByCopy()) {
85         auto *VD = C.getCapturedVar();
86         assert(VD == VD->getCanonicalDecl() &&
87                "Canonical decl must be captured.");
88         DeclRefExpr DRE(
89             CGF.getContext(), const_cast<VarDecl *>(VD),
90             isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo &&
91                                        InlinedShareds.isGlobalVarCaptured(VD)),
92             VD->getType().getNonReferenceType(), VK_LValue, C.getLocation());
93         InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
94           return CGF.EmitLValue(&DRE).getAddress(CGF);
95         });
96       }
97     }
98     (void)InlinedShareds.Privatize();
99   }
100 };
101 
102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen
103 /// for captured expressions.
104 class OMPParallelScope final : public OMPLexicalScope {
105   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
106     OpenMPDirectiveKind Kind = S.getDirectiveKind();
107     return !(isOpenMPTargetExecutionDirective(Kind) ||
108              isOpenMPLoopBoundSharingDirective(Kind)) &&
109            isOpenMPParallelDirective(Kind);
110   }
111 
112 public:
113   OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
114       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
115                         EmitPreInitStmt(S)) {}
116 };
117 
118 /// Lexical scope for OpenMP teams construct, that handles correct codegen
119 /// for captured expressions.
120 class OMPTeamsScope final : public OMPLexicalScope {
121   bool EmitPreInitStmt(const OMPExecutableDirective &S) {
122     OpenMPDirectiveKind Kind = S.getDirectiveKind();
123     return !isOpenMPTargetExecutionDirective(Kind) &&
124            isOpenMPTeamsDirective(Kind);
125   }
126 
127 public:
128   OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
129       : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None,
130                         EmitPreInitStmt(S)) {}
131 };
132 
133 /// Private scope for OpenMP loop-based directives, that supports capturing
134 /// of used expression from loop statement.
135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope {
136   void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) {
137     const DeclStmt *PreInits;
138     CodeGenFunction::OMPMapVars PreCondVars;
139     if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) {
140       llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
141       for (const auto *E : LD->counters()) {
142         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
143         EmittedAsPrivate.insert(VD->getCanonicalDecl());
144         (void)PreCondVars.setVarAddr(
145             CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType()));
146       }
147       // Mark private vars as undefs.
148       for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) {
149         for (const Expr *IRef : C->varlists()) {
150           const auto *OrigVD =
151               cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
152           if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
153             (void)PreCondVars.setVarAddr(
154                 CGF, OrigVD,
155                 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem(
156                             CGF.getContext().getPointerType(
157                                 OrigVD->getType().getNonReferenceType()))),
158                         CGF.getContext().getDeclAlign(OrigVD)));
159           }
160         }
161       }
162       (void)PreCondVars.apply(CGF);
163       // Emit init, __range and __end variables for C++ range loops.
164       (void)OMPLoopBasedDirective::doForAllLoops(
165           LD->getInnermostCapturedStmt()->getCapturedStmt(),
166           /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(),
167           [&CGF](unsigned Cnt, const Stmt *CurStmt) {
168             if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) {
169               if (const Stmt *Init = CXXFor->getInit())
170                 CGF.EmitStmt(Init);
171               CGF.EmitStmt(CXXFor->getRangeStmt());
172               CGF.EmitStmt(CXXFor->getEndStmt());
173             }
174             return false;
175           });
176       PreInits = cast_or_null<DeclStmt>(LD->getPreInits());
177     } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) {
178       PreInits = cast_or_null<DeclStmt>(Tile->getPreInits());
179     } else {
180       llvm_unreachable("Unknown loop-based directive kind.");
181     }
182     if (PreInits) {
183       for (const auto *I : PreInits->decls())
184         CGF.EmitVarDecl(cast<VarDecl>(*I));
185     }
186     PreCondVars.restore(CGF);
187   }
188 
189 public:
190   OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S)
191       : CodeGenFunction::RunCleanupsScope(CGF) {
192     emitPreInitStmt(CGF, S);
193   }
194 };
195 
196 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope {
197   CodeGenFunction::OMPPrivateScope InlinedShareds;
198 
199   static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) {
200     return CGF.LambdaCaptureFields.lookup(VD) ||
201            (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) ||
202            (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) &&
203             cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD));
204   }
205 
206 public:
207   OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
208       : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()),
209         InlinedShareds(CGF) {
210     for (const auto *C : S.clauses()) {
211       if (const auto *CPI = OMPClauseWithPreInit::get(C)) {
212         if (const auto *PreInit =
213                 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
214           for (const auto *I : PreInit->decls()) {
215             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
216               CGF.EmitVarDecl(cast<VarDecl>(*I));
217             } else {
218               CodeGenFunction::AutoVarEmission Emission =
219                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
220               CGF.EmitAutoVarCleanups(Emission);
221             }
222           }
223         }
224       } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) {
225         for (const Expr *E : UDP->varlists()) {
226           const Decl *D = cast<DeclRefExpr>(E)->getDecl();
227           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
228             CGF.EmitVarDecl(*OED);
229         }
230       } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) {
231         for (const Expr *E : UDP->varlists()) {
232           const Decl *D = getBaseDecl(E);
233           if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D))
234             CGF.EmitVarDecl(*OED);
235         }
236       }
237     }
238     if (!isOpenMPSimdDirective(S.getDirectiveKind()))
239       CGF.EmitOMPPrivateClause(S, InlinedShareds);
240     if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) {
241       if (const Expr *E = TG->getReductionRef())
242         CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()));
243     }
244     const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt());
245     while (CS) {
246       for (auto &C : CS->captures()) {
247         if (C.capturesVariable() || C.capturesVariableByCopy()) {
248           auto *VD = C.getCapturedVar();
249           assert(VD == VD->getCanonicalDecl() &&
250                  "Canonical decl must be captured.");
251           DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
252                           isCapturedVar(CGF, VD) ||
253                               (CGF.CapturedStmtInfo &&
254                                InlinedShareds.isGlobalVarCaptured(VD)),
255                           VD->getType().getNonReferenceType(), VK_LValue,
256                           C.getLocation());
257           InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address {
258             return CGF.EmitLValue(&DRE).getAddress(CGF);
259           });
260         }
261       }
262       CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt());
263     }
264     (void)InlinedShareds.Privatize();
265   }
266 };
267 
268 } // namespace
269 
270 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
271                                          const OMPExecutableDirective &S,
272                                          const RegionCodeGenTy &CodeGen);
273 
274 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) {
275   if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) {
276     if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) {
277       OrigVD = OrigVD->getCanonicalDecl();
278       bool IsCaptured =
279           LambdaCaptureFields.lookup(OrigVD) ||
280           (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) ||
281           (CurCodeDecl && isa<BlockDecl>(CurCodeDecl));
282       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured,
283                       OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc());
284       return EmitLValue(&DRE);
285     }
286   }
287   return EmitLValue(E);
288 }
289 
290 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
291   ASTContext &C = getContext();
292   llvm::Value *Size = nullptr;
293   auto SizeInChars = C.getTypeSizeInChars(Ty);
294   if (SizeInChars.isZero()) {
295     // getTypeSizeInChars() returns 0 for a VLA.
296     while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) {
297       VlaSizePair VlaSize = getVLASize(VAT);
298       Ty = VlaSize.Type;
299       Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts)
300                   : VlaSize.NumElts;
301     }
302     SizeInChars = C.getTypeSizeInChars(Ty);
303     if (SizeInChars.isZero())
304       return llvm::ConstantInt::get(SizeTy, /*V=*/0);
305     return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
306   }
307   return CGM.getSize(SizeInChars);
308 }
309 
310 void CodeGenFunction::GenerateOpenMPCapturedVars(
311     const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
312   const RecordDecl *RD = S.getCapturedRecordDecl();
313   auto CurField = RD->field_begin();
314   auto CurCap = S.captures().begin();
315   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
316                                                  E = S.capture_init_end();
317        I != E; ++I, ++CurField, ++CurCap) {
318     if (CurField->hasCapturedVLAType()) {
319       const VariableArrayType *VAT = CurField->getCapturedVLAType();
320       llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()];
321       CapturedVars.push_back(Val);
322     } else if (CurCap->capturesThis()) {
323       CapturedVars.push_back(CXXThisValue);
324     } else if (CurCap->capturesVariableByCopy()) {
325       llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation());
326 
327       // If the field is not a pointer, we need to save the actual value
328       // and load it as a void pointer.
329       if (!CurField->getType()->isAnyPointerType()) {
330         ASTContext &Ctx = getContext();
331         Address DstAddr = CreateMemTemp(
332             Ctx.getUIntPtrType(),
333             Twine(CurCap->getCapturedVar()->getName(), ".casted"));
334         LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType());
335 
336         llvm::Value *SrcAddrVal = EmitScalarConversion(
337             DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()),
338             Ctx.getPointerType(CurField->getType()), CurCap->getLocation());
339         LValue SrcLV =
340             MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType());
341 
342         // Store the value using the source type pointer.
343         EmitStoreThroughLValue(RValue::get(CV), SrcLV);
344 
345         // Load the value using the destination type pointer.
346         CV = EmitLoadOfScalar(DstLV, CurCap->getLocation());
347       }
348       CapturedVars.push_back(CV);
349     } else {
350       assert(CurCap->capturesVariable() && "Expected capture by reference.");
351       CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer());
352     }
353   }
354 }
355 
356 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc,
357                                     QualType DstType, StringRef Name,
358                                     LValue AddrLV) {
359   ASTContext &Ctx = CGF.getContext();
360 
361   llvm::Value *CastedPtr = CGF.EmitScalarConversion(
362       AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(),
363       Ctx.getPointerType(DstType), Loc);
364   Address TmpAddr =
365       CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
366           .getAddress(CGF);
367   return TmpAddr;
368 }
369 
370 static QualType getCanonicalParamType(ASTContext &C, QualType T) {
371   if (T->isLValueReferenceType())
372     return C.getLValueReferenceType(
373         getCanonicalParamType(C, T.getNonReferenceType()),
374         /*SpelledAsLValue=*/false);
375   if (T->isPointerType())
376     return C.getPointerType(getCanonicalParamType(C, T->getPointeeType()));
377   if (const ArrayType *A = T->getAsArrayTypeUnsafe()) {
378     if (const auto *VLA = dyn_cast<VariableArrayType>(A))
379       return getCanonicalParamType(C, VLA->getElementType());
380     if (!A->isVariablyModifiedType())
381       return C.getCanonicalType(T);
382   }
383   return C.getCanonicalParamType(T);
384 }
385 
386 namespace {
387 /// Contains required data for proper outlined function codegen.
388 struct FunctionOptions {
389   /// Captured statement for which the function is generated.
390   const CapturedStmt *S = nullptr;
391   /// true if cast to/from  UIntPtr is required for variables captured by
392   /// value.
393   const bool UIntPtrCastRequired = true;
394   /// true if only casted arguments must be registered as local args or VLA
395   /// sizes.
396   const bool RegisterCastedArgsOnly = false;
397   /// Name of the generated function.
398   const StringRef FunctionName;
399   /// Location of the non-debug version of the outlined function.
400   SourceLocation Loc;
401   explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired,
402                            bool RegisterCastedArgsOnly, StringRef FunctionName,
403                            SourceLocation Loc)
404       : S(S), UIntPtrCastRequired(UIntPtrCastRequired),
405         RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly),
406         FunctionName(FunctionName), Loc(Loc) {}
407 };
408 } // namespace
409 
410 static llvm::Function *emitOutlinedFunctionPrologue(
411     CodeGenFunction &CGF, FunctionArgList &Args,
412     llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>>
413         &LocalAddrs,
414     llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>>
415         &VLASizes,
416     llvm::Value *&CXXThisValue, const FunctionOptions &FO) {
417   const CapturedDecl *CD = FO.S->getCapturedDecl();
418   const RecordDecl *RD = FO.S->getCapturedRecordDecl();
419   assert(CD->hasBody() && "missing CapturedDecl body");
420 
421   CXXThisValue = nullptr;
422   // Build the argument list.
423   CodeGenModule &CGM = CGF.CGM;
424   ASTContext &Ctx = CGM.getContext();
425   FunctionArgList TargetArgs;
426   Args.append(CD->param_begin(),
427               std::next(CD->param_begin(), CD->getContextParamPosition()));
428   TargetArgs.append(
429       CD->param_begin(),
430       std::next(CD->param_begin(), CD->getContextParamPosition()));
431   auto I = FO.S->captures().begin();
432   FunctionDecl *DebugFunctionDecl = nullptr;
433   if (!FO.UIntPtrCastRequired) {
434     FunctionProtoType::ExtProtoInfo EPI;
435     QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI);
436     DebugFunctionDecl = FunctionDecl::Create(
437         Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(),
438         SourceLocation(), DeclarationName(), FunctionTy,
439         Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static,
440         /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false);
441   }
442   for (const FieldDecl *FD : RD->fields()) {
443     QualType ArgType = FD->getType();
444     IdentifierInfo *II = nullptr;
445     VarDecl *CapVar = nullptr;
446 
447     // If this is a capture by copy and the type is not a pointer, the outlined
448     // function argument type should be uintptr and the value properly casted to
449     // uintptr. This is necessary given that the runtime library is only able to
450     // deal with pointers. We can pass in the same way the VLA type sizes to the
451     // outlined function.
452     if (FO.UIntPtrCastRequired &&
453         ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
454          I->capturesVariableArrayType()))
455       ArgType = Ctx.getUIntPtrType();
456 
457     if (I->capturesVariable() || I->capturesVariableByCopy()) {
458       CapVar = I->getCapturedVar();
459       II = CapVar->getIdentifier();
460     } else if (I->capturesThis()) {
461       II = &Ctx.Idents.get("this");
462     } else {
463       assert(I->capturesVariableArrayType());
464       II = &Ctx.Idents.get("vla");
465     }
466     if (ArgType->isVariablyModifiedType())
467       ArgType = getCanonicalParamType(Ctx, ArgType);
468     VarDecl *Arg;
469     if (DebugFunctionDecl && (CapVar || I->capturesThis())) {
470       Arg = ParmVarDecl::Create(
471           Ctx, DebugFunctionDecl,
472           CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(),
473           CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType,
474           /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
475     } else {
476       Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(),
477                                       II, ArgType, ImplicitParamDecl::Other);
478     }
479     Args.emplace_back(Arg);
480     // Do not cast arguments if we emit function with non-original types.
481     TargetArgs.emplace_back(
482         FO.UIntPtrCastRequired
483             ? Arg
484             : CGM.getOpenMPRuntime().translateParameter(FD, Arg));
485     ++I;
486   }
487   Args.append(
488       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
489       CD->param_end());
490   TargetArgs.append(
491       std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
492       CD->param_end());
493 
494   // Create the function declaration.
495   const CGFunctionInfo &FuncInfo =
496       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs);
497   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
498 
499   auto *F =
500       llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
501                              FO.FunctionName, &CGM.getModule());
502   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
503   if (CD->isNothrow())
504     F->setDoesNotThrow();
505   F->setDoesNotRecurse();
506 
507   // Generate the function.
508   CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs,
509                     FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(),
510                     FO.UIntPtrCastRequired ? FO.Loc
511                                            : CD->getBody()->getBeginLoc());
512   unsigned Cnt = CD->getContextParamPosition();
513   I = FO.S->captures().begin();
514   for (const FieldDecl *FD : RD->fields()) {
515     // Do not map arguments if we emit function with non-original types.
516     Address LocalAddr(Address::invalid());
517     if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) {
518       LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt],
519                                                              TargetArgs[Cnt]);
520     } else {
521       LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]);
522     }
523     // If we are capturing a pointer by copy we don't need to do anything, just
524     // use the value that we get from the arguments.
525     if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
526       const VarDecl *CurVD = I->getCapturedVar();
527       if (!FO.RegisterCastedArgsOnly)
528         LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}});
529       ++Cnt;
530       ++I;
531       continue;
532     }
533 
534     LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(),
535                                         AlignmentSource::Decl);
536     if (FD->hasCapturedVLAType()) {
537       if (FO.UIntPtrCastRequired) {
538         ArgLVal = CGF.MakeAddrLValue(
539             castValueFromUintptr(CGF, I->getLocation(), FD->getType(),
540                                  Args[Cnt]->getName(), ArgLVal),
541             FD->getType(), AlignmentSource::Decl);
542       }
543       llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
544       const VariableArrayType *VAT = FD->getCapturedVLAType();
545       VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg);
546     } else if (I->capturesVariable()) {
547       const VarDecl *Var = I->getCapturedVar();
548       QualType VarTy = Var->getType();
549       Address ArgAddr = ArgLVal.getAddress(CGF);
550       if (ArgLVal.getType()->isLValueReferenceType()) {
551         ArgAddr = CGF.EmitLoadOfReference(ArgLVal);
552       } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) {
553         assert(ArgLVal.getType()->isPointerType());
554         ArgAddr = CGF.EmitLoadOfPointer(
555             ArgAddr, ArgLVal.getType()->castAs<PointerType>());
556       }
557       if (!FO.RegisterCastedArgsOnly) {
558         LocalAddrs.insert(
559             {Args[Cnt],
560              {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}});
561       }
562     } else if (I->capturesVariableByCopy()) {
563       assert(!FD->getType()->isAnyPointerType() &&
564              "Not expecting a captured pointer.");
565       const VarDecl *Var = I->getCapturedVar();
566       LocalAddrs.insert({Args[Cnt],
567                          {Var, FO.UIntPtrCastRequired
568                                    ? castValueFromUintptr(
569                                          CGF, I->getLocation(), FD->getType(),
570                                          Args[Cnt]->getName(), ArgLVal)
571                                    : ArgLVal.getAddress(CGF)}});
572     } else {
573       // If 'this' is captured, load it into CXXThisValue.
574       assert(I->capturesThis());
575       CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation());
576       LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}});
577     }
578     ++Cnt;
579     ++I;
580   }
581 
582   return F;
583 }
584 
585 llvm::Function *
586 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
587                                                     SourceLocation Loc) {
588   assert(
589       CapturedStmtInfo &&
590       "CapturedStmtInfo should be set when generating the captured function");
591   const CapturedDecl *CD = S.getCapturedDecl();
592   // Build the argument list.
593   bool NeedWrapperFunction =
594       getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo();
595   FunctionArgList Args;
596   llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs;
597   llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes;
598   SmallString<256> Buffer;
599   llvm::raw_svector_ostream Out(Buffer);
600   Out << CapturedStmtInfo->getHelperName();
601   if (NeedWrapperFunction)
602     Out << "_debug__";
603   FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false,
604                      Out.str(), Loc);
605   llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs,
606                                                    VLASizes, CXXThisValue, FO);
607   CodeGenFunction::OMPPrivateScope LocalScope(*this);
608   for (const auto &LocalAddrPair : LocalAddrs) {
609     if (LocalAddrPair.second.first) {
610       LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() {
611         return LocalAddrPair.second.second;
612       });
613     }
614   }
615   (void)LocalScope.Privatize();
616   for (const auto &VLASizePair : VLASizes)
617     VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second;
618   PGO.assignRegionCounters(GlobalDecl(CD), F);
619   CapturedStmtInfo->EmitBody(*this, CD->getBody());
620   (void)LocalScope.ForceCleanup();
621   FinishFunction(CD->getBodyRBrace());
622   if (!NeedWrapperFunction)
623     return F;
624 
625   FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true,
626                             /*RegisterCastedArgsOnly=*/true,
627                             CapturedStmtInfo->getHelperName(), Loc);
628   CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true);
629   WrapperCGF.CapturedStmtInfo = CapturedStmtInfo;
630   Args.clear();
631   LocalAddrs.clear();
632   VLASizes.clear();
633   llvm::Function *WrapperF =
634       emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes,
635                                    WrapperCGF.CXXThisValue, WrapperFO);
636   llvm::SmallVector<llvm::Value *, 4> CallArgs;
637   auto *PI = F->arg_begin();
638   for (const auto *Arg : Args) {
639     llvm::Value *CallArg;
640     auto I = LocalAddrs.find(Arg);
641     if (I != LocalAddrs.end()) {
642       LValue LV = WrapperCGF.MakeAddrLValue(
643           I->second.second,
644           I->second.first ? I->second.first->getType() : Arg->getType(),
645           AlignmentSource::Decl);
646       if (LV.getType()->isAnyComplexType())
647         LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
648             LV.getAddress(WrapperCGF),
649             PI->getType()->getPointerTo(
650                 LV.getAddress(WrapperCGF).getAddressSpace())));
651       CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
652     } else {
653       auto EI = VLASizes.find(Arg);
654       if (EI != VLASizes.end()) {
655         CallArg = EI->second.second;
656       } else {
657         LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg),
658                                               Arg->getType(),
659                                               AlignmentSource::Decl);
660         CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc());
661       }
662     }
663     CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType()));
664     ++PI;
665   }
666   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs);
667   WrapperCGF.FinishFunction();
668   return WrapperF;
669 }
670 
671 //===----------------------------------------------------------------------===//
672 //                              OpenMP Directive Emission
673 //===----------------------------------------------------------------------===//
674 void CodeGenFunction::EmitOMPAggregateAssign(
675     Address DestAddr, Address SrcAddr, QualType OriginalType,
676     const llvm::function_ref<void(Address, Address)> CopyGen) {
677   // Perform element-by-element initialization.
678   QualType ElementTy;
679 
680   // Drill down to the base element type on both arrays.
681   const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe();
682   llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
683   SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
684 
685   llvm::Value *SrcBegin = SrcAddr.getPointer();
686   llvm::Value *DestBegin = DestAddr.getPointer();
687   // Cast from pointer to array type to pointer to single element.
688   llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements);
689   // The basic structure here is a while-do loop.
690   llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body");
691   llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done");
692   llvm::Value *IsEmpty =
693       Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
694   Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
695 
696   // Enter the loop body, making that address the current address.
697   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
698   EmitBlock(BodyBB);
699 
700   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
701 
702   llvm::PHINode *SrcElementPHI =
703     Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
704   SrcElementPHI->addIncoming(SrcBegin, EntryBB);
705   Address SrcElementCurrent =
706       Address(SrcElementPHI,
707               SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
708 
709   llvm::PHINode *DestElementPHI =
710     Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
711   DestElementPHI->addIncoming(DestBegin, EntryBB);
712   Address DestElementCurrent =
713     Address(DestElementPHI,
714             DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
715 
716   // Emit copy.
717   CopyGen(DestElementCurrent, SrcElementCurrent);
718 
719   // Shift the address forward by one element.
720   llvm::Value *DestElementNext = Builder.CreateConstGEP1_32(
721       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
722   llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32(
723       SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
724   // Check whether we've reached the end.
725   llvm::Value *Done =
726       Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
727   Builder.CreateCondBr(Done, DoneBB, BodyBB);
728   DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
729   SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
730 
731   // Done.
732   EmitBlock(DoneBB, /*IsFinished=*/true);
733 }
734 
735 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
736                                   Address SrcAddr, const VarDecl *DestVD,
737                                   const VarDecl *SrcVD, const Expr *Copy) {
738   if (OriginalType->isArrayType()) {
739     const auto *BO = dyn_cast<BinaryOperator>(Copy);
740     if (BO && BO->getOpcode() == BO_Assign) {
741       // Perform simple memcpy for simple copying.
742       LValue Dest = MakeAddrLValue(DestAddr, OriginalType);
743       LValue Src = MakeAddrLValue(SrcAddr, OriginalType);
744       EmitAggregateAssign(Dest, Src, OriginalType);
745     } else {
746       // For arrays with complex element types perform element by element
747       // copying.
748       EmitOMPAggregateAssign(
749           DestAddr, SrcAddr, OriginalType,
750           [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
751             // Working with the single array element, so have to remap
752             // destination and source variables to corresponding array
753             // elements.
754             CodeGenFunction::OMPPrivateScope Remap(*this);
755             Remap.addPrivate(DestVD, [DestElement]() { return DestElement; });
756             Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; });
757             (void)Remap.Privatize();
758             EmitIgnoredExpr(Copy);
759           });
760     }
761   } else {
762     // Remap pseudo source variable to private copy.
763     CodeGenFunction::OMPPrivateScope Remap(*this);
764     Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; });
765     Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; });
766     (void)Remap.Privatize();
767     // Emit copying of the whole variable.
768     EmitIgnoredExpr(Copy);
769   }
770 }
771 
772 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
773                                                 OMPPrivateScope &PrivateScope) {
774   if (!HaveInsertPoint())
775     return false;
776   bool DeviceConstTarget =
777       getLangOpts().OpenMPIsDevice &&
778       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
779   bool FirstprivateIsLastprivate = false;
780   llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates;
781   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
782     for (const auto *D : C->varlists())
783       Lastprivates.try_emplace(
784           cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(),
785           C->getKind());
786   }
787   llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
788   llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
789   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
790   // Force emission of the firstprivate copy if the directive does not emit
791   // outlined function, like omp for, omp simd, omp distribute etc.
792   bool MustEmitFirstprivateCopy =
793       CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown;
794   for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
795     const auto *IRef = C->varlist_begin();
796     const auto *InitsRef = C->inits().begin();
797     for (const Expr *IInit : C->private_copies()) {
798       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
799       bool ThisFirstprivateIsLastprivate =
800           Lastprivates.count(OrigVD->getCanonicalDecl()) > 0;
801       const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD);
802       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
803       if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD &&
804           !FD->getType()->isReferenceType() &&
805           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
806         EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl());
807         ++IRef;
808         ++InitsRef;
809         continue;
810       }
811       // Do not emit copy for firstprivate constant variables in target regions,
812       // captured by reference.
813       if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) &&
814           FD && FD->getType()->isReferenceType() &&
815           (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) {
816         (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this,
817                                                                     OrigVD);
818         ++IRef;
819         ++InitsRef;
820         continue;
821       }
822       FirstprivateIsLastprivate =
823           FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate;
824       if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
825         const auto *VDInit =
826             cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
827         bool IsRegistered;
828         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
829                         /*RefersToEnclosingVariableOrCapture=*/FD != nullptr,
830                         (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
831         LValue OriginalLVal;
832         if (!FD) {
833           // Check if the firstprivate variable is just a constant value.
834           ConstantEmission CE = tryEmitAsConstant(&DRE);
835           if (CE && !CE.isReference()) {
836             // Constant value, no need to create a copy.
837             ++IRef;
838             ++InitsRef;
839             continue;
840           }
841           if (CE && CE.isReference()) {
842             OriginalLVal = CE.getReferenceLValue(*this, &DRE);
843           } else {
844             assert(!CE && "Expected non-constant firstprivate.");
845             OriginalLVal = EmitLValue(&DRE);
846           }
847         } else {
848           OriginalLVal = EmitLValue(&DRE);
849         }
850         QualType Type = VD->getType();
851         if (Type->isArrayType()) {
852           // Emit VarDecl with copy init for arrays.
853           // Get the address of the original variable captured in current
854           // captured region.
855           IsRegistered = PrivateScope.addPrivate(
856               OrigVD, [this, VD, Type, OriginalLVal, VDInit]() {
857                 AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
858                 const Expr *Init = VD->getInit();
859                 if (!isa<CXXConstructExpr>(Init) ||
860                     isTrivialInitializer(Init)) {
861                   // Perform simple memcpy.
862                   LValue Dest =
863                       MakeAddrLValue(Emission.getAllocatedAddress(), Type);
864                   EmitAggregateAssign(Dest, OriginalLVal, Type);
865                 } else {
866                   EmitOMPAggregateAssign(
867                       Emission.getAllocatedAddress(),
868                       OriginalLVal.getAddress(*this), Type,
869                       [this, VDInit, Init](Address DestElement,
870                                            Address SrcElement) {
871                         // Clean up any temporaries needed by the
872                         // initialization.
873                         RunCleanupsScope InitScope(*this);
874                         // Emit initialization for single element.
875                         setAddrOfLocalVar(VDInit, SrcElement);
876                         EmitAnyExprToMem(Init, DestElement,
877                                          Init->getType().getQualifiers(),
878                                          /*IsInitializer*/ false);
879                         LocalDeclMap.erase(VDInit);
880                       });
881                 }
882                 EmitAutoVarCleanups(Emission);
883                 return Emission.getAllocatedAddress();
884               });
885         } else {
886           Address OriginalAddr = OriginalLVal.getAddress(*this);
887           IsRegistered =
888               PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD,
889                                                ThisFirstprivateIsLastprivate,
890                                                OrigVD, &Lastprivates, IRef]() {
891                 // Emit private VarDecl with copy init.
892                 // Remap temp VDInit variable to the address of the original
893                 // variable (for proper handling of captured global variables).
894                 setAddrOfLocalVar(VDInit, OriginalAddr);
895                 EmitDecl(*VD);
896                 LocalDeclMap.erase(VDInit);
897                 if (ThisFirstprivateIsLastprivate &&
898                     Lastprivates[OrigVD->getCanonicalDecl()] ==
899                         OMPC_LASTPRIVATE_conditional) {
900                   // Create/init special variable for lastprivate conditionals.
901                   Address VDAddr =
902                       CGM.getOpenMPRuntime().emitLastprivateConditionalInit(
903                           *this, OrigVD);
904                   llvm::Value *V = EmitLoadOfScalar(
905                       MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(),
906                                      AlignmentSource::Decl),
907                       (*IRef)->getExprLoc());
908                   EmitStoreOfScalar(V,
909                                     MakeAddrLValue(VDAddr, (*IRef)->getType(),
910                                                    AlignmentSource::Decl));
911                   LocalDeclMap.erase(VD);
912                   setAddrOfLocalVar(VD, VDAddr);
913                   return VDAddr;
914                 }
915                 return GetAddrOfLocalVar(VD);
916               });
917         }
918         assert(IsRegistered &&
919                "firstprivate var already registered as private");
920         // Silence the warning about unused variable.
921         (void)IsRegistered;
922       }
923       ++IRef;
924       ++InitsRef;
925     }
926   }
927   return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
928 }
929 
930 void CodeGenFunction::EmitOMPPrivateClause(
931     const OMPExecutableDirective &D,
932     CodeGenFunction::OMPPrivateScope &PrivateScope) {
933   if (!HaveInsertPoint())
934     return;
935   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
936   for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
937     auto IRef = C->varlist_begin();
938     for (const Expr *IInit : C->private_copies()) {
939       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
940       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
941         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
942         bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() {
943           // Emit private VarDecl with copy init.
944           EmitDecl(*VD);
945           return GetAddrOfLocalVar(VD);
946         });
947         assert(IsRegistered && "private var already registered as private");
948         // Silence the warning about unused variable.
949         (void)IsRegistered;
950       }
951       ++IRef;
952     }
953   }
954 }
955 
956 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
957   if (!HaveInsertPoint())
958     return false;
959   // threadprivate_var1 = master_threadprivate_var1;
960   // operator=(threadprivate_var2, master_threadprivate_var2);
961   // ...
962   // __kmpc_barrier(&loc, global_tid);
963   llvm::DenseSet<const VarDecl *> CopiedVars;
964   llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
965   for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
966     auto IRef = C->varlist_begin();
967     auto ISrcRef = C->source_exprs().begin();
968     auto IDestRef = C->destination_exprs().begin();
969     for (const Expr *AssignOp : C->assignment_ops()) {
970       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
971       QualType Type = VD->getType();
972       if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
973         // Get the address of the master variable. If we are emitting code with
974         // TLS support, the address is passed from the master as field in the
975         // captured declaration.
976         Address MasterAddr = Address::invalid();
977         if (getLangOpts().OpenMPUseTLS &&
978             getContext().getTargetInfo().isTLSSupported()) {
979           assert(CapturedStmtInfo->lookup(VD) &&
980                  "Copyin threadprivates should have been captured!");
981           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true,
982                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
983           MasterAddr = EmitLValue(&DRE).getAddress(*this);
984           LocalDeclMap.erase(VD);
985         } else {
986           MasterAddr =
987             Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
988                                         : CGM.GetAddrOfGlobal(VD),
989                     getContext().getDeclAlign(VD));
990         }
991         // Get the address of the threadprivate variable.
992         Address PrivateAddr = EmitLValue(*IRef).getAddress(*this);
993         if (CopiedVars.size() == 1) {
994           // At first check if current thread is a master thread. If it is, no
995           // need to copy data.
996           CopyBegin = createBasicBlock("copyin.not.master");
997           CopyEnd = createBasicBlock("copyin.not.master.end");
998           Builder.CreateCondBr(
999               Builder.CreateICmpNE(
1000                   Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
1001                   Builder.CreatePtrToInt(PrivateAddr.getPointer(),
1002                                          CGM.IntPtrTy)),
1003               CopyBegin, CopyEnd);
1004           EmitBlock(CopyBegin);
1005         }
1006         const auto *SrcVD =
1007             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1008         const auto *DestVD =
1009             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1010         EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
1011       }
1012       ++IRef;
1013       ++ISrcRef;
1014       ++IDestRef;
1015     }
1016   }
1017   if (CopyEnd) {
1018     // Exit out of copying procedure for non-master thread.
1019     EmitBlock(CopyEnd, /*IsFinished=*/true);
1020     return true;
1021   }
1022   return false;
1023 }
1024 
1025 bool CodeGenFunction::EmitOMPLastprivateClauseInit(
1026     const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
1027   if (!HaveInsertPoint())
1028     return false;
1029   bool HasAtLeastOneLastprivate = false;
1030   llvm::DenseSet<const VarDecl *> SIMDLCVs;
1031   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
1032     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
1033     for (const Expr *C : LoopDirective->counters()) {
1034       SIMDLCVs.insert(
1035           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
1036     }
1037   }
1038   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1039   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1040     HasAtLeastOneLastprivate = true;
1041     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
1042         !getLangOpts().OpenMPSimd)
1043       break;
1044     const auto *IRef = C->varlist_begin();
1045     const auto *IDestRef = C->destination_exprs().begin();
1046     for (const Expr *IInit : C->private_copies()) {
1047       // Keep the address of the original variable for future update at the end
1048       // of the loop.
1049       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1050       // Taskloops do not require additional initialization, it is done in
1051       // runtime support library.
1052       if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
1053         const auto *DestVD =
1054             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1055         PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() {
1056           DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
1057                           /*RefersToEnclosingVariableOrCapture=*/
1058                               CapturedStmtInfo->lookup(OrigVD) != nullptr,
1059                           (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
1060           return EmitLValue(&DRE).getAddress(*this);
1061         });
1062         // Check if the variable is also a firstprivate: in this case IInit is
1063         // not generated. Initialization of this variable will happen in codegen
1064         // for 'firstprivate' clause.
1065         if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) {
1066           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
1067           bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C,
1068                                                                OrigVD]() {
1069             if (C->getKind() == OMPC_LASTPRIVATE_conditional) {
1070               Address VDAddr =
1071                   CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this,
1072                                                                         OrigVD);
1073               setAddrOfLocalVar(VD, VDAddr);
1074               return VDAddr;
1075             }
1076             // Emit private VarDecl with copy init.
1077             EmitDecl(*VD);
1078             return GetAddrOfLocalVar(VD);
1079           });
1080           assert(IsRegistered &&
1081                  "lastprivate var already registered as private");
1082           (void)IsRegistered;
1083         }
1084       }
1085       ++IRef;
1086       ++IDestRef;
1087     }
1088   }
1089   return HasAtLeastOneLastprivate;
1090 }
1091 
1092 void CodeGenFunction::EmitOMPLastprivateClauseFinal(
1093     const OMPExecutableDirective &D, bool NoFinals,
1094     llvm::Value *IsLastIterCond) {
1095   if (!HaveInsertPoint())
1096     return;
1097   // Emit following code:
1098   // if (<IsLastIterCond>) {
1099   //   orig_var1 = private_orig_var1;
1100   //   ...
1101   //   orig_varn = private_orig_varn;
1102   // }
1103   llvm::BasicBlock *ThenBB = nullptr;
1104   llvm::BasicBlock *DoneBB = nullptr;
1105   if (IsLastIterCond) {
1106     // Emit implicit barrier if at least one lastprivate conditional is found
1107     // and this is not a simd mode.
1108     if (!getLangOpts().OpenMPSimd &&
1109         llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(),
1110                      [](const OMPLastprivateClause *C) {
1111                        return C->getKind() == OMPC_LASTPRIVATE_conditional;
1112                      })) {
1113       CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(),
1114                                              OMPD_unknown,
1115                                              /*EmitChecks=*/false,
1116                                              /*ForceSimpleCall=*/true);
1117     }
1118     ThenBB = createBasicBlock(".omp.lastprivate.then");
1119     DoneBB = createBasicBlock(".omp.lastprivate.done");
1120     Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
1121     EmitBlock(ThenBB);
1122   }
1123   llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
1124   llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates;
1125   if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
1126     auto IC = LoopDirective->counters().begin();
1127     for (const Expr *F : LoopDirective->finals()) {
1128       const auto *D =
1129           cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl();
1130       if (NoFinals)
1131         AlreadyEmittedVars.insert(D);
1132       else
1133         LoopCountersAndUpdates[D] = F;
1134       ++IC;
1135     }
1136   }
1137   for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
1138     auto IRef = C->varlist_begin();
1139     auto ISrcRef = C->source_exprs().begin();
1140     auto IDestRef = C->destination_exprs().begin();
1141     for (const Expr *AssignOp : C->assignment_ops()) {
1142       const auto *PrivateVD =
1143           cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
1144       QualType Type = PrivateVD->getType();
1145       const auto *CanonicalVD = PrivateVD->getCanonicalDecl();
1146       if (AlreadyEmittedVars.insert(CanonicalVD).second) {
1147         // If lastprivate variable is a loop control variable for loop-based
1148         // directive, update its value before copyin back to original
1149         // variable.
1150         if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
1151           EmitIgnoredExpr(FinalExpr);
1152         const auto *SrcVD =
1153             cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
1154         const auto *DestVD =
1155             cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
1156         // Get the address of the private variable.
1157         Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
1158         if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>())
1159           PrivateAddr =
1160               Address(Builder.CreateLoad(PrivateAddr),
1161                       CGM.getNaturalTypeAlignment(RefTy->getPointeeType()));
1162         // Store the last value to the private copy in the last iteration.
1163         if (C->getKind() == OMPC_LASTPRIVATE_conditional)
1164           CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate(
1165               *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD,
1166               (*IRef)->getExprLoc());
1167         // Get the address of the original variable.
1168         Address OriginalAddr = GetAddrOfLocalVar(DestVD);
1169         EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
1170       }
1171       ++IRef;
1172       ++ISrcRef;
1173       ++IDestRef;
1174     }
1175     if (const Expr *PostUpdate = C->getPostUpdateExpr())
1176       EmitIgnoredExpr(PostUpdate);
1177   }
1178   if (IsLastIterCond)
1179     EmitBlock(DoneBB, /*IsFinished=*/true);
1180 }
1181 
1182 void CodeGenFunction::EmitOMPReductionClauseInit(
1183     const OMPExecutableDirective &D,
1184     CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) {
1185   if (!HaveInsertPoint())
1186     return;
1187   SmallVector<const Expr *, 4> Shareds;
1188   SmallVector<const Expr *, 4> Privates;
1189   SmallVector<const Expr *, 4> ReductionOps;
1190   SmallVector<const Expr *, 4> LHSs;
1191   SmallVector<const Expr *, 4> RHSs;
1192   OMPTaskDataTy Data;
1193   SmallVector<const Expr *, 4> TaskLHSs;
1194   SmallVector<const Expr *, 4> TaskRHSs;
1195   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1196     if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan))
1197       continue;
1198     Shareds.append(C->varlist_begin(), C->varlist_end());
1199     Privates.append(C->privates().begin(), C->privates().end());
1200     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1201     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1202     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1203     if (C->getModifier() == OMPC_REDUCTION_task) {
1204       Data.ReductionVars.append(C->privates().begin(), C->privates().end());
1205       Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
1206       Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
1207       Data.ReductionOps.append(C->reduction_ops().begin(),
1208                                C->reduction_ops().end());
1209       TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1210       TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1211     }
1212   }
1213   ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps);
1214   unsigned Count = 0;
1215   auto *ILHS = LHSs.begin();
1216   auto *IRHS = RHSs.begin();
1217   auto *IPriv = Privates.begin();
1218   for (const Expr *IRef : Shareds) {
1219     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
1220     // Emit private VarDecl with reduction init.
1221     RedCG.emitSharedOrigLValue(*this, Count);
1222     RedCG.emitAggregateType(*this, Count);
1223     AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD);
1224     RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(),
1225                              RedCG.getSharedLValue(Count),
1226                              [&Emission](CodeGenFunction &CGF) {
1227                                CGF.EmitAutoVarInit(Emission);
1228                                return true;
1229                              });
1230     EmitAutoVarCleanups(Emission);
1231     Address BaseAddr = RedCG.adjustPrivateAddress(
1232         *this, Count, Emission.getAllocatedAddress());
1233     bool IsRegistered = PrivateScope.addPrivate(
1234         RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; });
1235     assert(IsRegistered && "private var already registered as private");
1236     // Silence the warning about unused variable.
1237     (void)IsRegistered;
1238 
1239     const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
1240     const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
1241     QualType Type = PrivateVD->getType();
1242     bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef);
1243     if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) {
1244       // Store the address of the original variable associated with the LHS
1245       // implicit variable.
1246       PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
1247         return RedCG.getSharedLValue(Count).getAddress(*this);
1248       });
1249       PrivateScope.addPrivate(
1250           RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); });
1251     } else if ((isaOMPArraySectionExpr && Type->isScalarType()) ||
1252                isa<ArraySubscriptExpr>(IRef)) {
1253       // Store the address of the original variable associated with the LHS
1254       // implicit variable.
1255       PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() {
1256         return RedCG.getSharedLValue(Count).getAddress(*this);
1257       });
1258       PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() {
1259         return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD),
1260                                             ConvertTypeForMem(RHSVD->getType()),
1261                                             "rhs.begin");
1262       });
1263     } else {
1264       QualType Type = PrivateVD->getType();
1265       bool IsArray = getContext().getAsArrayType(Type) != nullptr;
1266       Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this);
1267       // Store the address of the original variable associated with the LHS
1268       // implicit variable.
1269       if (IsArray) {
1270         OriginalAddr = Builder.CreateElementBitCast(
1271             OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin");
1272       }
1273       PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; });
1274       PrivateScope.addPrivate(
1275           RHSVD, [this, PrivateVD, RHSVD, IsArray]() {
1276             return IsArray
1277                        ? Builder.CreateElementBitCast(
1278                              GetAddrOfLocalVar(PrivateVD),
1279                              ConvertTypeForMem(RHSVD->getType()), "rhs.begin")
1280                        : GetAddrOfLocalVar(PrivateVD);
1281           });
1282     }
1283     ++ILHS;
1284     ++IRHS;
1285     ++IPriv;
1286     ++Count;
1287   }
1288   if (!Data.ReductionVars.empty()) {
1289     Data.IsReductionWithTaskMod = true;
1290     Data.IsWorksharingReduction =
1291         isOpenMPWorksharingDirective(D.getDirectiveKind());
1292     llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit(
1293         *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data);
1294     const Expr *TaskRedRef = nullptr;
1295     switch (D.getDirectiveKind()) {
1296     case OMPD_parallel:
1297       TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr();
1298       break;
1299     case OMPD_for:
1300       TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr();
1301       break;
1302     case OMPD_sections:
1303       TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr();
1304       break;
1305     case OMPD_parallel_for:
1306       TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr();
1307       break;
1308     case OMPD_parallel_master:
1309       TaskRedRef =
1310           cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr();
1311       break;
1312     case OMPD_parallel_sections:
1313       TaskRedRef =
1314           cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr();
1315       break;
1316     case OMPD_target_parallel:
1317       TaskRedRef =
1318           cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr();
1319       break;
1320     case OMPD_target_parallel_for:
1321       TaskRedRef =
1322           cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr();
1323       break;
1324     case OMPD_distribute_parallel_for:
1325       TaskRedRef =
1326           cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr();
1327       break;
1328     case OMPD_teams_distribute_parallel_for:
1329       TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D)
1330                        .getTaskReductionRefExpr();
1331       break;
1332     case OMPD_target_teams_distribute_parallel_for:
1333       TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D)
1334                        .getTaskReductionRefExpr();
1335       break;
1336     case OMPD_simd:
1337     case OMPD_for_simd:
1338     case OMPD_section:
1339     case OMPD_single:
1340     case OMPD_master:
1341     case OMPD_critical:
1342     case OMPD_parallel_for_simd:
1343     case OMPD_task:
1344     case OMPD_taskyield:
1345     case OMPD_barrier:
1346     case OMPD_taskwait:
1347     case OMPD_taskgroup:
1348     case OMPD_flush:
1349     case OMPD_depobj:
1350     case OMPD_scan:
1351     case OMPD_ordered:
1352     case OMPD_atomic:
1353     case OMPD_teams:
1354     case OMPD_target:
1355     case OMPD_cancellation_point:
1356     case OMPD_cancel:
1357     case OMPD_target_data:
1358     case OMPD_target_enter_data:
1359     case OMPD_target_exit_data:
1360     case OMPD_taskloop:
1361     case OMPD_taskloop_simd:
1362     case OMPD_master_taskloop:
1363     case OMPD_master_taskloop_simd:
1364     case OMPD_parallel_master_taskloop:
1365     case OMPD_parallel_master_taskloop_simd:
1366     case OMPD_distribute:
1367     case OMPD_target_update:
1368     case OMPD_distribute_parallel_for_simd:
1369     case OMPD_distribute_simd:
1370     case OMPD_target_parallel_for_simd:
1371     case OMPD_target_simd:
1372     case OMPD_teams_distribute:
1373     case OMPD_teams_distribute_simd:
1374     case OMPD_teams_distribute_parallel_for_simd:
1375     case OMPD_target_teams:
1376     case OMPD_target_teams_distribute:
1377     case OMPD_target_teams_distribute_parallel_for_simd:
1378     case OMPD_target_teams_distribute_simd:
1379     case OMPD_declare_target:
1380     case OMPD_end_declare_target:
1381     case OMPD_threadprivate:
1382     case OMPD_allocate:
1383     case OMPD_declare_reduction:
1384     case OMPD_declare_mapper:
1385     case OMPD_declare_simd:
1386     case OMPD_requires:
1387     case OMPD_declare_variant:
1388     case OMPD_begin_declare_variant:
1389     case OMPD_end_declare_variant:
1390     case OMPD_unknown:
1391     default:
1392       llvm_unreachable("Enexpected directive with task reductions.");
1393     }
1394 
1395     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl());
1396     EmitVarDecl(*VD);
1397     EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD),
1398                       /*Volatile=*/false, TaskRedRef->getType());
1399   }
1400 }
1401 
1402 void CodeGenFunction::EmitOMPReductionClauseFinal(
1403     const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) {
1404   if (!HaveInsertPoint())
1405     return;
1406   llvm::SmallVector<const Expr *, 8> Privates;
1407   llvm::SmallVector<const Expr *, 8> LHSExprs;
1408   llvm::SmallVector<const Expr *, 8> RHSExprs;
1409   llvm::SmallVector<const Expr *, 8> ReductionOps;
1410   bool HasAtLeastOneReduction = false;
1411   bool IsReductionWithTaskMod = false;
1412   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1413     // Do not emit for inscan reductions.
1414     if (C->getModifier() == OMPC_REDUCTION_inscan)
1415       continue;
1416     HasAtLeastOneReduction = true;
1417     Privates.append(C->privates().begin(), C->privates().end());
1418     LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
1419     RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
1420     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
1421     IsReductionWithTaskMod =
1422         IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task;
1423   }
1424   if (HasAtLeastOneReduction) {
1425     if (IsReductionWithTaskMod) {
1426       CGM.getOpenMPRuntime().emitTaskReductionFini(
1427           *this, D.getBeginLoc(),
1428           isOpenMPWorksharingDirective(D.getDirectiveKind()));
1429     }
1430     bool WithNowait = D.getSingleClause<OMPNowaitClause>() ||
1431                       isOpenMPParallelDirective(D.getDirectiveKind()) ||
1432                       ReductionKind == OMPD_simd;
1433     bool SimpleReduction = ReductionKind == OMPD_simd;
1434     // Emit nowait reduction if nowait clause is present or directive is a
1435     // parallel directive (it always has implicit barrier).
1436     CGM.getOpenMPRuntime().emitReduction(
1437         *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps,
1438         {WithNowait, SimpleReduction, ReductionKind});
1439   }
1440 }
1441 
1442 static void emitPostUpdateForReductionClause(
1443     CodeGenFunction &CGF, const OMPExecutableDirective &D,
1444     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
1445   if (!CGF.HaveInsertPoint())
1446     return;
1447   llvm::BasicBlock *DoneBB = nullptr;
1448   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1449     if (const Expr *PostUpdate = C->getPostUpdateExpr()) {
1450       if (!DoneBB) {
1451         if (llvm::Value *Cond = CondGen(CGF)) {
1452           // If the first post-update expression is found, emit conditional
1453           // block if it was requested.
1454           llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu");
1455           DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done");
1456           CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB);
1457           CGF.EmitBlock(ThenBB);
1458         }
1459       }
1460       CGF.EmitIgnoredExpr(PostUpdate);
1461     }
1462   }
1463   if (DoneBB)
1464     CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
1465 }
1466 
1467 namespace {
1468 /// Codegen lambda for appending distribute lower and upper bounds to outlined
1469 /// parallel function. This is necessary for combined constructs such as
1470 /// 'distribute parallel for'
1471 typedef llvm::function_ref<void(CodeGenFunction &,
1472                                 const OMPExecutableDirective &,
1473                                 llvm::SmallVectorImpl<llvm::Value *> &)>
1474     CodeGenBoundParametersTy;
1475 } // anonymous namespace
1476 
1477 static void
1478 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF,
1479                                      const OMPExecutableDirective &S) {
1480   if (CGF.getLangOpts().OpenMP < 50)
1481     return;
1482   llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls;
1483   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
1484     for (const Expr *Ref : C->varlists()) {
1485       if (!Ref->getType()->isScalarType())
1486         continue;
1487       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1488       if (!DRE)
1489         continue;
1490       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1491       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1492     }
1493   }
1494   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
1495     for (const Expr *Ref : C->varlists()) {
1496       if (!Ref->getType()->isScalarType())
1497         continue;
1498       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1499       if (!DRE)
1500         continue;
1501       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1502       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1503     }
1504   }
1505   for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
1506     for (const Expr *Ref : C->varlists()) {
1507       if (!Ref->getType()->isScalarType())
1508         continue;
1509       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1510       if (!DRE)
1511         continue;
1512       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1513       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref);
1514     }
1515   }
1516   // Privates should ne analyzed since they are not captured at all.
1517   // Task reductions may be skipped - tasks are ignored.
1518   // Firstprivates do not return value but may be passed by reference - no need
1519   // to check for updated lastprivate conditional.
1520   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
1521     for (const Expr *Ref : C->varlists()) {
1522       if (!Ref->getType()->isScalarType())
1523         continue;
1524       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
1525       if (!DRE)
1526         continue;
1527       PrivateDecls.insert(cast<VarDecl>(DRE->getDecl()));
1528     }
1529   }
1530   CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional(
1531       CGF, S, PrivateDecls);
1532 }
1533 
1534 static void emitCommonOMPParallelDirective(
1535     CodeGenFunction &CGF, const OMPExecutableDirective &S,
1536     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1537     const CodeGenBoundParametersTy &CodeGenBoundParameters) {
1538   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1539   llvm::Function *OutlinedFn =
1540       CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
1541           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
1542   if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
1543     CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
1544     llvm::Value *NumThreads =
1545         CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
1546                            /*IgnoreResultAssign=*/true);
1547     CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
1548         CGF, NumThreads, NumThreadsClause->getBeginLoc());
1549   }
1550   if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
1551     CodeGenFunction::RunCleanupsScope ProcBindScope(CGF);
1552     CGF.CGM.getOpenMPRuntime().emitProcBindClause(
1553         CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc());
1554   }
1555   const Expr *IfCond = nullptr;
1556   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
1557     if (C->getNameModifier() == OMPD_unknown ||
1558         C->getNameModifier() == OMPD_parallel) {
1559       IfCond = C->getCondition();
1560       break;
1561     }
1562   }
1563 
1564   OMPParallelScope Scope(CGF, S);
1565   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
1566   // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk
1567   // lower and upper bounds with the pragma 'for' chunking mechanism.
1568   // The following lambda takes care of appending the lower and upper bound
1569   // parameters when necessary
1570   CodeGenBoundParameters(CGF, S, CapturedVars);
1571   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
1572   CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn,
1573                                               CapturedVars, IfCond);
1574 }
1575 
1576 static bool isAllocatableDecl(const VarDecl *VD) {
1577   const VarDecl *CVD = VD->getCanonicalDecl();
1578   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
1579     return false;
1580   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
1581   // Use the default allocation.
1582   return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc ||
1583             AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) &&
1584            !AA->getAllocator());
1585 }
1586 
1587 static void emitEmptyBoundParameters(CodeGenFunction &,
1588                                      const OMPExecutableDirective &,
1589                                      llvm::SmallVectorImpl<llvm::Value *> &) {}
1590 
1591 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable(
1592     CodeGenFunction &CGF, const VarDecl *VD) {
1593   CodeGenModule &CGM = CGF.CGM;
1594   auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1595 
1596   if (!VD)
1597     return Address::invalid();
1598   const VarDecl *CVD = VD->getCanonicalDecl();
1599   if (!isAllocatableDecl(CVD))
1600     return Address::invalid();
1601   llvm::Value *Size;
1602   CharUnits Align = CGM.getContext().getDeclAlign(CVD);
1603   if (CVD->getType()->isVariablyModifiedType()) {
1604     Size = CGF.getTypeSize(CVD->getType());
1605     // Align the size: ((size + align - 1) / align) * align
1606     Size = CGF.Builder.CreateNUWAdd(
1607         Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
1608     Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
1609     Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
1610   } else {
1611     CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
1612     Size = CGM.getSize(Sz.alignTo(Align));
1613   }
1614 
1615   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
1616   assert(AA->getAllocator() &&
1617          "Expected allocator expression for non-default allocator.");
1618   llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
1619   // According to the standard, the original allocator type is a enum (integer).
1620   // Convert to pointer type, if required.
1621   if (Allocator->getType()->isIntegerTy())
1622     Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
1623   else if (Allocator->getType()->isPointerTy())
1624     Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
1625                                                                 CGM.VoidPtrTy);
1626 
1627   llvm::Value *Addr = OMPBuilder.createOMPAlloc(
1628       CGF.Builder, Size, Allocator,
1629       getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", "."));
1630   llvm::CallInst *FreeCI =
1631       OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator);
1632 
1633   CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI);
1634   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1635       Addr,
1636       CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
1637       getNameWithSeparators({CVD->getName(), ".addr"}, ".", "."));
1638   return Address(Addr, Align);
1639 }
1640 
1641 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
1642     CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr,
1643     SourceLocation Loc) {
1644   CodeGenModule &CGM = CGF.CGM;
1645   if (CGM.getLangOpts().OpenMPUseTLS &&
1646       CGM.getContext().getTargetInfo().isTLSSupported())
1647     return VDAddr;
1648 
1649   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1650 
1651   llvm::Type *VarTy = VDAddr.getElementType();
1652   llvm::Value *Data =
1653       CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy);
1654   llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy));
1655   std::string Suffix = getNameWithSeparators({"cache", ""});
1656   llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix);
1657 
1658   llvm::CallInst *ThreadPrivateCacheCall =
1659       OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName);
1660 
1661   return Address(ThreadPrivateCacheCall, VDAddr.getAlignment());
1662 }
1663 
1664 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators(
1665     ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) {
1666   SmallString<128> Buffer;
1667   llvm::raw_svector_ostream OS(Buffer);
1668   StringRef Sep = FirstSeparator;
1669   for (StringRef Part : Parts) {
1670     OS << Sep << Part;
1671     Sep = Separator;
1672   }
1673   return OS.str().str();
1674 }
1675 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
1676   if (CGM.getLangOpts().OpenMPIRBuilder) {
1677     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1678     // Check if we have any if clause associated with the directive.
1679     llvm::Value *IfCond = nullptr;
1680     if (const auto *C = S.getSingleClause<OMPIfClause>())
1681       IfCond = EmitScalarExpr(C->getCondition(),
1682                               /*IgnoreResultAssign=*/true);
1683 
1684     llvm::Value *NumThreads = nullptr;
1685     if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>())
1686       NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(),
1687                                   /*IgnoreResultAssign=*/true);
1688 
1689     ProcBindKind ProcBind = OMP_PROC_BIND_default;
1690     if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>())
1691       ProcBind = ProcBindClause->getProcBindKind();
1692 
1693     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1694 
1695     // The cleanup callback that finalizes all variabels at the given location,
1696     // thus calls destructors etc.
1697     auto FiniCB = [this](InsertPointTy IP) {
1698       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
1699     };
1700 
1701     // Privatization callback that performs appropriate action for
1702     // shared/private/firstprivate/lastprivate/copyin/... variables.
1703     //
1704     // TODO: This defaults to shared right now.
1705     auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
1706                      llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) {
1707       // The next line is appropriate only for variables (Val) with the
1708       // data-sharing attribute "shared".
1709       ReplVal = &Val;
1710 
1711       return CodeGenIP;
1712     };
1713 
1714     const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
1715     const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt();
1716 
1717     auto BodyGenCB = [ParallelRegionBodyStmt,
1718                       this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
1719                             llvm::BasicBlock &ContinuationBB) {
1720       OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP,
1721                                                       ContinuationBB);
1722       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt,
1723                                              CodeGenIP, ContinuationBB);
1724     };
1725 
1726     CGCapturedStmtInfo CGSI(*CS, CR_OpenMP);
1727     CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI);
1728     llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
1729         AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
1730     Builder.restoreIP(
1731         OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB,
1732                                   IfCond, NumThreads, ProcBind, S.hasCancel()));
1733     return;
1734   }
1735 
1736   // Emit parallel region as a standalone region.
1737   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
1738     Action.Enter(CGF);
1739     OMPPrivateScope PrivateScope(CGF);
1740     bool Copyins = CGF.EmitOMPCopyinClause(S);
1741     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
1742     if (Copyins) {
1743       // Emit implicit barrier to synchronize threads and avoid data races on
1744       // propagation master's thread values of threadprivate variables to local
1745       // instances of that variables of all other implicit threads.
1746       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
1747           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
1748           /*ForceSimpleCall=*/true);
1749     }
1750     CGF.EmitOMPPrivateClause(S, PrivateScope);
1751     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
1752     (void)PrivateScope.Privatize();
1753     CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt());
1754     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
1755   };
1756   {
1757     auto LPCRegion =
1758         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
1759     emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen,
1760                                    emitEmptyBoundParameters);
1761     emitPostUpdateForReductionClause(*this, S,
1762                                      [](CodeGenFunction &) { return nullptr; });
1763   }
1764   // Check for outer lastprivate conditional update.
1765   checkForLastprivateConditionalUpdate(*this, S);
1766 }
1767 
1768 namespace {
1769 /// RAII to handle scopes for loop transformation directives.
1770 class OMPTransformDirectiveScopeRAII {
1771   OMPLoopScope *Scope = nullptr;
1772   CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr;
1773   CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr;
1774 
1775 public:
1776   OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) {
1777     if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) {
1778       Scope = new OMPLoopScope(CGF, *Dir);
1779       CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP);
1780       CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI);
1781     }
1782   }
1783   ~OMPTransformDirectiveScopeRAII() {
1784     if (!Scope)
1785       return;
1786     delete CapInfoRAII;
1787     delete CGSI;
1788     delete Scope;
1789   }
1790 };
1791 } // namespace
1792 
1793 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop,
1794                      int MaxLevel, int Level = 0) {
1795   assert(Level < MaxLevel && "Too deep lookup during loop body codegen.");
1796   const Stmt *SimplifiedS = S->IgnoreContainers();
1797   if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) {
1798     PrettyStackTraceLoc CrashInfo(
1799         CGF.getContext().getSourceManager(), CS->getLBracLoc(),
1800         "LLVM IR generation of compound statement ('{}')");
1801 
1802     // Keep track of the current cleanup stack depth, including debug scopes.
1803     CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange());
1804     for (const Stmt *CurStmt : CS->body())
1805       emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level);
1806     return;
1807   }
1808   if (SimplifiedS == NextLoop) {
1809     OMPTransformDirectiveScopeRAII PossiblyTransformDirectiveScope(CGF,
1810                                                                    SimplifiedS);
1811     if (auto *Dir = dyn_cast<OMPTileDirective>(SimplifiedS))
1812       SimplifiedS = Dir->getTransformedStmt();
1813     if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS))
1814       SimplifiedS = CanonLoop->getLoopStmt();
1815     if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) {
1816       S = For->getBody();
1817     } else {
1818       assert(isa<CXXForRangeStmt>(SimplifiedS) &&
1819              "Expected canonical for loop or range-based for loop.");
1820       const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS);
1821       CGF.EmitStmt(CXXFor->getLoopVarStmt());
1822       S = CXXFor->getBody();
1823     }
1824     if (Level + 1 < MaxLevel) {
1825       NextLoop = OMPLoopDirective::tryToFindNextInnerLoop(
1826           S, /*TryImperfectlyNestedLoops=*/true);
1827       emitBody(CGF, S, NextLoop, MaxLevel, Level + 1);
1828       return;
1829     }
1830   }
1831   CGF.EmitStmt(S);
1832 }
1833 
1834 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
1835                                       JumpDest LoopExit) {
1836   RunCleanupsScope BodyScope(*this);
1837   // Update counters values on current iteration.
1838   for (const Expr *UE : D.updates())
1839     EmitIgnoredExpr(UE);
1840   // Update the linear variables.
1841   // In distribute directives only loop counters may be marked as linear, no
1842   // need to generate the code for them.
1843   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1844     for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
1845       for (const Expr *UE : C->updates())
1846         EmitIgnoredExpr(UE);
1847     }
1848   }
1849 
1850   // On a continue in the body, jump to the end.
1851   JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue");
1852   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1853   for (const Expr *E : D.finals_conditions()) {
1854     if (!E)
1855       continue;
1856     // Check that loop counter in non-rectangular nest fits into the iteration
1857     // space.
1858     llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next");
1859     EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(),
1860                          getProfileCount(D.getBody()));
1861     EmitBlock(NextBB);
1862   }
1863 
1864   OMPPrivateScope InscanScope(*this);
1865   EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true);
1866   bool IsInscanRegion = InscanScope.Privatize();
1867   if (IsInscanRegion) {
1868     // Need to remember the block before and after scan directive
1869     // to dispatch them correctly depending on the clause used in
1870     // this directive, inclusive or exclusive. For inclusive scan the natural
1871     // order of the blocks is used, for exclusive clause the blocks must be
1872     // executed in reverse order.
1873     OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb");
1874     OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb");
1875     // No need to allocate inscan exit block, in simd mode it is selected in the
1876     // codegen for the scan directive.
1877     if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd)
1878       OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb");
1879     OMPScanDispatch = createBasicBlock("omp.inscan.dispatch");
1880     EmitBranch(OMPScanDispatch);
1881     EmitBlock(OMPBeforeScanBlock);
1882   }
1883 
1884   // Emit loop variables for C++ range loops.
1885   const Stmt *Body =
1886       D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers();
1887   // Emit loop body.
1888   emitBody(*this, Body,
1889            OMPLoopBasedDirective::tryToFindNextInnerLoop(
1890                Body, /*TryImperfectlyNestedLoops=*/true),
1891            D.getLoopsNumber());
1892 
1893   // Jump to the dispatcher at the end of the loop body.
1894   if (IsInscanRegion)
1895     EmitBranch(OMPScanExitBlock);
1896 
1897   // The end (updates/cleanups).
1898   EmitBlock(Continue.getBlock());
1899   BreakContinueStack.pop_back();
1900 }
1901 
1902 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>;
1903 
1904 /// Emit a captured statement and return the function as well as its captured
1905 /// closure context.
1906 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF,
1907                                              const CapturedStmt *S) {
1908   LValue CapStruct = ParentCGF.InitCapturedStruct(*S);
1909   CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true);
1910   std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI =
1911       std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S);
1912   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get());
1913   llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S);
1914 
1915   return {F, CapStruct.getPointer(ParentCGF)};
1916 }
1917 
1918 /// Emit a call to a previously captured closure.
1919 static llvm::CallInst *
1920 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap,
1921                      llvm::ArrayRef<llvm::Value *> Args) {
1922   // Append the closure context to the argument.
1923   SmallVector<llvm::Value *> EffectiveArgs;
1924   EffectiveArgs.reserve(Args.size() + 1);
1925   llvm::append_range(EffectiveArgs, Args);
1926   EffectiveArgs.push_back(Cap.second);
1927 
1928   return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs);
1929 }
1930 
1931 llvm::CanonicalLoopInfo *
1932 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) {
1933   assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented");
1934 
1935   EmitStmt(S);
1936   assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops");
1937 
1938   // The last added loop is the outermost one.
1939   return OMPLoopNestStack.back();
1940 }
1941 
1942 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) {
1943   const Stmt *SyntacticalLoop = S->getLoopStmt();
1944   if (!getLangOpts().OpenMPIRBuilder) {
1945     // Ignore if OpenMPIRBuilder is not enabled.
1946     EmitStmt(SyntacticalLoop);
1947     return;
1948   }
1949 
1950   LexicalScope ForScope(*this, S->getSourceRange());
1951 
1952   // Emit init statements. The Distance/LoopVar funcs may reference variable
1953   // declarations they contain.
1954   const Stmt *BodyStmt;
1955   if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) {
1956     if (const Stmt *InitStmt = For->getInit())
1957       EmitStmt(InitStmt);
1958     BodyStmt = For->getBody();
1959   } else if (const auto *RangeFor =
1960                  dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) {
1961     if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt())
1962       EmitStmt(RangeStmt);
1963     if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt())
1964       EmitStmt(BeginStmt);
1965     if (const DeclStmt *EndStmt = RangeFor->getEndStmt())
1966       EmitStmt(EndStmt);
1967     if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt())
1968       EmitStmt(LoopVarStmt);
1969     BodyStmt = RangeFor->getBody();
1970   } else
1971     llvm_unreachable("Expected for-stmt or range-based for-stmt");
1972 
1973   // Emit closure for later use. By-value captures will be captured here.
1974   const CapturedStmt *DistanceFunc = S->getDistanceFunc();
1975   EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc);
1976   const CapturedStmt *LoopVarFunc = S->getLoopVarFunc();
1977   EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc);
1978 
1979   // Call the distance function to get the number of iterations of the loop to
1980   // come.
1981   QualType LogicalTy = DistanceFunc->getCapturedDecl()
1982                            ->getParam(0)
1983                            ->getType()
1984                            .getNonReferenceType();
1985   Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr");
1986   emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()});
1987   llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count");
1988 
1989   // Emit the loop structure.
1990   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1991   auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP,
1992                            llvm::Value *IndVar) {
1993     Builder.restoreIP(CodeGenIP);
1994 
1995     // Emit the loop body: Convert the logical iteration number to the loop
1996     // variable and emit the body.
1997     const DeclRefExpr *LoopVarRef = S->getLoopVarRef();
1998     LValue LCVal = EmitLValue(LoopVarRef);
1999     Address LoopVarAddress = LCVal.getAddress(*this);
2000     emitCapturedStmtCall(*this, LoopVarClosure,
2001                          {LoopVarAddress.getPointer(), IndVar});
2002 
2003     RunCleanupsScope BodyScope(*this);
2004     EmitStmt(BodyStmt);
2005   };
2006   llvm::CanonicalLoopInfo *CL =
2007       OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal);
2008 
2009   // Finish up the loop.
2010   Builder.restoreIP(CL->getAfterIP());
2011   ForScope.ForceCleanup();
2012 
2013   // Remember the CanonicalLoopInfo for parent AST nodes consuming it.
2014   OMPLoopNestStack.push_back(CL);
2015 }
2016 
2017 void CodeGenFunction::EmitOMPInnerLoop(
2018     const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond,
2019     const Expr *IncExpr,
2020     const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
2021     const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) {
2022   auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
2023 
2024   // Start the loop with a block that tests the condition.
2025   auto CondBlock = createBasicBlock("omp.inner.for.cond");
2026   EmitBlock(CondBlock);
2027   const SourceRange R = S.getSourceRange();
2028 
2029   // If attributes are attached, push to the basic block with them.
2030   const auto &OMPED = cast<OMPExecutableDirective>(S);
2031   const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt();
2032   const Stmt *SS = ICS->getCapturedStmt();
2033   const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS);
2034   OMPLoopNestStack.clear();
2035   if (AS)
2036     LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(),
2037                    AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()),
2038                    SourceLocToDebugLoc(R.getEnd()));
2039   else
2040     LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
2041                    SourceLocToDebugLoc(R.getEnd()));
2042 
2043   // If there are any cleanups between here and the loop-exit scope,
2044   // create a block to stage a loop exit along.
2045   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
2046   if (RequiresCleanup)
2047     ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
2048 
2049   llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body");
2050 
2051   // Emit condition.
2052   EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
2053   if (ExitBlock != LoopExit.getBlock()) {
2054     EmitBlock(ExitBlock);
2055     EmitBranchThroughCleanup(LoopExit);
2056   }
2057 
2058   EmitBlock(LoopBody);
2059   incrementProfileCounter(&S);
2060 
2061   // Create a block for the increment.
2062   JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
2063   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
2064 
2065   BodyGen(*this);
2066 
2067   // Emit "IV = IV + 1" and a back-edge to the condition block.
2068   EmitBlock(Continue.getBlock());
2069   EmitIgnoredExpr(IncExpr);
2070   PostIncGen(*this);
2071   BreakContinueStack.pop_back();
2072   EmitBranch(CondBlock);
2073   LoopStack.pop();
2074   // Emit the fall-through block.
2075   EmitBlock(LoopExit.getBlock());
2076 }
2077 
2078 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
2079   if (!HaveInsertPoint())
2080     return false;
2081   // Emit inits for the linear variables.
2082   bool HasLinears = false;
2083   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2084     for (const Expr *Init : C->inits()) {
2085       HasLinears = true;
2086       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
2087       if (const auto *Ref =
2088               dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) {
2089         AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
2090         const auto *OrigVD = cast<VarDecl>(Ref->getDecl());
2091         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
2092                         CapturedStmtInfo->lookup(OrigVD) != nullptr,
2093                         VD->getInit()->getType(), VK_LValue,
2094                         VD->getInit()->getExprLoc());
2095         EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(),
2096                                                 VD->getType()),
2097                        /*capturedByInit=*/false);
2098         EmitAutoVarCleanups(Emission);
2099       } else {
2100         EmitVarDecl(*VD);
2101       }
2102     }
2103     // Emit the linear steps for the linear clauses.
2104     // If a step is not constant, it is pre-calculated before the loop.
2105     if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
2106       if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
2107         EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
2108         // Emit calculation of the linear step.
2109         EmitIgnoredExpr(CS);
2110       }
2111   }
2112   return HasLinears;
2113 }
2114 
2115 void CodeGenFunction::EmitOMPLinearClauseFinal(
2116     const OMPLoopDirective &D,
2117     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
2118   if (!HaveInsertPoint())
2119     return;
2120   llvm::BasicBlock *DoneBB = nullptr;
2121   // Emit the final values of the linear variables.
2122   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2123     auto IC = C->varlist_begin();
2124     for (const Expr *F : C->finals()) {
2125       if (!DoneBB) {
2126         if (llvm::Value *Cond = CondGen(*this)) {
2127           // If the first post-update expression is found, emit conditional
2128           // block if it was requested.
2129           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu");
2130           DoneBB = createBasicBlock(".omp.linear.pu.done");
2131           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
2132           EmitBlock(ThenBB);
2133         }
2134       }
2135       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
2136       DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD),
2137                       CapturedStmtInfo->lookup(OrigVD) != nullptr,
2138                       (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
2139       Address OrigAddr = EmitLValue(&DRE).getAddress(*this);
2140       CodeGenFunction::OMPPrivateScope VarScope(*this);
2141       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
2142       (void)VarScope.Privatize();
2143       EmitIgnoredExpr(F);
2144       ++IC;
2145     }
2146     if (const Expr *PostUpdate = C->getPostUpdateExpr())
2147       EmitIgnoredExpr(PostUpdate);
2148   }
2149   if (DoneBB)
2150     EmitBlock(DoneBB, /*IsFinished=*/true);
2151 }
2152 
2153 static void emitAlignedClause(CodeGenFunction &CGF,
2154                               const OMPExecutableDirective &D) {
2155   if (!CGF.HaveInsertPoint())
2156     return;
2157   for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
2158     llvm::APInt ClauseAlignment(64, 0);
2159     if (const Expr *AlignmentExpr = Clause->getAlignment()) {
2160       auto *AlignmentCI =
2161           cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
2162       ClauseAlignment = AlignmentCI->getValue();
2163     }
2164     for (const Expr *E : Clause->varlists()) {
2165       llvm::APInt Alignment(ClauseAlignment);
2166       if (Alignment == 0) {
2167         // OpenMP [2.8.1, Description]
2168         // If no optional parameter is specified, implementation-defined default
2169         // alignments for SIMD instructions on the target platforms are assumed.
2170         Alignment =
2171             CGF.getContext()
2172                 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2173                     E->getType()->getPointeeType()))
2174                 .getQuantity();
2175       }
2176       assert((Alignment == 0 || Alignment.isPowerOf2()) &&
2177              "alignment is not power of 2");
2178       if (Alignment != 0) {
2179         llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
2180         CGF.emitAlignmentAssumption(
2181             PtrValue, E, /*No second loc needed*/ SourceLocation(),
2182             llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment));
2183       }
2184     }
2185   }
2186 }
2187 
2188 void CodeGenFunction::EmitOMPPrivateLoopCounters(
2189     const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) {
2190   if (!HaveInsertPoint())
2191     return;
2192   auto I = S.private_counters().begin();
2193   for (const Expr *E : S.counters()) {
2194     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2195     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
2196     // Emit var without initialization.
2197     AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD);
2198     EmitAutoVarCleanups(VarEmission);
2199     LocalDeclMap.erase(PrivateVD);
2200     (void)LoopScope.addPrivate(VD, [&VarEmission]() {
2201       return VarEmission.getAllocatedAddress();
2202     });
2203     if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) ||
2204         VD->hasGlobalStorage()) {
2205       (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() {
2206         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD),
2207                         LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD),
2208                         E->getType(), VK_LValue, E->getExprLoc());
2209         return EmitLValue(&DRE).getAddress(*this);
2210       });
2211     } else {
2212       (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() {
2213         return VarEmission.getAllocatedAddress();
2214       });
2215     }
2216     ++I;
2217   }
2218   // Privatize extra loop counters used in loops for ordered(n) clauses.
2219   for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) {
2220     if (!C->getNumForLoops())
2221       continue;
2222     for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size();
2223          I < E; ++I) {
2224       const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I));
2225       const auto *VD = cast<VarDecl>(DRE->getDecl());
2226       // Override only those variables that can be captured to avoid re-emission
2227       // of the variables declared within the loops.
2228       if (DRE->refersToEnclosingVariableOrCapture()) {
2229         (void)LoopScope.addPrivate(VD, [this, DRE, VD]() {
2230           return CreateMemTemp(DRE->getType(), VD->getName());
2231         });
2232       }
2233     }
2234   }
2235 }
2236 
2237 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
2238                         const Expr *Cond, llvm::BasicBlock *TrueBlock,
2239                         llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
2240   if (!CGF.HaveInsertPoint())
2241     return;
2242   {
2243     CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
2244     CGF.EmitOMPPrivateLoopCounters(S, PreCondScope);
2245     (void)PreCondScope.Privatize();
2246     // Get initial values of real counters.
2247     for (const Expr *I : S.inits()) {
2248       CGF.EmitIgnoredExpr(I);
2249     }
2250   }
2251   // Create temp loop control variables with their init values to support
2252   // non-rectangular loops.
2253   CodeGenFunction::OMPMapVars PreCondVars;
2254   for (const Expr * E: S.dependent_counters()) {
2255     if (!E)
2256       continue;
2257     assert(!E->getType().getNonReferenceType()->isRecordType() &&
2258            "dependent counter must not be an iterator.");
2259     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2260     Address CounterAddr =
2261         CGF.CreateMemTemp(VD->getType().getNonReferenceType());
2262     (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr);
2263   }
2264   (void)PreCondVars.apply(CGF);
2265   for (const Expr *E : S.dependent_inits()) {
2266     if (!E)
2267       continue;
2268     CGF.EmitIgnoredExpr(E);
2269   }
2270   // Check that loop is executed at least one time.
2271   CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
2272   PreCondVars.restore(CGF);
2273 }
2274 
2275 void CodeGenFunction::EmitOMPLinearClause(
2276     const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) {
2277   if (!HaveInsertPoint())
2278     return;
2279   llvm::DenseSet<const VarDecl *> SIMDLCVs;
2280   if (isOpenMPSimdDirective(D.getDirectiveKind())) {
2281     const auto *LoopDirective = cast<OMPLoopDirective>(&D);
2282     for (const Expr *C : LoopDirective->counters()) {
2283       SIMDLCVs.insert(
2284           cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl());
2285     }
2286   }
2287   for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
2288     auto CurPrivate = C->privates().begin();
2289     for (const Expr *E : C->varlists()) {
2290       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
2291       const auto *PrivateVD =
2292           cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
2293       if (!SIMDLCVs.count(VD->getCanonicalDecl())) {
2294         bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() {
2295           // Emit private VarDecl with copy init.
2296           EmitVarDecl(*PrivateVD);
2297           return GetAddrOfLocalVar(PrivateVD);
2298         });
2299         assert(IsRegistered && "linear var already registered as private");
2300         // Silence the warning about unused variable.
2301         (void)IsRegistered;
2302       } else {
2303         EmitVarDecl(*PrivateVD);
2304       }
2305       ++CurPrivate;
2306     }
2307   }
2308 }
2309 
2310 static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
2311                                      const OMPExecutableDirective &D,
2312                                      bool IsMonotonic) {
2313   if (!CGF.HaveInsertPoint())
2314     return;
2315   if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
2316     RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
2317                                  /*ignoreResult=*/true);
2318     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
2319     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
2320     // In presence of finite 'safelen', it may be unsafe to mark all
2321     // the memory instructions parallel, because loop-carried
2322     // dependences of 'safelen' iterations are possible.
2323     if (!IsMonotonic)
2324       CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
2325   } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
2326     RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
2327                                  /*ignoreResult=*/true);
2328     auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
2329     CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
2330     // In presence of finite 'safelen', it may be unsafe to mark all
2331     // the memory instructions parallel, because loop-carried
2332     // dependences of 'safelen' iterations are possible.
2333     CGF.LoopStack.setParallel(/*Enable=*/false);
2334   }
2335 }
2336 
2337 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
2338                                       bool IsMonotonic) {
2339   // Walk clauses and process safelen/lastprivate.
2340   LoopStack.setParallel(!IsMonotonic);
2341   LoopStack.setVectorizeEnable();
2342   emitSimdlenSafelenClause(*this, D, IsMonotonic);
2343   if (const auto *C = D.getSingleClause<OMPOrderClause>())
2344     if (C->getKind() == OMPC_ORDER_concurrent)
2345       LoopStack.setParallel(/*Enable=*/true);
2346   if ((D.getDirectiveKind() == OMPD_simd ||
2347        (getLangOpts().OpenMPSimd &&
2348         isOpenMPSimdDirective(D.getDirectiveKind()))) &&
2349       llvm::any_of(D.getClausesOfKind<OMPReductionClause>(),
2350                    [](const OMPReductionClause *C) {
2351                      return C->getModifier() == OMPC_REDUCTION_inscan;
2352                    }))
2353     // Disable parallel access in case of prefix sum.
2354     LoopStack.setParallel(/*Enable=*/false);
2355 }
2356 
2357 void CodeGenFunction::EmitOMPSimdFinal(
2358     const OMPLoopDirective &D,
2359     const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) {
2360   if (!HaveInsertPoint())
2361     return;
2362   llvm::BasicBlock *DoneBB = nullptr;
2363   auto IC = D.counters().begin();
2364   auto IPC = D.private_counters().begin();
2365   for (const Expr *F : D.finals()) {
2366     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
2367     const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl());
2368     const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD);
2369     if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) ||
2370         OrigVD->hasGlobalStorage() || CED) {
2371       if (!DoneBB) {
2372         if (llvm::Value *Cond = CondGen(*this)) {
2373           // If the first post-update expression is found, emit conditional
2374           // block if it was requested.
2375           llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then");
2376           DoneBB = createBasicBlock(".omp.final.done");
2377           Builder.CreateCondBr(Cond, ThenBB, DoneBB);
2378           EmitBlock(ThenBB);
2379         }
2380       }
2381       Address OrigAddr = Address::invalid();
2382       if (CED) {
2383         OrigAddr =
2384             EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this);
2385       } else {
2386         DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD),
2387                         /*RefersToEnclosingVariableOrCapture=*/false,
2388                         (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc());
2389         OrigAddr = EmitLValue(&DRE).getAddress(*this);
2390       }
2391       OMPPrivateScope VarScope(*this);
2392       VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; });
2393       (void)VarScope.Privatize();
2394       EmitIgnoredExpr(F);
2395     }
2396     ++IC;
2397     ++IPC;
2398   }
2399   if (DoneBB)
2400     EmitBlock(DoneBB, /*IsFinished=*/true);
2401 }
2402 
2403 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF,
2404                                          const OMPLoopDirective &S,
2405                                          CodeGenFunction::JumpDest LoopExit) {
2406   CGF.EmitOMPLoopBody(S, LoopExit);
2407   CGF.EmitStopPoint(&S);
2408 }
2409 
2410 /// Emit a helper variable and return corresponding lvalue.
2411 static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
2412                                const DeclRefExpr *Helper) {
2413   auto VDecl = cast<VarDecl>(Helper->getDecl());
2414   CGF.EmitVarDecl(*VDecl);
2415   return CGF.EmitLValue(Helper);
2416 }
2417 
2418 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S,
2419                                const RegionCodeGenTy &SimdInitGen,
2420                                const RegionCodeGenTy &BodyCodeGen) {
2421   auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF,
2422                                                     PrePostActionTy &) {
2423     CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S);
2424     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
2425     SimdInitGen(CGF);
2426 
2427     BodyCodeGen(CGF);
2428   };
2429   auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
2430     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
2431     CGF.LoopStack.setVectorizeEnable(/*Enable=*/false);
2432 
2433     BodyCodeGen(CGF);
2434   };
2435   const Expr *IfCond = nullptr;
2436   if (isOpenMPSimdDirective(S.getDirectiveKind())) {
2437     for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
2438       if (CGF.getLangOpts().OpenMP >= 50 &&
2439           (C->getNameModifier() == OMPD_unknown ||
2440            C->getNameModifier() == OMPD_simd)) {
2441         IfCond = C->getCondition();
2442         break;
2443       }
2444     }
2445   }
2446   if (IfCond) {
2447     CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2448   } else {
2449     RegionCodeGenTy ThenRCG(ThenGen);
2450     ThenRCG(CGF);
2451   }
2452 }
2453 
2454 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S,
2455                               PrePostActionTy &Action) {
2456   Action.Enter(CGF);
2457   assert(isOpenMPSimdDirective(S.getDirectiveKind()) &&
2458          "Expected simd directive");
2459   OMPLoopScope PreInitScope(CGF, S);
2460   // if (PreCond) {
2461   //   for (IV in 0..LastIteration) BODY;
2462   //   <Final counter/linear vars updates>;
2463   // }
2464   //
2465   if (isOpenMPDistributeDirective(S.getDirectiveKind()) ||
2466       isOpenMPWorksharingDirective(S.getDirectiveKind()) ||
2467       isOpenMPTaskLoopDirective(S.getDirectiveKind())) {
2468     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()));
2469     (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()));
2470   }
2471 
2472   // Emit: if (PreCond) - begin.
2473   // If the condition constant folds and can be elided, avoid emitting the
2474   // whole loop.
2475   bool CondConstant;
2476   llvm::BasicBlock *ContBlock = nullptr;
2477   if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
2478     if (!CondConstant)
2479       return;
2480   } else {
2481     llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then");
2482     ContBlock = CGF.createBasicBlock("simd.if.end");
2483     emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
2484                 CGF.getProfileCount(&S));
2485     CGF.EmitBlock(ThenBlock);
2486     CGF.incrementProfileCounter(&S);
2487   }
2488 
2489   // Emit the loop iteration variable.
2490   const Expr *IVExpr = S.getIterationVariable();
2491   const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
2492   CGF.EmitVarDecl(*IVDecl);
2493   CGF.EmitIgnoredExpr(S.getInit());
2494 
2495   // Emit the iterations count variable.
2496   // If it is not a variable, Sema decided to calculate iterations count on
2497   // each iteration (e.g., it is foldable into a constant).
2498   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
2499     CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
2500     // Emit calculation of the iterations count.
2501     CGF.EmitIgnoredExpr(S.getCalcLastIteration());
2502   }
2503 
2504   emitAlignedClause(CGF, S);
2505   (void)CGF.EmitOMPLinearClauseInit(S);
2506   {
2507     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
2508     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
2509     CGF.EmitOMPLinearClause(S, LoopScope);
2510     CGF.EmitOMPPrivateClause(S, LoopScope);
2511     CGF.EmitOMPReductionClauseInit(S, LoopScope);
2512     CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
2513         CGF, S, CGF.EmitLValue(S.getIterationVariable()));
2514     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
2515     (void)LoopScope.Privatize();
2516     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
2517       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
2518 
2519     emitCommonSimdLoop(
2520         CGF, S,
2521         [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2522           CGF.EmitOMPSimdInit(S);
2523         },
2524         [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2525           CGF.EmitOMPInnerLoop(
2526               S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
2527               [&S](CodeGenFunction &CGF) {
2528                 emitOMPLoopBodyWithStopPoint(CGF, S,
2529                                              CodeGenFunction::JumpDest());
2530               },
2531               [](CodeGenFunction &) {});
2532         });
2533     CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; });
2534     // Emit final copy of the lastprivate variables at the end of loops.
2535     if (HasLastprivateClause)
2536       CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true);
2537     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd);
2538     emitPostUpdateForReductionClause(CGF, S,
2539                                      [](CodeGenFunction &) { return nullptr; });
2540   }
2541   CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; });
2542   // Emit: if (PreCond) - end.
2543   if (ContBlock) {
2544     CGF.EmitBranch(ContBlock);
2545     CGF.EmitBlock(ContBlock, true);
2546   }
2547 }
2548 
2549 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
2550   ParentLoopDirectiveForScanRegion ScanRegion(*this, S);
2551   OMPFirstScanLoop = true;
2552   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
2553     emitOMPSimdRegion(CGF, S, Action);
2554   };
2555   {
2556     auto LPCRegion =
2557         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
2558     OMPLexicalScope Scope(*this, S, OMPD_unknown);
2559     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2560   }
2561   // Check for outer lastprivate conditional update.
2562   checkForLastprivateConditionalUpdate(*this, S);
2563 }
2564 
2565 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) {
2566   // Emit the de-sugared statement.
2567   OMPTransformDirectiveScopeRAII TileScope(*this, &S);
2568   EmitStmt(S.getTransformedStmt());
2569 }
2570 
2571 void CodeGenFunction::EmitOMPOuterLoop(
2572     bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S,
2573     CodeGenFunction::OMPPrivateScope &LoopScope,
2574     const CodeGenFunction::OMPLoopArguments &LoopArgs,
2575     const CodeGenFunction::CodeGenLoopTy &CodeGenLoop,
2576     const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) {
2577   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2578 
2579   const Expr *IVExpr = S.getIterationVariable();
2580   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2581   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2582 
2583   JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
2584 
2585   // Start the loop with a block that tests the condition.
2586   llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond");
2587   EmitBlock(CondBlock);
2588   const SourceRange R = S.getSourceRange();
2589   OMPLoopNestStack.clear();
2590   LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()),
2591                  SourceLocToDebugLoc(R.getEnd()));
2592 
2593   llvm::Value *BoolCondVal = nullptr;
2594   if (!DynamicOrOrdered) {
2595     // UB = min(UB, GlobalUB) or
2596     // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g.
2597     // 'distribute parallel for')
2598     EmitIgnoredExpr(LoopArgs.EUB);
2599     // IV = LB
2600     EmitIgnoredExpr(LoopArgs.Init);
2601     // IV < UB
2602     BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond);
2603   } else {
2604     BoolCondVal =
2605         RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL,
2606                        LoopArgs.LB, LoopArgs.UB, LoopArgs.ST);
2607   }
2608 
2609   // If there are any cleanups between here and the loop-exit scope,
2610   // create a block to stage a loop exit along.
2611   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
2612   if (LoopScope.requiresCleanups())
2613     ExitBlock = createBasicBlock("omp.dispatch.cleanup");
2614 
2615   llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body");
2616   Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
2617   if (ExitBlock != LoopExit.getBlock()) {
2618     EmitBlock(ExitBlock);
2619     EmitBranchThroughCleanup(LoopExit);
2620   }
2621   EmitBlock(LoopBody);
2622 
2623   // Emit "IV = LB" (in case of static schedule, we have already calculated new
2624   // LB for loop condition and emitted it above).
2625   if (DynamicOrOrdered)
2626     EmitIgnoredExpr(LoopArgs.Init);
2627 
2628   // Create a block for the increment.
2629   JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
2630   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
2631 
2632   emitCommonSimdLoop(
2633       *this, S,
2634       [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) {
2635         // Generate !llvm.loop.parallel metadata for loads and stores for loops
2636         // with dynamic/guided scheduling and without ordered clause.
2637         if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2638           CGF.LoopStack.setParallel(!IsMonotonic);
2639           if (const auto *C = S.getSingleClause<OMPOrderClause>())
2640             if (C->getKind() == OMPC_ORDER_concurrent)
2641               CGF.LoopStack.setParallel(/*Enable=*/true);
2642         } else {
2643           CGF.EmitOMPSimdInit(S, IsMonotonic);
2644         }
2645       },
2646       [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered,
2647        &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
2648         SourceLocation Loc = S.getBeginLoc();
2649         // when 'distribute' is not combined with a 'for':
2650         // while (idx <= UB) { BODY; ++idx; }
2651         // when 'distribute' is combined with a 'for'
2652         // (e.g. 'distribute parallel for')
2653         // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; }
2654         CGF.EmitOMPInnerLoop(
2655             S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr,
2656             [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
2657               CodeGenLoop(CGF, S, LoopExit);
2658             },
2659             [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) {
2660               CodeGenOrdered(CGF, Loc, IVSize, IVSigned);
2661             });
2662       });
2663 
2664   EmitBlock(Continue.getBlock());
2665   BreakContinueStack.pop_back();
2666   if (!DynamicOrOrdered) {
2667     // Emit "LB = LB + Stride", "UB = UB + Stride".
2668     EmitIgnoredExpr(LoopArgs.NextLB);
2669     EmitIgnoredExpr(LoopArgs.NextUB);
2670   }
2671 
2672   EmitBranch(CondBlock);
2673   OMPLoopNestStack.clear();
2674   LoopStack.pop();
2675   // Emit the fall-through block.
2676   EmitBlock(LoopExit.getBlock());
2677 
2678   // Tell the runtime we are done.
2679   auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) {
2680     if (!DynamicOrOrdered)
2681       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
2682                                                      S.getDirectiveKind());
2683   };
2684   OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
2685 }
2686 
2687 void CodeGenFunction::EmitOMPForOuterLoop(
2688     const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic,
2689     const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2690     const OMPLoopArguments &LoopArgs,
2691     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
2692   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2693 
2694   // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
2695   const bool DynamicOrOrdered =
2696       Ordered || RT.isDynamic(ScheduleKind.Schedule);
2697 
2698   assert((Ordered ||
2699           !RT.isStaticNonchunked(ScheduleKind.Schedule,
2700                                  LoopArgs.Chunk != nullptr)) &&
2701          "static non-chunked schedule does not need outer loop");
2702 
2703   // Emit outer loop.
2704   //
2705   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2706   // When schedule(dynamic,chunk_size) is specified, the iterations are
2707   // distributed to threads in the team in chunks as the threads request them.
2708   // Each thread executes a chunk of iterations, then requests another chunk,
2709   // until no chunks remain to be distributed. Each chunk contains chunk_size
2710   // iterations, except for the last chunk to be distributed, which may have
2711   // fewer iterations. When no chunk_size is specified, it defaults to 1.
2712   //
2713   // When schedule(guided,chunk_size) is specified, the iterations are assigned
2714   // to threads in the team in chunks as the executing threads request them.
2715   // Each thread executes a chunk of iterations, then requests another chunk,
2716   // until no chunks remain to be assigned. For a chunk_size of 1, the size of
2717   // each chunk is proportional to the number of unassigned iterations divided
2718   // by the number of threads in the team, decreasing to 1. For a chunk_size
2719   // with value k (greater than 1), the size of each chunk is determined in the
2720   // same way, with the restriction that the chunks do not contain fewer than k
2721   // iterations (except for the last chunk to be assigned, which may have fewer
2722   // than k iterations).
2723   //
2724   // When schedule(auto) is specified, the decision regarding scheduling is
2725   // delegated to the compiler and/or runtime system. The programmer gives the
2726   // implementation the freedom to choose any possible mapping of iterations to
2727   // threads in the team.
2728   //
2729   // When schedule(runtime) is specified, the decision regarding scheduling is
2730   // deferred until run time, and the schedule and chunk size are taken from the
2731   // run-sched-var ICV. If the ICV is set to auto, the schedule is
2732   // implementation defined
2733   //
2734   // while(__kmpc_dispatch_next(&LB, &UB)) {
2735   //   idx = LB;
2736   //   while (idx <= UB) { BODY; ++idx;
2737   //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
2738   //   } // inner loop
2739   // }
2740   //
2741   // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
2742   // When schedule(static, chunk_size) is specified, iterations are divided into
2743   // chunks of size chunk_size, and the chunks are assigned to the threads in
2744   // the team in a round-robin fashion in the order of the thread number.
2745   //
2746   // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
2747   //   while (idx <= UB) { BODY; ++idx; } // inner loop
2748   //   LB = LB + ST;
2749   //   UB = UB + ST;
2750   // }
2751   //
2752 
2753   const Expr *IVExpr = S.getIterationVariable();
2754   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2755   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2756 
2757   if (DynamicOrOrdered) {
2758     const std::pair<llvm::Value *, llvm::Value *> DispatchBounds =
2759         CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB);
2760     llvm::Value *LBVal = DispatchBounds.first;
2761     llvm::Value *UBVal = DispatchBounds.second;
2762     CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal,
2763                                                              LoopArgs.Chunk};
2764     RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize,
2765                            IVSigned, Ordered, DipatchRTInputValues);
2766   } else {
2767     CGOpenMPRuntime::StaticRTInput StaticInit(
2768         IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB,
2769         LoopArgs.ST, LoopArgs.Chunk);
2770     RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(),
2771                          ScheduleKind, StaticInit);
2772   }
2773 
2774   auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc,
2775                                     const unsigned IVSize,
2776                                     const bool IVSigned) {
2777     if (Ordered) {
2778       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize,
2779                                                             IVSigned);
2780     }
2781   };
2782 
2783   OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST,
2784                                  LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB);
2785   OuterLoopArgs.IncExpr = S.getInc();
2786   OuterLoopArgs.Init = S.getInit();
2787   OuterLoopArgs.Cond = S.getCond();
2788   OuterLoopArgs.NextLB = S.getNextLowerBound();
2789   OuterLoopArgs.NextUB = S.getNextUpperBound();
2790   EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs,
2791                    emitOMPLoopBodyWithStopPoint, CodeGenOrdered);
2792 }
2793 
2794 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc,
2795                              const unsigned IVSize, const bool IVSigned) {}
2796 
2797 void CodeGenFunction::EmitOMPDistributeOuterLoop(
2798     OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S,
2799     OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs,
2800     const CodeGenLoopTy &CodeGenLoopContent) {
2801 
2802   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
2803 
2804   // Emit outer loop.
2805   // Same behavior as a OMPForOuterLoop, except that schedule cannot be
2806   // dynamic
2807   //
2808 
2809   const Expr *IVExpr = S.getIterationVariable();
2810   const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
2811   const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
2812 
2813   CGOpenMPRuntime::StaticRTInput StaticInit(
2814       IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB,
2815       LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk);
2816   RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit);
2817 
2818   // for combined 'distribute' and 'for' the increment expression of distribute
2819   // is stored in DistInc. For 'distribute' alone, it is in Inc.
2820   Expr *IncExpr;
2821   if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()))
2822     IncExpr = S.getDistInc();
2823   else
2824     IncExpr = S.getInc();
2825 
2826   // this routine is shared by 'omp distribute parallel for' and
2827   // 'omp distribute': select the right EUB expression depending on the
2828   // directive
2829   OMPLoopArguments OuterLoopArgs;
2830   OuterLoopArgs.LB = LoopArgs.LB;
2831   OuterLoopArgs.UB = LoopArgs.UB;
2832   OuterLoopArgs.ST = LoopArgs.ST;
2833   OuterLoopArgs.IL = LoopArgs.IL;
2834   OuterLoopArgs.Chunk = LoopArgs.Chunk;
2835   OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2836                           ? S.getCombinedEnsureUpperBound()
2837                           : S.getEnsureUpperBound();
2838   OuterLoopArgs.IncExpr = IncExpr;
2839   OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2840                            ? S.getCombinedInit()
2841                            : S.getInit();
2842   OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2843                            ? S.getCombinedCond()
2844                            : S.getCond();
2845   OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2846                              ? S.getCombinedNextLowerBound()
2847                              : S.getNextLowerBound();
2848   OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
2849                              ? S.getCombinedNextUpperBound()
2850                              : S.getNextUpperBound();
2851 
2852   EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S,
2853                    LoopScope, OuterLoopArgs, CodeGenLoopContent,
2854                    emitEmptyOrdered);
2855 }
2856 
2857 static std::pair<LValue, LValue>
2858 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF,
2859                                      const OMPExecutableDirective &S) {
2860   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2861   LValue LB =
2862       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
2863   LValue UB =
2864       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
2865 
2866   // When composing 'distribute' with 'for' (e.g. as in 'distribute
2867   // parallel for') we need to use the 'distribute'
2868   // chunk lower and upper bounds rather than the whole loop iteration
2869   // space. These are parameters to the outlined function for 'parallel'
2870   // and we copy the bounds of the previous schedule into the
2871   // the current ones.
2872   LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable());
2873   LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable());
2874   llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar(
2875       PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc());
2876   PrevLBVal = CGF.EmitScalarConversion(
2877       PrevLBVal, LS.getPrevLowerBoundVariable()->getType(),
2878       LS.getIterationVariable()->getType(),
2879       LS.getPrevLowerBoundVariable()->getExprLoc());
2880   llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar(
2881       PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc());
2882   PrevUBVal = CGF.EmitScalarConversion(
2883       PrevUBVal, LS.getPrevUpperBoundVariable()->getType(),
2884       LS.getIterationVariable()->getType(),
2885       LS.getPrevUpperBoundVariable()->getExprLoc());
2886 
2887   CGF.EmitStoreOfScalar(PrevLBVal, LB);
2888   CGF.EmitStoreOfScalar(PrevUBVal, UB);
2889 
2890   return {LB, UB};
2891 }
2892 
2893 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then
2894 /// we need to use the LB and UB expressions generated by the worksharing
2895 /// code generation support, whereas in non combined situations we would
2896 /// just emit 0 and the LastIteration expression
2897 /// This function is necessary due to the difference of the LB and UB
2898 /// types for the RT emission routines for 'for_static_init' and
2899 /// 'for_dispatch_init'
2900 static std::pair<llvm::Value *, llvm::Value *>
2901 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF,
2902                                         const OMPExecutableDirective &S,
2903                                         Address LB, Address UB) {
2904   const OMPLoopDirective &LS = cast<OMPLoopDirective>(S);
2905   const Expr *IVExpr = LS.getIterationVariable();
2906   // when implementing a dynamic schedule for a 'for' combined with a
2907   // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop
2908   // is not normalized as each team only executes its own assigned
2909   // distribute chunk
2910   QualType IteratorTy = IVExpr->getType();
2911   llvm::Value *LBVal =
2912       CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2913   llvm::Value *UBVal =
2914       CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc());
2915   return {LBVal, UBVal};
2916 }
2917 
2918 static void emitDistributeParallelForDistributeInnerBoundParams(
2919     CodeGenFunction &CGF, const OMPExecutableDirective &S,
2920     llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) {
2921   const auto &Dir = cast<OMPLoopDirective>(S);
2922   LValue LB =
2923       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable()));
2924   llvm::Value *LBCast =
2925       CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)),
2926                                 CGF.SizeTy, /*isSigned=*/false);
2927   CapturedVars.push_back(LBCast);
2928   LValue UB =
2929       CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable()));
2930 
2931   llvm::Value *UBCast =
2932       CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)),
2933                                 CGF.SizeTy, /*isSigned=*/false);
2934   CapturedVars.push_back(UBCast);
2935 }
2936 
2937 static void
2938 emitInnerParallelForWhenCombined(CodeGenFunction &CGF,
2939                                  const OMPLoopDirective &S,
2940                                  CodeGenFunction::JumpDest LoopExit) {
2941   auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF,
2942                                          PrePostActionTy &Action) {
2943     Action.Enter(CGF);
2944     bool HasCancel = false;
2945     if (!isOpenMPSimdDirective(S.getDirectiveKind())) {
2946       if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S))
2947         HasCancel = D->hasCancel();
2948       else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S))
2949         HasCancel = D->hasCancel();
2950       else if (const auto *D =
2951                    dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S))
2952         HasCancel = D->hasCancel();
2953     }
2954     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
2955                                                      HasCancel);
2956     CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(),
2957                                emitDistributeParallelForInnerBounds,
2958                                emitDistributeParallelForDispatchBounds);
2959   };
2960 
2961   emitCommonOMPParallelDirective(
2962       CGF, S,
2963       isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for,
2964       CGInlinedWorksharingLoop,
2965       emitDistributeParallelForDistributeInnerBoundParams);
2966 }
2967 
2968 void CodeGenFunction::EmitOMPDistributeParallelForDirective(
2969     const OMPDistributeParallelForDirective &S) {
2970   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2971     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2972                               S.getDistInc());
2973   };
2974   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2975   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2976 }
2977 
2978 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective(
2979     const OMPDistributeParallelForSimdDirective &S) {
2980   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2981     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
2982                               S.getDistInc());
2983   };
2984   OMPLexicalScope Scope(*this, S, OMPD_parallel);
2985   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
2986 }
2987 
2988 void CodeGenFunction::EmitOMPDistributeSimdDirective(
2989     const OMPDistributeSimdDirective &S) {
2990   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
2991     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
2992   };
2993   OMPLexicalScope Scope(*this, S, OMPD_unknown);
2994   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
2995 }
2996 
2997 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
2998     CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) {
2999   // Emit SPMD target parallel for region as a standalone region.
3000   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3001     emitOMPSimdRegion(CGF, S, Action);
3002   };
3003   llvm::Function *Fn;
3004   llvm::Constant *Addr;
3005   // Emit target region as a standalone region.
3006   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
3007       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
3008   assert(Fn && Addr && "Target device function emission failed.");
3009 }
3010 
3011 void CodeGenFunction::EmitOMPTargetSimdDirective(
3012     const OMPTargetSimdDirective &S) {
3013   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3014     emitOMPSimdRegion(CGF, S, Action);
3015   };
3016   emitCommonOMPTargetDirective(*this, S, CodeGen);
3017 }
3018 
3019 namespace {
3020   struct ScheduleKindModifiersTy {
3021     OpenMPScheduleClauseKind Kind;
3022     OpenMPScheduleClauseModifier M1;
3023     OpenMPScheduleClauseModifier M2;
3024     ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
3025                             OpenMPScheduleClauseModifier M1,
3026                             OpenMPScheduleClauseModifier M2)
3027         : Kind(Kind), M1(M1), M2(M2) {}
3028   };
3029 } // namespace
3030 
3031 bool CodeGenFunction::EmitOMPWorksharingLoop(
3032     const OMPLoopDirective &S, Expr *EUB,
3033     const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3034     const CodeGenDispatchBoundsTy &CGDispatchBounds) {
3035   // Emit the loop iteration variable.
3036   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
3037   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
3038   EmitVarDecl(*IVDecl);
3039 
3040   // Emit the iterations count variable.
3041   // If it is not a variable, Sema decided to calculate iterations count on each
3042   // iteration (e.g., it is foldable into a constant).
3043   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
3044     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
3045     // Emit calculation of the iterations count.
3046     EmitIgnoredExpr(S.getCalcLastIteration());
3047   }
3048 
3049   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
3050 
3051   bool HasLastprivateClause;
3052   // Check pre-condition.
3053   {
3054     OMPLoopScope PreInitScope(*this, S);
3055     // Skip the entire loop if we don't meet the precondition.
3056     // If the condition constant folds and can be elided, avoid emitting the
3057     // whole loop.
3058     bool CondConstant;
3059     llvm::BasicBlock *ContBlock = nullptr;
3060     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
3061       if (!CondConstant)
3062         return false;
3063     } else {
3064       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
3065       ContBlock = createBasicBlock("omp.precond.end");
3066       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
3067                   getProfileCount(&S));
3068       EmitBlock(ThenBlock);
3069       incrementProfileCounter(&S);
3070     }
3071 
3072     RunCleanupsScope DoacrossCleanupScope(*this);
3073     bool Ordered = false;
3074     if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) {
3075       if (OrderedClause->getNumForLoops())
3076         RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations());
3077       else
3078         Ordered = true;
3079     }
3080 
3081     llvm::DenseSet<const Expr *> EmittedFinals;
3082     emitAlignedClause(*this, S);
3083     bool HasLinears = EmitOMPLinearClauseInit(S);
3084     // Emit helper vars inits.
3085 
3086     std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S);
3087     LValue LB = Bounds.first;
3088     LValue UB = Bounds.second;
3089     LValue ST =
3090         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
3091     LValue IL =
3092         EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
3093 
3094     // Emit 'then' code.
3095     {
3096       OMPPrivateScope LoopScope(*this);
3097       if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) {
3098         // Emit implicit barrier to synchronize threads and avoid data races on
3099         // initialization of firstprivate variables and post-update of
3100         // lastprivate variables.
3101         CGM.getOpenMPRuntime().emitBarrierCall(
3102             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3103             /*ForceSimpleCall=*/true);
3104       }
3105       EmitOMPPrivateClause(S, LoopScope);
3106       CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(
3107           *this, S, EmitLValue(S.getIterationVariable()));
3108       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
3109       EmitOMPReductionClauseInit(S, LoopScope);
3110       EmitOMPPrivateLoopCounters(S, LoopScope);
3111       EmitOMPLinearClause(S, LoopScope);
3112       (void)LoopScope.Privatize();
3113       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3114         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
3115 
3116       // Detect the loop schedule kind and chunk.
3117       const Expr *ChunkExpr = nullptr;
3118       OpenMPScheduleTy ScheduleKind;
3119       if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
3120         ScheduleKind.Schedule = C->getScheduleKind();
3121         ScheduleKind.M1 = C->getFirstScheduleModifier();
3122         ScheduleKind.M2 = C->getSecondScheduleModifier();
3123         ChunkExpr = C->getChunkSize();
3124       } else {
3125         // Default behaviour for schedule clause.
3126         CGM.getOpenMPRuntime().getDefaultScheduleAndChunk(
3127             *this, S, ScheduleKind.Schedule, ChunkExpr);
3128       }
3129       bool HasChunkSizeOne = false;
3130       llvm::Value *Chunk = nullptr;
3131       if (ChunkExpr) {
3132         Chunk = EmitScalarExpr(ChunkExpr);
3133         Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(),
3134                                      S.getIterationVariable()->getType(),
3135                                      S.getBeginLoc());
3136         Expr::EvalResult Result;
3137         if (ChunkExpr->EvaluateAsInt(Result, getContext())) {
3138           llvm::APSInt EvaluatedChunk = Result.Val.getInt();
3139           HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1);
3140         }
3141       }
3142       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
3143       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
3144       // OpenMP 4.5, 2.7.1 Loop Construct, Description.
3145       // If the static schedule kind is specified or if the ordered clause is
3146       // specified, and if no monotonic modifier is specified, the effect will
3147       // be as if the monotonic modifier was specified.
3148       bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule,
3149           /* Chunked */ Chunk != nullptr) && HasChunkSizeOne &&
3150           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
3151       bool IsMonotonic =
3152           Ordered ||
3153           ((ScheduleKind.Schedule == OMPC_SCHEDULE_static ||
3154             ScheduleKind.Schedule == OMPC_SCHEDULE_unknown) &&
3155            !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic ||
3156              ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) ||
3157           ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
3158           ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
3159       if ((RT.isStaticNonchunked(ScheduleKind.Schedule,
3160                                  /* Chunked */ Chunk != nullptr) ||
3161            StaticChunkedOne) &&
3162           !Ordered) {
3163         JumpDest LoopExit =
3164             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
3165         emitCommonSimdLoop(
3166             *this, S,
3167             [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) {
3168               if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3169                 CGF.EmitOMPSimdInit(S, IsMonotonic);
3170               } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) {
3171                 if (C->getKind() == OMPC_ORDER_concurrent)
3172                   CGF.LoopStack.setParallel(/*Enable=*/true);
3173               }
3174             },
3175             [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk,
3176              &S, ScheduleKind, LoopExit,
3177              &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
3178               // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
3179               // When no chunk_size is specified, the iteration space is divided
3180               // into chunks that are approximately equal in size, and at most
3181               // one chunk is distributed to each thread. Note that the size of
3182               // the chunks is unspecified in this case.
3183               CGOpenMPRuntime::StaticRTInput StaticInit(
3184                   IVSize, IVSigned, Ordered, IL.getAddress(CGF),
3185                   LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF),
3186                   StaticChunkedOne ? Chunk : nullptr);
3187               CGF.CGM.getOpenMPRuntime().emitForStaticInit(
3188                   CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind,
3189                   StaticInit);
3190               // UB = min(UB, GlobalUB);
3191               if (!StaticChunkedOne)
3192                 CGF.EmitIgnoredExpr(S.getEnsureUpperBound());
3193               // IV = LB;
3194               CGF.EmitIgnoredExpr(S.getInit());
3195               // For unchunked static schedule generate:
3196               //
3197               // while (idx <= UB) {
3198               //   BODY;
3199               //   ++idx;
3200               // }
3201               //
3202               // For static schedule with chunk one:
3203               //
3204               // while (IV <= PrevUB) {
3205               //   BODY;
3206               //   IV += ST;
3207               // }
3208               CGF.EmitOMPInnerLoop(
3209                   S, LoopScope.requiresCleanups(),
3210                   StaticChunkedOne ? S.getCombinedParForInDistCond()
3211                                    : S.getCond(),
3212                   StaticChunkedOne ? S.getDistInc() : S.getInc(),
3213                   [&S, LoopExit](CodeGenFunction &CGF) {
3214                     emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit);
3215                   },
3216                   [](CodeGenFunction &) {});
3217             });
3218         EmitBlock(LoopExit.getBlock());
3219         // Tell the runtime we are done.
3220         auto &&CodeGen = [&S](CodeGenFunction &CGF) {
3221           CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
3222                                                          S.getDirectiveKind());
3223         };
3224         OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen);
3225       } else {
3226         // Emit the outer loop, which requests its work chunk [LB..UB] from
3227         // runtime and runs the inner loop to process it.
3228         const OMPLoopArguments LoopArguments(
3229             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
3230             IL.getAddress(*this), Chunk, EUB);
3231         EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
3232                             LoopArguments, CGDispatchBounds);
3233       }
3234       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
3235         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
3236           return CGF.Builder.CreateIsNotNull(
3237               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3238         });
3239       }
3240       EmitOMPReductionClauseFinal(
3241           S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind())
3242                  ? /*Parallel and Simd*/ OMPD_parallel_for_simd
3243                  : /*Parallel only*/ OMPD_parallel);
3244       // Emit post-update of the reduction variables if IsLastIter != 0.
3245       emitPostUpdateForReductionClause(
3246           *this, S, [IL, &S](CodeGenFunction &CGF) {
3247             return CGF.Builder.CreateIsNotNull(
3248                 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3249           });
3250       // Emit final copy of the lastprivate variables if IsLastIter != 0.
3251       if (HasLastprivateClause)
3252         EmitOMPLastprivateClauseFinal(
3253             S, isOpenMPSimdDirective(S.getDirectiveKind()),
3254             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
3255     }
3256     EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) {
3257       return CGF.Builder.CreateIsNotNull(
3258           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3259     });
3260     DoacrossCleanupScope.ForceCleanup();
3261     // We're now done with the loop, so jump to the continuation block.
3262     if (ContBlock) {
3263       EmitBranch(ContBlock);
3264       EmitBlock(ContBlock, /*IsFinished=*/true);
3265     }
3266   }
3267   return HasLastprivateClause;
3268 }
3269 
3270 /// The following two functions generate expressions for the loop lower
3271 /// and upper bounds in case of static and dynamic (dispatch) schedule
3272 /// of the associated 'for' or 'distribute' loop.
3273 static std::pair<LValue, LValue>
3274 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3275   const auto &LS = cast<OMPLoopDirective>(S);
3276   LValue LB =
3277       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable()));
3278   LValue UB =
3279       EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable()));
3280   return {LB, UB};
3281 }
3282 
3283 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not
3284 /// consider the lower and upper bound expressions generated by the
3285 /// worksharing loop support, but we use 0 and the iteration space size as
3286 /// constants
3287 static std::pair<llvm::Value *, llvm::Value *>
3288 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S,
3289                           Address LB, Address UB) {
3290   const auto &LS = cast<OMPLoopDirective>(S);
3291   const Expr *IVExpr = LS.getIterationVariable();
3292   const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType());
3293   llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0);
3294   llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration());
3295   return {LBVal, UBVal};
3296 }
3297 
3298 /// Emits the code for the directive with inscan reductions.
3299 /// The code is the following:
3300 /// \code
3301 /// size num_iters = <num_iters>;
3302 /// <type> buffer[num_iters];
3303 /// #pragma omp ...
3304 /// for (i: 0..<num_iters>) {
3305 ///   <input phase>;
3306 ///   buffer[i] = red;
3307 /// }
3308 /// for (int k = 0; k != ceil(log2(num_iters)); ++k)
3309 /// for (size cnt = last_iter; cnt >= pow(2, k); --k)
3310 ///   buffer[i] op= buffer[i-pow(2,k)];
3311 /// #pragma omp ...
3312 /// for (0..<num_iters>) {
3313 ///   red = InclusiveScan ? buffer[i] : buffer[i-1];
3314 ///   <scan phase>;
3315 /// }
3316 /// \endcode
3317 static void emitScanBasedDirective(
3318     CodeGenFunction &CGF, const OMPLoopDirective &S,
3319     llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen,
3320     llvm::function_ref<void(CodeGenFunction &)> FirstGen,
3321     llvm::function_ref<void(CodeGenFunction &)> SecondGen) {
3322   llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast(
3323       NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false);
3324   SmallVector<const Expr *, 4> Shareds;
3325   SmallVector<const Expr *, 4> Privates;
3326   SmallVector<const Expr *, 4> ReductionOps;
3327   SmallVector<const Expr *, 4> LHSs;
3328   SmallVector<const Expr *, 4> RHSs;
3329   SmallVector<const Expr *, 4> CopyOps;
3330   SmallVector<const Expr *, 4> CopyArrayTemps;
3331   SmallVector<const Expr *, 4> CopyArrayElems;
3332   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
3333     assert(C->getModifier() == OMPC_REDUCTION_inscan &&
3334            "Only inscan reductions are expected.");
3335     Shareds.append(C->varlist_begin(), C->varlist_end());
3336     Privates.append(C->privates().begin(), C->privates().end());
3337     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
3338     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
3339     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
3340     CopyOps.append(C->copy_ops().begin(), C->copy_ops().end());
3341     CopyArrayTemps.append(C->copy_array_temps().begin(),
3342                           C->copy_array_temps().end());
3343     CopyArrayElems.append(C->copy_array_elems().begin(),
3344                           C->copy_array_elems().end());
3345   }
3346   {
3347     // Emit buffers for each reduction variables.
3348     // ReductionCodeGen is required to emit correctly the code for array
3349     // reductions.
3350     ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps);
3351     unsigned Count = 0;
3352     auto *ITA = CopyArrayTemps.begin();
3353     for (const Expr *IRef : Privates) {
3354       const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
3355       // Emit variably modified arrays, used for arrays/array sections
3356       // reductions.
3357       if (PrivateVD->getType()->isVariablyModifiedType()) {
3358         RedCG.emitSharedOrigLValue(CGF, Count);
3359         RedCG.emitAggregateType(CGF, Count);
3360       }
3361       CodeGenFunction::OpaqueValueMapping DimMapping(
3362           CGF,
3363           cast<OpaqueValueExpr>(
3364               cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe())
3365                   ->getSizeExpr()),
3366           RValue::get(OMPScanNumIterations));
3367       // Emit temp buffer.
3368       CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl()));
3369       ++ITA;
3370       ++Count;
3371     }
3372   }
3373   CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S);
3374   {
3375     // Emit loop with input phase:
3376     // #pragma omp ...
3377     // for (i: 0..<num_iters>) {
3378     //   <input phase>;
3379     //   buffer[i] = red;
3380     // }
3381     CGF.OMPFirstScanLoop = true;
3382     CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
3383     FirstGen(CGF);
3384   }
3385   // Emit prefix reduction:
3386   // for (int k = 0; k <= ceil(log2(n)); ++k)
3387   llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock();
3388   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body");
3389   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit");
3390   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy);
3391   llvm::Value *Arg =
3392       CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy);
3393   llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg);
3394   F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy);
3395   LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal);
3396   LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy);
3397   llvm::Value *NMin1 = CGF.Builder.CreateNUWSub(
3398       OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1));
3399   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc());
3400   CGF.EmitBlock(LoopBB);
3401   auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2);
3402   // size pow2k = 1;
3403   auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2);
3404   Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB);
3405   Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB);
3406   // for (size i = n - 1; i >= 2 ^ k; --i)
3407   //   tmp[i] op= tmp[i-pow2k];
3408   llvm::BasicBlock *InnerLoopBB =
3409       CGF.createBasicBlock("omp.inner.log.scan.body");
3410   llvm::BasicBlock *InnerExitBB =
3411       CGF.createBasicBlock("omp.inner.log.scan.exit");
3412   llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K);
3413   CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB);
3414   CGF.EmitBlock(InnerLoopBB);
3415   auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2);
3416   IVal->addIncoming(NMin1, LoopBB);
3417   {
3418     CodeGenFunction::OMPPrivateScope PrivScope(CGF);
3419     auto *ILHS = LHSs.begin();
3420     auto *IRHS = RHSs.begin();
3421     for (const Expr *CopyArrayElem : CopyArrayElems) {
3422       const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
3423       const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
3424       Address LHSAddr = Address::invalid();
3425       {
3426         CodeGenFunction::OpaqueValueMapping IdxMapping(
3427             CGF,
3428             cast<OpaqueValueExpr>(
3429                 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
3430             RValue::get(IVal));
3431         LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF);
3432       }
3433       PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; });
3434       Address RHSAddr = Address::invalid();
3435       {
3436         llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K);
3437         CodeGenFunction::OpaqueValueMapping IdxMapping(
3438             CGF,
3439             cast<OpaqueValueExpr>(
3440                 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
3441             RValue::get(OffsetIVal));
3442         RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF);
3443       }
3444       PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; });
3445       ++ILHS;
3446       ++IRHS;
3447     }
3448     PrivScope.Privatize();
3449     CGF.CGM.getOpenMPRuntime().emitReduction(
3450         CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps,
3451         {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown});
3452   }
3453   llvm::Value *NextIVal =
3454       CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1));
3455   IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock());
3456   CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K);
3457   CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB);
3458   CGF.EmitBlock(InnerExitBB);
3459   llvm::Value *Next =
3460       CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1));
3461   Counter->addIncoming(Next, CGF.Builder.GetInsertBlock());
3462   // pow2k <<= 1;
3463   llvm::Value *NextPow2K = CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true);
3464   Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock());
3465   llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal);
3466   CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB);
3467   auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc());
3468   CGF.EmitBlock(ExitBB);
3469 
3470   CGF.OMPFirstScanLoop = false;
3471   SecondGen(CGF);
3472 }
3473 
3474 static bool emitWorksharingDirective(CodeGenFunction &CGF,
3475                                      const OMPLoopDirective &S,
3476                                      bool HasCancel) {
3477   bool HasLastprivates;
3478   if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(),
3479                    [](const OMPReductionClause *C) {
3480                      return C->getModifier() == OMPC_REDUCTION_inscan;
3481                    })) {
3482     const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) {
3483       CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF);
3484       OMPLoopScope LoopScope(CGF, S);
3485       return CGF.EmitScalarExpr(S.getNumIterations());
3486     };
3487     const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) {
3488       CodeGenFunction::OMPCancelStackRAII CancelRegion(
3489           CGF, S.getDirectiveKind(), HasCancel);
3490       (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3491                                        emitForLoopBounds,
3492                                        emitDispatchForLoopBounds);
3493       // Emit an implicit barrier at the end.
3494       CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(),
3495                                                  OMPD_for);
3496     };
3497     const auto &&SecondGen = [&S, HasCancel,
3498                               &HasLastprivates](CodeGenFunction &CGF) {
3499       CodeGenFunction::OMPCancelStackRAII CancelRegion(
3500           CGF, S.getDirectiveKind(), HasCancel);
3501       HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3502                                                    emitForLoopBounds,
3503                                                    emitDispatchForLoopBounds);
3504     };
3505     emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen);
3506   } else {
3507     CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(),
3508                                                      HasCancel);
3509     HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(),
3510                                                  emitForLoopBounds,
3511                                                  emitDispatchForLoopBounds);
3512   }
3513   return HasLastprivates;
3514 }
3515 
3516 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) {
3517   if (S.hasCancel())
3518     return false;
3519   for (OMPClause *C : S.clauses())
3520     if (!isa<OMPNowaitClause>(C))
3521       return false;
3522 
3523   return true;
3524 }
3525 
3526 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
3527   bool HasLastprivates = false;
3528   bool UseOMPIRBuilder =
3529       CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S);
3530   auto &&CodeGen = [this, &S, &HasLastprivates,
3531                     UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) {
3532     // Use the OpenMPIRBuilder if enabled.
3533     if (UseOMPIRBuilder) {
3534       // Emit the associated statement and get its loop representation.
3535       const Stmt *Inner = S.getRawStmt();
3536       llvm::CanonicalLoopInfo *CLI =
3537           EmitOMPCollapsedCanonicalLoopNest(Inner, 1);
3538 
3539       bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>();
3540       llvm::OpenMPIRBuilder &OMPBuilder =
3541           CGM.getOpenMPRuntime().getOMPBuilder();
3542       llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
3543           AllocaInsertPt->getParent(), AllocaInsertPt->getIterator());
3544       OMPBuilder.createWorkshareLoop(Builder, CLI, AllocaIP, NeedsBarrier);
3545       return;
3546     }
3547 
3548     HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel());
3549   };
3550   {
3551     auto LPCRegion =
3552         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3553     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3554     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
3555                                                 S.hasCancel());
3556   }
3557 
3558   if (!UseOMPIRBuilder) {
3559     // Emit an implicit barrier at the end.
3560     if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
3561       CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
3562   }
3563   // Check for outer lastprivate conditional update.
3564   checkForLastprivateConditionalUpdate(*this, S);
3565 }
3566 
3567 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
3568   bool HasLastprivates = false;
3569   auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF,
3570                                           PrePostActionTy &) {
3571     HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false);
3572   };
3573   {
3574     auto LPCRegion =
3575         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3576     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3577     CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
3578   }
3579 
3580   // Emit an implicit barrier at the end.
3581   if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates)
3582     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for);
3583   // Check for outer lastprivate conditional update.
3584   checkForLastprivateConditionalUpdate(*this, S);
3585 }
3586 
3587 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
3588                                 const Twine &Name,
3589                                 llvm::Value *Init = nullptr) {
3590   LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
3591   if (Init)
3592     CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true);
3593   return LVal;
3594 }
3595 
3596 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
3597   const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt();
3598   const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt);
3599   bool HasLastprivates = false;
3600   auto &&CodeGen = [&S, CapturedStmt, CS,
3601                     &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) {
3602     const ASTContext &C = CGF.getContext();
3603     QualType KmpInt32Ty =
3604         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
3605     // Emit helper vars inits.
3606     LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
3607                                   CGF.Builder.getInt32(0));
3608     llvm::ConstantInt *GlobalUBVal = CS != nullptr
3609                                          ? CGF.Builder.getInt32(CS->size() - 1)
3610                                          : CGF.Builder.getInt32(0);
3611     LValue UB =
3612         createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
3613     LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
3614                                   CGF.Builder.getInt32(1));
3615     LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
3616                                   CGF.Builder.getInt32(0));
3617     // Loop counter.
3618     LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
3619     OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
3620     CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
3621     OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue);
3622     CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
3623     // Generate condition for loop.
3624     BinaryOperator *Cond = BinaryOperator::Create(
3625         C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, OK_Ordinary,
3626         S.getBeginLoc(), FPOptionsOverride());
3627     // Increment for loop counter.
3628     UnaryOperator *Inc = UnaryOperator::Create(
3629         C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
3630         S.getBeginLoc(), true, FPOptionsOverride());
3631     auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) {
3632       // Iterate through all sections and emit a switch construct:
3633       // switch (IV) {
3634       //   case 0:
3635       //     <SectionStmt[0]>;
3636       //     break;
3637       // ...
3638       //   case <NumSection> - 1:
3639       //     <SectionStmt[<NumSection> - 1]>;
3640       //     break;
3641       // }
3642       // .omp.sections.exit:
3643       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
3644       llvm::SwitchInst *SwitchStmt =
3645           CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()),
3646                                    ExitBB, CS == nullptr ? 1 : CS->size());
3647       if (CS) {
3648         unsigned CaseNumber = 0;
3649         for (const Stmt *SubStmt : CS->children()) {
3650           auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
3651           CGF.EmitBlock(CaseBB);
3652           SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
3653           CGF.EmitStmt(SubStmt);
3654           CGF.EmitBranch(ExitBB);
3655           ++CaseNumber;
3656         }
3657       } else {
3658         llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case");
3659         CGF.EmitBlock(CaseBB);
3660         SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
3661         CGF.EmitStmt(CapturedStmt);
3662         CGF.EmitBranch(ExitBB);
3663       }
3664       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3665     };
3666 
3667     CodeGenFunction::OMPPrivateScope LoopScope(CGF);
3668     if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
3669       // Emit implicit barrier to synchronize threads and avoid data races on
3670       // initialization of firstprivate variables and post-update of lastprivate
3671       // variables.
3672       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
3673           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
3674           /*ForceSimpleCall=*/true);
3675     }
3676     CGF.EmitOMPPrivateClause(S, LoopScope);
3677     CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV);
3678     HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
3679     CGF.EmitOMPReductionClauseInit(S, LoopScope);
3680     (void)LoopScope.Privatize();
3681     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
3682       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
3683 
3684     // Emit static non-chunked loop.
3685     OpenMPScheduleTy ScheduleKind;
3686     ScheduleKind.Schedule = OMPC_SCHEDULE_static;
3687     CGOpenMPRuntime::StaticRTInput StaticInit(
3688         /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF),
3689         LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF));
3690     CGF.CGM.getOpenMPRuntime().emitForStaticInit(
3691         CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit);
3692     // UB = min(UB, GlobalUB);
3693     llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc());
3694     llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect(
3695         CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
3696     CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
3697     // IV = LB;
3698     CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV);
3699     // while (idx <= UB) { BODY; ++idx; }
3700     CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen,
3701                          [](CodeGenFunction &) {});
3702     // Tell the runtime we are done.
3703     auto &&CodeGen = [&S](CodeGenFunction &CGF) {
3704       CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(),
3705                                                      S.getDirectiveKind());
3706     };
3707     CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen);
3708     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
3709     // Emit post-update of the reduction variables if IsLastIter != 0.
3710     emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) {
3711       return CGF.Builder.CreateIsNotNull(
3712           CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
3713     });
3714 
3715     // Emit final copy of the lastprivate variables if IsLastIter != 0.
3716     if (HasLastprivates)
3717       CGF.EmitOMPLastprivateClauseFinal(
3718           S, /*NoFinals=*/false,
3719           CGF.Builder.CreateIsNotNull(
3720               CGF.EmitLoadOfScalar(IL, S.getBeginLoc())));
3721   };
3722 
3723   bool HasCancel = false;
3724   if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
3725     HasCancel = OSD->hasCancel();
3726   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
3727     HasCancel = OPSD->hasCancel();
3728   OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel);
3729   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
3730                                               HasCancel);
3731   // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
3732   // clause. Otherwise the barrier will be generated by the codegen for the
3733   // directive.
3734   if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
3735     // Emit implicit barrier to synchronize threads and avoid data races on
3736     // initialization of firstprivate variables.
3737     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
3738                                            OMPD_unknown);
3739   }
3740 }
3741 
3742 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
3743   {
3744     auto LPCRegion =
3745         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3746     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3747     EmitSections(S);
3748   }
3749   // Emit an implicit barrier at the end.
3750   if (!S.getSingleClause<OMPNowaitClause>()) {
3751     CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(),
3752                                            OMPD_sections);
3753   }
3754   // Check for outer lastprivate conditional update.
3755   checkForLastprivateConditionalUpdate(*this, S);
3756 }
3757 
3758 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
3759   LexicalScope Scope(*this, S.getSourceRange());
3760   EmitStopPoint(&S);
3761   EmitStmt(S.getAssociatedStmt());
3762 }
3763 
3764 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
3765   llvm::SmallVector<const Expr *, 8> CopyprivateVars;
3766   llvm::SmallVector<const Expr *, 8> DestExprs;
3767   llvm::SmallVector<const Expr *, 8> SrcExprs;
3768   llvm::SmallVector<const Expr *, 8> AssignmentOps;
3769   // Check if there are any 'copyprivate' clauses associated with this
3770   // 'single' construct.
3771   // Build a list of copyprivate variables along with helper expressions
3772   // (<source>, <destination>, <destination>=<source> expressions)
3773   for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
3774     CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
3775     DestExprs.append(C->destination_exprs().begin(),
3776                      C->destination_exprs().end());
3777     SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
3778     AssignmentOps.append(C->assignment_ops().begin(),
3779                          C->assignment_ops().end());
3780   }
3781   // Emit code for 'single' region along with 'copyprivate' clauses
3782   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3783     Action.Enter(CGF);
3784     OMPPrivateScope SingleScope(CGF);
3785     (void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
3786     CGF.EmitOMPPrivateClause(S, SingleScope);
3787     (void)SingleScope.Privatize();
3788     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
3789   };
3790   {
3791     auto LPCRegion =
3792         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3793     OMPLexicalScope Scope(*this, S, OMPD_unknown);
3794     CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(),
3795                                             CopyprivateVars, DestExprs,
3796                                             SrcExprs, AssignmentOps);
3797   }
3798   // Emit an implicit barrier at the end (to avoid data race on firstprivate
3799   // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
3800   if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
3801     CGM.getOpenMPRuntime().emitBarrierCall(
3802         *this, S.getBeginLoc(),
3803         S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
3804   }
3805   // Check for outer lastprivate conditional update.
3806   checkForLastprivateConditionalUpdate(*this, S);
3807 }
3808 
3809 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3810   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3811     Action.Enter(CGF);
3812     CGF.EmitStmt(S.getRawStmt());
3813   };
3814   CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc());
3815 }
3816 
3817 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
3818   if (CGM.getLangOpts().OpenMPIRBuilder) {
3819     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
3820     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
3821 
3822     const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt();
3823 
3824     auto FiniCB = [this](InsertPointTy IP) {
3825       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
3826     };
3827 
3828     auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP,
3829                                                   InsertPointTy CodeGenIP,
3830                                                   llvm::BasicBlock &FiniBB) {
3831       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
3832       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt,
3833                                              CodeGenIP, FiniBB);
3834     };
3835 
3836     LexicalScope Scope(*this, S.getSourceRange());
3837     EmitStopPoint(&S);
3838     Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB));
3839 
3840     return;
3841   }
3842   LexicalScope Scope(*this, S.getSourceRange());
3843   EmitStopPoint(&S);
3844   emitMaster(*this, S);
3845 }
3846 
3847 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
3848   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3849     Action.Enter(CGF);
3850     CGF.EmitStmt(S.getRawStmt());
3851   };
3852   Expr *Filter = nullptr;
3853   if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>())
3854     Filter = FilterClause->getThreadID();
3855   CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(),
3856                                               Filter);
3857 }
3858 
3859 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) {
3860   if (CGM.getLangOpts().OpenMPIRBuilder) {
3861     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
3862     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
3863 
3864     const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt();
3865     const Expr *Filter = nullptr;
3866     if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>())
3867       Filter = FilterClause->getThreadID();
3868     llvm::Value *FilterVal = Filter
3869                                  ? EmitScalarExpr(Filter, CGM.Int32Ty)
3870                                  : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0);
3871 
3872     auto FiniCB = [this](InsertPointTy IP) {
3873       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
3874     };
3875 
3876     auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP,
3877                                                   InsertPointTy CodeGenIP,
3878                                                   llvm::BasicBlock &FiniBB) {
3879       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
3880       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt,
3881                                              CodeGenIP, FiniBB);
3882     };
3883 
3884     LexicalScope Scope(*this, S.getSourceRange());
3885     EmitStopPoint(&S);
3886     Builder.restoreIP(
3887         OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal));
3888 
3889     return;
3890   }
3891   LexicalScope Scope(*this, S.getSourceRange());
3892   EmitStopPoint(&S);
3893   emitMasked(*this, S);
3894 }
3895 
3896 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
3897   if (CGM.getLangOpts().OpenMPIRBuilder) {
3898     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
3899     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
3900 
3901     const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt();
3902     const Expr *Hint = nullptr;
3903     if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
3904       Hint = HintClause->getHint();
3905 
3906     // TODO: This is slightly different from what's currently being done in
3907     // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything
3908     // about typing is final.
3909     llvm::Value *HintInst = nullptr;
3910     if (Hint)
3911       HintInst =
3912           Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false);
3913 
3914     auto FiniCB = [this](InsertPointTy IP) {
3915       OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP);
3916     };
3917 
3918     auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP,
3919                                                     InsertPointTy CodeGenIP,
3920                                                     llvm::BasicBlock &FiniBB) {
3921       OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB);
3922       OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt,
3923                                              CodeGenIP, FiniBB);
3924     };
3925 
3926     LexicalScope Scope(*this, S.getSourceRange());
3927     EmitStopPoint(&S);
3928     Builder.restoreIP(OMPBuilder.createCritical(
3929         Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(),
3930         HintInst));
3931 
3932     return;
3933   }
3934 
3935   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3936     Action.Enter(CGF);
3937     CGF.EmitStmt(S.getAssociatedStmt());
3938   };
3939   const Expr *Hint = nullptr;
3940   if (const auto *HintClause = S.getSingleClause<OMPHintClause>())
3941     Hint = HintClause->getHint();
3942   LexicalScope Scope(*this, S.getSourceRange());
3943   EmitStopPoint(&S);
3944   CGM.getOpenMPRuntime().emitCriticalRegion(*this,
3945                                             S.getDirectiveName().getAsString(),
3946                                             CodeGen, S.getBeginLoc(), Hint);
3947 }
3948 
3949 void CodeGenFunction::EmitOMPParallelForDirective(
3950     const OMPParallelForDirective &S) {
3951   // Emit directive as a combined directive that consists of two implicit
3952   // directives: 'parallel' with 'for' directive.
3953   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3954     Action.Enter(CGF);
3955     (void)emitWorksharingDirective(CGF, S, S.hasCancel());
3956   };
3957   {
3958     auto LPCRegion =
3959         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3960     emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen,
3961                                    emitEmptyBoundParameters);
3962   }
3963   // Check for outer lastprivate conditional update.
3964   checkForLastprivateConditionalUpdate(*this, S);
3965 }
3966 
3967 void CodeGenFunction::EmitOMPParallelForSimdDirective(
3968     const OMPParallelForSimdDirective &S) {
3969   // Emit directive as a combined directive that consists of two implicit
3970   // directives: 'parallel' with 'for' directive.
3971   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3972     Action.Enter(CGF);
3973     (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false);
3974   };
3975   {
3976     auto LPCRegion =
3977         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
3978     emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen,
3979                                    emitEmptyBoundParameters);
3980   }
3981   // Check for outer lastprivate conditional update.
3982   checkForLastprivateConditionalUpdate(*this, S);
3983 }
3984 
3985 void CodeGenFunction::EmitOMPParallelMasterDirective(
3986     const OMPParallelMasterDirective &S) {
3987   // Emit directive as a combined directive that consists of two implicit
3988   // directives: 'parallel' with 'master' directive.
3989   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
3990     Action.Enter(CGF);
3991     OMPPrivateScope PrivateScope(CGF);
3992     bool Copyins = CGF.EmitOMPCopyinClause(S);
3993     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
3994     if (Copyins) {
3995       // Emit implicit barrier to synchronize threads and avoid data races on
3996       // propagation master's thread values of threadprivate variables to local
3997       // instances of that variables of all other implicit threads.
3998       CGF.CGM.getOpenMPRuntime().emitBarrierCall(
3999           CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
4000           /*ForceSimpleCall=*/true);
4001     }
4002     CGF.EmitOMPPrivateClause(S, PrivateScope);
4003     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
4004     (void)PrivateScope.Privatize();
4005     emitMaster(CGF, S);
4006     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
4007   };
4008   {
4009     auto LPCRegion =
4010         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
4011     emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen,
4012                                    emitEmptyBoundParameters);
4013     emitPostUpdateForReductionClause(*this, S,
4014                                      [](CodeGenFunction &) { return nullptr; });
4015   }
4016   // Check for outer lastprivate conditional update.
4017   checkForLastprivateConditionalUpdate(*this, S);
4018 }
4019 
4020 void CodeGenFunction::EmitOMPParallelSectionsDirective(
4021     const OMPParallelSectionsDirective &S) {
4022   // Emit directive as a combined directive that consists of two implicit
4023   // directives: 'parallel' with 'sections' directive.
4024   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4025     Action.Enter(CGF);
4026     CGF.EmitSections(S);
4027   };
4028   {
4029     auto LPCRegion =
4030         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
4031     emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen,
4032                                    emitEmptyBoundParameters);
4033   }
4034   // Check for outer lastprivate conditional update.
4035   checkForLastprivateConditionalUpdate(*this, S);
4036 }
4037 
4038 namespace {
4039 /// Get the list of variables declared in the context of the untied tasks.
4040 class CheckVarsEscapingUntiedTaskDeclContext final
4041     : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> {
4042   llvm::SmallVector<const VarDecl *, 4> PrivateDecls;
4043 
4044 public:
4045   explicit CheckVarsEscapingUntiedTaskDeclContext() = default;
4046   virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default;
4047   void VisitDeclStmt(const DeclStmt *S) {
4048     if (!S)
4049       return;
4050     // Need to privatize only local vars, static locals can be processed as is.
4051     for (const Decl *D : S->decls()) {
4052       if (const auto *VD = dyn_cast_or_null<VarDecl>(D))
4053         if (VD->hasLocalStorage())
4054           PrivateDecls.push_back(VD);
4055     }
4056   }
4057   void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; }
4058   void VisitCapturedStmt(const CapturedStmt *) { return; }
4059   void VisitLambdaExpr(const LambdaExpr *) { return; }
4060   void VisitBlockExpr(const BlockExpr *) { return; }
4061   void VisitStmt(const Stmt *S) {
4062     if (!S)
4063       return;
4064     for (const Stmt *Child : S->children())
4065       if (Child)
4066         Visit(Child);
4067   }
4068 
4069   /// Swaps list of vars with the provided one.
4070   ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; }
4071 };
4072 } // anonymous namespace
4073 
4074 void CodeGenFunction::EmitOMPTaskBasedDirective(
4075     const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion,
4076     const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen,
4077     OMPTaskDataTy &Data) {
4078   // Emit outlined function for task construct.
4079   const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion);
4080   auto I = CS->getCapturedDecl()->param_begin();
4081   auto PartId = std::next(I);
4082   auto TaskT = std::next(I, 4);
4083   // Check if the task is final
4084   if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
4085     // If the condition constant folds and can be elided, try to avoid emitting
4086     // the condition and the dead arm of the if/else.
4087     const Expr *Cond = Clause->getCondition();
4088     bool CondConstant;
4089     if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
4090       Data.Final.setInt(CondConstant);
4091     else
4092       Data.Final.setPointer(EvaluateExprAsBool(Cond));
4093   } else {
4094     // By default the task is not final.
4095     Data.Final.setInt(/*IntVal=*/false);
4096   }
4097   // Check if the task has 'priority' clause.
4098   if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) {
4099     const Expr *Prio = Clause->getPriority();
4100     Data.Priority.setInt(/*IntVal=*/true);
4101     Data.Priority.setPointer(EmitScalarConversion(
4102         EmitScalarExpr(Prio), Prio->getType(),
4103         getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
4104         Prio->getExprLoc()));
4105   }
4106   // The first function argument for tasks is a thread id, the second one is a
4107   // part id (0 for tied tasks, >=0 for untied task).
4108   llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
4109   // Get list of private variables.
4110   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
4111     auto IRef = C->varlist_begin();
4112     for (const Expr *IInit : C->private_copies()) {
4113       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4114       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4115         Data.PrivateVars.push_back(*IRef);
4116         Data.PrivateCopies.push_back(IInit);
4117       }
4118       ++IRef;
4119     }
4120   }
4121   EmittedAsPrivate.clear();
4122   // Get list of firstprivate variables.
4123   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
4124     auto IRef = C->varlist_begin();
4125     auto IElemInitRef = C->inits().begin();
4126     for (const Expr *IInit : C->private_copies()) {
4127       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4128       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4129         Data.FirstprivateVars.push_back(*IRef);
4130         Data.FirstprivateCopies.push_back(IInit);
4131         Data.FirstprivateInits.push_back(*IElemInitRef);
4132       }
4133       ++IRef;
4134       ++IElemInitRef;
4135     }
4136   }
4137   // Get list of lastprivate variables (for taskloops).
4138   llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs;
4139   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
4140     auto IRef = C->varlist_begin();
4141     auto ID = C->destination_exprs().begin();
4142     for (const Expr *IInit : C->private_copies()) {
4143       const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
4144       if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
4145         Data.LastprivateVars.push_back(*IRef);
4146         Data.LastprivateCopies.push_back(IInit);
4147       }
4148       LastprivateDstsOrigs.insert(
4149           {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()),
4150            cast<DeclRefExpr>(*IRef)});
4151       ++IRef;
4152       ++ID;
4153     }
4154   }
4155   SmallVector<const Expr *, 4> LHSs;
4156   SmallVector<const Expr *, 4> RHSs;
4157   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
4158     Data.ReductionVars.append(C->varlist_begin(), C->varlist_end());
4159     Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
4160     Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
4161     Data.ReductionOps.append(C->reduction_ops().begin(),
4162                              C->reduction_ops().end());
4163     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4164     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4165   }
4166   Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit(
4167       *this, S.getBeginLoc(), LHSs, RHSs, Data);
4168   // Build list of dependences.
4169   for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
4170     OMPTaskDataTy::DependData &DD =
4171         Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier());
4172     DD.DepExprs.append(C->varlist_begin(), C->varlist_end());
4173   }
4174   // Get list of local vars for untied tasks.
4175   if (!Data.Tied) {
4176     CheckVarsEscapingUntiedTaskDeclContext Checker;
4177     Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt());
4178     Data.PrivateLocals.append(Checker.getPrivateDecls().begin(),
4179                               Checker.getPrivateDecls().end());
4180   }
4181   auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs,
4182                     CapturedRegion](CodeGenFunction &CGF,
4183                                     PrePostActionTy &Action) {
4184     llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, std::pair<Address, Address>>
4185         UntiedLocalVars;
4186     // Set proper addresses for generated private copies.
4187     OMPPrivateScope Scope(CGF);
4188     llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs;
4189     if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() ||
4190         !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) {
4191       enum { PrivatesParam = 2, CopyFnParam = 3 };
4192       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
4193           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
4194       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
4195           CS->getCapturedDecl()->getParam(PrivatesParam)));
4196       // Map privates.
4197       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
4198       llvm::SmallVector<llvm::Value *, 16> CallArgs;
4199       llvm::SmallVector<llvm::Type *, 4> ParamTypes;
4200       CallArgs.push_back(PrivatesPtr);
4201       ParamTypes.push_back(PrivatesPtr->getType());
4202       for (const Expr *E : Data.PrivateVars) {
4203         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4204         Address PrivatePtr = CGF.CreateMemTemp(
4205             CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr");
4206         PrivatePtrs.emplace_back(VD, PrivatePtr);
4207         CallArgs.push_back(PrivatePtr.getPointer());
4208         ParamTypes.push_back(PrivatePtr.getType());
4209       }
4210       for (const Expr *E : Data.FirstprivateVars) {
4211         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4212         Address PrivatePtr =
4213             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4214                               ".firstpriv.ptr.addr");
4215         PrivatePtrs.emplace_back(VD, PrivatePtr);
4216         FirstprivatePtrs.emplace_back(VD, PrivatePtr);
4217         CallArgs.push_back(PrivatePtr.getPointer());
4218         ParamTypes.push_back(PrivatePtr.getType());
4219       }
4220       for (const Expr *E : Data.LastprivateVars) {
4221         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4222         Address PrivatePtr =
4223             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4224                               ".lastpriv.ptr.addr");
4225         PrivatePtrs.emplace_back(VD, PrivatePtr);
4226         CallArgs.push_back(PrivatePtr.getPointer());
4227         ParamTypes.push_back(PrivatePtr.getType());
4228       }
4229       for (const VarDecl *VD : Data.PrivateLocals) {
4230         QualType Ty = VD->getType().getNonReferenceType();
4231         if (VD->getType()->isLValueReferenceType())
4232           Ty = CGF.getContext().getPointerType(Ty);
4233         if (isAllocatableDecl(VD))
4234           Ty = CGF.getContext().getPointerType(Ty);
4235         Address PrivatePtr = CGF.CreateMemTemp(
4236             CGF.getContext().getPointerType(Ty), ".local.ptr.addr");
4237         UntiedLocalVars.try_emplace(VD, PrivatePtr, Address::invalid());
4238         CallArgs.push_back(PrivatePtr.getPointer());
4239         ParamTypes.push_back(PrivatePtr.getType());
4240       }
4241       auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(),
4242                                                ParamTypes, /*isVarArg=*/false);
4243       CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4244           CopyFn, CopyFnTy->getPointerTo());
4245       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
4246           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
4247       for (const auto &Pair : LastprivateDstsOrigs) {
4248         const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl());
4249         DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD),
4250                         /*RefersToEnclosingVariableOrCapture=*/
4251                             CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
4252                         Pair.second->getType(), VK_LValue,
4253                         Pair.second->getExprLoc());
4254         Scope.addPrivate(Pair.first, [&CGF, &DRE]() {
4255           return CGF.EmitLValue(&DRE).getAddress(CGF);
4256         });
4257       }
4258       for (const auto &Pair : PrivatePtrs) {
4259         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4260                             CGF.getContext().getDeclAlign(Pair.first));
4261         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
4262       }
4263       // Adjust mapping for internal locals by mapping actual memory instead of
4264       // a pointer to this memory.
4265       for (auto &Pair : UntiedLocalVars) {
4266         if (isAllocatableDecl(Pair.first)) {
4267           llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first);
4268           Address Replacement(Ptr, CGF.getPointerAlign());
4269           Pair.getSecond().first = Replacement;
4270           Ptr = CGF.Builder.CreateLoad(Replacement);
4271           Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first));
4272           Pair.getSecond().second = Replacement;
4273         } else {
4274           llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first);
4275           Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first));
4276           Pair.getSecond().first = Replacement;
4277         }
4278       }
4279     }
4280     if (Data.Reductions) {
4281       OMPPrivateScope FirstprivateScope(CGF);
4282       for (const auto &Pair : FirstprivatePtrs) {
4283         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4284                             CGF.getContext().getDeclAlign(Pair.first));
4285         FirstprivateScope.addPrivate(Pair.first,
4286                                      [Replacement]() { return Replacement; });
4287       }
4288       (void)FirstprivateScope.Privatize();
4289       OMPLexicalScope LexScope(CGF, S, CapturedRegion);
4290       ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars,
4291                              Data.ReductionCopies, Data.ReductionOps);
4292       llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad(
4293           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9)));
4294       for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) {
4295         RedCG.emitSharedOrigLValue(CGF, Cnt);
4296         RedCG.emitAggregateType(CGF, Cnt);
4297         // FIXME: This must removed once the runtime library is fixed.
4298         // Emit required threadprivate variables for
4299         // initializer/combiner/finalizer.
4300         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
4301                                                            RedCG, Cnt);
4302         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
4303             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
4304         Replacement =
4305             Address(CGF.EmitScalarConversion(
4306                         Replacement.getPointer(), CGF.getContext().VoidPtrTy,
4307                         CGF.getContext().getPointerType(
4308                             Data.ReductionCopies[Cnt]->getType()),
4309                         Data.ReductionCopies[Cnt]->getExprLoc()),
4310                     Replacement.getAlignment());
4311         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
4312         Scope.addPrivate(RedCG.getBaseDecl(Cnt),
4313                          [Replacement]() { return Replacement; });
4314       }
4315     }
4316     // Privatize all private variables except for in_reduction items.
4317     (void)Scope.Privatize();
4318     SmallVector<const Expr *, 4> InRedVars;
4319     SmallVector<const Expr *, 4> InRedPrivs;
4320     SmallVector<const Expr *, 4> InRedOps;
4321     SmallVector<const Expr *, 4> TaskgroupDescriptors;
4322     for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) {
4323       auto IPriv = C->privates().begin();
4324       auto IRed = C->reduction_ops().begin();
4325       auto ITD = C->taskgroup_descriptors().begin();
4326       for (const Expr *Ref : C->varlists()) {
4327         InRedVars.emplace_back(Ref);
4328         InRedPrivs.emplace_back(*IPriv);
4329         InRedOps.emplace_back(*IRed);
4330         TaskgroupDescriptors.emplace_back(*ITD);
4331         std::advance(IPriv, 1);
4332         std::advance(IRed, 1);
4333         std::advance(ITD, 1);
4334       }
4335     }
4336     // Privatize in_reduction items here, because taskgroup descriptors must be
4337     // privatized earlier.
4338     OMPPrivateScope InRedScope(CGF);
4339     if (!InRedVars.empty()) {
4340       ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps);
4341       for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) {
4342         RedCG.emitSharedOrigLValue(CGF, Cnt);
4343         RedCG.emitAggregateType(CGF, Cnt);
4344         // The taskgroup descriptor variable is always implicit firstprivate and
4345         // privatized already during processing of the firstprivates.
4346         // FIXME: This must removed once the runtime library is fixed.
4347         // Emit required threadprivate variables for
4348         // initializer/combiner/finalizer.
4349         CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(),
4350                                                            RedCG, Cnt);
4351         llvm::Value *ReductionsPtr;
4352         if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) {
4353           ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr),
4354                                                TRExpr->getExprLoc());
4355         } else {
4356           ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4357         }
4358         Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem(
4359             CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt));
4360         Replacement = Address(
4361             CGF.EmitScalarConversion(
4362                 Replacement.getPointer(), CGF.getContext().VoidPtrTy,
4363                 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()),
4364                 InRedPrivs[Cnt]->getExprLoc()),
4365             Replacement.getAlignment());
4366         Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement);
4367         InRedScope.addPrivate(RedCG.getBaseDecl(Cnt),
4368                               [Replacement]() { return Replacement; });
4369       }
4370     }
4371     (void)InRedScope.Privatize();
4372 
4373     CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF,
4374                                                              UntiedLocalVars);
4375     Action.Enter(CGF);
4376     BodyGen(CGF);
4377   };
4378   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
4379       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied,
4380       Data.NumberOfParts);
4381   OMPLexicalScope Scope(*this, S, llvm::None,
4382                         !isOpenMPParallelDirective(S.getDirectiveKind()) &&
4383                             !isOpenMPSimdDirective(S.getDirectiveKind()));
4384   TaskGen(*this, OutlinedFn, Data);
4385 }
4386 
4387 static ImplicitParamDecl *
4388 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data,
4389                                   QualType Ty, CapturedDecl *CD,
4390                                   SourceLocation Loc) {
4391   auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
4392                                            ImplicitParamDecl::Other);
4393   auto *OrigRef = DeclRefExpr::Create(
4394       C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD,
4395       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
4396   auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty,
4397                                               ImplicitParamDecl::Other);
4398   auto *PrivateRef = DeclRefExpr::Create(
4399       C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD,
4400       /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue);
4401   QualType ElemType = C.getBaseElementType(Ty);
4402   auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType,
4403                                            ImplicitParamDecl::Other);
4404   auto *InitRef = DeclRefExpr::Create(
4405       C, NestedNameSpecifierLoc(), SourceLocation(), InitVD,
4406       /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue);
4407   PrivateVD->setInitStyle(VarDecl::CInit);
4408   PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue,
4409                                               InitRef, /*BasePath=*/nullptr,
4410                                               VK_RValue, FPOptionsOverride()));
4411   Data.FirstprivateVars.emplace_back(OrigRef);
4412   Data.FirstprivateCopies.emplace_back(PrivateRef);
4413   Data.FirstprivateInits.emplace_back(InitRef);
4414   return OrigVD;
4415 }
4416 
4417 void CodeGenFunction::EmitOMPTargetTaskBasedDirective(
4418     const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen,
4419     OMPTargetDataInfo &InputInfo) {
4420   // Emit outlined function for task construct.
4421   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
4422   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4423   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4424   auto I = CS->getCapturedDecl()->param_begin();
4425   auto PartId = std::next(I);
4426   auto TaskT = std::next(I, 4);
4427   OMPTaskDataTy Data;
4428   // The task is not final.
4429   Data.Final.setInt(/*IntVal=*/false);
4430   // Get list of firstprivate variables.
4431   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
4432     auto IRef = C->varlist_begin();
4433     auto IElemInitRef = C->inits().begin();
4434     for (auto *IInit : C->private_copies()) {
4435       Data.FirstprivateVars.push_back(*IRef);
4436       Data.FirstprivateCopies.push_back(IInit);
4437       Data.FirstprivateInits.push_back(*IElemInitRef);
4438       ++IRef;
4439       ++IElemInitRef;
4440     }
4441   }
4442   OMPPrivateScope TargetScope(*this);
4443   VarDecl *BPVD = nullptr;
4444   VarDecl *PVD = nullptr;
4445   VarDecl *SVD = nullptr;
4446   VarDecl *MVD = nullptr;
4447   if (InputInfo.NumberOfTargetItems > 0) {
4448     auto *CD = CapturedDecl::Create(
4449         getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0);
4450     llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems);
4451     QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType(
4452         getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal,
4453         /*IndexTypeQuals=*/0);
4454     BPVD = createImplicitFirstprivateForType(
4455         getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4456     PVD = createImplicitFirstprivateForType(
4457         getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4458     QualType SizesType = getContext().getConstantArrayType(
4459         getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1),
4460         ArrSize, nullptr, ArrayType::Normal,
4461         /*IndexTypeQuals=*/0);
4462     SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD,
4463                                             S.getBeginLoc());
4464     TargetScope.addPrivate(
4465         BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; });
4466     TargetScope.addPrivate(PVD,
4467                            [&InputInfo]() { return InputInfo.PointersArray; });
4468     TargetScope.addPrivate(SVD,
4469                            [&InputInfo]() { return InputInfo.SizesArray; });
4470     // If there is no user-defined mapper, the mapper array will be nullptr. In
4471     // this case, we don't need to privatize it.
4472     if (!dyn_cast_or_null<llvm::ConstantPointerNull>(
4473             InputInfo.MappersArray.getPointer())) {
4474       MVD = createImplicitFirstprivateForType(
4475           getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc());
4476       TargetScope.addPrivate(MVD,
4477                              [&InputInfo]() { return InputInfo.MappersArray; });
4478     }
4479   }
4480   (void)TargetScope.Privatize();
4481   // Build list of dependences.
4482   for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
4483     OMPTaskDataTy::DependData &DD =
4484         Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier());
4485     DD.DepExprs.append(C->varlist_begin(), C->varlist_end());
4486   }
4487   auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD,
4488                     &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) {
4489     // Set proper addresses for generated private copies.
4490     OMPPrivateScope Scope(CGF);
4491     if (!Data.FirstprivateVars.empty()) {
4492       enum { PrivatesParam = 2, CopyFnParam = 3 };
4493       llvm::Value *CopyFn = CGF.Builder.CreateLoad(
4494           CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam)));
4495       llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(
4496           CS->getCapturedDecl()->getParam(PrivatesParam)));
4497       // Map privates.
4498       llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs;
4499       llvm::SmallVector<llvm::Value *, 16> CallArgs;
4500       llvm::SmallVector<llvm::Type *, 4> ParamTypes;
4501       CallArgs.push_back(PrivatesPtr);
4502       ParamTypes.push_back(PrivatesPtr->getType());
4503       for (const Expr *E : Data.FirstprivateVars) {
4504         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4505         Address PrivatePtr =
4506             CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()),
4507                               ".firstpriv.ptr.addr");
4508         PrivatePtrs.emplace_back(VD, PrivatePtr);
4509         CallArgs.push_back(PrivatePtr.getPointer());
4510         ParamTypes.push_back(PrivatePtr.getType());
4511       }
4512       auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(),
4513                                                ParamTypes, /*isVarArg=*/false);
4514       CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4515           CopyFn, CopyFnTy->getPointerTo());
4516       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
4517           CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs);
4518       for (const auto &Pair : PrivatePtrs) {
4519         Address Replacement(CGF.Builder.CreateLoad(Pair.second),
4520                             CGF.getContext().getDeclAlign(Pair.first));
4521         Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
4522       }
4523     }
4524     // Privatize all private variables except for in_reduction items.
4525     (void)Scope.Privatize();
4526     if (InputInfo.NumberOfTargetItems > 0) {
4527       InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP(
4528           CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0);
4529       InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP(
4530           CGF.GetAddrOfLocalVar(PVD), /*Index=*/0);
4531       InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP(
4532           CGF.GetAddrOfLocalVar(SVD), /*Index=*/0);
4533       // If MVD is nullptr, the mapper array is not privatized
4534       if (MVD)
4535         InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP(
4536             CGF.GetAddrOfLocalVar(MVD), /*Index=*/0);
4537     }
4538 
4539     Action.Enter(CGF);
4540     OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false);
4541     BodyGen(CGF);
4542   };
4543   llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
4544       S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true,
4545       Data.NumberOfParts);
4546   llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0);
4547   IntegerLiteral IfCond(getContext(), TrueOrFalse,
4548                         getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
4549                         SourceLocation());
4550 
4551   CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn,
4552                                       SharedsTy, CapturedStruct, &IfCond, Data);
4553 }
4554 
4555 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
4556   // Emit outlined function for task construct.
4557   const CapturedStmt *CS = S.getCapturedStmt(OMPD_task);
4558   Address CapturedStruct = GenerateCapturedStmtArgument(*CS);
4559   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
4560   const Expr *IfCond = nullptr;
4561   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
4562     if (C->getNameModifier() == OMPD_unknown ||
4563         C->getNameModifier() == OMPD_task) {
4564       IfCond = C->getCondition();
4565       break;
4566     }
4567   }
4568 
4569   OMPTaskDataTy Data;
4570   // Check if we should emit tied or untied task.
4571   Data.Tied = !S.getSingleClause<OMPUntiedClause>();
4572   auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) {
4573     CGF.EmitStmt(CS->getCapturedStmt());
4574   };
4575   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
4576                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
4577                             const OMPTaskDataTy &Data) {
4578     CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn,
4579                                             SharedsTy, CapturedStruct, IfCond,
4580                                             Data);
4581   };
4582   auto LPCRegion =
4583       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
4584   EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data);
4585 }
4586 
4587 void CodeGenFunction::EmitOMPTaskyieldDirective(
4588     const OMPTaskyieldDirective &S) {
4589   CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc());
4590 }
4591 
4592 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
4593   CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier);
4594 }
4595 
4596 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
4597   CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc());
4598 }
4599 
4600 void CodeGenFunction::EmitOMPTaskgroupDirective(
4601     const OMPTaskgroupDirective &S) {
4602   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
4603     Action.Enter(CGF);
4604     if (const Expr *E = S.getReductionRef()) {
4605       SmallVector<const Expr *, 4> LHSs;
4606       SmallVector<const Expr *, 4> RHSs;
4607       OMPTaskDataTy Data;
4608       for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) {
4609         Data.ReductionVars.append(C->varlist_begin(), C->varlist_end());
4610         Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end());
4611         Data.ReductionCopies.append(C->privates().begin(), C->privates().end());
4612         Data.ReductionOps.append(C->reduction_ops().begin(),
4613                                  C->reduction_ops().end());
4614         LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4615         RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4616       }
4617       llvm::Value *ReductionDesc =
4618           CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(),
4619                                                            LHSs, RHSs, Data);
4620       const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4621       CGF.EmitVarDecl(*VD);
4622       CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD),
4623                             /*Volatile=*/false, E->getType());
4624     }
4625     CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
4626   };
4627   OMPLexicalScope Scope(*this, S, OMPD_unknown);
4628   CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc());
4629 }
4630 
4631 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
4632   llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>()
4633                                 ? llvm::AtomicOrdering::NotAtomic
4634                                 : llvm::AtomicOrdering::AcquireRelease;
4635   CGM.getOpenMPRuntime().emitFlush(
4636       *this,
4637       [&S]() -> ArrayRef<const Expr *> {
4638         if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>())
4639           return llvm::makeArrayRef(FlushClause->varlist_begin(),
4640                                     FlushClause->varlist_end());
4641         return llvm::None;
4642       }(),
4643       S.getBeginLoc(), AO);
4644 }
4645 
4646 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) {
4647   const auto *DO = S.getSingleClause<OMPDepobjClause>();
4648   LValue DOLVal = EmitLValue(DO->getDepobj());
4649   if (const auto *DC = S.getSingleClause<OMPDependClause>()) {
4650     OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(),
4651                                            DC->getModifier());
4652     Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end());
4653     Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause(
4654         *this, Dependencies, DC->getBeginLoc());
4655     EmitStoreOfScalar(DepAddr.getPointer(), DOLVal);
4656     return;
4657   }
4658   if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) {
4659     CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc());
4660     return;
4661   }
4662   if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) {
4663     CGM.getOpenMPRuntime().emitUpdateClause(
4664         *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc());
4665     return;
4666   }
4667 }
4668 
4669 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) {
4670   if (!OMPParentLoopDirectiveForScan)
4671     return;
4672   const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan;
4673   bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>();
4674   SmallVector<const Expr *, 4> Shareds;
4675   SmallVector<const Expr *, 4> Privates;
4676   SmallVector<const Expr *, 4> LHSs;
4677   SmallVector<const Expr *, 4> RHSs;
4678   SmallVector<const Expr *, 4> ReductionOps;
4679   SmallVector<const Expr *, 4> CopyOps;
4680   SmallVector<const Expr *, 4> CopyArrayTemps;
4681   SmallVector<const Expr *, 4> CopyArrayElems;
4682   for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) {
4683     if (C->getModifier() != OMPC_REDUCTION_inscan)
4684       continue;
4685     Shareds.append(C->varlist_begin(), C->varlist_end());
4686     Privates.append(C->privates().begin(), C->privates().end());
4687     LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
4688     RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
4689     ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
4690     CopyOps.append(C->copy_ops().begin(), C->copy_ops().end());
4691     CopyArrayTemps.append(C->copy_array_temps().begin(),
4692                           C->copy_array_temps().end());
4693     CopyArrayElems.append(C->copy_array_elems().begin(),
4694                           C->copy_array_elems().end());
4695   }
4696   if (ParentDir.getDirectiveKind() == OMPD_simd ||
4697       (getLangOpts().OpenMPSimd &&
4698        isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) {
4699     // For simd directive and simd-based directives in simd only mode, use the
4700     // following codegen:
4701     // int x = 0;
4702     // #pragma omp simd reduction(inscan, +: x)
4703     // for (..) {
4704     //   <first part>
4705     //   #pragma omp scan inclusive(x)
4706     //   <second part>
4707     //  }
4708     // is transformed to:
4709     // int x = 0;
4710     // for (..) {
4711     //   int x_priv = 0;
4712     //   <first part>
4713     //   x = x_priv + x;
4714     //   x_priv = x;
4715     //   <second part>
4716     // }
4717     // and
4718     // int x = 0;
4719     // #pragma omp simd reduction(inscan, +: x)
4720     // for (..) {
4721     //   <first part>
4722     //   #pragma omp scan exclusive(x)
4723     //   <second part>
4724     // }
4725     // to
4726     // int x = 0;
4727     // for (..) {
4728     //   int x_priv = 0;
4729     //   <second part>
4730     //   int temp = x;
4731     //   x = x_priv + x;
4732     //   x_priv = temp;
4733     //   <first part>
4734     // }
4735     llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce");
4736     EmitBranch(IsInclusive
4737                    ? OMPScanReduce
4738                    : BreakContinueStack.back().ContinueBlock.getBlock());
4739     EmitBlock(OMPScanDispatch);
4740     {
4741       // New scope for correct construction/destruction of temp variables for
4742       // exclusive scan.
4743       LexicalScope Scope(*this, S.getSourceRange());
4744       EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock);
4745       EmitBlock(OMPScanReduce);
4746       if (!IsInclusive) {
4747         // Create temp var and copy LHS value to this temp value.
4748         // TMP = LHS;
4749         for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4750           const Expr *PrivateExpr = Privates[I];
4751           const Expr *TempExpr = CopyArrayTemps[I];
4752           EmitAutoVarDecl(
4753               *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl()));
4754           LValue DestLVal = EmitLValue(TempExpr);
4755           LValue SrcLVal = EmitLValue(LHSs[I]);
4756           EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4757                       SrcLVal.getAddress(*this),
4758                       cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4759                       cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4760                       CopyOps[I]);
4761         }
4762       }
4763       CGM.getOpenMPRuntime().emitReduction(
4764           *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps,
4765           {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd});
4766       for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4767         const Expr *PrivateExpr = Privates[I];
4768         LValue DestLVal;
4769         LValue SrcLVal;
4770         if (IsInclusive) {
4771           DestLVal = EmitLValue(RHSs[I]);
4772           SrcLVal = EmitLValue(LHSs[I]);
4773         } else {
4774           const Expr *TempExpr = CopyArrayTemps[I];
4775           DestLVal = EmitLValue(RHSs[I]);
4776           SrcLVal = EmitLValue(TempExpr);
4777         }
4778         EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4779                     SrcLVal.getAddress(*this),
4780                     cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4781                     cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4782                     CopyOps[I]);
4783       }
4784     }
4785     EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock);
4786     OMPScanExitBlock = IsInclusive
4787                            ? BreakContinueStack.back().ContinueBlock.getBlock()
4788                            : OMPScanReduce;
4789     EmitBlock(OMPAfterScanBlock);
4790     return;
4791   }
4792   if (!IsInclusive) {
4793     EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4794     EmitBlock(OMPScanExitBlock);
4795   }
4796   if (OMPFirstScanLoop) {
4797     // Emit buffer[i] = red; at the end of the input phase.
4798     const auto *IVExpr = cast<OMPLoopDirective>(ParentDir)
4799                              .getIterationVariable()
4800                              ->IgnoreParenImpCasts();
4801     LValue IdxLVal = EmitLValue(IVExpr);
4802     llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc());
4803     IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false);
4804     for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4805       const Expr *PrivateExpr = Privates[I];
4806       const Expr *OrigExpr = Shareds[I];
4807       const Expr *CopyArrayElem = CopyArrayElems[I];
4808       OpaqueValueMapping IdxMapping(
4809           *this,
4810           cast<OpaqueValueExpr>(
4811               cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
4812           RValue::get(IdxVal));
4813       LValue DestLVal = EmitLValue(CopyArrayElem);
4814       LValue SrcLVal = EmitLValue(OrigExpr);
4815       EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4816                   SrcLVal.getAddress(*this),
4817                   cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4818                   cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4819                   CopyOps[I]);
4820     }
4821   }
4822   EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4823   if (IsInclusive) {
4824     EmitBlock(OMPScanExitBlock);
4825     EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock());
4826   }
4827   EmitBlock(OMPScanDispatch);
4828   if (!OMPFirstScanLoop) {
4829     // Emit red = buffer[i]; at the entrance to the scan phase.
4830     const auto *IVExpr = cast<OMPLoopDirective>(ParentDir)
4831                              .getIterationVariable()
4832                              ->IgnoreParenImpCasts();
4833     LValue IdxLVal = EmitLValue(IVExpr);
4834     llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc());
4835     IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false);
4836     llvm::BasicBlock *ExclusiveExitBB = nullptr;
4837     if (!IsInclusive) {
4838       llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec");
4839       ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit");
4840       llvm::Value *Cmp = Builder.CreateIsNull(IdxVal);
4841       Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB);
4842       EmitBlock(ContBB);
4843       // Use idx - 1 iteration for exclusive scan.
4844       IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1));
4845     }
4846     for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) {
4847       const Expr *PrivateExpr = Privates[I];
4848       const Expr *OrigExpr = Shareds[I];
4849       const Expr *CopyArrayElem = CopyArrayElems[I];
4850       OpaqueValueMapping IdxMapping(
4851           *this,
4852           cast<OpaqueValueExpr>(
4853               cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()),
4854           RValue::get(IdxVal));
4855       LValue SrcLVal = EmitLValue(CopyArrayElem);
4856       LValue DestLVal = EmitLValue(OrigExpr);
4857       EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this),
4858                   SrcLVal.getAddress(*this),
4859                   cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()),
4860                   cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()),
4861                   CopyOps[I]);
4862     }
4863     if (!IsInclusive) {
4864       EmitBlock(ExclusiveExitBB);
4865     }
4866   }
4867   EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock
4868                                                : OMPAfterScanBlock);
4869   EmitBlock(OMPAfterScanBlock);
4870 }
4871 
4872 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S,
4873                                             const CodeGenLoopTy &CodeGenLoop,
4874                                             Expr *IncExpr) {
4875   // Emit the loop iteration variable.
4876   const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
4877   const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl());
4878   EmitVarDecl(*IVDecl);
4879 
4880   // Emit the iterations count variable.
4881   // If it is not a variable, Sema decided to calculate iterations count on each
4882   // iteration (e.g., it is foldable into a constant).
4883   if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
4884     EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
4885     // Emit calculation of the iterations count.
4886     EmitIgnoredExpr(S.getCalcLastIteration());
4887   }
4888 
4889   CGOpenMPRuntime &RT = CGM.getOpenMPRuntime();
4890 
4891   bool HasLastprivateClause = false;
4892   // Check pre-condition.
4893   {
4894     OMPLoopScope PreInitScope(*this, S);
4895     // Skip the entire loop if we don't meet the precondition.
4896     // If the condition constant folds and can be elided, avoid emitting the
4897     // whole loop.
4898     bool CondConstant;
4899     llvm::BasicBlock *ContBlock = nullptr;
4900     if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
4901       if (!CondConstant)
4902         return;
4903     } else {
4904       llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then");
4905       ContBlock = createBasicBlock("omp.precond.end");
4906       emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
4907                   getProfileCount(&S));
4908       EmitBlock(ThenBlock);
4909       incrementProfileCounter(&S);
4910     }
4911 
4912     emitAlignedClause(*this, S);
4913     // Emit 'then' code.
4914     {
4915       // Emit helper vars inits.
4916 
4917       LValue LB = EmitOMPHelperVar(
4918           *this, cast<DeclRefExpr>(
4919                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4920                           ? S.getCombinedLowerBoundVariable()
4921                           : S.getLowerBoundVariable())));
4922       LValue UB = EmitOMPHelperVar(
4923           *this, cast<DeclRefExpr>(
4924                      (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4925                           ? S.getCombinedUpperBoundVariable()
4926                           : S.getUpperBoundVariable())));
4927       LValue ST =
4928           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
4929       LValue IL =
4930           EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
4931 
4932       OMPPrivateScope LoopScope(*this);
4933       if (EmitOMPFirstprivateClause(S, LoopScope)) {
4934         // Emit implicit barrier to synchronize threads and avoid data races
4935         // on initialization of firstprivate variables and post-update of
4936         // lastprivate variables.
4937         CGM.getOpenMPRuntime().emitBarrierCall(
4938             *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false,
4939             /*ForceSimpleCall=*/true);
4940       }
4941       EmitOMPPrivateClause(S, LoopScope);
4942       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
4943           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
4944           !isOpenMPTeamsDirective(S.getDirectiveKind()))
4945         EmitOMPReductionClauseInit(S, LoopScope);
4946       HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
4947       EmitOMPPrivateLoopCounters(S, LoopScope);
4948       (void)LoopScope.Privatize();
4949       if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
4950         CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S);
4951 
4952       // Detect the distribute schedule kind and chunk.
4953       llvm::Value *Chunk = nullptr;
4954       OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown;
4955       if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) {
4956         ScheduleKind = C->getDistScheduleKind();
4957         if (const Expr *Ch = C->getChunkSize()) {
4958           Chunk = EmitScalarExpr(Ch);
4959           Chunk = EmitScalarConversion(Chunk, Ch->getType(),
4960                                        S.getIterationVariable()->getType(),
4961                                        S.getBeginLoc());
4962         }
4963       } else {
4964         // Default behaviour for dist_schedule clause.
4965         CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk(
4966             *this, S, ScheduleKind, Chunk);
4967       }
4968       const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
4969       const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
4970 
4971       // OpenMP [2.10.8, distribute Construct, Description]
4972       // If dist_schedule is specified, kind must be static. If specified,
4973       // iterations are divided into chunks of size chunk_size, chunks are
4974       // assigned to the teams of the league in a round-robin fashion in the
4975       // order of the team number. When no chunk_size is specified, the
4976       // iteration space is divided into chunks that are approximately equal
4977       // in size, and at most one chunk is distributed to each team of the
4978       // league. The size of the chunks is unspecified in this case.
4979       bool StaticChunked = RT.isStaticChunked(
4980           ScheduleKind, /* Chunked */ Chunk != nullptr) &&
4981           isOpenMPLoopBoundSharingDirective(S.getDirectiveKind());
4982       if (RT.isStaticNonchunked(ScheduleKind,
4983                                 /* Chunked */ Chunk != nullptr) ||
4984           StaticChunked) {
4985         CGOpenMPRuntime::StaticRTInput StaticInit(
4986             IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this),
4987             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
4988             StaticChunked ? Chunk : nullptr);
4989         RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind,
4990                                     StaticInit);
4991         JumpDest LoopExit =
4992             getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
4993         // UB = min(UB, GlobalUB);
4994         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4995                             ? S.getCombinedEnsureUpperBound()
4996                             : S.getEnsureUpperBound());
4997         // IV = LB;
4998         EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
4999                             ? S.getCombinedInit()
5000                             : S.getInit());
5001 
5002         const Expr *Cond =
5003             isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())
5004                 ? S.getCombinedCond()
5005                 : S.getCond();
5006 
5007         if (StaticChunked)
5008           Cond = S.getCombinedDistCond();
5009 
5010         // For static unchunked schedules generate:
5011         //
5012         //  1. For distribute alone, codegen
5013         //    while (idx <= UB) {
5014         //      BODY;
5015         //      ++idx;
5016         //    }
5017         //
5018         //  2. When combined with 'for' (e.g. as in 'distribute parallel for')
5019         //    while (idx <= UB) {
5020         //      <CodeGen rest of pragma>(LB, UB);
5021         //      idx += ST;
5022         //    }
5023         //
5024         // For static chunk one schedule generate:
5025         //
5026         // while (IV <= GlobalUB) {
5027         //   <CodeGen rest of pragma>(LB, UB);
5028         //   LB += ST;
5029         //   UB += ST;
5030         //   UB = min(UB, GlobalUB);
5031         //   IV = LB;
5032         // }
5033         //
5034         emitCommonSimdLoop(
5035             *this, S,
5036             [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5037               if (isOpenMPSimdDirective(S.getDirectiveKind()))
5038                 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true);
5039             },
5040             [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop,
5041              StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) {
5042               CGF.EmitOMPInnerLoop(
5043                   S, LoopScope.requiresCleanups(), Cond, IncExpr,
5044                   [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) {
5045                     CodeGenLoop(CGF, S, LoopExit);
5046                   },
5047                   [&S, StaticChunked](CodeGenFunction &CGF) {
5048                     if (StaticChunked) {
5049                       CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound());
5050                       CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound());
5051                       CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound());
5052                       CGF.EmitIgnoredExpr(S.getCombinedInit());
5053                     }
5054                   });
5055             });
5056         EmitBlock(LoopExit.getBlock());
5057         // Tell the runtime we are done.
5058         RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind());
5059       } else {
5060         // Emit the outer loop, which requests its work chunk [LB..UB] from
5061         // runtime and runs the inner loop to process it.
5062         const OMPLoopArguments LoopArguments = {
5063             LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this),
5064             IL.getAddress(*this), Chunk};
5065         EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments,
5066                                    CodeGenLoop);
5067       }
5068       if (isOpenMPSimdDirective(S.getDirectiveKind())) {
5069         EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) {
5070           return CGF.Builder.CreateIsNotNull(
5071               CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
5072         });
5073       }
5074       if (isOpenMPSimdDirective(S.getDirectiveKind()) &&
5075           !isOpenMPParallelDirective(S.getDirectiveKind()) &&
5076           !isOpenMPTeamsDirective(S.getDirectiveKind())) {
5077         EmitOMPReductionClauseFinal(S, OMPD_simd);
5078         // Emit post-update of the reduction variables if IsLastIter != 0.
5079         emitPostUpdateForReductionClause(
5080             *this, S, [IL, &S](CodeGenFunction &CGF) {
5081               return CGF.Builder.CreateIsNotNull(
5082                   CGF.EmitLoadOfScalar(IL, S.getBeginLoc()));
5083             });
5084       }
5085       // Emit final copy of the lastprivate variables if IsLastIter != 0.
5086       if (HasLastprivateClause) {
5087         EmitOMPLastprivateClauseFinal(
5088             S, /*NoFinals=*/false,
5089             Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc())));
5090       }
5091     }
5092 
5093     // We're now done with the loop, so jump to the continuation block.
5094     if (ContBlock) {
5095       EmitBranch(ContBlock);
5096       EmitBlock(ContBlock, true);
5097     }
5098   }
5099 }
5100 
5101 void CodeGenFunction::EmitOMPDistributeDirective(
5102     const OMPDistributeDirective &S) {
5103   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5104     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5105   };
5106   OMPLexicalScope Scope(*this, S, OMPD_unknown);
5107   CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen);
5108 }
5109 
5110 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
5111                                                    const CapturedStmt *S,
5112                                                    SourceLocation Loc) {
5113   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
5114   CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
5115   CGF.CapturedStmtInfo = &CapStmtInfo;
5116   llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc);
5117   Fn->setDoesNotRecurse();
5118   return Fn;
5119 }
5120 
5121 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
5122   if (S.hasClausesOfKind<OMPDependClause>()) {
5123     assert(!S.hasAssociatedStmt() &&
5124            "No associated statement must be in ordered depend construct.");
5125     for (const auto *DC : S.getClausesOfKind<OMPDependClause>())
5126       CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC);
5127     return;
5128   }
5129   const auto *C = S.getSingleClause<OMPSIMDClause>();
5130   auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF,
5131                                  PrePostActionTy &Action) {
5132     const CapturedStmt *CS = S.getInnermostCapturedStmt();
5133     if (C) {
5134       llvm::SmallVector<llvm::Value *, 16> CapturedVars;
5135       CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
5136       llvm::Function *OutlinedFn =
5137           emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc());
5138       CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(),
5139                                                       OutlinedFn, CapturedVars);
5140     } else {
5141       Action.Enter(CGF);
5142       CGF.EmitStmt(CS->getCapturedStmt());
5143     }
5144   };
5145   OMPLexicalScope Scope(*this, S, OMPD_unknown);
5146   CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C);
5147 }
5148 
5149 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
5150                                          QualType SrcType, QualType DestType,
5151                                          SourceLocation Loc) {
5152   assert(CGF.hasScalarEvaluationKind(DestType) &&
5153          "DestType must have scalar evaluation kind.");
5154   assert(!Val.isAggregate() && "Must be a scalar or complex.");
5155   return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
5156                                                    DestType, Loc)
5157                         : CGF.EmitComplexToScalarConversion(
5158                               Val.getComplexVal(), SrcType, DestType, Loc);
5159 }
5160 
5161 static CodeGenFunction::ComplexPairTy
5162 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
5163                       QualType DestType, SourceLocation Loc) {
5164   assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
5165          "DestType must have complex evaluation kind.");
5166   CodeGenFunction::ComplexPairTy ComplexVal;
5167   if (Val.isScalar()) {
5168     // Convert the input element to the element type of the complex.
5169     QualType DestElementType =
5170         DestType->castAs<ComplexType>()->getElementType();
5171     llvm::Value *ScalarVal = CGF.EmitScalarConversion(
5172         Val.getScalarVal(), SrcType, DestElementType, Loc);
5173     ComplexVal = CodeGenFunction::ComplexPairTy(
5174         ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
5175   } else {
5176     assert(Val.isComplex() && "Must be a scalar or complex.");
5177     QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
5178     QualType DestElementType =
5179         DestType->castAs<ComplexType>()->getElementType();
5180     ComplexVal.first = CGF.EmitScalarConversion(
5181         Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
5182     ComplexVal.second = CGF.EmitScalarConversion(
5183         Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
5184   }
5185   return ComplexVal;
5186 }
5187 
5188 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
5189                                   LValue LVal, RValue RVal) {
5190   if (LVal.isGlobalReg())
5191     CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
5192   else
5193     CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false);
5194 }
5195 
5196 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF,
5197                                    llvm::AtomicOrdering AO, LValue LVal,
5198                                    SourceLocation Loc) {
5199   if (LVal.isGlobalReg())
5200     return CGF.EmitLoadOfLValue(LVal, Loc);
5201   return CGF.EmitAtomicLoad(
5202       LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO),
5203       LVal.isVolatile());
5204 }
5205 
5206 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
5207                                          QualType RValTy, SourceLocation Loc) {
5208   switch (getEvaluationKind(LVal.getType())) {
5209   case TEK_Scalar:
5210     EmitStoreThroughLValue(RValue::get(convertToScalarValue(
5211                                *this, RVal, RValTy, LVal.getType(), Loc)),
5212                            LVal);
5213     break;
5214   case TEK_Complex:
5215     EmitStoreOfComplex(
5216         convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
5217         /*isInit=*/false);
5218     break;
5219   case TEK_Aggregate:
5220     llvm_unreachable("Must be a scalar or complex.");
5221   }
5222 }
5223 
5224 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO,
5225                                   const Expr *X, const Expr *V,
5226                                   SourceLocation Loc) {
5227   // v = x;
5228   assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
5229   assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
5230   LValue XLValue = CGF.EmitLValue(X);
5231   LValue VLValue = CGF.EmitLValue(V);
5232   RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc);
5233   // OpenMP, 2.17.7, atomic Construct
5234   // If the read or capture clause is specified and the acquire, acq_rel, or
5235   // seq_cst clause is specified then the strong flush on exit from the atomic
5236   // operation is also an acquire flush.
5237   switch (AO) {
5238   case llvm::AtomicOrdering::Acquire:
5239   case llvm::AtomicOrdering::AcquireRelease:
5240   case llvm::AtomicOrdering::SequentiallyConsistent:
5241     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5242                                          llvm::AtomicOrdering::Acquire);
5243     break;
5244   case llvm::AtomicOrdering::Monotonic:
5245   case llvm::AtomicOrdering::Release:
5246     break;
5247   case llvm::AtomicOrdering::NotAtomic:
5248   case llvm::AtomicOrdering::Unordered:
5249     llvm_unreachable("Unexpected ordering.");
5250   }
5251   CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
5252   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
5253 }
5254 
5255 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF,
5256                                    llvm::AtomicOrdering AO, const Expr *X,
5257                                    const Expr *E, SourceLocation Loc) {
5258   // x = expr;
5259   assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
5260   emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
5261   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5262   // OpenMP, 2.17.7, atomic Construct
5263   // If the write, update, or capture clause is specified and the release,
5264   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5265   // the atomic operation is also a release flush.
5266   switch (AO) {
5267   case llvm::AtomicOrdering::Release:
5268   case llvm::AtomicOrdering::AcquireRelease:
5269   case llvm::AtomicOrdering::SequentiallyConsistent:
5270     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5271                                          llvm::AtomicOrdering::Release);
5272     break;
5273   case llvm::AtomicOrdering::Acquire:
5274   case llvm::AtomicOrdering::Monotonic:
5275     break;
5276   case llvm::AtomicOrdering::NotAtomic:
5277   case llvm::AtomicOrdering::Unordered:
5278     llvm_unreachable("Unexpected ordering.");
5279   }
5280 }
5281 
5282 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
5283                                                 RValue Update,
5284                                                 BinaryOperatorKind BO,
5285                                                 llvm::AtomicOrdering AO,
5286                                                 bool IsXLHSInRHSPart) {
5287   ASTContext &Context = CGF.getContext();
5288   // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
5289   // expression is simple and atomic is allowed for the given type for the
5290   // target platform.
5291   if (BO == BO_Comma || !Update.isScalar() ||
5292       !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() ||
5293       (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
5294        (Update.getScalarVal()->getType() !=
5295         X.getAddress(CGF).getElementType())) ||
5296       !X.getAddress(CGF).getElementType()->isIntegerTy() ||
5297       !Context.getTargetInfo().hasBuiltinAtomic(
5298           Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
5299     return std::make_pair(false, RValue::get(nullptr));
5300 
5301   llvm::AtomicRMWInst::BinOp RMWOp;
5302   switch (BO) {
5303   case BO_Add:
5304     RMWOp = llvm::AtomicRMWInst::Add;
5305     break;
5306   case BO_Sub:
5307     if (!IsXLHSInRHSPart)
5308       return std::make_pair(false, RValue::get(nullptr));
5309     RMWOp = llvm::AtomicRMWInst::Sub;
5310     break;
5311   case BO_And:
5312     RMWOp = llvm::AtomicRMWInst::And;
5313     break;
5314   case BO_Or:
5315     RMWOp = llvm::AtomicRMWInst::Or;
5316     break;
5317   case BO_Xor:
5318     RMWOp = llvm::AtomicRMWInst::Xor;
5319     break;
5320   case BO_LT:
5321     RMWOp = X.getType()->hasSignedIntegerRepresentation()
5322                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
5323                                    : llvm::AtomicRMWInst::Max)
5324                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
5325                                    : llvm::AtomicRMWInst::UMax);
5326     break;
5327   case BO_GT:
5328     RMWOp = X.getType()->hasSignedIntegerRepresentation()
5329                 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
5330                                    : llvm::AtomicRMWInst::Min)
5331                 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
5332                                    : llvm::AtomicRMWInst::UMin);
5333     break;
5334   case BO_Assign:
5335     RMWOp = llvm::AtomicRMWInst::Xchg;
5336     break;
5337   case BO_Mul:
5338   case BO_Div:
5339   case BO_Rem:
5340   case BO_Shl:
5341   case BO_Shr:
5342   case BO_LAnd:
5343   case BO_LOr:
5344     return std::make_pair(false, RValue::get(nullptr));
5345   case BO_PtrMemD:
5346   case BO_PtrMemI:
5347   case BO_LE:
5348   case BO_GE:
5349   case BO_EQ:
5350   case BO_NE:
5351   case BO_Cmp:
5352   case BO_AddAssign:
5353   case BO_SubAssign:
5354   case BO_AndAssign:
5355   case BO_OrAssign:
5356   case BO_XorAssign:
5357   case BO_MulAssign:
5358   case BO_DivAssign:
5359   case BO_RemAssign:
5360   case BO_ShlAssign:
5361   case BO_ShrAssign:
5362   case BO_Comma:
5363     llvm_unreachable("Unsupported atomic update operation");
5364   }
5365   llvm::Value *UpdateVal = Update.getScalarVal();
5366   if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
5367     UpdateVal = CGF.Builder.CreateIntCast(
5368         IC, X.getAddress(CGF).getElementType(),
5369         X.getType()->hasSignedIntegerRepresentation());
5370   }
5371   llvm::Value *Res =
5372       CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO);
5373   return std::make_pair(true, RValue::get(Res));
5374 }
5375 
5376 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
5377     LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
5378     llvm::AtomicOrdering AO, SourceLocation Loc,
5379     const llvm::function_ref<RValue(RValue)> CommonGen) {
5380   // Update expressions are allowed to have the following forms:
5381   // x binop= expr; -> xrval + expr;
5382   // x++, ++x -> xrval + 1;
5383   // x--, --x -> xrval - 1;
5384   // x = x binop expr; -> xrval binop expr
5385   // x = expr Op x; - > expr binop xrval;
5386   auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
5387   if (!Res.first) {
5388     if (X.isGlobalReg()) {
5389       // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
5390       // 'xrval'.
5391       EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
5392     } else {
5393       // Perform compare-and-swap procedure.
5394       EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
5395     }
5396   }
5397   return Res;
5398 }
5399 
5400 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF,
5401                                     llvm::AtomicOrdering AO, const Expr *X,
5402                                     const Expr *E, const Expr *UE,
5403                                     bool IsXLHSInRHSPart, SourceLocation Loc) {
5404   assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
5405          "Update expr in 'atomic update' must be a binary operator.");
5406   const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
5407   // Update expressions are allowed to have the following forms:
5408   // x binop= expr; -> xrval + expr;
5409   // x++, ++x -> xrval + 1;
5410   // x--, --x -> xrval - 1;
5411   // x = x binop expr; -> xrval binop expr
5412   // x = expr Op x; - > expr binop xrval;
5413   assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
5414   LValue XLValue = CGF.EmitLValue(X);
5415   RValue ExprRValue = CGF.EmitAnyExpr(E);
5416   const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
5417   const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
5418   const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
5419   const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
5420   auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) {
5421     CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5422     CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
5423     return CGF.EmitAnyExpr(UE);
5424   };
5425   (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
5426       XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
5427   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5428   // OpenMP, 2.17.7, atomic Construct
5429   // If the write, update, or capture clause is specified and the release,
5430   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5431   // the atomic operation is also a release flush.
5432   switch (AO) {
5433   case llvm::AtomicOrdering::Release:
5434   case llvm::AtomicOrdering::AcquireRelease:
5435   case llvm::AtomicOrdering::SequentiallyConsistent:
5436     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5437                                          llvm::AtomicOrdering::Release);
5438     break;
5439   case llvm::AtomicOrdering::Acquire:
5440   case llvm::AtomicOrdering::Monotonic:
5441     break;
5442   case llvm::AtomicOrdering::NotAtomic:
5443   case llvm::AtomicOrdering::Unordered:
5444     llvm_unreachable("Unexpected ordering.");
5445   }
5446 }
5447 
5448 static RValue convertToType(CodeGenFunction &CGF, RValue Value,
5449                             QualType SourceType, QualType ResType,
5450                             SourceLocation Loc) {
5451   switch (CGF.getEvaluationKind(ResType)) {
5452   case TEK_Scalar:
5453     return RValue::get(
5454         convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
5455   case TEK_Complex: {
5456     auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
5457     return RValue::getComplex(Res.first, Res.second);
5458   }
5459   case TEK_Aggregate:
5460     break;
5461   }
5462   llvm_unreachable("Must be a scalar or complex.");
5463 }
5464 
5465 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF,
5466                                      llvm::AtomicOrdering AO,
5467                                      bool IsPostfixUpdate, const Expr *V,
5468                                      const Expr *X, const Expr *E,
5469                                      const Expr *UE, bool IsXLHSInRHSPart,
5470                                      SourceLocation Loc) {
5471   assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
5472   assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
5473   RValue NewVVal;
5474   LValue VLValue = CGF.EmitLValue(V);
5475   LValue XLValue = CGF.EmitLValue(X);
5476   RValue ExprRValue = CGF.EmitAnyExpr(E);
5477   QualType NewVValType;
5478   if (UE) {
5479     // 'x' is updated with some additional value.
5480     assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
5481            "Update expr in 'atomic capture' must be a binary operator.");
5482     const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
5483     // Update expressions are allowed to have the following forms:
5484     // x binop= expr; -> xrval + expr;
5485     // x++, ++x -> xrval + 1;
5486     // x--, --x -> xrval - 1;
5487     // x = x binop expr; -> xrval binop expr
5488     // x = expr Op x; - > expr binop xrval;
5489     const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
5490     const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
5491     const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
5492     NewVValType = XRValExpr->getType();
5493     const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
5494     auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
5495                   IsPostfixUpdate](RValue XRValue) {
5496       CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5497       CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
5498       RValue Res = CGF.EmitAnyExpr(UE);
5499       NewVVal = IsPostfixUpdate ? XRValue : Res;
5500       return Res;
5501     };
5502     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
5503         XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
5504     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5505     if (Res.first) {
5506       // 'atomicrmw' instruction was generated.
5507       if (IsPostfixUpdate) {
5508         // Use old value from 'atomicrmw'.
5509         NewVVal = Res.second;
5510       } else {
5511         // 'atomicrmw' does not provide new value, so evaluate it using old
5512         // value of 'x'.
5513         CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
5514         CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
5515         NewVVal = CGF.EmitAnyExpr(UE);
5516       }
5517     }
5518   } else {
5519     // 'x' is simply rewritten with some 'expr'.
5520     NewVValType = X->getType().getNonReferenceType();
5521     ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
5522                                X->getType().getNonReferenceType(), Loc);
5523     auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) {
5524       NewVVal = XRValue;
5525       return ExprRValue;
5526     };
5527     // Try to perform atomicrmw xchg, otherwise simple exchange.
5528     auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
5529         XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
5530         Loc, Gen);
5531     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X);
5532     if (Res.first) {
5533       // 'atomicrmw' instruction was generated.
5534       NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
5535     }
5536   }
5537   // Emit post-update store to 'v' of old/new 'x' value.
5538   CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
5539   CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V);
5540   // OpenMP, 2.17.7, atomic Construct
5541   // If the write, update, or capture clause is specified and the release,
5542   // acq_rel, or seq_cst clause is specified then the strong flush on entry to
5543   // the atomic operation is also a release flush.
5544   // If the read or capture clause is specified and the acquire, acq_rel, or
5545   // seq_cst clause is specified then the strong flush on exit from the atomic
5546   // operation is also an acquire flush.
5547   switch (AO) {
5548   case llvm::AtomicOrdering::Release:
5549     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5550                                          llvm::AtomicOrdering::Release);
5551     break;
5552   case llvm::AtomicOrdering::Acquire:
5553     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5554                                          llvm::AtomicOrdering::Acquire);
5555     break;
5556   case llvm::AtomicOrdering::AcquireRelease:
5557   case llvm::AtomicOrdering::SequentiallyConsistent:
5558     CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc,
5559                                          llvm::AtomicOrdering::AcquireRelease);
5560     break;
5561   case llvm::AtomicOrdering::Monotonic:
5562     break;
5563   case llvm::AtomicOrdering::NotAtomic:
5564   case llvm::AtomicOrdering::Unordered:
5565     llvm_unreachable("Unexpected ordering.");
5566   }
5567 }
5568 
5569 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
5570                               llvm::AtomicOrdering AO, bool IsPostfixUpdate,
5571                               const Expr *X, const Expr *V, const Expr *E,
5572                               const Expr *UE, bool IsXLHSInRHSPart,
5573                               SourceLocation Loc) {
5574   switch (Kind) {
5575   case OMPC_read:
5576     emitOMPAtomicReadExpr(CGF, AO, X, V, Loc);
5577     break;
5578   case OMPC_write:
5579     emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc);
5580     break;
5581   case OMPC_unknown:
5582   case OMPC_update:
5583     emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc);
5584     break;
5585   case OMPC_capture:
5586     emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE,
5587                              IsXLHSInRHSPart, Loc);
5588     break;
5589   case OMPC_if:
5590   case OMPC_final:
5591   case OMPC_num_threads:
5592   case OMPC_private:
5593   case OMPC_firstprivate:
5594   case OMPC_lastprivate:
5595   case OMPC_reduction:
5596   case OMPC_task_reduction:
5597   case OMPC_in_reduction:
5598   case OMPC_safelen:
5599   case OMPC_simdlen:
5600   case OMPC_sizes:
5601   case OMPC_allocator:
5602   case OMPC_allocate:
5603   case OMPC_collapse:
5604   case OMPC_default:
5605   case OMPC_seq_cst:
5606   case OMPC_acq_rel:
5607   case OMPC_acquire:
5608   case OMPC_release:
5609   case OMPC_relaxed:
5610   case OMPC_shared:
5611   case OMPC_linear:
5612   case OMPC_aligned:
5613   case OMPC_copyin:
5614   case OMPC_copyprivate:
5615   case OMPC_flush:
5616   case OMPC_depobj:
5617   case OMPC_proc_bind:
5618   case OMPC_schedule:
5619   case OMPC_ordered:
5620   case OMPC_nowait:
5621   case OMPC_untied:
5622   case OMPC_threadprivate:
5623   case OMPC_depend:
5624   case OMPC_mergeable:
5625   case OMPC_device:
5626   case OMPC_threads:
5627   case OMPC_simd:
5628   case OMPC_map:
5629   case OMPC_num_teams:
5630   case OMPC_thread_limit:
5631   case OMPC_priority:
5632   case OMPC_grainsize:
5633   case OMPC_nogroup:
5634   case OMPC_num_tasks:
5635   case OMPC_hint:
5636   case OMPC_dist_schedule:
5637   case OMPC_defaultmap:
5638   case OMPC_uniform:
5639   case OMPC_to:
5640   case OMPC_from:
5641   case OMPC_use_device_ptr:
5642   case OMPC_use_device_addr:
5643   case OMPC_is_device_ptr:
5644   case OMPC_unified_address:
5645   case OMPC_unified_shared_memory:
5646   case OMPC_reverse_offload:
5647   case OMPC_dynamic_allocators:
5648   case OMPC_atomic_default_mem_order:
5649   case OMPC_device_type:
5650   case OMPC_match:
5651   case OMPC_nontemporal:
5652   case OMPC_order:
5653   case OMPC_destroy:
5654   case OMPC_detach:
5655   case OMPC_inclusive:
5656   case OMPC_exclusive:
5657   case OMPC_uses_allocators:
5658   case OMPC_affinity:
5659   case OMPC_init:
5660   case OMPC_inbranch:
5661   case OMPC_notinbranch:
5662   case OMPC_link:
5663   case OMPC_use:
5664   case OMPC_novariants:
5665   case OMPC_nocontext:
5666   case OMPC_filter:
5667     llvm_unreachable("Clause is not allowed in 'omp atomic'.");
5668   }
5669 }
5670 
5671 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
5672   llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic;
5673   bool MemOrderingSpecified = false;
5674   if (S.getSingleClause<OMPSeqCstClause>()) {
5675     AO = llvm::AtomicOrdering::SequentiallyConsistent;
5676     MemOrderingSpecified = true;
5677   } else if (S.getSingleClause<OMPAcqRelClause>()) {
5678     AO = llvm::AtomicOrdering::AcquireRelease;
5679     MemOrderingSpecified = true;
5680   } else if (S.getSingleClause<OMPAcquireClause>()) {
5681     AO = llvm::AtomicOrdering::Acquire;
5682     MemOrderingSpecified = true;
5683   } else if (S.getSingleClause<OMPReleaseClause>()) {
5684     AO = llvm::AtomicOrdering::Release;
5685     MemOrderingSpecified = true;
5686   } else if (S.getSingleClause<OMPRelaxedClause>()) {
5687     AO = llvm::AtomicOrdering::Monotonic;
5688     MemOrderingSpecified = true;
5689   }
5690   OpenMPClauseKind Kind = OMPC_unknown;
5691   for (const OMPClause *C : S.clauses()) {
5692     // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause,
5693     // if it is first).
5694     if (C->getClauseKind() != OMPC_seq_cst &&
5695         C->getClauseKind() != OMPC_acq_rel &&
5696         C->getClauseKind() != OMPC_acquire &&
5697         C->getClauseKind() != OMPC_release &&
5698         C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) {
5699       Kind = C->getClauseKind();
5700       break;
5701     }
5702   }
5703   if (!MemOrderingSpecified) {
5704     llvm::AtomicOrdering DefaultOrder =
5705         CGM.getOpenMPRuntime().getDefaultMemoryOrdering();
5706     if (DefaultOrder == llvm::AtomicOrdering::Monotonic ||
5707         DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent ||
5708         (DefaultOrder == llvm::AtomicOrdering::AcquireRelease &&
5709          Kind == OMPC_capture)) {
5710       AO = DefaultOrder;
5711     } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) {
5712       if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) {
5713         AO = llvm::AtomicOrdering::Release;
5714       } else if (Kind == OMPC_read) {
5715         assert(Kind == OMPC_read && "Unexpected atomic kind.");
5716         AO = llvm::AtomicOrdering::Acquire;
5717       }
5718     }
5719   }
5720 
5721   LexicalScope Scope(*this, S.getSourceRange());
5722   EmitStopPoint(S.getAssociatedStmt());
5723   emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(),
5724                     S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(),
5725                     S.getBeginLoc());
5726 }
5727 
5728 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF,
5729                                          const OMPExecutableDirective &S,
5730                                          const RegionCodeGenTy &CodeGen) {
5731   assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind()));
5732   CodeGenModule &CGM = CGF.CGM;
5733 
5734   // On device emit this construct as inlined code.
5735   if (CGM.getLangOpts().OpenMPIsDevice) {
5736     OMPLexicalScope Scope(CGF, S, OMPD_target);
5737     CGM.getOpenMPRuntime().emitInlinedDirective(
5738         CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5739           CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
5740         });
5741     return;
5742   }
5743 
5744   auto LPCRegion =
5745       CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S);
5746   llvm::Function *Fn = nullptr;
5747   llvm::Constant *FnID = nullptr;
5748 
5749   const Expr *IfCond = nullptr;
5750   // Check for the at most one if clause associated with the target region.
5751   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
5752     if (C->getNameModifier() == OMPD_unknown ||
5753         C->getNameModifier() == OMPD_target) {
5754       IfCond = C->getCondition();
5755       break;
5756     }
5757   }
5758 
5759   // Check if we have any device clause associated with the directive.
5760   llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device(
5761       nullptr, OMPC_DEVICE_unknown);
5762   if (auto *C = S.getSingleClause<OMPDeviceClause>())
5763     Device.setPointerAndInt(C->getDevice(), C->getModifier());
5764 
5765   // Check if we have an if clause whose conditional always evaluates to false
5766   // or if we do not have any targets specified. If so the target region is not
5767   // an offload entry point.
5768   bool IsOffloadEntry = true;
5769   if (IfCond) {
5770     bool Val;
5771     if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
5772       IsOffloadEntry = false;
5773   }
5774   if (CGM.getLangOpts().OMPTargetTriples.empty())
5775     IsOffloadEntry = false;
5776 
5777   assert(CGF.CurFuncDecl && "No parent declaration for target region!");
5778   StringRef ParentName;
5779   // In case we have Ctors/Dtors we use the complete type variant to produce
5780   // the mangling of the device outlined kernel.
5781   if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl))
5782     ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
5783   else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl))
5784     ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
5785   else
5786     ParentName =
5787         CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl)));
5788 
5789   // Emit target region as a standalone region.
5790   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
5791                                                     IsOffloadEntry, CodeGen);
5792   OMPLexicalScope Scope(CGF, S, OMPD_task);
5793   auto &&SizeEmitter =
5794       [IsOffloadEntry](CodeGenFunction &CGF,
5795                        const OMPLoopDirective &D) -> llvm::Value * {
5796     if (IsOffloadEntry) {
5797       OMPLoopScope(CGF, D);
5798       // Emit calculation of the iterations count.
5799       llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations());
5800       NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty,
5801                                                 /*isSigned=*/false);
5802       return NumIterations;
5803     }
5804     return nullptr;
5805   };
5806   CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device,
5807                                         SizeEmitter);
5808 }
5809 
5810 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S,
5811                              PrePostActionTy &Action) {
5812   Action.Enter(CGF);
5813   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5814   (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5815   CGF.EmitOMPPrivateClause(S, PrivateScope);
5816   (void)PrivateScope.Privatize();
5817   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
5818     CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
5819 
5820   CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt());
5821   CGF.EnsureInsertPoint();
5822 }
5823 
5824 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
5825                                                   StringRef ParentName,
5826                                                   const OMPTargetDirective &S) {
5827   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5828     emitTargetRegion(CGF, S, Action);
5829   };
5830   llvm::Function *Fn;
5831   llvm::Constant *Addr;
5832   // Emit target region as a standalone region.
5833   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5834       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5835   assert(Fn && Addr && "Target device function emission failed.");
5836 }
5837 
5838 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
5839   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5840     emitTargetRegion(CGF, S, Action);
5841   };
5842   emitCommonOMPTargetDirective(*this, S, CodeGen);
5843 }
5844 
5845 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF,
5846                                         const OMPExecutableDirective &S,
5847                                         OpenMPDirectiveKind InnermostKind,
5848                                         const RegionCodeGenTy &CodeGen) {
5849   const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams);
5850   llvm::Function *OutlinedFn =
5851       CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction(
5852           S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
5853 
5854   const auto *NT = S.getSingleClause<OMPNumTeamsClause>();
5855   const auto *TL = S.getSingleClause<OMPThreadLimitClause>();
5856   if (NT || TL) {
5857     const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr;
5858     const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr;
5859 
5860     CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit,
5861                                                   S.getBeginLoc());
5862   }
5863 
5864   OMPTeamsScope Scope(CGF, S);
5865   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
5866   CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
5867   CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn,
5868                                            CapturedVars);
5869 }
5870 
5871 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) {
5872   // Emit teams region as a standalone region.
5873   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5874     Action.Enter(CGF);
5875     OMPPrivateScope PrivateScope(CGF);
5876     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5877     CGF.EmitOMPPrivateClause(S, PrivateScope);
5878     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5879     (void)PrivateScope.Privatize();
5880     CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt());
5881     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5882   };
5883   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
5884   emitPostUpdateForReductionClause(*this, S,
5885                                    [](CodeGenFunction &) { return nullptr; });
5886 }
5887 
5888 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
5889                                   const OMPTargetTeamsDirective &S) {
5890   auto *CS = S.getCapturedStmt(OMPD_teams);
5891   Action.Enter(CGF);
5892   // Emit teams region as a standalone region.
5893   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
5894     Action.Enter(CGF);
5895     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5896     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
5897     CGF.EmitOMPPrivateClause(S, PrivateScope);
5898     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5899     (void)PrivateScope.Privatize();
5900     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
5901       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
5902     CGF.EmitStmt(CS->getCapturedStmt());
5903     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5904   };
5905   emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen);
5906   emitPostUpdateForReductionClause(CGF, S,
5907                                    [](CodeGenFunction &) { return nullptr; });
5908 }
5909 
5910 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
5911     CodeGenModule &CGM, StringRef ParentName,
5912     const OMPTargetTeamsDirective &S) {
5913   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5914     emitTargetTeamsRegion(CGF, Action, S);
5915   };
5916   llvm::Function *Fn;
5917   llvm::Constant *Addr;
5918   // Emit target region as a standalone region.
5919   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5920       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5921   assert(Fn && Addr && "Target device function emission failed.");
5922 }
5923 
5924 void CodeGenFunction::EmitOMPTargetTeamsDirective(
5925     const OMPTargetTeamsDirective &S) {
5926   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5927     emitTargetTeamsRegion(CGF, Action, S);
5928   };
5929   emitCommonOMPTargetDirective(*this, S, CodeGen);
5930 }
5931 
5932 static void
5933 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action,
5934                                 const OMPTargetTeamsDistributeDirective &S) {
5935   Action.Enter(CGF);
5936   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5937     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5938   };
5939 
5940   // Emit teams region as a standalone region.
5941   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5942                                             PrePostActionTy &Action) {
5943     Action.Enter(CGF);
5944     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5945     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5946     (void)PrivateScope.Privatize();
5947     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
5948                                                     CodeGenDistribute);
5949     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5950   };
5951   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen);
5952   emitPostUpdateForReductionClause(CGF, S,
5953                                    [](CodeGenFunction &) { return nullptr; });
5954 }
5955 
5956 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
5957     CodeGenModule &CGM, StringRef ParentName,
5958     const OMPTargetTeamsDistributeDirective &S) {
5959   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5960     emitTargetTeamsDistributeRegion(CGF, Action, S);
5961   };
5962   llvm::Function *Fn;
5963   llvm::Constant *Addr;
5964   // Emit target region as a standalone region.
5965   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
5966       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
5967   assert(Fn && Addr && "Target device function emission failed.");
5968 }
5969 
5970 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective(
5971     const OMPTargetTeamsDistributeDirective &S) {
5972   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
5973     emitTargetTeamsDistributeRegion(CGF, Action, S);
5974   };
5975   emitCommonOMPTargetDirective(*this, S, CodeGen);
5976 }
5977 
5978 static void emitTargetTeamsDistributeSimdRegion(
5979     CodeGenFunction &CGF, PrePostActionTy &Action,
5980     const OMPTargetTeamsDistributeSimdDirective &S) {
5981   Action.Enter(CGF);
5982   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
5983     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
5984   };
5985 
5986   // Emit teams region as a standalone region.
5987   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
5988                                             PrePostActionTy &Action) {
5989     Action.Enter(CGF);
5990     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5991     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
5992     (void)PrivateScope.Privatize();
5993     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
5994                                                     CodeGenDistribute);
5995     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
5996   };
5997   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen);
5998   emitPostUpdateForReductionClause(CGF, S,
5999                                    [](CodeGenFunction &) { return nullptr; });
6000 }
6001 
6002 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
6003     CodeGenModule &CGM, StringRef ParentName,
6004     const OMPTargetTeamsDistributeSimdDirective &S) {
6005   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6006     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
6007   };
6008   llvm::Function *Fn;
6009   llvm::Constant *Addr;
6010   // Emit target region as a standalone region.
6011   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6012       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6013   assert(Fn && Addr && "Target device function emission failed.");
6014 }
6015 
6016 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective(
6017     const OMPTargetTeamsDistributeSimdDirective &S) {
6018   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6019     emitTargetTeamsDistributeSimdRegion(CGF, Action, S);
6020   };
6021   emitCommonOMPTargetDirective(*this, S, CodeGen);
6022 }
6023 
6024 void CodeGenFunction::EmitOMPTeamsDistributeDirective(
6025     const OMPTeamsDistributeDirective &S) {
6026 
6027   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6028     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
6029   };
6030 
6031   // Emit teams region as a standalone region.
6032   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6033                                             PrePostActionTy &Action) {
6034     Action.Enter(CGF);
6035     OMPPrivateScope PrivateScope(CGF);
6036     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6037     (void)PrivateScope.Privatize();
6038     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
6039                                                     CodeGenDistribute);
6040     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6041   };
6042   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen);
6043   emitPostUpdateForReductionClause(*this, S,
6044                                    [](CodeGenFunction &) { return nullptr; });
6045 }
6046 
6047 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective(
6048     const OMPTeamsDistributeSimdDirective &S) {
6049   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6050     CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc());
6051   };
6052 
6053   // Emit teams region as a standalone region.
6054   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6055                                             PrePostActionTy &Action) {
6056     Action.Enter(CGF);
6057     OMPPrivateScope PrivateScope(CGF);
6058     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6059     (void)PrivateScope.Privatize();
6060     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd,
6061                                                     CodeGenDistribute);
6062     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6063   };
6064   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen);
6065   emitPostUpdateForReductionClause(*this, S,
6066                                    [](CodeGenFunction &) { return nullptr; });
6067 }
6068 
6069 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective(
6070     const OMPTeamsDistributeParallelForDirective &S) {
6071   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6072     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6073                               S.getDistInc());
6074   };
6075 
6076   // Emit teams region as a standalone region.
6077   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6078                                             PrePostActionTy &Action) {
6079     Action.Enter(CGF);
6080     OMPPrivateScope PrivateScope(CGF);
6081     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6082     (void)PrivateScope.Privatize();
6083     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute,
6084                                                     CodeGenDistribute);
6085     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6086   };
6087   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen);
6088   emitPostUpdateForReductionClause(*this, S,
6089                                    [](CodeGenFunction &) { return nullptr; });
6090 }
6091 
6092 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective(
6093     const OMPTeamsDistributeParallelForSimdDirective &S) {
6094   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6095     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6096                               S.getDistInc());
6097   };
6098 
6099   // Emit teams region as a standalone region.
6100   auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6101                                             PrePostActionTy &Action) {
6102     Action.Enter(CGF);
6103     OMPPrivateScope PrivateScope(CGF);
6104     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6105     (void)PrivateScope.Privatize();
6106     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6107         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6108     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6109   };
6110   emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd,
6111                               CodeGen);
6112   emitPostUpdateForReductionClause(*this, S,
6113                                    [](CodeGenFunction &) { return nullptr; });
6114 }
6115 
6116 static void emitTargetTeamsDistributeParallelForRegion(
6117     CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S,
6118     PrePostActionTy &Action) {
6119   Action.Enter(CGF);
6120   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6121     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6122                               S.getDistInc());
6123   };
6124 
6125   // Emit teams region as a standalone region.
6126   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6127                                                  PrePostActionTy &Action) {
6128     Action.Enter(CGF);
6129     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6130     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6131     (void)PrivateScope.Privatize();
6132     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6133         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6134     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6135   };
6136 
6137   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for,
6138                               CodeGenTeams);
6139   emitPostUpdateForReductionClause(CGF, S,
6140                                    [](CodeGenFunction &) { return nullptr; });
6141 }
6142 
6143 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
6144     CodeGenModule &CGM, StringRef ParentName,
6145     const OMPTargetTeamsDistributeParallelForDirective &S) {
6146   // Emit SPMD target teams distribute parallel for region as a standalone
6147   // region.
6148   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6149     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
6150   };
6151   llvm::Function *Fn;
6152   llvm::Constant *Addr;
6153   // Emit target region as a standalone region.
6154   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6155       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6156   assert(Fn && Addr && "Target device function emission failed.");
6157 }
6158 
6159 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective(
6160     const OMPTargetTeamsDistributeParallelForDirective &S) {
6161   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6162     emitTargetTeamsDistributeParallelForRegion(CGF, S, Action);
6163   };
6164   emitCommonOMPTargetDirective(*this, S, CodeGen);
6165 }
6166 
6167 static void emitTargetTeamsDistributeParallelForSimdRegion(
6168     CodeGenFunction &CGF,
6169     const OMPTargetTeamsDistributeParallelForSimdDirective &S,
6170     PrePostActionTy &Action) {
6171   Action.Enter(CGF);
6172   auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6173     CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined,
6174                               S.getDistInc());
6175   };
6176 
6177   // Emit teams region as a standalone region.
6178   auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF,
6179                                                  PrePostActionTy &Action) {
6180     Action.Enter(CGF);
6181     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6182     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6183     (void)PrivateScope.Privatize();
6184     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(
6185         CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false);
6186     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams);
6187   };
6188 
6189   emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd,
6190                               CodeGenTeams);
6191   emitPostUpdateForReductionClause(CGF, S,
6192                                    [](CodeGenFunction &) { return nullptr; });
6193 }
6194 
6195 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
6196     CodeGenModule &CGM, StringRef ParentName,
6197     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
6198   // Emit SPMD target teams distribute parallel for simd region as a standalone
6199   // region.
6200   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6201     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
6202   };
6203   llvm::Function *Fn;
6204   llvm::Constant *Addr;
6205   // Emit target region as a standalone region.
6206   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6207       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6208   assert(Fn && Addr && "Target device function emission failed.");
6209 }
6210 
6211 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective(
6212     const OMPTargetTeamsDistributeParallelForSimdDirective &S) {
6213   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6214     emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action);
6215   };
6216   emitCommonOMPTargetDirective(*this, S, CodeGen);
6217 }
6218 
6219 void CodeGenFunction::EmitOMPCancellationPointDirective(
6220     const OMPCancellationPointDirective &S) {
6221   CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(),
6222                                                    S.getCancelRegion());
6223 }
6224 
6225 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
6226   const Expr *IfCond = nullptr;
6227   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
6228     if (C->getNameModifier() == OMPD_unknown ||
6229         C->getNameModifier() == OMPD_cancel) {
6230       IfCond = C->getCondition();
6231       break;
6232     }
6233   }
6234   if (CGM.getLangOpts().OpenMPIRBuilder) {
6235     llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
6236     // TODO: This check is necessary as we only generate `omp parallel` through
6237     // the OpenMPIRBuilder for now.
6238     if (S.getCancelRegion() == OMPD_parallel) {
6239       llvm::Value *IfCondition = nullptr;
6240       if (IfCond)
6241         IfCondition = EmitScalarExpr(IfCond,
6242                                      /*IgnoreResultAssign=*/true);
6243       return Builder.restoreIP(
6244           OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion()));
6245     }
6246   }
6247 
6248   CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond,
6249                                         S.getCancelRegion());
6250 }
6251 
6252 CodeGenFunction::JumpDest
6253 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
6254   if (Kind == OMPD_parallel || Kind == OMPD_task ||
6255       Kind == OMPD_target_parallel || Kind == OMPD_taskloop ||
6256       Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop)
6257     return ReturnBlock;
6258   assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
6259          Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for ||
6260          Kind == OMPD_distribute_parallel_for ||
6261          Kind == OMPD_target_parallel_for ||
6262          Kind == OMPD_teams_distribute_parallel_for ||
6263          Kind == OMPD_target_teams_distribute_parallel_for);
6264   return OMPCancelStack.getExitBlock();
6265 }
6266 
6267 void CodeGenFunction::EmitOMPUseDevicePtrClause(
6268     const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
6269     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
6270   auto OrigVarIt = C.varlist_begin();
6271   auto InitIt = C.inits().begin();
6272   for (const Expr *PvtVarIt : C.private_copies()) {
6273     const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl());
6274     const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl());
6275     const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl());
6276 
6277     // In order to identify the right initializer we need to match the
6278     // declaration used by the mapping logic. In some cases we may get
6279     // OMPCapturedExprDecl that refers to the original declaration.
6280     const ValueDecl *MatchingVD = OrigVD;
6281     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
6282       // OMPCapturedExprDecl are used to privative fields of the current
6283       // structure.
6284       const auto *ME = cast<MemberExpr>(OED->getInit());
6285       assert(isa<CXXThisExpr>(ME->getBase()) &&
6286              "Base should be the current struct!");
6287       MatchingVD = ME->getMemberDecl();
6288     }
6289 
6290     // If we don't have information about the current list item, move on to
6291     // the next one.
6292     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
6293     if (InitAddrIt == CaptureDeviceAddrMap.end())
6294       continue;
6295 
6296     bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD,
6297                                                          InitAddrIt, InitVD,
6298                                                          PvtVD]() {
6299       // Initialize the temporary initialization variable with the address we
6300       // get from the runtime library. We have to cast the source address
6301       // because it is always a void *. References are materialized in the
6302       // privatization scope, so the initialization here disregards the fact
6303       // the original variable is a reference.
6304       QualType AddrQTy =
6305           getContext().getPointerType(OrigVD->getType().getNonReferenceType());
6306       llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy);
6307       Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy);
6308       setAddrOfLocalVar(InitVD, InitAddr);
6309 
6310       // Emit private declaration, it will be initialized by the value we
6311       // declaration we just added to the local declarations map.
6312       EmitDecl(*PvtVD);
6313 
6314       // The initialization variables reached its purpose in the emission
6315       // of the previous declaration, so we don't need it anymore.
6316       LocalDeclMap.erase(InitVD);
6317 
6318       // Return the address of the private variable.
6319       return GetAddrOfLocalVar(PvtVD);
6320     });
6321     assert(IsRegistered && "firstprivate var already registered as private");
6322     // Silence the warning about unused variable.
6323     (void)IsRegistered;
6324 
6325     ++OrigVarIt;
6326     ++InitIt;
6327   }
6328 }
6329 
6330 static const VarDecl *getBaseDecl(const Expr *Ref) {
6331   const Expr *Base = Ref->IgnoreParenImpCasts();
6332   while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base))
6333     Base = OASE->getBase()->IgnoreParenImpCasts();
6334   while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base))
6335     Base = ASE->getBase()->IgnoreParenImpCasts();
6336   return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl());
6337 }
6338 
6339 void CodeGenFunction::EmitOMPUseDeviceAddrClause(
6340     const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
6341     const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) {
6342   llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
6343   for (const Expr *Ref : C.varlists()) {
6344     const VarDecl *OrigVD = getBaseDecl(Ref);
6345     if (!Processed.insert(OrigVD).second)
6346       continue;
6347     // In order to identify the right initializer we need to match the
6348     // declaration used by the mapping logic. In some cases we may get
6349     // OMPCapturedExprDecl that refers to the original declaration.
6350     const ValueDecl *MatchingVD = OrigVD;
6351     if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) {
6352       // OMPCapturedExprDecl are used to privative fields of the current
6353       // structure.
6354       const auto *ME = cast<MemberExpr>(OED->getInit());
6355       assert(isa<CXXThisExpr>(ME->getBase()) &&
6356              "Base should be the current struct!");
6357       MatchingVD = ME->getMemberDecl();
6358     }
6359 
6360     // If we don't have information about the current list item, move on to
6361     // the next one.
6362     auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD);
6363     if (InitAddrIt == CaptureDeviceAddrMap.end())
6364       continue;
6365 
6366     Address PrivAddr = InitAddrIt->getSecond();
6367     // For declrefs and variable length array need to load the pointer for
6368     // correct mapping, since the pointer to the data was passed to the runtime.
6369     if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) ||
6370         MatchingVD->getType()->isArrayType())
6371       PrivAddr =
6372           EmitLoadOfPointer(PrivAddr, getContext()
6373                                           .getPointerType(OrigVD->getType())
6374                                           ->castAs<PointerType>());
6375     llvm::Type *RealTy =
6376         ConvertTypeForMem(OrigVD->getType().getNonReferenceType())
6377             ->getPointerTo();
6378     PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy);
6379 
6380     (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; });
6381   }
6382 }
6383 
6384 // Generate the instructions for '#pragma omp target data' directive.
6385 void CodeGenFunction::EmitOMPTargetDataDirective(
6386     const OMPTargetDataDirective &S) {
6387   CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true,
6388                                        /*SeparateBeginEndCalls=*/true);
6389 
6390   // Create a pre/post action to signal the privatization of the device pointer.
6391   // This action can be replaced by the OpenMP runtime code generation to
6392   // deactivate privatization.
6393   bool PrivatizeDevicePointers = false;
6394   class DevicePointerPrivActionTy : public PrePostActionTy {
6395     bool &PrivatizeDevicePointers;
6396 
6397   public:
6398     explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers)
6399         : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {}
6400     void Enter(CodeGenFunction &CGF) override {
6401       PrivatizeDevicePointers = true;
6402     }
6403   };
6404   DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers);
6405 
6406   auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers](
6407                        CodeGenFunction &CGF, PrePostActionTy &Action) {
6408     auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6409       CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt());
6410     };
6411 
6412     // Codegen that selects whether to generate the privatization code or not.
6413     auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers,
6414                           &InnermostCodeGen](CodeGenFunction &CGF,
6415                                              PrePostActionTy &Action) {
6416       RegionCodeGenTy RCG(InnermostCodeGen);
6417       PrivatizeDevicePointers = false;
6418 
6419       // Call the pre-action to change the status of PrivatizeDevicePointers if
6420       // needed.
6421       Action.Enter(CGF);
6422 
6423       if (PrivatizeDevicePointers) {
6424         OMPPrivateScope PrivateScope(CGF);
6425         // Emit all instances of the use_device_ptr clause.
6426         for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>())
6427           CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope,
6428                                         Info.CaptureDeviceAddrMap);
6429         for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>())
6430           CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope,
6431                                          Info.CaptureDeviceAddrMap);
6432         (void)PrivateScope.Privatize();
6433         RCG(CGF);
6434       } else {
6435         OMPLexicalScope Scope(CGF, S, OMPD_unknown);
6436         RCG(CGF);
6437       }
6438     };
6439 
6440     // Forward the provided action to the privatization codegen.
6441     RegionCodeGenTy PrivRCG(PrivCodeGen);
6442     PrivRCG.setAction(Action);
6443 
6444     // Notwithstanding the body of the region is emitted as inlined directive,
6445     // we don't use an inline scope as changes in the references inside the
6446     // region are expected to be visible outside, so we do not privative them.
6447     OMPLexicalScope Scope(CGF, S);
6448     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data,
6449                                                     PrivRCG);
6450   };
6451 
6452   RegionCodeGenTy RCG(CodeGen);
6453 
6454   // If we don't have target devices, don't bother emitting the data mapping
6455   // code.
6456   if (CGM.getLangOpts().OMPTargetTriples.empty()) {
6457     RCG(*this);
6458     return;
6459   }
6460 
6461   // Check if we have any if clause associated with the directive.
6462   const Expr *IfCond = nullptr;
6463   if (const auto *C = S.getSingleClause<OMPIfClause>())
6464     IfCond = C->getCondition();
6465 
6466   // Check if we have any device clause associated with the directive.
6467   const Expr *Device = nullptr;
6468   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6469     Device = C->getDevice();
6470 
6471   // Set the action to signal privatization of device pointers.
6472   RCG.setAction(PrivAction);
6473 
6474   // Emit region code.
6475   CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG,
6476                                              Info);
6477 }
6478 
6479 void CodeGenFunction::EmitOMPTargetEnterDataDirective(
6480     const OMPTargetEnterDataDirective &S) {
6481   // If we don't have target devices, don't bother emitting the data mapping
6482   // code.
6483   if (CGM.getLangOpts().OMPTargetTriples.empty())
6484     return;
6485 
6486   // Check if we have any if clause associated with the directive.
6487   const Expr *IfCond = nullptr;
6488   if (const auto *C = S.getSingleClause<OMPIfClause>())
6489     IfCond = C->getCondition();
6490 
6491   // Check if we have any device clause associated with the directive.
6492   const Expr *Device = nullptr;
6493   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6494     Device = C->getDevice();
6495 
6496   OMPLexicalScope Scope(*this, S, OMPD_task);
6497   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6498 }
6499 
6500 void CodeGenFunction::EmitOMPTargetExitDataDirective(
6501     const OMPTargetExitDataDirective &S) {
6502   // If we don't have target devices, don't bother emitting the data mapping
6503   // code.
6504   if (CGM.getLangOpts().OMPTargetTriples.empty())
6505     return;
6506 
6507   // Check if we have any if clause associated with the directive.
6508   const Expr *IfCond = nullptr;
6509   if (const auto *C = S.getSingleClause<OMPIfClause>())
6510     IfCond = C->getCondition();
6511 
6512   // Check if we have any device clause associated with the directive.
6513   const Expr *Device = nullptr;
6514   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6515     Device = C->getDevice();
6516 
6517   OMPLexicalScope Scope(*this, S, OMPD_task);
6518   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6519 }
6520 
6521 static void emitTargetParallelRegion(CodeGenFunction &CGF,
6522                                      const OMPTargetParallelDirective &S,
6523                                      PrePostActionTy &Action) {
6524   // Get the captured statement associated with the 'parallel' region.
6525   const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel);
6526   Action.Enter(CGF);
6527   auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) {
6528     Action.Enter(CGF);
6529     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6530     (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
6531     CGF.EmitOMPPrivateClause(S, PrivateScope);
6532     CGF.EmitOMPReductionClauseInit(S, PrivateScope);
6533     (void)PrivateScope.Privatize();
6534     if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()))
6535       CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S);
6536     // TODO: Add support for clauses.
6537     CGF.EmitStmt(CS->getCapturedStmt());
6538     CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel);
6539   };
6540   emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen,
6541                                  emitEmptyBoundParameters);
6542   emitPostUpdateForReductionClause(CGF, S,
6543                                    [](CodeGenFunction &) { return nullptr; });
6544 }
6545 
6546 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
6547     CodeGenModule &CGM, StringRef ParentName,
6548     const OMPTargetParallelDirective &S) {
6549   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6550     emitTargetParallelRegion(CGF, S, Action);
6551   };
6552   llvm::Function *Fn;
6553   llvm::Constant *Addr;
6554   // Emit target region as a standalone region.
6555   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6556       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6557   assert(Fn && Addr && "Target device function emission failed.");
6558 }
6559 
6560 void CodeGenFunction::EmitOMPTargetParallelDirective(
6561     const OMPTargetParallelDirective &S) {
6562   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6563     emitTargetParallelRegion(CGF, S, Action);
6564   };
6565   emitCommonOMPTargetDirective(*this, S, CodeGen);
6566 }
6567 
6568 static void emitTargetParallelForRegion(CodeGenFunction &CGF,
6569                                         const OMPTargetParallelForDirective &S,
6570                                         PrePostActionTy &Action) {
6571   Action.Enter(CGF);
6572   // Emit directive as a combined directive that consists of two implicit
6573   // directives: 'parallel' with 'for' directive.
6574   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6575     Action.Enter(CGF);
6576     CodeGenFunction::OMPCancelStackRAII CancelRegion(
6577         CGF, OMPD_target_parallel_for, S.hasCancel());
6578     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
6579                                emitDispatchForLoopBounds);
6580   };
6581   emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen,
6582                                  emitEmptyBoundParameters);
6583 }
6584 
6585 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
6586     CodeGenModule &CGM, StringRef ParentName,
6587     const OMPTargetParallelForDirective &S) {
6588   // Emit SPMD target parallel for region as a standalone region.
6589   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6590     emitTargetParallelForRegion(CGF, S, Action);
6591   };
6592   llvm::Function *Fn;
6593   llvm::Constant *Addr;
6594   // Emit target region as a standalone region.
6595   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6596       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6597   assert(Fn && Addr && "Target device function emission failed.");
6598 }
6599 
6600 void CodeGenFunction::EmitOMPTargetParallelForDirective(
6601     const OMPTargetParallelForDirective &S) {
6602   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6603     emitTargetParallelForRegion(CGF, S, Action);
6604   };
6605   emitCommonOMPTargetDirective(*this, S, CodeGen);
6606 }
6607 
6608 static void
6609 emitTargetParallelForSimdRegion(CodeGenFunction &CGF,
6610                                 const OMPTargetParallelForSimdDirective &S,
6611                                 PrePostActionTy &Action) {
6612   Action.Enter(CGF);
6613   // Emit directive as a combined directive that consists of two implicit
6614   // directives: 'parallel' with 'for' directive.
6615   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6616     Action.Enter(CGF);
6617     CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds,
6618                                emitDispatchForLoopBounds);
6619   };
6620   emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen,
6621                                  emitEmptyBoundParameters);
6622 }
6623 
6624 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
6625     CodeGenModule &CGM, StringRef ParentName,
6626     const OMPTargetParallelForSimdDirective &S) {
6627   // Emit SPMD target parallel for region as a standalone region.
6628   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6629     emitTargetParallelForSimdRegion(CGF, S, Action);
6630   };
6631   llvm::Function *Fn;
6632   llvm::Constant *Addr;
6633   // Emit target region as a standalone region.
6634   CGM.getOpenMPRuntime().emitTargetOutlinedFunction(
6635       S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen);
6636   assert(Fn && Addr && "Target device function emission failed.");
6637 }
6638 
6639 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective(
6640     const OMPTargetParallelForSimdDirective &S) {
6641   auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6642     emitTargetParallelForSimdRegion(CGF, S, Action);
6643   };
6644   emitCommonOMPTargetDirective(*this, S, CodeGen);
6645 }
6646 
6647 /// Emit a helper variable and return corresponding lvalue.
6648 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper,
6649                      const ImplicitParamDecl *PVD,
6650                      CodeGenFunction::OMPPrivateScope &Privates) {
6651   const auto *VDecl = cast<VarDecl>(Helper->getDecl());
6652   Privates.addPrivate(VDecl,
6653                       [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); });
6654 }
6655 
6656 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) {
6657   assert(isOpenMPTaskLoopDirective(S.getDirectiveKind()));
6658   // Emit outlined function for task construct.
6659   const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop);
6660   Address CapturedStruct = Address::invalid();
6661   {
6662     OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
6663     CapturedStruct = GenerateCapturedStmtArgument(*CS);
6664   }
6665   QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
6666   const Expr *IfCond = nullptr;
6667   for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
6668     if (C->getNameModifier() == OMPD_unknown ||
6669         C->getNameModifier() == OMPD_taskloop) {
6670       IfCond = C->getCondition();
6671       break;
6672     }
6673   }
6674 
6675   OMPTaskDataTy Data;
6676   // Check if taskloop must be emitted without taskgroup.
6677   Data.Nogroup = S.getSingleClause<OMPNogroupClause>();
6678   // TODO: Check if we should emit tied or untied task.
6679   Data.Tied = true;
6680   // Set scheduling for taskloop
6681   if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) {
6682     // grainsize clause
6683     Data.Schedule.setInt(/*IntVal=*/false);
6684     Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize()));
6685   } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) {
6686     // num_tasks clause
6687     Data.Schedule.setInt(/*IntVal=*/true);
6688     Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks()));
6689   }
6690 
6691   auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) {
6692     // if (PreCond) {
6693     //   for (IV in 0..LastIteration) BODY;
6694     //   <Final counter/linear vars updates>;
6695     // }
6696     //
6697 
6698     // Emit: if (PreCond) - begin.
6699     // If the condition constant folds and can be elided, avoid emitting the
6700     // whole loop.
6701     bool CondConstant;
6702     llvm::BasicBlock *ContBlock = nullptr;
6703     OMPLoopScope PreInitScope(CGF, S);
6704     if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
6705       if (!CondConstant)
6706         return;
6707     } else {
6708       llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then");
6709       ContBlock = CGF.createBasicBlock("taskloop.if.end");
6710       emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
6711                   CGF.getProfileCount(&S));
6712       CGF.EmitBlock(ThenBlock);
6713       CGF.incrementProfileCounter(&S);
6714     }
6715 
6716     (void)CGF.EmitOMPLinearClauseInit(S);
6717 
6718     OMPPrivateScope LoopScope(CGF);
6719     // Emit helper vars inits.
6720     enum { LowerBound = 5, UpperBound, Stride, LastIter };
6721     auto *I = CS->getCapturedDecl()->param_begin();
6722     auto *LBP = std::next(I, LowerBound);
6723     auto *UBP = std::next(I, UpperBound);
6724     auto *STP = std::next(I, Stride);
6725     auto *LIP = std::next(I, LastIter);
6726     mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP,
6727              LoopScope);
6728     mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP,
6729              LoopScope);
6730     mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope);
6731     mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP,
6732              LoopScope);
6733     CGF.EmitOMPPrivateLoopCounters(S, LoopScope);
6734     CGF.EmitOMPLinearClause(S, LoopScope);
6735     bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
6736     (void)LoopScope.Privatize();
6737     // Emit the loop iteration variable.
6738     const Expr *IVExpr = S.getIterationVariable();
6739     const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
6740     CGF.EmitVarDecl(*IVDecl);
6741     CGF.EmitIgnoredExpr(S.getInit());
6742 
6743     // Emit the iterations count variable.
6744     // If it is not a variable, Sema decided to calculate iterations count on
6745     // each iteration (e.g., it is foldable into a constant).
6746     if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
6747       CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
6748       // Emit calculation of the iterations count.
6749       CGF.EmitIgnoredExpr(S.getCalcLastIteration());
6750     }
6751 
6752     {
6753       OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false);
6754       emitCommonSimdLoop(
6755           CGF, S,
6756           [&S](CodeGenFunction &CGF, PrePostActionTy &) {
6757             if (isOpenMPSimdDirective(S.getDirectiveKind()))
6758               CGF.EmitOMPSimdInit(S);
6759           },
6760           [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) {
6761             CGF.EmitOMPInnerLoop(
6762                 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
6763                 [&S](CodeGenFunction &CGF) {
6764                   emitOMPLoopBodyWithStopPoint(CGF, S,
6765                                                CodeGenFunction::JumpDest());
6766                 },
6767                 [](CodeGenFunction &) {});
6768           });
6769     }
6770     // Emit: if (PreCond) - end.
6771     if (ContBlock) {
6772       CGF.EmitBranch(ContBlock);
6773       CGF.EmitBlock(ContBlock, true);
6774     }
6775     // Emit final copy of the lastprivate variables if IsLastIter != 0.
6776     if (HasLastprivateClause) {
6777       CGF.EmitOMPLastprivateClauseFinal(
6778           S, isOpenMPSimdDirective(S.getDirectiveKind()),
6779           CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar(
6780               CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
6781               (*LIP)->getType(), S.getBeginLoc())));
6782     }
6783     CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) {
6784       return CGF.Builder.CreateIsNotNull(
6785           CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false,
6786                                (*LIP)->getType(), S.getBeginLoc()));
6787     });
6788   };
6789   auto &&TaskGen = [&S, SharedsTy, CapturedStruct,
6790                     IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn,
6791                             const OMPTaskDataTy &Data) {
6792     auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond,
6793                       &Data](CodeGenFunction &CGF, PrePostActionTy &) {
6794       OMPLoopScope PreInitScope(CGF, S);
6795       CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S,
6796                                                   OutlinedFn, SharedsTy,
6797                                                   CapturedStruct, IfCond, Data);
6798     };
6799     CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop,
6800                                                     CodeGen);
6801   };
6802   if (Data.Nogroup) {
6803     EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data);
6804   } else {
6805     CGM.getOpenMPRuntime().emitTaskgroupRegion(
6806         *this,
6807         [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF,
6808                                         PrePostActionTy &Action) {
6809           Action.Enter(CGF);
6810           CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen,
6811                                         Data);
6812         },
6813         S.getBeginLoc());
6814   }
6815 }
6816 
6817 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
6818   auto LPCRegion =
6819       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6820   EmitOMPTaskLoopBasedDirective(S);
6821 }
6822 
6823 void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
6824     const OMPTaskLoopSimdDirective &S) {
6825   auto LPCRegion =
6826       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6827   OMPLexicalScope Scope(*this, S);
6828   EmitOMPTaskLoopBasedDirective(S);
6829 }
6830 
6831 void CodeGenFunction::EmitOMPMasterTaskLoopDirective(
6832     const OMPMasterTaskLoopDirective &S) {
6833   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6834     Action.Enter(CGF);
6835     EmitOMPTaskLoopBasedDirective(S);
6836   };
6837   auto LPCRegion =
6838       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6839   OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false);
6840   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
6841 }
6842 
6843 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective(
6844     const OMPMasterTaskLoopSimdDirective &S) {
6845   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6846     Action.Enter(CGF);
6847     EmitOMPTaskLoopBasedDirective(S);
6848   };
6849   auto LPCRegion =
6850       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6851   OMPLexicalScope Scope(*this, S);
6852   CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc());
6853 }
6854 
6855 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective(
6856     const OMPParallelMasterTaskLoopDirective &S) {
6857   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6858     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
6859                                   PrePostActionTy &Action) {
6860       Action.Enter(CGF);
6861       CGF.EmitOMPTaskLoopBasedDirective(S);
6862     };
6863     OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
6864     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
6865                                             S.getBeginLoc());
6866   };
6867   auto LPCRegion =
6868       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6869   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen,
6870                                  emitEmptyBoundParameters);
6871 }
6872 
6873 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective(
6874     const OMPParallelMasterTaskLoopSimdDirective &S) {
6875   auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) {
6876     auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF,
6877                                   PrePostActionTy &Action) {
6878       Action.Enter(CGF);
6879       CGF.EmitOMPTaskLoopBasedDirective(S);
6880     };
6881     OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false);
6882     CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen,
6883                                             S.getBeginLoc());
6884   };
6885   auto LPCRegion =
6886       CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S);
6887   emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen,
6888                                  emitEmptyBoundParameters);
6889 }
6890 
6891 // Generate the instructions for '#pragma omp target update' directive.
6892 void CodeGenFunction::EmitOMPTargetUpdateDirective(
6893     const OMPTargetUpdateDirective &S) {
6894   // If we don't have target devices, don't bother emitting the data mapping
6895   // code.
6896   if (CGM.getLangOpts().OMPTargetTriples.empty())
6897     return;
6898 
6899   // Check if we have any if clause associated with the directive.
6900   const Expr *IfCond = nullptr;
6901   if (const auto *C = S.getSingleClause<OMPIfClause>())
6902     IfCond = C->getCondition();
6903 
6904   // Check if we have any device clause associated with the directive.
6905   const Expr *Device = nullptr;
6906   if (const auto *C = S.getSingleClause<OMPDeviceClause>())
6907     Device = C->getDevice();
6908 
6909   OMPLexicalScope Scope(*this, S, OMPD_task);
6910   CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device);
6911 }
6912 
6913 void CodeGenFunction::EmitSimpleOMPExecutableDirective(
6914     const OMPExecutableDirective &D) {
6915   if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) {
6916     EmitOMPScanDirective(*SD);
6917     return;
6918   }
6919   if (!D.hasAssociatedStmt() || !D.getAssociatedStmt())
6920     return;
6921   auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) {
6922     OMPPrivateScope GlobalsScope(CGF);
6923     if (isOpenMPTaskingDirective(D.getDirectiveKind())) {
6924       // Capture global firstprivates to avoid crash.
6925       for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
6926         for (const Expr *Ref : C->varlists()) {
6927           const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
6928           if (!DRE)
6929             continue;
6930           const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6931           if (!VD || VD->hasLocalStorage())
6932             continue;
6933           if (!CGF.LocalDeclMap.count(VD)) {
6934             LValue GlobLVal = CGF.EmitLValue(Ref);
6935             GlobalsScope.addPrivate(
6936                 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
6937           }
6938         }
6939       }
6940     }
6941     if (isOpenMPSimdDirective(D.getDirectiveKind())) {
6942       (void)GlobalsScope.Privatize();
6943       ParentLoopDirectiveForScanRegion ScanRegion(CGF, D);
6944       emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action);
6945     } else {
6946       if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) {
6947         for (const Expr *E : LD->counters()) {
6948           const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
6949           if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) {
6950             LValue GlobLVal = CGF.EmitLValue(E);
6951             GlobalsScope.addPrivate(
6952                 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); });
6953           }
6954           if (isa<OMPCapturedExprDecl>(VD)) {
6955             // Emit only those that were not explicitly referenced in clauses.
6956             if (!CGF.LocalDeclMap.count(VD))
6957               CGF.EmitVarDecl(*VD);
6958           }
6959         }
6960         for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) {
6961           if (!C->getNumForLoops())
6962             continue;
6963           for (unsigned I = LD->getLoopsNumber(),
6964                         E = C->getLoopNumIterations().size();
6965                I < E; ++I) {
6966             if (const auto *VD = dyn_cast<OMPCapturedExprDecl>(
6967                     cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) {
6968               // Emit only those that were not explicitly referenced in clauses.
6969               if (!CGF.LocalDeclMap.count(VD))
6970                 CGF.EmitVarDecl(*VD);
6971             }
6972           }
6973         }
6974       }
6975       (void)GlobalsScope.Privatize();
6976       CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt());
6977     }
6978   };
6979   if (D.getDirectiveKind() == OMPD_atomic ||
6980       D.getDirectiveKind() == OMPD_critical ||
6981       D.getDirectiveKind() == OMPD_section ||
6982       D.getDirectiveKind() == OMPD_master ||
6983       D.getDirectiveKind() == OMPD_masked) {
6984     EmitStmt(D.getAssociatedStmt());
6985   } else {
6986     auto LPCRegion =
6987         CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D);
6988     OMPSimdLexicalScope Scope(*this, D);
6989     CGM.getOpenMPRuntime().emitInlinedDirective(
6990         *this,
6991         isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd
6992                                                     : D.getDirectiveKind(),
6993         CodeGen);
6994   }
6995   // Check for outer lastprivate conditional update.
6996   checkForLastprivateConditionalUpdate(*this, D);
6997 }
6998